prefer "Bits" as theory name for abstract bit operations, similar to "Orderings", "Lattices", "Groups" etc.
authorhaftmann
Mon, 23 Dec 2013 18:37:51 +0100
changeset 54854 3324a0078636
parent 54853 a435932a9f12
child 54855 d700d054d022
prefer "Bits" as theory name for abstract bit operations, similar to "Orderings", "Lattices", "Groups" etc.
src/HOL/Word/Bit_Bit.thy
src/HOL/Word/Bit_Comparison.thy
src/HOL/Word/Bit_Int.thy
src/HOL/Word/Bit_Operations.thy
src/HOL/Word/Bits.thy
src/HOL/Word/Bits_Bit.thy
src/HOL/Word/Bits_Int.thy
src/HOL/Word/Bool_List_Representation.thy
src/HOL/Word/Word.thy
--- a/src/HOL/Word/Bit_Bit.thy	Mon Dec 23 16:29:43 2013 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,73 +0,0 @@
-(*  Title:      HOL/Word/Bit_Bit.thy
-    Author:     Author: Brian Huffman, PSU and Gerwin Klein, NICTA
-*)
-
-header {* Bit operations in $\cal Z_2$ *}
-
-theory Bit_Bit
-imports Bit_Operations "~~/src/HOL/Library/Bit"
-begin
-
-instantiation bit :: bit
-begin
-
-primrec bitNOT_bit where
-  "NOT 0 = (1::bit)"
-  | "NOT 1 = (0::bit)"
-
-primrec bitAND_bit where
-  "0 AND y = (0::bit)"
-  | "1 AND y = (y::bit)"
-
-primrec bitOR_bit where
-  "0 OR y = (y::bit)"
-  | "1 OR y = (1::bit)"
-
-primrec bitXOR_bit where
-  "0 XOR y = (y::bit)"
-  | "1 XOR y = (NOT y :: bit)"
-
-instance  ..
-
-end
-
-lemmas bit_simps =
-  bitNOT_bit.simps bitAND_bit.simps bitOR_bit.simps bitXOR_bit.simps
-
-lemma bit_extra_simps [simp]: 
-  "x AND 0 = (0::bit)"
-  "x AND 1 = (x::bit)"
-  "x OR 1 = (1::bit)"
-  "x OR 0 = (x::bit)"
-  "x XOR 1 = NOT (x::bit)"
-  "x XOR 0 = (x::bit)"
-  by (cases x, auto)+
-
-lemma bit_ops_comm: 
-  "(x::bit) AND y = y AND x"
-  "(x::bit) OR y = y OR x"
-  "(x::bit) XOR y = y XOR x"
-  by (cases y, auto)+
-
-lemma bit_ops_same [simp]: 
-  "(x::bit) AND x = x"
-  "(x::bit) OR x = x"
-  "(x::bit) XOR x = 0"
-  by (cases x, auto)+
-
-lemma bit_not_not [simp]: "NOT (NOT (x::bit)) = x"
-  by (cases x) auto
-
-lemma bit_or_def: "(b::bit) OR c = NOT (NOT b AND NOT c)"
-  by (induct b, simp_all)
-
-lemma bit_xor_def: "(b::bit) XOR c = (b AND NOT c) OR (NOT b AND c)"
-  by (induct b, simp_all)
-
-lemma bit_NOT_eq_1_iff [simp]: "NOT (b::bit) = 1 \<longleftrightarrow> b = 0"
-  by (induct b, simp_all)
-
-lemma bit_AND_eq_1_iff [simp]: "(a::bit) AND b = 1 \<longleftrightarrow> a = 1 \<and> b = 1"
-  by (induct a, simp_all)
-
-end
--- a/src/HOL/Word/Bit_Comparison.thy	Mon Dec 23 16:29:43 2013 +0100
+++ b/src/HOL/Word/Bit_Comparison.thy	Mon Dec 23 18:37:51 2013 +0100
@@ -6,7 +6,7 @@
 *)
 
 theory Bit_Comparison
-imports Type_Length Bit_Operations Bit_Int
+imports Bits_Int
 begin
 
 lemma AND_lower [simp]:
--- a/src/HOL/Word/Bit_Int.thy	Mon Dec 23 16:29:43 2013 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,681 +0,0 @@
-(* 
-  Author: Jeremy Dawson and Gerwin Klein, NICTA
-
-  Definitions and basic theorems for bit-wise logical operations 
-  for integers expressed using Pls, Min, BIT,
-  and converting them to and from lists of bools.
-*) 
-
-header {* Bitwise Operations on Binary Integers *}
-
-theory Bit_Int
-imports Bit_Representation Bit_Operations
-begin
-
-subsection {* Logical operations *}
-
-text "bit-wise logical operations on the int type"
-
-instantiation int :: bit
-begin
-
-definition int_not_def:
-  "bitNOT = (\<lambda>x::int. - x - 1)"
-
-function bitAND_int where
-  "bitAND_int x y =
-    (if x = 0 then 0 else if x = -1 then y else
-      (bin_rest x AND bin_rest y) BIT (bin_last x \<and> bin_last y))"
-  by pat_completeness simp
-
-termination
-  by (relation "measure (nat o abs o fst)", simp_all add: bin_rest_def)
-
-declare bitAND_int.simps [simp del]
-
-definition int_or_def:
-  "bitOR = (\<lambda>x y::int. NOT (NOT x AND NOT y))"
-
-definition int_xor_def:
-  "bitXOR = (\<lambda>x y::int. (x AND NOT y) OR (NOT x AND y))"
-
-instance ..
-
-end
-
-subsubsection {* Basic simplification rules *}
-
-lemma int_not_BIT [simp]:
-  "NOT (w BIT b) = (NOT w) BIT (\<not> b)"
-  unfolding int_not_def Bit_def by (cases b, simp_all)
-
-lemma int_not_simps [simp]:
-  "NOT (0::int) = -1"
-  "NOT (1::int) = -2"
-  "NOT (- 1::int) = 0"
-  "NOT (numeral w::int) = - numeral (w + Num.One)"
-  "NOT (- numeral (Num.Bit0 w)::int) = numeral (Num.BitM w)"
-  "NOT (- numeral (Num.Bit1 w)::int) = numeral (Num.Bit0 w)"
-  unfolding int_not_def by simp_all
-
-lemma int_not_not [simp]: "NOT (NOT (x::int)) = x"
-  unfolding int_not_def by simp
-
-lemma int_and_0 [simp]: "(0::int) AND x = 0"
-  by (simp add: bitAND_int.simps)
-
-lemma int_and_m1 [simp]: "(-1::int) AND x = x"
-  by (simp add: bitAND_int.simps)
-
-lemma int_and_Bits [simp]: 
-  "(x BIT b) AND (y BIT c) = (x AND y) BIT (b \<and> c)" 
-  by (subst bitAND_int.simps, simp add: Bit_eq_0_iff Bit_eq_m1_iff)
-
-lemma int_or_zero [simp]: "(0::int) OR x = x"
-  unfolding int_or_def by simp
-
-lemma int_or_minus1 [simp]: "(-1::int) OR x = -1"
-  unfolding int_or_def by simp
-
-lemma int_or_Bits [simp]: 
-  "(x BIT b) OR (y BIT c) = (x OR y) BIT (b \<or> c)"
-  unfolding int_or_def by simp
-
-lemma int_xor_zero [simp]: "(0::int) XOR x = x"
-  unfolding int_xor_def by simp
-
-lemma int_xor_Bits [simp]: 
-  "(x BIT b) XOR (y BIT c) = (x XOR y) BIT ((b \<or> c) \<and> \<not> (b \<and> c))"
-  unfolding int_xor_def by auto
-
-subsubsection {* Binary destructors *}
-
-lemma bin_rest_NOT [simp]: "bin_rest (NOT x) = NOT (bin_rest x)"
-  by (cases x rule: bin_exhaust, simp)
-
-lemma bin_last_NOT [simp]: "bin_last (NOT x) \<longleftrightarrow> \<not> bin_last x"
-  by (cases x rule: bin_exhaust, simp)
-
-lemma bin_rest_AND [simp]: "bin_rest (x AND y) = bin_rest x AND bin_rest y"
-  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
-
-lemma bin_last_AND [simp]: "bin_last (x AND y) \<longleftrightarrow> bin_last x \<and> bin_last y"
-  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
-
-lemma bin_rest_OR [simp]: "bin_rest (x OR y) = bin_rest x OR bin_rest y"
-  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
-
-lemma bin_last_OR [simp]: "bin_last (x OR y) \<longleftrightarrow> bin_last x \<or> bin_last y"
-  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
-
-lemma bin_rest_XOR [simp]: "bin_rest (x XOR y) = bin_rest x XOR bin_rest y"
-  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
-
-lemma bin_last_XOR [simp]: "bin_last (x XOR y) \<longleftrightarrow> (bin_last x \<or> bin_last y) \<and> \<not> (bin_last x \<and> bin_last y)"
-  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
-
-lemma bin_nth_ops:
-  "!!x y. bin_nth (x AND y) n = (bin_nth x n & bin_nth y n)" 
-  "!!x y. bin_nth (x OR y) n = (bin_nth x n | bin_nth y n)"
-  "!!x y. bin_nth (x XOR y) n = (bin_nth x n ~= bin_nth y n)" 
-  "!!x. bin_nth (NOT x) n = (~ bin_nth x n)"
-  by (induct n) auto
-
-subsubsection {* Derived properties *}
-
