--- a/src/HOL/Datatype_Examples/Koenig.thy Tue Oct 07 10:34:24 2014 +0200
+++ b/src/HOL/Datatype_Examples/Koenig.thy Tue Oct 07 10:48:29 2014 +0200
@@ -9,7 +9,7 @@
header {* Koenig's Lemma *}
theory Koenig
-imports TreeFI Stream
+imports TreeFI "~~/src/HOL/Library/Stream"
begin
(* infinite trees: *)
--- a/src/HOL/Datatype_Examples/Process.thy Tue Oct 07 10:34:24 2014 +0200
+++ b/src/HOL/Datatype_Examples/Process.thy Tue Oct 07 10:48:29 2014 +0200
@@ -8,7 +8,7 @@
header {* Processes *}
theory Process
-imports Stream
+imports "~~/src/HOL/Library/Stream"
begin
codatatype 'a process =
--- a/src/HOL/Datatype_Examples/Stream.thy Tue Oct 07 10:34:24 2014 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,582 +0,0 @@
-(* Title: HOL/Datatype_Examples/Stream.thy
- Author: Dmitriy Traytel, TU Muenchen
- Author: Andrei Popescu, TU Muenchen
- Copyright 2012, 2013
-
-Infinite streams.
-*)
-
-header {* Infinite Streams *}
-
-theory Stream
-imports "~~/src/HOL/Library/Nat_Bijection"
-begin
-
-codatatype (sset: 'a) stream =
- SCons (shd: 'a) (stl: "'a stream") (infixr "##" 65)
-for
- map: smap
- rel: stream_all2
-
-(*for code generation only*)
-definition smember :: "'a \<Rightarrow> 'a stream \<Rightarrow> bool" where
- [code_abbrev]: "smember x s \<longleftrightarrow> x \<in> sset s"
-
-lemma smember_code[code, simp]: "smember x (y ## s) = (if x = y then True else smember x s)"
- unfolding smember_def by auto
-
-hide_const (open) smember
-
-lemmas smap_simps[simp] = stream.map_sel
-lemmas shd_sset = stream.set_sel(1)
-lemmas stl_sset = stream.set_sel(2)
-
-theorem sset_induct[consumes 1, case_names shd stl, induct set: sset]:
- assumes "y \<in> sset s" and "\<And>s. P (shd s) s" and "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s"
- shows "P y s"
-using assms by induct (metis stream.sel(1), auto)
-
-
-subsection {* prepend list to stream *}
-
-primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr "@-" 65) where
- "shift [] s = s"
-| "shift (x # xs) s = x ## shift xs s"
-
-lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s"
- by (induct xs) auto
-
-lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s"
- by (induct xs) auto
-
-lemma shift_simps[simp]:
- "shd (xs @- s) = (if xs = [] then shd s else hd xs)"
- "stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)"
- by (induct xs) auto
-
-lemma sset_shift[simp]: "sset (xs @- s) = set xs \<union> sset s"
- by (induct xs) auto
-
-lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2"
- by (induct xs) auto
-
-
-subsection {* set of streams with elements in some fixed set *}
-
-coinductive_set
- streams :: "'a set \<Rightarrow> 'a stream set"
- for A :: "'a set"
-where
- Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> a ## s \<in> streams A"
-
-lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A"
- by (induct w) auto
-
-lemma streams_Stream: "x ## s \<in> streams A \<longleftrightarrow> x \<in> A \<and> s \<in> streams A"
- by (auto elim: streams.cases)
-
-lemma streams_stl: "s \<in> streams A \<Longrightarrow> stl s \<in> streams A"
- by (cases s) (auto simp: streams_Stream)
-
-lemma streams_shd: "s \<in> streams A \<Longrightarrow> shd s \<in> A"
- by (cases s) (auto simp: streams_Stream)
-
-lemma sset_streams:
- assumes "sset s \<subseteq> A"
- shows "s \<in> streams A"
-using assms proof (coinduction arbitrary: s)
- case streams then show ?case by (cases s) simp
-qed
-
-lemma streams_sset:
- assumes "s \<in> streams A"
- shows "sset s \<subseteq> A"
-proof
- fix x assume "x \<in> sset s" from this `s \<in> streams A` show "x \<in> A"
- by (induct s) (auto intro: streams_shd streams_stl)
-qed
-
-lemma streams_iff_sset: "s \<in> streams A \<longleftrightarrow> sset s \<subseteq> A"
- by (metis sset_streams streams_sset)
-
-lemma streams_mono: "s \<in> streams A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> s \<in> streams B"
- unfolding streams_iff_sset by auto
-
-lemma smap_streams: "s \<in> streams A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> smap f s \<in> streams B"
- unfolding streams_iff_sset stream.set_map by auto
-
-lemma streams_empty: "streams {} = {}"
- by (auto elim: streams.cases)
-
-lemma streams_UNIV[simp]: "streams UNIV = UNIV"
- by (auto simp: streams_iff_sset)
-
-subsection {* nth, take, drop for streams *}
-
-primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!!" 100) where
- "s !! 0 = shd s"
-| "s !! Suc n = stl s !! n"
-
-lemma snth_smap[simp]: "smap f s !! n = f (s !! n)"
- by (induct n arbitrary: s) auto
-
-lemma shift_snth_less[simp]: "p < length xs \<Longrightarrow> (xs @- s) !! p = xs ! p"
- by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl)
-
-lemma shift_snth_ge[simp]: "p \<ge> length xs \<Longrightarrow> (xs @- s) !! p = s !! (p - length xs)"
- by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred)
-
-lemma shift_snth: "(xs @- s) !! n = (if n < length xs then xs ! n else s !! (n - length xs))"
- by auto
-
-lemma snth_sset[simp]: "s !! n \<in> sset s"
- by (induct n arbitrary: s) (auto intro: shd_sset stl_sset)
-
-lemma sset_range: "sset s = range (snth s)"
-proof (intro equalityI subsetI)
- fix x assume "x \<in> sset s"
- thus "x \<in> range (snth s)"
- proof (induct s)
- case (stl s x)
- then obtain n where "x = stl s !! n" by auto
- thus ?case by (auto intro: range_eqI[of _ _ "Suc n"])
- qed (auto intro: range_eqI[of _ _ 0])
