author | nipkow |
Tue, 17 Jun 2025 14:11:40 +0200 | |
changeset 82733 | 8b537e1af2ec |
parent 82687 | 97b9ac57751e |
permissions | -rw-r--r-- |
72515
c7038c397ae3
moved most material from session HOL-Word to Word_Lib in the AFP
haftmann
parents:
72512
diff
changeset
|
1 |
(* Title: HOL/Library/Word.thy |
c7038c397ae3
moved most material from session HOL-Word to Word_Lib in the AFP
haftmann
parents:
72512
diff
changeset
|
2 |
Author: Jeremy Dawson and Gerwin Klein, NICTA, et. al. |
24333 | 3 |
*) |
4 |
||
61799 | 5 |
section \<open>A type of finite bit strings\<close> |
24350 | 6 |
|
29628 | 7 |
theory Word |
41413
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
wenzelm
parents:
41060
diff
changeset
|
8 |
imports |
66453
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents:
65363
diff
changeset
|
9 |
"HOL-Library.Type_Length" |
37660 | 10 |
begin |
11 |
||
72243 | 12 |
subsection \<open>Preliminaries\<close> |
13 |
||
14 |
lemma signed_take_bit_decr_length_iff: |
|
15 |
\<open>signed_take_bit (LENGTH('a::len) - Suc 0) k = signed_take_bit (LENGTH('a) - Suc 0) l |
|
16 |
\<longleftrightarrow> take_bit LENGTH('a) k = take_bit LENGTH('a) l\<close> |
|
80777 | 17 |
by (simp add: signed_take_bit_eq_iff_take_bit_eq) |
72243 | 18 |
|
19 |
||
72244 | 20 |
subsection \<open>Fundamentals\<close> |
21 |
||
22 |
subsubsection \<open>Type definition\<close> |
|
37660 | 23 |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
24 |
quotient_type (overloaded) 'a word = int / \<open>\<lambda>k l. take_bit LENGTH('a) k = take_bit LENGTH('a::len) l\<close> |
72243 | 25 |
morphisms rep Word by (auto intro!: equivpI reflpI sympI transpI) |
26 |
||
27 |
hide_const (open) rep \<comment> \<open>only for foundational purpose\<close> |
|
72130
9e5862223442
dedicated symbols for code generation, to pave way for generic conversions from and to word
haftmann
parents:
72128
diff
changeset
|
28 |
hide_const (open) Word \<comment> \<open>only for code generation\<close> |
9e5862223442
dedicated symbols for code generation, to pave way for generic conversions from and to word
haftmann
parents:
72128
diff
changeset
|
29 |
|
72244 | 30 |
|
31 |
subsubsection \<open>Basic arithmetic\<close> |
|
32 |
||
72243 | 33 |
instantiation word :: (len) comm_ring_1 |
34 |
begin |
|
35 |
||
36 |
lift_definition zero_word :: \<open>'a word\<close> |
|
37 |
is 0 . |
|
38 |
||
39 |
lift_definition one_word :: \<open>'a word\<close> |
|
40 |
is 1 . |
|
41 |
||
42 |
lift_definition plus_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
|
43 |
is \<open>(+)\<close> |
|
80777 | 44 |
by (auto simp: take_bit_eq_mod intro: mod_add_cong) |
72243 | 45 |
|
46 |
lift_definition minus_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
|
47 |
is \<open>(-)\<close> |
|
80777 | 48 |
by (auto simp: take_bit_eq_mod intro: mod_diff_cong) |
72243 | 49 |
|
50 |
lift_definition uminus_word :: \<open>'a word \<Rightarrow> 'a word\<close> |
|
51 |
is uminus |
|
80777 | 52 |
by (auto simp: take_bit_eq_mod intro: mod_minus_cong) |
72243 | 53 |
|
54 |
lift_definition times_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
|
55 |
is \<open>(*)\<close> |
|
80777 | 56 |
by (auto simp: take_bit_eq_mod intro: mod_mult_cong) |
72243 | 57 |
|
58 |
instance |
|
59 |
by (standard; transfer) (simp_all add: algebra_simps) |
|
60 |
||
61 |
end |
|
62 |
||
63 |
context |
|
64 |
includes lifting_syntax |
|
72244 | 65 |
notes |
66 |
power_transfer [transfer_rule] |
|
67 |
transfer_rule_of_bool [transfer_rule] |
|
68 |
transfer_rule_numeral [transfer_rule] |
|
69 |
transfer_rule_of_nat [transfer_rule] |
|
70 |
transfer_rule_of_int [transfer_rule] |
|
72243 | 71 |
begin |
72 |
||
73 |
lemma power_transfer_word [transfer_rule]: |
|
74 |
\<open>(pcr_word ===> (=) ===> pcr_word) (^) (^)\<close> |
|
75 |
by transfer_prover |
|
76 |
||
72244 | 77 |
lemma [transfer_rule]: |
78 |
\<open>((=) ===> pcr_word) of_bool of_bool\<close> |
|
79 |
by transfer_prover |
|
80 |
||
81 |
lemma [transfer_rule]: |
|
82 |
\<open>((=) ===> pcr_word) numeral numeral\<close> |
|
83 |
by transfer_prover |
|
84 |
||
85 |
lemma [transfer_rule]: |
|
86 |
\<open>((=) ===> pcr_word) int of_nat\<close> |
|
87 |
by transfer_prover |
|
88 |
||
89 |
lemma [transfer_rule]: |
|
90 |
\<open>((=) ===> pcr_word) (\<lambda>k. k) of_int\<close> |
|
91 |
proof - |
|
92 |
have \<open>((=) ===> pcr_word) of_int of_int\<close> |
|
93 |
by transfer_prover |
|
94 |
then show ?thesis by (simp add: id_def) |
|
95 |
qed |
|
96 |
||
97 |
lemma [transfer_rule]: |
|
98 |
\<open>(pcr_word ===> (\<longleftrightarrow>)) even ((dvd) 2 :: 'a::len word \<Rightarrow> bool)\<close> |
|
99 |
proof - |
|
100 |
have even_word_unfold: "even k \<longleftrightarrow> (\<exists>l. take_bit LENGTH('a) k = take_bit LENGTH('a) (2 * l))" (is "?P \<longleftrightarrow> ?Q") |
|
101 |
for k :: int |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
102 |
by (metis dvd_triv_left evenE even_take_bit_eq len_not_eq_0) |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
103 |
show ?thesis |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
104 |
unfolding even_word_unfold [abs_def] dvd_def [where ?'a = "'a word", abs_def] |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
105 |
by transfer_prover |
72244 | 106 |
qed |
107 |
||
72243 | 108 |
end |
109 |
||
72512 | 110 |
lemma exp_eq_zero_iff [simp]: |
111 |
\<open>2 ^ n = (0 :: 'a::len word) \<longleftrightarrow> n \<ge> LENGTH('a)\<close> |
|
73535 | 112 |
by transfer auto |
72512 | 113 |
|
72244 | 114 |
lemma word_exp_length_eq_0 [simp]: |
115 |
\<open>(2 :: 'a::len word) ^ LENGTH('a) = 0\<close> |
|
72512 | 116 |
by simp |
72262 | 117 |
|
72244 | 118 |
|
72489 | 119 |
subsubsection \<open>Basic tool setup\<close> |
120 |
||
121 |
ML_file \<open>Tools/word_lib.ML\<close> |
|
122 |
||
123 |
||
72244 | 124 |
subsubsection \<open>Basic code generation setup\<close> |
71948
6ede899d26d3
fundamental construction of word type following existing transfer rules
haftmann
parents:
71947
diff
changeset
|
125 |
|
72262 | 126 |
context |
127 |
begin |
|
128 |
||
129 |
qualified lift_definition the_int :: \<open>'a::len word \<Rightarrow> int\<close> |
|
71948
6ede899d26d3
fundamental construction of word type following existing transfer rules
haftmann
parents:
71947
diff
changeset
|
130 |
is \<open>take_bit LENGTH('a)\<close> . |
37660 | 131 |
|
72262 | 132 |
end |
133 |
||
72243 | 134 |
lemma [code abstype]: |
72262 | 135 |
\<open>Word.Word (Word.the_int w) = w\<close> |
72243 | 136 |
by transfer simp |
137 |
||
72262 | 138 |
lemma Word_eq_word_of_int [code_post, simp]: |
139 |
\<open>Word.Word = of_int\<close> |
|
140 |
by (rule; transfer) simp |
|
141 |
||
72243 | 142 |
quickcheck_generator word |
143 |
constructors: |
|
144 |
\<open>0 :: 'a::len word\<close>, |
|
145 |
\<open>numeral :: num \<Rightarrow> 'a::len word\<close> |
|
146 |
||
147 |
instantiation word :: (len) equal |
|
148 |
begin |
|
149 |
||
150 |
lift_definition equal_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> bool\<close> |
|
151 |
is \<open>\<lambda>k l. take_bit LENGTH('a) k = take_bit LENGTH('a) l\<close> |
|
152 |
by simp |
|
153 |
||
154 |
instance |
|
155 |
by (standard; transfer) rule |
|
156 |
||
157 |
end |
|
158 |
||
159 |
lemma [code]: |
|
72262 | 160 |
\<open>HOL.equal v w \<longleftrightarrow> HOL.equal (Word.the_int v) (Word.the_int w)\<close> |
72243 | 161 |
by transfer (simp add: equal) |
162 |
||
163 |
lemma [code]: |
|
72262 | 164 |
\<open>Word.the_int 0 = 0\<close> |
72243 | 165 |
by transfer simp |
166 |
||
167 |
lemma [code]: |
|
72262 | 168 |
\<open>Word.the_int 1 = 1\<close> |
72243 | 169 |
by transfer simp |
170 |
||
171 |
lemma [code]: |
|
72262 | 172 |
\<open>Word.the_int (v + w) = take_bit LENGTH('a) (Word.the_int v + Word.the_int w)\<close> |
72243 | 173 |
for v w :: \<open>'a::len word\<close> |
174 |
by transfer (simp add: take_bit_add) |
|
175 |
||
176 |
lemma [code]: |
|
72262 | 177 |
\<open>Word.the_int (- w) = (let k = Word.the_int w in if w = 0 then 0 else 2 ^ LENGTH('a) - k)\<close> |
72243 | 178 |
for w :: \<open>'a::len word\<close> |
80777 | 179 |
by transfer (auto simp: take_bit_eq_mod zmod_zminus1_eq_if) |
72243 | 180 |
|
181 |
lemma [code]: |
|
72262 | 182 |
\<open>Word.the_int (v - w) = take_bit LENGTH('a) (Word.the_int v - Word.the_int w)\<close> |
72243 | 183 |
for v w :: \<open>'a::len word\<close> |
184 |
by transfer (simp add: take_bit_diff) |
|
185 |
||
186 |
lemma [code]: |
|
72262 | 187 |
\<open>Word.the_int (v * w) = take_bit LENGTH('a) (Word.the_int v * Word.the_int w)\<close> |
72243 | 188 |
for v w :: \<open>'a::len word\<close> |
189 |
by transfer (simp add: take_bit_mult) |
|
190 |
||
191 |
||
72244 | 192 |
subsubsection \<open>Basic conversions\<close> |
70185 | 193 |
|
72262 | 194 |
abbreviation word_of_nat :: \<open>nat \<Rightarrow> 'a::len word\<close> |
195 |
where \<open>word_of_nat \<equiv> of_nat\<close> |
|
196 |
||
197 |
abbreviation word_of_int :: \<open>int \<Rightarrow> 'a::len word\<close> |
|
198 |
where \<open>word_of_int \<equiv> of_int\<close> |
|
199 |
||
200 |
lemma word_of_nat_eq_iff: |
|
201 |
\<open>word_of_nat m = (word_of_nat n :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) m = take_bit LENGTH('a) n\<close> |
|
202 |
by transfer (simp add: take_bit_of_nat) |
|
203 |
||
204 |
lemma word_of_int_eq_iff: |
|
205 |
\<open>word_of_int k = (word_of_int l :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) k = take_bit LENGTH('a) l\<close> |
|
206 |
by transfer rule |
|
207 |
||
74496 | 208 |
lemma word_of_nat_eq_0_iff: |
72262 | 209 |
\<open>word_of_nat n = (0 :: 'a::len word) \<longleftrightarrow> 2 ^ LENGTH('a) dvd n\<close> |
210 |
using word_of_nat_eq_iff [where ?'a = 'a, of n 0] by (simp add: take_bit_eq_0_iff) |
|
211 |
||
74496 | 212 |
lemma word_of_int_eq_0_iff: |
72262 | 213 |
\<open>word_of_int k = (0 :: 'a::len word) \<longleftrightarrow> 2 ^ LENGTH('a) dvd k\<close> |
214 |
using word_of_int_eq_iff [where ?'a = 'a, of k 0] by (simp add: take_bit_eq_0_iff) |
|
215 |
||
216 |
context semiring_1 |
|
217 |
begin |
|
218 |
||
219 |
lift_definition unsigned :: \<open>'b::len word \<Rightarrow> 'a\<close> |
|
220 |
is \<open>of_nat \<circ> nat \<circ> take_bit LENGTH('b)\<close> |
|
72244 | 221 |
by simp |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
222 |
|
72262 | 223 |
lemma unsigned_0 [simp]: |
224 |
\<open>unsigned 0 = 0\<close> |
|
225 |
by transfer simp |
|
226 |
||
227 |
lemma unsigned_1 [simp]: |
|
228 |
\<open>unsigned 1 = 1\<close> |
|
229 |
by transfer simp |
|
230 |
||
231 |
lemma unsigned_numeral [simp]: |
|
232 |
\<open>unsigned (numeral n :: 'b::len word) = of_nat (take_bit LENGTH('b) (numeral n))\<close> |
|
233 |
by transfer (simp add: nat_take_bit_eq) |
|
234 |
||
235 |
lemma unsigned_neg_numeral [simp]: |
|
236 |
\<open>unsigned (- numeral n :: 'b::len word) = of_nat (nat (take_bit LENGTH('b) (- numeral n)))\<close> |
|
237 |
by transfer simp |
|
238 |
||
239 |
end |
|
240 |
||
241 |
context semiring_1 |
|
242 |
begin |
|
243 |
||
74496 | 244 |
lemma unsigned_of_nat: |
72262 | 245 |
\<open>unsigned (word_of_nat n :: 'b::len word) = of_nat (take_bit LENGTH('b) n)\<close> |
246 |
by transfer (simp add: nat_eq_iff take_bit_of_nat) |
|
247 |
||
74496 | 248 |
lemma unsigned_of_int: |
72262 | 249 |
\<open>unsigned (word_of_int k :: 'b::len word) = of_nat (nat (take_bit LENGTH('b) k))\<close> |
250 |
by transfer simp |
|
251 |
||
252 |
end |
|
253 |
||
254 |
context semiring_char_0 |
|
255 |
begin |
|
256 |
||
257 |
lemma unsigned_word_eqI: |
|
258 |
\<open>v = w\<close> if \<open>unsigned v = unsigned w\<close> |
|
259 |
using that by transfer (simp add: eq_nat_nat_iff) |
|
260 |
||
261 |
lemma word_eq_iff_unsigned: |
|
262 |
\<open>v = w \<longleftrightarrow> unsigned v = unsigned w\<close> |
|
263 |
by (auto intro: unsigned_word_eqI) |
|
264 |
||
72292 | 265 |
lemma inj_unsigned [simp]: |
266 |
\<open>inj unsigned\<close> |
|
267 |
by (rule injI) (simp add: unsigned_word_eqI) |
|
268 |
||
269 |
lemma unsigned_eq_0_iff: |
|
72281
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
270 |
\<open>unsigned w = 0 \<longleftrightarrow> w = 0\<close> |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
271 |
using word_eq_iff_unsigned [of w 0] by simp |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
272 |
|
72262 | 273 |
end |
274 |
||
275 |
context ring_1 |
|
276 |
begin |
|
277 |
||
278 |
lift_definition signed :: \<open>'b::len word \<Rightarrow> 'a\<close> |
|
279 |
is \<open>of_int \<circ> signed_take_bit (LENGTH('b) - Suc 0)\<close> |
|
280 |
by (simp flip: signed_take_bit_decr_length_iff) |
|
281 |
||
282 |
lemma signed_0 [simp]: |
|
283 |
\<open>signed 0 = 0\<close> |
|
284 |
by transfer simp |
|
285 |
||
286 |
lemma signed_1 [simp]: |
|
287 |
\<open>signed (1 :: 'b::len word) = (if LENGTH('b) = 1 then - 1 else 1)\<close> |
|
72488 | 288 |
by (transfer fixing: uminus; cases \<open>LENGTH('b)\<close>) (auto dest: gr0_implies_Suc) |
72262 | 289 |
|
290 |
lemma signed_minus_1 [simp]: |
|
291 |
\<open>signed (- 1 :: 'b::len word) = - 1\<close> |
|
292 |
by (transfer fixing: uminus) simp |
|
293 |
||
294 |
lemma signed_numeral [simp]: |
|
295 |
\<open>signed (numeral n :: 'b::len word) = of_int (signed_take_bit (LENGTH('b) - 1) (numeral n))\<close> |
|
296 |
by transfer simp |
|
297 |
||
298 |
lemma signed_neg_numeral [simp]: |
|
299 |
\<open>signed (- numeral n :: 'b::len word) = of_int (signed_take_bit (LENGTH('b) - 1) (- numeral n))\<close> |
|
300 |
by transfer simp |
|
301 |
||
74496 | 302 |
lemma signed_of_nat: |
72262 | 303 |
\<open>signed (word_of_nat n :: 'b::len word) = of_int (signed_take_bit (LENGTH('b) - Suc 0) (int n))\<close> |
304 |
by transfer simp |
|
305 |
||
74496 | 306 |
lemma signed_of_int: |
72262 | 307 |
\<open>signed (word_of_int n :: 'b::len word) = of_int (signed_take_bit (LENGTH('b) - Suc 0) n)\<close> |
308 |
by transfer simp |
|
309 |
||
310 |
end |
|
311 |
||
312 |
context ring_char_0 |
|
313 |
begin |
|
314 |
||
315 |
lemma signed_word_eqI: |
|
316 |
\<open>v = w\<close> if \<open>signed v = signed w\<close> |
|
317 |
using that by transfer (simp flip: signed_take_bit_decr_length_iff) |
|
318 |
||
319 |
lemma word_eq_iff_signed: |
|
320 |
\<open>v = w \<longleftrightarrow> signed v = signed w\<close> |
|
321 |
by (auto intro: signed_word_eqI) |
|
322 |
||
72292 | 323 |
lemma inj_signed [simp]: |
324 |
\<open>inj signed\<close> |
|
325 |
by (rule injI) (simp add: signed_word_eqI) |
|
326 |
||
72281
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
327 |
lemma signed_eq_0_iff: |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
328 |
\<open>signed w = 0 \<longleftrightarrow> w = 0\<close> |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
329 |
using word_eq_iff_signed [of w 0] by simp |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
330 |
|
72262 | 331 |
end |
332 |
||
333 |
abbreviation unat :: \<open>'a::len word \<Rightarrow> nat\<close> |
|
334 |
where \<open>unat \<equiv> unsigned\<close> |
|
335 |
||
336 |
abbreviation uint :: \<open>'a::len word \<Rightarrow> int\<close> |
|
337 |
where \<open>uint \<equiv> unsigned\<close> |
|
338 |
||
339 |
abbreviation sint :: \<open>'a::len word \<Rightarrow> int\<close> |
|
340 |
where \<open>sint \<equiv> signed\<close> |
|
341 |
||
342 |
abbreviation ucast :: \<open>'a::len word \<Rightarrow> 'b::len word\<close> |
|
343 |
where \<open>ucast \<equiv> unsigned\<close> |
|
344 |
||
345 |
abbreviation scast :: \<open>'a::len word \<Rightarrow> 'b::len word\<close> |
|
346 |
where \<open>scast \<equiv> signed\<close> |
|
347 |
||
348 |
context |
|
349 |
includes lifting_syntax |
|
350 |
begin |
|
351 |
||
352 |
lemma [transfer_rule]: |
|
353 |
\<open>(pcr_word ===> (=)) (nat \<circ> take_bit LENGTH('a)) (unat :: 'a::len word \<Rightarrow> nat)\<close> |
|
354 |
using unsigned.transfer [where ?'a = nat] by simp |
|
355 |
||
356 |
lemma [transfer_rule]: |
|
357 |
\<open>(pcr_word ===> (=)) (take_bit LENGTH('a)) (uint :: 'a::len word \<Rightarrow> int)\<close> |
|
358 |
using unsigned.transfer [where ?'a = int] by (simp add: comp_def) |
|
359 |
||
360 |
lemma [transfer_rule]: |
|
361 |
\<open>(pcr_word ===> (=)) (signed_take_bit (LENGTH('a) - Suc 0)) (sint :: 'a::len word \<Rightarrow> int)\<close> |
|
362 |
using signed.transfer [where ?'a = int] by simp |
|
363 |
||
364 |
lemma [transfer_rule]: |
|
365 |
\<open>(pcr_word ===> pcr_word) (take_bit LENGTH('a)) (ucast :: 'a::len word \<Rightarrow> 'b::len word)\<close> |
|
366 |
proof (rule rel_funI) |
|
367 |
fix k :: int and w :: \<open>'a word\<close> |
|
368 |
assume \<open>pcr_word k w\<close> |
|
369 |
then have \<open>w = word_of_int k\<close> |
|
370 |
by (simp add: pcr_word_def cr_word_def relcompp_apply) |
|
371 |
moreover have \<open>pcr_word (take_bit LENGTH('a) k) (ucast (word_of_int k :: 'a word))\<close> |
|
372 |
by transfer (simp add: pcr_word_def cr_word_def relcompp_apply) |
|
373 |
ultimately show \<open>pcr_word (take_bit LENGTH('a) k) (ucast w)\<close> |
|
374 |
by simp |
|
375 |
qed |
|
376 |
||
377 |
lemma [transfer_rule]: |
|
378 |
\<open>(pcr_word ===> pcr_word) (signed_take_bit (LENGTH('a) - Suc 0)) (scast :: 'a::len word \<Rightarrow> 'b::len word)\<close> |
|
379 |
proof (rule rel_funI) |
|
380 |
fix k :: int and w :: \<open>'a word\<close> |
|
381 |
assume \<open>pcr_word k w\<close> |
|
382 |
then have \<open>w = word_of_int k\<close> |
|
383 |
by (simp add: pcr_word_def cr_word_def relcompp_apply) |
|
384 |
moreover have \<open>pcr_word (signed_take_bit (LENGTH('a) - Suc 0) k) (scast (word_of_int k :: 'a word))\<close> |
|
385 |
by transfer (simp add: pcr_word_def cr_word_def relcompp_apply) |
|
386 |
ultimately show \<open>pcr_word (signed_take_bit (LENGTH('a) - Suc 0) k) (scast w)\<close> |
|
387 |
by simp |
|
388 |
qed |
|
389 |
||
390 |
end |
|
391 |
||
392 |
lemma of_nat_unat [simp]: |
|
393 |
\<open>of_nat (unat w) = unsigned w\<close> |
|
394 |
by transfer simp |
|
395 |
||
396 |
lemma of_int_uint [simp]: |
|
397 |
\<open>of_int (uint w) = unsigned w\<close> |
|
398 |
by transfer simp |
|
399 |
||
400 |
lemma of_int_sint [simp]: |
|
401 |
\<open>of_int (sint a) = signed a\<close> |
|
402 |
by transfer (simp_all add: take_bit_signed_take_bit) |
|
72079 | 403 |
|
404 |
lemma nat_uint_eq [simp]: |
|
405 |
\<open>nat (uint w) = unat w\<close> |
|
406 |
by transfer simp |
|
407 |
||
81609 | 408 |
lemma nat_of_natural_unsigned_eq [simp]: |
409 |
\<open>nat_of_natural (unsigned w) = unat w\<close> |
|
410 |
by transfer simp |
|
411 |
||
412 |
lemma int_of_integer_unsigned_eq [simp]: |
|
413 |
\<open>int_of_integer (unsigned w) = uint w\<close> |
|
414 |
by transfer simp |
|
415 |
||
416 |
lemma int_of_integer_signed_eq [simp]: |
|
417 |
\<open>int_of_integer (signed w) = sint w\<close> |
|
418 |
by transfer simp |
|
419 |
||
72281
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
420 |
lemma sgn_uint_eq [simp]: |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
421 |
\<open>sgn (uint w) = of_bool (w \<noteq> 0)\<close> |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
422 |
by transfer (simp add: less_le) |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
423 |
|
72262 | 424 |
text \<open>Aliasses only for code generation\<close> |
425 |
||
426 |
context |
|
427 |
begin |
|
428 |
||
429 |
qualified lift_definition of_int :: \<open>int \<Rightarrow> 'a::len word\<close> |
|
430 |
is \<open>take_bit LENGTH('a)\<close> . |
|
431 |
||
432 |
qualified lift_definition of_nat :: \<open>nat \<Rightarrow> 'a::len word\<close> |
|
433 |
is \<open>int \<circ> take_bit LENGTH('a)\<close> . |
|
434 |
||
435 |
qualified lift_definition the_nat :: \<open>'a::len word \<Rightarrow> nat\<close> |
|
436 |
is \<open>nat \<circ> take_bit LENGTH('a)\<close> by simp |
|
437 |
||
438 |
qualified lift_definition the_signed_int :: \<open>'a::len word \<Rightarrow> int\<close> |
|
439 |
is \<open>signed_take_bit (LENGTH('a) - Suc 0)\<close> by (simp add: signed_take_bit_decr_length_iff) |
|
440 |
||
441 |
qualified lift_definition cast :: \<open>'a::len word \<Rightarrow> 'b::len word\<close> |
|
442 |
is \<open>take_bit LENGTH('a)\<close> by simp |
|
443 |
||
444 |
qualified lift_definition signed_cast :: \<open>'a::len word \<Rightarrow> 'b::len word\<close> |
|
445 |
is \<open>signed_take_bit (LENGTH('a) - Suc 0)\<close> by (metis signed_take_bit_decr_length_iff) |
|
446 |
||
447 |
end |
|
448 |
||
449 |
lemma [code_abbrev, simp]: |
|
450 |
\<open>Word.the_int = uint\<close> |
|
451 |
by transfer rule |
|
452 |
||
453 |
lemma [code]: |
|
454 |
\<open>Word.the_int (Word.of_int k :: 'a::len word) = take_bit LENGTH('a) k\<close> |
|
455 |
by transfer simp |
|
456 |
||
457 |
lemma [code_abbrev, simp]: |
|
458 |
\<open>Word.of_int = word_of_int\<close> |
|
459 |
by (rule; transfer) simp |
|
460 |
||
461 |
lemma [code]: |
|
462 |
\<open>Word.the_int (Word.of_nat n :: 'a::len word) = take_bit LENGTH('a) (int n)\<close> |
|
72244 | 463 |
by transfer (simp add: take_bit_of_nat) |
464 |
||
72262 | 465 |
lemma [code_abbrev, simp]: |
466 |
\<open>Word.of_nat = word_of_nat\<close> |
|
467 |
by (rule; transfer) (simp add: take_bit_of_nat) |
|
468 |
||
469 |
lemma [code]: |
|
470 |
\<open>Word.the_nat w = nat (Word.the_int w)\<close> |
|
471 |
by transfer simp |
|
472 |
||
473 |
lemma [code_abbrev, simp]: |
|
474 |
\<open>Word.the_nat = unat\<close> |
|
475 |
by (rule; transfer) simp |
|
476 |
||
477 |
lemma [code]: |
|
82367 | 478 |
\<open>Word.the_signed_int w = (let k = Word.the_int w |
479 |
in if bit k (LENGTH('a) - Suc 0) then k + push_bit LENGTH('a) (- 1) else k)\<close> |
|
72262 | 480 |
for w :: \<open>'a::len word\<close> |
82367 | 481 |
by transfer (simp add: bit_simps signed_take_bit_eq_take_bit_add) |
72262 | 482 |
|
483 |
lemma [code_abbrev, simp]: |
|
484 |
\<open>Word.the_signed_int = sint\<close> |
|
485 |
by (rule; transfer) simp |
|
486 |
||
487 |
lemma [code]: |
|
488 |
\<open>Word.the_int (Word.cast w :: 'b::len word) = take_bit LENGTH('b) (Word.the_int w)\<close> |
|
489 |
for w :: \<open>'a::len word\<close> |
|
490 |
by transfer simp |
|
491 |
||
492 |
lemma [code_abbrev, simp]: |
|
493 |
\<open>Word.cast = ucast\<close> |
|
494 |
by (rule; transfer) simp |
|
495 |
||
496 |
lemma [code]: |
|
497 |
\<open>Word.the_int (Word.signed_cast w :: 'b::len word) = take_bit LENGTH('b) (Word.the_signed_int w)\<close> |
|
498 |
for w :: \<open>'a::len word\<close> |
|
499 |
by transfer simp |
|
500 |
||
501 |
lemma [code_abbrev, simp]: |
|
502 |
\<open>Word.signed_cast = scast\<close> |
|
503 |
by (rule; transfer) simp |
|
504 |
||
505 |
lemma [code]: |
|
506 |
\<open>unsigned w = of_nat (nat (Word.the_int w))\<close> |
|
507 |
by transfer simp |
|
508 |
||
509 |
lemma [code]: |
|
510 |
\<open>signed w = of_int (Word.the_signed_int w)\<close> |
|
511 |
by transfer simp |
|
72244 | 512 |
|
513 |
||
82526 | 514 |
subsection \<open>Elementary case distinctions\<close> |
515 |
||
516 |
lemma word_length_one [case_names zero minus_one length_beyond]: |
|
517 |
fixes w :: \<open>'a::len word\<close> |
|
518 |
obtains (zero) \<open>LENGTH('a) = Suc 0\<close> \<open>w = 0\<close> |
|
519 |
| (minus_one) \<open>LENGTH('a) = Suc 0\<close> \<open>w = - 1\<close> |
|
520 |
| (length_beyond) \<open>2 \<le> LENGTH('a)\<close> |
|
521 |
proof (cases \<open>2 \<le> LENGTH('a)\<close>) |
|
522 |
case True |
|
523 |
with length_beyond show ?thesis . |
|
524 |
next |
|
525 |
case False |
|
526 |
then have \<open>LENGTH('a) = Suc 0\<close> |
|
527 |
by simp |
|
528 |
then have \<open>w = 0 \<or> w = - 1\<close> |
|
529 |
by transfer auto |
|
530 |
with \<open>LENGTH('a) = Suc 0\<close> zero minus_one show ?thesis |
|
531 |
by blast |
|
532 |
qed |
|
533 |
||
534 |
||
72244 | 535 |
subsubsection \<open>Basic ordering\<close> |
45547 | 536 |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
537 |
instantiation word :: (len) linorder |
45547 | 538 |
begin |
539 |
||
71950 | 540 |
lift_definition less_eq_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> bool" |
541 |
is "\<lambda>a b. take_bit LENGTH('a) a \<le> take_bit LENGTH('a) b" |
|
542 |
by simp |
|
543 |
||
544 |
lift_definition less_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> bool" |
|
545 |
is "\<lambda>a b. take_bit LENGTH('a) a < take_bit LENGTH('a) b" |
|
546 |
by simp |
|
37660 | 547 |
|
45547 | 548 |
instance |
71950 | 549 |
by (standard; transfer) auto |
45547 | 550 |
|
551 |
end |
|
552 |
||
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
553 |
interpretation word_order: ordering_top \<open>(\<le>)\<close> \<open>(<)\<close> \<open>- 1 :: 'a::len word\<close> |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
554 |
by (standard; transfer) (simp add: take_bit_eq_mod zmod_minus1) |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
555 |
|
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
556 |
interpretation word_coorder: ordering_top \<open>(\<ge>)\<close> \<open>(>)\<close> \<open>0 :: 'a::len word\<close> |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
557 |
by (standard; transfer) simp |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
558 |
|
72262 | 559 |
lemma word_of_nat_less_eq_iff: |
560 |
\<open>word_of_nat m \<le> (word_of_nat n :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) m \<le> take_bit LENGTH('a) n\<close> |
|
561 |
by transfer (simp add: take_bit_of_nat) |
|
562 |
||
563 |
lemma word_of_int_less_eq_iff: |
|
564 |
\<open>word_of_int k \<le> (word_of_int l :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) k \<le> take_bit LENGTH('a) l\<close> |
|
565 |
by transfer rule |
|
566 |
||
567 |
lemma word_of_nat_less_iff: |
|
568 |
\<open>word_of_nat m < (word_of_nat n :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) m < take_bit LENGTH('a) n\<close> |
|
569 |
by transfer (simp add: take_bit_of_nat) |
|
570 |
||
571 |
lemma word_of_int_less_iff: |
|
572 |
\<open>word_of_int k < (word_of_int l :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) k < take_bit LENGTH('a) l\<close> |
|
573 |
by transfer rule |
|
574 |
||
71950 | 575 |
lemma word_le_def [code]: |
576 |
"a \<le> b \<longleftrightarrow> uint a \<le> uint b" |
|
577 |
by transfer rule |
|
578 |
||
579 |
lemma word_less_def [code]: |
|
580 |
"a < b \<longleftrightarrow> uint a < uint b" |
|
581 |
by transfer rule |
|
582 |
||
71951 | 583 |
lemma word_greater_zero_iff: |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
584 |
\<open>a > 0 \<longleftrightarrow> a \<noteq> 0\<close> for a :: \<open>'a::len word\<close> |
71951 | 585 |
by transfer (simp add: less_le) |
586 |
||
587 |
lemma of_nat_word_less_eq_iff: |
|
588 |
\<open>of_nat m \<le> (of_nat n :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) m \<le> take_bit LENGTH('a) n\<close> |
|
589 |
by transfer (simp add: take_bit_of_nat) |
|
590 |
||
591 |
lemma of_nat_word_less_iff: |
|
592 |
\<open>of_nat m < (of_nat n :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) m < take_bit LENGTH('a) n\<close> |
|
593 |
by transfer (simp add: take_bit_of_nat) |
|
594 |
||
595 |
lemma of_int_word_less_eq_iff: |
|
596 |
\<open>of_int k \<le> (of_int l :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) k \<le> take_bit LENGTH('a) l\<close> |
|
597 |
by transfer rule |
|
598 |
||
599 |
lemma of_int_word_less_iff: |
|
600 |
\<open>of_int k < (of_int l :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) k < take_bit LENGTH('a) l\<close> |
|
601 |
by transfer rule |
|
602 |
||
37660 | 603 |
|
72280 | 604 |
|
605 |
subsection \<open>Enumeration\<close> |
|
606 |
||
607 |
lemma inj_on_word_of_nat: |
|
608 |
\<open>inj_on (word_of_nat :: nat \<Rightarrow> 'a::len word) {0..<2 ^ LENGTH('a)}\<close> |
|
609 |
by (rule inj_onI; transfer) (simp_all add: take_bit_int_eq_self) |
|
610 |
||
611 |
lemma UNIV_word_eq_word_of_nat: |
|
612 |
\<open>(UNIV :: 'a::len word set) = word_of_nat ` {0..<2 ^ LENGTH('a)}\<close> (is \<open>_ = ?A\<close>) |
|
613 |
proof |
|
614 |
show \<open>word_of_nat ` {0..<2 ^ LENGTH('a)} \<subseteq> UNIV\<close> |
|
615 |
by simp |
|
616 |
show \<open>UNIV \<subseteq> ?A\<close> |
|
617 |
proof |
|
618 |
fix w :: \<open>'a word\<close> |
|
619 |
show \<open>w \<in> (word_of_nat ` {0..<2 ^ LENGTH('a)} :: 'a word set)\<close> |
|
620 |
by (rule image_eqI [of _ _ \<open>unat w\<close>]; transfer) simp_all |
|
621 |
qed |
|
622 |
qed |
|
623 |
||
624 |
instantiation word :: (len) enum |
|
625 |
begin |
|
626 |
||
627 |
definition enum_word :: \<open>'a word list\<close> |
|
628 |
where \<open>enum_word = map word_of_nat [0..<2 ^ LENGTH('a)]\<close> |
|
629 |
||
630 |
definition enum_all_word :: \<open>('a word \<Rightarrow> bool) \<Rightarrow> bool\<close> |
|
77225 | 631 |
where \<open>enum_all_word = All\<close> |
72280 | 632 |
|
633 |
definition enum_ex_word :: \<open>('a word \<Rightarrow> bool) \<Rightarrow> bool\<close> |
|
77225 | 634 |
where \<open>enum_ex_word = Ex\<close> |
635 |
||
636 |
instance |
|
637 |
by standard |
|
638 |
(simp_all add: enum_all_word_def enum_ex_word_def enum_word_def distinct_map inj_on_word_of_nat flip: UNIV_word_eq_word_of_nat) |
|
639 |
||
640 |
end |
|
72280 | 641 |
|
642 |
lemma [code]: |
|
77225 | 643 |
\<open>Enum.enum_all P \<longleftrightarrow> list_all P Enum.enum\<close> |
644 |
\<open>Enum.enum_ex P \<longleftrightarrow> list_ex P Enum.enum\<close> for P :: \<open>'a::len word \<Rightarrow> bool\<close> |
|
645 |
by (simp_all add: enum_all_word_def enum_ex_word_def enum_UNIV list_all_iff list_ex_iff) |
|
72280 | 646 |
|
647 |
||
61799 | 648 |
subsection \<open>Bit-wise operations\<close> |
37660 | 649 |
|
77812 | 650 |
text \<open> |
651 |
The following specification of word division just lifts the pre-existing |
|
79950 | 652 |
division on integers named ``F-Division'' in \<^cite>\<open>"leijen01"\<close>. |
77812 | 653 |
\<close> |
654 |
||
72244 | 655 |
instantiation word :: (len) semiring_modulo |
656 |
begin |
|
657 |
||
658 |
lift_definition divide_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
|
659 |
is \<open>\<lambda>a b. take_bit LENGTH('a) a div take_bit LENGTH('a) b\<close> |
|
660 |
by simp |
|
661 |
||
662 |
lift_definition modulo_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
|
663 |
is \<open>\<lambda>a b. take_bit LENGTH('a) a mod take_bit LENGTH('a) b\<close> |
|
664 |
by simp |
|
665 |
||
666 |
instance proof |
|
667 |
show "a div b * b + a mod b = a" for a b :: "'a word" |
|
668 |
proof transfer |
|
669 |
fix k l :: int |
|
670 |
define r :: int where "r = 2 ^ LENGTH('a)" |
|
671 |
then have r: "take_bit LENGTH('a) k = k mod r" for k |
|
672 |
by (simp add: take_bit_eq_mod) |
|
673 |
have "k mod r = ((k mod r) div (l mod r) * (l mod r) |
|
674 |
+ (k mod r) mod (l mod r)) mod r" |
|
675 |
by (simp add: div_mult_mod_eq) |
|
80777 | 676 |
also have "\<dots> = (((k mod r) div (l mod r) * (l mod r)) mod r |
72244 | 677 |
+ (k mod r) mod (l mod r)) mod r" |
678 |
by (simp add: mod_add_left_eq) |
|
80777 | 679 |
also have "\<dots> = (((k mod r) div (l mod r) * l) mod r |
72244 | 680 |
+ (k mod r) mod (l mod r)) mod r" |
681 |
by (simp add: mod_mult_right_eq) |
|
682 |
finally have "k mod r = ((k mod r) div (l mod r) * l |
|
683 |
+ (k mod r) mod (l mod r)) mod r" |
|
684 |
by (simp add: mod_simps) |
|
685 |
with r show "take_bit LENGTH('a) (take_bit LENGTH('a) k div take_bit LENGTH('a) l * l |
|
686 |
+ take_bit LENGTH('a) k mod take_bit LENGTH('a) l) = take_bit LENGTH('a) k" |
|
687 |
by simp |
|
688 |
qed |
|
689 |
qed |
|
690 |
||
691 |
end |
|
692 |
||
79673
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
693 |
lemma unat_div_distrib: |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
694 |
\<open>unat (v div w) = unat v div unat w\<close> |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
695 |
proof transfer |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
696 |
fix k l |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
697 |
have \<open>nat (take_bit LENGTH('a) k) div nat (take_bit LENGTH('a) l) \<le> nat (take_bit LENGTH('a) k)\<close> |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
698 |
by (rule div_le_dividend) |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
699 |
also have \<open>nat (take_bit LENGTH('a) k) < 2 ^ LENGTH('a)\<close> |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
700 |
by (simp add: nat_less_iff) |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
701 |
finally show \<open>(nat \<circ> take_bit LENGTH('a)) (take_bit LENGTH('a) k div take_bit LENGTH('a) l) = |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
702 |
(nat \<circ> take_bit LENGTH('a)) k div (nat \<circ> take_bit LENGTH('a)) l\<close> |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
703 |
by (simp add: nat_take_bit_eq div_int_pos_iff nat_div_distrib take_bit_nat_eq_self_iff) |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
704 |
qed |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
705 |
|
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
706 |
lemma unat_mod_distrib: |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
707 |
\<open>unat (v mod w) = unat v mod unat w\<close> |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
708 |
proof transfer |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
709 |
fix k l |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
710 |
have \<open>nat (take_bit LENGTH('a) k) mod nat (take_bit LENGTH('a) l) \<le> nat (take_bit LENGTH('a) k)\<close> |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
711 |
by (rule mod_less_eq_dividend) |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
712 |
also have \<open>nat (take_bit LENGTH('a) k) < 2 ^ LENGTH('a)\<close> |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
