tuned
authorkleing
Wed, 09 Aug 2000 11:53:00 +0200
changeset 9559 1f99296758c2
parent 9558 8d5221bf765b
child 9560 b87a6afe5881
tuned
src/HOL/MicroJava/BV/BVSpec.thy
src/HOL/MicroJava/BV/LBVComplete.thy
src/HOL/MicroJava/BV/Step.thy
src/HOL/MicroJava/BV/StepMono.thy
--- a/src/HOL/MicroJava/BV/BVSpec.thy	Tue Aug 08 16:57:44 2000 +0200
+++ b/src/HOL/MicroJava/BV/BVSpec.thy	Wed Aug 09 11:53:00 2000 +0200
@@ -36,6 +36,8 @@
    wf_prog (\\<lambda>G C (sig,rT,maxl,b).
               wt_method G C (snd sig) rT maxl b (phi C sig)) G"
 
+
+
 lemma wt_jvm_progD:
 "wt_jvm_prog G phi \\<Longrightarrow> (\\<exists>wt. wf_prog wt G)"
 by (unfold wt_jvm_prog_def, blast)
--- a/src/HOL/MicroJava/BV/LBVComplete.thy	Tue Aug 08 16:57:44 2000 +0200
+++ b/src/HOL/MicroJava/BV/LBVComplete.thy	Wed Aug 09 11:53:00 2000 +0200
@@ -6,11 +6,7 @@
 
 header {* Completeness of the LBV *}
 
-theory LBVComplete = BVSpec + LBVSpec:
-
-
-ML_setup {* bind_thm ("widen_RefT", widen_RefT) *}
-ML_setup {* bind_thm ("widen_RefT2", widen_RefT2) *}
+theory LBVComplete = BVSpec + LBVSpec + StepMono:
 
 
 constdefs
@@ -66,52 +62,60 @@
         make_cert b (Phi C sig)"
   
 
-lemma length_ofn: "\\<forall>n. length (option_filter_n l P n) = length l"
+lemmas [simp del] = split_paired_Ex
+
+lemma length_ofn [rulify]: "\\<forall>n. length (option_filter_n l P n) = length l"
   by (induct l) auto
 
-lemma is_approx_option_filter_n:
-"\\<forall>n. is_approx (option_filter_n a P n) a" (is "?P a")
-proof (induct a)
-  show "?P []" by (auto simp add: is_approx_def)
 
-  fix l ls
-  assume Cons: "?P ls"
-
-  show "?P (l#ls)"
-  proof (unfold is_approx_def, intro allI conjI impI)
-    fix n
-    show "length (option_filter_n (l # ls) P n) = length (l # ls)" 
-      by (simp only: length_ofn)
+lemma is_approx_option_filter: "is_approx (option_filter l P) l" 
+proof -
+  {
+    fix a n
+    have "\\<forall>n. is_approx (option_filter_n a P n) a" (is "?P a")
+    proof (induct a)
+      show "?P []" by (auto simp add: is_approx_def)
+    
+      fix l ls
+      assume Cons: "?P ls"
     
-    fix m
-    assume "m < length (option_filter_n (l # ls) P n)"
-    hence m: "m < Suc (length ls)" by (simp only: length_ofn) simp
- 
-    show "option_filter_n (l # ls) P n ! m = None \\<or>
-          option_filter_n (l # ls) P n ! m = Some ((l # ls) ! m)" 
-    proof (cases "m")
-      assume "m = 0"
-      with m show ?thesis by simp
-    next
-      fix m' assume Suc: "m = Suc m'"
-      from Cons
-      show ?thesis
-      proof (unfold is_approx_def, elim allE impE conjE)
-        from m Suc
-        show "m' < length (option_filter_n ls P (Suc n))" by (simp add: length_ofn)
-
-        assume "option_filter_n ls P (Suc n) ! m' = None \\<or> 
-                option_filter_n ls P (Suc n) ! m' = Some (ls ! m')"
-        with m Suc
-        show ?thesis by auto
+      show "?P (l#ls)"
+      proof (unfold is_approx_def, intro allI conjI impI)
+        fix n
+        show "length (option_filter_n (l # ls) P n) = length (l # ls)" 
+          by (simp only: length_ofn)
+      
+        fix m
+        assume "m < length (option_filter_n (l # ls) P n)"
+        hence m: "m < Suc (length ls)" by (simp only: length_ofn) simp
+      
+        show "option_filter_n (l # ls) P n ! m = None \\<or>
+              option_filter_n (l # ls) P n ! m = Some ((l # ls) ! m)" 
+        proof (cases "m")
+          assume "m = 0"
+          with m show ?thesis by simp
+        next
+          fix m' assume Suc: "m = Suc m'"
+          from Cons
+          show ?thesis
+          proof (unfold is_approx_def, elim allE impE conjE)
+            from m Suc
+            show "m' < length (option_filter_n ls P (Suc n))" by (simp add: length_ofn)
+          
+            assume "option_filter_n ls P (Suc n) ! m' = None \\<or> 
+                    option_filter_n ls P (Suc n) ! m' = Some (ls ! m')"
+            with m Suc
+            show ?thesis by auto
+          qed
+        qed
       qed
     qed
-  qed
+  }
+  
+  thus ?thesis    
+    by (auto simp add: option_filter_def)
 qed
 
-lemma is_approx_option_filter: "is_approx (option_filter l P) l" 
-  by (simp add: option_filter_def is_approx_option_filter_n)
-
 lemma option_filter_Some:
 "\\<lbrakk>n < length l; P n\\<rbrakk> \\<Longrightarrow> option_filter l P ! n = Some (l!n)"
 proof -
@@ -200,11 +204,8 @@
 by (clarsimp simp add: fits_def contains_dead_def contains_targets_def)
 
 
-
-lemmas [trans] = sup_state_trans
-
 lemma wtl_inst_mono:
-"\\<lbrakk>wtl_inst i G rT s1 s1' cert mpc pc; fits ins cert phi; pc < length ins; wf_prog wf_mb G; 
+"\\<lbrakk>wtl_inst i G rT s1 s1' cert mpc pc; fits ins cert phi; pc < length ins; 
   G \\<turnstile> s2 <=s s1; i = ins!pc\\<rbrakk> \\<Longrightarrow> 
  \\<exists> s2'. wtl_inst (ins!pc) G rT s2 s2' cert mpc pc \\<and> (G \\<turnstile> s2' <=s s1')";
 proof -
@@ -270,6 +271,42 @@
   with pc show ?thesis by simp
 qed
     