-qed auto
-
-primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where
- "stake 0 s = []"
-| "stake (Suc n) s = shd s # stake n (stl s)"
-
-lemma length_stake[simp]: "length (stake n s) = n"
- by (induct n arbitrary: s) auto
-
-lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)"
- by (induct n arbitrary: s) auto
-
-lemma take_stake: "take n (stake m s) = stake (min n m) s"
-proof (induct m arbitrary: s n)
- case (Suc m) thus ?case by (cases n) auto
-qed simp
-
-primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
- "sdrop 0 s = s"
-| "sdrop (Suc n) s = sdrop n (stl s)"
-
-lemma sdrop_simps[simp]:
- "shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s"
- by (induct n arbitrary: s) auto
-
-lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)"
- by (induct n arbitrary: s) auto
-
-lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)"
- by (induct n) auto
-
-lemma drop_stake: "drop n (stake m s) = stake (m - n) (sdrop n s)"
-proof (induct m arbitrary: s n)
- case (Suc m) thus ?case by (cases n) auto
-qed simp
-
-lemma stake_sdrop: "stake n s @- sdrop n s = s"
- by (induct n arbitrary: s) auto
-
-lemma id_stake_snth_sdrop:
- "s = stake i s @- s !! i ## sdrop (Suc i) s"
- by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse)
-
-lemma smap_alt: "smap f s = s' \<longleftrightarrow> (\<forall>n. f (s !! n) = s' !! n)" (is "?L = ?R")
-proof
- assume ?R
- then have "\<And>n. smap f (sdrop n s) = sdrop n s'"
- by coinduction (auto intro: exI[of _ 0] simp del: sdrop.simps(2))
- then show ?L using sdrop.simps(1) by metis
-qed auto
-
-lemma stake_invert_Nil[iff]: "stake n s = [] \<longleftrightarrow> n = 0"
- by (induct n) auto
-
-lemma sdrop_shift: "sdrop i (w @- s) = drop i w @- sdrop (i - length w) s"
- by (induct i arbitrary: w s) (auto simp: drop_tl drop_Suc neq_Nil_conv)
-
-lemma stake_shift: "stake i (w @- s) = take i w @ stake (i - length w) s"
- by (induct i arbitrary: w s) (auto simp: neq_Nil_conv)
-
-lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s"
- by (induct m arbitrary: s) auto
-
-lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s"
- by (induct m arbitrary: s) auto
-
-lemma sdrop_snth: "sdrop n s !! m = s !! (n + m)"
- by (induct n arbitrary: m s) auto
-
-partial_function (tailrec) sdrop_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
- "sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)"
-
-lemma sdrop_while_SCons[code]:
- "sdrop_while P (a ## s) = (if P a then sdrop_while P s else a ## s)"
- by (subst sdrop_while.simps) simp
-
-lemma sdrop_while_sdrop_LEAST:
- assumes "\<exists>n. P (s !! n)"
- shows "sdrop_while (Not o P) s = sdrop (LEAST n. P (s !! n)) s"
-proof -
- from assms obtain m where "P (s !! m)" "\<And>n. P (s !! n) \<Longrightarrow> m \<le> n"
- and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le)
- thus ?thesis unfolding *
- proof (induct m arbitrary: s)
- case (Suc m)
- hence "sdrop_while (Not \<circ> P) (stl s) = sdrop m (stl s)"
- by (metis (full_types) not_less_eq_eq snth.simps(2))
- moreover from Suc(3) have "\<not> (P (s !! 0))" by blast
- ultimately show ?case by (subst sdrop_while.simps) simp
- qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1))
-qed
-
-primcorec sfilter where
- "shd (sfilter P s) = shd (sdrop_while (Not o P) s)"
-| "stl (sfilter P s) = sfilter P (stl (sdrop_while (Not o P) s))"
-
-lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)"
-proof (cases "P x")
- case True thus ?thesis by (subst sfilter.ctr) (simp add: sdrop_while_SCons)
-next
- case False thus ?thesis by (subst (1 2) sfilter.ctr) (simp add: sdrop_while_SCons)
-qed
-
-
-subsection {* unary predicates lifted to streams *}
-
-definition "stream_all P s = (\<forall>p. P (s !! p))"
-
-lemma stream_all_iff[iff]: "stream_all P s \<longleftrightarrow> Ball (sset s) P"
- unfolding stream_all_def sset_range by auto
-
-lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \<and> stream_all P s)"
- unfolding stream_all_iff list_all_iff by auto
-
-lemma stream_all_Stream: "stream_all P (x ## X) \<longleftrightarrow> P x \<and> stream_all P X"
- by simp
-
-
-subsection {* recurring stream out of a list *}
-
-primcorec cycle :: "'a list \<Rightarrow> 'a stream" where
- "shd (cycle xs) = hd xs"
-| "stl (cycle xs) = cycle (tl xs @ [hd xs])"
-
-lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u"
-proof (coinduction arbitrary: u)
- case Eq_stream then show ?case using stream.collapse[of "cycle u"]
- by (auto intro!: exI[of _ "tl u @ [hd u]"])
-qed
-
-lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])"
- by (subst cycle.ctr) simp
-
-lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s"
- by (auto dest: arg_cong[of _ _ stl])
-
-lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s"
-proof (induct n arbitrary: u)
- case (Suc n) thus ?case by (cases u) auto
-qed auto
-
-lemma stake_cycle_le[simp]:
- assumes "u \<noteq> []" "n < length u"
- shows "stake n (cycle u) = take n u"
-using min_absorb2[OF less_imp_le_nat[OF assms(2)]]
- by (subst cycle_decomp[OF assms(1)], subst stake_append) auto
-
-lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u"
- by (subst cycle_decomp) (auto simp: stake_shift)
-
-lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u"
- by (subst cycle_decomp) (auto simp: sdrop_shift)
-
-lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
- stake n (cycle u) = concat (replicate (n div length u) u)"
