more simplification rules on unary and binary minus
authorhaftmann
Fri, 01 Nov 2013 18:51:14 +0100
changeset 54230 b1d955791529
parent 54229 ca638d713ff8
child 54231 2975658d49cd
more simplification rules on unary and binary minus
NEWS
src/HOL/Big_Operators.thy
src/HOL/Complex.thy
src/HOL/Decision_Procs/Approximation.thy
src/HOL/Decision_Procs/Cooper.thy
src/HOL/Decision_Procs/MIR.thy
src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy
src/HOL/Decision_Procs/Polynomial_List.thy
src/HOL/Decision_Procs/Rat_Pair.thy
src/HOL/Decision_Procs/mir_tac.ML
src/HOL/Deriv.thy
src/HOL/Divides.thy
src/HOL/Fields.thy
src/HOL/Groups.thy
src/HOL/Hahn_Banach/Vector_Space.thy
src/HOL/Int.thy
src/HOL/Library/BigO.thy
src/HOL/Library/Convex.thy
src/HOL/Library/Float.thy
src/HOL/Library/Formal_Power_Series.thy
src/HOL/Library/Fraction_Field.thy
src/HOL/Library/Function_Algebras.thy
src/HOL/Library/Fundamental_Theorem_Algebra.thy
src/HOL/Library/Inner_Product.thy
src/HOL/Library/Lattice_Algebras.thy
src/HOL/Library/Polynomial.thy
src/HOL/Library/Product_plus.thy
src/HOL/Library/Set_Algebras.thy
src/HOL/Limits.thy
src/HOL/Matrix_LP/LP.thy
src/HOL/Matrix_LP/Matrix.thy
src/HOL/Metis_Examples/Big_O.thy
src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy
src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy
src/HOL/Multivariate_Analysis/Derivative.thy
src/HOL/Multivariate_Analysis/Finite_Cartesian_Product.thy
src/HOL/Multivariate_Analysis/Integration.thy
src/HOL/Multivariate_Analysis/Linear_Algebra.thy
src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy
src/HOL/NSA/CLim.thy
src/HOL/NSA/HDeriv.thy
src/HOL/NSA/HLim.thy
src/HOL/NSA/HSEQ.thy
src/HOL/NSA/HSeries.thy
src/HOL/NSA/HTranscendental.thy
src/HOL/NSA/NSA.thy
src/HOL/NSA/NSCA.thy
src/HOL/NSA/StarDef.thy
src/HOL/Num.thy
src/HOL/Number_Theory/Cong.thy
src/HOL/Probability/Borel_Space.thy
src/HOL/Probability/Lebesgue_Integration.thy
src/HOL/Rat.thy
src/HOL/Real.thy
src/HOL/Real_Vector_Spaces.thy
src/HOL/Rings.thy
src/HOL/Semiring_Normalization.thy
src/HOL/Series.thy
src/HOL/Tools/group_cancel.ML
src/HOL/Tools/numeral_simprocs.ML
src/HOL/Transcendental.thy
src/HOL/Word/Bit_Representation.thy
src/HOL/Word/WordBitwise.thy
src/HOL/ex/Dedekind_Real.thy
src/HOL/ex/Gauge_Integration.thy
--- a/NEWS	Thu Oct 31 16:54:22 2013 +0100
+++ b/NEWS	Fri Nov 01 18:51:14 2013 +0100
@@ -15,6 +15,39 @@
     even_zero_(nat|int) ~> even_zero
 INCOMPATIBILITY.
 