+
+lemma wtl_option_mono:
+"\\<lbrakk>wtl_inst_option i G rT s1 s1' cert mpc pc; fits ins cert phi; 
+  pc < length ins; G \\<turnstile> s2 <=s s1; i = ins!pc\\<rbrakk> \\<Longrightarrow> 
+ \\<exists> s2'. wtl_inst_option (ins!pc) G rT s2 s2' cert mpc pc \\<and> (G \\<turnstile> s2' <=s s1')"
+proof -
+  assume wtl:  "wtl_inst_option i G rT s1 s1' cert mpc pc" and
+         fits: "fits ins cert phi" "pc < length ins"
+               "G \\<turnstile> s2 <=s s1" "i = ins!pc"
+
+  show ?thesis
+  proof (cases "cert!pc")
+    case None
+    with wtl fits;
+    show ?thesis; 
+      by - (rule wtl_inst_mono [elimify], (simp add: wtl_inst_option_def)+);
+  next
+    case Some
+    with wtl fits;
+
+    have G: "G \\<turnstile> s2 <=s a"
+     by - (rule sup_state_trans, (simp add: wtl_inst_option_def)+)
+
+    from Some wtl
+    have "wtl_inst i G rT a s1' cert mpc pc"; by (simp add: wtl_inst_option_def)
+
+    with G fits
+    have "\\<exists> s2'. wtl_inst (ins!pc) G rT a s2' cert mpc pc \\<and> (G \\<turnstile> s2' <=s s1')"
+      by - (rule wtl_inst_mono, (simp add: wtl_inst_option_def)+);
+    
+    with Some G;
+    show ?thesis; by (simp add: wtl_inst_option_def);
+  qed
+qed
+
+
     
 lemma wt_instr_imp_wtl_inst:
 "\\<lbrakk>wt_instr (ins!pc) G rT phi max_pc pc; fits ins cert phi;
@@ -296,7 +333,7 @@
   from wt fits pc
   have cert: "!!pc'. \\<lbrakk>pc' \\<in> succs (ins!pc) pc; pc' < max_pc; pc' \\<noteq> pc+1\\<rbrakk> 
     \\<Longrightarrow> cert!pc' \\<noteq> None \\<and> G \\<turnstile> ?s' <=s the (cert!pc')"
-    by (auto dest: fitsD simp add: wt_instr_def simp del: split_paired_Ex)
+    by (auto dest: fitsD simp add: wt_instr_def)
 
   show ?thesis
   proof (cases "pc+1 \\<in> succs (ins!pc) pc")
@@ -358,143 +395,87 @@
 qed
 
 
-lemma wtl_option_mono:
-"\\<lbrakk>wtl_inst_option i G rT s1 s1' cert mpc pc;  fits ins cert phi; pc < length ins; 
-  wf_prog wf_mb G; G \\<turnstile> s2 <=s s1; i = ins!pc\\<rbrakk> \\<Longrightarrow> 
- \\<exists> s2'. wtl_inst_option (ins!pc) G rT s2 s2' cert mpc pc \\<and> (G \\<turnstile> s2' <=s s1')"
-proof -
-  assume wtl:  "wtl_inst_option i G rT s1 s1' cert mpc pc" and
-         fits: "fits ins cert phi" "pc < length ins"
-               "wf_prog wf_mb G" "G \\<turnstile> s2 <=s s1" "i = ins!pc"
-
-  show ?thesis
-  proof (cases "cert!pc")
-    case None
-    with wtl fits;
-    show ?thesis; 
-      by - (rule wtl_inst_mono [elimify], (simp add: wtl_inst_option_def)+);
-  next
-    case Some
-    with wtl fits;
-
-    have G: "G \\<turnstile> s2 <=s a"
-     by - (rule sup_state_trans, (simp add: wtl_inst_option_def)+)
-
-    from Some wtl
-    have "wtl_inst i G rT a s1' cert mpc pc"; by (simp add: wtl_inst_option_def)
+text {*
+  \medskip
+  Main induction over the instruction list.
+*}
 
-    with G fits
-    have "\\<exists> s2'. wtl_inst (ins!pc) G rT a s2' cert mpc pc \\<and> (G \\<turnstile> s2' <=s s1')"
-      by - (rule wtl_inst_mono, (simp add: wtl_inst_option_def)+);
-    
-    with Some G;
-    show ?thesis; by (simp add: wtl_inst_option_def);
-  qed
-qed
-
-
-(* main induction over instruction list *)
 theorem wt_imp_wtl_inst_list:
-"\\<forall> pc. (\\<forall>pc'. pc' < length ins \\<longrightarrow> wt_instr (ins ! pc') G rT phi (pc+length ins) (pc+pc')) \\<longrightarrow>   
-       wf_prog wf_mb G \\<longrightarrow> 
-       fits all_ins cert phi \\<longrightarrow> (\\<exists> l. pc = length l \\<and> all_ins=l@ins) \\<longrightarrow> pc < length all_ins \\<longrightarrow>
+"\\<forall> pc. (\\<forall>pc'. pc' < length all_ins \\<longrightarrow> wt_instr (all_ins ! pc') G rT phi (length all_ins) pc') \\<longrightarrow>   
+       fits all_ins cert phi \\<longrightarrow> 
+       (\\<exists>l. pc = length l \\<and> all_ins = l@ins) \\<longrightarrow>  
+       pc < length all_ins \\<longrightarrow>      
        (\\<forall> s. (G \\<turnstile> s <=s (phi!pc)) \\<longrightarrow> 
-       (\\<exists>s'. wtl_inst_list ins G rT s s' cert (pc+length ins) pc))" 
-(is "\\<forall>pc. ?C pc ins" is "?P ins");
-proof (induct "?P" "ins");
-  case Nil;
-  show "?P []"; by simp;
-next;
-  case Cons;
+             (\\<exists>s'. wtl_inst_list ins G rT s s' cert (length all_ins) pc))" 
+(is "\\<forall>pc. ?wt \\<longrightarrow> ?fits \\<longrightarrow> ?l pc ins \\<longrightarrow> ?len pc \\<longrightarrow> ?wtl pc ins" is "\\<forall>pc. ?C pc ins" is "?P ins") 
+proof (induct "?P" "ins")
+  case Nil
+  show "?P []" by simp
+next
+  fix i ins'
+  assume Cons: "?P ins'"
 
-  show "?P (a#list)";
-  proof (intro allI impI, elim exE conjE);
-    fix pc s l;
-    assume 1: "wf_prog wf_mb G" "fits all_ins cert phi";
-    assume 2: "pc < length all_ins" "G \\<turnstile> s <=s phi ! pc"
-              "all_ins = l @ a # list" "pc = length l";
+  show "?P (i#ins')" 
+  proof (intro allI impI, elim exE conjE)
+    fix pc s l
+    assume wt  : "\\<forall>pc'. pc' < length all_ins \\<longrightarrow> 
+                        wt_instr (all_ins ! pc') G rT phi (length all_ins) pc'"
+    assume fits: "fits all_ins cert phi"
+    assume G   : "G \\<turnstile> s <=s phi ! pc"
+    assume l   : "pc < length all_ins"
 
-    from Cons;
-    have IH: "?C (Suc pc) list"; by blast;
+    assume pc  : "all_ins = l@i#ins'" "pc = length l"
+    hence  i   : "all_ins ! pc = i"
+      by (simp add: nth_append)
 
-    assume 3: "\\<forall>pc'. pc' < length (a # list) \\<longrightarrow>
-               wt_instr ((a # list) ! pc') G rT phi (pc + length (a # list)) (pc + pc')";
-    hence 4: "\\<forall>pc'. pc' < length list \\<longrightarrow>
-              wt_instr (list ! pc') G rT phi (Suc pc + length list) (Suc pc + pc')"; by auto;    
+    from l wt
+    have "wt_instr (all_ins!pc) G rT phi (length all_ins) pc" by blast
 