- by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric])
-
-lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
- sdrop n (cycle u) = cycle u"
- by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric])
-
-lemma stake_cycle: "u \<noteq> [] \<Longrightarrow>
- stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u"
- by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto
-
-lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)"
- by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric])
-
-
-subsection {* iterated application of a function *}
-
-primcorec siterate where
- "shd (siterate f x) = x"
-| "stl (siterate f x) = siterate f (f x)"
-
-lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]"
- by (induct n arbitrary: s) auto
-
-lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x"
- by (induct n arbitrary: x) (auto simp: funpow_swap1)
-
-lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)"
- by (induct n arbitrary: x) (auto simp: funpow_swap1)
-
-lemma stake_siterate[simp]: "stake n (siterate f x) = map (\<lambda>n. (f^^n) x) [0 ..< n]"
- by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc)
-
-lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}"
- by (auto simp: sset_range)
-
-lemma smap_siterate: "smap f (siterate f x) = siterate f (f x)"
- by (coinduction arbitrary: x) auto
-
-
-subsection {* stream repeating a single element *}
-
-abbreviation "sconst \<equiv> siterate id"
-
-lemma shift_replicate_sconst[simp]: "replicate n x @- sconst x = sconst x"
- by (subst (3) stake_sdrop[symmetric]) (simp add: map_replicate_trivial)
-
-lemma sset_sconst[simp]: "sset (sconst x) = {x}"
- by (simp add: sset_siterate)
-
-lemma sconst_alt: "s = sconst x \<longleftrightarrow> sset s = {x}"
-proof
- assume "sset s = {x}"
- then show "s = sconst x"
- proof (coinduction arbitrary: s)
- case Eq_stream
- then have "shd s = x" "sset (stl s) \<subseteq> {x}" by (case_tac [!] s) auto
- then have "sset (stl s) = {x}" by (cases "stl s") auto
- with `shd s = x` show ?case by auto
- qed
-qed simp
-
-lemma same_cycle: "sconst x = cycle [x]"
- by coinduction auto
-
-lemma smap_sconst: "smap f (sconst x) = sconst (f x)"
- by coinduction auto
-
-lemma sconst_streams: "x \<in> A \<Longrightarrow> sconst x \<in> streams A"
- by (simp add: streams_iff_sset)
-
-
-subsection {* stream of natural numbers *}
-
-abbreviation "fromN \<equiv> siterate Suc"
-
-abbreviation "nats \<equiv> fromN 0"
-
-lemma sset_fromN[simp]: "sset (fromN n) = {n ..}"
- by (auto simp add: sset_siterate le_iff_add)
-
-lemma stream_smap_fromN: "s = smap (\<lambda>j. let i = j - n in s !! i) (fromN n)"
- by (coinduction arbitrary: s n)
- (force simp: neq_Nil_conv Let_def snth.simps(2)[symmetric] Suc_diff_Suc
- intro: stream.map_cong split: if_splits simp del: snth.simps(2))
-
-lemma stream_smap_nats: "s = smap (snth s) nats"
- using stream_smap_fromN[where n = 0] by simp
-
-
-subsection {* flatten a stream of lists *}
-
-primcorec flat where
- "shd (flat ws) = hd (shd ws)"
-| "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
-
-lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
- by (subst flat.ctr) simp
-
-lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
- by (induct xs) auto
-
-lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)"
- by (cases ws) auto
-
-lemma flat_snth: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then
- shd s ! n else flat (stl s) !! (n - length (shd s)))"
- by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less)
-
-lemma sset_flat[simp]: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow>
- sset (flat s) = (\<Union>xs \<in> sset s. set xs)" (is "?P \<Longrightarrow> ?L = ?R")
-proof safe
- fix x assume ?P "x : ?L"
- then obtain m where "x = flat s !! m" by (metis image_iff sset_range)
- with `?P` obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)"
- proof (atomize_elim, induct m arbitrary: s rule: less_induct)
- case (less y)
- thus ?case
- proof (cases "y < length (shd s)")
- case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1))
- next
- case False
- hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth)
- moreover
- { from less(2) have *: "length (shd s) > 0" by (cases s) simp_all
- with False have "y > 0" by (cases y) simp_all
- with * have "y - length (shd s) < y" by simp
- }
- moreover have "\<forall>xs \<in> sset (stl s). xs \<noteq> []" using less(2) by (cases s) auto
- ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto
- thus ?thesis by (metis snth.simps(2))
- qed
- qed
- thus "x \<in> ?R" by (auto simp: sset_range dest!: nth_mem)
-next
- fix x xs assume "xs \<in> sset s" ?P "x \<in> set xs" thus "x \<in> ?L"
- by (induct rule: sset_induct)
- (metis UnI1 flat_unfold shift.simps(1) sset_shift,
- metis UnI2 flat_unfold shd_sset stl_sset sset_shift)
-qed
-
-
-subsection {* merge a stream of streams *}
-
-definition smerge :: "'a stream stream \<Rightarrow> 'a stream" where
- "smerge ss = flat (smap (\<lambda>n. map (\<lambda>s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)"
-
-lemma stake_nth[simp]: "m < n \<Longrightarrow> stake n s ! m = s !! m"
- by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2))
-
-lemma snth_sset_smerge: "ss !! n !! m \<in> sset (smerge ss)"
-proof (cases "n \<le> m")
- case False thus ?thesis unfolding smerge_def
- by (subst sset_flat)