+*** HOL ***
+
+* Elimination of fact duplicates:
+    equals_zero_I ~> minus_unique
+    diff_eq_0_iff_eq ~> right_minus_eq
+INCOMPATIBILITY.
+
+* Fact name consolidation:
+    diff_def, diff_minus, ab_diff_minus ~> diff_conv_add_uminus
+INCOMPATIBILITY.
+
+* More simplification rules on unary and binary minus:
+add_diff_cancel, add_diff_cancel_left, add_le_same_cancel1,
+add_le_same_cancel2, add_less_same_cancel1, add_less_same_cancel2,
+add_minus_cancel, diff_add_cancel, le_add_same_cancel1,
+le_add_same_cancel2, less_add_same_cancel1, less_add_same_cancel2,
+minus_add_cancel, uminus_add_conv_diff.  These correspondingly
+have been taken away from fact collections algebra_simps and
+field_simps.  INCOMPATIBILITY.
+
+To restore proofs, the following patterns are helpful:
+
+a) Arbitrary failing proof not involving "diff_def":
+Consider simplification with algebra_simps or field_simps.
+
+b) Lifting rules from addition to subtraction:
+Try with "using <rule for addition> of [… "- _" …]" by simp".
+
+c) Simplification with "diff_def": just drop "diff_def".
+Consider simplification with algebra_simps or field_simps;
+or the brute way with
+"simp add: diff_conv_add_uminus del: add_uminus_conv_diff".
+
 
 New in Isabelle2013-1 (November 2013)
 -------------------------------------
--- a/src/HOL/Big_Operators.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Big_Operators.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -696,11 +696,7 @@
 lemma setsum_subtractf:
   "setsum (%x. ((f x)::'a::ab_group_add) - g x) A =
     setsum f A - setsum g A"
-proof (cases "finite A")
-  case True thus ?thesis by (simp add: diff_minus setsum_addf setsum_negf)
-next
-  case False thus ?thesis by simp
-qed
+  using setsum_addf [of f "- g" A] by (simp add: setsum_negf)
 
 lemma setsum_nonneg:
   assumes nn: "\<forall>x\<in>A. (0::'a::{ordered_ab_semigroup_add,comm_monoid_add}) \<le> f x"
--- a/src/HOL/Complex.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Complex.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -587,7 +587,7 @@
   by (simp add: cis_def)
 
 lemma cis_divide: "cis a / cis b = cis (a - b)"
-  by (simp add: complex_divide_def cis_mult diff_minus)
+  by (simp add: complex_divide_def cis_mult)
 
 lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)"
   by (auto simp add: DeMoivre)
--- a/src/HOL/Decision_Procs/Approximation.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Decision_Procs/Approximation.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -29,7 +29,7 @@
   have shift_pow: "\<And>i. - (x * ((-1)^i * a (Suc i) * x ^ i)) = (-1)^(Suc i) * a (Suc i) * x ^ (Suc i)"
     by auto
   show ?thesis
-    unfolding setsum_right_distrib shift_pow diff_minus setsum_negf[symmetric]
+    unfolding setsum_right_distrib shift_pow uminus_add_conv_diff [symmetric] setsum_negf[symmetric]
     setsum_head_upt_Suc[OF zero_less_Suc]
     setsum_reindex[OF inj_Suc, unfolded comp_def, symmetric, of "\<lambda> n. (-1)^n  *a n * x^n"] by auto
 qed
@@ -533,12 +533,12 @@
   have "pi \<le> ub_pi n"
     unfolding ub_pi_def machin_pi Let_def unfolding Float_num
     using lb_arctan[of 239] ub_arctan[of 5] powr_realpow[of 2 2]
-    by (auto intro!: mult_left_mono add_mono simp add: diff_minus)
+    by (auto intro!: mult_left_mono add_mono simp add: uminus_add_conv_diff [symmetric] simp del: uminus_add_conv_diff)
   moreover
   have "lb_pi n \<le> pi"
     unfolding lb_pi_def machin_pi Let_def Float_num
     using lb_arctan[of 5] ub_arctan[of 239] powr_realpow[of 2 2]
-    by (auto intro!: mult_left_mono add_mono simp add: diff_minus)
+    by (auto intro!: mult_left_mono add_mono simp add: uminus_add_conv_diff [symmetric] simp del: uminus_add_conv_diff)
   ultimately show ?thesis by auto
 qed
 
@@ -1208,8 +1208,8 @@
     using x unfolding k[symmetric]
     by (cases "k = 0")
        (auto intro!: add_mono
-                simp add: diff_minus k[symmetric]
-                simp del: float_of_numeral)
+                simp add: k [symmetric] uminus_add_conv_diff [symmetric]
+                simp del: float_of_numeral uminus_add_conv_diff)
   note lx = this[THEN conjunct1] and ux = this[THEN conjunct2]
   hence lx_less_ux: "?lx \<le> real ?ux" by (rule order_trans)
 
