src/HOL/ex/CTL.thy
author nipkow
Tue, 17 Jun 2025 14:11:40 +0200
changeset 82733 8b537e1af2ec
parent 80914 d97fdabd9e2b
permissions -rw-r--r--
reinstated intersection of lists as inter_list_set
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     1
(*  Title:      HOL/ex/CTL.thy
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     2
    Author:     Gertrud Bauer
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     3
*)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     4
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
     5
section \<open>CTL formulae\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     6
46685
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
     7
theory CTL
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
     8
imports Main
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
     9
begin
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    10
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    11
text \<open>
77036
d0151eb9ecb0 more correct and complete bibliography;
wenzelm
parents: 76987
diff changeset
    12
  We formalize basic concepts of Computational Tree Logic (CTL) \<^cite>\<open>"McMillan-PhDThesis"\<close> within the simply-typed
61934
wenzelm
parents: 61933
diff changeset
    13
  set theory of HOL.
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    14
61934
wenzelm
parents: 61933
diff changeset
    15
  By using the common technique of ``shallow embedding'', a CTL formula is
wenzelm
parents: 61933
diff changeset
    16
  identified with the corresponding set of states where it holds.
wenzelm
parents: 61933
diff changeset
    17
  Consequently, CTL operations such as negation, conjunction, disjunction
wenzelm
parents: 61933
diff changeset
    18
  simply become complement, intersection, union of sets. We only require a
wenzelm
parents: 61933
diff changeset
    19
  separate operation for implication, as point-wise inclusion is usually not
wenzelm
parents: 61933
diff changeset
    20
  encountered in plain set-theory.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    21
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    22
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    23
lemmas [intro!] = Int_greatest Un_upper2 Un_upper1 Int_lower1 Int_lower2
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    24
42463
f270e3e18be5 modernized specifications;
wenzelm
parents: 41460
diff changeset
    25
type_synonym 'a ctl = "'a set"
20807
wenzelm
parents: 17388
diff changeset
    26
80914
d97fdabd9e2b standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
wenzelm
parents: 77036
diff changeset
    27
definition imp :: "'a ctl \<Rightarrow> 'a ctl \<Rightarrow> 'a ctl"  (infixr \<open>\<rightarrow>\<close> 75)
63054
1b237d147cc4 misc tuning and modernization;
wenzelm
parents: 61934
diff changeset
    28
  where "p \<rightarrow> q = - p \<union> q"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    29
20807
wenzelm
parents: 17388
diff changeset
    30
lemma [intro!]: "p \<inter> p \<rightarrow> q \<subseteq> q" unfolding imp_def by auto
wenzelm
parents: 17388
diff changeset
    31
lemma [intro!]: "p \<subseteq> (q \<rightarrow> p)" unfolding imp_def by rule
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    32
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    33
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    34
text \<open>
61934
wenzelm
parents: 61933
diff changeset
    35
  \<^smallskip>
wenzelm
parents: 61933
diff changeset
    36
  The CTL path operators are more interesting; they are based on an arbitrary,
wenzelm
parents: 61933
diff changeset
    37
  but fixed model \<open>\<M>\<close>, which is simply a transition relation over states
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 63055
diff changeset
    38
  \<^typ>\<open>'a\<close>.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    39
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    40
20807
wenzelm
parents: 17388
diff changeset
    41
axiomatization \<M> :: "('a \<times> 'a) set"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    42
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    43
text \<open>
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    44
  The operators \<open>\<^bold>E\<^bold>X\<close>, \<open>\<^bold>E\<^bold>F\<close>, \<open>\<^bold>E\<^bold>G\<close> are taken as primitives, while \<open>\<^bold>A\<^bold>X\<close>,
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    45
  \<open>\<^bold>A\<^bold>F\<close>, \<open>\<^bold>A\<^bold>G\<close> are defined as derived ones. The formula \<open>\<^bold>E\<^bold>X p\<close> holds in a
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    46
  state \<open>s\<close>, iff there is a successor state \<open>s'\<close> (with respect to the model
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    47
  \<open>\<M>\<close>), such that \<open>p\<close> holds in \<open>s'\<close>. The formula \<open>\<^bold>E\<^bold>F p\<close> holds in a state
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    48
  \<open>s\<close>, iff there is a path in \<open>\<M>\<close>, starting from \<open>s\<close>, such that there exists a
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    49
  state \<open>s'\<close> on the path, such that \<open>p\<close> holds in \<open>s'\<close>. The formula \<open>\<^bold>E\<^bold>G p\<close>
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    50
  holds in a state \<open>s\<close>, iff there is a path, starting from \<open>s\<close>, such that for
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    51
  all states \<open>s'\<close> on the path, \<open>p\<close> holds in \<open>s'\<close>. It is easy to see that \<open>\<^bold>E\<^bold>F