713 |
by (simp add: nat_less_iff) |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
714 |
finally show \<open>(nat \<circ> take_bit LENGTH('a)) (take_bit LENGTH('a) k mod take_bit LENGTH('a) l) = |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
715 |
(nat \<circ> take_bit LENGTH('a)) k mod (nat \<circ> take_bit LENGTH('a)) l\<close> |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
716 |
by (simp add: nat_take_bit_eq mod_int_pos_iff less_le nat_mod_distrib take_bit_nat_eq_self_iff) |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
717 |
qed |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
718 |
|
72244 | 719 |
instance word :: (len) semiring_parity |
79555 | 720 |
by (standard; transfer) |
80777 | 721 |
(auto simp: mod_2_eq_odd take_bit_Suc elim: evenE dest: le_Suc_ex) |
72244 | 722 |
|
71951 | 723 |
lemma word_bit_induct [case_names zero even odd]: |
724 |
\<open>P a\<close> if word_zero: \<open>P 0\<close> |
|
72262 | 725 |
and word_even: \<open>\<And>a. P a \<Longrightarrow> 0 < a \<Longrightarrow> a < 2 ^ (LENGTH('a) - Suc 0) \<Longrightarrow> P (2 * a)\<close> |
726 |
and word_odd: \<open>\<And>a. P a \<Longrightarrow> a < 2 ^ (LENGTH('a) - Suc 0) \<Longrightarrow> P (1 + 2 * a)\<close> |
|
71951 | 727 |
for P and a :: \<open>'a::len word\<close> |
728 |
proof - |
|
72262 | 729 |
define m :: nat where \<open>m = LENGTH('a) - Suc 0\<close> |
71951 | 730 |
then have l: \<open>LENGTH('a) = Suc m\<close> |
731 |
by simp |
|
732 |
define n :: nat where \<open>n = unat a\<close> |
|
733 |
then have \<open>n < 2 ^ LENGTH('a)\<close> |
|
72262 | 734 |
by transfer (simp add: take_bit_eq_mod) |
71951 | 735 |
then have \<open>n < 2 * 2 ^ m\<close> |
736 |
by (simp add: l) |
|
737 |
then have \<open>P (of_nat n)\<close> |
|
738 |
proof (induction n rule: nat_bit_induct) |
|
739 |
case zero |
|
740 |
show ?case |
|
741 |
by simp (rule word_zero) |
|
742 |
next |
|
743 |
case (even n) |
|
744 |
then have \<open>n < 2 ^ m\<close> |
|
745 |
by simp |
|
746 |
with even.IH have \<open>P (of_nat n)\<close> |
|
747 |
by simp |
|
748 |
moreover from \<open>n < 2 ^ m\<close> even.hyps have \<open>0 < (of_nat n :: 'a word)\<close> |
|
80777 | 749 |
by (auto simp: word_greater_zero_iff l word_of_nat_eq_0_iff) |
72262 | 750 |
moreover from \<open>n < 2 ^ m\<close> have \<open>(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - Suc 0)\<close> |
71951 | 751 |
using of_nat_word_less_iff [where ?'a = 'a, of n \<open>2 ^ m\<close>] |
72261 | 752 |
by (simp add: l take_bit_eq_mod) |
71951 | 753 |
ultimately have \<open>P (2 * of_nat n)\<close> |
754 |
by (rule word_even) |
|
755 |
then show ?case |
|
756 |
by simp |
|
757 |
next |
|
758 |
case (odd n) |
|
759 |
then have \<open>Suc n \<le> 2 ^ m\<close> |
|
760 |
by simp |
|
761 |
with odd.IH have \<open>P (of_nat n)\<close> |
|
762 |
by simp |
|
72262 | 763 |
moreover from \<open>Suc n \<le> 2 ^ m\<close> have \<open>(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - Suc 0)\<close> |
71951 | 764 |
using of_nat_word_less_iff [where ?'a = 'a, of n \<open>2 ^ m\<close>] |
72261 | 765 |
by (simp add: l take_bit_eq_mod) |
71951 | 766 |
ultimately have \<open>P (1 + 2 * of_nat n)\<close> |
767 |
by (rule word_odd) |
|
768 |
then show ?case |
|
769 |
by simp |
|
770 |
qed |
|
771 |
moreover have \<open>of_nat (nat (uint a)) = a\<close> |
|
772 |
by transfer simp |
|
773 |
ultimately show ?thesis |
|
72079 | 774 |
by (simp add: n_def) |
71951 | 775 |
qed |
776 |
||
777 |
lemma bit_word_half_eq: |
|
778 |
\<open>(of_bool b + a * 2) div 2 = a\<close> |
|
779 |
if \<open>a < 2 ^ (LENGTH('a) - Suc 0)\<close> |
|
780 |
for a :: \<open>'a::len word\<close> |
|
781 |
proof (cases \<open>2 \<le> LENGTH('a::len)\<close>) |
|
782 |
case False |
|
82524 | 783 |
with that show ?thesis |
784 |
by transfer simp |
|
71951 | 785 |
next |
786 |
case True |
|
787 |
obtain n where length: \<open>LENGTH('a) = Suc n\<close> |
|
788 |
by (cases \<open>LENGTH('a)\<close>) simp_all |
|
789 |
show ?thesis proof (cases b) |
|
790 |
case False |
|
791 |
moreover have \<open>a * 2 div 2 = a\<close> |
|
792 |
using that proof transfer |
|
793 |
fix k :: int |
|
794 |
from length have \<open>k * 2 mod 2 ^ LENGTH('a) = (k mod 2 ^ n) * 2\<close> |
|
795 |
by simp |
|
796 |
moreover assume \<open>take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\<close> |
|
76231 | 797 |
with \<open>LENGTH('a) = Suc n\<close> have \<open>take_bit LENGTH('a) k = take_bit n k\<close> |
80777 | 798 |
by (auto simp: take_bit_Suc_from_most) |
71951 | 799 |
ultimately have \<open>take_bit LENGTH('a) (k * 2) = take_bit LENGTH('a) k * 2\<close> |
800 |
by (simp add: take_bit_eq_mod) |
|
801 |
with True show \<open>take_bit LENGTH('a) (take_bit LENGTH('a) (k * 2) div take_bit LENGTH('a) 2) |
|
802 |
= take_bit LENGTH('a) k\<close> |
|
803 |
by simp |
|
804 |
qed |
|
805 |
ultimately show ?thesis |
|
806 |
by simp |
|
807 |
next |
|
808 |
case True |
|
809 |
moreover have \<open>(1 + a * 2) div 2 = a\<close> |
|
810 |
using that proof transfer |
|
811 |
fix k :: int |
|
812 |
from length have \<open>(1 + k * 2) mod 2 ^ LENGTH('a) = 1 + (k mod 2 ^ n) * 2\<close> |
|
813 |
using pos_zmod_mult_2 [of \<open>2 ^ n\<close> k] by (simp add: ac_simps) |
|
814 |
moreover assume \<open>take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\<close> |
|
76231 | 815 |
with \<open>LENGTH('a) = Suc n\<close> have \<open>take_bit LENGTH('a) k = take_bit n k\<close> |
80777 | 816 |
by (auto simp: take_bit_Suc_from_most) |
71951 | 817 |
ultimately have \<open>take_bit LENGTH('a) (1 + k * 2) = 1 + take_bit LENGTH('a) k * 2\<close> |
818 |
by (simp add: take_bit_eq_mod) |
|
819 |
with True show \<open>take_bit LENGTH('a) (take_bit LENGTH('a) (1 + k * 2) div take_bit LENGTH('a) 2) |
|
820 |
= take_bit LENGTH('a) k\<close> |
|
80777 | 821 |
by (auto simp: take_bit_Suc) |
71951 | 822 |
qed |
823 |
ultimately show ?thesis |
|
824 |
by simp |
|
825 |
qed |
|
826 |
qed |
|
827 |
||
828 |
lemma even_mult_exp_div_word_iff: |
|
829 |
\<open>even (a * 2 ^ m div 2 ^ n) \<longleftrightarrow> \<not> ( |
|
830 |
m \<le> n \<and> |
|
831 |
n < LENGTH('a) \<and> odd (a div 2 ^ (n - m)))\<close> for a :: \<open>'a::len word\<close> |
|
832 |
by transfer |
|
833 |
(auto simp flip: drop_bit_eq_div simp add: even_drop_bit_iff_not_bit bit_take_bit_iff, |
|
834 |
simp_all flip: push_bit_eq_mult add: bit_push_bit_iff_int) |
|
835 |
||
71965
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
836 |
instantiation word :: (len) semiring_bits |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
837 |
begin |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
838 |
|
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
839 |
lift_definition bit_word :: \<open>'a word \<Rightarrow> nat \<Rightarrow> bool\<close> |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
840 |
is \<open>\<lambda>k n. n < LENGTH('a) \<and> bit k n\<close> |
71951 | 841 |
proof |
71965
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
842 |
fix k l :: int and n :: nat |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
843 |
assume *: \<open>take_bit LENGTH('a) k = take_bit LENGTH('a) l\<close> |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
844 |
show \<open>n < LENGTH('a) \<and> bit k n \<longleftrightarrow> n < LENGTH('a) \<and> bit l n\<close> |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
845 |
proof (cases \<open>n < LENGTH('a)\<close>) |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
846 |
case True |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
847 |
from * have \<open>bit (take_bit LENGTH('a) k) n \<longleftrightarrow> bit (take_bit LENGTH('a) l) n\<close> |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
848 |
by simp |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
849 |
then show ?thesis |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
850 |
by (simp add: bit_take_bit_iff) |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
851 |
next |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
852 |
case False |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
853 |
then show ?thesis |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
854 |
by simp |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
855 |
qed |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
856 |
qed |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
857 |
|
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
858 |
instance proof |
71951 | 859 |
show \<open>P a\<close> if stable: \<open>\<And>a. a div 2 = a \<Longrightarrow> P a\<close> |
860 |
and rec: \<open>\<And>a b. P a \<Longrightarrow> (of_bool b + 2 * a) div 2 = a \<Longrightarrow> P (of_bool b + 2 * a)\<close> |
|
861 |
for P and a :: \<open>'a word\<close> |
|
862 |
proof (induction a rule: word_bit_induct) |
|
863 |
case zero |
|
864 |
have \<open>0 div 2 = (0::'a word)\<close> |
|
865 |
by transfer simp |
|
866 |
with stable [of 0] show ?case |
|
867 |
by simp |
|
868 |
next |
|
869 |
case (even a) |
|
870 |
with rec [of a False] show ?case |
|
871 |
using bit_word_half_eq [of a False] by (simp add: ac_simps) |
|
872 |
next |
|
873 |
case (odd a) |
|
874 |
with rec [of a True] show ?case |
|
875 |
using bit_word_half_eq [of a True] by (simp add: ac_simps) |
|
876 |
qed |
|
71965
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
877 |
show \<open>bit a n \<longleftrightarrow> odd (a div 2 ^ n)\<close> for a :: \<open>'a word\<close> and n |
d45f5d4c41bd
more class operations for the sake of efficient generated code
haftmann
parents:
71958
diff
changeset
|
878 |
by transfer (simp flip: drop_bit_eq_div add: drop_bit_take_bit bit_iff_odd_drop_bit) |
79481 | 879 |
show \<open>a div 0 = 0\<close> |
880 |
for a :: \<open>'a word\<close> |
|
881 |
by transfer simp |
|
71951 | 882 |
show \<open>a div 1 = a\<close> |
883 |
for a :: \<open>'a word\<close> |
|
884 |
by transfer simp |
|
79531
22a137a6de44
rearranged and reformulated abstract classes for bit structures and operations
haftmann
parents:
79489
diff
changeset
|
885 |
show \<open>0 div a = 0\<close> |
22a137a6de44
rearranged and reformulated abstract classes for bit structures and operations
haftmann
parents:
79489
diff
changeset
|
886 |
for a :: \<open>'a word\<close> |
22a137a6de44
rearranged and reformulated abstract classes for bit structures and operations
haftmann
parents:
79489
diff
changeset
|
887 |
by transfer simp |
79673
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
888 |
show \<open>a mod b div b = 0\<close> |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
889 |
for a b :: \<open>'a word\<close> |
c172eecba85d
simplified specification of type class semiring_bits
haftmann
parents:
79590
diff
changeset
|
890 |
by (simp add: word_eq_iff_unsigned [where ?'a = nat] unat_div_distrib unat_mod_distrib) |
79531
22a137a6de44
rearranged and reformulated abstract classes for bit structures and operations
haftmann
parents:
79489
diff
changeset
|
891 |
show \<open>a div 2 div 2 ^ n = a div 2 ^ Suc n\<close> |
22a137a6de44
rearranged and reformulated abstract classes for bit structures and operations
haftmann
parents:
79489
diff
changeset
|
892 |
for a :: \<open>'a word\<close> and m n :: nat |
71951 | 893 |
apply transfer |
79531
22a137a6de44
rearranged and reformulated abstract classes for bit structures and operations
haftmann
parents:
79489
diff
changeset
|
894 |
using drop_bit_eq_div [symmetric, where ?'a = int,of _ 1] |
80777 | 895 |
apply (auto simp: not_less take_bit_drop_bit ac_simps simp flip: drop_bit_eq_div simp del: power.simps) |
71951 | 896 |
apply (simp add: drop_bit_take_bit) |
897 |
done |
|
79531
22a137a6de44
rearranged and reformulated abstract classes for bit structures and operations
haftmann
parents:
79489
diff
changeset
|
898 |
show \<open>even (2 * a div 2 ^ Suc n) \<longleftrightarrow> even (a div 2 ^ n)\<close> if \<open>2 ^ Suc n \<noteq> (0::'a word)\<close> |
22a137a6de44
rearranged and reformulated abstract classes for bit structures and operations
haftmann
parents:
79489
diff
changeset
|
899 |
for a :: \<open>'a word\<close> and n :: nat |
22a137a6de44
rearranged and reformulated abstract classes for bit structures and operations
haftmann
parents:
79489
diff
changeset
|
900 |
using that by transfer |
22a137a6de44
rearranged and reformulated abstract classes for bit structures and operations
haftmann
parents:
79489
diff
changeset
|
901 |
(simp add: even_drop_bit_iff_not_bit bit_simps flip: drop_bit_eq_div del: power.simps) |
71951 | 902 |
qed |
903 |
||
904 |
end |
|
905 |
||
72262 | 906 |
lemma bit_word_eqI: |
907 |
\<open>a = b\<close> if \<open>\<And>n. n < LENGTH('a) \<Longrightarrow> bit a n \<longleftrightarrow> bit b n\<close> |
|
908 |
for a b :: \<open>'a::len word\<close> |
|
80777 | 909 |
using that by transfer (auto simp: nat_less_le bit_eq_iff bit_take_bit_iff) |
72262 | 910 |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
911 |
lemma bit_imp_le_length: \<open>n < LENGTH('a)\<close> if \<open>bit w n\<close> for w :: \<open>'a::len word\<close> |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
912 |
by (meson bit_word.rep_eq that) |
72262 | 913 |
|
914 |
lemma not_bit_length [simp]: |
|
915 |
\<open>\<not> bit w LENGTH('a)\<close> for w :: \<open>'a::len word\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
916 |
using bit_imp_le_length by blast |
72262 | 917 |
|
72830 | 918 |
lemma finite_bit_word [simp]: |
919 |
\<open>finite {n. bit w n}\<close> |
|
920 |
for w :: \<open>'a::len word\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
921 |
by (metis bit_imp_le_length bounded_nat_set_is_finite mem_Collect_eq) |
72830 | 922 |
|
73789 | 923 |
lemma bit_numeral_word_iff [simp]: |
924 |
\<open>bit (numeral w :: 'a::len word) n |
|
925 |
\<longleftrightarrow> n < LENGTH('a) \<and> bit (numeral w :: int) n\<close> |
|
926 |
by transfer simp |
|
927 |
||
928 |
lemma bit_neg_numeral_word_iff [simp]: |
|
929 |
\<open>bit (- numeral w :: 'a::len word) n |
|
930 |
\<longleftrightarrow> n < LENGTH('a) \<and> bit (- numeral w :: int) n\<close> |
|
931 |
by transfer simp |
|
932 |
||
72262 | 933 |
instantiation word :: (len) ring_bit_operations |
934 |
begin |
|
935 |
||
936 |
lift_definition not_word :: \<open>'a word \<Rightarrow> 'a word\<close> |
|
937 |
is not |
|
938 |
by (simp add: take_bit_not_iff) |
|
939 |
||
940 |
lift_definition and_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
|
941 |
is \<open>and\<close> |
|
942 |
by simp |
|
943 |
||
944 |
lift_definition or_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
|
945 |
is or |
|
946 |
by simp |
|
947 |
||
948 |
lift_definition xor_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
|
949 |
is xor |
|
950 |
by simp |
|
951 |
||
952 |
lift_definition mask_word :: \<open>nat \<Rightarrow> 'a word\<close> |
|
953 |
is mask |
|
954 |
. |
|
955 |
||
73682
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
956 |
lift_definition set_bit_word :: \<open>nat \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
957 |
is set_bit |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
958 |
by (simp add: set_bit_def) |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
959 |
|
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
960 |
lift_definition unset_bit_word :: \<open>nat \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
961 |
is unset_bit |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
962 |
by (simp add: unset_bit_def) |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
963 |
|
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
964 |
lift_definition flip_bit_word :: \<open>nat \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
965 |
is flip_bit |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
966 |
by (simp add: flip_bit_def) |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
967 |
|
74108
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
968 |
lift_definition push_bit_word :: \<open>nat \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
969 |
is push_bit |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
970 |
proof - |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
971 |
show \<open>take_bit LENGTH('a) (push_bit n k) = take_bit LENGTH('a) (push_bit n l)\<close> |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
972 |
if \<open>take_bit LENGTH('a) k = take_bit LENGTH('a) l\<close> for k l :: int and n :: nat |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
973 |
by (metis le_add2 push_bit_take_bit take_bit_tightened that) |
74108
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
974 |
qed |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
975 |
|
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
976 |
lift_definition drop_bit_word :: \<open>nat \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
977 |
is \<open>\<lambda>n. drop_bit n \<circ> take_bit LENGTH('a)\<close> |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
978 |
by (simp add: take_bit_eq_mod) |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
979 |
|
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
980 |
lift_definition take_bit_word :: \<open>nat \<Rightarrow> 'a word \<Rightarrow> 'a word\<close> |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
981 |
is \<open>\<lambda>n. take_bit (min LENGTH('a) n)\<close> |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
982 |
by (simp add: ac_simps) (simp only: flip: take_bit_take_bit) |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
983 |
|
79008
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
984 |
context |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
985 |
includes bit_operations_syntax |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
986 |
begin |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
987 |
|
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
988 |
instance proof |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
989 |
fix v w :: \<open>'a word\<close> and n m :: nat |
79072
a91050cd5c93
de-duplicated specification of class ring_bit_operations
haftmann
parents:
79031
diff
changeset
|
990 |
show \<open>NOT v = - v - 1\<close> |
a91050cd5c93
de-duplicated specification of class ring_bit_operations
haftmann
parents:
79031
diff
changeset
|
991 |
by transfer (simp add: not_eq_complement) |
79008
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
992 |
show \<open>v AND w = of_bool (odd v \<and> odd w) + 2 * (v div 2 AND w div 2)\<close> |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
993 |
apply transfer |
80777 | 994 |
by (rule bit_eqI) (auto simp: even_bit_succ_iff bit_simps bit_0 simp flip: bit_Suc) |
79008
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
995 |
show \<open>v OR w = of_bool (odd v \<or> odd w) + 2 * (v div 2 OR w div 2)\<close> |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
996 |
apply transfer |
80777 | 997 |
by (rule bit_eqI) (auto simp: even_bit_succ_iff bit_simps bit_0 simp flip: bit_Suc) |
79008
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
998 |
show \<open>v XOR w = of_bool (odd v \<noteq> odd w) + 2 * (v div 2 XOR w div 2)\<close> |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
999 |
apply transfer |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1000 |
apply (rule bit_eqI) |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1001 |
subgoal for k l n |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1002 |
apply (cases n) |
80777 | 1003 |
apply (auto simp: even_bit_succ_iff bit_simps bit_0 even_xor_iff simp flip: bit_Suc) |
79008
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1004 |
done |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1005 |
done |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1006 |
show \<open>mask n = 2 ^ n - (1 :: 'a word)\<close> |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1007 |
by transfer (simp flip: mask_eq_exp_minus_1) |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1008 |
show \<open>set_bit n v = v OR push_bit n 1\<close> |
79489 | 1009 |
by transfer (simp add: set_bit_eq_or) |
1010 |
show \<open>unset_bit n v = (v OR push_bit n 1) XOR push_bit n 1\<close> |
|
1011 |
by transfer (simp add: unset_bit_eq_or_xor) |
|
79008
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1012 |
show \<open>flip_bit n v = v XOR push_bit n 1\<close> |
79489 | 1013 |
by transfer (simp add: flip_bit_eq_xor) |
79008
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1014 |
show \<open>push_bit n v = v * 2 ^ n\<close> |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1015 |
by transfer (simp add: push_bit_eq_mult) |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1016 |
show \<open>drop_bit n v = v div 2 ^ n\<close> |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1017 |
by transfer (simp add: drop_bit_take_bit flip: drop_bit_eq_div) |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1018 |
show \<open>take_bit n v = v mod 2 ^ n\<close> |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1019 |
by transfer (simp flip: take_bit_eq_mod) |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1020 |
qed |
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1021 |
|
74a4776f7a22
operations AND, OR, XOR are specified by characteristic recursive equation
haftmann
parents:
78955
diff
changeset
|
1022 |
end |
72262 | 1023 |
|
1024 |
end |
|
1025 |
||
74108
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1026 |
lemma [code]: |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1027 |
\<open>push_bit n w = w * 2 ^ n\<close> for w :: \<open>'a::len word\<close> |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1028 |
by (fact push_bit_eq_mult) |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1029 |
|
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1030 |
lemma [code]: |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1031 |
\<open>Word.the_int (drop_bit n w) = drop_bit n (Word.the_int w)\<close> |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1032 |
by transfer (simp add: drop_bit_take_bit min_def le_less less_diff_conv) |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1033 |
|
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1034 |
lemma [code]: |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1035 |
\<open>Word.the_int (take_bit n w) = (if n < LENGTH('a::len) then take_bit n (Word.the_int w) else Word.the_int w)\<close> |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1036 |
for w :: \<open>'a::len word\<close> |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1037 |
by transfer (simp add: not_le not_less ac_simps min_absorb2) |
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1038 |
|
72262 | 1039 |
lemma [code_abbrev]: |
1040 |
\<open>push_bit n 1 = (2 :: 'a::len word) ^ n\<close> |
|
1041 |
by (fact push_bit_of_1) |
|
1042 |
||
74391 | 1043 |
context |
1044 |
includes bit_operations_syntax |
|
1045 |
begin |
|
1046 |
||
72262 | 1047 |
lemma [code]: |
1048 |
\<open>NOT w = Word.of_int (NOT (Word.the_int w))\<close> |
|
1049 |
for w :: \<open>'a::len word\<close> |
|
1050 |
by transfer (simp add: take_bit_not_take_bit) |
|
1051 |
||
1052 |
lemma [code]: |
|
1053 |
\<open>Word.the_int (v AND w) = Word.the_int v AND Word.the_int w\<close> |
|
71990 | 1054 |
by transfer simp |
1055 |
||
72262 | 1056 |
lemma [code]: |
1057 |
\<open>Word.the_int (v OR w) = Word.the_int v OR Word.the_int w\<close> |
|
1058 |
by transfer simp |
|
1059 |
||
1060 |
lemma [code]: |
|
1061 |
\<open>Word.the_int (v XOR w) = Word.the_int v XOR Word.the_int w\<close> |
|
1062 |
by transfer simp |
|
1063 |
||
1064 |
lemma [code]: |
|
1065 |
\<open>Word.the_int (mask n :: 'a::len word) = mask (min LENGTH('a) n)\<close> |
|
1066 |
by transfer simp |
|
1067 |
||
73682
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
1068 |
lemma [code]: |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
1069 |
\<open>set_bit n w = w OR push_bit n 1\<close> for w :: \<open>'a::len word\<close> |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
1070 |
by (fact set_bit_eq_or) |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
1071 |
|
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
1072 |
lemma [code]: |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
1073 |
\<open>unset_bit n w = w AND NOT (push_bit n 1)\<close> for w :: \<open>'a::len word\<close> |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
1074 |
by (fact unset_bit_eq_and_not) |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
1075 |
|
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
1076 |
lemma [code]: |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
1077 |
\<open>flip_bit n w = w XOR push_bit n 1\<close> for w :: \<open>'a::len word\<close> |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
1078 |
by (fact flip_bit_eq_xor) |
78044b2f001c
explicit type class operations for type-specific implementations
haftmann
parents:
73535
diff
changeset
|
1079 |
|
72262 | 1080 |
context |
1081 |
includes lifting_syntax |
|
1082 |
begin |
|
1083 |
||
1084 |
lemma set_bit_word_transfer [transfer_rule]: |
|
1085 |
\<open>((=) ===> pcr_word ===> pcr_word) set_bit set_bit\<close> |
|
1086 |
by (unfold set_bit_def) transfer_prover |
|
1087 |
||
1088 |
lemma unset_bit_word_transfer [transfer_rule]: |
|
1089 |
\<open>((=) ===> pcr_word ===> pcr_word) unset_bit unset_bit\<close> |
|
1090 |
by (unfold unset_bit_def) transfer_prover |
|
1091 |
||
1092 |
lemma flip_bit_word_transfer [transfer_rule]: |
|
1093 |
\<open>((=) ===> pcr_word ===> pcr_word) flip_bit flip_bit\<close> |
|
1094 |
by (unfold flip_bit_def) transfer_prover |
|
1095 |
||
1096 |
lemma signed_take_bit_word_transfer [transfer_rule]: |
|
1097 |
\<open>((=) ===> pcr_word ===> pcr_word) |
|
1098 |
(\<lambda>n k. signed_take_bit n (take_bit LENGTH('a::len) k)) |
|
1099 |
(signed_take_bit :: nat \<Rightarrow> 'a word \<Rightarrow> 'a word)\<close> |
|
1100 |
proof - |
|
1101 |
let ?K = \<open>\<lambda>n (k :: int). take_bit (min LENGTH('a) n) k OR of_bool (n < LENGTH('a) \<and> bit k n) * NOT (mask n)\<close> |
|
1102 |
let ?W = \<open>\<lambda>n (w :: 'a word). take_bit n w OR of_bool (bit w n) * NOT (mask n)\<close> |
|
1103 |
have \<open>((=) ===> pcr_word ===> pcr_word) ?K ?W\<close> |
|
1104 |
by transfer_prover |
|
1105 |
also have \<open>?K = (\<lambda>n k. signed_take_bit n (take_bit LENGTH('a::len) k))\<close> |
|
1106 |
by (simp add: fun_eq_iff signed_take_bit_def bit_take_bit_iff ac_simps) |
|
1107 |
also have \<open>?W = signed_take_bit\<close> |
|
1108 |
by (simp add: fun_eq_iff signed_take_bit_def) |
|
1109 |
finally show ?thesis . |
|
1110 |
qed |
|
1111 |
||
1112 |
end |
|
1113 |
||
74097 | 1114 |
end |
1115 |
||
72244 | 1116 |
|
1117 |
subsection \<open>Conversions including casts\<close> |
|
1118 |
||
72262 | 1119 |
subsubsection \<open>Generic unsigned conversion\<close> |
1120 |
||
1121 |
context semiring_bits |
|
1122 |
begin |
|
1123 |
||
72611
c7bc3e70a8c7
official collection for bit projection simplifications
haftmann
parents:
72515
diff
changeset
|
1124 |
lemma bit_unsigned_iff [bit_simps]: |
74309
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1125 |
\<open>bit (unsigned w) n \<longleftrightarrow> possible_bit TYPE('a) n \<and> bit w n\<close> |
72262 | 1126 |
for w :: \<open>'b::len word\<close> |
1127 |
by (transfer fixing: bit) (simp add: bit_of_nat_iff bit_nat_iff bit_take_bit_iff) |
|
1128 |
||
1129 |
end |
|
1130 |
||
74309
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1131 |
lemma possible_bit_word[simp]: |
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1132 |
\<open>possible_bit TYPE(('a :: len) word) m \<longleftrightarrow> m < LENGTH('a)\<close> |
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1133 |
by (simp add: possible_bit_def linorder_not_le) |
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1134 |
|
74108
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1135 |
context semiring_bit_operations |
72262 | 1136 |
begin |
1137 |
||
74592 | 1138 |
lemma unsigned_minus_1_eq_mask: |
1139 |
\<open>unsigned (- 1 :: 'b::len word) = mask LENGTH('b)\<close> |
|
1140 |
by (transfer fixing: mask) (simp add: nat_mask_eq of_nat_mask_eq) |
|
1141 |
||
72262 | 1142 |
lemma unsigned_push_bit_eq: |
1143 |
\<open>unsigned (push_bit n w) = take_bit LENGTH('b) (push_bit n (unsigned w))\<close> |
|
1144 |
for w :: \<open>'b::len word\<close> |
|
1145 |
proof (rule bit_eqI) |
|
1146 |
fix m |
|
74309
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1147 |
assume \<open>possible_bit TYPE('a) m\<close> |
72262 | 1148 |
show \<open>bit (unsigned (push_bit n w)) m = bit (take_bit LENGTH('b) (push_bit n (unsigned w))) m\<close> |
1149 |
proof (cases \<open>n \<le> m\<close>) |
|
1150 |
case True |
|
74309
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1151 |
with \<open>possible_bit TYPE('a) m\<close> have \<open>possible_bit TYPE('a) (m - n)\<close> |
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1152 |
by (simp add: possible_bit_less_imp) |
72262 | 1153 |
with True show ?thesis |
74101 | 1154 |
by (simp add: bit_unsigned_iff bit_push_bit_iff Bit_Operations.bit_push_bit_iff bit_take_bit_iff not_le ac_simps) |
72262 | 1155 |
next |
1156 |
case False |
|
1157 |
then show ?thesis |
|
74101 | 1158 |
by (simp add: not_le bit_unsigned_iff bit_push_bit_iff Bit_Operations.bit_push_bit_iff bit_take_bit_iff) |
72262 | 1159 |
qed |
1160 |
qed |
|
1161 |
||
1162 |
lemma unsigned_take_bit_eq: |
|
1163 |
\<open>unsigned (take_bit n w) = take_bit n (unsigned w)\<close> |
|
1164 |
for w :: \<open>'b::len word\<close> |
|
74101 | 1165 |
by (rule bit_eqI) (simp add: bit_unsigned_iff bit_take_bit_iff Bit_Operations.bit_take_bit_iff) |
72262 | 1166 |
|
1167 |
end |
|
1168 |
||
78955 | 1169 |
context linordered_euclidean_semiring_bit_operations |
72512 | 1170 |
begin |
1171 |
||
1172 |
lemma unsigned_drop_bit_eq: |
|
1173 |
\<open>unsigned (drop_bit n w) = drop_bit n (take_bit LENGTH('b) (unsigned w))\<close> |
|
1174 |
for w :: \<open>'b::len word\<close> |
|
80777 | 1175 |
by (rule bit_eqI) (auto simp: bit_unsigned_iff bit_take_bit_iff bit_drop_bit_eq Bit_Operations.bit_drop_bit_eq possible_bit_def dest: bit_imp_le_length) |
72512 | 1176 |
|
1177 |
end |
|
1178 |
||
73853 | 1179 |
lemma ucast_drop_bit_eq: |
1180 |
\<open>ucast (drop_bit n w) = drop_bit n (ucast w :: 'b::len word)\<close> |
|
1181 |
if \<open>LENGTH('a) \<le> LENGTH('b)\<close> for w :: \<open>'a::len word\<close> |
|
80777 | 1182 |
by (rule bit_word_eqI) (use that in \<open>auto simp: bit_unsigned_iff bit_drop_bit_eq dest: bit_imp_le_length\<close>) |
73853 | 1183 |
|
72262 | 1184 |
context semiring_bit_operations |
1185 |
begin |
|
1186 |
||
74097 | 1187 |
context |
1188 |
includes bit_operations_syntax |
|
1189 |
begin |
|
1190 |
||
72262 | 1191 |
lemma unsigned_and_eq: |
1192 |
\<open>unsigned (v AND w) = unsigned v AND unsigned w\<close> |
|
1193 |
for v w :: \<open>'b::len word\<close> |
|
74309
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1194 |
by (simp add: bit_eq_iff bit_simps) |
72262 | 1195 |
|
1196 |
lemma unsigned_or_eq: |
|
1197 |
\<open>unsigned (v OR w) = unsigned v OR unsigned w\<close> |
|
1198 |
for v w :: \<open>'b::len word\<close> |
|
74309
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1199 |
by (simp add: bit_eq_iff bit_simps) |
72262 | 1200 |
|
1201 |
lemma unsigned_xor_eq: |
|
1202 |
\<open>unsigned (v XOR w) = unsigned v XOR unsigned w\<close> |
|
1203 |
for v w :: \<open>'b::len word\<close> |
|
74309
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1204 |
by (simp add: bit_eq_iff bit_simps) |
72262 | 1205 |
|
1206 |
end |
|
1207 |
||
74097 | 1208 |
end |
1209 |
||
72262 | 1210 |
context ring_bit_operations |
1211 |
begin |
|
1212 |
||
74097 | 1213 |
context |
1214 |
includes bit_operations_syntax |
|
1215 |
begin |
|
1216 |
||
72262 | 1217 |
lemma unsigned_not_eq: |
1218 |
\<open>unsigned (NOT w) = take_bit LENGTH('b) (NOT (unsigned w))\<close> |
|
1219 |
for w :: \<open>'b::len word\<close> |
|
74309
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1220 |
by (simp add: bit_eq_iff bit_simps) |
72262 | 1221 |
|
1222 |
end |
|
1223 |
||
74097 | 1224 |
end |
1225 |
||
80401
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
1226 |
context linordered_euclidean_semiring |
72262 | 1227 |
begin |
1228 |
||
72292 | 1229 |
lemma unsigned_greater_eq [simp]: |
72262 | 1230 |
\<open>0 \<le> unsigned w\<close> for w :: \<open>'b::len word\<close> |
1231 |
by (transfer fixing: less_eq) simp |
|
1232 |
||
72292 | 1233 |
lemma unsigned_less [simp]: |
72262 | 1234 |
\<open>unsigned w < 2 ^ LENGTH('b)\<close> for w :: \<open>'b::len word\<close> |
1235 |
by (transfer fixing: less) simp |
|
1236 |
||
1237 |
end |
|
1238 |
||
1239 |
context linordered_semidom |
|
1240 |
begin |
|
1241 |
||
1242 |
lemma word_less_eq_iff_unsigned: |
|
1243 |
"a \<le> b \<longleftrightarrow> unsigned a \<le> unsigned b" |
|
1244 |
by (transfer fixing: less_eq) (simp add: nat_le_eq_zle) |
|
1245 |
||
1246 |
lemma word_less_iff_unsigned: |
|
1247 |
"a < b \<longleftrightarrow> unsigned a < unsigned b" |
|
1248 |
by (transfer fixing: less) (auto dest: preorder_class.le_less_trans [OF take_bit_nonnegative]) |
|
1249 |
||
1250 |
end |
|
1251 |
||
1252 |
||
1253 |
subsubsection \<open>Generic signed conversion\<close> |
|
1254 |
||
1255 |
context ring_bit_operations |
|
1256 |
begin |
|
1257 |
||
72611
c7bc3e70a8c7
official collection for bit projection simplifications
haftmann
parents:
72515
diff
changeset
|
1258 |
lemma bit_signed_iff [bit_simps]: |
74309
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1259 |
\<open>bit (signed w) n \<longleftrightarrow> possible_bit TYPE('a) n \<and> bit w (min (LENGTH('b) - Suc 0) n)\<close> |