-    from 2; 
-    have 5: "a = all_ins ! pc"; by (simp add: nth_append);
-
-
-    show "\\<exists>s'. wtl_inst_list (a # list) G rT s s' cert (pc + length (a # list)) pc"; 
-    proof (cases list);
-      case Nil;
-
-      with 1 2 3 5; 
-      have "\\<exists>s'. wtl_inst_option a G rT (phi ! pc) s' cert (Suc (length l)) pc";
-        by - (rule wt_instr_imp_wtl_option [elimify], force+);
+    with fits l 
+    obtain s1 where
+          "wtl_inst_option (all_ins!pc) G rT (phi!pc) s1 cert (length all_ins) pc" and
+      s1: "G \\<turnstile> s1 <=s phi ! (Suc pc)"
+      by - (drule wt_instr_imp_wtl_option, assumption+, simp, elim exE conjE, simp) 
+    
+    with fits l
+    obtain s2 where
+      o:  "wtl_inst_option (all_ins!pc) G rT s s2 cert (length all_ins) pc" 
+      and "G \\<turnstile> s2 <=s s1"
+      by - (drule wtl_option_mono, assumption+, simp, elim exE conjE, rule that) 
 
-      with Nil 1 2 5;
-      have "\\<exists>s'. wtl_inst_option a G rT s s' cert (Suc (length l)) pc";
-        by elim (rule wtl_option_mono [elimify], force+); 
-
-      with Nil 2;
-      show ?thesis; by auto;
-    next;
-      fix i' ins'; 
-      assume Cons2: "list = i' # ins'";
-
-      with IH 1 2 3;
-      have * : "\\<forall> s. (G \\<turnstile> s <=s (phi!(Suc pc))) \\<longrightarrow> 
-                     (\\<exists>s'. wtl_inst_list list G rT s s' cert ((Suc pc)+length list) (Suc pc))";
-        by (elim impE) force+;
+    with s1
+    have G': "G \\<turnstile> s2 <=s phi ! (Suc pc)"
+      by - (rule sup_state_trans, auto)
 
-      from 3;
-      have "wt_instr a G rT phi (pc + length (a # list)) pc"; by auto;
-      
-      with 1 2 5;
-      have "\\<exists>s1'. wtl_inst_option a G rT (phi!pc) s1' cert (Suc (pc + length list)) pc \\<and> G \\<turnstile> s1' <=s phi ! Suc pc";
-        by - (rule wt_instr_imp_wtl_option [elimify], assumption+, simp+);
-
-      hence "\\<exists>s1. wtl_inst_option a G rT s s1 cert (Suc (pc + length list)) pc \\<and>
-                  (G \\<turnstile> s1 <=s (phi ! (Suc pc)))" (* \\<or> (\\<exists>s. cert ! Suc pc = Some s \\<and> G \\<turnstile> s1 <=s s))"; *)
-      proof elim; 
-        fix s1';
-        assume "wtl_inst_option a G rT (phi!pc) s1' cert (Suc (pc + length list)) pc" and
-            a :"G \\<turnstile> s1' <=s phi ! Suc pc";
-        with 1 2 5;
-        have "\\<exists>s1. wtl_inst_option a G rT s s1 cert (Suc (pc + length list)) pc \\<and>
-                   ((G \\<turnstile> s1 <=s s1'))" (* \\<or> (\\<exists>s. cert ! Suc pc = Some s \\<and> G \\<turnstile> s1 <=s s))"; *)
-          by - (rule wtl_option_mono [elimify], simp+);
+    from Cons
+    have "?C (Suc pc) ins'" by blast
+    with wt fits pc
+    have IH: "?len (Suc pc) \\<longrightarrow> ?wtl (Suc pc) ins'" by auto
 
-        with a;
-        show ?thesis;
-        proof (elim, intro);
-          fix s1;
-          assume "G \\<turnstile> s1 <=s s1'" "G \\<turnstile> s1' <=s phi ! Suc pc";
-          show "G \\<turnstile> s1 <=s phi ! Suc pc"; by (rule sup_state_trans);
-        qed auto;
-      qed
-
-      thus ?thesis
-      proof (elim exE conjE); 
-        fix s1;
-        assume wto: "wtl_inst_option a G rT s s1 cert (Suc (pc + length list)) pc"; 
-        assume Gs1: "G \\<turnstile> s1 <=s phi ! Suc pc" (* \\<or> (\\<exists>s. cert ! Suc pc = Some s \\<and> G \\<turnstile> s1 <=s s)"; *)
-        
-        with *
-        have "\\<exists>s'. wtl_inst_list list G rT s1 s' cert ((Suc pc)+length list) (Suc pc)";  by blast
-
-        with wto;
-        show ?thesis; by (auto simp del: split_paired_Ex);
-      qed
+    show "\\<exists>s'. wtl_inst_list (i#ins') G rT s s' cert (length all_ins) pc"
+    proof (cases "?len (Suc pc)")
+      case False
+      with pc
+      have "ins' = []" by simp
+      with i o 
+      show ?thesis by auto
+    next
+      case True
+      with IH
+      have "?wtl (Suc pc) ins'" by blast
+      with G'
+      obtain s' where
+        "wtl_inst_list ins' G rT s2 s' cert (length all_ins) (Suc pc)"
+        by - (elim allE impE, auto)        
+      with i o
+      show ?thesis by auto
     qed
   qed
 qed
-
+  
 
 lemma fits_imp_wtl_method_complete:
-"\\<lbrakk>wt_method G C pTs rT mxl ins phi; fits ins cert phi; wf_prog wf_mb G\\<rbrakk> \\<Longrightarrow> wtl_method G C pTs rT mxl ins cert";
+"\\<lbrakk>wt_method G C pTs rT mxl ins phi; fits ins cert phi; wf_prog wf_mb G\\<rbrakk> \\<Longrightarrow> wtl_method G C pTs rT mxl ins cert"
 by (simp add: wt_method_def wtl_method_def del: split_paired_Ex)
    (rule wt_imp_wtl_inst_list [rulify, elimify], auto simp add: wt_start_def simp del: split_paired_Ex); 
 
@@ -560,5 +541,6 @@
   qed;
 qed
 
+lemmas [simp] = split_paired_Ex
 
 end
--- a/src/HOL/MicroJava/BV/Step.thy	Tue Aug 08 16:57:44 2000 +0200
+++ b/src/HOL/MicroJava/BV/Step.thy	Wed Aug 09 11:53:00 2000 +0200
@@ -10,7 +10,7 @@
 theory Step = Convert :
 
 
-(* effect of instruction on the state type *)
+text "Effect of instruction on the state type"
 consts 
 step :: "instr \\<times> jvm_prog \\<times> state_type \\<Rightarrow> state_type option"
 
@@ -39,7 +39,7 @@
 "step (i,G,s)                           = None"
 
 
-(* conditions under which step is applicable *)
+text "Conditions under which step is applicable"
 consts
 app :: "instr \\<times> jvm_prog \\<times> ty \\<times> state_type \\<Rightarrow> bool"
 
@@ -84,7 +84,8 @@
 "app (i,G,rT,s)                            = False"
 
 
-(* p_count of successor instructions *)
+text {* \isa{p_count} of successor instructions *}
+
 consts
 succs :: "instr \\<Rightarrow> p_count \\<Rightarrow> p_count set"
 