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    52
  p\<close> and \<open>\<^bold>E\<^bold>G p\<close> may be expressed using least and greatest fixed points
76987
4c275405faae isabelle update -u cite;
wenzelm
parents: 69597
diff changeset
    53
  \<^cite>\<open>"McMillan-PhDThesis"\<close>.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    54
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    55
80914
d97fdabd9e2b standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
wenzelm
parents: 77036
diff changeset
    56
definition EX  (\<open>\<^bold>E\<^bold>X _\<close> [80] 90)
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    57
  where [simp]: "\<^bold>E\<^bold>X p = {s. \<exists>s'. (s, s') \<in> \<M> \<and> s' \<in> p}"
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    58
80914
d97fdabd9e2b standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
wenzelm
parents: 77036
diff changeset
    59
definition EF (\<open>\<^bold>E\<^bold>F _\<close> [80] 90)
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    60
  where [simp]: "\<^bold>E\<^bold>F p = lfp (\<lambda>s. p \<union> \<^bold>E\<^bold>X s)"
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    61
80914
d97fdabd9e2b standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
wenzelm
parents: 77036
diff changeset
    62
definition EG (\<open>\<^bold>E\<^bold>G _\<close> [80] 90)
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    63
  where [simp]: "\<^bold>E\<^bold>G p = gfp (\<lambda>s. p \<inter> \<^bold>E\<^bold>X s)"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    64
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    65
text \<open>
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    66
  \<open>\<^bold>A\<^bold>X\<close>, \<open>\<^bold>A\<^bold>F\<close> and \<open>\<^bold>A\<^bold>G\<close> are now defined dually in terms of \<open>\<^bold>E\<^bold>X\<close>,
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    67
  \<open>\<^bold>E\<^bold>F\<close> and \<open>\<^bold>E\<^bold>G\<close>.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    68
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    69
80914
d97fdabd9e2b standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
wenzelm
parents: 77036
diff changeset
    70
definition AX  (\<open>\<^bold>A\<^bold>X _\<close> [80] 90)
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    71
  where [simp]: "\<^bold>A\<^bold>X p = - \<^bold>E\<^bold>X - p"
80914
d97fdabd9e2b standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
wenzelm
parents: 77036
diff changeset
    72
definition AF  (\<open>\<^bold>A\<^bold>F _\<close> [80] 90)
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    73
  where [simp]: "\<^bold>A\<^bold>F p = - \<^bold>E\<^bold>G - p"
80914
d97fdabd9e2b standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
wenzelm
parents: 77036
diff changeset
    74
definition AG  (\<open>\<^bold>A\<^bold>G _\<close> [80] 90)
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
    75
  where [simp]: "\<^bold>A\<^bold>G p = - \<^bold>E\<^bold>F - p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    76
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    77
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    78
subsection \<open>Basic fixed point properties\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    79
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    80
text \<open>
61934
wenzelm
parents: 61933
diff changeset
    81
  First of all, we use the de-Morgan property of fixed points.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    82
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    83
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
    84
lemma lfp_gfp: "lfp f = - gfp (\<lambda>s::'a set. - (f (- s)))"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    85
proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    86
  show "lfp f \<subseteq> - gfp (\<lambda>s. - f (- s))"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    87
  proof
63054
1b237d147cc4 misc tuning and modernization;
wenzelm
parents: 61934
diff changeset
    88
    show "x \<in> - gfp (\<lambda>s. - f (- s))" if l: "x \<in> lfp f" for x
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    89
    proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    90
      assume "x \<in> gfp (\<lambda>s. - f (- s))"
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
    91
      then obtain u where "x \<in> u" and "u \<subseteq> - f (- u)"
32587
caa5ada96a00 Inter and Union are mere abbreviations for Inf and Sup
haftmann
parents: 26813
diff changeset
    92
        by (auto simp add: gfp_def)
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    93
      then have "f (- u) \<subseteq> - u" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    94
      then have "lfp f \<subseteq> - u" by (rule lfp_lowerbound)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    95
      from l and this have "x \<notin> u" by auto
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    96
      with \<open>x \<in> u\<close> show False by contradiction
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    97
    qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    98
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    99
  show "- gfp (\<lambda>s. - f (- s)) \<subseteq> lfp f"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   100
  proof (rule lfp_greatest)
63054
1b237d147cc4 misc tuning and modernization;
wenzelm
parents: 61934
diff changeset
   101
    fix u
1b237d147cc4 misc tuning and modernization;
wenzelm
parents: 61934