@@ -1223,7 +1223,7 @@
     also have "\<dots> \<le> cos (x + (-k) * (2 * pi))"
       using cos_monotone_minus_pi_0'[OF pi_lx lx x_le_0]
       by (simp only: uminus_float.rep_eq real_of_int_minus
-        cos_minus diff_minus mult_minus_left)
+        cos_minus mult_minus_left) simp
     finally have "(lb_cos prec (- ?lx)) \<le> cos x"
       unfolding cos_periodic_int . }
   note negative_lx = this
@@ -1236,7 +1236,7 @@
     have "cos (x + (-k) * (2 * pi)) \<le> cos ?lx"
       using cos_monotone_0_pi'[OF lx_0 lx pi_x]
       by (simp only: real_of_int_minus
-        cos_minus diff_minus mult_minus_left)
+        cos_minus mult_minus_left) simp
     also have "\<dots> \<le> (ub_cos prec ?lx)"
       using lb_cos[OF lx_0 pi_lx] by simp
     finally have "cos x \<le> (ub_cos prec ?lx)"
@@ -1251,7 +1251,7 @@
     have "cos (x + (-k) * (2 * pi)) \<le> cos (real (- ?ux))"
       using cos_monotone_minus_pi_0'[OF pi_x ux ux_0]
       by (simp only: uminus_float.rep_eq real_of_int_minus
-          cos_minus diff_minus mult_minus_left)
+          cos_minus mult_minus_left) simp
     also have "\<dots> \<le> (ub_cos prec (- ?ux))"
       using lb_cos_minus[OF pi_ux ux_0, of prec] by simp
     finally have "cos x \<le> (ub_cos prec (- ?ux))"
@@ -1268,7 +1268,7 @@
     also have "\<dots> \<le> cos (x + (-k) * (2 * pi))"
       using cos_monotone_0_pi'[OF x_ge_0 ux pi_ux]
       by (simp only: real_of_int_minus
-        cos_minus diff_minus mult_minus_left)
+        cos_minus mult_minus_left) simp
     finally have "(lb_cos prec ?ux) \<le> cos x"
       unfolding cos_periodic_int . }
   note positive_ux = this
@@ -1343,7 +1343,7 @@
       also have "\<dots> \<le> cos ((?ux - 2 * ?lpi))"
         using cos_monotone_minus_pi_0'[OF pi_x x_le_ux ux_0]
         by (simp only: minus_float.rep_eq real_of_int_minus real_of_one minus_one[symmetric]
-            diff_minus mult_minus_left mult_1_left)
+            mult_minus_left mult_1_left) simp
       also have "\<dots> = cos ((- (?ux - 2 * ?lpi)))"
         unfolding uminus_float.rep_eq cos_minus ..
       also have "\<dots> \<le> (ub_cos prec (- (?ux - 2 * ?lpi)))"
@@ -1387,7 +1387,7 @@
       also have "\<dots> \<le> cos ((?lx + 2 * ?lpi))"
         using cos_monotone_0_pi'[OF lx_0 lx_le_x pi_x]
         by (simp only: minus_float.rep_eq real_of_int_minus real_of_one
-          minus_one[symmetric] diff_minus mult_minus_left mult_1_left)
+          minus_one[symmetric] mult_minus_left mult_1_left) simp
       also have "\<dots> \<le> (ub_cos prec (?lx + 2 * ?lpi))"
         using lb_cos[OF lx_0 pi_lx] by simp
       finally show ?thesis unfolding u by (simp add: real_of_float_max)
@@ -2164,12 +2164,12 @@
   unfolding divide_inverse interpret_floatarith.simps ..
 