-lemma int_xor_minus1 [simp]: "(-1::int) XOR x = NOT x"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemma int_xor_extra_simps [simp]:
-  "w XOR (0::int) = w"
-  "w XOR (-1::int) = NOT w"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemma int_or_extra_simps [simp]:
-  "w OR (0::int) = w"
-  "w OR (-1::int) = -1"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemma int_and_extra_simps [simp]:
-  "w AND (0::int) = 0"
-  "w AND (-1::int) = w"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-(* commutativity of the above *)
-lemma bin_ops_comm:
-  shows
-  int_and_comm: "!!y::int. x AND y = y AND x" and
-  int_or_comm:  "!!y::int. x OR y = y OR x" and
-  int_xor_comm: "!!y::int. x XOR y = y XOR x"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemma bin_ops_same [simp]:
-  "(x::int) AND x = x" 
-  "(x::int) OR x = x" 
-  "(x::int) XOR x = 0"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemmas bin_log_esimps = 
-  int_and_extra_simps  int_or_extra_simps  int_xor_extra_simps
-  int_and_0 int_and_m1 int_or_zero int_or_minus1 int_xor_zero int_xor_minus1
-
-(* basic properties of logical (bit-wise) operations *)
-
-lemma bbw_ao_absorb: 
-  "!!y::int. x AND (y OR x) = x & x OR (y AND x) = x"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemma bbw_ao_absorbs_other:
-  "x AND (x OR y) = x \<and> (y AND x) OR x = (x::int)"
-  "(y OR x) AND x = x \<and> x OR (x AND y) = (x::int)"
-  "(x OR y) AND x = x \<and> (x AND y) OR x = (x::int)"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemmas bbw_ao_absorbs [simp] = bbw_ao_absorb bbw_ao_absorbs_other
-
-lemma int_xor_not:
-  "!!y::int. (NOT x) XOR y = NOT (x XOR y) & 
-        x XOR (NOT y) = NOT (x XOR y)"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemma int_and_assoc:
-  "(x AND y) AND (z::int) = x AND (y AND z)"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemma int_or_assoc:
-  "(x OR y) OR (z::int) = x OR (y OR z)"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemma int_xor_assoc:
-  "(x XOR y) XOR (z::int) = x XOR (y XOR z)"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemmas bbw_assocs = int_and_assoc int_or_assoc int_xor_assoc
-
-(* BH: Why are these declared as simp rules??? *)
-lemma bbw_lcs [simp]: 
-  "(y::int) AND (x AND z) = x AND (y AND z)"
-  "(y::int) OR (x OR z) = x OR (y OR z)"
-  "(y::int) XOR (x XOR z) = x XOR (y XOR z)" 
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemma bbw_not_dist: 
-  "!!y::int. NOT (x OR y) = (NOT x) AND (NOT y)" 
-  "!!y::int. NOT (x AND y) = (NOT x) OR (NOT y)"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemma bbw_oa_dist: 
-  "!!y z::int. (x AND y) OR z = 
-          (x OR z) AND (y OR z)"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-lemma bbw_ao_dist: 
-  "!!y z::int. (x OR y) AND z = 
-          (x AND z) OR (y AND z)"
-  by (auto simp add: bin_eq_iff bin_nth_ops)
-
-(*
-Why were these declared simp???
-declare bin_ops_comm [simp] bbw_assocs [simp] 
-*)
-
-subsubsection {* Simplification with numerals *}
-
-text {* Cases for @{text "0"} and @{text "-1"} are already covered by
-  other simp rules. *}
-
-lemma bin_rl_eqI: "\<lbrakk>bin_rest x = bin_rest y; bin_last x = bin_last y\<rbrakk> \<Longrightarrow> x = y"
-  by (metis (mono_tags) BIT_eq_iff bin_ex_rl bin_last_BIT bin_rest_BIT)
-
-lemma bin_rest_neg_numeral_BitM [simp]:
-  "bin_rest (- numeral (Num.BitM w)) = - numeral w"
-  by (simp only: BIT_bin_simps [symmetric] bin_rest_BIT)
-
-lemma bin_last_neg_numeral_BitM [simp]:
-  "bin_last (- numeral (Num.BitM w))"
-  by (simp only: BIT_bin_simps [symmetric] bin_last_BIT)
-
-text {* FIXME: The rule sets below are very large (24 rules for each
-  operator). Is there a simpler way to do this? *}
-
-lemma int_and_numerals [simp]:
-  "numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT False"
-  "numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT False"
-  "numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT False"
-  "numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT True"
-  "numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT False"
-  "numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT False"
-  "numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT False"
-  "numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT True"
-  "- numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (- numeral x AND numeral y) BIT False"
-  "- numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (- numeral x AND numeral y) BIT False"
-  "- numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND numeral y) BIT False"
-  "- numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND numeral y) BIT True"
-  "- numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (- numeral x AND - numeral y) BIT False"
-  "- numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (- numeral x AND - numeral (y + Num.One)) BIT False"
-  "- numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND - numeral y) BIT False"
-  "- numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND - numeral (y + Num.One)) BIT True"
-  "(1::int) AND numeral (Num.Bit0 y) = 0"
-  "(1::int) AND numeral (Num.Bit1 y) = 1"
-  "(1::int) AND - numeral (Num.Bit0 y) = 0"
-  "(1::int) AND - numeral (Num.Bit1 y) = 1"
-  "numeral (Num.Bit0 x) AND (1::int) = 0"
-  "numeral (Num.Bit1 x) AND (1::int) = 1"
-  "- numeral (Num.Bit0 x) AND (1::int) = 0"
-  "- numeral (Num.Bit1 x) AND (1::int) = 1"
-  by (rule bin_rl_eqI, simp, simp)+
-
-lemma int_or_numerals [simp]:
-  "numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT False"
-  "numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT True"
-  "numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT True"
-  "numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT True"
-  "numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT False"
-  "numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT True"
-  "numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT True"
-  "numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT True"
-  "- numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (- numeral x OR numeral y) BIT False"
-  "- numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (- numeral x OR numeral y) BIT True"
-  "- numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR numeral y) BIT True"
-  "- numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR numeral y) BIT True"
-  "- numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (- numeral x OR - numeral y) BIT False"
-  "- numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (- numeral x OR - numeral (y + Num.One)) BIT True"
-  "- numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR - numeral y) BIT True"
-  "- numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR - numeral (y + Num.One)) BIT True"