72262 | 1260 |
for w :: \<open>'b::len word\<close> |
1261 |
by (transfer fixing: bit) |
|
80777 | 1262 |
(auto simp: bit_of_int_iff Bit_Operations.bit_signed_take_bit_iff min_def) |
72262 | 1263 |
|
1264 |
lemma signed_push_bit_eq: |
|
1265 |
\<open>signed (push_bit n w) = signed_take_bit (LENGTH('b) - Suc 0) (push_bit n (signed w :: 'a))\<close> |
|
1266 |
for w :: \<open>'b::len word\<close> |
|
82524 | 1267 |
by (simp add: bit_eq_iff bit_simps possible_bit_less_imp min_less_iff_disj) auto |
72262 | 1268 |
|
1269 |
lemma signed_take_bit_eq: |
|
1270 |
\<open>signed (take_bit n w) = (if n < LENGTH('b) then take_bit n (signed w) else signed w)\<close> |
|
1271 |
for w :: \<open>'b::len word\<close> |
|
1272 |
by (transfer fixing: take_bit; cases \<open>LENGTH('b)\<close>) |
|
80777 | 1273 |
(auto simp: Bit_Operations.signed_take_bit_take_bit Bit_Operations.take_bit_signed_take_bit take_bit_of_int min_def less_Suc_eq) |
72262 | 1274 |
|
74391 | 1275 |
context |
1276 |
includes bit_operations_syntax |
|
1277 |
begin |
|
1278 |
||
72262 | 1279 |
lemma signed_not_eq: |
1280 |
\<open>signed (NOT w) = signed_take_bit LENGTH('b) (NOT (signed w))\<close> |
|
1281 |
for w :: \<open>'b::len word\<close> |
|
74592 | 1282 |
by (simp add: bit_eq_iff bit_simps possible_bit_less_imp min_less_iff_disj) |
74309
42523fbf643b
explicit predicate for confined bit range avoids cyclic rewriting in presence of extensionality rule for bit values (contributed by Thomas Sewell)
haftmann
parents:
74163
diff
changeset
|
1283 |
(auto simp: min_def) |
72262 | 1284 |
|
1285 |
lemma signed_and_eq: |
|
1286 |
\<open>signed (v AND w) = signed v AND signed w\<close> |
|
1287 |
for v w :: \<open>'b::len word\<close> |
|
1288 |
by (rule bit_eqI) (simp add: bit_signed_iff bit_and_iff Bit_Operations.bit_and_iff) |
|
1289 |
||
1290 |
lemma signed_or_eq: |
|
1291 |
\<open>signed (v OR w) = signed v OR signed w\<close> |
|
1292 |
for v w :: \<open>'b::len word\<close> |
|
1293 |
by (rule bit_eqI) (simp add: bit_signed_iff bit_or_iff Bit_Operations.bit_or_iff) |
|
1294 |
||
1295 |
lemma signed_xor_eq: |
|
1296 |
\<open>signed (v XOR w) = signed v XOR signed w\<close> |
|
1297 |
for v w :: \<open>'b::len word\<close> |
|
1298 |
by (rule bit_eqI) (simp add: bit_signed_iff bit_xor_iff Bit_Operations.bit_xor_iff) |
|
1299 |
||
1300 |
end |
|
1301 |
||
74097 | 1302 |
end |
1303 |
||
72262 | 1304 |
|
1305 |
subsubsection \<open>More\<close> |
|
1306 |
||
1307 |
lemma sint_greater_eq: |
|
1308 |
\<open>- (2 ^ (LENGTH('a) - Suc 0)) \<le> sint w\<close> for w :: \<open>'a::len word\<close> |
|
1309 |
proof (cases \<open>bit w (LENGTH('a) - Suc 0)\<close>) |
|
1310 |
case True |
|
1311 |
then show ?thesis |
|
1312 |
by transfer (simp add: signed_take_bit_eq_if_negative minus_exp_eq_not_mask or_greater_eq ac_simps) |
|
1313 |
next |
|
1314 |
have *: \<open>- (2 ^ (LENGTH('a) - Suc 0)) \<le> (0::int)\<close> |
|
1315 |
by simp |
|
1316 |
case False |
|
1317 |
then show ?thesis |
|
80777 | 1318 |
by transfer (auto simp: signed_take_bit_eq intro: order_trans *) |
72262 | 1319 |
qed |
1320 |
||
1321 |
lemma sint_less: |
|
1322 |
\<open>sint w < 2 ^ (LENGTH('a) - Suc 0)\<close> for w :: \<open>'a::len word\<close> |
|
1323 |
by (cases \<open>bit w (LENGTH('a) - Suc 0)\<close>; transfer) |
|
1324 |
(simp_all add: signed_take_bit_eq signed_take_bit_def not_eq_complement mask_eq_exp_minus_1 OR_upper) |
|
1325 |
||
1326 |
lemma uint_div_distrib: |
|
1327 |
\<open>uint (v div w) = uint v div uint w\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1328 |
by (metis int_ops(8) of_nat_unat unat_div_distrib) |
72262 | 1329 |
|
72388 | 1330 |
lemma unat_drop_bit_eq: |
1331 |
\<open>unat (drop_bit n w) = drop_bit n (unat w)\<close> |
|
1332 |
by (rule bit_eqI) (simp add: bit_unsigned_iff bit_drop_bit_eq) |
|
1333 |
||
72262 | 1334 |
lemma uint_mod_distrib: |
1335 |
\<open>uint (v mod w) = uint v mod uint w\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1336 |
by (metis int_ops(9) of_nat_unat unat_mod_distrib) |
72262 | 1337 |
|
74108
3146646a43a7
simplified hierarchy of type classes for bit operations
haftmann
parents:
74101
diff
changeset
|
1338 |
context semiring_bit_operations |
72262 | 1339 |
begin |
1340 |
||
1341 |
lemma unsigned_ucast_eq: |
|
1342 |
\<open>unsigned (ucast w :: 'c::len word) = take_bit LENGTH('c) (unsigned w)\<close> |
|
1343 |
for w :: \<open>'b::len word\<close> |
|
74101 | 1344 |
by (rule bit_eqI) (simp add: bit_unsigned_iff Word.bit_unsigned_iff bit_take_bit_iff not_le) |
72262 | 1345 |
|
1346 |
end |
|
1347 |
||
1348 |
context ring_bit_operations |
|
1349 |
begin |
|
1350 |
||
1351 |
lemma signed_ucast_eq: |
|
1352 |
\<open>signed (ucast w :: 'c::len word) = signed_take_bit (LENGTH('c) - Suc 0) (unsigned w)\<close> |
|
1353 |
for w :: \<open>'b::len word\<close> |
|
74592 | 1354 |
by (simp add: bit_eq_iff bit_simps min_less_iff_disj) |
72262 | 1355 |
|
1356 |
lemma signed_scast_eq: |
|
1357 |
\<open>signed (scast w :: 'c::len word) = signed_take_bit (LENGTH('c) - Suc 0) (signed w)\<close> |
|
1358 |
for w :: \<open>'b::len word\<close> |
|
74496 | 1359 |
by (simp add: bit_eq_iff bit_simps min_less_iff_disj) |
72262 | 1360 |
|
1361 |
end |
|
1362 |
||
72244 | 1363 |
lemma uint_nonnegative: "0 \<le> uint w" |
72262 | 1364 |
by (fact unsigned_greater_eq) |
72244 | 1365 |
|
1366 |
lemma uint_bounded: "uint w < 2 ^ LENGTH('a)" |
|
1367 |
for w :: "'a::len word" |
|
72262 | 1368 |
by (fact unsigned_less) |
72244 | 1369 |
|
1370 |
lemma uint_idem: "uint w mod 2 ^ LENGTH('a) = uint w" |
|
1371 |
for w :: "'a::len word" |
|
72262 | 1372 |
by transfer (simp add: take_bit_eq_mod) |
72244 | 1373 |
|
1374 |
lemma word_uint_eqI: "uint a = uint b \<Longrightarrow> a = b" |
|
72262 | 1375 |
by (fact unsigned_word_eqI) |
72244 | 1376 |
|
1377 |
lemma word_uint_eq_iff: "a = b \<longleftrightarrow> uint a = uint b" |
|
72262 | 1378 |
by (fact word_eq_iff_unsigned) |
1379 |
||
1380 |
lemma uint_word_of_int_eq: |
|
72244 | 1381 |
\<open>uint (word_of_int k :: 'a::len word) = take_bit LENGTH('a) k\<close> |
1382 |
by transfer rule |
|
1383 |
||
1384 |
lemma uint_word_of_int: "uint (word_of_int k :: 'a::len word) = k mod 2 ^ LENGTH('a)" |
|
1385 |
by (simp add: uint_word_of_int_eq take_bit_eq_mod) |
|
1386 |
||
1387 |
lemma word_of_int_uint: "word_of_int (uint w) = w" |
|
1388 |
by transfer simp |
|
1389 |
||
1390 |
lemma word_div_def [code]: |
|
1391 |
"a div b = word_of_int (uint a div uint b)" |
|
1392 |
by transfer rule |
|
1393 |
||
1394 |
lemma word_mod_def [code]: |
|
1395 |
"a mod b = word_of_int (uint a mod uint b)" |
|
1396 |
by transfer rule |
|
1397 |
||
1398 |
lemma split_word_all: "(\<And>x::'a::len word. PROP P x) \<equiv> (\<And>x. PROP P (word_of_int x))" |
|
1399 |
proof |
|
1400 |
fix x :: "'a word" |
|
1401 |
assume "\<And>x. PROP P (word_of_int x)" |
|
1402 |
then have "PROP P (word_of_int (uint x))" . |
|
72262 | 1403 |
then show "PROP P x" |
1404 |
by (simp only: word_of_int_uint) |
|
72244 | 1405 |
qed |
1406 |
||
72262 | 1407 |
lemma sint_uint: |
1408 |
\<open>sint w = signed_take_bit (LENGTH('a) - Suc 0) (uint w)\<close> |
|
72244 | 1409 |
for w :: \<open>'a::len word\<close> |
1410 |
by (cases \<open>LENGTH('a)\<close>; transfer) (simp_all add: signed_take_bit_take_bit) |
|
1411 |
||
72262 | 1412 |
lemma unat_eq_nat_uint: |
72244 | 1413 |
\<open>unat w = nat (uint w)\<close> |
1414 |
by simp |
|
1415 |
||
72262 | 1416 |
lemma ucast_eq: |
72244 | 1417 |
\<open>ucast w = word_of_int (uint w)\<close> |
1418 |
by transfer simp |
|
1419 |
||
72262 | 1420 |
lemma scast_eq: |
72244 | 1421 |
\<open>scast w = word_of_int (sint w)\<close> |
1422 |
by transfer simp |
|
1423 |
||
72262 | 1424 |
lemma uint_0_eq: |
72244 | 1425 |
\<open>uint 0 = 0\<close> |
72262 | 1426 |
by (fact unsigned_0) |
1427 |
||
1428 |
lemma uint_1_eq: |
|
72244 | 1429 |
\<open>uint 1 = 1\<close> |
72262 | 1430 |
by (fact unsigned_1) |
72244 | 1431 |
|
1432 |
lemma word_m1_wi: "- 1 = word_of_int (- 1)" |
|
72262 | 1433 |
by simp |
72244 | 1434 |
|
1435 |
lemma uint_0_iff: "uint x = 0 \<longleftrightarrow> x = 0" |
|
80777 | 1436 |
by (auto simp: unsigned_word_eqI) |
72244 | 1437 |
|
1438 |
lemma unat_0_iff: "unat x = 0 \<longleftrightarrow> x = 0" |
|
80777 | 1439 |
by (auto simp: unsigned_word_eqI) |
72262 | 1440 |
|
1441 |
lemma unat_0: "unat 0 = 0" |
|
1442 |
by (fact unsigned_0) |
|
72244 | 1443 |
|
1444 |
lemma unat_gt_0: "0 < unat x \<longleftrightarrow> x \<noteq> 0" |
|
1445 |
by (auto simp: unat_0_iff [symmetric]) |
|
1446 |
||
72262 | 1447 |
lemma ucast_0: "ucast 0 = 0" |
1448 |
by (fact unsigned_0) |
|
1449 |
||
1450 |
lemma sint_0: "sint 0 = 0" |
|
1451 |
by (fact signed_0) |
|
1452 |
||
1453 |
lemma scast_0: "scast 0 = 0" |
|
1454 |
by (fact signed_0) |
|
1455 |
||
1456 |
lemma sint_n1: "sint (- 1) = - 1" |
|
1457 |
by (fact signed_minus_1) |
|
1458 |
||
1459 |
lemma scast_n1: "scast (- 1) = - 1" |
|
1460 |
by (fact signed_minus_1) |
|
72244 | 1461 |
|
1462 |
lemma uint_1: "uint (1::'a::len word) = 1" |
|
1463 |
by (fact uint_1_eq) |
|
1464 |
||
72262 | 1465 |
lemma unat_1: "unat (1::'a::len word) = 1" |
1466 |
by (fact unsigned_1) |
|
1467 |
||
1468 |
lemma ucast_1: "ucast (1::'a::len word) = 1" |
|
1469 |
by (fact unsigned_1) |
|
72244 | 1470 |
|
1471 |
instantiation word :: (len) size |
|
1472 |
begin |
|
1473 |
||
1474 |
lift_definition size_word :: \<open>'a word \<Rightarrow> nat\<close> |
|
1475 |
is \<open>\<lambda>_. LENGTH('a)\<close> .. |
|
1476 |
||
1477 |
instance .. |
|
1478 |
||
1479 |
end |
|
1480 |
||
1481 |
lemma word_size [code]: |
|
1482 |
\<open>size w = LENGTH('a)\<close> for w :: \<open>'a::len word\<close> |
|
1483 |
by (fact size_word.rep_eq) |
|
1484 |
||
1485 |
lemma word_size_gt_0 [iff]: "0 < size w" |
|
1486 |
for w :: "'a::len word" |
|
1487 |
by (simp add: word_size) |
|
1488 |
||
1489 |
lemmas lens_gt_0 = word_size_gt_0 len_gt_0 |
|
1490 |
||
1491 |
lemma lens_not_0 [iff]: |
|
1492 |
\<open>size w \<noteq> 0\<close> for w :: \<open>'a::len word\<close> |
|
1493 |
by auto |
|
1494 |
||
1495 |
lift_definition source_size :: \<open>('a::len word \<Rightarrow> 'b) \<Rightarrow> nat\<close> |
|
1496 |
is \<open>\<lambda>_. LENGTH('a)\<close> . |
|
1497 |
||
1498 |
lift_definition target_size :: \<open>('a \<Rightarrow> 'b::len word) \<Rightarrow> nat\<close> |
|
1499 |
is \<open>\<lambda>_. LENGTH('b)\<close> .. |
|
1500 |
||
1501 |
lift_definition is_up :: \<open>('a::len word \<Rightarrow> 'b::len word) \<Rightarrow> bool\<close> |
|
1502 |
is \<open>\<lambda>_. LENGTH('a) \<le> LENGTH('b)\<close> .. |
|
1503 |
||
1504 |
lift_definition is_down :: \<open>('a::len word \<Rightarrow> 'b::len word) \<Rightarrow> bool\<close> |
|
1505 |
is \<open>\<lambda>_. LENGTH('a) \<ge> LENGTH('b)\<close> .. |
|
1506 |
||
1507 |
lemma is_up_eq: |
|
1508 |
\<open>is_up f \<longleftrightarrow> source_size f \<le> target_size f\<close> |
|
1509 |
for f :: \<open>'a::len word \<Rightarrow> 'b::len word\<close> |
|
1510 |
by (simp add: source_size.rep_eq target_size.rep_eq is_up.rep_eq) |
|
1511 |
||
1512 |
lemma is_down_eq: |
|
1513 |
\<open>is_down f \<longleftrightarrow> target_size f \<le> source_size f\<close> |
|
1514 |
for f :: \<open>'a::len word \<Rightarrow> 'b::len word\<close> |
|
1515 |
by (simp add: source_size.rep_eq target_size.rep_eq is_down.rep_eq) |
|
1516 |
||
1517 |
lift_definition word_int_case :: \<open>(int \<Rightarrow> 'b) \<Rightarrow> 'a::len word \<Rightarrow> 'b\<close> |
|
1518 |
is \<open>\<lambda>f. f \<circ> take_bit LENGTH('a)\<close> by simp |
|
1519 |
||
1520 |
lemma word_int_case_eq_uint [code]: |
|
1521 |
\<open>word_int_case f w = f (uint w)\<close> |
|
1522 |
by transfer simp |
|
1523 |
||
1524 |
translations |
|
1525 |
"case x of XCONST of_int y \<Rightarrow> b" \<rightleftharpoons> "CONST word_int_case (\<lambda>y. b) x" |
|
1526 |
"case x of (XCONST of_int :: 'a) y \<Rightarrow> b" \<rightharpoonup> "CONST word_int_case (\<lambda>y. b) x" |
|
1527 |
||
1528 |
||
1529 |
subsection \<open>Arithmetic operations\<close> |
|
1530 |
||
74592 | 1531 |
lemma div_word_self: |
1532 |
\<open>w div w = 1\<close> if \<open>w \<noteq> 0\<close> for w :: \<open>'a::len word\<close> |
|
1533 |
using that by transfer simp |
|
1534 |
||
1535 |
lemma mod_word_self [simp]: |
|
1536 |
\<open>w mod w = 0\<close> for w :: \<open>'a::len word\<close> |
|
80777 | 1537 |
by (simp add: word_mod_def) |
74592 | 1538 |
|
1539 |
lemma div_word_less: |
|
1540 |
\<open>w div v = 0\<close> if \<open>w < v\<close> for w v :: \<open>'a::len word\<close> |
|
1541 |
using that by transfer simp |
|
1542 |
||
1543 |
lemma mod_word_less: |
|
1544 |
\<open>w mod v = w\<close> if \<open>w < v\<close> for w v :: \<open>'a::len word\<close> |
|
1545 |
using div_mult_mod_eq [of w v] using that by (simp add: div_word_less) |
|
1546 |
||
1547 |
lemma div_word_one [simp]: |
|
1548 |
\<open>1 div w = of_bool (w = 1)\<close> for w :: \<open>'a::len word\<close> |
|
1549 |
proof transfer |
|
1550 |
fix k :: int |
|
1551 |
show \<open>take_bit LENGTH('a) (take_bit LENGTH('a) 1 div take_bit LENGTH('a) k) = |
|
1552 |
take_bit LENGTH('a) (of_bool (take_bit LENGTH('a) k = take_bit LENGTH('a) 1))\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1553 |
using take_bit_nonnegative [of \<open>LENGTH('a)\<close> k] |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1554 |
by (smt (verit, best) div_by_1 of_bool_eq take_bit_of_0 take_bit_of_1 zdiv_eq_0_iff) |
74592 | 1555 |
qed |
1556 |
||
1557 |
lemma mod_word_one [simp]: |
|
1558 |
\<open>1 mod w = 1 - w * of_bool (w = 1)\<close> for w :: \<open>'a::len word\<close> |
|
75087 | 1559 |
using div_mult_mod_eq [of 1 w] by auto |
74592 | 1560 |
|
1561 |
lemma div_word_by_minus_1_eq [simp]: |
|
1562 |
\<open>w div - 1 = of_bool (w = - 1)\<close> for w :: \<open>'a::len word\<close> |
|
1563 |
by (auto intro: div_word_less simp add: div_word_self word_order.not_eq_extremum) |
|
1564 |
||
1565 |
lemma mod_word_by_minus_1_eq [simp]: |
|
1566 |
\<open>w mod - 1 = w * of_bool (w < - 1)\<close> for w :: \<open>'a::len word\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1567 |
using mod_word_less word_order.not_eq_extremum by fastforce |
74592 | 1568 |
|
72244 | 1569 |
text \<open>Legacy theorems:\<close> |
1570 |
||
1571 |
lemma word_add_def [code]: |
|
1572 |
"a + b = word_of_int (uint a + uint b)" |
|
1573 |
by transfer (simp add: take_bit_add) |
|
1574 |
||
1575 |
lemma word_sub_wi [code]: |
|
1576 |
"a - b = word_of_int (uint a - uint b)" |
|
1577 |
by transfer (simp add: take_bit_diff) |
|
1578 |
||
1579 |
lemma word_mult_def [code]: |
|
1580 |
"a * b = word_of_int (uint a * uint b)" |
|
1581 |
by transfer (simp add: take_bit_eq_mod mod_simps) |
|
1582 |
||
1583 |
lemma word_minus_def [code]: |
|
1584 |
"- a = word_of_int (- uint a)" |
|
1585 |
by transfer (simp add: take_bit_minus) |
|
1586 |
||
1587 |
lemma word_0_wi: |
|
1588 |
"0 = word_of_int 0" |
|
1589 |
by transfer simp |
|
1590 |
||
1591 |
lemma word_1_wi: |
|
1592 |
"1 = word_of_int 1" |
|
1593 |
by transfer simp |
|
1594 |
||
1595 |
lift_definition word_succ :: "'a::len word \<Rightarrow> 'a word" is "\<lambda>x. x + 1" |
|
80777 | 1596 |
by (auto simp: take_bit_eq_mod intro: mod_add_cong) |
72244 | 1597 |
|
1598 |
lift_definition word_pred :: "'a::len word \<Rightarrow> 'a word" is "\<lambda>x. x - 1" |
|
80777 | 1599 |
by (auto simp: take_bit_eq_mod intro: mod_diff_cong) |
72244 | 1600 |
|
1601 |
lemma word_succ_alt [code]: |
|
1602 |
"word_succ a = word_of_int (uint a + 1)" |
|
1603 |
by transfer (simp add: take_bit_eq_mod mod_simps) |
|
1604 |
||
1605 |
lemma word_pred_alt [code]: |
|
1606 |
"word_pred a = word_of_int (uint a - 1)" |
|
1607 |
by transfer (simp add: take_bit_eq_mod mod_simps) |
|
1608 |
||
1609 |
lemmas word_arith_wis = |
|
1610 |
word_add_def word_sub_wi word_mult_def |
|
1611 |
word_minus_def word_succ_alt word_pred_alt |
|
1612 |
word_0_wi word_1_wi |
|
1613 |
||
1614 |
lemma wi_homs: |
|
1615 |
shows wi_hom_add: "word_of_int a + word_of_int b = word_of_int (a + b)" |
|
1616 |
and wi_hom_sub: "word_of_int a - word_of_int b = word_of_int (a - b)" |
|
1617 |
and wi_hom_mult: "word_of_int a * word_of_int b = word_of_int (a * b)" |
|
1618 |
and wi_hom_neg: "- word_of_int a = word_of_int (- a)" |
|
1619 |
and wi_hom_succ: "word_succ (word_of_int a) = word_of_int (a + 1)" |
|
1620 |
and wi_hom_pred: "word_pred (word_of_int a) = word_of_int (a - 1)" |
|
1621 |
by (transfer, simp)+ |
|
1622 |
||
1623 |
lemmas wi_hom_syms = wi_homs [symmetric] |
|
1624 |
||
1625 |
lemmas word_of_int_homs = wi_homs word_0_wi word_1_wi |
|
1626 |
||
1627 |
lemmas word_of_int_hom_syms = word_of_int_homs [symmetric] |
|
1628 |
||
1629 |
lemma double_eq_zero_iff: |
|
1630 |
\<open>2 * a = 0 \<longleftrightarrow> a = 0 \<or> a = 2 ^ (LENGTH('a) - Suc 0)\<close> |
|
1631 |
for a :: \<open>'a::len word\<close> |
|
1632 |
proof - |
|
1633 |
define n where \<open>n = LENGTH('a) - Suc 0\<close> |
|
1634 |
then have *: \<open>LENGTH('a) = Suc n\<close> |
|
1635 |
by simp |
|
1636 |
have \<open>a = 0\<close> if \<open>2 * a = 0\<close> and \<open>a \<noteq> 2 ^ (LENGTH('a) - Suc 0)\<close> |
|
1637 |
using that by transfer |
|
80777 | 1638 |
(auto simp: take_bit_eq_0_iff take_bit_eq_mod *) |
72244 | 1639 |
moreover have \<open>2 ^ LENGTH('a) = (0 :: 'a word)\<close> |
1640 |
by transfer simp |
|
1641 |
then have \<open>2 * 2 ^ (LENGTH('a) - Suc 0) = (0 :: 'a word)\<close> |
|
1642 |
by (simp add: *) |
|
1643 |
ultimately show ?thesis |
|
1644 |
by auto |
|
1645 |
qed |
|
1646 |
||
1647 |
||
1648 |
subsection \<open>Ordering\<close> |
|
1649 |
||
82376 | 1650 |
instance word :: (len) wellorder |
1651 |
proof |
|
1652 |
fix P :: "'a word \<Rightarrow> bool" and a |
|
1653 |
assume *: "(\<And>b. (\<And>a. a < b \<Longrightarrow> P a) \<Longrightarrow> P b)" |
|
1654 |
have "wf (measure unat)" .. |
|
1655 |
moreover have "{(a, b :: ('a::len) word). a < b} \<subseteq> measure unat" |
|
1656 |
by (auto simp add: word_less_iff_unsigned [where ?'a = nat]) |
|
1657 |
ultimately have "wf {(a, b :: ('a::len) word). a < b}" |
|
1658 |
by (rule wf_subset) |
|
1659 |
then show "P a" using * |
|
1660 |
by induction blast |
|
1661 |
qed |
|
1662 |
||
1663 |
lemma word_m1_ge [simp]: (* FIXME: delete *) |
|
1664 |
"word_pred 0 \<ge> y" |
|
1665 |
by transfer (simp add: mask_eq_exp_minus_1) |
|
1666 |
||
1667 |
lemma word_less_alt: |
|
1668 |
"a < b \<longleftrightarrow> uint a < uint b" |
|
1669 |
by (fact word_less_def) |
|
1670 |
||
1671 |
lemma word_zero_le [simp]: |
|
1672 |
"0 \<le> y" for y :: "'a::len word" |
|
1673 |
by (fact word_coorder.extremum) |
|
1674 |
||
1675 |
lemma word_n1_ge [simp]: |
|
1676 |
"y \<le> - 1" for y :: "'a::len word" |
|
1677 |
by (fact word_order.extremum) |
|
1678 |
||
1679 |
lemmas word_not_simps [simp] = |
|
1680 |
word_zero_le [THEN leD] word_m1_ge [THEN leD] word_n1_ge [THEN leD] |
|
1681 |
||
1682 |
lemma word_gt_0: |
|
1683 |
"0 < y \<longleftrightarrow> 0 \<noteq> y" |
|
1684 |
for y :: "'a::len word" |
|
1685 |
by (simp add: less_le) |
|
1686 |
||
1687 |
lemma word_gt_0_no [simp]: |
|
1688 |
\<open>(0 :: 'a::len word) < numeral y \<longleftrightarrow> (0 :: 'a::len word) \<noteq> numeral y\<close> |
|
1689 |
by (fact word_gt_0) |
|
1690 |
||
1691 |
lemma word_le_nat_alt: |
|
1692 |
"a \<le> b \<longleftrightarrow> unat a \<le> unat b" |
|
1693 |
by transfer (simp add: nat_le_eq_zle) |
|
1694 |
||
1695 |
lemma word_less_nat_alt: |
|
1696 |
"a < b \<longleftrightarrow> unat a < unat b" |
|
1697 |
by transfer (auto simp: less_le [of 0]) |
|
1698 |
||
1699 |
lemmas unat_mono = word_less_nat_alt [THEN iffD1] |
|
1700 |
||
1701 |
lemma wi_less: |
|
1702 |
"(word_of_int n < (word_of_int m :: 'a::len word)) = |
|
1703 |
(n mod 2 ^ LENGTH('a) < m mod 2 ^ LENGTH('a))" |
|
1704 |
by (simp add: uint_word_of_int word_less_def) |
|
1705 |
||
1706 |
lemma wi_le: |
|
1707 |
"(word_of_int n \<le> (word_of_int m :: 'a::len word)) = |
|
1708 |
(n mod 2 ^ LENGTH('a) \<le> m mod 2 ^ LENGTH('a))" |
|
1709 |
by (simp add: uint_word_of_int word_le_def) |
|
1710 |
||
72388 | 1711 |
lift_definition word_sle :: \<open>'a::len word \<Rightarrow> 'a word \<Rightarrow> bool\<close> |
1712 |
is \<open>\<lambda>k l. signed_take_bit (LENGTH('a) - Suc 0) k \<le> signed_take_bit (LENGTH('a) - Suc 0) l\<close> |
|
1713 |
by (simp flip: signed_take_bit_decr_length_iff) |
|
1714 |
||
1715 |
lift_definition word_sless :: \<open>'a::len word \<Rightarrow> 'a word \<Rightarrow> bool\<close> |
|
1716 |
is \<open>\<lambda>k l. signed_take_bit (LENGTH('a) - Suc 0) k < signed_take_bit (LENGTH('a) - Suc 0) l\<close> |
|
72244 | 1717 |
by (simp flip: signed_take_bit_decr_length_iff) |
1718 |
||
72388 | 1719 |
notation |
80914
d97fdabd9e2b
standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
wenzelm
parents:
80777
diff
changeset
|
1720 |
word_sle (\<open>'(\<le>s')\<close>) and |
81142 | 1721 |
word_sle (\<open>(\<open>notation=\<open>infix \<le>s\<close>\<close>_/ \<le>s _)\<close> [51, 51] 50) and |
80914
d97fdabd9e2b
standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
wenzelm
parents:
80777
diff
changeset
|
1722 |
word_sless (\<open>'(<s')\<close>) and |
81142 | 1723 |
word_sless (\<open>(\<open>notation=\<open>infix <s\<close>\<close>_/ <s _)\<close> [51, 51] 50) |
72388 | 1724 |
|
1725 |
notation (input) |
|
81142 | 1726 |
word_sle (\<open>(\<open>notation=\<open>infix <=s\<close>\<close>_/ <=s _)\<close> [51, 51] 50) |
72388 | 1727 |
|
72244 | 1728 |
lemma word_sle_eq [code]: |
1729 |
\<open>a <=s b \<longleftrightarrow> sint a \<le> sint b\<close> |
|
1730 |
by transfer simp |
|
1731 |
||
82376 | 1732 |
lemma word_sless_alt [code]: |
1733 |
"a <s b \<longleftrightarrow> sint a < sint b" |
|
72244 | 1734 |
by transfer simp |
1735 |
||
72388 | 1736 |
lemma signed_ordering: \<open>ordering word_sle word_sless\<close> |
82376 | 1737 |
by (standard; transfer) (auto simp flip: signed_take_bit_decr_length_iff) |
72388 | 1738 |
|
1739 |
lemma signed_linorder: \<open>class.linorder word_sle word_sless\<close> |
|
80777 | 1740 |
by (standard; transfer) (auto simp: signed_take_bit_decr_length_iff) |
72388 | 1741 |
|
1742 |
interpretation signed: linorder word_sle word_sless |
|
1743 |
by (fact signed_linorder) |
|
1744 |
||
1745 |
lemma word_sless_eq: |
|
1746 |
\<open>x <s y \<longleftrightarrow> x <=s y \<and> x \<noteq> y\<close> |
|
1747 |
by (fact signed.less_le) |
|
1748 |
||
82524 | 1749 |
lemma minus_1_sless_0 [simp]: |
1750 |
\<open>- 1 <s 0\<close> |
|
1751 |
by transfer simp |
|
1752 |
||
82525 | 1753 |
lemma not_0_sless_minus_1 [simp]: |
1754 |
\<open>\<not> 0 <s - 1\<close> |
|
1755 |
by transfer simp |
|
1756 |
||
82524 | 1757 |
lemma minus_1_sless_eq_0 [simp]: |
1758 |
\<open>- 1 \<le>s 0\<close> |
|
1759 |
by transfer simp |
|
1760 |
||
82525 | 1761 |
lemma not_0_sless_eq_minus_1 [simp]: |
1762 |
\<open>\<not> 0 \<le>s - 1\<close> |
|
1763 |
by transfer simp |
|
1764 |
||
72244 | 1765 |
|
1766 |
subsection \<open>Bit-wise operations\<close> |
|
1767 |
||
74097 | 1768 |
context |
1769 |
includes bit_operations_syntax |
|
1770 |
begin |
|
1771 |
||
72227 | 1772 |
lemma take_bit_word_eq_self: |
1773 |
\<open>take_bit n w = w\<close> if \<open>LENGTH('a) \<le> n\<close> for w :: \<open>'a::len word\<close> |
|
1774 |
using that by transfer simp |
|
1775 |
||
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
1776 |
lemma take_bit_length_eq [simp]: |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
1777 |
\<open>take_bit LENGTH('a) w = w\<close> for w :: \<open>'a::len word\<close> |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1778 |
by (simp add: nat_le_linear take_bit_word_eq_self) |
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
1779 |
|
71990 | 1780 |
lemma bit_word_of_int_iff: |
1781 |
\<open>bit (word_of_int k :: 'a::len word) n \<longleftrightarrow> n < LENGTH('a) \<and> bit k n\<close> |
|
82525 | 1782 |
by (simp add: bit_simps) |
71990 | 1783 |
|
1784 |
lemma bit_uint_iff: |
|
1785 |
\<open>bit (uint w) n \<longleftrightarrow> n < LENGTH('a) \<and> bit w n\<close> |
|
1786 |
for w :: \<open>'a::len word\<close> |
|
1787 |
by transfer (simp add: bit_take_bit_iff) |
|
1788 |
||
1789 |
lemma bit_sint_iff: |
|
1790 |
\<open>bit (sint w) n \<longleftrightarrow> n \<ge> LENGTH('a) \<and> bit w (LENGTH('a) - 1) \<or> bit w n\<close> |
|
1791 |
for w :: \<open>'a::len word\<close> |
|
80777 | 1792 |
by transfer (auto simp: bit_signed_take_bit_iff min_def le_less not_less) |
71990 | 1793 |
|
1794 |
lemma bit_word_ucast_iff: |
|
1795 |
\<open>bit (ucast w :: 'b::len word) n \<longleftrightarrow> n < LENGTH('a) \<and> n < LENGTH('b) \<and> bit w n\<close> |
|
1796 |
for w :: \<open>'a::len word\<close> |
|
82525 | 1797 |
by (auto simp add: bit_unsigned_iff bit_imp_le_length) |
71990 | 1798 |
|
1799 |
lemma bit_word_scast_iff: |
|
1800 |
\<open>bit (scast w :: 'b::len word) n \<longleftrightarrow> |
|
1801 |
n < LENGTH('b) \<and> (bit w n \<or> LENGTH('a) \<le> n \<and> bit w (LENGTH('a) - Suc 0))\<close> |
|
1802 |
for w :: \<open>'a::len word\<close> |
|
82525 | 1803 |
by (auto simp add: bit_signed_iff bit_imp_le_length min_def le_less dest: bit_imp_possible_bit) |
72079 | 1804 |
|
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
1805 |
lemma bit_word_iff_drop_bit_and [code]: |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
1806 |
\<open>bit a n \<longleftrightarrow> drop_bit n a AND 1 = 1\<close> for a :: \<open>'a::len word\<close> |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
1807 |
by (simp add: bit_iff_odd_drop_bit odd_iff_mod_2_eq_one and_one_eq) |
72079 | 1808 |
|
1809 |
lemma |
|
72262 | 1810 |
word_not_def: "NOT (a::'a::len word) = word_of_int (NOT (uint a))" |
65268 | 1811 |
and word_and_def: "(a::'a word) AND b = word_of_int (uint a AND uint b)" |
1812 |
and word_or_def: "(a::'a word) OR b = word_of_int (uint a OR uint b)" |
|
1813 |
and word_xor_def: "(a::'a word) XOR b = word_of_int (uint a XOR uint b)" |
|
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
1814 |
by (transfer, simp add: take_bit_not_take_bit)+ |
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
1815 |
|
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
1816 |
definition even_word :: \<open>'a::len word \<Rightarrow> bool\<close> |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
1817 |
where [code_abbrev]: \<open>even_word = even\<close> |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
1818 |
|
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
1819 |
lemma even_word_iff [code]: |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
1820 |
\<open>even_word a \<longleftrightarrow> a AND 1 = 0\<close> |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
1821 |
by (simp add: and_one_eq even_iff_mod_2_eq_zero even_word_def) |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
1822 |
|
72079 | 1823 |
lemma map_bit_range_eq_if_take_bit_eq: |
1824 |
\<open>map (bit k) [0..<n] = map (bit l) [0..<n]\<close> |
|
1825 |
if \<open>take_bit n k = take_bit n l\<close> for k l :: int |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1826 |
using that |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1827 |
proof (induction n arbitrary: k l) |
72079 | 1828 |
case 0 |
1829 |
then show ?case |
|
1830 |
by simp |
|
1831 |
next |
|
1832 |
case (Suc n) |
|
1833 |
from Suc.prems have \<open>take_bit n (k div 2) = take_bit n (l div 2)\<close> |
|
1834 |
by (simp add: take_bit_Suc) |
|
1835 |
then have \<open>map (bit (k div 2)) [0..<n] = map (bit (l div 2)) [0..<n]\<close> |
|
1836 |
by (rule Suc.IH) |
|
1837 |
moreover have \<open>bit (r div 2) = bit r \<circ> Suc\<close> for r :: int |
|
1838 |
by (simp add: fun_eq_iff bit_Suc) |
|
1839 |
moreover from Suc.prems have \<open>even k \<longleftrightarrow> even l\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1840 |
by (metis Zero_neq_Suc even_take_bit_eq) |
72079 | 1841 |
ultimately show ?case |
75085 | 1842 |
by (simp only: map_Suc_upt upt_conv_Cons flip: list.map_comp) (simp add: bit_0) |
72079 | 1843 |
qed |
1844 |
||
72262 | 1845 |
lemma |
1846 |
take_bit_word_Bit0_eq [simp]: \<open>take_bit (numeral n) (numeral (num.Bit0 m) :: 'a::len word) |
|
1847 |
= 2 * take_bit (pred_numeral n) (numeral m)\<close> (is ?P) |
|
1848 |
and take_bit_word_Bit1_eq [simp]: \<open>take_bit (numeral n) (numeral (num.Bit1 m) :: 'a::len word) |
|
1849 |
= 1 + 2 * take_bit (pred_numeral n) (numeral m)\<close> (is ?Q) |
|
1850 |
and take_bit_word_minus_Bit0_eq [simp]: \<open>take_bit (numeral n) (- numeral (num.Bit0 m) :: 'a::len word) |
|
1851 |
= 2 * take_bit (pred_numeral n) (- numeral m)\<close> (is ?R) |
|
1852 |
and take_bit_word_minus_Bit1_eq [simp]: \<open>take_bit (numeral n) (- numeral (num.Bit1 m) :: 'a::len word) |
|
1853 |
= 1 + 2 * take_bit (pred_numeral n) (- numeral (Num.inc m))\<close> (is ?S) |
|
1854 |
proof - |
|
1855 |
define w :: \<open>'a::len word\<close> |
|
1856 |
where \<open>w = numeral m\<close> |
|
1857 |
moreover define q :: nat |
|
1858 |
where \<open>q = pred_numeral n\<close> |
|
1859 |
ultimately have num: |
|
1860 |
\<open>numeral m = w\<close> |
|
1861 |
\<open>numeral (num.Bit0 m) = 2 * w\<close> |
|
1862 |
\<open>numeral (num.Bit1 m) = 1 + 2 * w\<close> |
|
1863 |
\<open>numeral (Num.inc m) = 1 + w\<close> |
|
1864 |
\<open>pred_numeral n = q\<close> |
|
1865 |
\<open>numeral n = Suc q\<close> |
|
1866 |
by (simp_all only: w_def q_def numeral_Bit0 [of m] numeral_Bit1 [of m] ac_simps |
|
1867 |
numeral_inc numeral_eq_Suc flip: mult_2) |
|
1868 |
have even: \<open>take_bit (Suc q) (2 * w) = 2 * take_bit q w\<close> for w :: \<open>'a::len word\<close> |
|
1869 |
by (rule bit_word_eqI) |
|
80777 | 1870 |
(auto simp: bit_take_bit_iff bit_double_iff) |
72262 | 1871 |
have odd: \<open>take_bit (Suc q) (1 + 2 * w) = 1 + 2 * take_bit q w\<close> for w :: \<open>'a::len word\<close> |
1872 |
by (rule bit_eqI) |
|
80777 | 1873 |
(auto simp: bit_take_bit_iff bit_double_iff even_bit_succ_iff) |
72262 | 1874 |
show ?P |
1875 |
using even [of w] by (simp add: num) |
|
1876 |
show ?Q |
|
1877 |
using odd [of w] by (simp add: num) |
|
1878 |
show ?R |
|
1879 |
using even [of \<open>- w\<close>] by (simp add: num) |
|
1880 |
show ?S |
|
1881 |
using odd [of \<open>- (1 + w)\<close>] by (simp add: num) |
|
1882 |
qed |
|
1883 |
||
72079 | 1884 |
|
1885 |
subsection \<open>More shift operations\<close> |
|
1886 |
||
72388 | 1887 |
lift_definition signed_drop_bit :: \<open>nat \<Rightarrow> 'a word \<Rightarrow> 'a::len word\<close> |
1888 |
is \<open>\<lambda>n. drop_bit n \<circ> signed_take_bit (LENGTH('a) - Suc 0)\<close> |
|
1889 |
using signed_take_bit_decr_length_iff |
|
1890 |
by (simp add: take_bit_drop_bit) force |
|
1891 |
||
72611
c7bc3e70a8c7
official collection for bit projection simplifications
haftmann
parents:
72515
diff
changeset
|
1892 |
lemma bit_signed_drop_bit_iff [bit_simps]: |
72388 | 1893 |
\<open>bit (signed_drop_bit m w) n \<longleftrightarrow> bit w (if LENGTH('a) - m \<le> n \<and> n < LENGTH('a) then LENGTH('a) - 1 else m + n)\<close> |
1894 |
for w :: \<open>'a::len word\<close> |
|
82525 | 1895 |
by transfer (simp add: bit_drop_bit_eq bit_signed_take_bit_iff min_def le_less not_less, auto) |
72388 | 1896 |
|
72508 | 1897 |
lemma [code]: |
1898 |
\<open>Word.the_int (signed_drop_bit n w) = take_bit LENGTH('a) (drop_bit n (Word.the_signed_int w))\<close> |
|
1899 |
for w :: \<open>'a::len word\<close> |
|
1900 |
by transfer simp |
|
1901 |
||
73816 | 1902 |
lemma signed_drop_bit_of_0 [simp]: |
1903 |
\<open>signed_drop_bit n 0 = 0\<close> |
|
1904 |
by transfer simp |
|
1905 |
||
1906 |
lemma signed_drop_bit_of_minus_1 [simp]: |
|
1907 |
\<open>signed_drop_bit n (- 1) = - 1\<close> |
|
1908 |
by transfer simp |
|
1909 |
||
72488 | 1910 |
lemma signed_drop_bit_signed_drop_bit [simp]: |
1911 |
\<open>signed_drop_bit m (signed_drop_bit n w) = signed_drop_bit (m + n) w\<close> |
|
1912 |
for w :: \<open>'a::len word\<close> |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
1913 |
proof (cases \<open>LENGTH('a)\<close>) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
1914 |
case 0 |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
1915 |
then show ?thesis |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
1916 |
using len_not_eq_0 by blast |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
1917 |
next |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
1918 |
case (Suc n) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
1919 |
then show ?thesis |
80777 | 1920 |
by (force simp: bit_signed_drop_bit_iff not_le less_diff_conv ac_simps intro!: bit_word_eqI) |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
1921 |
qed |
72488 | 1922 |
|
72388 | 1923 |
lemma signed_drop_bit_0 [simp]: |
1924 |
\<open>signed_drop_bit 0 w = w\<close> |
|
72488 | 1925 |
by transfer (simp add: take_bit_signed_take_bit) |
72388 | 1926 |
|
1927 |
lemma sint_signed_drop_bit_eq: |
|
1928 |
\<open>sint (signed_drop_bit n w) = drop_bit n (sint w)\<close> |
|
82525 | 1929 |
by (rule bit_eqI; cases n) (auto simp add: bit_simps not_less) |
72388 | 1930 |
|
37660 | 1931 |
|
75623 | 1932 |
subsection \<open>Single-bit operations\<close> |
1933 |
||
1934 |
lemma set_bit_eq_idem_iff: |
|
82525 | 1935 |
\<open>set_bit n w = w \<longleftrightarrow> bit w n \<or> n \<ge> LENGTH('a)\<close> |
75623 | 1936 |
for w :: \<open>'a::len word\<close> |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1937 |
unfolding bit_eq_iff |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1938 |
by (auto simp: bit_simps not_le) |
75623 | 1939 |
|
1940 |
lemma unset_bit_eq_idem_iff: |
|
1941 |
\<open>unset_bit n w = w \<longleftrightarrow> bit w n \<longrightarrow> n \<ge> LENGTH('a)\<close> |