 lemma interpret_floatarith_diff: "interpret_floatarith (Add a (Minus b)) vs = (interpret_floatarith a vs) - (interpret_floatarith b vs)"
-  unfolding diff_minus interpret_floatarith.simps ..
+  unfolding interpret_floatarith.simps by simp
 
 lemma interpret_floatarith_sin: "interpret_floatarith (Cos (Add (Mult Pi (Num (Float 1 -1))) (Minus a))) vs =
   sin (interpret_floatarith a vs)"
   unfolding sin_cos_eq interpret_floatarith.simps
-            interpret_floatarith_divide interpret_floatarith_diff diff_minus
+            interpret_floatarith_divide interpret_floatarith_diff
   by auto
 
 lemma interpret_floatarith_tan:
@@ -3192,7 +3192,7 @@
 
   from approx_tse[OF this _ _ _ _ tse[symmetric], of l' u'] x'
   have "ly \<le> interpret_floatarith a [x] - interpret_floatarith b [x]"
-    by (auto simp add: diff_minus)
+    by auto
   from order_less_le_trans[OF _ this, of 0] `0 < ly`
   show ?thesis by auto
 qed
@@ -3214,7 +3214,7 @@
 
   from approx_tse[OF this _ _ _ _ tse[symmetric], of l' u'] x'
   have "ly \<le> interpret_floatarith a [x] - interpret_floatarith b [x]"
-    by (auto simp add: diff_minus)
+    by auto
   from order_trans[OF _ this, of 0] `0 \<le> ly`
   show ?thesis by auto
 qed
--- a/src/HOL/Decision_Procs/Cooper.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Decision_Procs/Cooper.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -1400,9 +1400,8 @@
   also have "\<dots> = (j dvd (- (c*x - ?e)))"
     by (simp only: dvd_minus_iff)
   also have "\<dots> = (j dvd (c* (- x)) + ?e)"
-    apply (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] diff_minus add_ac minus_add_distrib)
-    apply (simp add: algebra_simps)
-    done
+    by (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] add_ac minus_add_distrib)
+      (simp add: algebra_simps)
   also have "\<dots> = Ifm bbs ((- x)#bs) (Dvd j (CN 0 c e))"
     using numbound0_I[OF nb, where bs="bs" and b="x" and b'="- x"] by simp
   finally show ?case .
@@ -1413,9 +1412,8 @@
   also have "\<dots> = (j dvd (- (c*x - ?e)))"
     by (simp only: dvd_minus_iff)
   also have "\<dots> = (j dvd (c* (- x)) + ?e)"
-    apply (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] diff_minus add_ac minus_add_distrib)
-    apply (simp add: algebra_simps)
-    done
+    by (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] add_ac minus_add_distrib)
+      (simp add: algebra_simps)
   also have "\<dots> = Ifm bbs ((- x)#bs) (Dvd j (CN 0 c e))"
     using numbound0_I[OF nb, where bs="bs" and b="x" and b'="- x"] by simp
   finally show ?case by simp
--- a/src/HOL/Decision_Procs/MIR.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Decision_Procs/MIR.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -1727,7 +1727,7 @@
   {assume cp: "?c > 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Lt a))" 
       by (simp add: nb Let_def split_def isint_Floor isint_neg)
     have "?I (Lt a) = (real (?c * i) + (?N ?r) < 0)" using Ia by (simp add: Let_def split_def)
-    also have "\<dots> = (?I (?l (Lt a)))" apply (simp only: split_int_less_real'[where a="?c*i" and b="?N ?r"]) by (simp add: Ia cp cnz Let_def split_def diff_minus)
+    also have "\<dots> = (?I (?l (Lt a)))" apply (simp only: split_int_less_real'[where a="?c*i" and b="?N ?r"]) by (simp add: Ia cp cnz Let_def split_def)
     finally have ?case using l by simp}
   moreover
   {assume cn: "?c < 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Lt a))" 
@@ -1752,13 +1752,13 @@
   {assume cp: "?c > 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Le a))" 
       by (simp add: nb Let_def split_def isint_Floor isint_neg)
     have "?I (Le a) = (real (?c * i) + (?N ?r) \<le> 0)" using Ia by (simp add: Let_def split_def)
-    also have "\<dots> = (?I (?l (Le a)))" by (simp only: split_int_le_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia cp cnz Let_def split_def diff_minus)
+    also have "\<dots> = (?I (?l (Le a)))" by (simp only: split_int_le_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia cp cnz Let_def split_def)
     finally have ?case using l by simp}
   moreover
   {assume cn: "?c < 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Le a))" 
       by (simp add: nb Let_def split_def isint_Floor isint_neg)
     have "?I (Le a) = (real (?c * i) + (?N ?r) \<le> 0)" using Ia by (simp add: Let_def split_def)
-    also from cn cnz have "\<dots> = (?I (?l (Le a)))" by (simp only: split_int_le_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia Let_def split_def diff_minus[symmetric] add_ac ,arith)
+    also from cn cnz have "\<dots> = (?I (?l (Le a)))" by (simp only: split_int_le_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia Let_def split_def add_ac, arith)