@@ -131,15 +132,21 @@
   with * show ?thesis by (auto dest: 0)
 qed
 
+text {* 
+\mdeskip
+simp rules for \isa{app} without patterns, better suited for proofs
+\medskip
+*}
+
 lemma appStore[simp]:
-"app (Store idx, G, rT, s) = (\\<exists> ts ST LT. s = (ts#ST,LT) \\<and> idx < length LT)" (is "?app s = ?P s")
+"app (Store idx, G, rT, s) = (\\<exists> ts ST LT. s = (ts#ST,LT) \\<and> idx < length LT)"
 by (cases s, cases "2 < length (fst s)", auto dest: 1 2)
 
 
 lemma appGetField[simp]:
 "app (Getfield F C, G, rT, s) = (\\<exists> oT ST LT. s = (oT#ST, LT) \\<and> is_class G C \\<and> 
                                  fst (the (field (G,C) F)) = C \\<and>
-                                 field (G,C) F \\<noteq> None \\<and> G \\<turnstile> oT \\<preceq> (Class C))" (is "?app s = ?P s")
+                                 field (G,C) F \\<noteq> None \\<and> G \\<turnstile> oT \\<preceq> (Class C))"
 by (cases s, cases "2 < length (fst s)", auto dest: 1 2)
 
 
@@ -147,36 +154,36 @@
 "app (Putfield F C, G, rT, s) = (\\<exists> vT oT ST LT. s = (vT#oT#ST, LT) \\<and> is_class G C \\<and> 
                                  field (G,C) F \\<noteq> None \\<and> fst (the (field (G,C) F)) = C \\<and>
                                  G \\<turnstile> oT \\<preceq> (Class C) \\<and>
-                                 G \\<turnstile> vT \\<preceq> (snd (the (field (G,C) F))))" (is "?app s = ?P s")
+                                 G \\<turnstile> vT \\<preceq> (snd (the (field (G,C) F))))" 
 by (cases s, cases "2 < length (fst s)", auto dest: 1 2)
 
 
 lemma appCheckcast[simp]:
-"app (Checkcast C, G, rT, s) = (\\<exists>rT ST LT. s = (RefT rT#ST,LT) \\<and> is_class G C)" (is "?app s = ?P s")
+"app (Checkcast C, G, rT, s) = (\\<exists>rT ST LT. s = (RefT rT#ST,LT) \\<and> is_class G C)"
 by (cases s, cases "fst s", simp, cases "hd (fst s)", auto)
 
 lemma appPop[simp]:
-"app (Pop, G, rT, s) = (\\<exists>ts ST LT. s = (ts#ST,LT))" (is "?app s = ?P s")
+"app (Pop, G, rT, s) = (\\<exists>ts ST LT. s = (ts#ST,LT))" 
 by (cases s, cases "2 < length (fst s)", auto dest: 1 2)
 
 
 lemma appDup[simp]:
-"app (Dup, G, rT, s) = (\\<exists>ts ST LT. s = (ts#ST,LT))" (is "?app s = ?P s")
+"app (Dup, G, rT, s) = (\\<exists>ts ST LT. s = (ts#ST,LT))" 
 by (cases s, cases "2 < length (fst s)", auto dest: 1 2)
 
 
 lemma appDup_x1[simp]:
-"app (Dup_x1, G, rT, s) = (\\<exists>ts1 ts2 ST LT. s = (ts1#ts2#ST,LT))" (is "?app s = ?P s")
+"app (Dup_x1, G, rT, s) = (\\<exists>ts1 ts2 ST LT. s = (ts1#ts2#ST,LT))" 
 by (cases s, cases "2 < length (fst s)", auto dest: 1 2)
 
 
 lemma appDup_x2[simp]:
-"app (Dup_x2, G, rT, s) = (\\<exists>ts1 ts2 ts3 ST LT. s = (ts1#ts2#ts3#ST,LT))"(is "?app s = ?P s")
+"app (Dup_x2, G, rT, s) = (\\<exists>ts1 ts2 ts3 ST LT. s = (ts1#ts2#ts3#ST,LT))"
 by (cases s, cases "2 < length (fst s)", auto dest: 1 2)
 
 
 lemma appSwap[simp]:
-"app (Swap, G, rT, s) = (\\<exists>ts1 ts2 ST LT. s = (ts1#ts2#ST,LT))" (is "?app s = ?P s")
+"app (Swap, G, rT, s) = (\\<exists>ts1 ts2 ST LT. s = (ts1#ts2#ST,LT))" 
 by (cases s, cases "2 < length (fst s)", auto dest: 1 2)
 