diff changeset
   102
    assume "f u \<subseteq> u"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   103
    then have "- u \<subseteq> - f u" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   104
    then have "- u \<subseteq> - f (- (- u))" by simp
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   105
    then have "- u \<subseteq> gfp (\<lambda>s. - f (- s))" by (rule gfp_upperbound)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   106
    then show "- gfp (\<lambda>s. - f (- s)) \<subseteq> u" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   107
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   108
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   109
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
   110
lemma lfp_gfp': "- lfp f = gfp (\<lambda>s::'a set. - (f (- s)))"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   111
  by (simp add: lfp_gfp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   112
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
   113
lemma gfp_lfp': "- gfp f = lfp (\<lambda>s::'a set. - (f (- s)))"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   114
  by (simp add: lfp_gfp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   115
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   116
text \<open>
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 63055
diff changeset
   117
  In order to give dual fixed point representations of \<^term>\<open>\<^bold>A\<^bold>F p\<close> and
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 63055
diff changeset
   118
  \<^term>\<open>\<^bold>A\<^bold>G p\<close>:
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   119
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   120
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   121
lemma AF_lfp: "\<^bold>A\<^bold>F p = lfp (\<lambda>s. p \<union> \<^bold>A\<^bold>X s)"
61934
wenzelm
parents: 61933
diff changeset
   122
  by (simp add: lfp_gfp)
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   123
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   124
lemma AG_gfp: "\<^bold>A\<^bold>G p = gfp (\<lambda>s. p \<inter> \<^bold>A\<^bold>X s)"
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   125
  by (simp add: lfp_gfp)
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   126
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   127
lemma EF_fp: "\<^bold>E\<^bold>F p = p \<union> \<^bold>E\<^bold>X \<^bold>E\<^bold>F p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   128
proof -
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   129
  have "mono (\<lambda>s. p \<union> \<^bold>E\<^bold>X s)" by rule auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   130
  then show ?thesis by (simp only: EF_def) (rule lfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   131
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   132
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   133
lemma AF_fp: "\<^bold>A\<^bold>F p = p \<union> \<^bold>A\<^bold>X \<^bold>A\<^bold>F p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   134
proof -
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   135
  have "mono (\<lambda>s. p \<union> \<^bold>A\<^bold>X s)" by rule auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   136
  then show ?thesis by (simp only: AF_lfp) (rule lfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   137
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   138
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   139
lemma EG_fp: "\<^bold>E\<^bold>G p = p \<inter> \<^bold>E\<^bold>X \<^bold>E\<^bold>G p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   140
proof -
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   141
  have "mono (\<lambda>s. p \<inter> \<^bold>E\<^bold>X s)" by rule auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   142
  then show ?thesis by (simp only: EG_def) (rule gfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   143
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   144
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   145
text \<open>
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 63055
diff changeset
   146
  From the greatest fixed point definition of \<^term>\<open>\<^bold>A\<^bold>G p\<close>, we derive as
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 63055
diff changeset
   147
  a consequence of the Knaster-Tarski theorem on the one hand that \<^term>\<open>\<^bold>A\<^bold>G p\<close> is a fixed point of the monotonic function
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 63055
diff changeset
   148
  \<^term>\<open>\<lambda>s. p \<inter> \<^bold>A\<^bold>X s\<close>.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   149
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   150
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   151
lemma AG_fp: "\<^bold>A\<^bold>G p = p \<inter> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   152
proof -
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   153
  have "mono (\<lambda>s. p \<inter> \<^bold>A\<^bold>X s)" by rule auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   154
  then show ?thesis by (simp only: AG_gfp) (rule gfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   155
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   156
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   157
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   158
  This fact may be split up into two inequalities (merely using transitivity
wenzelm
parents: 61933
diff changeset
   159
  of \<open>\<subseteq>\<close>, which is an instance of the overloaded \<open>\<le>\<close> in Isabelle/HOL).