- (auto simp: stream.set_map in_set_conv_nth simp del: stake.simps
- intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp])
-next
- case True thus ?thesis unfolding smerge_def
- by (subst sset_flat)
- (auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps
- intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp])
-qed
-
-lemma sset_smerge: "sset (smerge ss) = UNION (sset ss) sset"
-proof safe
- fix x assume "x \<in> sset (smerge ss)"
- thus "x \<in> UNION (sset ss) sset"
- unfolding smerge_def by (subst (asm) sset_flat)
- (auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+)
-next
- fix s x assume "s \<in> sset ss" "x \<in> sset s"
- thus "x \<in> sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range)
-qed
-
-
-subsection {* product of two streams *}
-
-definition sproduct :: "'a stream \<Rightarrow> 'b stream \<Rightarrow> ('a \<times> 'b) stream" where
- "sproduct s1 s2 = smerge (smap (\<lambda>x. smap (Pair x) s2) s1)"
-
-lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \<times> sset s2"
- unfolding sproduct_def sset_smerge by (auto simp: stream.set_map)
-
-
-subsection {* interleave two streams *}
-
-primcorec sinterleave where
- "shd (sinterleave s1 s2) = shd s1"
-| "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)"
-
-lemma sinterleave_code[code]:
- "sinterleave (x ## s1) s2 = x ## sinterleave s2 s1"
- by (subst sinterleave.ctr) simp
-
-lemma sinterleave_snth[simp]:
- "even n \<Longrightarrow> sinterleave s1 s2 !! n = s1 !! (n div 2)"
- "odd n \<Longrightarrow> sinterleave s1 s2 !! n = s2 !! (n div 2)"
- by (induct n arbitrary: s1 s2)
- (auto dest: even_nat_Suc_div_2 odd_nat_plus_one_div_two[folded nat_2])
-
-lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \<union> sset s2"
-proof (intro equalityI subsetI)
- fix x assume "x \<in> sset (sinterleave s1 s2)"
- then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast
- thus "x \<in> sset s1 \<union> sset s2" by (cases "even n") auto
-next
- fix x assume "x \<in> sset s1 \<union> sset s2"
- thus "x \<in> sset (sinterleave s1 s2)"
- proof
- assume "x \<in> sset s1"
- then obtain n where "x = s1 !! n" unfolding sset_range by blast
- hence "sinterleave s1 s2 !! (2 * n) = x" by simp
- thus ?thesis unfolding sset_range by blast
- next
- assume "x \<in> sset s2"
- then obtain n where "x = s2 !! n" unfolding sset_range by blast
- hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp
- thus ?thesis unfolding sset_range by blast
- qed
-qed
-
-
-subsection {* zip *}
-
-primcorec szip where
- "shd (szip s1 s2) = (shd s1, shd s2)"
-| "stl (szip s1 s2) = szip (stl s1) (stl s2)"
-
-lemma szip_unfold[code]: "szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)"
- by (subst szip.ctr) simp
-
-lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)"
- by (induct n arbitrary: s1 s2) auto
-
-lemma stake_szip[simp]:
- "stake n (szip s1 s2) = zip (stake n s1) (stake n s2)"
- by (induct n arbitrary: s1 s2) auto
-
-lemma sdrop_szip[simp]: "sdrop n (szip s1 s2) = szip (sdrop n s1) (sdrop n s2)"
- by (induct n arbitrary: s1 s2) auto
-
-lemma smap_szip_fst:
- "smap (\<lambda>x. f (fst x)) (szip s1 s2) = smap f s1"
- by (coinduction arbitrary: s1 s2) auto
-
-lemma smap_szip_snd:
- "smap (\<lambda>x. g (snd x)) (szip s1 s2) = smap g s2"
- by (coinduction arbitrary: s1 s2) auto
-
-
-subsection {* zip via function *}
-
-primcorec smap2 where
- "shd (smap2 f s1 s2) = f (shd s1) (shd s2)"
-| "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)"
-
-lemma smap2_unfold[code]:
- "smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)"
- by (subst smap2.ctr) simp
-
-lemma smap2_szip:
- "smap2 f s1 s2 = smap (split f) (szip s1 s2)"
- by (coinduction arbitrary: s1 s2) auto
-
-lemma smap_smap2[simp]:
- "smap f (smap2 g s1 s2) = smap2 (\<lambda>x y. f (g x y)) s1 s2"
- unfolding smap2_szip stream.map_comp o_def split_def ..
-
-lemma smap2_alt:
- "(smap2 f s1 s2 = s) = (\<forall>n. f (s1 !! n) (s2 !! n) = s !! n)"
- unfolding smap2_szip smap_alt by auto
-
-lemma snth_smap2[simp]:
- "smap2 f s1 s2 !! n = f (s1 !! n) (s2 !! n)"
- by (induct n arbitrary: s1 s2) auto
-
-lemma stake_smap2[simp]:
- "stake n (smap2 f s1 s2) = map (split f) (zip (stake n s1) (stake n s2))"
- by (induct n arbitrary: s1 s2) auto
-
-lemma sdrop_smap2[simp]:
- "sdrop n (smap2 f s1 s2) = smap2 f (sdrop n s1) (sdrop n s2)"
- by (induct n arbitrary: s1 s2) auto
-
-end
--- a/src/HOL/Datatype_Examples/Stream_Processor.thy Tue Oct 07 10:34:24 2014 +0200
+++ b/src/HOL/Datatype_Examples/Stream_Processor.thy Tue Oct 07 10:48:29 2014 +0200
@@ -9,7 +9,7 @@
header {* Stream Processors---A Syntactic Representation of Continuous Functions on Streams *}
theory Stream_Processor
-imports Stream "~~/src/HOL/Library/BNF_Axiomatization"
+imports "~~/src/HOL/Library/Stream" "~~/src/HOL/Library/BNF_Axiomatization"
begin
section {* Continuous Functions on Streams *}
--- a/src/HOL/Library/Library.thy Tue Oct 07 10:34:24 2014 +0200
+++ b/src/HOL/Library/Library.thy Tue Oct 07 10:48:29 2014 +0200
@@ -65,6 +65,7 @@
Saturated
Set_Algebras
State_Monad
+ Stream
Sublist
Sum_of_Squares
Transitive_Closure_Table
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Stream.thy Tue Oct 07 10:48:29 2014 +0200
@@ -0,0 +1,582 @@
+(* Title: HOL/Library/Stream.thy
+ Author: Dmitriy Traytel, TU Muenchen
+ Author: Andrei Popescu, TU Muenchen
+ Copyright 2012, 2013
+
+Infinite streams.
