src/HOL/Predicate.thy
changeset 32705 04ce6bb14d85
parent 32668 b2de45007537
parent 32703 7f9e05b3d0fb
child 32779 371c7f74282d
equal deleted inserted replaced
32682:304a47739407 32705:04ce6bb14d85
    79   by (simp add: sup_fun_eq sup_bool_eq)
    79   by (simp add: sup_fun_eq sup_bool_eq)
    80 
    80 
    81 lemma sup2_iff: "sup A B x y \<longleftrightarrow> A x y | B x y"
    81 lemma sup2_iff: "sup A B x y \<longleftrightarrow> A x y | B x y"
    82   by (simp add: sup_fun_eq sup_bool_eq)
    82   by (simp add: sup_fun_eq sup_bool_eq)
    83 
    83 
    84 lemma sup_Un_eq [pred_set_conv]: "sup (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)"
    84 lemma sup_Un_eq: "sup (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)"
    85   by (simp add: sup1_iff expand_fun_eq)
    85   by (simp add: sup1_iff expand_fun_eq)
    86 
    86 
    87 lemma sup_Un_eq2 [pred_set_conv]: "sup (\<lambda>x y. (x, y) \<in> R) (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)"
    87 lemma sup_Un_eq2 [pred_set_conv]: "sup (\<lambda>x y. (x, y) \<in> R) (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)"
    88   by (simp add: sup2_iff expand_fun_eq)
    88   by (simp add: sup2_iff expand_fun_eq)
    89 
    89 
   123   by (simp add: inf_fun_eq inf_bool_eq)
   123   by (simp add: inf_fun_eq inf_bool_eq)
   124 
   124 
   125 lemma inf2_iff: "inf A B x y \<longleftrightarrow> A x y \<and> B x y"
   125 lemma inf2_iff: "inf A B x y \<longleftrightarrow> A x y \<and> B x y"
   126   by (simp add: inf_fun_eq inf_bool_eq)
   126   by (simp add: inf_fun_eq inf_bool_eq)
   127 
   127 
   128 lemma inf_Int_eq [pred_set_conv]: "inf (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)"
   128 lemma inf_Int_eq: "inf (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)"
   129   by (simp add: inf1_iff expand_fun_eq)
   129   by (simp add: inf1_iff expand_fun_eq)
   130 
   130 
   131 lemma inf_Int_eq2 [pred_set_conv]: "inf (\<lambda>x y. (x, y) \<in> R) (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)"
   131 lemma inf_Int_eq2 [pred_set_conv]: "inf (\<lambda>x y. (x, y) \<in> R) (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)"
   132   by (simp add: inf2_iff expand_fun_eq)
   132   by (simp add: inf2_iff expand_fun_eq)
   133 
   133