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   160
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   161
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   162
lemma AG_fp_1: "\<^bold>A\<^bold>G p \<subseteq> p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   163
proof -
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   164
  note AG_fp also have "p \<inter> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p \<subseteq> p" by auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   165
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   166
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   167
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   168
lemma AG_fp_2: "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   169
proof -
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   170
  note AG_fp also have "p \<inter> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p" by auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   171
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   172
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   173
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   174
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   175
  On the other hand, we have from the Knaster-Tarski fixed point theorem that
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 63055
diff changeset
   176
  any other post-fixed point of \<^term>\<open>\<lambda>s. p \<inter> \<^bold>A\<^bold>X s\<close> is smaller than
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 63055
diff changeset
   177
  \<^term>\<open>\<^bold>A\<^bold>G p\<close>. A post-fixed point is a set of states \<open>q\<close> such that \<^term>\<open>q \<subseteq> p \<inter> \<^bold>A\<^bold>X q\<close>. This leads to the following co-induction principle for
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 63055
diff changeset
   178
  \<^term>\<open>\<^bold>A\<^bold>G p\<close>.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   179
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   180
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   181
lemma AG_I: "q \<subseteq> p \<inter> \<^bold>A\<^bold>X q \<Longrightarrow> q \<subseteq> \<^bold>A\<^bold>G p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   182
  by (simp only: AG_gfp) (rule gfp_upperbound)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   183
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   184
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   185
subsection \<open>The tree induction principle \label{sec:calc-ctl-tree-induct}\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   186
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   187
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   188
  With the most basic facts available, we are now able to establish a few more
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   189
  interesting results, leading to the \<^emph>\<open>tree induction\<close> principle for \<open>\<^bold>A\<^bold>G\<close>
61934
wenzelm
parents: 61933
diff changeset
   190
  (see below). We will use some elementary monotonicity and distributivity
wenzelm
parents: 61933
diff changeset
   191
  rules.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   192
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   193
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   194
lemma AX_int: "\<^bold>A\<^bold>X (p \<inter> q) = \<^bold>A\<^bold>X p \<inter> \<^bold>A\<^bold>X q" by auto
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   195
lemma AX_mono: "p \<subseteq> q \<Longrightarrow> \<^bold>A\<^bold>X p \<subseteq> \<^bold>A\<^bold>X q" by auto
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   196
lemma AG_mono: "p \<subseteq> q \<Longrightarrow> \<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G q"
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   197
  by (simp only: AG_gfp, rule gfp_mono) auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   198
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   199
text \<open>
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 63055
diff changeset
   200
  The formula \<^term>\<open>AG p\<close> implies \<^term>\<open>AX p\<close> (we use substitution of
61934
wenzelm
parents: 61933
diff changeset
   201
  \<open>\<subseteq>\<close> with monotonicity).
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   202
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   203
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   204
lemma AG_AX: "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   205
proof -
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   206
  have "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p" by (rule AG_fp_2)
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   207
  also have "\<^bold>A\<^bold>G p \<subseteq> p" by (rule AG_fp_1)
61934
wenzelm
parents: 61933
diff changeset
   208
  moreover note AX_mono
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   209
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   210
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   211
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   212
text \<open>
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   213
  Furthermore we show idempotency of the \<open>\<^bold>A\<^bold>G\<close> operator. The proof is a good
61934
wenzelm
parents: 61933
diff changeset
   214
  example of how accumulated facts may get used to feed a single rule step.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   215
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   216
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   217
lemma AG_AG: "\<^bold>A\<^bold>G \<^bold>A\<^bold>G p = \<^bold>A\<^bold>G p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   218
proof
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   219
  show "\<^bold>A\<^bold>G \<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G p" by (rule AG_fp_1)
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   220
next
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   221
  show "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G \<^bold>A\<^bold>G p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   222
  proof (rule AG_I)
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   223
    have "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G p" ..
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   224
    moreover have "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p" by (rule AG_fp_2)
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   225
    ultimately show "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G p \<inter> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p" ..
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   226
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   227
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   228
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   229
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   230
  \<^smallskip>
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   231
  We now give an alternative characterization of the \<open>\<^bold>A\<^bold>G\<close> operator, which
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   232
  describes the \<open>\<^bold>A\<^bold>G\<close> operator in an ``operational'' way by tree induction:
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 63055
diff changeset
   233
  In a state holds \<^term>\<open>AG p\<close> iff in that state holds \<open>p\<close>, and in all
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   234
  reachable states \<open>s\<close> follows from the fact that \<open>p\<close> holds in \<open>s\<close>, that \<open>p\<close>
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   235
  also holds in all successor states of \<open>s\<close>. We use the co-induction principle
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   236
  @{thm [source] AG_I} to establish this in a purely algebraic manner.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   237
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   238
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   239
theorem AG_induct: "p \<inter> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p) = \<^bold>A\<^bold>G p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   240
proof
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   241
  show "p \<inter> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p) \<subseteq> \<^bold>A\<^bold>G p"  (is "?lhs \<subseteq> _")
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   242
  proof (rule AG_I)
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   243
    show "?lhs \<subseteq> p \<inter> \<^bold>A\<^bold>X ?lhs"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   244
    proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   245
      show "?lhs \<subseteq> p" ..