+*)
+
+header {* Infinite Streams *}
+
+theory Stream
+imports "~~/src/HOL/Library/Nat_Bijection"
+begin
+
+codatatype (sset: 'a) stream =
+ SCons (shd: 'a) (stl: "'a stream") (infixr "##" 65)
+for
+ map: smap
+ rel: stream_all2
+
+(*for code generation only*)
+definition smember :: "'a \<Rightarrow> 'a stream \<Rightarrow> bool" where
+ [code_abbrev]: "smember x s \<longleftrightarrow> x \<in> sset s"
+
+lemma smember_code[code, simp]: "smember x (y ## s) = (if x = y then True else smember x s)"
+ unfolding smember_def by auto
+
+hide_const (open) smember
+
+lemmas smap_simps[simp] = stream.map_sel
+lemmas shd_sset = stream.set_sel(1)
+lemmas stl_sset = stream.set_sel(2)
+
+theorem sset_induct[consumes 1, case_names shd stl, induct set: sset]:
+ assumes "y \<in> sset s" and "\<And>s. P (shd s) s" and "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s"
+ shows "P y s"
+using assms by induct (metis stream.sel(1), auto)
+
+
+subsection {* prepend list to stream *}
+
+primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr "@-" 65) where
+ "shift [] s = s"
+| "shift (x # xs) s = x ## shift xs s"
+
+lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s"
+ by (induct xs) auto
+
+lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s"
+ by (induct xs) auto
+
+lemma shift_simps[simp]:
+ "shd (xs @- s) = (if xs = [] then shd s else hd xs)"
+ "stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)"
+ by (induct xs) auto
+
+lemma sset_shift[simp]: "sset (xs @- s) = set xs \<union> sset s"
+ by (induct xs) auto
+
+lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2"
+ by (induct xs) auto
+
+
+subsection {* set of streams with elements in some fixed set *}
+
+coinductive_set
+ streams :: "'a set \<Rightarrow> 'a stream set"
+ for A :: "'a set"
+where
+ Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> a ## s \<in> streams A"
+
+lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A"
+ by (induct w) auto
+
+lemma streams_Stream: "x ## s \<in> streams A \<longleftrightarrow> x \<in> A \<and> s \<in> streams A"
+ by (auto elim: streams.cases)
+
+lemma streams_stl: "s \<in> streams A \<Longrightarrow> stl s \<in> streams A"
+ by (cases s) (auto simp: streams_Stream)
+
+lemma streams_shd: "s \<in> streams A \<Longrightarrow> shd s \<in> A"
+ by (cases s) (auto simp: streams_Stream)
+
+lemma sset_streams:
+ assumes "sset s \<subseteq> A"
+ shows "s \<in> streams A"
+using assms proof (coinduction arbitrary: s)
+ case streams then show ?case by (cases s) simp
+qed
+
+lemma streams_sset:
+ assumes "s \<in> streams A"
+ shows "sset s \<subseteq> A"
+proof
+ fix x assume "x \<in> sset s" from this `s \<in> streams A` show "x \<in> A"
+ by (induct s) (auto intro: streams_shd streams_stl)
+qed
+
+lemma streams_iff_sset: "s \<in> streams A \<longleftrightarrow> sset s \<subseteq> A"
+ by (metis sset_streams streams_sset)
+
+lemma streams_mono: "s \<in> streams A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> s \<in> streams B"
+ unfolding streams_iff_sset by auto
+
+lemma smap_streams: "s \<in> streams A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> smap f s \<in> streams B"
+ unfolding streams_iff_sset stream.set_map by auto
+
+lemma streams_empty: "streams {} = {}"
+ by (auto elim: streams.cases)
+
+lemma streams_UNIV[simp]: "streams UNIV = UNIV"
+ by (auto simp: streams_iff_sset)
+
+subsection {* nth, take, drop for streams *}
+
+primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!!" 100) where
+ "s !! 0 = shd s"
+| "s !! Suc n = stl s !! n"
+
+lemma snth_smap[simp]: "smap f s !! n = f (s !! n)"
+ by (induct n arbitrary: s) auto
+
+lemma shift_snth_less[simp]: "p < length xs \<Longrightarrow> (xs @- s) !! p = xs ! p"
+ by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl)
+
+lemma shift_snth_ge[simp]: "p \<ge> length xs \<Longrightarrow> (xs @- s) !! p = s !! (p - length xs)"
+ by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred)
+
+lemma shift_snth: "(xs @- s) !! n = (if n < length xs then xs ! n else s !! (n - length xs))"
+ by auto
+
+lemma snth_sset[simp]: "s !! n \<in> sset s"
+ by (induct n arbitrary: s) (auto intro: shd_sset stl_sset)
+
+lemma sset_range: "sset s = range (snth s)"
+proof (intro equalityI subsetI)
+ fix x assume "x \<in> sset s"
+ thus "x \<in> range (snth s)"
+ proof (induct s)
+ case (stl s x)
+ then obtain n where "x = stl s !! n" by auto
+ thus ?case by (auto intro: range_eqI[of _ _ "Suc n"])
+ qed (auto intro: range_eqI[of _ _ 0])
+qed auto
+
+primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where
+ "stake 0 s = []"
+| "stake (Suc n) s = shd s # stake n (stl s)"
+
+lemma length_stake[simp]: "length (stake n s) = n"
+ by (induct n arbitrary: s) auto
+
+lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)"
+ by (induct n arbitrary: s) auto
+
+lemma take_stake: "take n (stake m s) = stake (min n m) s"
+proof (induct m arbitrary: s n)
+ case (Suc m) thus ?case by (cases n) auto
+qed simp
+
+primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