-  "(1::int) OR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)"
-  "(1::int) OR numeral (Num.Bit1 y) = numeral (Num.Bit1 y)"
-  "(1::int) OR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)"
-  "(1::int) OR - numeral (Num.Bit1 y) = - numeral (Num.Bit1 y)"
-  "numeral (Num.Bit0 x) OR (1::int) = numeral (Num.Bit1 x)"
-  "numeral (Num.Bit1 x) OR (1::int) = numeral (Num.Bit1 x)"
-  "- numeral (Num.Bit0 x) OR (1::int) = - numeral (Num.BitM x)"
-  "- numeral (Num.Bit1 x) OR (1::int) = - numeral (Num.Bit1 x)"
-  by (rule bin_rl_eqI, simp, simp)+
-
-lemma int_xor_numerals [simp]:
-  "numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT False"
-  "numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT True"
-  "numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT True"
-  "numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT False"
-  "numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT False"
-  "numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT True"
-  "numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT True"
-  "numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT False"
-  "- numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (- numeral x XOR numeral y) BIT False"
-  "- numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (- numeral x XOR numeral y) BIT True"
-  "- numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR numeral y) BIT True"
-  "- numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR numeral y) BIT False"
-  "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (- numeral x XOR - numeral y) BIT False"
-  "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (- numeral x XOR - numeral (y + Num.One)) BIT True"
-  "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR - numeral y) BIT True"
-  "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR - numeral (y + Num.One)) BIT False"
-  "(1::int) XOR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)"
-  "(1::int) XOR numeral (Num.Bit1 y) = numeral (Num.Bit0 y)"
-  "(1::int) XOR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)"
-  "(1::int) XOR - numeral (Num.Bit1 y) = - numeral (Num.Bit0 (y + Num.One))"
-  "numeral (Num.Bit0 x) XOR (1::int) = numeral (Num.Bit1 x)"
-  "numeral (Num.Bit1 x) XOR (1::int) = numeral (Num.Bit0 x)"
-  "- numeral (Num.Bit0 x) XOR (1::int) = - numeral (Num.BitM x)"
-  "- numeral (Num.Bit1 x) XOR (1::int) = - numeral (Num.Bit0 (x + Num.One))"
-  by (rule bin_rl_eqI, simp, simp)+
-
-subsubsection {* Interactions with arithmetic *}
-
-lemma plus_and_or [rule_format]:
-  "ALL y::int. (x AND y) + (x OR y) = x + y"
-  apply (induct x rule: bin_induct)
-    apply clarsimp
-   apply clarsimp
-  apply clarsimp
-  apply (case_tac y rule: bin_exhaust)
-  apply clarsimp
-  apply (unfold Bit_def)
-  apply clarsimp
-  apply (erule_tac x = "x" in allE)
-  apply simp
-  done
-
-lemma le_int_or:
-  "bin_sign (y::int) = 0 ==> x <= x OR y"
-  apply (induct y arbitrary: x rule: bin_induct)
-    apply clarsimp
-   apply clarsimp
-  apply (case_tac x rule: bin_exhaust)
-  apply (case_tac b)
-   apply (case_tac [!] bit)
-     apply (auto simp: le_Bits)
-  done
-
-lemmas int_and_le =
-  xtrans(3) [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or]
-
-(* interaction between bit-wise and arithmetic *)
-(* good example of bin_induction *)
-lemma bin_add_not: "x + NOT x = (-1::int)"
-  apply (induct x rule: bin_induct)
-    apply clarsimp
-   apply clarsimp
-  apply (case_tac bit, auto)
-  done
-
-subsubsection {* Truncating results of bit-wise operations *}
-
-lemma bin_trunc_ao: 
-  "!!x y. (bintrunc n x) AND (bintrunc n y) = bintrunc n (x AND y)" 
-  "!!x y. (bintrunc n x) OR (bintrunc n y) = bintrunc n (x OR y)"
-  by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr)
-
-lemma bin_trunc_xor: 
-  "!!x y. bintrunc n (bintrunc n x XOR bintrunc n y) = 
-          bintrunc n (x XOR y)"
-  by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr)
-
-lemma bin_trunc_not: 
-  "!!x. bintrunc n (NOT (bintrunc n x)) = bintrunc n (NOT x)"
-  by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr)
-
-(* want theorems of the form of bin_trunc_xor *)
-lemma bintr_bintr_i:
-  "x = bintrunc n y ==> bintrunc n x = bintrunc n y"
-  by auto
-
-lemmas bin_trunc_and = bin_trunc_ao(1) [THEN bintr_bintr_i]
-lemmas bin_trunc_or = bin_trunc_ao(2) [THEN bintr_bintr_i]
-
-subsection {* Setting and clearing bits *}
-
-primrec
-  bin_sc :: "nat => bool => int => int"
-where
-  Z: "bin_sc 0 b w = bin_rest w BIT b"
-  | Suc: "bin_sc (Suc n) b w = bin_sc n b (bin_rest w) BIT bin_last w"
-
-(** nth bit, set/clear **)
-
-lemma bin_nth_sc [simp]: 
-  "bin_nth (bin_sc n b w) n \<longleftrightarrow> b"
-  by (induct n arbitrary: w) auto
-
-lemma bin_sc_sc_same [simp]: 
-  "bin_sc n c (bin_sc n b w) = bin_sc n c w"
-  by (induct n arbitrary: w) auto
-
-lemma bin_sc_sc_diff:
-  "m ~= n ==> 
-    bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)"
-  apply (induct n arbitrary: w m)
-   apply (case_tac [!] m)
-     apply auto
-  done
-
-lemma bin_nth_sc_gen: 
-  "bin_nth (bin_sc n b w) m = (if m = n then b else bin_nth w m)"
-  by (induct n arbitrary: w m) (case_tac [!] m, auto)
-  
-lemma bin_sc_nth [simp]:
-  "(bin_sc n (bin_nth w n) w) = w"
-  by (induct n arbitrary: w) auto
-
-lemma bin_sign_sc [simp]:
-  "bin_sign (bin_sc n b w) = bin_sign w"
-  by (induct n arbitrary: w) auto
-  
-lemma bin_sc_bintr [simp]: 
-  "bintrunc m (bin_sc n x (bintrunc m (w))) = bintrunc m (bin_sc n x w)"
-  apply (induct n arbitrary: w m)
-   apply (case_tac [!] w rule: bin_exhaust)
-   apply (case_tac [!] m, auto)
-  done
-
-lemma bin_clr_le:
-  "bin_sc n False w <= w"
-  apply (induct n arbitrary: w)
-   apply (case_tac [!] w rule: bin_exhaust)
-   apply (auto simp: le_Bits)
-  done
-
-lemma bin_set_ge:
-  "bin_sc n True w >= w"
-  apply (induct n arbitrary: w)
-   apply (case_tac [!] w rule: bin_exhaust)
-   apply (auto simp: le_Bits)
-  done
-
-lemma bintr_bin_clr_le:
-  "bintrunc n (bin_sc m False w) <= bintrunc n w"
-  apply (induct n arbitrary: w m)
-   apply simp
-  apply (case_tac w rule: bin_exhaust)
-  apply (case_tac m)
-   apply (auto simp: le_Bits)
-  done
-
-lemma bintr_bin_set_ge:
-  "bintrunc n (bin_sc m True w) >= bintrunc n w"
-  apply (induct n arbitrary: w m)
-   apply simp
-  apply (case_tac w rule: bin_exhaust)
-  apply (case_tac m)
-   apply (auto simp: le_Bits)
-  done
-
-lemma bin_sc_FP [simp]: "bin_sc n False 0 = 0"
-  by (induct n) auto
-
-lemma bin_sc_TM [simp]: "bin_sc n True -1 = -1"
-  by (induct n) auto
-  
-lemmas bin_sc_simps = bin_sc.Z bin_sc.Suc bin_sc_TM bin_sc_FP
-
-lemma bin_sc_minus:
-  "0 < n ==> bin_sc (Suc (n - 1)) b w = bin_sc n b w"
-  by auto
-
-lemmas bin_sc_Suc_minus = 
-  trans [OF bin_sc_minus [symmetric] bin_sc.Suc]
-
-lemma bin_sc_numeral [simp]:
-  "bin_sc (numeral k) b w =
-    bin_sc (pred_numeral k) b (bin_rest w) BIT bin_last w"
-  by (simp add: numeral_eq_Suc)
-
-
-subsection {* Splitting and concatenation *}
-
-definition bin_rcat :: "nat \<Rightarrow> int list \<Rightarrow> int"
-where
-  "bin_rcat n = foldl (\<lambda>u v. bin_cat u n v) 0"
-
-fun bin_rsplit_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list"
-where
-  "bin_rsplit_aux n m c bs =
-    (if m = 0 | n = 0 then bs else
-      let (a, b) = bin_split n c 
-      in bin_rsplit_aux n (m - n) a (b # bs))"
-
-definition bin_rsplit :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list"
-where
-  "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []"
-
-fun bin_rsplitl_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list"
-where
-  "bin_rsplitl_aux n m c bs =
-    (if m = 0 | n = 0 then bs else
-      let (a, b) = bin_split (min m n) c 
-      in bin_rsplitl_aux n (m - n) a (b # bs))"
-
-definition bin_rsplitl :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list"
-where
-  "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []"
-
-declare bin_rsplit_aux.simps [simp del]
-declare bin_rsplitl_aux.simps [simp del]
-
-lemma bin_sign_cat: 
-  "bin_sign (bin_cat x n y) = bin_sign x"
-  by (induct n arbitrary: y) auto
-
-lemma bin_cat_Suc_Bit:
-  "bin_cat w (Suc n) (v BIT b) = bin_cat w n v BIT b"
-  by auto
-
-lemma bin_nth_cat: 
-  "bin_nth (bin_cat x k y) n = 
-    (if n < k then bin_nth y n else bin_nth x (n - k))"
-  apply (induct k arbitrary: n y)
-   apply clarsimp
-  apply (case_tac n, auto)
-  done
-
-lemma bin_nth_split:
-  "bin_split n c = (a, b) ==> 
-    (ALL k. bin_nth a k = bin_nth c (n + k)) & 
-    (ALL k. bin_nth b k = (k < n & bin_nth c k))"
-  apply (induct n arbitrary: b c)
-   apply clarsimp
-  apply (clarsimp simp: Let_def split: prod.split_asm)
-  apply (case_tac k)
-  apply auto
-  done
-
-lemma bin_cat_assoc: 
-  "bin_cat (bin_cat x m y) n z = bin_cat x (m + n) (bin_cat y n z)" 
-  by (induct n arbitrary: z) auto
-
-lemma bin_cat_assoc_sym:
-  "bin_cat x m (bin_cat y n z) = bin_cat (bin_cat x (m - n) y) (min m n) z"
-  apply (induct n arbitrary: z m, clarsimp)
-  apply (case_tac m, auto)
-  done
-
-lemma bin_cat_zero [simp]: "bin_cat 0 n w = bintrunc n w"
-  by (induct n arbitrary: w) auto
-
-lemma bintr_cat1: 
-  "bintrunc (k + n) (bin_cat a n b) = bin_cat (bintrunc k a) n b"
-  by (induct n arbitrary: b) auto
-    
-lemma bintr_cat: "bintrunc m (bin_cat a n b) = 
-    bin_cat (bintrunc (m - n) a) n (bintrunc (min m n) b)"
-  by (rule bin_eqI) (auto simp: bin_nth_cat nth_bintr)
-    
-lemma bintr_cat_same [simp]: 
-  "bintrunc n (bin_cat a n b) = bintrunc n b"
-  by (auto simp add : bintr_cat)
-
-lemma cat_bintr [simp]: 
-  "bin_cat a n (bintrunc n b) = bin_cat a n b"
-  by (induct n arbitrary: b) auto
-
-lemma split_bintrunc: 
-  "bin_split n c = (a, b) ==> b = bintrunc n c"
-  by (induct n arbitrary: b c) (auto simp: Let_def split: prod.split_asm)
-
-lemma bin_cat_split:
-  "bin_split n w = (u, v) ==> w = bin_cat u n v"
-  by (induct n arbitrary: v w) (auto simp: Let_def split: prod.split_asm)
-
-lemma bin_split_cat:
-  "bin_split n (bin_cat v n w) = (v, bintrunc n w)"
-  by (induct n arbitrary: w) auto
-
-lemma bin_split_zero [simp]: "bin_split n 0 = (0, 0)"
-  by (induct n) auto
-
-lemma bin_split_minus1 [simp]:
-  "bin_split n -1 = (-1, bintrunc n -1)"
-  by (induct n) auto
-
-lemma bin_split_trunc:
-  "bin_split (min m n) c = (a, b) ==> 
-    bin_split n (bintrunc m c) = (bintrunc (m - n) a, b)"
-  apply (induct n arbitrary: m b c, clarsimp)
-  apply (simp add: bin_rest_trunc Let_def split: prod.split_asm)
-  apply (case_tac m)
-   apply (auto simp: Let_def split: prod.split_asm)
-  done
-
-lemma bin_split_trunc1:
-  "bin_split n c = (a, b) ==> 
-    bin_split n (bintrunc m c) = (bintrunc (m - n) a, bintrunc m b)"
-  apply (induct n arbitrary: m b c, clarsimp)
-  apply (simp add: bin_rest_trunc Let_def split: prod.split_asm)
-  apply (case_tac m)
-   apply (auto simp: Let_def split: prod.split_asm)
-  done
-
-lemma bin_cat_num:
-  "bin_cat a n b = a * 2 ^ n + bintrunc n b"
-  apply (induct n arbitrary: b, clarsimp)
-  apply (simp add: Bit_def)
-  done
-
-lemma bin_split_num:
-  "bin_split n b = (b div 2 ^ n, b mod 2 ^ n)"
-  apply (induct n arbitrary: b, simp)
-  apply (simp add: bin_rest_def zdiv_zmult2_eq)
-  apply (case_tac b rule: bin_exhaust)
-  apply simp
-  apply (simp add: Bit_def mod_mult_mult1 p1mod22k)
-  done
-
-subsection {* Miscellaneous lemmas *}
-
-lemma nth_2p_bin: 
-  "bin_nth (2 ^ n) m = (m = n)"
-  apply (induct n arbitrary: m)
-   apply clarsimp
-   apply safe
-   apply (case_tac m) 
-    apply (auto simp: Bit_B0_2t [symmetric])
-  done
-
-(* for use when simplifying with bin_nth_Bit *)
-
-lemma ex_eq_or:
-  "(EX m. n = Suc m & (m = k | P m)) = (n = Suc k | (EX m. n = Suc m & P m))"
-  by auto
-
-lemma power_BIT: "2 ^ (Suc n) - 1 = (2 ^ n - 1) BIT True"
-  unfolding Bit_B1
-  by (induct n) simp_all
-
-lemma mod_BIT:
-  "bin BIT bit mod 2 ^ Suc n = (bin mod 2 ^ n) BIT bit"
-proof -
-  have "bin mod 2 ^ n < 2 ^ n" by simp
-  then have "bin mod 2 ^ n \<le> 2 ^ n - 1" by simp
-  then have "2 * (bin mod 2 ^ n) \<le> 2 * (2 ^ n - 1)"
-    by (rule mult_left_mono) simp
-  then have "2 * (bin mod 2 ^ n) + 1 < 2 * 2 ^ n" by simp
-  then show ?thesis
-    by (auto simp add: Bit_def mod_mult_mult1 mod_add_left_eq [of "2 * bin"]
-      mod_pos_pos_trivial)
-qed
-
-lemma AND_mod:
-  fixes x :: int
-  shows "x AND 2 ^ n - 1 = x mod 2 ^ n"
-proof (induct x arbitrary: n rule: bin_induct)
-  case 1
-  then show ?case
-    by simp
-next
-  case 2
-  then show ?case
-    by (simp, simp add: m1mod2k)
-next
-  case (3 bin bit)
-  show ?case
-  proof (cases n)
-    case 0
-    then show ?thesis by simp
-  next
-    case (Suc m)
-    with 3 show ?thesis
-      by (simp only: power_BIT mod_BIT int_and_Bits) simp
-  qed
-qed
-
-end
-
--- a/src/HOL/Word/Bit_Operations.thy	Mon Dec 23 16:29:43 2013 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,39 +0,0 @@
-(*  Title:      HOL/Word/Bit_Operations.thy
-    Author:     Author: Brian Huffman, PSU and Gerwin Klein, NICTA
-*)
-
-header {* Syntactic classes for bitwise operations *}
-
-theory Bit_Operations
-imports Main
-begin
-
-class bit =
-  fixes bitNOT :: "'a \<Rightarrow> 'a"       ("NOT _" [70] 71)
-    and bitAND :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "AND" 64)
-    and bitOR  :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "OR"  59)
-    and bitXOR :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "XOR" 59)
-
-text {*
-  We want the bitwise operations to bind slightly weaker
-  than @{text "+"} and @{text "-"}, but @{text "~~"} to 
-  bind slightly stronger than @{text "*"}.
-*}
-
-text {*
-  Testing and shifting operations.