|
1942 |
for w :: \<open>'a::len word\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1943 |
unfolding bit_eq_iff |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1944 |
by (auto simp: bit_simps dest: bit_imp_le_length) |
75623 | 1945 |
|
1946 |
lemma flip_bit_eq_idem_iff: |
|
1947 |
\<open>flip_bit n w = w \<longleftrightarrow> n \<ge> LENGTH('a)\<close> |
|
1948 |
for w :: \<open>'a::len word\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1949 |
by (simp add: flip_bit_eq_if set_bit_eq_idem_iff unset_bit_eq_idem_iff) |
75623 | 1950 |
|
1951 |
||
61799 | 1952 |
subsection \<open>Rotation\<close> |
37660 | 1953 |
|
72079 | 1954 |
lift_definition word_rotr :: \<open>nat \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word\<close> |
1955 |
is \<open>\<lambda>n k. concat_bit (LENGTH('a) - n mod LENGTH('a)) |
|
1956 |
(drop_bit (n mod LENGTH('a)) (take_bit LENGTH('a) k)) |
|
1957 |
(take_bit (n mod LENGTH('a)) k)\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1958 |
using take_bit_tightened by fastforce |
72079 | 1959 |
|
1960 |
lift_definition word_rotl :: \<open>nat \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word\<close> |
|
1961 |
is \<open>\<lambda>n k. concat_bit (n mod LENGTH('a)) |
|
1962 |
(drop_bit (LENGTH('a) - n mod LENGTH('a)) (take_bit LENGTH('a) k)) |
|
1963 |
(take_bit (LENGTH('a) - n mod LENGTH('a)) k)\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1964 |
using take_bit_tightened by fastforce |
72079 | 1965 |
|
1966 |
lift_definition word_roti :: \<open>int \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word\<close> |
|
1967 |
is \<open>\<lambda>r k. concat_bit (LENGTH('a) - nat (r mod int LENGTH('a))) |
|
1968 |
(drop_bit (nat (r mod int LENGTH('a))) (take_bit LENGTH('a) k)) |
|
1969 |
(take_bit (nat (r mod int LENGTH('a))) k)\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1970 |
by (smt (verit, best) len_gt_0 nat_le_iff of_nat_0_less_iff pos_mod_bound |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
1971 |
take_bit_tightened) |
72079 | 1972 |
|
1973 |
lemma word_rotl_eq_word_rotr [code]: |
|
1974 |
\<open>word_rotl n = (word_rotr (LENGTH('a) - n mod LENGTH('a)) :: 'a::len word \<Rightarrow> 'a word)\<close> |
|
1975 |
by (rule ext, cases \<open>n mod LENGTH('a) = 0\<close>; transfer) simp_all |
|
1976 |
||
1977 |
lemma word_roti_eq_word_rotr_word_rotl [code]: |
|
1978 |
\<open>word_roti i w = |
|
1979 |
(if i \<ge> 0 then word_rotr (nat i) w else word_rotl (nat (- i)) w)\<close> |
|
1980 |
proof (cases \<open>i \<ge> 0\<close>) |
|
1981 |
case True |
|
1982 |
moreover define n where \<open>n = nat i\<close> |
|
1983 |
ultimately have \<open>i = int n\<close> |
|
1984 |
by simp |
|
1985 |
moreover have \<open>word_roti (int n) = (word_rotr n :: _ \<Rightarrow> 'a word)\<close> |
|
1986 |
by (rule ext, transfer) (simp add: nat_mod_distrib) |
|
1987 |
ultimately show ?thesis |
|
1988 |
by simp |
|
1989 |
next |
|
1990 |
case False |
|
1991 |
moreover define n where \<open>n = nat (- i)\<close> |
|
1992 |
ultimately have \<open>i = - int n\<close> \<open>n > 0\<close> |
|
1993 |
by simp_all |
|
1994 |
moreover have \<open>word_roti (- int n) = (word_rotl n :: _ \<Rightarrow> 'a word)\<close> |
|
1995 |
by (rule ext, transfer) |
|
1996 |
(simp add: zmod_zminus1_eq_if flip: of_nat_mod of_nat_diff) |
|
1997 |
ultimately show ?thesis |
|
1998 |
by simp |
|
1999 |
qed |
|
2000 |
||
72611
c7bc3e70a8c7
official collection for bit projection simplifications
haftmann
parents:
72515
diff
changeset
|
2001 |
lemma bit_word_rotr_iff [bit_simps]: |
72079 | 2002 |
\<open>bit (word_rotr m w) n \<longleftrightarrow> |
2003 |
n < LENGTH('a) \<and> bit w ((n + m) mod LENGTH('a))\<close> |
|
2004 |
for w :: \<open>'a::len word\<close> |
|
2005 |
proof transfer |
|
2006 |
fix k :: int and m n :: nat |
|
2007 |
define q where \<open>q = m mod LENGTH('a)\<close> |
|
2008 |
have \<open>q < LENGTH('a)\<close> |
|
2009 |
by (simp add: q_def) |
|
2010 |
then have \<open>q \<le> LENGTH('a)\<close> |
|
2011 |
by simp |
|
2012 |
have \<open>m mod LENGTH('a) = q\<close> |
|
2013 |
by (simp add: q_def) |
|
2014 |
moreover have \<open>(n + m) mod LENGTH('a) = (n + q) mod LENGTH('a)\<close> |
|
2015 |
by (subst mod_add_right_eq [symmetric]) (simp add: \<open>m mod LENGTH('a) = q\<close>) |
|
2016 |
moreover have \<open>n < LENGTH('a) \<and> |
|
2017 |
bit (concat_bit (LENGTH('a) - q) (drop_bit q (take_bit LENGTH('a) k)) (take_bit q k)) n \<longleftrightarrow> |
|
2018 |
n < LENGTH('a) \<and> bit k ((n + q) mod LENGTH('a))\<close> |
|
2019 |
using \<open>q < LENGTH('a)\<close> |
|
2020 |
by (cases \<open>q + n \<ge> LENGTH('a)\<close>) |
|
80777 | 2021 |
(auto simp: bit_concat_bit_iff bit_drop_bit_eq |
72079 | 2022 |
bit_take_bit_iff le_mod_geq ac_simps) |
2023 |
ultimately show \<open>n < LENGTH('a) \<and> |
|
2024 |
bit (concat_bit (LENGTH('a) - m mod LENGTH('a)) |
|
2025 |
(drop_bit (m mod LENGTH('a)) (take_bit LENGTH('a) k)) |
|
2026 |
(take_bit (m mod LENGTH('a)) k)) n |
|
2027 |
\<longleftrightarrow> n < LENGTH('a) \<and> |
|
2028 |
(n + m) mod LENGTH('a) < LENGTH('a) \<and> |
|
2029 |
bit k ((n + m) mod LENGTH('a))\<close> |
|
2030 |
by simp |
|
2031 |
qed |
|
2032 |
||
72611
c7bc3e70a8c7
official collection for bit projection simplifications
haftmann
parents:
72515
diff
changeset
|
2033 |
lemma bit_word_rotl_iff [bit_simps]: |
72079 | 2034 |
\<open>bit (word_rotl m w) n \<longleftrightarrow> |
2035 |
n < LENGTH('a) \<and> bit w ((n + (LENGTH('a) - m mod LENGTH('a))) mod LENGTH('a))\<close> |
|
2036 |
for w :: \<open>'a::len word\<close> |
|
2037 |
by (simp add: word_rotl_eq_word_rotr bit_word_rotr_iff) |
|
2038 |
||
72611
c7bc3e70a8c7
official collection for bit projection simplifications
haftmann
parents:
72515
diff
changeset
|
2039 |
lemma bit_word_roti_iff [bit_simps]: |
72079 | 2040 |
\<open>bit (word_roti k w) n \<longleftrightarrow> |
2041 |
n < LENGTH('a) \<and> bit w (nat ((int n + k) mod int LENGTH('a)))\<close> |
|
2042 |
for w :: \<open>'a::len word\<close> |
|
2043 |
proof transfer |
|
2044 |
fix k l :: int and n :: nat |
|
2045 |
define m where \<open>m = nat (k mod int LENGTH('a))\<close> |
|
2046 |
have \<open>m < LENGTH('a)\<close> |
|
2047 |
by (simp add: nat_less_iff m_def) |
|
2048 |
then have \<open>m \<le> LENGTH('a)\<close> |
|
2049 |
by simp |
|
2050 |
have \<open>k mod int LENGTH('a) = int m\<close> |
|
2051 |
by (simp add: nat_less_iff m_def) |
|
2052 |
moreover have \<open>(int n + k) mod int LENGTH('a) = int ((n + m) mod LENGTH('a))\<close> |
|
2053 |
by (subst mod_add_right_eq [symmetric]) (simp add: of_nat_mod \<open>k mod int LENGTH('a) = int m\<close>) |
|
2054 |
moreover have \<open>n < LENGTH('a) \<and> |
|
2055 |
bit (concat_bit (LENGTH('a) - m) (drop_bit m (take_bit LENGTH('a) l)) (take_bit m l)) n \<longleftrightarrow> |
|
2056 |
n < LENGTH('a) \<and> bit l ((n + m) mod LENGTH('a))\<close> |
|
2057 |
using \<open>m < LENGTH('a)\<close> |
|
2058 |
by (cases \<open>m + n \<ge> LENGTH('a)\<close>) |
|
80777 | 2059 |
(auto simp: bit_concat_bit_iff bit_drop_bit_eq |
72079 | 2060 |
bit_take_bit_iff nat_less_iff not_le not_less ac_simps |
2061 |
le_diff_conv le_mod_geq) |
|
2062 |
ultimately show \<open>n < LENGTH('a) |
|
2063 |
\<and> bit (concat_bit (LENGTH('a) - nat (k mod int LENGTH('a))) |
|
2064 |
(drop_bit (nat (k mod int LENGTH('a))) (take_bit LENGTH('a) l)) |
|
2065 |
(take_bit (nat (k mod int LENGTH('a))) l)) n \<longleftrightarrow> |
|
2066 |
n < LENGTH('a) |
|
2067 |
\<and> nat ((int n + k) mod int LENGTH('a)) < LENGTH('a) |
|
2068 |
\<and> bit l (nat ((int n + k) mod int LENGTH('a)))\<close> |
|
2069 |
by simp |
|
2070 |
qed |
|
2071 |
||
72262 | 2072 |
lemma uint_word_rotr_eq: |
72079 | 2073 |
\<open>uint (word_rotr n w) = concat_bit (LENGTH('a) - n mod LENGTH('a)) |
2074 |
(drop_bit (n mod LENGTH('a)) (uint w)) |
|
2075 |
(uint (take_bit (n mod LENGTH('a)) w))\<close> |
|
2076 |
for w :: \<open>'a::len word\<close> |
|
74101 | 2077 |
by transfer (simp add: take_bit_concat_bit_eq) |
72079 | 2078 |
|
72262 | 2079 |
lemma [code]: |
2080 |
\<open>Word.the_int (word_rotr n w) = concat_bit (LENGTH('a) - n mod LENGTH('a)) |
|
2081 |
(drop_bit (n mod LENGTH('a)) (Word.the_int w)) |
|
2082 |
(Word.the_int (take_bit (n mod LENGTH('a)) w))\<close> |
|
2083 |
for w :: \<open>'a::len word\<close> |
|
2084 |
using uint_word_rotr_eq [of n w] by simp |
|
2085 |
||
72079 | 2086 |
|
61799 | 2087 |
subsection \<open>Split and cat operations\<close> |
37660 | 2088 |
|
72079 | 2089 |
lift_definition word_cat :: \<open>'a::len word \<Rightarrow> 'b::len word \<Rightarrow> 'c::len word\<close> |
2090 |
is \<open>\<lambda>k l. concat_bit LENGTH('b) l (take_bit LENGTH('a) k)\<close> |
|
2091 |
by (simp add: bit_eq_iff bit_concat_bit_iff bit_take_bit_iff) |
|
65268 | 2092 |
|
71990 | 2093 |
lemma word_cat_eq: |
2094 |
\<open>(word_cat v w :: 'c::len word) = push_bit LENGTH('b) (ucast v) + ucast w\<close> |
|
2095 |
for v :: \<open>'a::len word\<close> and w :: \<open>'b::len word\<close> |
|
72128 | 2096 |
by transfer (simp add: concat_bit_eq ac_simps) |
72079 | 2097 |
|
2098 |
lemma word_cat_eq' [code]: |
|
2099 |
\<open>word_cat a b = word_of_int (concat_bit LENGTH('b) (uint b) (uint a))\<close> |
|
2100 |
for a :: \<open>'a::len word\<close> and b :: \<open>'b::len word\<close> |
|
72488 | 2101 |
by transfer (simp add: concat_bit_take_bit_eq) |
71990 | 2102 |
|
72611
c7bc3e70a8c7
official collection for bit projection simplifications
haftmann
parents:
72515
diff
changeset
|
2103 |
lemma bit_word_cat_iff [bit_simps]: |
71990 | 2104 |
\<open>bit (word_cat v w :: 'c::len word) n \<longleftrightarrow> n < LENGTH('c) \<and> (if n < LENGTH('b) then bit w n else bit v (n - LENGTH('b)))\<close> |
2105 |
for v :: \<open>'a::len word\<close> and w :: \<open>'b::len word\<close> |
|
72079 | 2106 |
by transfer (simp add: bit_concat_bit_iff bit_take_bit_iff) |
71990 | 2107 |
|
72488 | 2108 |
definition word_split :: \<open>'a::len word \<Rightarrow> 'b::len word \<times> 'c::len word\<close> |
2109 |
where \<open>word_split w = |
|
2110 |
(ucast (drop_bit LENGTH('c) w) :: 'b::len word, ucast w :: 'c::len word)\<close> |
|
65268 | 2111 |
|
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
2112 |
definition word_rcat :: \<open>'a::len word list \<Rightarrow> 'b::len word\<close> |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
2113 |
where \<open>word_rcat = word_of_int \<circ> horner_sum uint (2 ^ LENGTH('a)) \<circ> rev\<close> |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
2114 |
|
37660 | 2115 |
|
72292 | 2116 |
subsection \<open>More on conversions\<close> |
2117 |
||
2118 |
lemma int_word_sint: |
|
2119 |
\<open>sint (word_of_int x :: 'a::len word) = (x + 2 ^ (LENGTH('a) - 1)) mod 2 ^ LENGTH('a) - 2 ^ (LENGTH('a) - 1)\<close> |
|
72488 | 2120 |
by transfer (simp flip: take_bit_eq_mod add: signed_take_bit_eq_take_bit_shift) |
46010 | 2121 |
|
72128 | 2122 |
lemma sint_sbintrunc': "sint (word_of_int bin :: 'a word) = signed_take_bit (LENGTH('a::len) - 1) bin" |
74496 | 2123 |
by (simp add: signed_of_int) |
65268 | 2124 |
|
72488 | 2125 |
lemma uint_sint: "uint w = take_bit LENGTH('a) (sint w)" |
65328 | 2126 |
for w :: "'a::len word" |
72488 | 2127 |
by transfer (simp add: take_bit_signed_take_bit) |
65268 | 2128 |
|
72128 | 2129 |
lemma bintr_uint: "LENGTH('a) \<le> n \<Longrightarrow> take_bit n (uint w) = uint w" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2130 |
for w :: "'a::len word" |
72292 | 2131 |
by transfer (simp add: min_def) |
37660 | 2132 |
|
46057 | 2133 |
lemma wi_bintr: |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2134 |
"LENGTH('a::len) \<le> n \<Longrightarrow> |
72128 | 2135 |
word_of_int (take_bit n w) = (word_of_int w :: 'a word)" |
72292 | 2136 |
by transfer simp |
45805 | 2137 |
|
65268 | 2138 |
lemma word_numeral_alt: "numeral b = word_of_int (numeral b)" |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2139 |
by simp |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2140 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2141 |
declare word_numeral_alt [symmetric, code_abbrev] |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2142 |
|
65268 | 2143 |
lemma word_neg_numeral_alt: "- numeral b = word_of_int (- numeral b)" |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2144 |
by simp |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2145 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2146 |
declare word_neg_numeral_alt [symmetric, code_abbrev] |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2147 |
|
45805 | 2148 |
lemma uint_bintrunc [simp]: |
82523 | 2149 |
"uint (numeral bin :: 'a word) = take_bit LENGTH('a::len) (numeral bin)" |
72292 | 2150 |
by transfer rule |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2151 |
|
65268 | 2152 |
lemma uint_bintrunc_neg [simp]: |
82523 | 2153 |
"uint (- numeral bin :: 'a word) = take_bit LENGTH('a::len) (- numeral bin)" |
72292 | 2154 |
by transfer rule |
37660 | 2155 |
|
45805 | 2156 |
lemma sint_sbintrunc [simp]: |
72128 | 2157 |
"sint (numeral bin :: 'a word) = signed_take_bit (LENGTH('a::len) - 1) (numeral bin)" |
72292 | 2158 |
by transfer simp |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2159 |
|
65268 | 2160 |
lemma sint_sbintrunc_neg [simp]: |
72128 | 2161 |
"sint (- numeral bin :: 'a word) = signed_take_bit (LENGTH('a::len) - 1) (- numeral bin)" |
72292 | 2162 |
by transfer simp |
37660 | 2163 |
|
45805 | 2164 |
lemma unat_bintrunc [simp]: |
82523 | 2165 |
"unat (numeral bin :: 'a::len word) = take_bit LENGTH('a) (numeral bin)" |
72079 | 2166 |
by transfer simp |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2167 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2168 |
lemma unat_bintrunc_neg [simp]: |
82523 | 2169 |
"unat (- numeral bin :: 'a::len word) = nat (take_bit LENGTH('a) (- numeral bin))" |
72079 | 2170 |
by transfer simp |
37660 | 2171 |
|
65328 | 2172 |
lemma size_0_eq: "size w = 0 \<Longrightarrow> v = w" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2173 |
for v w :: "'a::len word" |
72292 | 2174 |
by transfer simp |
37660 | 2175 |
|
65268 | 2176 |
lemma uint_ge_0 [iff]: "0 \<le> uint x" |
72292 | 2177 |
by (fact unsigned_greater_eq) |
45805 | 2178 |
|
70185 | 2179 |
lemma uint_lt2p [iff]: "uint x < 2 ^ LENGTH('a)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2180 |
for x :: "'a::len word" |
72292 | 2181 |
by (fact unsigned_less) |
45805 | 2182 |
|
70185 | 2183 |
lemma sint_ge: "- (2 ^ (LENGTH('a) - 1)) \<le> sint x" |
65268 | 2184 |
for x :: "'a::len word" |
72292 | 2185 |
using sint_greater_eq [of x] by simp |
45805 | 2186 |
|
70185 | 2187 |
lemma sint_lt: "sint x < 2 ^ (LENGTH('a) - 1)" |
65268 | 2188 |
for x :: "'a::len word" |
72292 | 2189 |
using sint_less [of x] by simp |
37660 | 2190 |
|
70185 | 2191 |
lemma uint_m2p_neg: "uint x - 2 ^ LENGTH('a) < 0" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2192 |
for x :: "'a::len word" |
45805 | 2193 |
by (simp only: diff_less_0_iff_less uint_lt2p) |
2194 |
||
70185 | 2195 |
lemma uint_m2p_not_non_neg: "\<not> 0 \<le> uint x - 2 ^ LENGTH('a)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2196 |
for x :: "'a::len word" |
45805 | 2197 |
by (simp only: not_le uint_m2p_neg) |
37660 | 2198 |
|
70185 | 2199 |
lemma lt2p_lem: "LENGTH('a) \<le> n \<Longrightarrow> uint w < 2 ^ n" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2200 |
for w :: "'a::len word" |
72488 | 2201 |
using uint_bounded [of w] by (rule less_le_trans) simp |
37660 | 2202 |
|
45805 | 2203 |
lemma uint_le_0_iff [simp]: "uint x \<le> 0 \<longleftrightarrow> uint x = 0" |
70749
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
paulson <lp15@cam.ac.uk>
parents:
70342
diff
changeset
|
2204 |
by (fact uint_ge_0 [THEN leD, THEN antisym_conv1]) |
37660 | 2205 |
|
40827
abbc05c20e24
code preprocessor setup for numerals on word type;
haftmann
parents:
39910
diff
changeset
|
2206 |
lemma uint_nat: "uint w = int (unat w)" |
72079 | 2207 |
by transfer simp |
65268 | 2208 |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2209 |
lemma uint_numeral: "uint (numeral b :: 'a::len word) = numeral b mod 2 ^ LENGTH('a)" |
72292 | 2210 |
by (simp flip: take_bit_eq_mod add: of_nat_take_bit) |
65268 | 2211 |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2212 |
lemma uint_neg_numeral: "uint (- numeral b :: 'a::len word) = - numeral b mod 2 ^ LENGTH('a)" |
72292 | 2213 |
by (simp flip: take_bit_eq_mod add: of_nat_take_bit) |
65268 | 2214 |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2215 |
lemma unat_numeral: "unat (numeral b :: 'a::len word) = numeral b mod 2 ^ LENGTH('a)" |
72079 | 2216 |
by transfer (simp add: take_bit_eq_mod nat_mod_distrib nat_power_eq) |
37660 | 2217 |
|
65268 | 2218 |
lemma sint_numeral: |
2219 |
"sint (numeral b :: 'a::len word) = |
|
72292 | 2220 |
(numeral b + 2 ^ (LENGTH('a) - 1)) mod 2 ^ LENGTH('a) - 2 ^ (LENGTH('a) - 1)" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
2221 |
by (metis int_word_sint word_numeral_alt) |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2222 |
|
65268 | 2223 |
lemma word_of_int_0 [simp, code_post]: "word_of_int 0 = 0" |
72292 | 2224 |
by (fact of_int_0) |
45958 | 2225 |
|
65268 | 2226 |
lemma word_of_int_1 [simp, code_post]: "word_of_int 1 = 1" |
72292 | 2227 |
by (fact of_int_1) |
45958 | 2228 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
2229 |
lemma word_of_int_neg_1 [simp]: "word_of_int (- 1) = - 1" |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2230 |
by simp |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
2231 |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2232 |
lemma word_of_int_numeral [simp] : "(word_of_int (numeral bin) :: 'a::len word) = numeral bin" |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2233 |
by simp |
65268 | 2234 |
|
2235 |
lemma word_int_case_wi: |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2236 |
"word_int_case f (word_of_int i :: 'b word) = f (i mod 2 ^ LENGTH('b::len))" |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2237 |
by (simp add: uint_word_of_int word_int_case_eq_uint) |
65268 | 2238 |
|
2239 |
lemma word_int_split: |
|
2240 |
"P (word_int_case f x) = |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2241 |
(\<forall>i. x = (word_of_int i :: 'b::len word) \<and> 0 \<le> i \<and> i < 2 ^ LENGTH('b) \<longrightarrow> P (f i))" |
80777 | 2242 |
by transfer (auto simp: take_bit_eq_mod) |
65268 | 2243 |
|
2244 |
lemma word_int_split_asm: |
|
2245 |
"P (word_int_case f x) = |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2246 |
(\<nexists>n. x = (word_of_int n :: 'b::len word) \<and> 0 \<le> n \<and> n < 2 ^ LENGTH('b::len) \<and> \<not> P (f n))" |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2247 |
using word_int_split by auto |
45805 | 2248 |
|
65268 | 2249 |
lemma uint_range_size: "0 \<le> uint w \<and> uint w < 2 ^ size w" |
72292 | 2250 |
by transfer simp |
37660 | 2251 |
|
65268 | 2252 |
lemma sint_range_size: "- (2 ^ (size w - Suc 0)) \<le> sint w \<and> sint w < 2 ^ (size w - Suc 0)" |
72488 | 2253 |
by (simp add: word_size sint_greater_eq sint_less) |
37660 | 2254 |
|
65268 | 2255 |
lemma sint_above_size: "2 ^ (size w - 1) \<le> x \<Longrightarrow> sint w < x" |
2256 |
for w :: "'a::len word" |
|
45805 | 2257 |
unfolding word_size by (rule less_le_trans [OF sint_lt]) |
2258 |
||
65268 | 2259 |
lemma sint_below_size: "x \<le> - (2 ^ (size w - 1)) \<Longrightarrow> x \<le> sint w" |
2260 |
for w :: "'a::len word" |
|
45805 | 2261 |
unfolding word_size by (rule order_trans [OF _ sint_ge]) |
37660 | 2262 |
|
74592 | 2263 |
lemma word_unat_eq_iff: |
2264 |
\<open>v = w \<longleftrightarrow> unat v = unat w\<close> |
|
2265 |
for v w :: \<open>'a::len word\<close> |
|
2266 |
by (fact word_eq_iff_unsigned) |
|
2267 |
||
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2268 |
|
61799 | 2269 |
subsection \<open>Testing bits\<close> |
46010 | 2270 |
|
72488 | 2271 |
lemma bin_nth_uint_imp: "bit (uint w) n \<Longrightarrow> n < LENGTH('a)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2272 |
for w :: "'a::len word" |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2273 |
by (simp add: bit_uint_iff) |
37660 | 2274 |
|
46057 | 2275 |
lemma bin_nth_sint: |
70185 | 2276 |
"LENGTH('a) \<le> n \<Longrightarrow> |
72488 | 2277 |
bit (sint w) n = bit (sint w) (LENGTH('a) - 1)" |
65268 | 2278 |
for w :: "'a::len word" |
72292 | 2279 |
by (transfer fixing: n) (simp add: bit_signed_take_bit_iff le_diff_conv min_def) |
37660 | 2280 |
|
2281 |
lemma num_of_bintr': |
|
72128 | 2282 |
"take_bit (LENGTH('a::len)) (numeral a :: int) = (numeral b) \<Longrightarrow> |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2283 |
numeral a = (numeral b :: 'a word)" |
72292 | 2284 |
proof (transfer fixing: a b) |
2285 |
assume \<open>take_bit LENGTH('a) (numeral a :: int) = numeral b\<close> |
|
2286 |
then have \<open>take_bit LENGTH('a) (take_bit LENGTH('a) (numeral a :: int)) = take_bit LENGTH('a) (numeral b)\<close> |
|
2287 |
by simp |
|
2288 |
then show \<open>take_bit LENGTH('a) (numeral a :: int) = take_bit LENGTH('a) (numeral b)\<close> |
|
2289 |
by simp |
|
2290 |
qed |
|
37660 | 2291 |
|
2292 |
lemma num_of_sbintr': |
|
72241 | 2293 |
"signed_take_bit (LENGTH('a::len) - 1) (numeral a :: int) = (numeral b) \<Longrightarrow> |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2294 |
numeral a = (numeral b :: 'a word)" |
72292 | 2295 |
proof (transfer fixing: a b) |
2296 |
assume \<open>signed_take_bit (LENGTH('a) - 1) (numeral a :: int) = numeral b\<close> |
|
2297 |
then have \<open>take_bit LENGTH('a) (signed_take_bit (LENGTH('a) - 1) (numeral a :: int)) = take_bit LENGTH('a) (numeral b)\<close> |
|
2298 |
by simp |
|
2299 |
then show \<open>take_bit LENGTH('a) (numeral a :: int) = take_bit LENGTH('a) (numeral b)\<close> |
|
72488 | 2300 |
by (simp add: take_bit_signed_take_bit) |
72292 | 2301 |
qed |
2302 |
||
46962
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset
|
2303 |
lemma num_abs_bintr: |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2304 |
"(numeral x :: 'a word) = |
72128 | 2305 |
word_of_int (take_bit (LENGTH('a::len)) (numeral x))" |
72292 | 2306 |
by transfer simp |
46962
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset
|
2307 |
|
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset
|
2308 |
lemma num_abs_sbintr: |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2309 |
"(numeral x :: 'a word) = |
72128 | 2310 |
word_of_int (signed_take_bit (LENGTH('a::len) - 1) (numeral x))" |
72488 | 2311 |
by transfer (simp add: take_bit_signed_take_bit) |
46962
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset
|
2312 |
|
67408 | 2313 |
text \<open> |
2314 |
\<open>cast\<close> -- note, no arg for new length, as it's determined by type of result, |
|
2315 |
thus in \<open>cast w = w\<close>, the type means cast to length of \<open>w\<close>! |
|
2316 |
\<close> |
|
37660 | 2317 |
|
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
2318 |
lemma bit_ucast_iff: |
74101 | 2319 |
\<open>bit (ucast a :: 'a::len word) n \<longleftrightarrow> n < LENGTH('a::len) \<and> bit a n\<close> |
72079 | 2320 |
by transfer (simp add: bit_take_bit_iff) |
2321 |
||
2322 |
lemma ucast_id [simp]: "ucast w = w" |
|
2323 |
by transfer simp |
|
2324 |
||
2325 |
lemma scast_id [simp]: "scast w = w" |
|
72488 | 2326 |
by transfer (simp add: take_bit_signed_take_bit) |
37660 | 2327 |
|
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
2328 |
lemma ucast_mask_eq: |
72082 | 2329 |
\<open>ucast (mask n :: 'b word) = mask (min LENGTH('b::len) n)\<close> |
80777 | 2330 |
by (simp add: bit_eq_iff) (auto simp: bit_mask_iff bit_ucast_iff) |
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
2331 |
|
67408 | 2332 |
\<comment> \<open>literal u(s)cast\<close> |
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
2333 |
lemma ucast_bintr [simp]: |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2334 |
"ucast (numeral w :: 'a::len word) = |
72128 | 2335 |
word_of_int (take_bit (LENGTH('a)) (numeral w))" |
72079 | 2336 |
by transfer simp |
65268 | 2337 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2338 |
(* TODO: neg_numeral *) |
37660 | 2339 |
|
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
2340 |
lemma scast_sbintr [simp]: |
65268 | 2341 |
"scast (numeral w ::'a::len word) = |
72128 | 2342 |
word_of_int (signed_take_bit (LENGTH('a) - Suc 0) (numeral w))" |
72079 | 2343 |
by transfer simp |
37660 | 2344 |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2345 |
lemma source_size: "source_size (c::'a::len word \<Rightarrow> _) = LENGTH('a)" |
72079 | 2346 |
by transfer simp |
46011 | 2347 |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2348 |
lemma target_size: "target_size (c::_ \<Rightarrow> 'b::len word) = LENGTH('b)" |
72079 | 2349 |
by transfer simp |
46011 | 2350 |
|
70185 | 2351 |
lemma is_down: "is_down c \<longleftrightarrow> LENGTH('b) \<le> LENGTH('a)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2352 |
for c :: "'a::len word \<Rightarrow> 'b::len word" |
72079 | 2353 |
by transfer simp |
65268 | 2354 |
|
70185 | 2355 |
lemma is_up: "is_up c \<longleftrightarrow> LENGTH('a) \<le> LENGTH('b)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2356 |
for c :: "'a::len word \<Rightarrow> 'b::len word" |
72079 | 2357 |
by transfer simp |
2358 |
||
2359 |
lemma is_up_down: |
|
2360 |
\<open>is_up c \<longleftrightarrow> is_down d\<close> |
|
2361 |
for c :: \<open>'a::len word \<Rightarrow> 'b::len word\<close> |
|
2362 |
and d :: \<open>'b::len word \<Rightarrow> 'a::len word\<close> |
|
2363 |
by transfer simp |
|
2364 |
||
2365 |
context |
|
2366 |
fixes dummy_types :: \<open>'a::len \<times> 'b::len\<close> |
|
2367 |
begin |
|
2368 |
||
2369 |
private abbreviation (input) UCAST :: \<open>'a::len word \<Rightarrow> 'b::len word\<close> |
|
2370 |
where \<open>UCAST == ucast\<close> |
|
2371 |
||
2372 |
private abbreviation (input) SCAST :: \<open>'a::len word \<Rightarrow> 'b::len word\<close> |
|
2373 |
where \<open>SCAST == scast\<close> |
|
2374 |
||
2375 |
lemma down_cast_same: |
|
2376 |
\<open>UCAST = scast\<close> if \<open>is_down UCAST\<close> |
|
2377 |
by (rule ext, use that in transfer) (simp add: take_bit_signed_take_bit) |
|
2378 |
||
2379 |
lemma sint_up_scast: |
|
2380 |
\<open>sint (SCAST w) = sint w\<close> if \<open>is_up SCAST\<close> |
|
2381 |
using that by transfer (simp add: min_def Suc_leI le_diff_iff) |
|
2382 |
||
2383 |
lemma uint_up_ucast: |
|
2384 |
\<open>uint (UCAST w) = uint w\<close> if \<open>is_up UCAST\<close> |
|
2385 |
using that by transfer (simp add: min_def) |
|
2386 |
||
2387 |
lemma ucast_up_ucast: |
|
2388 |
\<open>ucast (UCAST w) = ucast w\<close> if \<open>is_up UCAST\<close> |
|
2389 |
using that by transfer (simp add: ac_simps) |
|
2390 |
||
2391 |
lemma ucast_up_ucast_id: |
|
2392 |
\<open>ucast (UCAST w) = w\<close> if \<open>is_up UCAST\<close> |
|
2393 |
using that by (simp add: ucast_up_ucast) |
|
2394 |
||
2395 |
lemma scast_up_scast: |
|
2396 |
\<open>scast (SCAST w) = scast w\<close> if \<open>is_up SCAST\<close> |
|
2397 |
using that by transfer (simp add: ac_simps) |
|
2398 |
||
2399 |
lemma scast_up_scast_id: |
|
2400 |
\<open>scast (SCAST w) = w\<close> if \<open>is_up SCAST\<close> |
|
2401 |
using that by (simp add: scast_up_scast) |
|
2402 |
||
2403 |
lemma isduu: |
|
2404 |
\<open>is_up UCAST\<close> if \<open>is_down d\<close> |
|
2405 |
for d :: \<open>'b word \<Rightarrow> 'a word\<close> |
|
2406 |
using that is_up_down [of UCAST d] by simp |
|
2407 |
||
2408 |
lemma isdus: |
|
2409 |
\<open>is_up SCAST\<close> if \<open>is_down d\<close> |
|
2410 |
for d :: \<open>'b word \<Rightarrow> 'a word\<close> |
|
2411 |
using that is_up_down [of SCAST d] by simp |
|
2412 |
||
37660 | 2413 |
lemmas ucast_down_ucast_id = isduu [THEN ucast_up_ucast_id] |
72079 | 2414 |
lemmas scast_down_scast_id = isdus [THEN scast_up_scast_id] |
37660 | 2415 |
|
2416 |
lemma up_ucast_surj: |
|
72079 | 2417 |
\<open>surj (ucast :: 'b word \<Rightarrow> 'a word)\<close> if \<open>is_up UCAST\<close> |
2418 |
by (rule surjI) (use that in \<open>rule ucast_up_ucast_id\<close>) |
|
37660 | 2419 |
|
2420 |
lemma up_scast_surj: |
|
72079 | 2421 |
\<open>surj (scast :: 'b word \<Rightarrow> 'a word)\<close> if \<open>is_up SCAST\<close> |
2422 |
by (rule surjI) (use that in \<open>rule scast_up_scast_id\<close>) |
|
37660 | 2423 |
|
2424 |
lemma down_ucast_inj: |
|
72079 | 2425 |
\<open>inj_on UCAST A\<close> if \<open>is_down (ucast :: 'b word \<Rightarrow> 'a word)\<close> |
2426 |
by (rule inj_on_inverseI) (use that in \<open>rule ucast_down_ucast_id\<close>) |
|
2427 |
||
2428 |
lemma down_scast_inj: |
|
2429 |
\<open>inj_on SCAST A\<close> if \<open>is_down (scast :: 'b word \<Rightarrow> 'a word)\<close> |
|
2430 |
by (rule inj_on_inverseI) (use that in \<open>rule scast_down_scast_id\<close>) |
|
2431 |
||
2432 |
lemma ucast_down_wi: |
|
2433 |
\<open>UCAST (word_of_int x) = word_of_int x\<close> if \<open>is_down UCAST\<close> |
|
2434 |
using that by transfer simp |
|
2435 |
||
2436 |
lemma ucast_down_no: |
|
2437 |
\<open>UCAST (numeral bin) = numeral bin\<close> if \<open>is_down UCAST\<close> |
|
2438 |
using that by transfer simp |
|
2439 |
||
2440 |
end |
|
37660 | 2441 |
|
2442 |
lemmas word_log_defs = word_and_def word_or_def word_xor_def word_not_def |
|
2443 |
||
72000 | 2444 |
lemma bit_last_iff: |
2445 |
\<open>bit w (LENGTH('a) - Suc 0) \<longleftrightarrow> sint w < 0\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>) |
|
2446 |
for w :: \<open>'a::len word\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2447 |
by (simp add: bit_unsigned_iff sint_uint) |
72000 | 2448 |
|
2449 |
lemma drop_bit_eq_zero_iff_not_bit_last: |
|
2450 |
\<open>drop_bit (LENGTH('a) - Suc 0) w = 0 \<longleftrightarrow> \<not> bit w (LENGTH('a) - Suc 0)\<close> |
|
2451 |
for w :: "'a::len word" |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
2452 |
proof (cases \<open>LENGTH('a)\<close>) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
2453 |
case (Suc n) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
2454 |
then show ?thesis |
72000 | 2455 |
apply transfer |
2456 |
apply (simp add: take_bit_drop_bit) |
|
74101 | 2457 |
by (simp add: bit_iff_odd_drop_bit drop_bit_take_bit odd_iff_mod_2_eq_one) |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
2458 |
qed auto |
72000 | 2459 |
|
74592 | 2460 |
lemma unat_div: |
2461 |
\<open>unat (x div y) = unat x div unat y\<close> |
|
2462 |
by (fact unat_div_distrib) |
|
2463 |
||
2464 |
lemma unat_mod: |
|
2465 |
\<open>unat (x mod y) = unat x mod unat y\<close> |
|
2466 |
by (fact unat_mod_distrib) |
|
2467 |
||
37660 | 2468 |
|
61799 | 2469 |
subsection \<open>Word Arithmetic\<close> |
37660 | 2470 |
|
74592 | 2471 |
lemmas less_eq_word_numeral_numeral [simp] = |
2472 |
word_le_def [of \<open>numeral a\<close> \<open>numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2473 |
for a b |
|
2474 |
lemmas less_word_numeral_numeral [simp] = |
|
2475 |
word_less_def [of \<open>numeral a\<close> \<open>numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2476 |
for a b |
|
2477 |
lemmas less_eq_word_minus_numeral_numeral [simp] = |
|
2478 |
word_le_def [of \<open>- numeral a\<close> \<open>numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2479 |
for a b |
|
2480 |
lemmas less_word_minus_numeral_numeral [simp] = |
|
2481 |
word_less_def [of \<open>- numeral a\<close> \<open>numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2482 |
for a b |
|
2483 |
lemmas less_eq_word_numeral_minus_numeral [simp] = |
|
2484 |
word_le_def [of \<open>numeral a\<close> \<open>- numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2485 |
for a b |
|
2486 |
lemmas less_word_numeral_minus_numeral [simp] = |
|
2487 |
word_less_def [of \<open>numeral a\<close> \<open>- numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2488 |
for a b |
|
2489 |
lemmas less_eq_word_minus_numeral_minus_numeral [simp] = |
|
2490 |
word_le_def [of \<open>- numeral a\<close> \<open>- numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2491 |
for a b |
|
2492 |
lemmas less_word_minus_numeral_minus_numeral [simp] = |
|
2493 |
word_less_def [of \<open>- numeral a\<close> \<open>- numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2494 |
for a b |
|
2495 |
lemmas less_word_numeral_minus_1 [simp] = |
|
2496 |
word_less_def [of \<open>numeral a\<close> \<open>- 1\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2497 |
for a b |
|
2498 |
lemmas less_word_minus_numeral_minus_1 [simp] = |
|
2499 |
word_less_def [of \<open>- numeral a\<close> \<open>- 1\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2500 |
for a b |
|
2501 |
||
2502 |
lemmas sless_eq_word_numeral_numeral [simp] = |
|
2503 |
word_sle_eq [of \<open>numeral a\<close> \<open>numeral b\<close>, simplified sint_sbintrunc sint_sbintrunc_neg] |
|
2504 |
for a b |
|
2505 |
lemmas sless_word_numeral_numeral [simp] = |
|
2506 |
word_sless_alt [of \<open>numeral a\<close> \<open>numeral b\<close>, simplified sint_sbintrunc sint_sbintrunc_neg] |
|
2507 |
for a b |
|
2508 |
lemmas sless_eq_word_minus_numeral_numeral [simp] = |
|
2509 |
word_sle_eq [of \<open>- numeral a\<close> \<open>numeral b\<close>, simplified sint_sbintrunc sint_sbintrunc_neg] |
|
2510 |
for a b |
|
2511 |
lemmas sless_word_minus_numeral_numeral [simp] = |
|
2512 |
word_sless_alt [of \<open>- numeral a\<close> \<open>numeral b\<close>, simplified sint_sbintrunc sint_sbintrunc_neg] |
|
2513 |
for a b |
|
2514 |
lemmas sless_eq_word_numeral_minus_numeral [simp] = |
|
2515 |