+ "sdrop 0 s = s"
+| "sdrop (Suc n) s = sdrop n (stl s)"
+
+lemma sdrop_simps[simp]:
+ "shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s"
+ by (induct n arbitrary: s) auto
+
+lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)"
+ by (induct n arbitrary: s) auto
+
+lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)"
+ by (induct n) auto
+
+lemma drop_stake: "drop n (stake m s) = stake (m - n) (sdrop n s)"
+proof (induct m arbitrary: s n)
+ case (Suc m) thus ?case by (cases n) auto
+qed simp
+
+lemma stake_sdrop: "stake n s @- sdrop n s = s"
+ by (induct n arbitrary: s) auto
+
+lemma id_stake_snth_sdrop:
+ "s = stake i s @- s !! i ## sdrop (Suc i) s"
+ by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse)
+
+lemma smap_alt: "smap f s = s' \<longleftrightarrow> (\<forall>n. f (s !! n) = s' !! n)" (is "?L = ?R")
+proof
+ assume ?R
+ then have "\<And>n. smap f (sdrop n s) = sdrop n s'"
+ by coinduction (auto intro: exI[of _ 0] simp del: sdrop.simps(2))
+ then show ?L using sdrop.simps(1) by metis
+qed auto
+
+lemma stake_invert_Nil[iff]: "stake n s = [] \<longleftrightarrow> n = 0"
+ by (induct n) auto
+
+lemma sdrop_shift: "sdrop i (w @- s) = drop i w @- sdrop (i - length w) s"
+ by (induct i arbitrary: w s) (auto simp: drop_tl drop_Suc neq_Nil_conv)
+
+lemma stake_shift: "stake i (w @- s) = take i w @ stake (i - length w) s"
+ by (induct i arbitrary: w s) (auto simp: neq_Nil_conv)
+
+lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s"
+ by (induct m arbitrary: s) auto
+
+lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s"
+ by (induct m arbitrary: s) auto
+
+lemma sdrop_snth: "sdrop n s !! m = s !! (n + m)"
+ by (induct n arbitrary: m s) auto
+
+partial_function (tailrec) sdrop_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
+ "sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)"
+
+lemma sdrop_while_SCons[code]:
+ "sdrop_while P (a ## s) = (if P a then sdrop_while P s else a ## s)"
+ by (subst sdrop_while.simps) simp
+
+lemma sdrop_while_sdrop_LEAST:
+ assumes "\<exists>n. P (s !! n)"
+ shows "sdrop_while (Not o P) s = sdrop (LEAST n. P (s !! n)) s"
+proof -
+ from assms obtain m where "P (s !! m)" "\<And>n. P (s !! n) \<Longrightarrow> m \<le> n"
+ and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le)
+ thus ?thesis unfolding *
+ proof (induct m arbitrary: s)
+ case (Suc m)
+ hence "sdrop_while (Not \<circ> P) (stl s) = sdrop m (stl s)"
+ by (metis (full_types) not_less_eq_eq snth.simps(2))
+ moreover from Suc(3) have "\<not> (P (s !! 0))" by blast
+ ultimately show ?case by (subst sdrop_while.simps) simp
+ qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1))
+qed
+
+primcorec sfilter where
+ "shd (sfilter P s) = shd (sdrop_while (Not o P) s)"
+| "stl (sfilter P s) = sfilter P (stl (sdrop_while (Not o P) s))"
+
+lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)"
+proof (cases "P x")
+ case True thus ?thesis by (subst sfilter.ctr) (simp add: sdrop_while_SCons)
+next
+ case False thus ?thesis by (subst (1 2) sfilter.ctr) (simp add: sdrop_while_SCons)
+qed
+
+
+subsection {* unary predicates lifted to streams *}
+
+definition "stream_all P s = (\<forall>p. P (s !! p))"
+
+lemma stream_all_iff[iff]: "stream_all P s \<longleftrightarrow> Ball (sset s) P"
+ unfolding stream_all_def sset_range by auto
+
+lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \<and> stream_all P s)"
+ unfolding stream_all_iff list_all_iff by auto
+
+lemma stream_all_Stream: "stream_all P (x ## X) \<longleftrightarrow> P x \<and> stream_all P X"
+ by simp
+
+
+subsection {* recurring stream out of a list *}
+
+primcorec cycle :: "'a list \<Rightarrow> 'a stream" where
+ "shd (cycle xs) = hd xs"
+| "stl (cycle xs) = cycle (tl xs @ [hd xs])"
+
+lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u"
+proof (coinduction arbitrary: u)
+ case Eq_stream then show ?case using stream.collapse[of "cycle u"]
+ by (auto intro!: exI[of _ "tl u @ [hd u]"])
+qed
+
+lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])"
+ by (subst cycle.ctr) simp
+
+lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s"
+ by (auto dest: arg_cong[of _ _ stl])
+
+lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s"
+proof (induct n arbitrary: u)
+ case (Suc n) thus ?case by (cases u) auto
+qed auto
+
+lemma stake_cycle_le[simp]:
+ assumes "u \<noteq> []" "n < length u"
+ shows "stake n (cycle u) = take n u"
+using min_absorb2[OF less_imp_le_nat[OF assms(2)]]
+ by (subst cycle_decomp[OF assms(1)], subst stake_append) auto
+
+lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u"
+ by (subst cycle_decomp) (auto simp: stake_shift)
+
+lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u"
+ by (subst cycle_decomp) (auto simp: sdrop_shift)
+
+lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
+ stake n (cycle u) = concat (replicate (n div length u) u)"
+ by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric])
+
+lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