 
@@ -250,469 +257,5 @@
 qed 
 
 lemmas [simp del] = app_invoke
-lemmas [trans] = sup_loc_trans
-
-ML_setup {* bind_thm ("widen_RefT", widen_RefT) *}
-ML_setup {* bind_thm ("widen_RefT2", widen_RefT2) *}
-
-
-
-lemma app_step_some:
-"\\<lbrakk>app (i,G,rT,s); succs i pc \\<noteq> {} \\<rbrakk> \\<Longrightarrow> step (i,G,s) \\<noteq> None";
-by (cases s, cases i, auto)
-
-lemma sup_state_length:
-"G \\<turnstile> s2 <=s s1 \\<Longrightarrow> length (fst s2) = length (fst s1) \\<and> length (snd s2) = length (snd s1)"
-  by (cases s1, cases s2, simp add: sup_state_length_fst sup_state_length_snd)
-  
-lemma PrimT_PrimT: "(G \\<turnstile> xb \\<preceq> PrimT p) = (xb = PrimT p)"
-proof
-  show "xb = PrimT p \\<Longrightarrow> G \\<turnstile> xb \\<preceq> PrimT p" by blast
-
-  show "G\\<turnstile> xb \\<preceq> PrimT p \\<Longrightarrow> xb = PrimT p"
-  proof (cases xb)
-    fix prim
-    assume "xb = PrimT prim" "G\\<turnstile>xb\\<preceq>PrimT p"
-    thus ?thesis by simp
-  next
-    fix ref
-    assume "G\\<turnstile>xb\\<preceq>PrimT p" "xb = RefT ref"
-    thus ?thesis by simp (rule widen_RefT [elimify], auto)
-  qed
-qed
-
-lemma sup_loc_some [rulify]:
-"\\<forall> y n. (G \\<turnstile> b <=l y) \\<longrightarrow> n < length y \\<longrightarrow> y!n = Some t \\<longrightarrow> (\\<exists>t. b!n = Some t \\<and> (G \\<turnstile> (b!n) <=o (y!n)))" (is "?P b")
-proof (induct "?P" b)
-  show "?P []" by simp
-
-  case Cons
-  show "?P (a#list)"
-  proof (clarsimp simp add: list_all2_Cons1 sup_loc_def)
-    fix z zs n
-    assume * : 
-      "G \\<turnstile> a <=o z" "list_all2 (sup_ty_opt G) list zs" 
-      "n < Suc (length zs)" "(z # zs) ! n = Some t"
-
-    show "(\\<exists>t. (a # list) ! n = Some t) \\<and> G \\<turnstile>(a # list) ! n <=o Some t" 
-    proof (cases n) 
-      case 0
-      with * show ?thesis by (simp add: sup_ty_opt_some)
-    next
-      case Suc
-      with Cons *
-      show ?thesis by (simp add: sup_loc_def)
-    qed
-  qed
-qed
-   
-
-lemma all_widen_is_sup_loc:
-"\\<forall>b. length a = length b \\<longrightarrow> (\\<forall>x\\<in>set (zip a b). x \\<in> widen G) = (G \\<turnstile> (map Some a) <=l (map Some b))" 
- (is "\\<forall>b. length a = length b \\<longrightarrow> ?Q a b" is "?P a")
-proof (induct "a")
-  show "?P []" by simp
-
-  fix l ls assume Cons: "?P ls"
-
-  show "?P (l#ls)" 
-  proof (intro allI impI)
-    fix b 
-    assume "length (l # ls) = length (b::ty list)" 
-    with Cons
-    show "?Q (l # ls) b" by - (cases b, auto)
-  qed
-qed
- 
-
-lemma append_length_n: "\\<forall>n. n \\<le> length x \\<longrightarrow> (\\<exists>a b. x = a@b \\<and> length a = n)" (is "?P x")
-proof (induct "?P" "x")
-  show "?P []" by simp
-
-  fix l ls assume Cons: "?P ls"
-
-  show "?P (l#ls)"
-  proof (intro allI impI)
-    fix n
-    assume l: "n \\<le> length (l # ls)"
-
-    show "\\<exists>a b. l # ls = a @ b \\<and> length a = n" 
-    proof (cases n)
-      assume "n=0" thus ?thesis by simp
-    next
-      fix "n'" assume s: "n = Suc n'"
-      with l 
-      have  "n' \\<le> length ls" by simp 
-      hence "\\<exists>a b. ls = a @ b \\<and> length a = n'" by (rule Cons [rulify])
-      thus ?thesis
-      proof elim
-        fix a b 
-        assume "ls = a @ b" "length a = n'"
-        with s
-        have "l # ls = (l#a) @ b \\<and> length (l#a) = n" by simp
-        thus ?thesis by blast
-      qed
-    qed
-  qed
-qed
-
-
-
-lemma rev_append_cons:
-"\\<lbrakk>n < length x\\<rbrakk> \\<Longrightarrow> \\<exists>a b c. x = (rev a) @ b # c \\<and> length a = n"
-proof -
-  assume n: "n < length x"
-  hence "n \\<le> length x" by simp
-  hence "\\<exists>a b. x = a @ b \\<and> length a = n" by (rule append_length_n [rulify])
-  thus ?thesis
-  proof elim
-    fix r d assume x: "x = r@d" "length r = n"
-    with n
-    have "\\<exists>b c. d = b#c" by (simp add: neq_Nil_conv)
-    
-    thus ?thesis 
-    proof elim
-      fix b c 
-      assume "d = b#c"
-      with x
-      have "x = (rev (rev r)) @ b # c \\<and> length (rev r) = n" by simp
-      thus ?thesis by blast
-    qed
-  qed
-qed
-
-
-lemma app_mono: 
-"\\<lbrakk>G \\<turnstile> s2 <=s s1; app (i, G, rT, s1)\\<rbrakk> \\<Longrightarrow> app (i, G, rT, s2)";
-proof -
-  assume G:   "G \\<turnstile> s2 <=s s1"
-  assume app: "app (i, G, rT, s1)"
-  
-  show ?thesis
-  proof (cases i)
-    case Load
-    
-    from G
-    have l: "length (snd s1) = length (snd s2)" by (simp add: sup_state_length)
-
-    from G Load app
-    have "G \\<turnstile> snd s2 <=l snd s1" by (auto simp add: sup_state_def)
-    
-    with G Load app l
-    show ?thesis by clarsimp (drule sup_loc_some, simp+)
-  next
-    case Store
-    with G app
-    show ?thesis
-      by - (cases s2,
-            auto dest: map_hd_tl simp add: sup_loc_Cons2 sup_loc_length sup_state_def)
-  next
-    case Bipush
-    thus ?thesis by simp 
-  next
-    case Aconst_null
-    thus ?thesis by simp
-  next
-    case New
-    with app
-    show ?thesis by simp
-  next
-    case Getfield
-    with app G
-    show ?thesis
-      by - (cases s2, clarsimp simp add: sup_state_Cons2, rule widen_trans)
-  next
-    case Putfield
-
-    with app 
-    obtain vT oT ST LT b
-      where s1: "s1 = (vT # oT # ST, LT)" and
-                "field (G, cname) vname = Some (cname, b)" 
-                "is_class G cname" and
-            oT: "G\\<turnstile> oT\\<preceq> (Class cname)" and
-            vT: "G\\<turnstile> vT\\<preceq> b"
-      by simp (elim exE conjE, simp, rule that)
-    moreover
-    from s1 G
-    obtain vT' oT' ST' LT'
-      where s2:  "s2 = (vT' # oT' # ST', LT')" and
-            oT': "G\\<turnstile> oT' \\<preceq> oT" and
-            vT': "G\\<turnstile> vT' \\<preceq> vT"
-      by - (cases s2, simp add: sup_state_Cons2, elim exE conjE, simp, rule that)
-    moreover
-    from vT' vT
-    have "G \\<turnstile> vT' \\<preceq> b" by (rule widen_trans)
-    moreover
-    from oT' oT
-    have "G\\<turnstile> oT' \\<preceq> (Class cname)" by (rule widen_trans)
-    ultimately
-    show ?thesis
-      by (auto simp add: Putfield)
-  next
-    case Checkcast
-    with app G
-    show ?thesis 
-      by - (cases s2, auto intro: widen_RefT2 simp add: sup_state_Cons2)
-  next
-    case Return
-    with app G
-    show ?thesis
-      by - (cases s2, clarsimp simp add: sup_state_Cons2, rule widen_trans)