word_sle_eq [of \<open>numeral a\<close> \<open>- numeral b\<close>, simplified sint_sbintrunc sint_sbintrunc_neg] |
|
2516 |
for a b |
|
2517 |
lemmas sless_word_numeral_minus_numeral [simp] = |
|
2518 |
word_sless_alt [of \<open>numeral a\<close> \<open>- numeral b\<close>, simplified sint_sbintrunc sint_sbintrunc_neg] |
|
2519 |
for a b |
|
2520 |
lemmas sless_eq_word_minus_numeral_minus_numeral [simp] = |
|
2521 |
word_sle_eq [of \<open>- numeral a\<close> \<open>- numeral b\<close>, simplified sint_sbintrunc sint_sbintrunc_neg] |
|
2522 |
for a b |
|
2523 |
lemmas sless_word_minus_numeral_minus_numeral [simp] = |
|
2524 |
word_sless_alt [of \<open>- numeral a\<close> \<open>- numeral b\<close>, simplified sint_sbintrunc sint_sbintrunc_neg] |
|
2525 |
for a b |
|
2526 |
||
2527 |
lemmas div_word_numeral_numeral [simp] = |
|
2528 |
word_div_def [of \<open>numeral a\<close> \<open>numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2529 |
for a b |
|
2530 |
lemmas div_word_minus_numeral_numeral [simp] = |
|
2531 |
word_div_def [of \<open>- numeral a\<close> \<open>numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2532 |
for a b |
|
2533 |
lemmas div_word_numeral_minus_numeral [simp] = |
|
2534 |
word_div_def [of \<open>numeral a\<close> \<open>- numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2535 |
for a b |
|
2536 |
lemmas div_word_minus_numeral_minus_numeral [simp] = |
|
2537 |
word_div_def [of \<open>- numeral a\<close> \<open>- numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2538 |
for a b |
|
2539 |
lemmas div_word_minus_1_numeral [simp] = |
|
2540 |
word_div_def [of \<open>- 1\<close> \<open>numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2541 |
for a b |
|
2542 |
lemmas div_word_minus_1_minus_numeral [simp] = |
|
2543 |
word_div_def [of \<open>- 1\<close> \<open>- numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2544 |
for a b |
|
2545 |
||
2546 |
lemmas mod_word_numeral_numeral [simp] = |
|
2547 |
word_mod_def [of \<open>numeral a\<close> \<open>numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2548 |
for a b |
|
2549 |
lemmas mod_word_minus_numeral_numeral [simp] = |
|
2550 |
word_mod_def [of \<open>- numeral a\<close> \<open>numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2551 |
for a b |
|
2552 |
lemmas mod_word_numeral_minus_numeral [simp] = |
|
2553 |
word_mod_def [of \<open>numeral a\<close> \<open>- numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2554 |
for a b |
|
2555 |
lemmas mod_word_minus_numeral_minus_numeral [simp] = |
|
2556 |
word_mod_def [of \<open>- numeral a\<close> \<open>- numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2557 |
for a b |
|
2558 |
lemmas mod_word_minus_1_numeral [simp] = |
|
2559 |
word_mod_def [of \<open>- 1\<close> \<open>numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2560 |
for a b |
|
2561 |
lemmas mod_word_minus_1_minus_numeral [simp] = |
|
2562 |
word_mod_def [of \<open>- 1\<close> \<open>- numeral b\<close>, simplified uint_bintrunc uint_bintrunc_neg unsigned_minus_1_eq_mask mask_eq_exp_minus_1] |
|
2563 |
for a b |
|
2564 |
||
2565 |
lemma signed_drop_bit_of_1 [simp]: |
|
2566 |
\<open>signed_drop_bit n (1 :: 'a::len word) = of_bool (LENGTH('a) = 1 \<or> n = 0)\<close> |
|
2567 |
apply (transfer fixing: n) |
|
2568 |
apply (cases \<open>LENGTH('a)\<close>) |
|
80777 | 2569 |
apply (auto simp: take_bit_signed_take_bit) |
2570 |
apply (auto simp: take_bit_drop_bit gr0_conv_Suc simp flip: take_bit_eq_self_iff_drop_bit_eq_0) |
|
74592 | 2571 |
done |
2572 |
||
2573 |
lemma take_bit_word_beyond_length_eq: |
|
2574 |
\<open>take_bit n w = w\<close> if \<open>LENGTH('a) \<le> n\<close> for w :: \<open>'a::len word\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2575 |
by (simp add: take_bit_word_eq_self that) |
74592 | 2576 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2577 |
lemmas word_div_no [simp] = word_div_def [of "numeral a" "numeral b"] for a b |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2578 |
lemmas word_mod_no [simp] = word_mod_def [of "numeral a" "numeral b"] for a b |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2579 |
lemmas word_less_no [simp] = word_less_def [of "numeral a" "numeral b"] for a b |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
2580 |
lemmas word_le_no [simp] = word_le_def [of "numeral a" "numeral b"] for a b |
72079 | 2581 |
lemmas word_sless_no [simp] = word_sless_eq [of "numeral a" "numeral b"] for a b |
2582 |
lemmas word_sle_no [simp] = word_sle_eq [of "numeral a" "numeral b"] for a b |
|
37660 | 2583 |
|
65268 | 2584 |
lemma size_0_same': "size w = 0 \<Longrightarrow> w = v" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2585 |
for v w :: "'a::len word" |
72079 | 2586 |
by (unfold word_size) simp |
37660 | 2587 |
|
45816
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset
|
2588 |
lemmas size_0_same = size_0_same' [unfolded word_size] |
37660 | 2589 |
|
2590 |
lemmas unat_eq_0 = unat_0_iff |
|
2591 |
lemmas unat_eq_zero = unat_0_iff |
|
2592 |
||
74592 | 2593 |
lemma mask_1: "mask 1 = 1" |
2594 |
by simp |
|
2595 |
||
2596 |
lemma mask_Suc_0: "mask (Suc 0) = 1" |
|
2597 |
by simp |
|
2598 |
||
2599 |
lemma bin_last_bintrunc: "odd (take_bit l n) \<longleftrightarrow> l > 0 \<and> odd n" |
|
2600 |
by simp |
|
2601 |
||
2602 |
lemma push_bit_word_beyond [simp]: |
|
2603 |
\<open>push_bit n w = 0\<close> if \<open>LENGTH('a) \<le> n\<close> for w :: \<open>'a::len word\<close> |
|
2604 |
using that by (transfer fixing: n) (simp add: take_bit_push_bit) |
|
2605 |
||
2606 |
lemma drop_bit_word_beyond [simp]: |
|
2607 |
\<open>drop_bit n w = 0\<close> if \<open>LENGTH('a) \<le> n\<close> for w :: \<open>'a::len word\<close> |
|
2608 |
using that by (transfer fixing: n) (simp add: drop_bit_take_bit) |
|
2609 |
||
2610 |
lemma signed_drop_bit_beyond: |
|
2611 |
\<open>signed_drop_bit n w = (if bit w (LENGTH('a) - Suc 0) then - 1 else 0)\<close> |
|
2612 |
if \<open>LENGTH('a) \<le> n\<close> for w :: \<open>'a::len word\<close> |
|
2613 |
by (rule bit_word_eqI) (simp add: bit_signed_drop_bit_iff that) |
|
2614 |
||
2615 |
lemma take_bit_numeral_minus_numeral_word [simp]: |
|
2616 |
\<open>take_bit (numeral m) (- numeral n :: 'a::len word) = |
|
2617 |
(case take_bit_num (numeral m) n of None \<Rightarrow> 0 | Some q \<Rightarrow> take_bit (numeral m) (2 ^ numeral m - numeral q))\<close> (is \<open>?lhs = ?rhs\<close>) |
|
2618 |
proof (cases \<open>LENGTH('a) \<le> numeral m\<close>) |
|
2619 |
case True |
|
2620 |
then have *: \<open>(take_bit (numeral m) :: 'a word \<Rightarrow> 'a word) = id\<close> |
|
2621 |
by (simp add: fun_eq_iff take_bit_word_eq_self) |
|
2622 |
have **: \<open>2 ^ numeral m = (0 :: 'a word)\<close> |
|
2623 |
using True by (simp flip: exp_eq_zero_iff) |
|
2624 |
show ?thesis |
|
2625 |
by (auto simp only: * ** split: option.split |
|
2626 |
dest!: take_bit_num_eq_None_imp [where ?'a = \<open>'a word\<close>] take_bit_num_eq_Some_imp [where ?'a = \<open>'a word\<close>]) |
|
2627 |
simp_all |
|
2628 |
next |
|
2629 |
case False |
|
2630 |
then show ?thesis |
|
2631 |
by (transfer fixing: m n) simp |
|
2632 |
qed |
|
2633 |
||
2634 |
lemma of_nat_inverse: |
|
2635 |
\<open>word_of_nat r = a \<Longrightarrow> r < 2 ^ LENGTH('a) \<Longrightarrow> unat a = r\<close> |
|
2636 |
for a :: \<open>'a::len word\<close> |
|
2637 |
by (metis id_apply of_nat_eq_id take_bit_nat_eq_self_iff unsigned_of_nat) |
|
2638 |
||
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2639 |
|
61799 | 2640 |
subsection \<open>Transferring goals from words to ints\<close> |
37660 | 2641 |
|
65268 | 2642 |
lemma word_ths: |
2643 |
shows word_succ_p1: "word_succ a = a + 1" |
|
2644 |
and word_pred_m1: "word_pred a = a - 1" |
|
2645 |
and word_pred_succ: "word_pred (word_succ a) = a" |
|
2646 |
and word_succ_pred: "word_succ (word_pred a) = a" |
|
2647 |
and word_mult_succ: "word_succ a * b = b + a * b" |
|
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
2648 |
by (transfer, simp add: algebra_simps)+ |
37660 | 2649 |
|
45816
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset
|
2650 |
lemma uint_cong: "x = y \<Longrightarrow> uint x = uint y" |
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset
|
2651 |
by simp |
37660 | 2652 |
|
55818 | 2653 |
lemma uint_word_ariths: |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2654 |
fixes a b :: "'a::len word" |
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2655 |
shows "uint (a + b) = (uint a + uint b) mod 2 ^ LENGTH('a::len)" |
70185 | 2656 |
and "uint (a - b) = (uint a - uint b) mod 2 ^ LENGTH('a)" |
2657 |
and "uint (a * b) = uint a * uint b mod 2 ^ LENGTH('a)" |
|
2658 |
and "uint (- a) = - uint a mod 2 ^ LENGTH('a)" |
|
2659 |
and "uint (word_succ a) = (uint a + 1) mod 2 ^ LENGTH('a)" |
|
2660 |
and "uint (word_pred a) = (uint a - 1) mod 2 ^ LENGTH('a)" |
|
2661 |
and "uint (0 :: 'a word) = 0 mod 2 ^ LENGTH('a)" |
|
2662 |
and "uint (1 :: 'a word) = 1 mod 2 ^ LENGTH('a)" |
|
72262 | 2663 |
by (simp_all only: word_arith_wis uint_word_of_int_eq flip: take_bit_eq_mod) |
55818 | 2664 |
|
2665 |
lemma uint_word_arith_bintrs: |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2666 |
fixes a b :: "'a::len word" |
72128 | 2667 |
shows "uint (a + b) = take_bit (LENGTH('a)) (uint a + uint b)" |
2668 |
and "uint (a - b) = take_bit (LENGTH('a)) (uint a - uint b)" |
|
2669 |
and "uint (a * b) = take_bit (LENGTH('a)) (uint a * uint b)" |
|
2670 |
and "uint (- a) = take_bit (LENGTH('a)) (- uint a)" |
|
2671 |
and "uint (word_succ a) = take_bit (LENGTH('a)) (uint a + 1)" |
|
2672 |
and "uint (word_pred a) = take_bit (LENGTH('a)) (uint a - 1)" |
|
2673 |
and "uint (0 :: 'a word) = take_bit (LENGTH('a)) 0" |
|
2674 |
and "uint (1 :: 'a word) = take_bit (LENGTH('a)) 1" |
|
2675 |
by (simp_all add: uint_word_ariths take_bit_eq_mod) |
|
55818 | 2676 |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2677 |
context |
55818 | 2678 |
fixes a b :: "'a::len word" |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2679 |
begin |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2680 |
|
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2681 |
lemma sint_word_add: "sint (a + b) = signed_take_bit (LENGTH('a) - 1) (sint a + sint b)" |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2682 |
by transfer (simp add: signed_take_bit_add) |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2683 |
|
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2684 |
lemma sint_word_diff: "sint (a - b) = signed_take_bit (LENGTH('a) - 1) (sint a - sint b)" |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2685 |
by transfer (simp add: signed_take_bit_diff) |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2686 |
|
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2687 |
lemma sint_word_mult: "sint (a * b) = signed_take_bit (LENGTH('a) - 1) (sint a * sint b)" |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2688 |
by transfer (simp add: signed_take_bit_mult) |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2689 |
|
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2690 |
lemma sint_word_minus: "sint (- a) = signed_take_bit (LENGTH('a) - 1) (- sint a)" |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2691 |
by transfer (simp add: signed_take_bit_minus) |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2692 |
|
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2693 |
lemma sint_word_succ: "sint (word_succ a) = signed_take_bit (LENGTH('a) - 1) (sint a + 1)" |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2694 |
by (metis of_int_sint scast_id sint_sbintrunc' wi_hom_succ) |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2695 |
|
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2696 |
lemma sint_word_pred: "sint (word_pred a) = signed_take_bit (LENGTH('a) - 1) (sint a - 1)" |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2697 |
by (metis of_int_sint scast_id sint_sbintrunc' wi_hom_pred) |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2698 |
|
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2699 |
lemma sint_word_01: |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2700 |
"sint (0 :: 'a word) = signed_take_bit (LENGTH('a) - 1) 0" |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2701 |
"sint (1 :: 'a word) = signed_take_bit (LENGTH('a) - 1) 1" |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2702 |
by (simp_all add: sint_uint) |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2703 |
|
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2704 |
end |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2705 |
|
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2706 |
|
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2707 |
lemmas sint_word_ariths = |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2708 |
sint_word_add sint_word_diff sint_word_mult sint_word_minus |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2709 |
sint_word_succ sint_word_pred sint_word_01 |
45604 | 2710 |
|
58410
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents:
58061
diff
changeset
|
2711 |
lemma word_pred_0_n1: "word_pred 0 = word_of_int (- 1)" |
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
2712 |
unfolding word_pred_m1 by simp |
37660 | 2713 |
|
2714 |
lemma succ_pred_no [simp]: |
|
65268 | 2715 |
"word_succ (numeral w) = numeral w + 1" |
2716 |
"word_pred (numeral w) = numeral w - 1" |
|
2717 |
"word_succ (- numeral w) = - numeral w + 1" |
|
2718 |
"word_pred (- numeral w) = - numeral w - 1" |
|
2719 |
by (simp_all add: word_succ_p1 word_pred_m1) |
|
2720 |
||
2721 |
lemma word_sp_01 [simp]: |
|
2722 |
"word_succ (- 1) = 0 \<and> word_succ 0 = 1 \<and> word_pred 0 = - 1 \<and> word_pred 1 = 0" |
|
2723 |
by (simp_all add: word_succ_p1 word_pred_m1) |
|
37660 | 2724 |
|
67408 | 2725 |
\<comment> \<open>alternative approach to lifting arithmetic equalities\<close> |
65268 | 2726 |
lemma word_of_int_Ex: "\<exists>y. x = word_of_int y" |
37660 | 2727 |
by (rule_tac x="uint x" in exI) simp |
2728 |
||
2729 |
||
61799 | 2730 |
subsection \<open>Order on fixed-length words\<close> |
37660 | 2731 |
|
72262 | 2732 |
lift_definition udvd :: \<open>'a::len word \<Rightarrow> 'a::len word \<Rightarrow> bool\<close> (infixl \<open>udvd\<close> 50) |
2733 |
is \<open>\<lambda>k l. take_bit LENGTH('a) k dvd take_bit LENGTH('a) l\<close> by simp |
|
2734 |
||
2735 |
lemma udvd_iff_dvd: |
|
2736 |
\<open>x udvd y \<longleftrightarrow> unat x dvd unat y\<close> |
|
2737 |
by transfer (simp add: nat_dvd_iff) |
|
2738 |
||
2739 |
lemma udvd_iff_dvd_int: |
|
2740 |
\<open>v udvd w \<longleftrightarrow> uint v dvd uint w\<close> |
|
2741 |
by transfer rule |
|
2742 |
||
2743 |
lemma udvdI [intro]: |
|
2744 |
\<open>v udvd w\<close> if \<open>unat w = unat v * unat u\<close> |
|
2745 |
proof - |
|
2746 |
from that have \<open>unat v dvd unat w\<close> .. |
|
2747 |
then show ?thesis |
|
2748 |
by (simp add: udvd_iff_dvd) |
|
2749 |
qed |
|
2750 |
||
2751 |
lemma udvdE [elim]: |
|
2752 |
fixes v w :: \<open>'a::len word\<close> |
|
2753 |
assumes \<open>v udvd w\<close> |
|
2754 |
obtains u :: \<open>'a word\<close> where \<open>unat w = unat v * unat u\<close> |
|
2755 |
proof (cases \<open>v = 0\<close>) |
|
2756 |
case True |
|
2757 |
moreover from True \<open>v udvd w\<close> have \<open>w = 0\<close> |
|
2758 |
by transfer simp |
|
2759 |
ultimately show thesis |
|
2760 |
using that by simp |
|
2761 |
next |
|
2762 |
case False |
|
2763 |
then have \<open>unat v > 0\<close> |
|
2764 |
by (simp add: unat_gt_0) |
|
2765 |
from \<open>v udvd w\<close> have \<open>unat v dvd unat w\<close> |
|
2766 |
by (simp add: udvd_iff_dvd) |
|
2767 |
then obtain n where \<open>unat w = unat v * n\<close> .. |
|
2768 |
moreover have \<open>n < 2 ^ LENGTH('a)\<close> |
|
2769 |
proof (rule ccontr) |
|
2770 |
assume \<open>\<not> n < 2 ^ LENGTH('a)\<close> |
|
2771 |
then have \<open>n \<ge> 2 ^ LENGTH('a)\<close> |
|
2772 |
by (simp add: not_le) |
|
2773 |
then have \<open>unat v * n \<ge> 2 ^ LENGTH('a)\<close> |
|
2774 |
using \<open>unat v > 0\<close> mult_le_mono [of 1 \<open>unat v\<close> \<open>2 ^ LENGTH('a)\<close> n] |
|
2775 |
by simp |
|
72292 | 2776 |
with \<open>unat w = unat v * n\<close> |
2777 |
have \<open>unat w \<ge> 2 ^ LENGTH('a)\<close> |
|
72262 | 2778 |
by simp |
72292 | 2779 |
with unsigned_less [of w, where ?'a = nat] show False |
2780 |
by linarith |
|
72262 | 2781 |
qed |
2782 |
ultimately have \<open>unat w = unat v * unat (word_of_nat n :: 'a word)\<close> |
|
80777 | 2783 |
by (auto simp: take_bit_nat_eq_self_iff unsigned_of_nat intro: sym) |
72262 | 2784 |
with that show thesis . |
2785 |
qed |
|
2786 |
||
2787 |
lemma udvd_imp_mod_eq_0: |
|
2788 |
\<open>w mod v = 0\<close> if \<open>v udvd w\<close> |
|
2789 |
using that by transfer simp |
|
2790 |
||
2791 |
lemma mod_eq_0_imp_udvd [intro?]: |
|
2792 |
\<open>v udvd w\<close> if \<open>w mod v = 0\<close> |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2793 |
by (metis mod_0_imp_dvd that udvd_iff_dvd unat_0 unat_mod_distrib) |
72262 | 2794 |
|
72280 | 2795 |
lemma udvd_imp_dvd: |
2796 |
\<open>v dvd w\<close> if \<open>v udvd w\<close> for v w :: \<open>'a::len word\<close> |
|
2797 |
proof - |
|
72281
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2798 |
from that obtain u :: \<open>'a word\<close> where \<open>unat w = unat v * unat u\<close> .. |
72280 | 2799 |
then have \<open>w = v * u\<close> |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2800 |
by (metis of_nat_mult of_nat_unat word_mult_def word_of_int_uint) |
72280 | 2801 |
then show \<open>v dvd w\<close> .. |
2802 |
qed |
|
2803 |
||
72281
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2804 |
lemma exp_dvd_iff_exp_udvd: |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2805 |
\<open>2 ^ n dvd w \<longleftrightarrow> 2 ^ n udvd w\<close> for v w :: \<open>'a::len word\<close> |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2806 |
proof |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2807 |
assume \<open>2 ^ n udvd w\<close> then show \<open>2 ^ n dvd w\<close> |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2808 |
by (rule udvd_imp_dvd) |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2809 |
next |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2810 |
assume \<open>2 ^ n dvd w\<close> |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2811 |
then obtain u :: \<open>'a word\<close> where \<open>w = 2 ^ n * u\<close> .. |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2812 |
then have \<open>w = push_bit n u\<close> |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2813 |
by (simp add: push_bit_eq_mult) |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2814 |
then show \<open>2 ^ n udvd w\<close> |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2815 |
by transfer (simp add: take_bit_push_bit dvd_eq_mod_eq_0 flip: take_bit_eq_mod) |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2816 |
qed |
beeadb35e357
more thorough treatment of division, particularly signed division on int and word
haftmann
parents:
72280
diff
changeset
|
2817 |
|
72262 | 2818 |
lemma udvd_nat_alt: |
2819 |
\<open>a udvd b \<longleftrightarrow> (\<exists>n. unat b = n * unat a)\<close> |
|
80777 | 2820 |
by (auto simp: udvd_iff_dvd) |
72262 | 2821 |
|
2822 |
lemma udvd_unfold_int: |
|
2823 |
\<open>a udvd b \<longleftrightarrow> (\<exists>n\<ge>0. uint b = n * uint a)\<close> |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
2824 |
unfolding udvd_iff_dvd_int |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
2825 |
by (metis dvd_div_mult_self dvd_triv_right uint_div_distrib uint_ge_0) |
37660 | 2826 |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2827 |
lemma unat_minus_one: |
72079 | 2828 |
\<open>unat (w - 1) = unat w - 1\<close> if \<open>w \<noteq> 0\<close> |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2829 |
proof - |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2830 |
have "0 \<le> uint w" by (fact uint_nonnegative) |
72079 | 2831 |
moreover from that have "0 \<noteq> uint w" |
65328 | 2832 |
by (simp add: uint_0_iff) |
2833 |
ultimately have "1 \<le> uint w" |
|
2834 |
by arith |
|
70185 | 2835 |
from uint_lt2p [of w] have "uint w - 1 < 2 ^ LENGTH('a)" |
65328 | 2836 |
by arith |
70185 | 2837 |
with \<open>1 \<le> uint w\<close> have "(uint w - 1) mod 2 ^ LENGTH('a) = uint w - 1" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2838 |
by (auto intro: mod_pos_pos_trivial) |
70185 | 2839 |
with \<open>1 \<le> uint w\<close> have "nat ((uint w - 1) mod 2 ^ LENGTH('a)) = nat (uint w) - 1" |
72079 | 2840 |
by (auto simp del: nat_uint_eq) |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2841 |
then show ?thesis |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2842 |
by (metis uint_word_ariths(6) unat_eq_nat_uint word_pred_m1) |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2843 |
qed |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2844 |
|
65328 | 2845 |
lemma measure_unat: "p \<noteq> 0 \<Longrightarrow> unat (p - 1) < unat p" |
37660 | 2846 |
by (simp add: unat_minus_one) (simp add: unat_0_iff [symmetric]) |
65268 | 2847 |
|
45604 | 2848 |
lemmas uint_add_ge0 [simp] = add_nonneg_nonneg [OF uint_ge_0 uint_ge_0] |
2849 |
lemmas uint_mult_ge0 [simp] = mult_nonneg_nonneg [OF uint_ge_0 uint_ge_0] |
|
37660 | 2850 |
|
70185 | 2851 |
lemma uint_sub_lt2p [simp]: "uint x - uint y < 2 ^ LENGTH('a)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2852 |
for x :: "'a::len word" and y :: "'b::len word" |
37660 | 2853 |
using uint_ge_0 [of y] uint_lt2p [of x] by arith |
2854 |
||
2855 |
||
61799 | 2856 |
subsection \<open>Conditions for the addition (etc) of two words to overflow\<close> |
37660 | 2857 |
|
65268 | 2858 |
lemma uint_add_lem: |
70185 | 2859 |
"(uint x + uint y < 2 ^ LENGTH('a)) = |
65328 | 2860 |
(uint (x + y) = uint x + uint y)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2861 |
for x y :: "'a::len word" |
71997 | 2862 |
by (metis add.right_neutral add_mono_thms_linordered_semiring(1) mod_pos_pos_trivial of_nat_0_le_iff uint_lt2p uint_nat uint_word_ariths(1)) |
37660 | 2863 |
|
65268 | 2864 |
lemma uint_mult_lem: |
70185 | 2865 |
"(uint x * uint y < 2 ^ LENGTH('a)) = |
65328 | 2866 |
(uint (x * y) = uint x * uint y)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2867 |
for x y :: "'a::len word" |
71997 | 2868 |
by (metis mod_pos_pos_trivial uint_lt2p uint_mult_ge0 uint_word_ariths(3)) |
37660 | 2869 |
|
65328 | 2870 |
lemma uint_sub_lem: "uint x \<ge> uint y \<longleftrightarrow> uint (x - y) = uint x - uint y" |
80401
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
2871 |
by (simp add: uint_word_arith_bintrs take_bit_int_eq_self_iff) |
65328 | 2872 |
|
2873 |
lemma uint_add_le: "uint (x + y) \<le> uint x + uint y" |
|
71997 | 2874 |
unfolding uint_word_ariths by (simp add: zmod_le_nonneg_dividend) |
37660 | 2875 |
|
65328 | 2876 |
lemma uint_sub_ge: "uint (x - y) \<ge> uint x - uint y" |
80777 | 2877 |
by (smt (verit, ccfv_SIG) uint_nonnegative uint_sub_lem) |
72488 | 2878 |
|
2879 |
lemma int_mod_ge: \<open>a \<le> a mod n\<close> if \<open>a < n\<close> \<open>0 < n\<close> |
|
2880 |
for a n :: int |
|
76231 | 2881 |
using that order.trans [of a 0 \<open>a mod n\<close>] by (cases \<open>a < 0\<close>) auto |
72488 | 2882 |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2883 |
lemma mod_add_if_z: |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
2884 |
"\<lbrakk>x < z; y < z; 0 \<le> y; 0 \<le> x; 0 \<le> z\<rbrakk> \<Longrightarrow> |
65328 | 2885 |
(x + y) mod z = (if x + y < z then x + y else x + y - z)" |
2886 |
for x y z :: int |
|
80777 | 2887 |
by (smt (verit, best) minus_mod_self2 mod_pos_pos_trivial) |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2888 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2889 |
lemma uint_plus_if': |
65328 | 2890 |
"uint (a + b) = |
70185 | 2891 |
(if uint a + uint b < 2 ^ LENGTH('a) then uint a + uint b |
2892 |
else uint a + uint b - 2 ^ LENGTH('a))" |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2893 |
for a b :: "'a::len word" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2894 |
using mod_add_if_z [of "uint a" _ "uint b"] by (simp add: uint_word_ariths) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2895 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2896 |
lemma mod_sub_if_z: |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
2897 |
"\<lbrakk>x < z; y < z; 0 \<le> y; 0 \<le> x; 0 \<le> z\<rbrakk> \<Longrightarrow> |
65328 | 2898 |
(x - y) mod z = (if y \<le> x then x - y else x - y + z)" |
2899 |
for x y z :: int |
|
80777 | 2900 |
using mod_pos_pos_trivial [of "x - y + z" z] by (auto simp: not_le) |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2901 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2902 |
lemma uint_sub_if': |
65328 | 2903 |
"uint (a - b) = |
2904 |
(if uint b \<le> uint a then uint a - uint b |
|
70185 | 2905 |
else uint a - uint b + 2 ^ LENGTH('a))" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2906 |
for a b :: "'a::len word" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2907 |
using mod_sub_if_z [of "uint a" _ "uint b"] by (simp add: uint_word_ariths) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
2908 |
|
37660 | 2909 |
lemma word_of_int_inverse: |
70185 | 2910 |
"word_of_int r = a \<Longrightarrow> 0 \<le> r \<Longrightarrow> r < 2 ^ LENGTH('a) \<Longrightarrow> uint a = r" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2911 |
for a :: "'a::len word" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
2912 |
by transfer (simp add: take_bit_int_eq_self) |
37660 | 2913 |
|
74592 | 2914 |
lemma unat_split: "P (unat x) \<longleftrightarrow> (\<forall>n. of_nat n = x \<and> n < 2^LENGTH('a) \<longrightarrow> P n)" |
2915 |
for x :: "'a::len word" |
|
80777 | 2916 |
by (auto simp: unsigned_of_nat take_bit_nat_eq_self) |
74592 | 2917 |
|
2918 |
lemma unat_split_asm: "P (unat x) \<longleftrightarrow> (\<nexists>n. of_nat n = x \<and> n < 2^LENGTH('a) \<and> \<not> P n)" |
|
2919 |
for x :: "'a::len word" |
|
80777 | 2920 |
using unat_split by auto |
74592 | 2921 |
|
2922 |
lemma un_ui_le: |
|
2923 |
\<open>unat a \<le> unat b \<longleftrightarrow> uint a \<le> uint b\<close> |
|
2924 |
by transfer (simp add: nat_le_iff) |
|
2925 |
||
2926 |
lemma unat_plus_if': |
|
2927 |
\<open>unat (a + b) = |
|
2928 |
(if unat a + unat b < 2 ^ LENGTH('a) |
|
2929 |
then unat a + unat b |
|
2930 |
else unat a + unat b - 2 ^ LENGTH('a))\<close> for a b :: \<open>'a::len word\<close> |
|
80777 | 2931 |
apply (auto simp: not_less le_iff_add) |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2932 |
using of_nat_inverse apply force |
80777 | 2933 |
by (smt (verit, ccfv_SIG) numeral_Bit0 numerals(1) of_nat_0_le_iff of_nat_1 of_nat_add of_nat_eq_iff of_nat_power of_nat_unat uint_plus_if') |
74592 | 2934 |
|
2935 |
lemma unat_sub_if_size: |
|
2936 |
"unat (x - y) = |
|
2937 |
(if unat y \<le> unat x |
|
2938 |
then unat x - unat y |
|
2939 |
else unat x + 2 ^ size x - unat y)" |
|
2940 |
proof - |
|
2941 |
{ assume xy: "\<not> uint y \<le> uint x" |
|
2942 |
have "nat (uint x - uint y + 2 ^ LENGTH('a)) = nat (uint x + 2 ^ LENGTH('a) - uint y)" |
|
2943 |
by simp |
|
80777 | 2944 |
also have "\<dots> = nat (uint x + 2 ^ LENGTH('a)) - nat (uint y)" |
74592 | 2945 |
by (simp add: nat_diff_distrib') |
80777 | 2946 |
also have "\<dots> = nat (uint x) + 2 ^ LENGTH('a) - nat (uint y)" |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2947 |
by (simp add: nat_add_distrib nat_power_eq) |
74592 | 2948 |
finally have "nat (uint x - uint y + 2 ^ LENGTH('a)) = nat (uint x) + 2 ^ LENGTH('a) - nat (uint y)" . |
2949 |
} |
|
2950 |
then show ?thesis |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2951 |
by (metis nat_diff_distrib' uint_range_size uint_sub_if' un_ui_le unat_eq_nat_uint |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
2952 |
word_size) |
74592 | 2953 |
qed |
2954 |
||
2955 |
lemmas unat_sub_if' = unat_sub_if_size [unfolded word_size] |
|
2956 |
||
37660 | 2957 |
lemma uint_split: |
70185 | 2958 |
"P (uint x) = (\<forall>i. word_of_int i = x \<and> 0 \<le> i \<and> i < 2^LENGTH('a) \<longrightarrow> P i)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2959 |
for x :: "'a::len word" |
80777 | 2960 |
by transfer (auto simp: take_bit_eq_mod) |
37660 | 2961 |
|
2962 |
lemma uint_split_asm: |
|
70185 | 2963 |
"P (uint x) = (\<nexists>i. word_of_int i = x \<and> 0 \<le> i \<and> i < 2^LENGTH('a) \<and> \<not> P i)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
2964 |
for x :: "'a::len word" |
80777 | 2965 |
by (auto simp: unsigned_of_int take_bit_int_eq_self) |
37660 | 2966 |
|
74592 | 2967 |
|
2968 |
subsection \<open>Some proof tool support\<close> |
|
2969 |
||
2970 |
\<comment> \<open>use this to stop, eg. \<open>2 ^ LENGTH(32)\<close> being simplified\<close> |
|
2971 |
lemma power_False_cong: "False \<Longrightarrow> a ^ b = c ^ d" |
|
2972 |
by auto |
|
2973 |
||
2974 |
lemmas unat_splits = unat_split unat_split_asm |
|
2975 |
||
2976 |
lemmas unat_arith_simps = |
|
2977 |
word_le_nat_alt word_less_nat_alt |
|
2978 |
word_unat_eq_iff |
|
2979 |
unat_sub_if' unat_plus_if' unat_div unat_mod |
|
2980 |
||
37660 | 2981 |
lemmas uint_splits = uint_split uint_split_asm |
2982 |
||
65268 | 2983 |
lemmas uint_arith_simps = |
37660 | 2984 |
word_le_def word_less_alt |
72292 | 2985 |
word_uint_eq_iff |
37660 | 2986 |
uint_sub_if' uint_plus_if' |
2987 |
||
74592 | 2988 |
\<comment> \<open>\<open>unat_arith_tac\<close>: tactic to reduce word arithmetic to \<open>nat\<close>, try to solve via \<open>arith\<close>\<close> |
2989 |
ML \<open> |
|
2990 |
val unat_arith_simpset = |
|
2991 |
@{context} (* TODO: completely explicitly determined simpset *) |
|
2992 |
|> fold Simplifier.add_simp @{thms unat_arith_simps} |
|
2993 |
|> fold Splitter.add_split @{thms if_split_asm} |
|
2994 |
|> fold Simplifier.add_cong @{thms power_False_cong} |
|
2995 |
|> simpset_of |
|
2996 |
||
2997 |
fun unat_arith_tacs ctxt = |
|
2998 |
let |
|
2999 |
fun arith_tac' n t = |
|
3000 |
Arith_Data.arith_tac ctxt n t |
|
3001 |
handle Cooper.COOPER _ => Seq.empty; |
|
3002 |
in |
|
3003 |
[ clarify_tac ctxt 1, |
|
3004 |
full_simp_tac (put_simpset unat_arith_simpset ctxt) 1, |
|
3005 |
ALLGOALS (full_simp_tac |
|
3006 |
(put_simpset HOL_ss ctxt |
|
3007 |
|> fold Splitter.add_split @{thms unat_splits} |
|
3008 |
|> fold Simplifier.add_cong @{thms power_False_cong})), |
|
3009 |
rewrite_goals_tac ctxt @{thms word_size}, |
|
3010 |
ALLGOALS (fn n => REPEAT (resolve_tac ctxt [allI, impI] n) THEN |
|
3011 |
REPEAT (eresolve_tac ctxt [conjE] n) THEN |
|
3012 |
REPEAT (dresolve_tac ctxt @{thms of_nat_inverse} n THEN assume_tac ctxt n)), |
|
3013 |
TRYALL arith_tac' ] |
|
3014 |
end |
|
3015 |
||
3016 |
fun unat_arith_tac ctxt = SELECT_GOAL (EVERY (unat_arith_tacs ctxt)) |
|
3017 |
\<close> |
|
3018 |
||
3019 |
method_setup unat_arith = |
|
3020 |
\<open>Scan.succeed (SIMPLE_METHOD' o unat_arith_tac)\<close> |
|
3021 |
"solving word arithmetic via natural numbers and arith" |
|
37660 | 3022 |
|
67408 | 3023 |
\<comment> \<open>\<open>uint_arith_tac\<close>: reduce to arithmetic on int, try to solve by arith\<close> |
61799 | 3024 |
ML \<open> |
72292 | 3025 |
val uint_arith_simpset = |
74592 | 3026 |
@{context} (* TODO: completely explicitly determined simpset *) |
72292 | 3027 |
|> fold Simplifier.add_simp @{thms uint_arith_simps} |
3028 |
|> fold Splitter.add_split @{thms if_split_asm} |
|
3029 |
|> fold Simplifier.add_cong @{thms power_False_cong} |
|
3030 |
|> simpset_of; |
|
3031 |
||
65268 | 3032 |
fun uint_arith_tacs ctxt = |
37660 | 3033 |
let |
3034 |
fun arith_tac' n t = |
|
59657
2441a80fb6c1
eliminated unused arith "verbose" flag -- tools that need options can use the context;
wenzelm
parents:
59498
diff
changeset
|
3035 |
Arith_Data.arith_tac ctxt n t |
37660 | 3036 |
handle Cooper.COOPER _ => Seq.empty; |
65268 | 3037 |
in |
42793 | 3038 |
[ clarify_tac ctxt 1, |
72292 | 3039 |
full_simp_tac (put_simpset uint_arith_simpset ctxt) 1, |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51375
diff
changeset
|
3040 |
ALLGOALS (full_simp_tac |
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51375
diff
changeset
|
3041 |
(put_simpset HOL_ss ctxt |
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51375
diff
changeset
|
3042 |
|> fold Splitter.add_split @{thms uint_splits} |
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51375
diff
changeset
|
3043 |
|> fold Simplifier.add_cong @{thms power_False_cong})), |
65268 | 3044 |
rewrite_goals_tac ctxt @{thms word_size}, |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
59487
diff
changeset
|
3045 |
ALLGOALS (fn n => REPEAT (resolve_tac ctxt [allI, impI] n) THEN |
60754 | 3046 |
REPEAT (eresolve_tac ctxt [conjE] n) THEN |
65268 | 3047 |
REPEAT (dresolve_tac ctxt @{thms word_of_int_inverse} n |
3048 |
THEN assume_tac ctxt n |
|
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58874
diff
changeset
|
3049 |
THEN assume_tac ctxt n)), |
37660 | 3050 |
TRYALL arith_tac' ] |
3051 |
end |
|
3052 |
||
3053 |
fun uint_arith_tac ctxt = SELECT_GOAL (EVERY (uint_arith_tacs ctxt)) |
|
61799 | 3054 |
\<close> |
37660 | 3055 |
|
65268 | 3056 |
method_setup uint_arith = |
61799 | 3057 |
\<open>Scan.succeed (SIMPLE_METHOD' o uint_arith_tac)\<close> |
37660 | 3058 |
"solving word arithmetic via integers and arith" |
3059 |
||
3060 |
||
61799 | 3061 |
subsection \<open>More on overflows and monotonicity\<close> |
37660 | 3062 |
|
65328 | 3063 |