     finally have ?case using l by simp}
   ultimately show ?case by blast
 next
@@ -1777,13 +1777,13 @@
   {assume cp: "?c > 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Gt a))" 
       by (simp add: nb Let_def split_def isint_Floor isint_neg)
     have "?I (Gt a) = (real (?c * i) + (?N ?r) > 0)" using Ia by (simp add: Let_def split_def)
-    also have "\<dots> = (?I (?l (Gt a)))" by (simp only: split_int_gt_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia cp cnz Let_def split_def diff_minus)
+    also have "\<dots> = (?I (?l (Gt a)))" by (simp only: split_int_gt_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia cp cnz Let_def split_def)
     finally have ?case using l by simp}
   moreover
   {assume cn: "?c < 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Gt a))" 
       by (simp add: nb Let_def split_def isint_Floor isint_neg)
     have "?I (Gt a) = (real (?c * i) + (?N ?r) > 0)" using Ia by (simp add: Let_def split_def)
-    also from cn cnz have "\<dots> = (?I (?l (Gt a)))" by (simp only: split_int_gt_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia Let_def split_def diff_minus[symmetric] add_ac, arith)
+    also from cn cnz have "\<dots> = (?I (?l (Gt a)))" by (simp only: split_int_gt_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia Let_def split_def add_ac, arith)
     finally have ?case using l by simp}
   ultimately show ?case by blast
 next
@@ -1802,13 +1802,13 @@
   {assume cp: "?c > 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Ge a))" 
       by (simp add: nb Let_def split_def isint_Floor isint_neg)
     have "?I (Ge a) = (real (?c * i) + (?N ?r) \<ge> 0)" using Ia by (simp add: Let_def split_def)
-    also have "\<dots> = (?I (?l (Ge a)))" by (simp only: split_int_ge_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia cp cnz Let_def split_def diff_minus)
+    also have "\<dots> = (?I (?l (Ge a)))" by (simp only: split_int_ge_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia cp cnz Let_def split_def)
     finally have ?case using l by simp}
   moreover
   {assume cn: "?c < 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Ge a))" 
       by (simp add: nb Let_def split_def isint_Floor isint_neg)
     have "?I (Ge a) = (real (?c * i) + (?N ?r) \<ge> 0)" using Ia by (simp add: Let_def split_def)
-    also from cn cnz have "\<dots> = (?I (?l (Ge a)))" by (simp only: split_int_ge_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia Let_def split_def diff_minus[symmetric] add_ac, arith)
+    also from cn cnz have "\<dots> = (?I (?l (Ge a)))" by (simp only: split_int_ge_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia Let_def split_def add_ac, arith)
     finally have ?case using l by simp}
   ultimately show ?case by blast
 next
@@ -3125,7 +3125,8 @@
     hence pid: "c*i + ?fe \<le> c*d" by (simp only: real_of_int_le_iff)
     with pi' have "\<exists> j1\<in> {1 .. c*d}. c*i + ?fe = j1" by auto
     hence "\<exists> j1\<in> {1 .. c*d}. real (c*i) = - ?N i e + real j1" 
-      by (simp only: real_of_int_mult real_of_int_add real_of_int_inject[symmetric] ei[simplified isint_iff] algebra_simps)
+      by (simp only: real_of_int_mult real_of_int_add real_of_int_inject[symmetric] ei[simplified isint_iff])
+        (simp add: algebra_simps)
     with nob  have ?case by blast }
   ultimately show ?case by blast
 next
@@ -3148,11 +3149,12 @@
     hence pid: "c*i + 1 + ?fe \<le> c*d" by (simp only: real_of_int_le_iff)
     with pi' have "\<exists> j1\<in> {1 .. c*d}. c*i + 1+ ?fe = j1" by auto
     hence "\<exists> j1\<in> {1 .. c*d}. real (c*i) + 1= - ?N i e + real j1"
-      by (simp only: real_of_int_mult real_of_int_add real_of_int_inject[symmetric] ei[simplified isint_iff] algebra_simps real_of_one) 
+      by (simp only: real_of_int_mult real_of_int_add real_of_int_inject[symmetric] ei[simplified isint_iff] real_of_one) 
+        (simp add: algebra_simps)
     hence "\<exists> j1\<in> {1 .. c*d}. real (c*i) = (- ?N i e + real j1) - 1"
       by (simp only: algebra_simps)
         hence "\<exists> j1\<in> {1 .. c*d}. real (c*i) = - 1 - ?N i e + real j1"
-          by (simp only: add_ac diff_minus)
+          by (simp add: algebra_simps minus_one [symmetric] del: minus_one)
     with nob  have ?case by blast }
   ultimately show ?case by blast
 next
@@ -3477,10 +3479,7 @@
   qed
 next
   case (3 a b) then show ?case
-    apply auto
-    apply (erule_tac x = "(aa, aaa, ba)" in ballE) apply simp_all
-    apply (erule_tac x = "(ab, ac, baa)" in ballE) apply simp_all
-    done
+    by auto
 qed (auto simp add: Let_def split_def algebra_simps)
 