+ sdrop n (cycle u) = cycle u"
+ by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric])
+
+lemma stake_cycle: "u \<noteq> [] \<Longrightarrow>
+ stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u"
+ by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto
+
+lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)"
+ by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric])
+
+
+subsection {* iterated application of a function *}
+
+primcorec siterate where
+ "shd (siterate f x) = x"
+| "stl (siterate f x) = siterate f (f x)"
+
+lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]"
+ by (induct n arbitrary: s) auto
+
+lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x"
+ by (induct n arbitrary: x) (auto simp: funpow_swap1)
+
+lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)"
+ by (induct n arbitrary: x) (auto simp: funpow_swap1)
+
+lemma stake_siterate[simp]: "stake n (siterate f x) = map (\<lambda>n. (f^^n) x) [0 ..< n]"
+ by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc)
+
+lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}"
+ by (auto simp: sset_range)
+
+lemma smap_siterate: "smap f (siterate f x) = siterate f (f x)"
+ by (coinduction arbitrary: x) auto
+
+
+subsection {* stream repeating a single element *}
+
+abbreviation "sconst \<equiv> siterate id"
+
+lemma shift_replicate_sconst[simp]: "replicate n x @- sconst x = sconst x"
+ by (subst (3) stake_sdrop[symmetric]) (simp add: map_replicate_trivial)
+
+lemma sset_sconst[simp]: "sset (sconst x) = {x}"
+ by (simp add: sset_siterate)
+
+lemma sconst_alt: "s = sconst x \<longleftrightarrow> sset s = {x}"
+proof
+ assume "sset s = {x}"
+ then show "s = sconst x"
+ proof (coinduction arbitrary: s)
+ case Eq_stream
+ then have "shd s = x" "sset (stl s) \<subseteq> {x}" by (case_tac [!] s) auto
+ then have "sset (stl s) = {x}" by (cases "stl s") auto
+ with `shd s = x` show ?case by auto
+ qed
+qed simp
+
+lemma same_cycle: "sconst x = cycle [x]"
+ by coinduction auto
+
+lemma smap_sconst: "smap f (sconst x) = sconst (f x)"
+ by coinduction auto
+
+lemma sconst_streams: "x \<in> A \<Longrightarrow> sconst x \<in> streams A"
+ by (simp add: streams_iff_sset)
+
+
+subsection {* stream of natural numbers *}
+
+abbreviation "fromN \<equiv> siterate Suc"
+
+abbreviation "nats \<equiv> fromN 0"
+
+lemma sset_fromN[simp]: "sset (fromN n) = {n ..}"
+ by (auto simp add: sset_siterate le_iff_add)
+
+lemma stream_smap_fromN: "s = smap (\<lambda>j. let i = j - n in s !! i) (fromN n)"
+ by (coinduction arbitrary: s n)
+ (force simp: neq_Nil_conv Let_def snth.simps(2)[symmetric] Suc_diff_Suc
+ intro: stream.map_cong split: if_splits simp del: snth.simps(2))
+
+lemma stream_smap_nats: "s = smap (snth s) nats"
+ using stream_smap_fromN[where n = 0] by simp
+
+
+subsection {* flatten a stream of lists *}
+
+primcorec flat where
+ "shd (flat ws) = hd (shd ws)"
+| "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
+
+lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
+ by (subst flat.ctr) simp
+
+lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
+ by (induct xs) auto
+
+lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)"
+ by (cases ws) auto
+
+lemma flat_snth: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then
+ shd s ! n else flat (stl s) !! (n - length (shd s)))"
+ by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less)
+
+lemma sset_flat[simp]: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow>
+ sset (flat s) = (\<Union>xs \<in> sset s. set xs)" (is "?P \<Longrightarrow> ?L = ?R")
+proof safe
+ fix x assume ?P "x : ?L"
+ then obtain m where "x = flat s !! m" by (metis image_iff sset_range)
+ with `?P` obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)"
+ proof (atomize_elim, induct m arbitrary: s rule: less_induct)
+ case (less y)
+ thus ?case
+ proof (cases "y < length (shd s)")
+ case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1))
+ next
+ case False
+ hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth)
+ moreover
+ { from less(2) have *: "length (shd s) > 0" by (cases s) simp_all
+ with False have "y > 0" by (cases y) simp_all
+ with * have "y - length (shd s) < y" by simp
+ }
+ moreover have "\<forall>xs \<in> sset (stl s). xs \<noteq> []" using less(2) by (cases s) auto
+ ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto
+ thus ?thesis by (metis snth.simps(2))
+ qed
+ qed
+ thus "x \<in> ?R" by (auto simp: sset_range dest!: nth_mem)
+next
+ fix x xs assume "xs \<in> sset s" ?P "x \<in> set xs" thus "x \<in> ?L"
+ by (induct rule: sset_induct)
+ (metis UnI1 flat_unfold shift.simps(1) sset_shift,
+ metis UnI2 flat_unfold shd_sset stl_sset sset_shift)
+qed
+
+
+subsection {* merge a stream of streams *}
+
+definition smerge :: "'a stream stream \<Rightarrow> 'a stream" where
+ "smerge ss = flat (smap (\<lambda>n. map (\<lambda>s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)"
+
+lemma stake_nth[simp]: "m < n \<Longrightarrow> stake n s ! m = s !! m"