-*}
-
-class bits = bit +
-  fixes test_bit :: "'a \<Rightarrow> nat \<Rightarrow> bool" (infixl "!!" 100)
-    and lsb      :: "'a \<Rightarrow> bool"
-    and set_bit  :: "'a \<Rightarrow> nat \<Rightarrow> bool \<Rightarrow> 'a"
-    and set_bits :: "(nat \<Rightarrow> bool) \<Rightarrow> 'a" (binder "BITS " 10)
-    and shiftl   :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixl "<<" 55)
-    and shiftr   :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixl ">>" 55)
-
-class bitss = bits +
-  fixes msb      :: "'a \<Rightarrow> bool"
-
-end
-
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Word/Bits.thy	Mon Dec 23 18:37:51 2013 +0100
@@ -0,0 +1,39 @@
+(*  Title:      HOL/Word/Bit_Operations.thy
+    Author:     Author: Brian Huffman, PSU and Gerwin Klein, NICTA
+*)
+
+header {* Syntactic classes for bitwise operations *}
+
+theory Bits
+imports Main
+begin
+
+class bit =
+  fixes bitNOT :: "'a \<Rightarrow> 'a"       ("NOT _" [70] 71)
+    and bitAND :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "AND" 64)
+    and bitOR  :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "OR"  59)
+    and bitXOR :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "XOR" 59)
+
+text {*
+  We want the bitwise operations to bind slightly weaker
+  than @{text "+"} and @{text "-"}, but @{text "~~"} to 
+  bind slightly stronger than @{text "*"}.
+*}
+
+text {*
+  Testing and shifting operations.
+*}
+
+class bits = bit +
+  fixes test_bit :: "'a \<Rightarrow> nat \<Rightarrow> bool" (infixl "!!" 100)
+    and lsb      :: "'a \<Rightarrow> bool"
+    and set_bit  :: "'a \<Rightarrow> nat \<Rightarrow> bool \<Rightarrow> 'a"
+    and set_bits :: "(nat \<Rightarrow> bool) \<Rightarrow> 'a" (binder "BITS " 10)
+    and shiftl   :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixl "<<" 55)
+    and shiftr   :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixl ">>" 55)
+
+class bitss = bits +
+  fixes msb      :: "'a \<Rightarrow> bool"
+
+end
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Word/Bits_Bit.thy	Mon Dec 23 18:37:51 2013 +0100
@@ -0,0 +1,73 @@
+(*  Title:      HOL/Word/Bit_Bit.thy
+    Author:     Author: Brian Huffman, PSU and Gerwin Klein, NICTA
+*)
+
+header {* Bit operations in $\cal Z_2$ *}
+
+theory Bits_Bit
+imports Bits "~~/src/HOL/Library/Bit"
+begin
+
+instantiation bit :: bit
+begin
+
+primrec bitNOT_bit where
+  "NOT 0 = (1::bit)"
+  | "NOT 1 = (0::bit)"
+
+primrec bitAND_bit where
+  "0 AND y = (0::bit)"
+  | "1 AND y = (y::bit)"
+
+primrec bitOR_bit where
+  "0 OR y = (y::bit)"
+  | "1 OR y = (1::bit)"
+
+primrec bitXOR_bit where
+  "0 XOR y = (y::bit)"
+  | "1 XOR y = (NOT y :: bit)"
+
+instance  ..
+
+end
+
+lemmas bit_simps =
+  bitNOT_bit.simps bitAND_bit.simps bitOR_bit.simps bitXOR_bit.simps
+
+lemma bit_extra_simps [simp]: 
+  "x AND 0 = (0::bit)"
+  "x AND 1 = (x::bit)"
+  "x OR 1 = (1::bit)"
+  "x OR 0 = (x::bit)"
+  "x XOR 1 = NOT (x::bit)"
+  "x XOR 0 = (x::bit)"
+  by (cases x, auto)+
+
+lemma bit_ops_comm: 
+  "(x::bit) AND y = y AND x"
+  "(x::bit) OR y = y OR x"
+  "(x::bit) XOR y = y XOR x"
+  by (cases y, auto)+
+
+lemma bit_ops_same [simp]: 
+  "(x::bit) AND x = x"
+  "(x::bit) OR x = x"
+  "(x::bit) XOR x = 0"
+  by (cases x, auto)+
+
+lemma bit_not_not [simp]: "NOT (NOT (x::bit)) = x"
+  by (cases x) auto
+
+lemma bit_or_def: "(b::bit) OR c = NOT (NOT b AND NOT c)"
+  by (induct b, simp_all)
+
+lemma bit_xor_def: "(b::bit) XOR c = (b AND NOT c) OR (NOT b AND c)"
+  by (induct b, simp_all)
+
+lemma bit_NOT_eq_1_iff [simp]: "NOT (b::bit) = 1 \<longleftrightarrow> b = 0"
+  by (induct b, simp_all)
+
+lemma bit_AND_eq_1_iff [simp]: "(a::bit) AND b = 1 \<longleftrightarrow> a = 1 \<and> b = 1"
+  by (induct a, simp_all)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Word/Bits_Int.thy	Mon Dec 23 18:37:51 2013 +0100
@@ -0,0 +1,681 @@
+(* 
+  Author: Jeremy Dawson and Gerwin Klein, NICTA
+
+  Definitions and basic theorems for bit-wise logical operations 
+  for integers expressed using Pls, Min, BIT,
+  and converting them to and from lists of bools.
+*) 
+
+header {* Bitwise Operations on Binary Integers *}
+
+theory Bits_Int
+imports Bits Bit_Representation
+begin
+
+subsection {* Logical operations *}
+
+text "bit-wise logical operations on the int type"
+
+instantiation int :: bit
+begin
+
+definition int_not_def:
+  "bitNOT = (\<lambda>x::int. - x - 1)"
+
+function bitAND_int where
+  "bitAND_int x y =
+    (if x = 0 then 0 else if x = -1 then y else
+      (bin_rest x AND bin_rest y) BIT (bin_last x \<and> bin_last y))"
+  by pat_completeness simp
+
+termination
+  by (relation "measure (nat o abs o fst)", simp_all add: bin_rest_def)
+
+declare bitAND_int.simps [simp del]
+
+definition int_or_def:
+  "bitOR = (\<lambda>x y::int. NOT (NOT x AND NOT y))"
+
+definition int_xor_def:
+  "bitXOR = (\<lambda>x y::int. (x AND NOT y) OR (NOT x AND y))"
+
+instance ..
