--- a/Admin/Benchmarks/HOL-datatype/ROOT.ML Thu Sep 01 14:35:51 2011 +0200
+++ b/Admin/Benchmarks/HOL-datatype/ROOT.ML Thu Sep 01 16:46:07 2011 +0200
@@ -5,7 +5,7 @@
val tests = ["Brackin", "Instructions", "SML", "Verilog"];
-timing := true;
+Toplevel.timing := true;
warning "\nset quick_and_dirty\n"; quick_and_dirty := true;
use_thys tests;
--- a/Admin/Benchmarks/HOL-record/ROOT.ML Thu Sep 01 14:35:51 2011 +0200
+++ b/Admin/Benchmarks/HOL-record/ROOT.ML Thu Sep 01 16:46:07 2011 +0200
@@ -5,7 +5,7 @@
val tests = ["RecordBenchmark"];
-timing := true;
+Toplevel.timing := true;
warning "\nset quick_and_dirty\n"; quick_and_dirty := true;
use_thys tests;
--- a/Admin/Benchmarks/HOL-record/RecordBenchmark.thy Thu Sep 01 14:35:51 2011 +0200
+++ b/Admin/Benchmarks/HOL-record/RecordBenchmark.thy Thu Sep 01 16:46:07 2011 +0200
@@ -8,7 +8,7 @@
imports Main
begin
-ML {* Record.timing := true *}
+declare [[record_timing]]
record many_A =
A000::nat
@@ -313,59 +313,55 @@
A299::nat
lemma "A155 (r\<lparr>A255:=x\<rparr>) = A155 r"
-by simp
+ by simp
lemma "A155 (r\<lparr>A255:=x,A253:=y,A255:=z \<rparr>) = A155 r"
-by simp
+ by simp
lemma "(r\<lparr>A255:=x,A253:=y,A255:=z \<rparr>) = r\<lparr>A253:=y,A255:=z\<rparr>"
-by simp
+ by simp
lemma "(r\<lparr>A255:=x,A253:=y,A255:=z \<rparr>) = r\<lparr>A253:=y,A255:=z\<rparr>"
-apply (tactic {* simp_tac
- (HOL_basic_ss addsimprocs [Record.record_upd_simproc]) 1*})
-done
+ apply (tactic {* simp_tac (HOL_basic_ss addsimprocs [Record.upd_simproc]) 1*})
+ done
lemma "(\<forall>r. P (A155 r)) \<longrightarrow> (\<forall>x. P x)"
- apply (tactic {* simp_tac
- (HOL_basic_ss addsimprocs [Record.record_split_simproc (K ~1)]) 1*})
+ apply (tactic {* simp_tac (HOL_basic_ss addsimprocs [Record.split_simproc (K ~1)]) 1*})
apply simp
done
lemma "(\<forall>r. P (A155 r)) \<longrightarrow> (\<forall>x. P x)"
- apply (tactic {* Record.record_split_simp_tac [] (K ~1) 1*})
+ apply (tactic {* Record.split_simp_tac [] (K ~1) 1*})
apply simp
done
lemma "(\<exists>r. P (A155 r)) \<longrightarrow> (\<exists>x. P x)"
- apply (tactic {* simp_tac
- (HOL_basic_ss addsimprocs [Record.record_split_simproc (K ~1)]) 1*})
+ apply (tactic {* simp_tac (HOL_basic_ss addsimprocs [Record.split_simproc (K ~1)]) 1*})
apply simp
done
lemma "(\<exists>r. P (A155 r)) \<longrightarrow> (\<exists>x. P x)"
- apply (tactic {* Record.record_split_simp_tac [] (K ~1) 1*})
+ apply (tactic {* Record.split_simp_tac [] (K ~1) 1*})
apply simp
done
lemma "\<And>r. P (A155 r) \<Longrightarrow> (\<exists>x. P x)"
- apply (tactic {* simp_tac
- (HOL_basic_ss addsimprocs [Record.record_split_simproc (K ~1)]) 1*})
+ apply (tactic {* simp_tac (HOL_basic_ss addsimprocs [Record.split_simproc (K ~1)]) 1*})
apply auto
done
lemma "\<And>r. P (A155 r) \<Longrightarrow> (\<exists>x. P x)"
- apply (tactic {* Record.record_split_simp_tac [] (K ~1) 1*})
+ apply (tactic {* Record.split_simp_tac [] (K ~1) 1*})
apply auto
done
lemma "P (A155 r) \<Longrightarrow> (\<exists>x. P x)"
- apply (tactic {* Record.record_split_simp_tac [] (K ~1) 1*})
+ apply (tactic {* Record.split_simp_tac [] (K ~1) 1*})
apply auto
done
lemma fixes r shows "P (A155 r) \<Longrightarrow> (\<exists>x. P x)"
- apply (tactic {* Record.record_split_simp_tac [] (K ~1) 1*})
+ apply (tactic {* Record.split_simp_tac [] (K ~1) 1*})
apply auto
done
@@ -378,7 +374,7 @@
have "\<exists>x. P x"
using pre
apply -
- apply (tactic {* Record.record_split_simp_tac [] (K ~1) 1*})
+ apply (tactic {* Record.split_simp_tac [] (K ~1) 1*})
apply auto
done
}
@@ -387,8 +383,7 @@
lemma "\<exists>r. A155 r = x"
- apply (tactic {*simp_tac
- (HOL_basic_ss addsimprocs [Record.record_ex_sel_eq_simproc]) 1*})
+ apply (tactic {*simp_tac (HOL_basic_ss addsimprocs [Record.ex_sel_eq_simproc]) 1*})
done