 lemma real_in_int_intervals: 
@@ -3615,7 +3614,7 @@
       by(simp only: myle[of _ "real n * x + Inum (x # bs) s - Inum (x # bs) (Floor s)"] less_iff_diff_less_0[where a="real n *x + ?N s - ?N (Floor s)"]) 
     hence "\<exists> j\<in> {n .. 0}. 0 \<ge> - (real n *x + ?N s - ?N (Floor s) - real j) \<and> - (real n *x + ?N s - ?N (Floor s) - real (j+1)) > 0" by (simp only: th1[rule_format] th2[rule_format])
     hence "\<exists> j\<in> {n.. 0}. ?I (?p (p,n,s) j)"
-      using pns by (simp add: fp_def nn diff_minus add_ac mult_ac
+      using pns by (simp add: fp_def nn algebra_simps
         del: diff_less_0_iff_less diff_le_0_iff_le) 
     then obtain "j" where j_def: "j\<in> {n .. 0} \<and> ?I (?p (p,n,s) j)" by blast
     hence "\<exists>x \<in> {?p (p,n,s) j |j. n\<le> j \<and> j \<le> 0 }. ?I x" by auto
@@ -4832,7 +4831,7 @@
   shows "(Ifm bs (E p)) = (\<exists> (i::int). Ifm (real i#bs) (E (And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))) (exsplit p))))" (is "?lhs = ?rhs")
 proof-
   have "?rhs = (\<exists> (i::int). \<exists> x. 0\<le> x \<and> x < 1 \<and> Ifm (x#(real i)#bs) (exsplit p))"
-    by (simp add: myless[of _ "1"] myless[of _ "0"] add_ac diff_minus)
+    by (simp add: myless[of _ "1"] myless[of _ "0"] add_ac)
   also have "\<dots> = (\<exists> (i::int). \<exists> x. 0\<le> x \<and> x < 1 \<and> Ifm ((real i + x) #bs) p)"
     by (simp only: exsplit[OF qf] add_ac)
   also have "\<dots> = (\<exists> x. Ifm (x#bs) p)" 
@@ -5196,7 +5195,7 @@
   hence "\<forall> j\<in> set ?js. bound0 (subst0 (C j) ?smq)" 
     by (auto simp only: subst0_bound0[OF qfmq])
   hence th: "\<forall> j\<in> set ?js. bound0 (simpfm (subst0 (C j) ?smq))"
-    by (auto simp add: simpfm_bound0)
+    by auto
   from evaldjf_bound0[OF th] have mdb: "bound0 ?md" by simp 
   from Bn jsnb have "\<forall> (b,j) \<in> set ?bjs. numbound0 (Add b (C j))"
     by simp
--- a/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -1959,7 +1959,7 @@
       by (simp add: field_simps)
     have "?rhs \<longleftrightarrow> Ifm vs (- (?d * ?t + ?c* ?s )/ (2*?c*?d) # bs) (Eq (CNP 0 a r))" by (simp only: th)
     also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r = 0" 
-      by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"])
+      by (simp add: r [of "(- (?d * ?t) - (?c *?s)) / (2 * ?c * ?d)"])
     also have "\<dots> \<longleftrightarrow> (2 * ?c * ?d) * (?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r) =0 "
       using c d mult_cancel_left[of "2 * ?c * ?d" "?a * (- (?d * ?t + ?c* ?s)/ (2*?c*?d)) + ?r" 0] by simp
     also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )) + 2*?c*?d*?r =0" 
@@ -2041,7 +2041,7 @@
       by (simp add: field_simps)
     have "?rhs \<longleftrightarrow> Ifm vs (- (?d * ?t + ?c* ?s )/ (2*?c*?d) # bs) (NEq (CNP 0 a r))" by (simp only: th)
     also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r \<noteq> 0" 
-      by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"])
+      by (simp add: r [of "(- (?d * ?t) - (?c *?s)) / (2 * ?c * ?d)"])
     also have "\<dots> \<longleftrightarrow> (2 * ?c * ?d) * (?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r) \<noteq> 0 "
       using c d mult_cancel_left[of "2 * ?c * ?d" "?a * (- (?d * ?t + ?c* ?s)/ (2*?c*?d)) + ?r" 0] by simp
     also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )) + 2*?c*?d*?r \<noteq> 0" 
@@ -2106,7 +2106,7 @@
       by (simp add: field_simps)
     have "?rhs \<longleftrightarrow> Ifm vs (- (?d * ?t + ?c* ?s )/ (2*?c*?d) # bs) (Lt (CNP 0 a r))" by (simp only: th)
     also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r < 0" 
-      by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"])
+      by (simp add: r[of "(- (?d * ?t) - (?c *?s)) / (2 * ?c * ?d)"])
     also have "\<dots> \<longleftrightarrow> (2 * ?c * ?d) * (?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r) < 0"
       