+
+end
+
+subsubsection {* Basic simplification rules *}
+
+lemma int_not_BIT [simp]:
+  "NOT (w BIT b) = (NOT w) BIT (\<not> b)"
+  unfolding int_not_def Bit_def by (cases b, simp_all)
+
+lemma int_not_simps [simp]:
+  "NOT (0::int) = -1"
+  "NOT (1::int) = -2"
+  "NOT (- 1::int) = 0"
+  "NOT (numeral w::int) = - numeral (w + Num.One)"
+  "NOT (- numeral (Num.Bit0 w)::int) = numeral (Num.BitM w)"
+  "NOT (- numeral (Num.Bit1 w)::int) = numeral (Num.Bit0 w)"
+  unfolding int_not_def by simp_all
+
+lemma int_not_not [simp]: "NOT (NOT (x::int)) = x"
+  unfolding int_not_def by simp
+
+lemma int_and_0 [simp]: "(0::int) AND x = 0"
+  by (simp add: bitAND_int.simps)
+
+lemma int_and_m1 [simp]: "(-1::int) AND x = x"
+  by (simp add: bitAND_int.simps)
+
+lemma int_and_Bits [simp]: 
+  "(x BIT b) AND (y BIT c) = (x AND y) BIT (b \<and> c)" 
+  by (subst bitAND_int.simps, simp add: Bit_eq_0_iff Bit_eq_m1_iff)
+
+lemma int_or_zero [simp]: "(0::int) OR x = x"
+  unfolding int_or_def by simp
+
+lemma int_or_minus1 [simp]: "(-1::int) OR x = -1"
+  unfolding int_or_def by simp
+
+lemma int_or_Bits [simp]: 
+  "(x BIT b) OR (y BIT c) = (x OR y) BIT (b \<or> c)"
+  unfolding int_or_def by simp
+
+lemma int_xor_zero [simp]: "(0::int) XOR x = x"
+  unfolding int_xor_def by simp
+
+lemma int_xor_Bits [simp]: 
+  "(x BIT b) XOR (y BIT c) = (x XOR y) BIT ((b \<or> c) \<and> \<not> (b \<and> c))"
+  unfolding int_xor_def by auto
+
+subsubsection {* Binary destructors *}
+
+lemma bin_rest_NOT [simp]: "bin_rest (NOT x) = NOT (bin_rest x)"
+  by (cases x rule: bin_exhaust, simp)
+
+lemma bin_last_NOT [simp]: "bin_last (NOT x) \<longleftrightarrow> \<not> bin_last x"
+  by (cases x rule: bin_exhaust, simp)
+
+lemma bin_rest_AND [simp]: "bin_rest (x AND y) = bin_rest x AND bin_rest y"
+  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
+
+lemma bin_last_AND [simp]: "bin_last (x AND y) \<longleftrightarrow> bin_last x \<and> bin_last y"
+  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
+
+lemma bin_rest_OR [simp]: "bin_rest (x OR y) = bin_rest x OR bin_rest y"
+  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
+
+lemma bin_last_OR [simp]: "bin_last (x OR y) \<longleftrightarrow> bin_last x \<or> bin_last y"
+  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
+
+lemma bin_rest_XOR [simp]: "bin_rest (x XOR y) = bin_rest x XOR bin_rest y"
+  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
+
+lemma bin_last_XOR [simp]: "bin_last (x XOR y) \<longleftrightarrow> (bin_last x \<or> bin_last y) \<and> \<not> (bin_last x \<and> bin_last y)"
+  by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
+
+lemma bin_nth_ops:
+  "!!x y. bin_nth (x AND y) n = (bin_nth x n & bin_nth y n)" 
+  "!!x y. bin_nth (x OR y) n = (bin_nth x n | bin_nth y n)"
+  "!!x y. bin_nth (x XOR y) n = (bin_nth x n ~= bin_nth y n)" 
+  "!!x. bin_nth (NOT x) n = (~ bin_nth x n)"
+  by (induct n) auto
+
+subsubsection {* Derived properties *}
+
+lemma int_xor_minus1 [simp]: "(-1::int) XOR x = NOT x"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemma int_xor_extra_simps [simp]:
+  "w XOR (0::int) = w"
+  "w XOR (-1::int) = NOT w"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemma int_or_extra_simps [simp]:
+  "w OR (0::int) = w"
+  "w OR (-1::int) = -1"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemma int_and_extra_simps [simp]:
+  "w AND (0::int) = 0"
+  "w AND (-1::int) = w"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+(* commutativity of the above *)
+lemma bin_ops_comm:
+  shows
+  int_and_comm: "!!y::int. x AND y = y AND x" and
+  int_or_comm:  "!!y::int. x OR y = y OR x" and
+  int_xor_comm: "!!y::int. x XOR y = y XOR x"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemma bin_ops_same [simp]:
+  "(x::int) AND x = x" 
+  "(x::int) OR x = x" 
+  "(x::int) XOR x = 0"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemmas bin_log_esimps = 
+  int_and_extra_simps  int_or_extra_simps  int_xor_extra_simps
+  int_and_0 int_and_m1 int_or_zero int_or_minus1 int_xor_zero int_xor_minus1
+
+(* basic properties of logical (bit-wise) operations *)
+
+lemma bbw_ao_absorb: 
+  "!!y::int. x AND (y OR x) = x & x OR (y AND x) = x"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemma bbw_ao_absorbs_other:
+  "x AND (x OR y) = x \<and> (y AND x) OR x = (x::int)"
+  "(y OR x) AND x = x \<and> x OR (x AND y) = (x::int)"
+  "(x OR y) AND x = x \<and> (x AND y) OR x = (x::int)"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemmas bbw_ao_absorbs [simp] = bbw_ao_absorb bbw_ao_absorbs_other
+
+lemma int_xor_not:
+  "!!y::int. (NOT x) XOR y = NOT (x XOR y) & 
+        x XOR (NOT y) = NOT (x XOR y)"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemma int_and_assoc:
+  "(x AND y) AND (z::int) = x AND (y AND z)"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemma int_or_assoc:
+  "(x OR y) OR (z::int) = x OR (y OR z)"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemma int_xor_assoc:
+  "(x XOR y) XOR (z::int) = x XOR (y XOR z)"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemmas bbw_assocs = int_and_assoc int_or_assoc int_xor_assoc
+
+(* BH: Why are these declared as simp rules??? *)
+lemma bbw_lcs [simp]: 
+  "(y::int) AND (x AND z) = x AND (y AND z)"
+  "(y::int) OR (x OR z) = x OR (y OR z)"
+  "(y::int) XOR (x XOR z) = x XOR (y XOR z)" 
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemma bbw_not_dist: 
+  "!!y::int. NOT (x OR y) = (NOT x) AND (NOT y)" 
+  "!!y::int. NOT (x AND y) = (NOT x) OR (NOT y)"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemma bbw_oa_dist: 
+  "!!y z::int. (x AND y) OR z = 
+          (x OR z) AND (y OR z)"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+lemma bbw_ao_dist: 
+  "!!y z::int. (x OR y) AND z = 
+          (x AND z) OR (y AND z)"
+  by (auto simp add: bin_eq_iff bin_nth_ops)
+
+(*
+Why were these declared simp???
+declare bin_ops_comm [simp] bbw_assocs [simp] 
+*)
+
+subsubsection {* Simplification with numerals *}
+
+text {* Cases for @{text "0"} and @{text "-1"} are already covered by
+  other simp rules. *}
+
+lemma bin_rl_eqI: "\<lbrakk>bin_rest x = bin_rest y; bin_last x = bin_last y\<rbrakk> \<Longrightarrow> x = y"
+  by (metis (mono_tags) BIT_eq_iff bin_ex_rl bin_last_BIT bin_rest_BIT)
+
+lemma bin_rest_neg_numeral_BitM [simp]:
+  "bin_rest (- numeral (Num.BitM w)) = - numeral w"
+  by (simp only: BIT_bin_simps [symmetric] bin_rest_BIT)
+
+lemma bin_last_neg_numeral_BitM [simp]:
+  "bin_last (- numeral (Num.BitM w))"
+  by (simp only: BIT_bin_simps [symmetric] bin_last_BIT)
+
+text {* FIXME: The rule sets below are very large (24 rules for each
+  operator). Is there a simpler way to do this? *}
+
+lemma int_and_numerals [simp]:
+  "numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT False"
+  "numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT False"
+  "numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT False"
+  "numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT True"
+  "numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT False"
+  "numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT False"
+  "numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT False"
+  "numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT True"
+  "- numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (- numeral x AND numeral y) BIT False"
+  "- numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (- numeral x AND numeral y) BIT False"
+  "- numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND numeral y) BIT False"
+  "- numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND numeral y) BIT True"
+  "- numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (- numeral x AND - numeral y) BIT False"