lemma no_plus_overflow_uint_size: "x \<le> x + y \<longleftrightarrow> uint x + uint y < 2 ^ size x" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3064 |
for x y :: "'a::len word" |
80777 | 3065 |
by (auto simp: word_size word_le_def uint_add_lem uint_sub_lem) |
37660 | 3066 |
|
3067 |
lemmas no_olen_add = no_plus_overflow_uint_size [unfolded word_size] |
|
3068 |
||
65328 | 3069 |
lemma no_ulen_sub: "x \<ge> x - y \<longleftrightarrow> uint y \<le> uint x" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3070 |
for x y :: "'a::len word" |
80777 | 3071 |
by (auto simp: word_size word_le_def uint_add_lem uint_sub_lem) |
37660 | 3072 |
|
70185 | 3073 |
lemma no_olen_add': "x \<le> y + x \<longleftrightarrow> uint y + uint x < 2 ^ LENGTH('a)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3074 |
for x y :: "'a::len word" |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
3075 |
by (simp add: ac_simps no_olen_add) |
37660 | 3076 |
|
45604 | 3077 |
lemmas olen_add_eqv = trans [OF no_olen_add no_olen_add' [symmetric]] |
3078 |
||
3079 |
lemmas uint_plus_simple_iff = trans [OF no_olen_add uint_add_lem] |
|
3080 |
lemmas uint_plus_simple = uint_plus_simple_iff [THEN iffD1] |
|
3081 |
lemmas uint_minus_simple_iff = trans [OF no_ulen_sub uint_sub_lem] |
|
37660 | 3082 |
lemmas uint_minus_simple_alt = uint_sub_lem [folded word_le_def] |
3083 |
lemmas word_sub_le_iff = no_ulen_sub [folded word_le_def] |
|
45604 | 3084 |
lemmas word_sub_le = word_sub_le_iff [THEN iffD2] |
37660 | 3085 |
|
65328 | 3086 |
lemma word_less_sub1: "x \<noteq> 0 \<Longrightarrow> 1 < x \<longleftrightarrow> 0 < x - 1" |
3087 |
for x :: "'a::len word" |
|
74592 | 3088 |
by transfer (simp add: take_bit_decr_eq) |
37660 | 3089 |
|
65328 | 3090 |
lemma word_le_sub1: "x \<noteq> 0 \<Longrightarrow> 1 \<le> x \<longleftrightarrow> 0 \<le> x - 1" |
3091 |
for x :: "'a::len word" |
|
74592 | 3092 |
by transfer (simp add: int_one_le_iff_zero_less less_le) |
37660 | 3093 |
|
65328 | 3094 |
lemma sub_wrap_lt: "x < x - z \<longleftrightarrow> x < z" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3095 |
for x z :: "'a::len word" |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
3096 |
by (meson linorder_not_le word_sub_le_iff) |
74592 | 3097 |
|
65328 | 3098 |
lemma sub_wrap: "x \<le> x - z \<longleftrightarrow> z = 0 \<or> x < z" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3099 |
for x z :: "'a::len word" |
74592 | 3100 |
by (simp add: le_less sub_wrap_lt ac_simps) |
37660 | 3101 |
|
65328 | 3102 |
lemma plus_minus_not_NULL_ab: "x \<le> ab - c \<Longrightarrow> c \<le> ab \<Longrightarrow> c \<noteq> 0 \<Longrightarrow> x + c \<noteq> 0" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3103 |
for x ab c :: "'a::len word" |
37660 | 3104 |
by uint_arith |
3105 |
||
65328 | 3106 |
lemma plus_minus_no_overflow_ab: "x \<le> ab - c \<Longrightarrow> c \<le> ab \<Longrightarrow> x \<le> x + c" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3107 |
for x ab c :: "'a::len word" |
37660 | 3108 |
by uint_arith |
3109 |
||
65328 | 3110 |
lemma le_minus': "a + c \<le> b \<Longrightarrow> a \<le> a + c \<Longrightarrow> c \<le> b - a" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3111 |
for a b c :: "'a::len word" |
37660 | 3112 |
by uint_arith |
3113 |
||
65328 | 3114 |
lemma le_plus': "a \<le> b \<Longrightarrow> c \<le> b - a \<Longrightarrow> a + c \<le> b" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3115 |
for a b c :: "'a::len word" |
37660 | 3116 |
by uint_arith |
3117 |
||
3118 |
lemmas le_plus = le_plus' [rotated] |
|
3119 |
||
46011 | 3120 |
lemmas le_minus = leD [THEN thin_rl, THEN le_minus'] (* FIXME *) |
37660 | 3121 |
|
65328 | 3122 |
lemma word_plus_mono_right: "y \<le> z \<Longrightarrow> x \<le> x + z \<Longrightarrow> x + y \<le> x + z" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3123 |
for x y z :: "'a::len word" |
37660 | 3124 |
by uint_arith |
3125 |
||
65328 | 3126 |
lemma word_less_minus_cancel: "y - x < z - x \<Longrightarrow> x \<le> z \<Longrightarrow> y < z" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3127 |
for x y z :: "'a::len word" |
37660 | 3128 |
by uint_arith |
3129 |
||
65328 | 3130 |
lemma word_less_minus_mono_left: "y < z \<Longrightarrow> x \<le> y \<Longrightarrow> y - x < z - x" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3131 |
for x y z :: "'a::len word" |
37660 | 3132 |
by uint_arith |
3133 |
||
65328 | 3134 |
lemma word_less_minus_mono: "a < c \<Longrightarrow> d < b \<Longrightarrow> a - b < a \<Longrightarrow> c - d < c \<Longrightarrow> a - b < c - d" |
3135 |
for a b c d :: "'a::len word" |
|
37660 | 3136 |
by uint_arith |
3137 |
||
65328 | 3138 |
lemma word_le_minus_cancel: "y - x \<le> z - x \<Longrightarrow> x \<le> z \<Longrightarrow> y \<le> z" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3139 |
for x y z :: "'a::len word" |
37660 | 3140 |
by uint_arith |
3141 |
||
65328 | 3142 |
lemma word_le_minus_mono_left: "y \<le> z \<Longrightarrow> x \<le> y \<Longrightarrow> y - x \<le> z - x" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3143 |
for x y z :: "'a::len word" |
37660 | 3144 |
by uint_arith |
3145 |
||
65268 | 3146 |
lemma word_le_minus_mono: |
65328 | 3147 |
"a \<le> c \<Longrightarrow> d \<le> b \<Longrightarrow> a - b \<le> a \<Longrightarrow> c - d \<le> c \<Longrightarrow> a - b \<le> c - d" |
3148 |
for a b c d :: "'a::len word" |
|
37660 | 3149 |
by uint_arith |
3150 |
||
65328 | 3151 |
lemma plus_le_left_cancel_wrap: "x + y' < x \<Longrightarrow> x + y < x \<Longrightarrow> x + y' < x + y \<longleftrightarrow> y' < y" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3152 |
for x y y' :: "'a::len word" |
37660 | 3153 |
by uint_arith |
3154 |
||
65328 | 3155 |
lemma plus_le_left_cancel_nowrap: "x \<le> x + y' \<Longrightarrow> x \<le> x + y \<Longrightarrow> x + y' < x + y \<longleftrightarrow> y' < y" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3156 |
for x y y' :: "'a::len word" |
37660 | 3157 |
by uint_arith |
3158 |
||
65328 | 3159 |
lemma word_plus_mono_right2: "a \<le> a + b \<Longrightarrow> c \<le> b \<Longrightarrow> a \<le> a + c" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3160 |
for a b c :: "'a::len word" |
65328 | 3161 |
by uint_arith |
3162 |
||
3163 |
lemma word_less_add_right: "x < y - z \<Longrightarrow> z \<le> y \<Longrightarrow> x + z < y" |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3164 |
for x y z :: "'a::len word" |
37660 | 3165 |
by uint_arith |
3166 |
||
65328 | 3167 |
lemma word_less_sub_right: "x < y + z \<Longrightarrow> y \<le> x \<Longrightarrow> x - y < z" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3168 |
for x y z :: "'a::len word" |
37660 | 3169 |
by uint_arith |
3170 |
||
65328 | 3171 |
lemma word_le_plus_either: "x \<le> y \<or> x \<le> z \<Longrightarrow> y \<le> y + z \<Longrightarrow> x \<le> y + z" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3172 |
for x y z :: "'a::len word" |
37660 | 3173 |
by uint_arith |
3174 |
||
65328 | 3175 |
lemma word_less_nowrapI: "x < z - k \<Longrightarrow> k \<le> z \<Longrightarrow> 0 < k \<Longrightarrow> x < x + k" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3176 |
for x z k :: "'a::len word" |
37660 | 3177 |
by uint_arith |
3178 |
||
65328 | 3179 |
lemma inc_le: "i < m \<Longrightarrow> i + 1 \<le> m" |
3180 |
for i m :: "'a::len word" |
|
37660 | 3181 |
by uint_arith |
3182 |
||
82687 | 3183 |
lemma less_imp_less_eq_dec: |
3184 |
\<open>v \<le> w - 1\<close> if \<open>v < w\<close> for v w :: \<open>'a::len word\<close> |
|
3185 |
using that proof transfer |
|
3186 |
show \<open>take_bit LENGTH('a) k \<le> take_bit LENGTH('a) (l - 1)\<close> |
|
3187 |
if \<open>take_bit LENGTH('a) k < take_bit LENGTH('a) l\<close> |
|
3188 |
for k l :: int |
|
3189 |
using that by (cases \<open>take_bit LENGTH('a) l = 0\<close>) |
|
3190 |
(auto simp add: take_bit_decr_eq) |
|
3191 |
qed |
|
3192 |
||
3193 |
lemma inc_less_eq_triv_imp: |
|
3194 |
\<open>w = - 1\<close> if \<open>w + 1 \<le> w\<close> for w :: \<open>'a::len word\<close> |
|
3195 |
proof (rule ccontr) |
|
3196 |
assume \<open>w \<noteq> - 1\<close> |
|
3197 |
with that show False |
|
3198 |
by transfer (auto simp add: take_bit_eq_mask_iff dest: take_bit_decr_eq) |
|
3199 |
qed |
|
3200 |
||
3201 |
lemma less_eq_dec_triv_imp: |
|
3202 |
\<open>w = 0\<close> if \<open>w \<le> w - 1\<close> for w :: \<open>'a::len word\<close> |
|
3203 |
proof (rule ccontr) |
|
3204 |
assume \<open>w \<noteq> 0\<close> |
|
3205 |
with that show False |
|
3206 |
by transfer (auto simp add: take_bit_eq_mask_iff dest: take_bit_decr_eq) |
|
3207 |
qed |
|
3208 |
||
3209 |
lemma inc_less_eq_iff: |
|
3210 |
\<open>v + 1 \<le> w \<longleftrightarrow> v = - 1 \<or> v < w\<close> for v w :: \<open>'a::len word\<close> |
|
3211 |
by (auto intro: inc_less_eq_triv_imp inc_le) |
|
3212 |
||
3213 |
lemma less_eq_dec_iff: |
|
3214 |
\<open>v \<le> w - 1 \<longleftrightarrow> w = 0 \<or> v < w\<close> for v w :: \<open>'a::len word\<close> |
|
3215 |
by (auto intro: less_eq_dec_triv_imp less_imp_less_eq_dec) |
|
3216 |
||
65328 | 3217 |
lemma inc_i: "1 \<le> i \<Longrightarrow> i < m \<Longrightarrow> 1 \<le> i + 1 \<and> i + 1 \<le> m" |
3218 |
for i m :: "'a::len word" |
|
37660 | 3219 |
by uint_arith |
3220 |
||
3221 |
lemma udvd_incr_lem: |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
3222 |
"\<lbrakk>up < uq; up = ua + n * uint K; uq = ua + n' * uint K\<rbrakk> |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
3223 |
\<Longrightarrow> up + uint K \<le> uq" |
71997 | 3224 |
by auto (metis int_distrib(1) linorder_not_less mult.left_neutral mult_right_mono uint_nonnegative zless_imp_add1_zle) |
37660 | 3225 |
|
65268 | 3226 |
lemma udvd_incr': |
3227 |
"p < q \<Longrightarrow> uint p = ua + n * uint K \<Longrightarrow> |
|
65328 | 3228 |
uint q = ua + n' * uint K \<Longrightarrow> p + K \<le> q" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3229 |
unfolding word_less_alt word_le_def |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3230 |
by (metis (full_types) order_trans udvd_incr_lem uint_add_le) |
37660 | 3231 |
|
65268 | 3232 |
lemma udvd_decr': |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3233 |
assumes "p < q" "uint p = ua + n * uint K" "uint q = ua + n' * uint K" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3234 |
shows "uint q = ua + n' * uint K \<Longrightarrow> p \<le> q - K" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3235 |
proof - |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
3236 |
have "\<And>w v. uint (w::'a word) \<le> uint v + uint (w - v)" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3237 |
by (metis (no_types) add_diff_cancel_left' diff_add_cancel uint_add_le) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3238 |
moreover have "uint K + uint p \<le> uint q" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3239 |
using assms by (metis (no_types) add_diff_cancel_left' diff_add_cancel udvd_incr_lem word_less_def) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3240 |
ultimately show ?thesis |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3241 |
by (meson add_le_cancel_left order_trans word_less_eq_iff_unsigned) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3242 |
qed |
37660 | 3243 |
|
45816
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset
|
3244 |
lemmas udvd_incr_lem0 = udvd_incr_lem [where ua=0, unfolded add_0_left] |
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset
|
3245 |
lemmas udvd_incr0 = udvd_incr' [where ua=0, unfolded add_0_left] |
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset
|
3246 |
lemmas udvd_decr0 = udvd_decr' [where ua=0, unfolded add_0_left] |
37660 | 3247 |
|
65328 | 3248 |
lemma udvd_minus_le': "xy < k \<Longrightarrow> z udvd xy \<Longrightarrow> z udvd k \<Longrightarrow> xy \<le> k - z" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3249 |
unfolding udvd_unfold_int |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3250 |
by (meson udvd_decr0) |
37660 | 3251 |
|
65268 | 3252 |
lemma udvd_incr2_K: |
65328 | 3253 |
"p < a + s \<Longrightarrow> a \<le> a + s \<Longrightarrow> K udvd s \<Longrightarrow> K udvd p - a \<Longrightarrow> a \<le> p \<Longrightarrow> |
3254 |
0 < K \<Longrightarrow> p \<le> p + K \<and> p + K \<le> a + s" |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3255 |
unfolding udvd_unfold_int |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
3256 |
by (smt (verit, best) diff_add_cancel leD udvd_incr_lem uint_plus_if' |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
3257 |
word_less_eq_iff_unsigned word_sub_le) |
37660 | 3258 |
|
3259 |
||
61799 | 3260 |
subsection \<open>Arithmetic type class instantiations\<close> |
37660 | 3261 |
|
3262 |
lemmas word_le_0_iff [simp] = |
|
70749
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
paulson <lp15@cam.ac.uk>
parents:
70342
diff
changeset
|
3263 |
word_zero_le [THEN leD, THEN antisym_conv1] |
37660 | 3264 |
|
65328 | 3265 |
lemma word_of_int_nat: "0 \<le> x \<Longrightarrow> word_of_int x = of_nat (nat x)" |
72262 | 3266 |
by simp |
37660 | 3267 |
|
67408 | 3268 |
text \<open> |
3269 |
note that \<open>iszero_def\<close> is only for class \<open>comm_semiring_1_cancel\<close>, |
|
3270 |
which requires word length \<open>\<ge> 1\<close>, ie \<open>'a::len word\<close> |
|
3271 |
\<close> |
|
46603 | 3272 |
lemma iszero_word_no [simp]: |
65268 | 3273 |
"iszero (numeral bin :: 'a::len word) = |
72128 | 3274 |
iszero (take_bit LENGTH('a) (numeral bin :: int))" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3275 |
by (metis iszero_def uint_0_iff uint_bintrunc) |
65268 | 3276 |
|
61799 | 3277 |
text \<open>Use \<open>iszero\<close> to simplify equalities between word numerals.\<close> |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3278 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3279 |
lemmas word_eq_numeral_iff_iszero [simp] = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3280 |
eq_numeral_iff_iszero [where 'a="'a::len word"] |
46603 | 3281 |
|
79590 | 3282 |
lemma word_less_eq_imp_half_less_eq: |
3283 |
\<open>v div 2 \<le> w div 2\<close> if \<open>v \<le> w\<close> for v w :: \<open>'a::len word\<close> |
|
3284 |
using that by (simp add: word_le_nat_alt unat_div div_le_mono) |
|
3285 |
||
3286 |
lemma word_half_less_imp_less_eq: |
|
3287 |
\<open>v \<le> w\<close> if \<open>v div 2 < w div 2\<close> for v w :: \<open>'a::len word\<close> |
|
3288 |
using that linorder_linear word_less_eq_imp_half_less_eq by fastforce |
|
3289 |
||
37660 | 3290 |
|
61799 | 3291 |
subsection \<open>Word and nat\<close> |
37660 | 3292 |
|
70185 | 3293 |
lemma word_nchotomy: "\<forall>w :: 'a::len word. \<exists>n. w = of_nat n \<and> n < 2 ^ LENGTH('a)" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3294 |
by (metis of_nat_unat ucast_id unsigned_less) |
37660 | 3295 |
|
70185 | 3296 |
lemma of_nat_eq: "of_nat n = w \<longleftrightarrow> (\<exists>q. n = unat w + q * 2 ^ LENGTH('a))" |
65328 | 3297 |
for w :: "'a::len word" |
68157 | 3298 |
using mod_div_mult_eq [of n "2 ^ LENGTH('a)", symmetric] |
74496 | 3299 |
by (auto simp flip: take_bit_eq_mod simp add: unsigned_of_nat) |
37660 | 3300 |
|
65328 | 3301 |
lemma of_nat_eq_size: "of_nat n = w \<longleftrightarrow> (\<exists>q. n = unat w + q * 2 ^ size w)" |
37660 | 3302 |
unfolding word_size by (rule of_nat_eq) |
3303 |
||
70185 | 3304 |
lemma of_nat_0: "of_nat m = (0::'a::len word) \<longleftrightarrow> (\<exists>q. m = q * 2 ^ LENGTH('a))" |
37660 | 3305 |
by (simp add: of_nat_eq) |
3306 |
||
70185 | 3307 |
lemma of_nat_2p [simp]: "of_nat (2 ^ LENGTH('a)) = (0::'a::len word)" |
45805 | 3308 |
by (fact mult_1 [symmetric, THEN iffD2 [OF of_nat_0 exI]]) |
37660 | 3309 |
|
65328 | 3310 |
lemma of_nat_gt_0: "of_nat k \<noteq> 0 \<Longrightarrow> 0 < k" |
37660 | 3311 |
by (cases k) auto |
3312 |
||
70185 | 3313 |
lemma of_nat_neq_0: "0 < k \<Longrightarrow> k < 2 ^ LENGTH('a::len) \<Longrightarrow> of_nat k \<noteq> (0 :: 'a word)" |
80777 | 3314 |
by (auto simp : of_nat_0) |
65328 | 3315 |
|
3316 |
lemma Abs_fnat_hom_add: "of_nat a + of_nat b = of_nat (a + b)" |
|
37660 | 3317 |
by simp |
3318 |
||
65328 | 3319 |
lemma Abs_fnat_hom_mult: "of_nat a * of_nat b = (of_nat (a * b) :: 'a::len word)" |
72262 | 3320 |
by (simp add: wi_hom_mult) |
37660 | 3321 |
|
65328 | 3322 |
lemma Abs_fnat_hom_Suc: "word_succ (of_nat a) = of_nat (Suc a)" |
72262 | 3323 |
by transfer (simp add: ac_simps) |
37660 | 3324 |
|
3325 |
lemma Abs_fnat_hom_0: "(0::'a::len word) = of_nat 0" |
|
45995
b16070689726
declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents:
45958
diff
changeset
|
3326 |
by simp |
37660 | 3327 |
|
3328 |
lemma Abs_fnat_hom_1: "(1::'a::len word) = of_nat (Suc 0)" |
|
45995
b16070689726
declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents:
45958
diff
changeset
|
3329 |
by simp |
37660 | 3330 |
|
65268 | 3331 |
lemmas Abs_fnat_homs = |
3332 |
Abs_fnat_hom_add Abs_fnat_hom_mult Abs_fnat_hom_Suc |
|
37660 | 3333 |
Abs_fnat_hom_0 Abs_fnat_hom_1 |
3334 |
||
65328 | 3335 |
lemma word_arith_nat_add: "a + b = of_nat (unat a + unat b)" |
3336 |
by simp |
|
3337 |
||
3338 |
lemma word_arith_nat_mult: "a * b = of_nat (unat a * unat b)" |
|
37660 | 3339 |
by simp |
3340 |
||
65328 | 3341 |
lemma word_arith_nat_Suc: "word_succ a = of_nat (Suc (unat a))" |
37660 | 3342 |
by (subst Abs_fnat_hom_Suc [symmetric]) simp |
3343 |
||
65328 | 3344 |
lemma word_arith_nat_div: "a div b = of_nat (unat a div unat b)" |
72262 | 3345 |
by (metis of_int_of_nat_eq of_nat_unat of_nat_div word_div_def) |
3346 |
||
65328 | 3347 |
lemma word_arith_nat_mod: "a mod b = of_nat (unat a mod unat b)" |
72262 | 3348 |
by (metis of_int_of_nat_eq of_nat_mod of_nat_unat word_mod_def) |
37660 | 3349 |
|
3350 |
lemmas word_arith_nat_defs = |
|
3351 |
word_arith_nat_add word_arith_nat_mult |
|
3352 |
word_arith_nat_Suc Abs_fnat_hom_0 |
|
3353 |
Abs_fnat_hom_1 word_arith_nat_div |
|
65268 | 3354 |
word_arith_nat_mod |
37660 | 3355 |
|
72292 | 3356 |
lemma unat_of_nat: |
3357 |
\<open>unat (word_of_nat x :: 'a::len word) = x mod 2 ^ LENGTH('a)\<close> |
|
3358 |
by transfer (simp flip: take_bit_eq_mod add: nat_take_bit_eq) |
|
65268 | 3359 |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
3360 |
lemma unat_cong: "x = y \<Longrightarrow> unat x = unat y" |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
3361 |
by (fact arg_cong) |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
3362 |
|
37660 | 3363 |
lemmas unat_word_ariths = word_arith_nat_defs |
45604 | 3364 |
[THEN trans [OF unat_cong unat_of_nat]] |
37660 | 3365 |
|
3366 |
lemmas word_sub_less_iff = word_sub_le_iff |
|
45816
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset
|
3367 |
[unfolded linorder_not_less [symmetric] Not_eq_iff] |
37660 | 3368 |
|
65268 | 3369 |
lemma unat_add_lem: |
70185 | 3370 |
"unat x + unat y < 2 ^ LENGTH('a) \<longleftrightarrow> unat (x + y) = unat x + unat y" |
65328 | 3371 |
for x y :: "'a::len word" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3372 |
by (metis mod_less unat_word_ariths(1) unsigned_less) |
37660 | 3373 |
|
65268 | 3374 |
lemma unat_mult_lem: |
70185 | 3375 |
"unat x * unat y < 2 ^ LENGTH('a) \<longleftrightarrow> unat (x * y) = unat x * unat y" |
65363 | 3376 |
for x y :: "'a::len word" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3377 |
by (metis mod_less unat_word_ariths(2) unsigned_less) |
71997 | 3378 |
|
65328 | 3379 |
lemma le_no_overflow: "x \<le> b \<Longrightarrow> a \<le> a + b \<Longrightarrow> x \<le> a + b" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3380 |
for a b x :: "'a::len word" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3381 |
using word_le_plus_either by blast |
37660 | 3382 |
|
71997 | 3383 |
lemma uint_div: |
3384 |
\<open>uint (x div y) = uint x div uint y\<close> |
|
72262 | 3385 |
by (fact uint_div_distrib) |
71997 | 3386 |
|
3387 |
lemma uint_mod: |
|
3388 |
\<open>uint (x mod y) = uint x mod uint y\<close> |
|
72262 | 3389 |
by (fact uint_mod_distrib) |
71997 | 3390 |
|
65328 | 3391 |
lemma no_plus_overflow_unat_size: "x \<le> x + y \<longleftrightarrow> unat x + unat y < 2 ^ size x" |
3392 |
for x y :: "'a::len word" |
|
37660 | 3393 |
unfolding word_size by unat_arith |
3394 |
||
65328 | 3395 |
lemmas no_olen_add_nat = |
3396 |
no_plus_overflow_unat_size [unfolded word_size] |
|
3397 |
||
3398 |
lemmas unat_plus_simple = |
|
3399 |
trans [OF no_olen_add_nat unat_add_lem] |
|
3400 |
||
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3401 |
lemma word_div_mult: "\<lbrakk>0 < y; unat x * unat y < 2 ^ LENGTH('a)\<rbrakk> \<Longrightarrow> x * y div y = x" |
65328 | 3402 |
for x y :: "'a::len word" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3403 |
by (simp add: unat_eq_zero unat_mult_lem word_arith_nat_div) |
37660 | 3404 |
|
70185 | 3405 |
lemma div_lt': "i \<le> k div x \<Longrightarrow> unat i * unat x < 2 ^ LENGTH('a)" |
65328 | 3406 |
for i k x :: "'a::len word" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3407 |
by unat_arith (meson le_less_trans less_mult_imp_div_less not_le unsigned_less) |
37660 | 3408 |
|
3409 |
lemmas div_lt'' = order_less_imp_le [THEN div_lt'] |
|
3410 |
||
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3411 |
lemma div_lt_mult: "\<lbrakk>i < k div x; 0 < x\<rbrakk> \<Longrightarrow> i * x < k" |
65328 | 3412 |
for i k x :: "'a::len word" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3413 |
by (metis div_le_mono div_lt'' not_le unat_div word_div_mult word_less_iff_unsigned) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3414 |
|
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3415 |
lemma div_le_mult: "\<lbrakk>i \<le> k div x; 0 < x\<rbrakk> \<Longrightarrow> i * x \<le> k" |
65328 | 3416 |
for i k x :: "'a::len word" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3417 |
by (metis div_lt' less_mult_imp_div_less not_less unat_arith_simps(2) unat_div unat_mult_lem) |
37660 | 3418 |
|
70185 | 3419 |
lemma div_lt_uint': "i \<le> k div x \<Longrightarrow> uint i * uint x < 2 ^ LENGTH('a)" |
65328 | 3420 |
for i k x :: "'a::len word" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3421 |
unfolding uint_nat |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3422 |
by (metis div_lt' int_ops(7) of_nat_unat uint_mult_lem unat_mult_lem) |
37660 | 3423 |
|
3424 |
lemmas div_lt_uint'' = order_less_imp_le [THEN div_lt_uint'] |
|
3425 |
||
70185 | 3426 |
lemma word_le_exists': "x \<le> y \<Longrightarrow> \<exists>z. y = x + z \<and> uint x + uint z < 2 ^ LENGTH('a)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3427 |
for x y z :: "'a::len word" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3428 |
by (metis add.commute diff_add_cancel no_olen_add) |
71997 | 3429 |
|
37660 | 3430 |
lemmas plus_minus_not_NULL = order_less_imp_le [THEN plus_minus_not_NULL_ab] |
3431 |
||
3432 |
lemmas plus_minus_no_overflow = |
|
3433 |
order_less_imp_le [THEN plus_minus_no_overflow_ab] |
|
65268 | 3434 |
|
37660 | 3435 |
lemmas mcs = word_less_minus_cancel word_less_minus_mono_left |
3436 |
word_le_minus_cancel word_le_minus_mono_left |
|
3437 |
||
45604 | 3438 |
lemmas word_l_diffs = mcs [where y = "w + x", unfolded add_diff_cancel] for w x |
3439 |
lemmas word_diff_ls = mcs [where z = "w + x", unfolded add_diff_cancel] for w x |
|
3440 |
lemmas word_plus_mcs = word_diff_ls [where y = "v + x", unfolded add_diff_cancel] for v x |
|
37660 | 3441 |
|
72292 | 3442 |
lemma le_unat_uoi: |
3443 |
\<open>y \<le> unat z \<Longrightarrow> unat (word_of_nat y :: 'a word) = y\<close> |
|
3444 |
for z :: \<open>'a::len word\<close> |
|
3445 |
by transfer (simp add: nat_take_bit_eq take_bit_nat_eq_self_iff le_less_trans) |
|
37660 | 3446 |
|
66808
1907167b6038
elementary definition of division on natural numbers
haftmann
parents:
66453
diff
changeset
|
3447 |
lemmas thd = times_div_less_eq_dividend |
37660 | 3448 |
|
71997 | 3449 |
lemmas uno_simps [THEN le_unat_uoi] = mod_le_divisor div_le_dividend |
37660 | 3450 |
|
65328 | 3451 |
lemma word_mod_div_equality: "(n div b) * b + (n mod b) = n" |
3452 |
for n b :: "'a::len word" |
|
71997 | 3453 |
by (fact div_mult_mod_eq) |
37660 | 3454 |
|
65328 | 3455 |
lemma word_div_mult_le: "a div b * b \<le> a" |
3456 |
for a b :: "'a::len word" |
|
71997 | 3457 |
by (metis div_le_mult mult_not_zero order.not_eq_order_implies_strict order_refl word_zero_le) |
37660 | 3458 |
|
65328 | 3459 |
lemma word_mod_less_divisor: "0 < n \<Longrightarrow> m mod n < n" |
3460 |
for m n :: "'a::len word" |
|
71997 | 3461 |
by (simp add: unat_arith_simps) |
3462 |
||
65328 | 3463 |
lemma word_of_int_power_hom: "word_of_int a ^ n = (word_of_int (a ^ n) :: 'a::len word)" |
45995
b16070689726
declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents:
45958
diff
changeset
|
3464 |
by (induct n) (simp_all add: wi_hom_mult [symmetric]) |
37660 | 3465 |
|
65328 | 3466 |
lemma word_arith_power_alt: "a ^ n = (word_of_int (uint a ^ n) :: 'a::len word)" |
37660 | 3467 |
by (simp add : word_of_int_power_hom [symmetric]) |
3468 |
||
70183
3ea80c950023
incorporated various material from the AFP into the distribution
haftmann
parents:
70175
diff
changeset
|
3469 |
lemma unatSuc: "1 + n \<noteq> 0 \<Longrightarrow> unat (1 + n) = Suc (unat n)" |
3ea80c950023
incorporated various material from the AFP into the distribution
haftmann
parents:
70175
diff
changeset
|
3470 |
for n :: "'a::len word" |
3ea80c950023
incorporated various material from the AFP into the distribution
haftmann
parents:
70175
diff
changeset
|
3471 |
by unat_arith |
3ea80c950023
incorporated various material from the AFP into the distribution
haftmann
parents:
70175
diff
changeset
|
3472 |
|
37660 | 3473 |
|
61799 | 3474 |
subsection \<open>Cardinality, finiteness of set of words\<close> |
37660 | 3475 |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3476 |
lemma inj_on_word_of_int: \<open>inj_on (word_of_int :: int \<Rightarrow> 'a word) {0..<2 ^ LENGTH('a::len)}\<close> |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3477 |
unfolding inj_on_def |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3478 |
by (metis atLeastLessThan_iff word_of_int_inverse) |
71948
6ede899d26d3
fundamental construction of word type following existing transfer rules
haftmann
parents:
71947
diff
changeset
|
3479 |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3480 |
lemma range_uint: \<open>range (uint :: 'a word \<Rightarrow> int) = {0..<2 ^ LENGTH('a::len)}\<close> |
72488 | 3481 |
apply transfer |
80777 | 3482 |
apply (auto simp: image_iff) |
72488 | 3483 |
apply (metis take_bit_int_eq_self_iff) |
3484 |
done |
|
71948
6ede899d26d3
fundamental construction of word type following existing transfer rules
haftmann
parents:
71947
diff
changeset
|
3485 |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3486 |
lemma UNIV_eq: \<open>(UNIV :: 'a word set) = word_of_int ` {0..<2 ^ LENGTH('a::len)}\<close> |
80777 | 3487 |
by (auto simp: image_iff) (metis atLeastLessThan_iff linorder_not_le uint_split) |
45809
2bee94cbae72
finite class instance for word type; remove unused lemmas
huffman
parents:
45808
diff
changeset
|
3488 |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3489 |
lemma card_word: "CARD('a word) = 2 ^ LENGTH('a::len)" |
71948
6ede899d26d3
fundamental construction of word type following existing transfer rules
haftmann
parents:
71947
diff
changeset
|
3490 |
by (simp add: UNIV_eq card_image inj_on_word_of_int) |
37660 | 3491 |
|
70183
3ea80c950023
incorporated various material from the AFP into the distribution
haftmann
parents:
70175
diff
changeset
|
3492 |
lemma card_word_size: "CARD('a word) = 2 ^ size x" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3493 |
for x :: "'a::len word" |
65328 | 3494 |
unfolding word_size by (rule card_word) |
37660 | 3495 |
|
74097 | 3496 |
end |
3497 |
||
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3498 |
instance word :: (len) finite |
71948
6ede899d26d3
fundamental construction of word type following existing transfer rules
haftmann
parents:
71947
diff
changeset
|
3499 |
by standard (simp add: UNIV_eq) |
6ede899d26d3
fundamental construction of word type following existing transfer rules
haftmann
parents:
71947
diff
changeset
|
3500 |
|
37660 | 3501 |
|
61799 | 3502 |
subsection \<open>Bitwise Operations on Words\<close> |
37660 | 3503 |
|
74097 | 3504 |
context |
3505 |
includes bit_operations_syntax |
|
3506 |
begin |
|
3507 |
||
46011 | 3508 |
lemma word_wi_log_defs: |
71149 | 3509 |
"NOT (word_of_int a) = word_of_int (NOT a)" |
46011 | 3510 |
"word_of_int a AND word_of_int b = word_of_int (a AND b)" |
3511 |
"word_of_int a OR word_of_int b = word_of_int (a OR b)" |
|
3512 |
"word_of_int a XOR word_of_int b = word_of_int (a XOR b)" |
|
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
3513 |
by (transfer, rule refl)+ |
47372 | 3514 |
|
46011 | 3515 |
lemma word_no_log_defs [simp]: |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3516 |
"NOT (numeral a) = word_of_int (NOT (numeral a))" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3517 |
"NOT (- numeral a) = word_of_int (NOT (- numeral a))" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3518 |
"numeral a AND numeral b = word_of_int (numeral a AND numeral b)" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3519 |
"numeral a AND - numeral b = word_of_int (numeral a AND - numeral b)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3520 |
"- numeral a AND numeral b = word_of_int (- numeral a AND numeral b)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3521 |
"- numeral a AND - numeral b = word_of_int (- numeral a AND - numeral b)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3522 |
"numeral a OR numeral b = word_of_int (numeral a OR numeral b)" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3523 |
"numeral a OR - numeral b = word_of_int (numeral a OR - numeral b)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3524 |
"- numeral a OR numeral b = word_of_int (- numeral a OR numeral b)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3525 |
"- numeral a OR - numeral b = word_of_int (- numeral a OR - numeral b)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3526 |
"numeral a XOR numeral b = word_of_int (numeral a XOR numeral b)" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3527 |
"numeral a XOR - numeral b = word_of_int (numeral a XOR - numeral b)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3528 |
"- numeral a XOR numeral b = word_of_int (- numeral a XOR numeral b)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3529 |
"- numeral a XOR - numeral b = word_of_int (- numeral a XOR - numeral b)" |
47372 | 3530 |
by (transfer, rule refl)+ |
37660 | 3531 |
|
61799 | 3532 |
text \<open>Special cases for when one of the arguments equals 1.\<close> |
46064
88ef116e0522
add simp rules for bitwise word operations with 1
huffman
parents:
46057
diff
changeset
|
3533 |
|
88ef116e0522
add simp rules for bitwise word operations with 1
huffman
parents:
46057
diff
changeset
|
3534 |
lemma word_bitwise_1_simps [simp]: |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3535 |
"NOT (1::'a::len word) = -2" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3536 |
"1 AND numeral b = word_of_int (1 AND numeral b)" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3537 |
"1 AND - numeral b = word_of_int (1 AND - numeral b)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3538 |
"numeral a AND 1 = word_of_int (numeral a AND 1)" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3539 |
"- numeral a AND 1 = word_of_int (- numeral a AND 1)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3540 |
"1 OR numeral b = word_of_int (1 OR numeral b)" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3541 |
"1 OR - numeral b = word_of_int (1 OR - numeral b)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3542 |
"numeral a OR 1 = word_of_int (numeral a OR 1)" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3543 |
"- numeral a OR 1 = word_of_int (- numeral a OR 1)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3544 |
"1 XOR numeral b = word_of_int (1 XOR numeral b)" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3545 |
"1 XOR - numeral b = word_of_int (1 XOR - numeral b)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3546 |
"numeral a XOR 1 = word_of_int (numeral a XOR 1)" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
3547 |
"- numeral a XOR 1 = word_of_int (- numeral a XOR 1)" |
74496 | 3548 |
apply (simp_all add: word_uint_eq_iff unsigned_not_eq unsigned_and_eq unsigned_or_eq |
3549 |
unsigned_xor_eq of_nat_take_bit ac_simps unsigned_of_int) |
|
74163 | 3550 |
apply (simp_all add: minus_numeral_eq_not_sub_one) |
3551 |
apply (simp_all only: sub_one_eq_not_neg bit.xor_compl_right take_bit_xor bit.double_compl) |
|
3552 |
apply simp_all |
|
3553 |
done |
|
46064
88ef116e0522
add simp rules for bitwise word operations with 1
huffman
parents:
46057
diff
changeset
|
3554 |
|
61799 | 3555 |
text \<open>Special cases for when one of the arguments equals -1.\<close> |
56979 | 3556 |
|
3557 |
lemma word_bitwise_m1_simps [simp]: |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3558 |
"NOT (-1::'a::len word) = 0" |
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3559 |
"(-1::'a::len word) AND x = x" |
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3560 |
"x AND (-1::'a::len word) = x" |
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3561 |
"(-1::'a::len word) OR x = -1" |
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3562 |
"x OR (-1::'a::len word) = -1" |
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3563 |
" (-1::'a::len word) XOR x = NOT x" |