-  next
-    case Pop
-    with app G
-    show ?thesis
-      by - (cases s2, clarsimp simp add: sup_state_Cons2)
-  next
-    case Dup
-    with app G
-    show ?thesis
-      by - (cases s2, clarsimp simp add: sup_state_Cons2)
-  next
-    case Dup_x1
-    with app G
-    show ?thesis
-      by - (cases s2, clarsimp simp add: sup_state_Cons2)
-  next
-    case Dup_x2
-    with app G
-    show ?thesis
-      by - (cases s2, clarsimp simp add: sup_state_Cons2)
-  next
-    case Swap
-    with app G
-    show ?thesis
-      by - (cases s2, clarsimp simp add: sup_state_Cons2)
-  next
-    case IAdd
-    with app G
-    show ?thesis
-      by - (cases s2, auto simp add: sup_state_Cons2 PrimT_PrimT)
-  next
-    case Goto 
-    with app
-    show ?thesis by simp
-  next
-    case Ifcmpeq
-    with app G
-    show ?thesis
-      by - (cases s2, auto simp add: sup_state_Cons2 PrimT_PrimT widen_RefT2)
-  next
-    case Invoke
-
-    with app
-    obtain apTs X ST LT where
-      s1: "s1 = (rev apTs @ X # ST, LT)" and
-      l:  "length apTs = length list" and
-      C:  "G \\<turnstile> X \\<preceq> Class cname" and
-      w:  "\\<forall>x \\<in> set (zip apTs list). x \\<in> widen G" and
-      m:  "method (G, cname) (mname, list) \\<noteq> None"
-      by (simp del: not_None_eq, elim exE conjE) (rule that)
-
-    obtain apTs' X' ST' LT' where
-      s2: "s2 = (rev apTs' @ X' # ST', LT')" and
-      l': "length apTs' = length list"
-    proof -
-      from l s1 G 
-      have "length list < length (fst s2)" 
-        by (simp add: sup_state_length)
-      hence "\\<exists>a b c. (fst s2) = rev a @ b # c \\<and> length a = length list"
-        by (rule rev_append_cons [rulify])
-      thus ?thesis
-        by -  (cases s2, elim exE conjE, simp, rule that) 
-    qed
-
-    from l l'
-    have "length (rev apTs') = length (rev apTs)" by simp
-    
-    from this s1 s2 G 
-    obtain
-      G': "G \\<turnstile> (apTs',LT') <=s (apTs,LT)" 
-          "G \\<turnstile>  X' \\<preceq> X" "G \\<turnstile> (ST',LT') <=s (ST,LT)"
-      by (simp add: sup_state_rev_fst sup_state_append_fst sup_state_Cons1);
-        
-    with C
-    have C': "G \\<turnstile> X' \\<preceq> Class cname"
-      by - (rule widen_trans, auto)
-    
-    from G'
-    have "G \\<turnstile> map Some apTs' <=l map Some apTs"
-      by (simp add: sup_state_def)
-    also
-    from l w
-    have "G \\<turnstile> map Some apTs <=l map Some list" 
-      by (simp add: all_widen_is_sup_loc)
-    finally
-    have "G \\<turnstile> map Some apTs' <=l map Some list" .
-
-    with l'
-    have w': "\\<forall>x \\<in> set (zip apTs' list). x \\<in> widen G"
-      by (simp add: all_widen_is_sup_loc)
-
-    from Invoke s2 l' w' C' m
-    show ?thesis 
-      by simp blast
-  qed
-qed
-    
-
-lemma step_mono:
-"\\<lbrakk>succs i pc \\<noteq> {}; app (i,G,rT,s2); G \\<turnstile> s1 <=s s2\\<rbrakk> \\<Longrightarrow> 
-  G \\<turnstile> the (step (i,G,s1)) <=s the (step (i,G,s2))"
-proof (cases s1, cases s2) 
-  fix a1 b1 a2 b2
-  assume s: "s1 = (a1,b1)" "s2 = (a2,b2)"
-  assume succs: "succs i pc \\<noteq> {}"
-  assume app2: "app (i,G,rT,s2)"
-  assume G: "G \\<turnstile> s1 <=s s2"
-
-  from G app2
-  have app1: "app (i,G,rT,s1)" by (rule app_mono)
-
-  from app1 app2 succs
-  obtain a1' b1' a2' b2'
-    where step: "step (i,G,s1) = Some (a1',b1')" "step (i,G,s2) = Some (a2',b2')";
-    by (auto dest: app_step_some);
-
-  have "G \\<turnstile> (a1',b1') <=s (a2',b2')"
-  proof (cases i)
-    case Load
-
-    with s app1
-    obtain y where
-       y:  "nat < length b1" "b1 ! nat = Some y" by clarsimp
-
-    from Load s app2
-    obtain y' where
-       y': "nat < length b2" "b2 ! nat = Some y'" by clarsimp
-
-    from G s 
-    have "G \\<turnstile> b1 <=l b2" by (simp add: sup_state_def)
-
-    with y y'
-    have "G \\<turnstile> y \\<preceq> y'" 
-      by - (drule sup_loc_some, simp+)
-    
-    with Load G y y' s step app1 app2 
-    show ?thesis by (clarsimp simp add: sup_state_def)
-  next
-    case Store
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_def sup_loc_update)
-  next
-    case Bipush
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_Cons1)
-  next
-    case New
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_Cons1)
-  next
-    case Aconst_null
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_Cons1)
-  next
-    case Getfield
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_Cons1)
-  next
-    case Putfield
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_Cons1)
-  next
-    case Checkcast
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_Cons1)
-  next
-    case Invoke
-
-    with s app1
-    obtain a X ST where
-      s1: "s1 = (a @ X # ST, b1)" and
-      l:  "length a = length list"
-      by (simp, elim exE conjE, simp)
-
-    from Invoke s app2
-    obtain a' X' ST' where
-      s2: "s2 = (a' @ X' # ST', b2)" and
-      l': "length a' = length list"
-      by (simp, elim exE conjE, simp)
-
-    from l l'
-    have lr: "length a = length a'" by simp
-      
-    from lr G s s1 s2 
-    have "G \\<turnstile> (ST, b1) <=s (ST', b2)"
-      by (simp add: sup_state_append_fst sup_state_Cons1)
-    
-    moreover
-    
-    from Invoke G s step app1 app2
-    have "b1 = b1' \\<and> b2 = b2'" by simp
-
-    ultimately 
-
-    have "G \\<turnstile> (ST, b1') <=s (ST', b2')" by simp
-
-    with Invoke G s step app1 app2 s1 s2 l l'
-    show ?thesis 
-      by (clarsimp simp add: sup_state_def)
-  next
-    case Return
-    with succs have "False" by simp
-    thus ?thesis by blast
-  next
-    case Pop
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_Cons1)
-  next
-    case Dup
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_Cons1)
-  next
-    case Dup_x1
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_Cons1)
-  next 
-    case Dup_x2
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_Cons1)
-  next
-    case Swap
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_Cons1)
-  next
-    case IAdd
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_Cons1)
-  next
-    case Goto
-    with G s step app1 app2
-    show ?thesis by simp
-  next
-    case Ifcmpeq
-    with G s step app1 app2
-    show ?thesis
-      by (clarsimp simp add: sup_state_Cons1)   
-  qed
-
-  with step
-  show ?thesis by auto  
-qed
-
-
 