+  "- numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (- numeral x AND - numeral (y + Num.One)) BIT False"
+  "- numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND - numeral y) BIT False"
+  "- numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND - numeral (y + Num.One)) BIT True"
+  "(1::int) AND numeral (Num.Bit0 y) = 0"
+  "(1::int) AND numeral (Num.Bit1 y) = 1"
+  "(1::int) AND - numeral (Num.Bit0 y) = 0"
+  "(1::int) AND - numeral (Num.Bit1 y) = 1"
+  "numeral (Num.Bit0 x) AND (1::int) = 0"
+  "numeral (Num.Bit1 x) AND (1::int) = 1"
+  "- numeral (Num.Bit0 x) AND (1::int) = 0"
+  "- numeral (Num.Bit1 x) AND (1::int) = 1"
+  by (rule bin_rl_eqI, simp, simp)+
+
+lemma int_or_numerals [simp]:
+  "numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT False"
+  "numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT True"
+  "numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT True"
+  "numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT True"
+  "numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT False"
+  "numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT True"
+  "numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT True"
+  "numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT True"
+  "- numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (- numeral x OR numeral y) BIT False"
+  "- numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (- numeral x OR numeral y) BIT True"
+  "- numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR numeral y) BIT True"
+  "- numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR numeral y) BIT True"
+  "- numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (- numeral x OR - numeral y) BIT False"
+  "- numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (- numeral x OR - numeral (y + Num.One)) BIT True"
+  "- numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR - numeral y) BIT True"
+  "- numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR - numeral (y + Num.One)) BIT True"
+  "(1::int) OR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)"
+  "(1::int) OR numeral (Num.Bit1 y) = numeral (Num.Bit1 y)"
+  "(1::int) OR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)"
+  "(1::int) OR - numeral (Num.Bit1 y) = - numeral (Num.Bit1 y)"
+  "numeral (Num.Bit0 x) OR (1::int) = numeral (Num.Bit1 x)"
+  "numeral (Num.Bit1 x) OR (1::int) = numeral (Num.Bit1 x)"
+  "- numeral (Num.Bit0 x) OR (1::int) = - numeral (Num.BitM x)"
+  "- numeral (Num.Bit1 x) OR (1::int) = - numeral (Num.Bit1 x)"
+  by (rule bin_rl_eqI, simp, simp)+
+
+lemma int_xor_numerals [simp]:
+  "numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT False"
+  "numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT True"
+  "numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT True"
+  "numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT False"
+  "numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT False"
+  "numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT True"
+  "numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT True"
+  "numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT False"
+  "- numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (- numeral x XOR numeral y) BIT False"
+  "- numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (- numeral x XOR numeral y) BIT True"
+  "- numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR numeral y) BIT True"
+  "- numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR numeral y) BIT False"
+  "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (- numeral x XOR - numeral y) BIT False"
+  "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (- numeral x XOR - numeral (y + Num.One)) BIT True"
+  "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR - numeral y) BIT True"
+  "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR - numeral (y + Num.One)) BIT False"
+  "(1::int) XOR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)"
+  "(1::int) XOR numeral (Num.Bit1 y) = numeral (Num.Bit0 y)"
+  "(1::int) XOR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)"
+  "(1::int) XOR - numeral (Num.Bit1 y) = - numeral (Num.Bit0 (y + Num.One))"
+  "numeral (Num.Bit0 x) XOR (1::int) = numeral (Num.Bit1 x)"
+  "numeral (Num.Bit1 x) XOR (1::int) = numeral (Num.Bit0 x)"
+  "- numeral (Num.Bit0 x) XOR (1::int) = - numeral (Num.BitM x)"
+  "- numeral (Num.Bit1 x) XOR (1::int) = - numeral (Num.Bit0 (x + Num.One))"
+  by (rule bin_rl_eqI, simp, simp)+
+
+subsubsection {* Interactions with arithmetic *}
+
+lemma plus_and_or [rule_format]:
+  "ALL y::int. (x AND y) + (x OR y) = x + y"
+  apply (induct x rule: bin_induct)
+    apply clarsimp
+   apply clarsimp
+  apply clarsimp
+  apply (case_tac y rule: bin_exhaust)
+  apply clarsimp
+  apply (unfold Bit_def)
+  apply clarsimp
+  apply (erule_tac x = "x" in allE)
+  apply simp
+  done
+
+lemma le_int_or:
+  "bin_sign (y::int) = 0 ==> x <= x OR y"
+  apply (induct y arbitrary: x rule: bin_induct)
+    apply clarsimp
+   apply clarsimp
+  apply (case_tac x rule: bin_exhaust)
+  apply (case_tac b)
+   apply (case_tac [!] bit)
+     apply (auto simp: le_Bits)
+  done
+
+lemmas int_and_le =
+  xtrans(3) [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or]
+
+(* interaction between bit-wise and arithmetic *)
+(* good example of bin_induction *)
+lemma bin_add_not: "x + NOT x = (-1::int)"
+  apply (induct x rule: bin_induct)
+    apply clarsimp
+   apply clarsimp
+  apply (case_tac bit, auto)
+  done
+
+subsubsection {* Truncating results of bit-wise operations *}
+
+lemma bin_trunc_ao: 
+  "!!x y. (bintrunc n x) AND (bintrunc n y) = bintrunc n (x AND y)" 
+  "!!x y. (bintrunc n x) OR (bintrunc n y) = bintrunc n (x OR y)"
+  by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr)
+
+lemma bin_trunc_xor: 
+  "!!x y. bintrunc n (bintrunc n x XOR bintrunc n y) = 
+          bintrunc n (x XOR y)"
+  by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr)
+
+lemma bin_trunc_not: 
+  "!!x. bintrunc n (NOT (bintrunc n x)) = bintrunc n (NOT x)"
+  by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr)
+
+(* want theorems of the form of bin_trunc_xor *)
+lemma bintr_bintr_i:
+  "x = bintrunc n y ==> bintrunc n x = bintrunc n y"
+  by auto
+
+lemmas bin_trunc_and = bin_trunc_ao(1) [THEN bintr_bintr_i]
+lemmas bin_trunc_or = bin_trunc_ao(2) [THEN bintr_bintr_i]
+
+subsection {* Setting and clearing bits *}
+
+primrec
+  bin_sc :: "nat => bool => int => int"
+where
+  Z: "bin_sc 0 b w = bin_rest w BIT b"
+  | Suc: "bin_sc (Suc n) b w = bin_sc n b (bin_rest w) BIT bin_last w"
+
+(** nth bit, set/clear **)
+
+lemma bin_nth_sc [simp]: 
+  "bin_nth (bin_sc n b w) n \<longleftrightarrow> b"
+  by (induct n arbitrary: w) auto
+
+lemma bin_sc_sc_same [simp]: 
+  "bin_sc n c (bin_sc n b w) = bin_sc n c w"
+  by (induct n arbitrary: w) auto
+
+lemma bin_sc_sc_diff:
+  "m ~= n ==> 
+    bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)"
+  apply (induct n arbitrary: w m)
+   apply (case_tac [!] m)
+     apply auto
+  done
+
+lemma bin_nth_sc_gen: 
+  "bin_nth (bin_sc n b w) m = (if m = n then b else bin_nth w m)"
+  by (induct n arbitrary: w m) (case_tac [!] m, auto)
+  
+lemma bin_sc_nth [simp]:
+  "(bin_sc n (bin_nth w n) w) = w"
+  by (induct n arbitrary: w) auto
+
+lemma bin_sign_sc [simp]:
+  "bin_sign (bin_sc n b w) = bin_sign w"
+  by (induct n arbitrary: w) auto
+  
+lemma bin_sc_bintr [simp]: 
+  "bintrunc m (bin_sc n x (bintrunc m (w))) = bintrunc m (bin_sc n x w)"
+  apply (induct n arbitrary: w m)
+   apply (case_tac [!] w rule: bin_exhaust)
+   apply (case_tac [!] m, auto)
+  done
+
+lemma bin_clr_le:
+  "bin_sc n False w <= w"