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3564 |
"x XOR (-1::'a::len word) = NOT x" |
56979 | 3565 |
by (transfer, simp)+ |
3566 |
||
74163 | 3567 |
lemma word_of_int_not_numeral_eq [simp]: |
3568 |
\<open>(word_of_int (NOT (numeral bin)) :: 'a::len word) = - numeral bin - 1\<close> |
|
3569 |
by transfer (simp add: not_eq_complement) |
|
3570 |
||
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3571 |
lemma uint_and: |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3572 |
\<open>uint (x AND y) = uint x AND uint y\<close> |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3573 |
by transfer simp |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3574 |
|
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3575 |
lemma uint_or: |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3576 |
\<open>uint (x OR y) = uint x OR uint y\<close> |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3577 |
by transfer simp |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3578 |
|
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3579 |
lemma uint_xor: |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3580 |
\<open>uint (x XOR y) = uint x XOR uint y\<close> |
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3581 |
by transfer simp |
47372 | 3582 |
|
67408 | 3583 |
\<comment> \<open>get from commutativity, associativity etc of \<open>int_and\<close> etc to same for \<open>word_and etc\<close>\<close> |
65268 | 3584 |
lemmas bwsimps = |
46013 | 3585 |
wi_hom_add |
37660 | 3586 |
word_wi_log_defs |
3587 |
||
3588 |
lemma word_bw_assocs: |
|
3589 |
"(x AND y) AND z = x AND y AND z" |
|
3590 |
"(x OR y) OR z = x OR y OR z" |
|
3591 |
"(x XOR y) XOR z = x XOR y XOR z" |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3592 |
for x :: "'a::len word" |
72508 | 3593 |
by (fact ac_simps)+ |
65268 | 3594 |
|
37660 | 3595 |
lemma word_bw_comms: |
3596 |
"x AND y = y AND x" |
|
3597 |
"x OR y = y OR x" |
|
3598 |
"x XOR y = y XOR x" |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3599 |
for x :: "'a::len word" |
72508 | 3600 |
by (fact ac_simps)+ |
65268 | 3601 |
|
37660 | 3602 |
lemma word_bw_lcs: |
3603 |
"y AND x AND z = x AND y AND z" |
|
3604 |
"y OR x OR z = x OR y OR z" |
|
3605 |
"y XOR x XOR z = x XOR y XOR z" |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3606 |
for x :: "'a::len word" |
72508 | 3607 |
by (fact ac_simps)+ |
37660 | 3608 |
|
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3609 |
lemma word_log_esimps: |
37660 | 3610 |
"x AND 0 = 0" |
3611 |
"x AND -1 = x" |
|
3612 |
"x OR 0 = x" |
|
3613 |
"x OR -1 = -1" |
|
3614 |
"x XOR 0 = x" |
|
3615 |
"x XOR -1 = NOT x" |
|
3616 |
"0 AND x = 0" |
|
3617 |
"-1 AND x = x" |
|
3618 |
"0 OR x = x" |
|
3619 |
"-1 OR x = -1" |
|
3620 |
"0 XOR x = x" |
|
3621 |
"-1 XOR x = NOT x" |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3622 |
for x :: "'a::len word" |
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3623 |
by simp_all |
37660 | 3624 |
|
3625 |
lemma word_not_dist: |
|
3626 |
"NOT (x OR y) = NOT x AND NOT y" |
|
3627 |
"NOT (x AND y) = NOT x OR NOT y" |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3628 |
for x :: "'a::len word" |
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3629 |
by simp_all |
37660 | 3630 |
|
3631 |
lemma word_bw_same: |
|
3632 |
"x AND x = x" |
|
3633 |
"x OR x = x" |
|
3634 |
"x XOR x = 0" |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3635 |
for x :: "'a::len word" |
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3636 |
by simp_all |
37660 | 3637 |
|
3638 |
lemma word_ao_absorbs [simp]: |
|
3639 |
"x AND (y OR x) = x" |
|
3640 |
"x OR y AND x = x" |
|
3641 |
"x AND (x OR y) = x" |
|
3642 |
"y AND x OR x = x" |
|
3643 |
"(y OR x) AND x = x" |
|
3644 |
"x OR x AND y = x" |
|
3645 |
"(x OR y) AND x = x" |
|
3646 |
"x AND y OR x = x" |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3647 |
for x :: "'a::len word" |
72508 | 3648 |
by (auto intro: bit_eqI simp add: bit_and_iff bit_or_iff) |
37660 | 3649 |
|
71149 | 3650 |
lemma word_not_not [simp]: "NOT (NOT x) = x" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3651 |
for x :: "'a::len word" |
72508 | 3652 |
by (fact bit.double_compl) |
37660 | 3653 |
|
65328 | 3654 |
lemma word_ao_dist: "(x OR y) AND z = x AND z OR y AND z" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3655 |
for x :: "'a::len word" |
72508 | 3656 |
by (fact bit.conj_disj_distrib2) |
37660 | 3657 |
|
65328 | 3658 |
lemma word_oa_dist: "x AND y OR z = (x OR z) AND (y OR z)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3659 |
for x :: "'a::len word" |
72508 | 3660 |
by (fact bit.disj_conj_distrib2) |
3661 |
||
65328 | 3662 |
lemma word_add_not [simp]: "x + NOT x = -1" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3663 |
for x :: "'a::len word" |
72508 | 3664 |
by (simp add: not_eq_complement) |
3665 |
||
65328 | 3666 |
lemma word_plus_and_or [simp]: "(x AND y) + (x OR y) = x + y" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3667 |
for x :: "'a::len word" |
47372 | 3668 |
by transfer (simp add: plus_and_or) |
37660 | 3669 |
|
65328 | 3670 |
lemma leoa: "w = x OR y \<Longrightarrow> y = w AND y" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3671 |
for x :: "'a::len word" |
65328 | 3672 |
by auto |
3673 |
||
3674 |
lemma leao: "w' = x' AND y' \<Longrightarrow> x' = x' OR w'" |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3675 |
for x' :: "'a::len word" |
65328 | 3676 |
by auto |
3677 |
||
3678 |
lemma word_ao_equiv: "w = w OR w' \<longleftrightarrow> w' = w AND w'" |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3679 |
for w w' :: "'a::len word" |
48196 | 3680 |
by (auto intro: leoa leao) |
37660 | 3681 |
|
65328 | 3682 |
lemma le_word_or2: "x \<le> x OR y" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
3683 |
for x y :: "'a::len word" |
72488 | 3684 |
by (simp add: or_greater_eq uint_or word_le_def) |
37660 | 3685 |
|
71997 | 3686 |
lemmas le_word_or1 = xtrans(3) [OF word_bw_comms (2) le_word_or2] |
3687 |
lemmas word_and_le1 = xtrans(3) [OF word_ao_absorbs (4) [symmetric] le_word_or2] |
|
3688 |
lemmas word_and_le2 = xtrans(3) [OF word_ao_absorbs (8) [symmetric] le_word_or2] |
|
37660 | 3689 |
|
72611
c7bc3e70a8c7
official collection for bit projection simplifications
haftmann
parents:
72515
diff
changeset
|
3690 |
lemma bit_horner_sum_bit_word_iff [bit_simps]: |
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3691 |
\<open>bit (horner_sum of_bool (2 :: 'a::len word) bs) n |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3692 |
\<longleftrightarrow> n < min LENGTH('a) (length bs) \<and> bs ! n\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3693 |
by transfer (simp add: bit_horner_sum_bit_iff) |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3694 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3695 |
definition word_reverse :: \<open>'a::len word \<Rightarrow> 'a word\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3696 |
where \<open>word_reverse w = horner_sum of_bool 2 (rev (map (bit w) [0..<LENGTH('a)]))\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3697 |
|
72611
c7bc3e70a8c7
official collection for bit projection simplifications
haftmann
parents:
72515
diff
changeset
|
3698 |
lemma bit_word_reverse_iff [bit_simps]: |
71990 | 3699 |
\<open>bit (word_reverse w) n \<longleftrightarrow> n < LENGTH('a) \<and> bit w (LENGTH('a) - Suc n)\<close> |
3700 |
for w :: \<open>'a::len word\<close> |
|
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3701 |
by (cases \<open>n < LENGTH('a)\<close>) |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3702 |
(simp_all add: word_reverse_def bit_horner_sum_bit_word_iff rev_nth) |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3703 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3704 |
lemma word_rev_rev [simp] : "word_reverse (word_reverse w) = w" |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3705 |
by (rule bit_word_eqI) |
80777 | 3706 |
(auto simp: bit_word_reverse_iff bit_imp_le_length Suc_diff_Suc) |
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3707 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3708 |
lemma word_rev_gal: "word_reverse w = u \<Longrightarrow> word_reverse u = w" |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3709 |
by (metis word_rev_rev) |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3710 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3711 |
lemma word_rev_gal': "u = word_reverse w \<Longrightarrow> w = word_reverse u" |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3712 |
by simp |
37660 | 3713 |
|
80401
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
3714 |
lemma word_eq_reverseI: |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
3715 |
\<open>v = w\<close> if \<open>word_reverse v = word_reverse w\<close> |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
3716 |
by (metis that word_rev_rev) |
80401
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
3717 |
|
65328 | 3718 |
lemma uint_2p: "(0::'a::len word) < 2 ^ n \<Longrightarrow> uint (2 ^ n::'a::len word) = 2 ^ n" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3719 |
by (cases \<open>n < LENGTH('a)\<close>; transfer; force) |
37660 | 3720 |
|
65268 | 3721 |
lemma word_of_int_2p: "(word_of_int (2 ^ n) :: 'a::len word) = 2 ^ n" |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
3722 |
by simp |
37660 | 3723 |
|
3724 |
||
61799 | 3725 |
subsubsection \<open>shift functions in terms of lists of bools\<close> |
37660 | 3726 |
|
71997 | 3727 |
lemma drop_bit_word_numeral [simp]: |
3728 |
\<open>drop_bit (numeral n) (numeral k) = |
|
3729 |
(word_of_int (drop_bit (numeral n) (take_bit LENGTH('a) (numeral k))) :: 'a::len word)\<close> |
|
3730 |
by transfer simp |
|
3731 |
||
74498 | 3732 |
lemma drop_bit_word_Suc_numeral [simp]: |
3733 |
\<open>drop_bit (Suc n) (numeral k) = |
|
3734 |
(word_of_int (drop_bit (Suc n) (take_bit LENGTH('a) (numeral k))) :: 'a::len word)\<close> |
|
3735 |
by transfer simp |
|
3736 |
||
3737 |
lemma drop_bit_word_minus_numeral [simp]: |
|
3738 |
\<open>drop_bit (numeral n) (- numeral k) = |
|
3739 |
(word_of_int (drop_bit (numeral n) (take_bit LENGTH('a) (- numeral k))) :: 'a::len word)\<close> |
|
3740 |
by transfer simp |
|
3741 |
||
3742 |
lemma drop_bit_word_Suc_minus_numeral [simp]: |
|
3743 |
\<open>drop_bit (Suc n) (- numeral k) = |
|
3744 |
(word_of_int (drop_bit (Suc n) (take_bit LENGTH('a) (- numeral k))) :: 'a::len word)\<close> |
|
3745 |
by transfer simp |
|
3746 |
||
73853 | 3747 |
lemma signed_drop_bit_word_numeral [simp]: |
3748 |
\<open>signed_drop_bit (numeral n) (numeral k) = |
|
3749 |
(word_of_int (drop_bit (numeral n) (signed_take_bit (LENGTH('a) - 1) (numeral k))) :: 'a::len word)\<close> |
|
3750 |
by transfer simp |
|
3751 |
||
74498 | 3752 |
lemma signed_drop_bit_word_Suc_numeral [simp]: |
3753 |
\<open>signed_drop_bit (Suc n) (numeral k) = |
|
3754 |
(word_of_int (drop_bit (Suc n) (signed_take_bit (LENGTH('a) - 1) (numeral k))) :: 'a::len word)\<close> |
|
3755 |
by transfer simp |
|
3756 |
||
3757 |
lemma signed_drop_bit_word_minus_numeral [simp]: |
|
3758 |
\<open>signed_drop_bit (numeral n) (- numeral k) = |
|
3759 |
(word_of_int (drop_bit (numeral n) (signed_take_bit (LENGTH('a) - 1) (- numeral k))) :: 'a::len word)\<close> |
|
3760 |
by transfer simp |
|
3761 |
||
3762 |
lemma signed_drop_bit_word_Suc_minus_numeral [simp]: |
|
3763 |
\<open>signed_drop_bit (Suc n) (- numeral k) = |
|
3764 |
(word_of_int (drop_bit (Suc n) (signed_take_bit (LENGTH('a) - 1) (- numeral k))) :: 'a::len word)\<close> |
|
3765 |
by transfer simp |
|
3766 |
||
3767 |
lemma take_bit_word_numeral [simp]: |
|
3768 |
\<open>take_bit (numeral n) (numeral k) = |
|
3769 |
(word_of_int (take_bit (min LENGTH('a) (numeral n)) (numeral k)) :: 'a::len word)\<close> |
|
3770 |
by transfer rule |
|
3771 |
||
3772 |
lemma take_bit_word_Suc_numeral [simp]: |
|
3773 |
\<open>take_bit (Suc n) (numeral k) = |
|
3774 |
(word_of_int (take_bit (min LENGTH('a) (Suc n)) (numeral k)) :: 'a::len word)\<close> |
|
3775 |
by transfer rule |
|
3776 |
||
3777 |
lemma take_bit_word_minus_numeral [simp]: |
|
3778 |
\<open>take_bit (numeral n) (- numeral k) = |
|
3779 |
(word_of_int (take_bit (min LENGTH('a) (numeral n)) (- numeral k)) :: 'a::len word)\<close> |
|
3780 |
by transfer rule |
|
3781 |
||
3782 |
lemma take_bit_word_Suc_minus_numeral [simp]: |
|
3783 |
\<open>take_bit (Suc n) (- numeral k) = |
|
3784 |
(word_of_int (take_bit (min LENGTH('a) (Suc n)) (- numeral k)) :: 'a::len word)\<close> |
|
3785 |
by transfer rule |
|
3786 |
||
3787 |
lemma signed_take_bit_word_numeral [simp]: |
|
3788 |
\<open>signed_take_bit (numeral n) (numeral k) = |
|
3789 |
(word_of_int (signed_take_bit (numeral n) (take_bit LENGTH('a) (numeral k))) :: 'a::len word)\<close> |
|
3790 |
by transfer rule |
|
3791 |
||
3792 |
lemma signed_take_bit_word_Suc_numeral [simp]: |
|
3793 |
\<open>signed_take_bit (Suc n) (numeral k) = |
|
3794 |
(word_of_int (signed_take_bit (Suc n) (take_bit LENGTH('a) (numeral k))) :: 'a::len word)\<close> |
|
3795 |
by transfer rule |
|
3796 |
||
3797 |
lemma signed_take_bit_word_minus_numeral [simp]: |
|
3798 |
\<open>signed_take_bit (numeral n) (- numeral k) = |
|
3799 |
(word_of_int (signed_take_bit (numeral n) (take_bit LENGTH('a) (- numeral k))) :: 'a::len word)\<close> |
|
3800 |
by transfer rule |
|
3801 |
||
3802 |
lemma signed_take_bit_word_Suc_minus_numeral [simp]: |
|
3803 |
\<open>signed_take_bit (Suc n) (- numeral k) = |
|
3804 |
(word_of_int (signed_take_bit (Suc n) (take_bit LENGTH('a) (- numeral k))) :: 'a::len word)\<close> |
|
3805 |
by transfer rule |
|
3806 |
||
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3807 |
lemma False_map2_or: "\<lbrakk>set xs \<subseteq> {False}; length ys = length xs\<rbrakk> \<Longrightarrow> map2 (\<or>) xs ys = ys" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3808 |
by (induction xs arbitrary: ys) (auto simp: length_Suc_conv) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3809 |
|
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3810 |
lemma align_lem_or: |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3811 |
assumes "length xs = n + m" "length ys = n + m" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3812 |
and "drop m xs = replicate n False" "take m ys = replicate m False" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3813 |
shows "map2 (\<or>) xs ys = take m xs @ drop m ys" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3814 |
using assms |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3815 |
proof (induction xs arbitrary: ys m) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3816 |
case (Cons a xs) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3817 |
then show ?case |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3818 |
by (cases m) (auto simp: length_Suc_conv False_map2_or) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3819 |
qed auto |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3820 |
|
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3821 |
lemma False_map2_and: "\<lbrakk>set xs \<subseteq> {False}; length ys = length xs\<rbrakk> \<Longrightarrow> map2 (\<and>) xs ys = xs" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3822 |
by (induction xs arbitrary: ys) (auto simp: length_Suc_conv) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3823 |
|
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3824 |
lemma align_lem_and: |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3825 |
assumes "length xs = n + m" "length ys = n + m" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3826 |
and "drop m xs = replicate n False" "take m ys = replicate m False" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3827 |
shows "map2 (\<and>) xs ys = replicate (n + m) False" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3828 |
using assms |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3829 |
proof (induction xs arbitrary: ys m) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3830 |
case (Cons a xs) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3831 |
then show ?case |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3832 |
by (cases m) (auto simp: length_Suc_conv set_replicate_conv_if False_map2_and) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3833 |
qed auto |
37660 | 3834 |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
3835 |
|
61799 | 3836 |
subsubsection \<open>Mask\<close> |
37660 | 3837 |
|
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
3838 |
lemma minus_1_eq_mask: |
72082 | 3839 |
\<open>- 1 = (mask LENGTH('a) :: 'a::len word)\<close> |
74101 | 3840 |
by (rule bit_eqI) (simp add: bit_exp_iff bit_mask_iff) |
72079 | 3841 |
|
3842 |
lemma mask_eq_decr_exp: |
|
72082 | 3843 |
\<open>mask n = 2 ^ n - (1 :: 'a::len word)\<close> |
3844 |
by (fact mask_eq_exp_minus_1) |
|
71953 | 3845 |
|
3846 |
lemma mask_Suc_rec: |
|
72082 | 3847 |
\<open>mask (Suc n) = 2 * mask n + (1 :: 'a::len word)\<close> |
3848 |
by (simp add: mask_eq_exp_minus_1) |
|
71953 | 3849 |
|
3850 |
context |
|
3851 |
begin |
|
3852 |
||
72611
c7bc3e70a8c7
official collection for bit projection simplifications
haftmann
parents:
72515
diff
changeset
|
3853 |
qualified lemma bit_mask_iff [bit_simps]: |
71990 | 3854 |
\<open>bit (mask m :: 'a::len word) n \<longleftrightarrow> n < min LENGTH('a) m\<close> |
74101 | 3855 |
by (simp add: bit_mask_iff not_le) |
71953 | 3856 |
|
3857 |
end |
|
3858 |
||
72128 | 3859 |
lemma mask_bin: "mask n = word_of_int (take_bit n (- 1))" |
74592 | 3860 |
by transfer simp |
37660 | 3861 |
|
72128 | 3862 |
lemma and_mask_bintr: "w AND mask n = word_of_int (take_bit n (uint w))" |
72488 | 3863 |
by transfer (simp add: ac_simps take_bit_eq_mask) |
37660 | 3864 |
|
72128 | 3865 |
lemma and_mask_wi: "word_of_int i AND mask n = word_of_int (take_bit n i)" |
74496 | 3866 |
by (simp add: take_bit_eq_mask of_int_and_eq of_int_mask_eq) |
46023
fad87bb608fc
restate some lemmas to respect int/bin distinction
huffman
parents:
46022
diff
changeset
|
3867 |
|
65328 | 3868 |
lemma and_mask_wi': |
72128 | 3869 |
"word_of_int i AND mask n = (word_of_int (take_bit (min LENGTH('a) n) i) :: 'a::len word)" |
80777 | 3870 |
by (auto simp: and_mask_wi min_def wi_bintr) |
64593
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
3871 |
|
72128 | 3872 |
lemma and_mask_no: "numeral i AND mask n = word_of_int (take_bit n (numeral i))" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
3873 |
unfolding word_numeral_alt by (rule and_mask_wi) |
37660 | 3874 |
|
45811 | 3875 |
lemma and_mask_mod_2p: "w AND mask n = word_of_int (uint w mod 2 ^ n)" |
72128 | 3876 |
by (simp only: and_mask_bintr take_bit_eq_mod) |
37660 | 3877 |
|
72130
9e5862223442
dedicated symbols for code generation, to pave way for generic conversions from and to word
haftmann
parents:
72128
diff
changeset
|
3878 |
lemma uint_mask_eq: |
9e5862223442
dedicated symbols for code generation, to pave way for generic conversions from and to word
haftmann
parents:
72128
diff
changeset
|
3879 |
\<open>uint (mask n :: 'a::len word) = mask (min LENGTH('a) n)\<close> |
9e5862223442
dedicated symbols for code generation, to pave way for generic conversions from and to word
haftmann
parents:
72128
diff
changeset
|
3880 |
by transfer simp |
9e5862223442
dedicated symbols for code generation, to pave way for generic conversions from and to word
haftmann
parents:
72128
diff
changeset
|
3881 |
|
37660 | 3882 |
lemma and_mask_lt_2p: "uint (w AND mask n) < 2 ^ n" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3883 |
by (metis take_bit_eq_mask take_bit_int_less_exp unsigned_take_bit_eq) |
37660 | 3884 |
|
65363 | 3885 |
lemma mask_eq_iff: "w AND mask n = w \<longleftrightarrow> uint w < 2 ^ n" |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
3886 |
by (metis and_mask_bintr and_mask_lt_2p take_bit_int_eq_self take_bit_nonnegative |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
3887 |
uint_sint word_of_int_uint) |
37660 | 3888 |
|
65328 | 3889 |
lemma and_mask_dvd: "2 ^ n dvd uint w \<longleftrightarrow> w AND mask n = 0" |
72262 | 3890 |
by (simp flip: take_bit_eq_mask take_bit_eq_mod unsigned_take_bit_eq add: dvd_eq_mod_eq_0 uint_0_iff) |
37660 | 3891 |
|
65328 | 3892 |
lemma and_mask_dvd_nat: "2 ^ n dvd unat w \<longleftrightarrow> w AND mask n = 0" |
72262 | 3893 |
by (simp flip: take_bit_eq_mask take_bit_eq_mod unsigned_take_bit_eq add: dvd_eq_mod_eq_0 unat_0_iff uint_0_iff) |
37660 | 3894 |
|
65328 | 3895 |
lemma word_2p_lem: "n < size w \<Longrightarrow> w < 2 ^ n = (uint w < 2 ^ n)" |
3896 |
for w :: "'a::len word" |
|
72262 | 3897 |
by transfer simp |
37660 | 3898 |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3899 |
lemma less_mask_eq: |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3900 |
fixes x :: "'a::len word" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3901 |
assumes "x < 2 ^ n" shows "x AND mask n = x" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3902 |
by (metis (no_types) assms lt2p_lem mask_eq_iff not_less word_2p_lem word_size) |
37660 | 3903 |
|
45604 | 3904 |
lemmas mask_eq_iff_w2p = trans [OF mask_eq_iff word_2p_lem [symmetric]] |
3905 |
||
3906 |
lemmas and_mask_less' = iffD2 [OF word_2p_lem and_mask_lt_2p, simplified word_size] |
|
37660 | 3907 |
|
72082 | 3908 |
lemma and_mask_less_size: "n < size x \<Longrightarrow> x AND mask n < 2 ^ n" |
3909 |
for x :: \<open>'a::len word\<close> |
|
37660 | 3910 |
unfolding word_size by (erule and_mask_less') |
3911 |
||
65328 | 3912 |
lemma word_mod_2p_is_mask [OF refl]: "c = 2 ^ n \<Longrightarrow> c > 0 \<Longrightarrow> x mod c = x AND mask n" |
3913 |
for c x :: "'a::len word" |
|
3914 |
by (auto simp: word_mod_def uint_2p and_mask_mod_2p) |
|
37660 | 3915 |
|
3916 |
lemma mask_eqs: |
|
3917 |
"(a AND mask n) + b AND mask n = a + b AND mask n" |
|
3918 |
"a + (b AND mask n) AND mask n = a + b AND mask n" |
|
3919 |
"(a AND mask n) - b AND mask n = a - b AND mask n" |
|
3920 |
"a - (b AND mask n) AND mask n = a - b AND mask n" |
|
3921 |
"a * (b AND mask n) AND mask n = a * b AND mask n" |
|
3922 |
"(b AND mask n) * a AND mask n = b * a AND mask n" |
|
3923 |
"(a AND mask n) + (b AND mask n) AND mask n = a + b AND mask n" |
|
3924 |
"(a AND mask n) - (b AND mask n) AND mask n = a - b AND mask n" |
|
3925 |
"(a AND mask n) * (b AND mask n) AND mask n = a * b AND mask n" |
|
3926 |
"- (a AND mask n) AND mask n = - a AND mask n" |
|
3927 |
"word_succ (a AND mask n) AND mask n = word_succ a AND mask n" |
|
3928 |
"word_pred (a AND mask n) AND mask n = word_pred a AND mask n" |
|
3929 |
using word_of_int_Ex [where x=a] word_of_int_Ex [where x=b] |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3930 |
unfolding take_bit_eq_mask [symmetric] |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3931 |
by (transfer; simp add: take_bit_eq_mod mod_simps)+ |
65328 | 3932 |
|
3933 |
lemma mask_power_eq: "(x AND mask n) ^ k AND mask n = x ^ k AND mask n" |
|
72082 | 3934 |
for x :: \<open>'a::len word\<close> |
37660 | 3935 |
using word_of_int_Ex [where x=x] |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3936 |
unfolding take_bit_eq_mask [symmetric] |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3937 |
by (transfer; simp add: take_bit_eq_mod mod_simps)+ |
37660 | 3938 |
|
70183
3ea80c950023
incorporated various material from the AFP into the distribution
haftmann
parents:
70175
diff
changeset
|
3939 |
lemma mask_full [simp]: "mask LENGTH('a) = (- 1 :: 'a::len word)" |
74592 | 3940 |
by transfer simp |
70183
3ea80c950023
incorporated various material from the AFP into the distribution
haftmann
parents:
70175
diff
changeset
|
3941 |
|
37660 | 3942 |
|
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3943 |
subsubsection \<open>Slices\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3944 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3945 |
definition slice1 :: \<open>nat \<Rightarrow> 'a::len word \<Rightarrow> 'b::len word\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3946 |
where \<open>slice1 n w = (if n < LENGTH('a) |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3947 |
then ucast (drop_bit (LENGTH('a) - n) w) |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3948 |
else push_bit (n - LENGTH('a)) (ucast w))\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3949 |
|
72611
c7bc3e70a8c7
official collection for bit projection simplifications
haftmann
parents:
72515
diff
changeset
|
3950 |
lemma bit_slice1_iff [bit_simps]: |
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3951 |
\<open>bit (slice1 m w :: 'b::len word) n \<longleftrightarrow> m - LENGTH('a) \<le> n \<and> n < min LENGTH('b) m |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3952 |
\<and> bit w (n + (LENGTH('a) - m) - (m - LENGTH('a)))\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3953 |
for w :: \<open>'a::len word\<close> |
80777 | 3954 |
by (auto simp: slice1_def bit_ucast_iff bit_drop_bit_eq bit_push_bit_iff not_less not_le ac_simps |
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3955 |
dest: bit_imp_le_length) |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3956 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3957 |
definition slice :: \<open>nat \<Rightarrow> 'a::len word \<Rightarrow> 'b::len word\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3958 |
where \<open>slice n = slice1 (LENGTH('a) - n)\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3959 |
|
72611
c7bc3e70a8c7
official collection for bit projection simplifications
haftmann
parents:
72515
diff
changeset
|
3960 |
lemma bit_slice_iff [bit_simps]: |
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3961 |
\<open>bit (slice m w :: 'b::len word) n \<longleftrightarrow> n < min LENGTH('b) (LENGTH('a) - m) \<and> bit w (n + LENGTH('a) - (LENGTH('a) - m))\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3962 |
for w :: \<open>'a::len word\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3963 |
by (simp add: slice_def word_size bit_slice1_iff) |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3964 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3965 |
lemma slice1_0 [simp] : "slice1 n 0 = 0" |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3966 |
unfolding slice1_def by simp |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3967 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3968 |
lemma slice_0 [simp] : "slice n 0 = 0" |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3969 |
unfolding slice_def by auto |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3970 |
|
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
3971 |
lemma ucast_slice1: "ucast w = slice1 (size w) w" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3972 |
unfolding slice1_def by (simp add: size_word.rep_eq) |
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3973 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3974 |
lemma ucast_slice: "ucast w = slice 0 w" |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3975 |
by (simp add: slice_def slice1_def) |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3976 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3977 |
lemma slice_id: "slice 0 t = t" |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3978 |
by (simp only: ucast_slice [symmetric] ucast_id) |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3979 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3980 |
lemma rev_slice1: |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
3981 |
\<open>slice1 n (word_reverse w :: 'b::len word) = word_reverse (slice1 k w :: 'a::len word)\<close> |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
3982 |
if \<open>n + k = LENGTH('a) + LENGTH('b)\<close> |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
3983 |
proof (rule bit_word_eqI) |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
3984 |
fix m |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
3985 |
assume *: \<open>m < LENGTH('a)\<close> |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
3986 |
from that have **: \<open>LENGTH('b) = n + k - LENGTH('a)\<close> |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
3987 |
by simp |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
3988 |
show \<open>bit (slice1 n (word_reverse w :: 'b word) :: 'a word) m \<longleftrightarrow> bit (word_reverse (slice1 k w :: 'a word)) m\<close> |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3989 |
unfolding bit_slice1_iff bit_word_reverse_iff |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
3990 |
using * ** |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3991 |
by (cases \<open>n \<le> LENGTH('a)\<close>; cases \<open>k \<le> LENGTH('a)\<close>) auto |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
3992 |
qed |
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3993 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3994 |
lemma rev_slice: |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3995 |
"n + k + LENGTH('a::len) = LENGTH('b::len) \<Longrightarrow> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3996 |
slice n (word_reverse (w::'b word)) = word_reverse (slice k w :: 'a word)" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3997 |
unfolding slice_def word_size |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
3998 |
by (simp add: rev_slice1) |
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
3999 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
4000 |
|
61799 | 4001 |
subsubsection \<open>Revcast\<close> |
37660 | 4002 |
|
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
4003 |
definition revcast :: \<open>'a::len word \<Rightarrow> 'b::len word\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
4004 |
where \<open>revcast = slice1 LENGTH('b)\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
4005 |
|
72611
c7bc3e70a8c7
official collection for bit projection simplifications
haftmann
parents:
72515
diff
changeset
|
4006 |
lemma bit_revcast_iff [bit_simps]: |
72027
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
4007 |
\<open>bit (revcast w :: 'b::len word) n \<longleftrightarrow> LENGTH('b) - LENGTH('a) \<le> n \<and> n < LENGTH('b) |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
4008 |
\<and> bit w (n + (LENGTH('a) - LENGTH('b)) - (LENGTH('b) - LENGTH('a)))\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
4009 |
for w :: \<open>'a::len word\<close> |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
4010 |
by (simp add: revcast_def bit_slice1_iff) |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
4011 |
|
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
4012 |
lemma revcast_slice1 [OF refl]: "rc = revcast w \<Longrightarrow> slice1 (size rc) w = rc" |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
4013 |
by (simp add: revcast_def word_size) |
759532ef0885
prefer canonically oriented lists of bits and more direct characterizations in definitions
haftmann
parents:
72010
diff
changeset
|
4014 |
|
65268 | 4015 |
lemma revcast_rev_ucast [OF refl refl refl]: |
4016 |
"cs = [rc, uc] \<Longrightarrow> rc = revcast (word_reverse w) \<Longrightarrow> uc = ucast w \<Longrightarrow> |
|
37660 | 4017 |
rc = word_reverse uc" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4018 |
by (metis rev_slice1 revcast_slice1 ucast_slice1 word_size) |
37660 | 4019 |
|
45811 | 4020 |
lemma revcast_ucast: "revcast w = word_reverse (ucast (word_reverse w))" |
4021 |
using revcast_rev_ucast [of "word_reverse w"] by simp |
|
4022 |
||
4023 |
lemma ucast_revcast: "ucast w = word_reverse (revcast (word_reverse w))" |
|
4024 |
by (fact revcast_rev_ucast [THEN word_rev_gal']) |
|
4025 |
||
4026 |
lemma ucast_rev_revcast: "ucast (word_reverse w) = word_reverse (revcast w)" |
|
4027 |
by (fact revcast_ucast [THEN word_rev_gal']) |
|
37660 | 4028 |
|
4029 |
||
65328 | 4030 |
text "linking revcast and cast via shift" |
37660 | 4031 |
|
4032 |
lemmas wsst_TYs = source_size target_size word_size |
|
4033 |
||
65268 | 4034 |
lemmas sym_notr = |
37660 | 4035 |
not_iff [THEN iffD2, THEN not_sym, THEN not_iff [THEN iffD1]] |
4036 |
||
4037 |
||
61799 | 4038 |
subsection \<open>Split and cat\<close> |
37660 | 4039 |
|
40827
abbc05c20e24
code preprocessor setup for numerals on word type;
haftmann
parents:
39910
diff
changeset
|
4040 |
lemmas word_split_bin' = word_split_def |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4041 |
lemmas word_cat_bin' = word_cat_eq |
37660 | 4042 |
|
65268 | 4043 |
\<comment> \<open>this odd result is analogous to \<open>ucast_id\<close>, |
61799 | 4044 |
result to the length given by the result type\<close> |
37660 | 4045 |
|
4046 |
lemma word_cat_id: "word_cat a b = b" |
|
72488 | 4047 |
by transfer (simp add: take_bit_concat_bit_eq) |
65336 | 4048 |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4049 |
lemma word_cat_split_alt: "\<lbrakk>size w \<le> size u + size v; word_split w = (u,v)\<rbrakk> \<Longrightarrow> word_cat u v = w" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4050 |
unfolding word_split_def |
80777 | 4051 |
by (rule bit_word_eqI) (auto simp: bit_word_cat_iff not_less word_size bit_ucast_iff bit_drop_bit_eq) |
37660 | 4052 |
|
45604 | 4053 |
lemmas word_cat_split_size = sym [THEN [2] word_cat_split_alt [symmetric]] |
37660 | 4054 |
|
4055 |
||
61799 | 4056 |
subsubsection \<open>Split and slice\<close> |
37660 | 4057 |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4058 |
lemma split_slices: |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4059 |
assumes "word_split w = (u, v)" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4060 |