 end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/MicroJava/BV/StepMono.thy	Wed Aug 09 11:53:00 2000 +0200
@@ -0,0 +1,480 @@
+(*  Title:      HOL/MicroJava/BV/Step.thy
+    ID:         $Id$
+    Author:     Gerwin Klein
+    Copyright   2000 Technische Universitaet Muenchen
+*)
+
+header {* Monotonicity of \isa{step} and \isa{app} *}
+
+theory StepMono = Step :
+
+
+lemmas [trans] = sup_state_trans sup_loc_trans widen_trans
+
+ML_setup {* bind_thm ("widen_RefT", widen_RefT) *}
+ML_setup {* bind_thm ("widen_RefT2", widen_RefT2) *}
+
+
+lemma app_step_some:
+"\\<lbrakk>app (i,G,rT,s); succs i pc \\<noteq> {} \\<rbrakk> \\<Longrightarrow> step (i,G,s) \\<noteq> None";
+by (cases s, cases i, auto)
+
+
+lemma sup_state_length:
+"G \\<turnstile> s2 <=s s1 \\<Longrightarrow> length (fst s2) = length (fst s1) \\<and> length (snd s2) = length (snd s1)"
+  by (cases s1, cases s2, simp add: sup_state_length_fst sup_state_length_snd)
+  
+
+lemma PrimT_PrimT: "(G \\<turnstile> xb \\<preceq> PrimT p) = (xb = PrimT p)"
+proof
+  show "xb = PrimT p \\<Longrightarrow> G \\<turnstile> xb \\<preceq> PrimT p" by blast
+
+  show "G\\<turnstile> xb \\<preceq> PrimT p \\<Longrightarrow> xb = PrimT p"
+  proof (cases xb)
+    fix prim
+    assume "xb = PrimT prim" "G\\<turnstile>xb\\<preceq>PrimT p"
+    thus ?thesis by simp
+  next
+    fix ref
+    assume "G\\<turnstile>xb\\<preceq>PrimT p" "xb = RefT ref"
+    thus ?thesis by simp (rule widen_RefT [elimify], auto)
+  qed
+qed
+
+
+lemma sup_loc_some [rulify]:
+"\\<forall> y n. (G \\<turnstile> b <=l y) \\<longrightarrow> n < length y \\<longrightarrow> y!n = Some t \\<longrightarrow> (\\<exists>t. b!n = Some t \\<and> (G \\<turnstile> (b!n) <=o (y!n)))" (is "?P b")
+proof (induct "?P" b)
+  show "?P []" by simp
+
+  case Cons
+  show "?P (a#list)"
+  proof (clarsimp simp add: list_all2_Cons1 sup_loc_def)
+    fix z zs n
+    assume * : 
+      "G \\<turnstile> a <=o z" "list_all2 (sup_ty_opt G) list zs" 
+      "n < Suc (length zs)" "(z # zs) ! n = Some t"
+
+    show "(\\<exists>t. (a # list) ! n = Some t) \\<and> G \\<turnstile>(a # list) ! n <=o Some t" 
+    proof (cases n) 
+      case 0
+      with * show ?thesis by (simp add: sup_ty_opt_some)
+    next
+      case Suc
+      with Cons *
+      show ?thesis by (simp add: sup_loc_def)
+    qed
+  qed
+qed
+   
+
+lemma all_widen_is_sup_loc:
+"\\<forall>b. length a = length b \\<longrightarrow> (\\<forall>x\\<in>set (zip a b). x \\<in> widen G) = (G \\<turnstile> (map Some a) <=l (map Some b))" 
+ (is "\\<forall>b. length a = length b \\<longrightarrow> ?Q a b" is "?P a")
+proof (induct "a")
+  show "?P []" by simp
+
+  fix l ls assume Cons: "?P ls"
+
+  show "?P (l#ls)" 
+  proof (intro allI impI)
+    fix b 
+    assume "length (l # ls) = length (b::ty list)" 
+    with Cons
+    show "?Q (l # ls) b" by - (cases b, auto)
+  qed
+qed
+ 
+
+lemma append_length_n [rulify]: 
+"\\<forall>n. n \\<le> length x \\<longrightarrow> (\\<exists>a b. x = a@b \\<and> length a = n)" (is "?P x")
+proof (induct "?P" "x")
+  show "?P []" by simp
+
+  fix l ls assume Cons: "?P ls"
+
+  show "?P (l#ls)"
+  proof (intro allI impI)
+    fix n
+    assume l: "n \\<le> length (l # ls)"
+
+    show "\\<exists>a b. l # ls = a @ b \\<and> length a = n" 
+    proof (cases n)
+      assume "n=0" thus ?thesis by simp
+    next
+      fix "n'" assume s: "n = Suc n'"
+      with l 
+      have  "n' \\<le> length ls" by simp 
+      hence "\\<exists>a b. ls = a @ b \\<and> length a = n'" by (rule Cons [rulify])
+      thus ?thesis
+      proof elim
+        fix a b 
+        assume "ls = a @ b" "length a = n'"
+        with s
+        have "l # ls = (l#a) @ b \\<and> length (l#a) = n" by simp
+        thus ?thesis by blast
+      qed
+    qed
+  qed
+qed
+
+
+
+lemma rev_append_cons:
+"\\<lbrakk>n < length x\\<rbrakk> \\<Longrightarrow> \\<exists>a b c. x = (rev a) @ b # c \\<and> length a = n"
+proof -
+  assume n: "n < length x"
+  hence "n \\<le> length x" by simp
+  hence "\\<exists>a b. x = a @ b \\<and> length a = n" by (rule append_length_n)
+  thus ?thesis
+  proof elim
+    fix r d assume x: "x = r@d" "length r = n"
+    with n
+    have "\\<exists>b c. d = b#c" by (simp add: neq_Nil_conv)
+    
+    thus ?thesis 
+    proof elim
+      fix b c 
+      assume "d = b#c"
+      with x
+      have "x = (rev (rev r)) @ b # c \\<and> length (rev r) = n" by simp
+      thus ?thesis by blast
+    qed
+  qed
+qed
+
+
+lemma app_mono: 
+"\\<lbrakk>G \\<turnstile> s2 <=s s1; app (i, G, rT, s1)\\<rbrakk> \\<Longrightarrow> app (i, G, rT, s2)";
+proof -
+  assume G:   "G \\<turnstile> s2 <=s s1"
+  assume app: "app (i, G, rT, s1)"
+  
+  show ?thesis
+  proof (cases i)
+    case Load
+    
+    from G
+    have l: "length (snd s1) = length (snd s2)" by (simp add: sup_state_length)
+
+    from G Load app
+    have "G \\<turnstile> snd s2 <=l snd s1" by (auto simp add: sup_state_def)
+    
+    with G Load app l
+    show ?thesis by clarsimp (drule sup_loc_some, simp+)
+  next
+    case Store
+    with G app
+    show ?thesis
+      by - (cases s2,
+            auto dest: map_hd_tl simp add: sup_loc_Cons2 sup_loc_length sup_state_def)
+  next
+    case Bipush
+    thus ?thesis by simp 
+  next
+    case Aconst_null
+    thus ?thesis by simp
+  next
+    case New
+    with app
+    show ?thesis by simp
+  next
+    case Getfield
+    with app G
+    show ?thesis
+      by - (cases s2, clarsimp simp add: sup_state_Cons2, rule widen_trans)
+  next
+    case Putfield
+
+    with app 
+    obtain vT oT ST LT b
+      where s1: "s1 = (vT # oT # ST, LT)" and
+                "field (G, cname) vname = Some (cname, b)" 
+                "is_class G cname" and
+            oT: "G\\<turnstile> oT\\<preceq> (Class cname)" and
+            vT: "G\\<turnstile> vT\\<preceq> b"
+      by simp (elim exE conjE, simp, rule that)
+    moreover
+    from s1 G
+    obtain vT' oT' ST' LT'
+      where s2:  "s2 = (vT' # oT' # ST', LT')" and
+            oT': "G\\<turnstile> oT' \\<preceq> oT" and
+            vT': "G\\<turnstile> vT' \\<preceq> vT"
+      by - (cases s2, simp add: sup_state_Cons2, elim exE conjE, simp, rule that)
+    moreover
+    from vT' vT
+    have "G \\<turnstile> vT' \\<preceq> b" by (rule widen_trans)
+    moreover
+    from oT' oT
+    have "G\\<turnstile> oT' \\<preceq> (Class cname)" by (rule widen_trans)
+    ultimately
+    show ?thesis
+      by (auto simp add: Putfield)
+  next
+    case Checkcast
+    with app G
+    show ?thesis 