+  apply (induct n arbitrary: w)
+   apply (case_tac [!] w rule: bin_exhaust)
+   apply (auto simp: le_Bits)
+  done
+
+lemma bin_set_ge:
+  "bin_sc n True w >= w"
+  apply (induct n arbitrary: w)
+   apply (case_tac [!] w rule: bin_exhaust)
+   apply (auto simp: le_Bits)
+  done
+
+lemma bintr_bin_clr_le:
+  "bintrunc n (bin_sc m False w) <= bintrunc n w"
+  apply (induct n arbitrary: w m)
+   apply simp
+  apply (case_tac w rule: bin_exhaust)
+  apply (case_tac m)
+   apply (auto simp: le_Bits)
+  done
+
+lemma bintr_bin_set_ge:
+  "bintrunc n (bin_sc m True w) >= bintrunc n w"
+  apply (induct n arbitrary: w m)
+   apply simp
+  apply (case_tac w rule: bin_exhaust)
+  apply (case_tac m)
+   apply (auto simp: le_Bits)
+  done
+
+lemma bin_sc_FP [simp]: "bin_sc n False 0 = 0"
+  by (induct n) auto
+
+lemma bin_sc_TM [simp]: "bin_sc n True -1 = -1"
+  by (induct n) auto
+  
+lemmas bin_sc_simps = bin_sc.Z bin_sc.Suc bin_sc_TM bin_sc_FP
+
+lemma bin_sc_minus:
+  "0 < n ==> bin_sc (Suc (n - 1)) b w = bin_sc n b w"
+  by auto
+
+lemmas bin_sc_Suc_minus = 
+  trans [OF bin_sc_minus [symmetric] bin_sc.Suc]
+
+lemma bin_sc_numeral [simp]:
+  "bin_sc (numeral k) b w =
+    bin_sc (pred_numeral k) b (bin_rest w) BIT bin_last w"
+  by (simp add: numeral_eq_Suc)
+
+
+subsection {* Splitting and concatenation *}
+
+definition bin_rcat :: "nat \<Rightarrow> int list \<Rightarrow> int"
+where
+  "bin_rcat n = foldl (\<lambda>u v. bin_cat u n v) 0"
+
+fun bin_rsplit_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list"
+where
+  "bin_rsplit_aux n m c bs =
+    (if m = 0 | n = 0 then bs else
+      let (a, b) = bin_split n c 
+      in bin_rsplit_aux n (m - n) a (b # bs))"
+
+definition bin_rsplit :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list"
+where
+  "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []"
+
+fun bin_rsplitl_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list"
+where
+  "bin_rsplitl_aux n m c bs =
+    (if m = 0 | n = 0 then bs else
+      let (a, b) = bin_split (min m n) c 
+      in bin_rsplitl_aux n (m - n) a (b # bs))"
+
+definition bin_rsplitl :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list"
+where
+  "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []"
+
+declare bin_rsplit_aux.simps [simp del]
+declare bin_rsplitl_aux.simps [simp del]
+
+lemma bin_sign_cat: 
+  "bin_sign (bin_cat x n y) = bin_sign x"
+  by (induct n arbitrary: y) auto
+
+lemma bin_cat_Suc_Bit:
+  "bin_cat w (Suc n) (v BIT b) = bin_cat w n v BIT b"
+  by auto
+
+lemma bin_nth_cat: 
+  "bin_nth (bin_cat x k y) n = 
+    (if n < k then bin_nth y n else bin_nth x (n - k))"
+  apply (induct k arbitrary: n y)
+   apply clarsimp
+  apply (case_tac n, auto)
+  done
+
+lemma bin_nth_split:
+  "bin_split n c = (a, b) ==> 
+    (ALL k. bin_nth a k = bin_nth c (n + k)) & 
+    (ALL k. bin_nth b k = (k < n & bin_nth c k))"
+  apply (induct n arbitrary: b c)
+   apply clarsimp
+  apply (clarsimp simp: Let_def split: prod.split_asm)
+  apply (case_tac k)
+  apply auto
+  done
+
+lemma bin_cat_assoc: 
+  "bin_cat (bin_cat x m y) n z = bin_cat x (m + n) (bin_cat y n z)" 
+  by (induct n arbitrary: z) auto
+
+lemma bin_cat_assoc_sym:
+  "bin_cat x m (bin_cat y n z) = bin_cat (bin_cat x (m - n) y) (min m n) z"
+  apply (induct n arbitrary: z m, clarsimp)
+  apply (case_tac m, auto)
+  done
+
+lemma bin_cat_zero [simp]: "bin_cat 0 n w = bintrunc n w"
+  by (induct n arbitrary: w) auto
+
+lemma bintr_cat1: 
+  "bintrunc (k + n) (bin_cat a n b) = bin_cat (bintrunc k a) n b"
+  by (induct n arbitrary: b) auto
+    
+lemma bintr_cat: "bintrunc m (bin_cat a n b) = 
+    bin_cat (bintrunc (m - n) a) n (bintrunc (min m n) b)"
+  by (rule bin_eqI) (auto simp: bin_nth_cat nth_bintr)
+    
+lemma bintr_cat_same [simp]: 
+  "bintrunc n (bin_cat a n b) = bintrunc n b"
+  by (auto simp add : bintr_cat)
+
+lemma cat_bintr [simp]: 
+  "bin_cat a n (bintrunc n b) = bin_cat a n b"
+  by (induct n arbitrary: b) auto
+
+lemma split_bintrunc: 
+  "bin_split n c = (a, b) ==> b = bintrunc n c"
+  by (induct n arbitrary: b c) (auto simp: Let_def split: prod.split_asm)
+
+lemma bin_cat_split:
+  "bin_split n w = (u, v) ==> w = bin_cat u n v"
+  by (induct n arbitrary: v w) (auto simp: Let_def split: prod.split_asm)
+
+lemma bin_split_cat:
+  "bin_split n (bin_cat v n w) = (v, bintrunc n w)"
+  by (induct n arbitrary: w) auto
+
+lemma bin_split_zero [simp]: "bin_split n 0 = (0, 0)"
+  by (induct n) auto
+
+lemma bin_split_minus1 [simp]:
+  "bin_split n -1 = (-1, bintrunc n -1)"
+  by (induct n) auto
+
+lemma bin_split_trunc:
+  "bin_split (min m n) c = (a, b) ==> 
+    bin_split n (bintrunc m c) = (bintrunc (m - n) a, b)"
+  apply (induct n arbitrary: m b c, clarsimp)
+  apply (simp add: bin_rest_trunc Let_def split: prod.split_asm)
+  apply (case_tac m)
+   apply (auto simp: Let_def split: prod.split_asm)
+  done
+
+lemma bin_split_trunc1:
+  "bin_split n c = (a, b) ==> 
+    bin_split n (bintrunc m c) = (bintrunc (m - n) a, bintrunc m b)"
+  apply (induct n arbitrary: m b c, clarsimp)
+  apply (simp add: bin_rest_trunc Let_def split: prod.split_asm)
+  apply (case_tac m)
+   apply (auto simp: Let_def split: prod.split_asm)
+  done
+
+lemma bin_cat_num:
+  "bin_cat a n b = a * 2 ^ n + bintrunc n b"
+  apply (induct n arbitrary: b, clarsimp)
+  apply (simp add: Bit_def)
+  done
+
+lemma bin_split_num:
+  "bin_split n b = (b div 2 ^ n, b mod 2 ^ n)"
+  apply (induct n arbitrary: b, simp)
+  apply (simp add: bin_rest_def zdiv_zmult2_eq)
+  apply (case_tac b rule: bin_exhaust)
+  apply simp
+  apply (simp add: Bit_def mod_mult_mult1 p1mod22k)
+  done
+
+subsection {* Miscellaneous lemmas *}
+
+lemma nth_2p_bin: 
+  "bin_nth (2 ^ n) m = (m = n)"
+  apply (induct n arbitrary: m)
+   apply clarsimp
+   apply safe
+   apply (case_tac m) 
+    apply (auto simp: Bit_B0_2t [symmetric])
+  done
+
+(* for use when simplifying with bin_nth_Bit *)
+
+lemma ex_eq_or:
+  "(EX m. n = Suc m & (m = k | P m)) = (n = Suc k | (EX m. n = Suc m & P m))"
+  by auto
+
+lemma power_BIT: "2 ^ (Suc n) - 1 = (2 ^ n - 1) BIT True"
+  unfolding Bit_B1
+  by (induct n) simp_all
+
+lemma mod_BIT:
+  "bin BIT bit mod 2 ^ Suc n = (bin mod 2 ^ n) BIT bit"
+proof -
+  have "bin mod 2 ^ n < 2 ^ n" by simp
+  then have "bin mod 2 ^ n \<le> 2 ^ n - 1" by simp
+  then have "2 * (bin mod 2 ^ n) \<le> 2 * (2 ^ n - 1)"
+    by (rule mult_left_mono) simp
+  then have "2 * (bin mod 2 ^ n) + 1 < 2 * 2 ^ n" by simp
+  then show ?thesis
+    by (auto simp add: Bit_def mod_mult_mult1 mod_add_left_eq [of "2 * bin"]
+      mod_pos_pos_trivial)
+qed
+
+lemma AND_mod:
+  fixes x :: int
+  shows "x AND 2 ^ n - 1 = x mod 2 ^ n"
+proof (induct x arbitrary: n rule: bin_induct)
+  case 1
+  then show ?case
+    by simp
+next
+  case 2
+  then show ?case
+    by (simp, simp add: m1mod2k)
+next
+  case (3 bin bit)
+  show ?case
+  proof (cases n)
+    case 0
+    then show ?thesis by simp
+  next
+    case (Suc m)
+    with 3 show ?thesis
+      by (simp only: power_BIT mod_BIT int_and_Bits) simp
+  qed
+qed
+
+end
+
--- a/src/HOL/Word/Bool_List_Representation.thy	Mon Dec 23 16:29:43 2013 +0100
+++ b/src/HOL/Word/Bool_List_Representation.thy	Mon Dec 23 18:37:51 2013 +0100
@@ -9,7 +9,7 @@
 header "Bool lists and integers"
 
 theory Bool_List_Representation
-imports Bit_Int
+imports Bits_Int
 begin
 
 definition map2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list"
--- a/src/HOL/Word/Word.thy	Mon Dec 23 16:29:43 2013 +0100
+++ b/src/HOL/Word/Word.thy	Mon Dec 23 18:37:51 2013 +0100
@@ -8,7 +8,7 @@
 imports
   Type_Length
   "~~/src/HOL/Library/Boolean_Algebra"
-  Bit_Bit
+  Bits_Bit
   Bool_List_Representation
   Misc_Typedef
   Word_Miscellaneous