+ by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2))
+
+lemma snth_sset_smerge: "ss !! n !! m \<in> sset (smerge ss)"
+proof (cases "n \<le> m")
+ case False thus ?thesis unfolding smerge_def
+ by (subst sset_flat)
+ (auto simp: stream.set_map in_set_conv_nth simp del: stake.simps
+ intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp])
+next
+ case True thus ?thesis unfolding smerge_def
+ by (subst sset_flat)
+ (auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps
+ intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp])
+qed
+
+lemma sset_smerge: "sset (smerge ss) = UNION (sset ss) sset"
+proof safe
+ fix x assume "x \<in> sset (smerge ss)"
+ thus "x \<in> UNION (sset ss) sset"
+ unfolding smerge_def by (subst (asm) sset_flat)
+ (auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+)
+next
+ fix s x assume "s \<in> sset ss" "x \<in> sset s"
+ thus "x \<in> sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range)
+qed
+
+
+subsection {* product of two streams *}
+
+definition sproduct :: "'a stream \<Rightarrow> 'b stream \<Rightarrow> ('a \<times> 'b) stream" where
+ "sproduct s1 s2 = smerge (smap (\<lambda>x. smap (Pair x) s2) s1)"
+
+lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \<times> sset s2"
+ unfolding sproduct_def sset_smerge by (auto simp: stream.set_map)
+
+
+subsection {* interleave two streams *}
+
+primcorec sinterleave where
+ "shd (sinterleave s1 s2) = shd s1"
+| "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)"
+
+lemma sinterleave_code[code]:
+ "sinterleave (x ## s1) s2 = x ## sinterleave s2 s1"
+ by (subst sinterleave.ctr) simp
+
+lemma sinterleave_snth[simp]:
+ "even n \<Longrightarrow> sinterleave s1 s2 !! n = s1 !! (n div 2)"
+ "odd n \<Longrightarrow> sinterleave s1 s2 !! n = s2 !! (n div 2)"
+ by (induct n arbitrary: s1 s2)
+ (auto dest: even_nat_Suc_div_2 odd_nat_plus_one_div_two[folded nat_2])
+
+lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \<union> sset s2"
+proof (intro equalityI subsetI)
+ fix x assume "x \<in> sset (sinterleave s1 s2)"
+ then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast
+ thus "x \<in> sset s1 \<union> sset s2" by (cases "even n") auto
+next
+ fix x assume "x \<in> sset s1 \<union> sset s2"
+ thus "x \<in> sset (sinterleave s1 s2)"
+ proof
+ assume "x \<in> sset s1"
+ then obtain n where "x = s1 !! n" unfolding sset_range by blast
+ hence "sinterleave s1 s2 !! (2 * n) = x" by simp
+ thus ?thesis unfolding sset_range by blast
+ next
+ assume "x \<in> sset s2"
+ then obtain n where "x = s2 !! n" unfolding sset_range by blast
+ hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp
+ thus ?thesis unfolding sset_range by blast
+ qed
+qed
+
+
+subsection {* zip *}
+
+primcorec szip where
+ "shd (szip s1 s2) = (shd s1, shd s2)"
+| "stl (szip s1 s2) = szip (stl s1) (stl s2)"
+
+lemma szip_unfold[code]: "szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)"
+ by (subst szip.ctr) simp
+
+lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)"
+ by (induct n arbitrary: s1 s2) auto
+
+lemma stake_szip[simp]:
+ "stake n (szip s1 s2) = zip (stake n s1) (stake n s2)"
+ by (induct n arbitrary: s1 s2) auto
+
+lemma sdrop_szip[simp]: "sdrop n (szip s1 s2) = szip (sdrop n s1) (sdrop n s2)"
+ by (induct n arbitrary: s1 s2) auto
+
+lemma smap_szip_fst:
+ "smap (\<lambda>x. f (fst x)) (szip s1 s2) = smap f s1"
+ by (coinduction arbitrary: s1 s2) auto
+
+lemma smap_szip_snd:
+ "smap (\<lambda>x. g (snd x)) (szip s1 s2) = smap g s2"
+ by (coinduction arbitrary: s1 s2) auto
+
+
+subsection {* zip via function *}
+
+primcorec smap2 where
+ "shd (smap2 f s1 s2) = f (shd s1) (shd s2)"
+| "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)"
+
+lemma smap2_unfold[code]:
+ "smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)"
+ by (subst smap2.ctr) simp
+
+lemma smap2_szip:
+ "smap2 f s1 s2 = smap (split f) (szip s1 s2)"
+ by (coinduction arbitrary: s1 s2) auto
+
+lemma smap_smap2[simp]:
+ "smap f (smap2 g s1 s2) = smap2 (\<lambda>x y. f (g x y)) s1 s2"
+ unfolding smap2_szip stream.map_comp o_def split_def ..
+
+lemma smap2_alt:
+ "(smap2 f s1 s2 = s) = (\<forall>n. f (s1 !! n) (s2 !! n) = s !! n)"
+ unfolding smap2_szip smap_alt by auto
+
+lemma snth_smap2[simp]:
+ "smap2 f s1 s2 !! n = f (s1 !! n) (s2 !! n)"
+ by (induct n arbitrary: s1 s2) auto
+
+lemma stake_smap2[simp]:
+ "stake n (smap2 f s1 s2) = map (split f) (zip (stake n s1) (stake n s2))"
+ by (induct n arbitrary: s1 s2) auto
+
+lemma sdrop_smap2[simp]:
+ "sdrop n (smap2 f s1 s2) = smap2 f (sdrop n s1) (sdrop n s2)"
+ by (induct n arbitrary: s1 s2) auto
+
+end
--- a/src/HOL/Probability/Stream_Space.thy Tue Oct 07 10:34:24 2014 +0200
+++ b/src/HOL/Probability/Stream_Space.thy Tue Oct 07 10:48:29 2014 +0200
@@ -4,7 +4,7 @@
theory Stream_Space
imports
Infinite_Product_Measure
- "~~/src/HOL/Datatype_Examples/Stream"
+ "~~/src/HOL/Library/Stream"
begin
lemma stream_eq_Stream_iff: "s = x ## t \<longleftrightarrow> (shd s = x \<and> stl s = t)"