+      by - (cases s2, auto intro: widen_RefT2 simp add: sup_state_Cons2)
+  next
+    case Return
+    with app G
+    show ?thesis
+      by - (cases s2, clarsimp simp add: sup_state_Cons2, rule widen_trans)
+  next
+    case Pop
+    with app G
+    show ?thesis
+      by - (cases s2, clarsimp simp add: sup_state_Cons2)
+  next
+    case Dup
+    with app G
+    show ?thesis
+      by - (cases s2, clarsimp simp add: sup_state_Cons2)
+  next
+    case Dup_x1
+    with app G
+    show ?thesis
+      by - (cases s2, clarsimp simp add: sup_state_Cons2)
+  next
+    case Dup_x2
+    with app G
+    show ?thesis
+      by - (cases s2, clarsimp simp add: sup_state_Cons2)
+  next
+    case Swap
+    with app G
+    show ?thesis
+      by - (cases s2, clarsimp simp add: sup_state_Cons2)
+  next
+    case IAdd
+    with app G
+    show ?thesis
+      by - (cases s2, auto simp add: sup_state_Cons2 PrimT_PrimT)
+  next
+    case Goto 
+    with app
+    show ?thesis by simp
+  next
+    case Ifcmpeq
+    with app G
+    show ?thesis
+      by - (cases s2, auto simp add: sup_state_Cons2 PrimT_PrimT widen_RefT2)
+  next
+    case Invoke
+
+    with app
+    obtain apTs X ST LT where
+      s1: "s1 = (rev apTs @ X # ST, LT)" and
+      l:  "length apTs = length list" and
+      C:  "G \\<turnstile> X \\<preceq> Class cname" and
+      w:  "\\<forall>x \\<in> set (zip apTs list). x \\<in> widen G" and
+      m:  "method (G, cname) (mname, list) \\<noteq> None"
+      by (simp del: not_None_eq, elim exE conjE) (rule that)
+
+    obtain apTs' X' ST' LT' where
+      s2: "s2 = (rev apTs' @ X' # ST', LT')" and
+      l': "length apTs' = length list"
+    proof -
+      from l s1 G 
+      have "length list < length (fst s2)" 
+        by (simp add: sup_state_length)
+      hence "\\<exists>a b c. (fst s2) = rev a @ b # c \\<and> length a = length list"
+        by (rule rev_append_cons [rulify])
+      thus ?thesis
+        by -  (cases s2, elim exE conjE, simp, rule that) 
+    qed
+
+    from l l'
+    have "length (rev apTs') = length (rev apTs)" by simp
+    
+    from this s1 s2 G 
+    obtain
+      G': "G \\<turnstile> (apTs',LT') <=s (apTs,LT)" and
+      X : "G \\<turnstile>  X' \\<preceq> X" and "G \\<turnstile> (ST',LT') <=s (ST,LT)"
+      by (simp add: sup_state_rev_fst sup_state_append_fst sup_state_Cons1);
+        
+    with C
+    have C': "G \\<turnstile> X' \\<preceq> Class cname"
+      by - (rule widen_trans, auto)
+    
+    from G'
+    have "G \\<turnstile> map Some apTs' <=l map Some apTs"
+      by (simp add: sup_state_def)
+    also
+    from l w
+    have "G \\<turnstile> map Some apTs <=l map Some list" 
+      by (simp add: all_widen_is_sup_loc)
+    finally
+    have "G \\<turnstile> map Some apTs' <=l map Some list" .
+
+    with l'
+    have w': "\\<forall>x \\<in> set (zip apTs' list). x \\<in> widen G"
+      by (simp add: all_widen_is_sup_loc)
+
+    from Invoke s2 l' w' C' m
+    show ?thesis 
+      by simp blast
+  qed
+qed
+    
+
+lemma step_mono:
+"\\<lbrakk>succs i pc \\<noteq> {}; app (i,G,rT,s2); G \\<turnstile> s1 <=s s2\\<rbrakk> \\<Longrightarrow> 
+  G \\<turnstile> the (step (i,G,s1)) <=s the (step (i,G,s2))"
+proof (cases s1, cases s2) 
+  fix a1 b1 a2 b2
+  assume s: "s1 = (a1,b1)" "s2 = (a2,b2)"
+  assume succs: "succs i pc \\<noteq> {}"
+  assume app2: "app (i,G,rT,s2)"
+  assume G: "G \\<turnstile> s1 <=s s2"
+
+  from G app2
+  have app1: "app (i,G,rT,s1)" by (rule app_mono)
+
+  from app1 app2 succs
+  obtain a1' b1' a2' b2'
+    where step: "step (i,G,s1) = Some (a1',b1')" "step (i,G,s2) = Some (a2',b2')";
+    by (auto dest: app_step_some);
+
+  have "G \\<turnstile> (a1',b1') <=s (a2',b2')"
+  proof (cases i)
+    case Load
+
+    with s app1
+    obtain y where
+       y:  "nat < length b1" "b1 ! nat = Some y" by clarsimp
+
+    from Load s app2
+    obtain y' where
+       y': "nat < length b2" "b2 ! nat = Some y'" by clarsimp
+
+    from G s 
+    have "G \\<turnstile> b1 <=l b2" by (simp add: sup_state_def)
+
+    with y y'
+    have "G \\<turnstile> y \\<preceq> y'" 
+      by - (drule sup_loc_some, simp+)
+    
+    with Load G y y' s step app1 app2 
+    show ?thesis by (clarsimp simp add: sup_state_def)
+  next
+    case Store
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_def sup_loc_update)
+  next
+    case Bipush
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_Cons1)
+  next
+    case New
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_Cons1)
+  next
+    case Aconst_null
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_Cons1)
+  next
+    case Getfield
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_Cons1)
+  next
+    case Putfield
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_Cons1)
+  next
+    case Checkcast
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_Cons1)
+  next
+    case Invoke
+
+    with s app1
+    obtain a X ST where
+      s1: "s1 = (a @ X # ST, b1)" and
+      l:  "length a = length list"
+      by (simp, elim exE conjE, simp)
+
+    from Invoke s app2
+    obtain a' X' ST' where
+      s2: "s2 = (a' @ X' # ST', b2)" and
+      l': "length a' = length list"
+      by (simp, elim exE conjE, simp)
+
+    from l l'
+    have lr: "length a = length a'" by simp
+      
+    from lr G s s1 s2 
+    have "G \\<turnstile> (ST, b1) <=s (ST', b2)"
+      by (simp add: sup_state_append_fst sup_state_Cons1)
+    
+    moreover
+    
+    from Invoke G s step app1 app2
+    have "b1 = b1' \\<and> b2 = b2'" by simp
+
+    ultimately 
+
+    have "G \\<turnstile> (ST, b1') <=s (ST', b2')" by simp
+
+    with Invoke G s step app1 app2 s1 s2 l l'
+    show ?thesis 
+      by (clarsimp simp add: sup_state_def)
+  next
+    case Return
+    with succs have "False" by simp
+    thus ?thesis by blast
+  next
+    case Pop
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_Cons1)
+  next
+    case Dup
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_Cons1)
+  next
+    case Dup_x1
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_Cons1)
+  next 
+    case Dup_x2
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_Cons1)
+  next
+    case Swap
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_Cons1)
+  next
+    case IAdd
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_Cons1)
+  next
+    case Goto
+    with G s step app1 app2
+    show ?thesis by simp
+  next
+    case Ifcmpeq
+    with G s step app1 app2
+    show ?thesis
+      by (clarsimp simp add: sup_state_Cons1)   
+  qed
+
+  with step
+  show ?thesis by auto  
+qed
+
+
+
+end