shows "u = slice (size v) w \<and> v = slice 0 w" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4061 |
unfolding word_size |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4062 |
proof (intro conjI) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4063 |
have \<section>: "\<And>n. \<lbrakk>ucast (drop_bit LENGTH('b) w) = u; LENGTH('c) < LENGTH('b)\<rbrakk> \<Longrightarrow> \<not> bit u n" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4064 |
by (metis bit_take_bit_iff bit_word_of_int_iff diff_is_0_eq' drop_bit_take_bit less_imp_le less_nat_zero_code of_int_uint unsigned_drop_bit_eq) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4065 |
show "u = slice LENGTH('b) w" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4066 |
proof (rule bit_word_eqI) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4067 |
show "bit u n = bit ((slice LENGTH('b) w)::'a word) n" if "n < LENGTH('a)" for n |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4068 |
using assms bit_imp_le_length |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4069 |
unfolding word_split_def bit_slice_iff |
80777 | 4070 |
by (fastforce simp: \<section> ac_simps word_size bit_ucast_iff bit_drop_bit_eq) |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4071 |
qed |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4072 |
show "v = slice 0 w" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4073 |
by (metis Pair_inject assms ucast_slice word_split_bin') |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4074 |
qed |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4075 |
|
37660 | 4076 |
|
45816
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset
|
4077 |
lemma slice_cat1 [OF refl]: |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4078 |
"\<lbrakk>wc = word_cat a b; size a + size b \<le> size wc\<rbrakk> \<Longrightarrow> slice (size b) wc = a" |
80777 | 4079 |
by (rule bit_word_eqI) (auto simp: bit_slice_iff bit_word_cat_iff word_size) |
37660 | 4080 |
|
4081 |
lemmas slice_cat2 = trans [OF slice_id word_cat_id] |
|
4082 |
||
4083 |
lemma cat_slices: |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4084 |
"\<lbrakk>a = slice n c; b = slice 0 c; n = size b; size c \<le> size a + size b\<rbrakk> \<Longrightarrow> word_cat a b = c" |
80777 | 4085 |
by (rule bit_word_eqI) (auto simp: bit_slice_iff bit_word_cat_iff word_size) |
37660 | 4086 |
|
4087 |
lemma word_split_cat_alt: |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4088 |
assumes "w = word_cat u v" and size: "size u + size v \<le> size w" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4089 |
shows "word_split w = (u,v)" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4090 |
proof - |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4091 |
have "ucast ((drop_bit LENGTH('c) (word_cat u v))::'a word) = u" "ucast ((word_cat u v)::'a word) = v" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4092 |
using assms |
80777 | 4093 |
by (auto simp: word_size bit_ucast_iff bit_drop_bit_eq bit_word_cat_iff intro: bit_eqI) |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4094 |
then show ?thesis |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4095 |
by (simp add: assms(1) word_split_bin') |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4096 |
qed |
37660 | 4097 |
|
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4098 |
lemma horner_sum_uint_exp_Cons_eq: |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4099 |
\<open>horner_sum uint (2 ^ LENGTH('a)) (w # ws) = |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4100 |
concat_bit LENGTH('a) (uint w) (horner_sum uint (2 ^ LENGTH('a)) ws)\<close> |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4101 |
for ws :: \<open>'a::len word list\<close> |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4102 |
by (simp add: bintr_uint concat_bit_eq push_bit_eq_mult) |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4103 |
|
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4104 |
lemma bit_horner_sum_uint_exp_iff: |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4105 |
\<open>bit (horner_sum uint (2 ^ LENGTH('a)) ws) n \<longleftrightarrow> |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4106 |
n div LENGTH('a) < length ws \<and> bit (ws ! (n div LENGTH('a))) (n mod LENGTH('a))\<close> |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4107 |
for ws :: \<open>'a::len word list\<close> |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4108 |
proof (induction ws arbitrary: n) |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4109 |
case Nil |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4110 |
then show ?case |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4111 |
by simp |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4112 |
next |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4113 |
case (Cons w ws) |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4114 |
then show ?case |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4115 |
by (cases \<open>n \<ge> LENGTH('a)\<close>) |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4116 |
(simp_all only: horner_sum_uint_exp_Cons_eq, simp_all add: bit_concat_bit_iff le_div_geq le_mod_geq bit_uint_iff Cons) |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4117 |
qed |
37660 | 4118 |
|
4119 |
||
61799 | 4120 |
subsection \<open>Rotation\<close> |
37660 | 4121 |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4122 |
lemma word_rotr_word_rotr_eq: \<open>word_rotr m (word_rotr n w) = word_rotr (m + n) w\<close> |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4123 |
by (rule bit_word_eqI) (simp add: bit_word_rotr_iff ac_simps mod_add_right_eq) |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4124 |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4125 |
lemma word_rot_lem: "\<lbrakk>l + k = d + k mod l; n < l\<rbrakk> \<Longrightarrow> ((d + n) mod l) = n" for l::nat |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4126 |
by (metis (no_types, lifting) add.commute add.right_neutral add_diff_cancel_left' mod_if mod_mult_div_eq mod_mult_self2 mod_self) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4127 |
|
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4128 |
lemma word_rot_rl [simp]: \<open>word_rotl k (word_rotr k v) = v\<close> |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4129 |
proof (rule bit_word_eqI) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4130 |
show "bit (word_rotl k (word_rotr k v)) n = bit v n" if "n < LENGTH('a)" for n |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4131 |
using that |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4132 |
by (auto simp: word_rot_lem word_rotl_eq_word_rotr word_rotr_word_rotr_eq bit_word_rotr_iff algebra_simps split: nat_diff_split) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4133 |
qed |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4134 |
|
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4135 |
lemma word_rot_lr [simp]: \<open>word_rotr k (word_rotl k v) = v\<close> |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4136 |
proof (rule bit_word_eqI) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4137 |
show "bit (word_rotr k (word_rotl k v)) n = bit v n" if "n < LENGTH('a)" for n |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4138 |
using that |
80777 | 4139 |
by (auto simp: word_rot_lem word_rotl_eq_word_rotr word_rotr_word_rotr_eq bit_word_rotr_iff algebra_simps split: nat_diff_split) |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4140 |
qed |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4141 |
|
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4142 |
lemma word_rot_gal: |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4143 |
\<open>word_rotr n v = w \<longleftrightarrow> word_rotl n w = v\<close> |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4144 |
by auto |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4145 |
|
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4146 |
lemma word_rot_gal': |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4147 |
\<open>w = word_rotr n v \<longleftrightarrow> v = word_rotl n w\<close> |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4148 |
by auto |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4149 |
|
80401
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4150 |
lemma word_reverse_word_rotl: |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4151 |
\<open>word_reverse (word_rotl n w) = word_rotr n (word_reverse w)\<close> (is \<open>?lhs = ?rhs\<close>) |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4152 |
proof (rule bit_word_eqI) |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4153 |
fix m |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4154 |
assume \<open>m < LENGTH('a)\<close> |
80401
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4155 |
then have \<open>int (LENGTH('a) - Suc ((m + n) mod LENGTH('a))) = |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4156 |
int ((LENGTH('a) + LENGTH('a) - Suc (m + n mod LENGTH('a))) mod LENGTH('a))\<close> |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
4157 |
unfolding of_nat_diff of_nat_mod |
80401
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4158 |
apply (simp add: Suc_le_eq add_less_le_mono of_nat_mod algebra_simps) |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4159 |
apply (simp only: mod_diff_left_eq [symmetric, of \<open>int LENGTH('a) * 2\<close>] mod_mult_self1_is_0 diff_0 minus_mod_int_eq) |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4160 |
apply (simp add: mod_simps) |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4161 |
done |
80401
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4162 |
then have \<open>LENGTH('a) - Suc ((m + n) mod LENGTH('a)) = |
80777 | 4163 |
(LENGTH('a) + LENGTH('a) - Suc (m + n mod LENGTH('a))) mod LENGTH('a)\<close> |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4164 |
by simp |
80401
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4165 |
with \<open>m < LENGTH('a)\<close> show \<open>bit ?lhs m \<longleftrightarrow> bit ?rhs m\<close> |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4166 |
by (simp add: bit_simps) |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4167 |
qed |
65268 | 4168 |
|
80401
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4169 |
lemma word_reverse_word_rotr: |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4170 |
\<open>word_reverse (word_rotr n w) = word_rotl n (word_reverse w)\<close> |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4171 |
by (rule word_eq_reverseI) (simp add: word_reverse_word_rotl) |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4172 |
|
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4173 |
lemma word_rotl_rev: |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4174 |
\<open>word_rotl n w = word_reverse (word_rotr n (word_reverse w))\<close> |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4175 |
by (simp add: word_reverse_word_rotr) |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4176 |
|
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4177 |
lemma word_rotr_rev: |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4178 |
\<open>word_rotr n w = word_reverse (word_rotl n (word_reverse w))\<close> |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4179 |
by (simp add: word_reverse_word_rotl) |
31bf95336f16
dropped references to theorems from transitional theory Divides.thy
haftmann
parents:
79950
diff
changeset
|
4180 |
|
37660 | 4181 |
lemma word_roti_0 [simp]: "word_roti 0 w = w" |
72079 | 4182 |
by transfer simp |
37660 | 4183 |
|
65336 | 4184 |
lemma word_roti_add: "word_roti (m + n) w = word_roti m (word_roti n w)" |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4185 |
by (rule bit_word_eqI) |
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4186 |
(simp add: bit_word_roti_iff nat_less_iff mod_simps ac_simps) |
65268 | 4187 |
|
67118 | 4188 |
lemma word_roti_conv_mod': |
4189 |
"word_roti n w = word_roti (n mod int (size w)) w" |
|
72079 | 4190 |
by transfer simp |
37660 | 4191 |
|
4192 |
lemmas word_roti_conv_mod = word_roti_conv_mod' [unfolded word_size] |
|
4193 |
||
74097 | 4194 |
end |
4195 |
||
37660 | 4196 |
|
61799 | 4197 |
subsubsection \<open>"Word rotation commutes with bit-wise operations\<close> |
37660 | 4198 |
|
67408 | 4199 |
\<comment> \<open>using locale to not pollute lemma namespace\<close> |
65268 | 4200 |
locale word_rotate |
37660 | 4201 |
begin |
4202 |
||
74097 | 4203 |
context |
4204 |
includes bit_operations_syntax |
|
4205 |
begin |
|
4206 |
||
37660 | 4207 |
lemma word_rot_logs: |
71149 | 4208 |
"word_rotl n (NOT v) = NOT (word_rotl n v)" |
4209 |
"word_rotr n (NOT v) = NOT (word_rotr n v)" |
|
37660 | 4210 |
"word_rotl n (x AND y) = word_rotl n x AND word_rotl n y" |
4211 |
"word_rotr n (x AND y) = word_rotr n x AND word_rotr n y" |
|
4212 |
"word_rotl n (x OR y) = word_rotl n x OR word_rotl n y" |
|
4213 |
"word_rotr n (x OR y) = word_rotr n x OR word_rotr n y" |
|
4214 |
"word_rotl n (x XOR y) = word_rotl n x XOR word_rotl n y" |
|
65268 | 4215 |
"word_rotr n (x XOR y) = word_rotr n x XOR word_rotr n y" |
80777 | 4216 |
by (rule bit_word_eqI, auto simp: bit_word_rotl_iff bit_word_rotr_iff bit_and_iff bit_or_iff bit_xor_iff bit_not_iff algebra_simps not_le)+ |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4217 |
|
37660 | 4218 |
end |
4219 |
||
74097 | 4220 |
end |
4221 |
||
37660 | 4222 |
lemmas word_rot_logs = word_rotate.word_rot_logs |
4223 |
||
65336 | 4224 |
lemma word_rotx_0 [simp] : "word_rotr i 0 = 0 \<and> word_rotl i 0 = 0" |
72088
a36db1c8238e
separation of reversed bit lists from other material
haftmann
parents:
72083
diff
changeset
|
4225 |
by transfer simp_all |
37660 | 4226 |
|
4227 |
lemma word_roti_0' [simp] : "word_roti n 0 = 0" |
|
72079 | 4228 |
by transfer simp |
37660 | 4229 |
|
72079 | 4230 |
declare word_roti_eq_word_rotr_word_rotl [simp] |
37660 | 4231 |
|
4232 |
||
61799 | 4233 |
subsection \<open>Maximum machine word\<close> |
37660 | 4234 |
|
74097 | 4235 |
context |
4236 |
includes bit_operations_syntax |
|
4237 |
begin |
|
4238 |
||
37660 | 4239 |
lemma word_int_cases: |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
4240 |
fixes x :: "'a::len word" |
70185 | 4241 |
obtains n where "x = word_of_int n" and "0 \<le> n" and "n < 2^LENGTH('a)" |
72292 | 4242 |
by (rule that [of \<open>uint x\<close>]) simp_all |
37660 | 4243 |
|
4244 |
lemma word_nat_cases [cases type: word]: |
|
65336 | 4245 |
fixes x :: "'a::len word" |
70185 | 4246 |
obtains n where "x = of_nat n" and "n < 2^LENGTH('a)" |
72292 | 4247 |
by (rule that [of \<open>unat x\<close>]) simp_all |
37660 | 4248 |
|
73788 | 4249 |
lemma max_word_max [intro!]: |
4250 |
\<open>n \<le> - 1\<close> for n :: \<open>'a::len word\<close> |
|
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
4251 |
by (fact word_order.extremum) |
65268 | 4252 |
|
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
4253 |
lemma word_of_int_2p_len: "word_of_int (2 ^ LENGTH('a)) = (0::'a::len word)" |
72292 | 4254 |
by simp |
37660 | 4255 |
|
70185 | 4256 |
lemma word_pow_0: "(2::'a::len word) ^ LENGTH('a) = 0" |
71957
3e162c63371a
build bit operations on word on library theory on bit operations
haftmann
parents:
71955
diff
changeset
|
4257 |
by (fact word_exp_length_eq_0) |
37660 | 4258 |
|
73788 | 4259 |
lemma max_word_wrap: |
4260 |
\<open>x + 1 = 0 \<Longrightarrow> x = - 1\<close> for x :: \<open>'a::len word\<close> |
|
71946 | 4261 |
by (simp add: eq_neg_iff_add_eq_0) |
4262 |
||
73788 | 4263 |
lemma word_and_max: |
4264 |
\<open>x AND - 1 = x\<close> for x :: \<open>'a::len word\<close> |
|
71946 | 4265 |
by (fact word_log_esimps) |
4266 |
||
73788 | 4267 |
lemma word_or_max: |
4268 |
\<open>x OR - 1 = - 1\<close> for x :: \<open>'a::len word\<close> |
|
71946 | 4269 |
by (fact word_log_esimps) |
37660 | 4270 |
|
65336 | 4271 |
lemma word_ao_dist2: "x AND (y OR z) = x AND y OR x AND z" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
4272 |
for x y z :: "'a::len word" |
72508 | 4273 |
by (fact bit.conj_disj_distrib) |
37660 | 4274 |
|
65336 | 4275 |
lemma word_oa_dist2: "x OR y AND z = (x OR y) AND (x OR z)" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
4276 |
for x y z :: "'a::len word" |
72508 | 4277 |
by (fact bit.disj_conj_distrib) |
37660 | 4278 |
|
65336 | 4279 |
lemma word_and_not [simp]: "x AND NOT x = 0" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
4280 |
for x :: "'a::len word" |
72508 | 4281 |
by (fact bit.conj_cancel_right) |
37660 | 4282 |
|
73788 | 4283 |
lemma word_or_not [simp]: |
4284 |
\<open>x OR NOT x = - 1\<close> for x :: \<open>'a::len word\<close> |
|
72508 | 4285 |
by (fact bit.disj_cancel_right) |
37660 | 4286 |
|
65336 | 4287 |
lemma word_xor_and_or: "x XOR y = x AND NOT y OR NOT x AND y" |
71954
13bb3f5cdc5b
pragmatically ruled out word types of length zero: a bit string with no bits is not bit string at all
haftmann
parents:
71953
diff
changeset
|
4288 |
for x y :: "'a::len word" |
72508 | 4289 |
by (fact bit.xor_def) |
37660 | 4290 |
|
65336 | 4291 |
lemma uint_lt_0 [simp]: "uint x < 0 = False" |
37660 | 4292 |
by (simp add: linorder_not_less) |
4293 |
||
65336 | 4294 |
lemma word_less_1 [simp]: "x < 1 \<longleftrightarrow> x = 0" |
4295 |
for x :: "'a::len word" |
|
37660 | 4296 |
by (simp add: word_less_nat_alt unat_0_iff) |
4297 |
||
4298 |
lemma uint_plus_if_size: |
|
65268 | 4299 |
"uint (x + y) = |
65336 | 4300 |
(if uint x + uint y < 2^size x |
4301 |
then uint x + uint y |
|
4302 |
else uint x + uint y - 2^size x)" |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4303 |
by (simp add: take_bit_eq_mod word_size uint_word_of_int_eq uint_plus_if') |
37660 | 4304 |
|
4305 |
lemma unat_plus_if_size: |
|
65363 | 4306 |
"unat (x + y) = |
65336 | 4307 |
(if unat x + unat y < 2^size x |
4308 |
then unat x + unat y |
|
4309 |
else unat x + unat y - 2^size x)" |
|
65363 | 4310 |
for x y :: "'a::len word" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4311 |
by (simp add: size_word.rep_eq unat_arith_simps) |
37660 | 4312 |
|
65336 | 4313 |
lemma word_neq_0_conv: "w \<noteq> 0 \<longleftrightarrow> 0 < w" |
4314 |
for w :: "'a::len word" |
|
72262 | 4315 |
by (fact word_coorder.not_eq_extremum) |
65336 | 4316 |
|
4317 |
lemma max_lt: "unat (max a b div c) = unat (max a b) div unat c" |
|
4318 |
for c :: "'a::len word" |
|
55818 | 4319 |
by (fact unat_div) |
37660 | 4320 |
|
4321 |
lemma uint_sub_if_size: |
|
65268 | 4322 |
"uint (x - y) = |
65336 | 4323 |
(if uint y \<le> uint x |
4324 |
then uint x - uint y |
|
4325 |
else uint x - uint y + 2^size x)" |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4326 |
by (simp add: size_word.rep_eq uint_sub_if') |
65336 | 4327 |
|
72130
9e5862223442
dedicated symbols for code generation, to pave way for generic conversions from and to word
haftmann
parents:
72128
diff
changeset
|
4328 |
lemma unat_sub: |
9e5862223442
dedicated symbols for code generation, to pave way for generic conversions from and to word
haftmann
parents:
72128
diff
changeset
|
4329 |
\<open>unat (a - b) = unat a - unat b\<close> |
9e5862223442
dedicated symbols for code generation, to pave way for generic conversions from and to word
haftmann
parents:
72128
diff
changeset
|
4330 |
if \<open>b \<le> a\<close> |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4331 |
by (meson that unat_sub_if_size word_le_nat_alt) |
37660 | 4332 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
4333 |
lemmas word_less_sub1_numberof [simp] = word_less_sub1 [of "numeral w"] for w |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
4334 |
lemmas word_le_sub1_numberof [simp] = word_le_sub1 [of "numeral w"] for w |
65268 | 4335 |
|
70185 | 4336 |
lemma word_of_int_minus: "word_of_int (2^LENGTH('a) - i) = (word_of_int (-i)::'a::len word)" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4337 |
by simp |
72292 | 4338 |
|
4339 |
lemma word_of_int_inj: |
|
4340 |
\<open>(word_of_int x :: 'a::len word) = word_of_int y \<longleftrightarrow> x = y\<close> |
|
4341 |
if \<open>0 \<le> x \<and> x < 2 ^ LENGTH('a)\<close> \<open>0 \<le> y \<and> y < 2 ^ LENGTH('a)\<close> |
|
4342 |
using that by (transfer fixing: x y) (simp add: take_bit_int_eq_self) |
|
37660 | 4343 |
|
65336 | 4344 |
lemma word_le_less_eq: "x \<le> y \<longleftrightarrow> x = y \<or> x < y" |
4345 |
for x y :: "'z::len word" |
|
80777 | 4346 |
by (auto simp: order_class.le_less) |
37660 | 4347 |
|
4348 |
lemma mod_plus_cong: |
|
65336 | 4349 |
fixes b b' :: int |
4350 |
assumes 1: "b = b'" |
|
4351 |
and 2: "x mod b' = x' mod b'" |
|
4352 |
and 3: "y mod b' = y' mod b'" |
|
4353 |
and 4: "x' + y' = z'" |
|
37660 | 4354 |
shows "(x + y) mod b = z' mod b'" |
4355 |
proof - |
|
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
4356 |
from 1 2[symmetric] 3[symmetric] |
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
4357 |
have "(x + y) mod b = (x' mod b' + y' mod b') mod b'" |
64593
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
4358 |
by (simp add: mod_add_eq) |
37660 | 4359 |
also have "\<dots> = (x' + y') mod b'" |
64593
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
4360 |
by (simp add: mod_add_eq) |
65336 | 4361 |
finally show ?thesis |
4362 |
by (simp add: 4) |
|
37660 | 4363 |
qed |
4364 |
||
4365 |
lemma mod_minus_cong: |
|
65336 | 4366 |
fixes b b' :: int |
4367 |
assumes "b = b'" |
|
4368 |
and "x mod b' = x' mod b'" |
|
4369 |
and "y mod b' = y' mod b'" |
|
4370 |
and "x' - y' = z'" |
|
37660 | 4371 |
shows "(x - y) mod b = z' mod b'" |
65336 | 4372 |
using assms [symmetric] by (auto intro: mod_diff_cong) |
4373 |
||
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4374 |
lemma word_induct_less [case_names zero less]: |
72262 | 4375 |
\<open>P m\<close> if zero: \<open>P 0\<close> and less: \<open>\<And>n. n < m \<Longrightarrow> P n \<Longrightarrow> P (1 + n)\<close> |
4376 |
for m :: \<open>'a::len word\<close> |
|
4377 |
proof - |
|
4378 |
define q where \<open>q = unat m\<close> |
|
4379 |
with less have \<open>\<And>n. n < word_of_nat q \<Longrightarrow> P n \<Longrightarrow> P (1 + n)\<close> |
|
4380 |
by simp |
|
4381 |
then have \<open>P (word_of_nat q :: 'a word)\<close> |
|
4382 |
proof (induction q) |
|
4383 |
case 0 |
|
4384 |
show ?case |
|
4385 |
by (simp add: zero) |
|
4386 |
next |
|
4387 |
case (Suc q) |
|
4388 |
show ?case |
|
4389 |
proof (cases \<open>1 + word_of_nat q = (0 :: 'a word)\<close>) |
|
4390 |
case True |
|
4391 |
then show ?thesis |
|
4392 |
by (simp add: zero) |
|
4393 |
next |
|
4394 |
case False |
|
4395 |
then have *: \<open>word_of_nat q < (word_of_nat (Suc q) :: 'a word)\<close> |
|
4396 |
by (simp add: unatSuc word_less_nat_alt) |
|
4397 |
then have **: \<open>n < (1 + word_of_nat q :: 'a word) \<longleftrightarrow> n \<le> (word_of_nat q :: 'a word)\<close> for n |
|
4398 |
by (metis (no_types, lifting) add.commute inc_le le_less_trans not_less of_nat_Suc) |
|
4399 |
have \<open>P (word_of_nat q)\<close> |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4400 |
by (simp add: "**" Suc.IH Suc.prems) |
72262 | 4401 |
with * have \<open>P (1 + word_of_nat q)\<close> |
4402 |
by (rule Suc.prems) |
|
4403 |
then show ?thesis |
|
4404 |
by simp |
|
4405 |
qed |
|
4406 |
qed |
|
4407 |
with \<open>q = unat m\<close> show ?thesis |
|
4408 |
by simp |
|
4409 |
qed |
|
65268 | 4410 |
|
65363 | 4411 |
lemma word_induct: "P 0 \<Longrightarrow> (\<And>n. P n \<Longrightarrow> P (1 + n)) \<Longrightarrow> P m" |
65336 | 4412 |
for P :: "'a::len word \<Rightarrow> bool" |
72262 | 4413 |
by (rule word_induct_less) |
65336 | 4414 |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4415 |
lemma word_induct2 [case_names zero suc, induct type]: "P 0 \<Longrightarrow> (\<And>n. 1 + n \<noteq> 0 \<Longrightarrow> P n \<Longrightarrow> P (1 + n)) \<Longrightarrow> P n" |
65336 | 4416 |
for P :: "'b::len word \<Rightarrow> bool" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4417 |
by (induction rule: word_induct_less; force) |
37660 | 4418 |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
4419 |
|
61799 | 4420 |
subsection \<open>Recursion combinator for words\<close> |
46010 | 4421 |
|
54848 | 4422 |
definition word_rec :: "'a \<Rightarrow> ('b::len word \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'b word \<Rightarrow> 'a" |
65336 | 4423 |
where "word_rec forZero forSuc n = rec_nat forZero (forSuc \<circ> of_nat) (unat n)" |
37660 | 4424 |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4425 |
lemma word_rec_0 [simp]: "word_rec z s 0 = z" |
37660 | 4426 |
by (simp add: word_rec_def) |
4427 |
||
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4428 |
lemma word_rec_Suc [simp]: "1 + n \<noteq> 0 \<Longrightarrow> word_rec z s (1 + n) = s n (word_rec z s n)" |
65363 | 4429 |
for n :: "'a::len word" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4430 |
by (simp add: unatSuc word_rec_def) |
37660 | 4431 |
|
65363 | 4432 |
lemma word_rec_Pred: "n \<noteq> 0 \<Longrightarrow> word_rec z s n = s (n - 1) (word_rec z s (n - 1))" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4433 |
by (metis add.commute diff_add_cancel word_rec_Suc) |
37660 | 4434 |
|
65336 | 4435 |
lemma word_rec_in: "f (word_rec z (\<lambda>_. f) n) = word_rec (f z) (\<lambda>_. f) n" |
74101 | 4436 |
by (induct n) simp_all |
37660 | 4437 |
|
67399 | 4438 |
lemma word_rec_in2: "f n (word_rec z f n) = word_rec (f 0 z) (f \<circ> (+) 1) n" |
74101 | 4439 |
by (induct n) simp_all |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4440 |
|
65268 | 4441 |
lemma word_rec_twice: |
67399 | 4442 |
"m \<le> n \<Longrightarrow> word_rec z f n = word_rec (word_rec z f (n - m)) (f \<circ> (+) (n - m)) m" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4443 |
proof (induction n arbitrary: z f) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4444 |
case zero |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4445 |
then show ?case |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4446 |
by (metis diff_0_right word_le_0_iff word_rec_0) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4447 |
next |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4448 |
case (suc n z f) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4449 |
show ?case |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4450 |
proof (cases "1 + (n - m) = 0") |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4451 |
case True |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4452 |
then show ?thesis |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4453 |
by (simp add: add_diff_eq) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4454 |
next |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4455 |
case False |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4456 |
then have eq: "1 + n - m = 1 + (n - m)" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4457 |
by simp |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4458 |
with False have "m \<le> n" |
81763
2cf8f8e4c1fd
Simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents:
81609
diff
changeset
|
4459 |
using inc_le linorder_not_le suc.prems word_le_minus_mono_left by fastforce |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4460 |
with False "suc.hyps" show ?thesis |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4461 |
using suc.IH [of "f 0 z" "f \<circ> (+) 1"] |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4462 |
by (simp add: word_rec_in2 eq add.assoc o_def) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4463 |
qed |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4464 |
qed |
37660 | 4465 |
|
4466 |
lemma word_rec_id: "word_rec z (\<lambda>_. id) n = z" |
|
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4467 |
by (induct n) auto |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4468 |
|
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4469 |
lemma word_rec_id_eq: "(\<And>m. m < n \<Longrightarrow> f m = id) \<Longrightarrow> word_rec z f n = z" |
80777 | 4470 |
by (induction n) (auto simp: unatSuc unat_arith_simps(2)) |
37660 | 4471 |
|
65268 | 4472 |
lemma word_rec_max: |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4473 |
assumes "\<forall>m\<ge>n. m \<noteq> - 1 \<longrightarrow> f m = id" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4474 |
shows "word_rec z f (- 1) = word_rec z f n" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4475 |
proof - |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4476 |
have \<section>: "\<And>m. \<lbrakk>m < - 1 - n\<rbrakk> \<Longrightarrow> (f \<circ> (+) n) m = id" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4477 |
using assms |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4478 |
by (metis (mono_tags, lifting) add.commute add_diff_cancel_left' comp_apply less_le olen_add_eqv plus_minus_no_overflow word_n1_ge) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4479 |
have "word_rec z f (- 1) = word_rec (word_rec z f (- 1 - (- 1 - n))) (f \<circ> (+) (- 1 - (- 1 - n))) (- 1 - n)" |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4480 |
by (meson word_n1_ge word_rec_twice) |
80777 | 4481 |
also have "\<dots> = word_rec z f n" |
72735
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4482 |
by (metis (no_types, lifting) \<section> diff_add_cancel minus_diff_eq uminus_add_conv_diff word_rec_id_eq) |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4483 |
finally show ?thesis . |
bbe5d3ef2052
Stepan Holub's stronger version of comm_append_are_replicate, and a de-applied Word.thy
paulson <lp15@cam.ac.uk>
parents:
72611
diff
changeset
|
4484 |
qed |
65336 | 4485 |
|
74097 | 4486 |
end |
4487 |
||
72512 | 4488 |
|
82523 | 4489 |
subsection \<open>Some more naive computations rules\<close> |
4490 |
||
4491 |
lemma drop_bit_of_minus_1_eq [simp]: |
|
4492 |
\<open>drop_bit n (- 1 :: 'a::len word) = mask (LENGTH('a) - n)\<close> |
|
4493 |
by (rule bit_word_eqI) (auto simp add: bit_simps) |
|
4494 |
||
4495 |
context |
|
4496 |
includes bit_operations_syntax |
|
4497 |
begin |
|
4498 |
||
4499 |
lemma word_cat_eq_push_bit_or: |
|
4500 |
\<open>word_cat v w = (push_bit LENGTH('b) (ucast v) OR ucast w :: 'c::len word)\<close> |
|
4501 |
for v :: \<open>'a::len word\<close> and w :: \<open>'b::len word\<close> |
|
4502 |
by transfer (simp add: concat_bit_def ac_simps) |
|
4503 |
||
4504 |
end |
|
4505 |
||
4506 |
context semiring_bit_operations |
|
4507 |
begin |
|
4508 |
||
4509 |
lemma of_nat_take_bit_numeral_eq [simp]: |
|
4510 |
\<open>of_nat (take_bit m (numeral n)) = take_bit m (numeral n)\<close> |
|
4511 |
by (simp add: of_nat_take_bit) |
|
4512 |
||
4513 |
end |
|
4514 |
||
4515 |
context ring_bit_operations |
|
4516 |
begin |
|
4517 |
||
4518 |
lemma signed_take_bit_of_int: |
|
4519 |
\<open>signed_take_bit n (of_int k) = of_int (signed_take_bit n k)\<close> |
|
4520 |
by (rule bit_eqI) (simp add: bit_simps) |
|
4521 |
||
4522 |
lemma of_int_signed_take_bit: |
|
4523 |
\<open>of_int (signed_take_bit n k) = signed_take_bit n (of_int k)\<close> |
|
4524 |
by (simp add: signed_take_bit_of_int) |
|
4525 |
||
4526 |
lemma of_int_take_bit_minus_numeral_eq [simp]: |
|
4527 |
\<open>of_int (take_bit m (numeral n)) = take_bit m (numeral n)\<close> |
|
4528 |
\<open>of_int (take_bit m (- numeral n)) = take_bit m (- numeral n)\<close> |
|
4529 |
by (simp_all add: of_int_take_bit) |
|
4530 |
||
4531 |
end |
|
4532 |
||
4533 |
context |
|
4534 |
includes bit_operations_syntax |
|
4535 |
begin |
|
4536 |
||
4537 |
lemma concat_bit_numeral_of_one_1 [simp]: |
|
4538 |
\<open>concat_bit (numeral m) 1 l = 1 OR push_bit (numeral m) l\<close> |
|
4539 |
by (rule bit_eqI) (auto simp add: bit_simps) |
|
4540 |
||
4541 |
lemma concat_bit_of_one_2 [simp]: |
|
4542 |
\<open>concat_bit n k 1 = set_bit n (take_bit n k)\<close> |
|
4543 |
by (rule bit_eqI) (auto simp add: bit_simps) |
|
4544 |
||
4545 |
lemma concat_bit_numeral_of_minus_one_1 [simp]: |
|
4546 |
\<open>concat_bit (numeral m) (- 1) l = push_bit (numeral m) l OR mask (numeral m)\<close> |
|
4547 |
by (rule bit_eqI) (auto simp add: bit_simps) |
|
4548 |
||
4549 |
lemma concat_bit_numeral_of_minus_one_2 [simp]: |
|
4550 |
\<open>concat_bit (numeral m) k (- 1) = take_bit (numeral m) k OR NOT (mask (numeral m))\<close> |
|
4551 |
by (rule bit_eqI) (auto simp add: bit_simps) |
|
4552 |
||
4553 |
lemma concat_bit_numeral [simp]: |
|
4554 |
\<open>concat_bit (numeral m) (numeral n) (numeral q) = take_bit (numeral m) (numeral n) OR push_bit (numeral m) (numeral q)\<close> |
|
4555 |
\<open>concat_bit (numeral m) (- numeral n) (numeral q) = take_bit (numeral m) (- numeral n) OR push_bit (numeral m) (numeral q)\<close> |
|
4556 |
\<open>concat_bit (numeral m) (numeral n) (- numeral q) = take_bit (numeral m) (numeral n) OR push_bit (numeral m) (- numeral q)\<close> |
|
4557 |
\<open>concat_bit (numeral m) (- numeral n) (- numeral q) = take_bit (numeral m) (- numeral n) OR push_bit (numeral m) (- numeral q)\<close> |
|
4558 |
by (fact concat_bit_def)+ |
|
4559 |
||
4560 |
end |
|
4561 |
||
4562 |
lemma word_cat_0_left [simp]: |
|
4563 |
\<open>word_cat 0 w = ucast w\<close> |
|
4564 |
by (simp add: word_cat_eq) |
|
4565 |
||
4566 |
||
74592 | 4567 |
subsection \<open>Tool support\<close> |
72489 | 4568 |
|
69605 | 4569 |
ML_file \<open>Tools/smt_word.ML\<close> |
36899
bcd6fce5bf06
layered SMT setup, adapted SMT clients, added further tests, made Z3 proof abstraction configurable
boehmes
parents:
35049
diff
changeset
|
4570 |
|
41060
4199fdcfa3c0
moved smt_word.ML into the directory of the Word library
boehmes
parents:
40827
diff
changeset
|
4571 |
end |