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   246
      show "?lhs \<subseteq> \<^bold>A\<^bold>X ?lhs"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   247
      proof -
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   248
        {
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   249
          have "\<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p) \<subseteq> p \<rightarrow> \<^bold>A\<^bold>X p" by (rule AG_fp_1)
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   250
          also have "p \<inter> p \<rightarrow> \<^bold>A\<^bold>X p \<subseteq> \<^bold>A\<^bold>X p" ..
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   251
          finally have "?lhs \<subseteq> \<^bold>A\<^bold>X p" by auto
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   252
        }
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   253
        moreover
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   254
        {
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   255
          have "p \<inter> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p) \<subseteq> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p)" ..
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   256
          also have "\<dots> \<subseteq> \<^bold>A\<^bold>X \<dots>" by (rule AG_fp_2)
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   257
          finally have "?lhs \<subseteq> \<^bold>A\<^bold>X \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p)" .
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   258
        }
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   259
        ultimately have "?lhs \<subseteq> \<^bold>A\<^bold>X p \<inter> \<^bold>A\<^bold>X \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p)" ..
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   260
        also have "\<dots> = \<^bold>A\<^bold>X ?lhs" by (simp only: AX_int)
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   261
        finally show ?thesis .
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   262
      qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   263
    qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   264
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   265
next
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   266
  show "\<^bold>A\<^bold>G p \<subseteq> p \<inter> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p)"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   267
  proof
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   268
    show "\<^bold>A\<^bold>G p \<subseteq> p" by (rule AG_fp_1)
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   269
    show "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p)"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   270
    proof -
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   271
      have "\<^bold>A\<^bold>G p = \<^bold>A\<^bold>G \<^bold>A\<^bold>G p" by (simp only: AG_AG)
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   272
      also have "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X p" by (rule AG_AX) moreover note AG_mono
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   273
      also have "\<^bold>A\<^bold>X p \<subseteq> (p \<rightarrow> \<^bold>A\<^bold>X p)" .. moreover note AG_mono
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   274
      finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   275
    qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   276
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   277
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   278
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   279
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   280
subsection \<open>An application of tree induction \label{sec:calc-ctl-commute}\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   281
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   282
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   283
  Further interesting properties of CTL expressions may be demonstrated with
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   284
  the help of tree induction; here we show that \<open>\<^bold>A\<^bold>X\<close> and \<open>\<^bold>A\<^bold>G\<close> commute.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   285
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   286
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   287
theorem AG_AX_commute: "\<^bold>A\<^bold>G \<^bold>A\<^bold>X p = \<^bold>A\<^bold>X \<^bold>A\<^bold>G p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   288
proof -
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   289
  have "\<^bold>A\<^bold>G \<^bold>A\<^bold>X p = \<^bold>A\<^bold>X p \<inter> \<^bold>A\<^bold>X \<^bold>A\<^bold>G \<^bold>A\<^bold>X p" by (rule AG_fp)
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   290
  also have "\<dots> = \<^bold>A\<^bold>X (p \<inter> \<^bold>A\<^bold>G \<^bold>A\<^bold>X p)" by (simp only: AX_int)
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   291
  also have "p \<inter> \<^bold>A\<^bold>G \<^bold>A\<^bold>X p = \<^bold>A\<^bold>G p"  (is "?lhs = _")
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   292
  proof
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   293
    have "\<^bold>A\<^bold>X p \<subseteq> p \<rightarrow> \<^bold>A\<^bold>X p" ..
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   294
    also have "p \<inter> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p) = \<^bold>A\<^bold>G p" by (rule AG_induct)
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   295
    also note Int_mono AG_mono
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   296
    ultimately show "?lhs \<subseteq> \<^bold>A\<^bold>G p" by fast
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   297
  next
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   298
    have "\<^bold>A\<^bold>G p \<subseteq> p" by (rule AG_fp_1)
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   299
    moreover
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   300
    {
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   301
      have "\<^bold>A\<^bold>G p = \<^bold>A\<^bold>G \<^bold>A\<^bold>G p" by (simp only: AG_AG)
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   302
      also have "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X p" by (rule AG_AX)
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   303
      also note AG_mono
63055
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   304
      ultimately have "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G \<^bold>A\<^bold>X p" .
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   305
    }
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   306
    ultimately show "\<^bold>A\<^bold>G p \<subseteq> ?lhs" ..
ae0ca486bd3f tuned notation;
wenzelm
parents: 63054
diff changeset
   307
  qed
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   308
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   309
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   310
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   311
end