       using dc' dc'' mult_less_cancel_left_disj[of "2 * ?c * ?d" "?a * (- (?d * ?t + ?c* ?s)/ (2*?c*?d)) + ?r" 0] by simp
@@ -2127,7 +2127,7 @@
       by (simp add: field_simps)
     have "?rhs \<longleftrightarrow> Ifm vs (- (?d * ?t + ?c* ?s )/ (2*?c*?d) # bs) (Lt (CNP 0 a r))" by (simp only: th)
     also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r < 0" 
-      by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"])
+      by (simp add: r[of "(- (?d * ?t) - (?c *?s)) / (2 * ?c * ?d)"])
 
     also have "\<dots> \<longleftrightarrow> (2 * ?c * ?d) * (?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r) > 0"
       
@@ -2251,7 +2251,7 @@
       by (simp add: field_simps)
     have "?rhs \<longleftrightarrow> Ifm vs (- (?d * ?t + ?c* ?s )/ (2*?c*?d) # bs) (Le (CNP 0 a r))" by (simp only: th)
     also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r <= 0" 
-      by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"])
+      by (simp add: r[of "(- (?d * ?t) - (?c *?s)) / (2 * ?c * ?d)"])
     also have "\<dots> \<longleftrightarrow> (2 * ?c * ?d) * (?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r) <= 0"
       
       using dc' dc'' mult_le_cancel_left[of "2 * ?c * ?d" "?a * (- (?d * ?t + ?c* ?s)/ (2*?c*?d)) + ?r" 0] by simp
@@ -2272,7 +2272,7 @@
       by (simp add: field_simps)
     have "?rhs \<longleftrightarrow> Ifm vs (- (?d * ?t + ?c* ?s )/ (2*?c*?d) # bs) (Le (CNP 0 a r))" by (simp only: th)
     also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r <= 0" 
-      by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"])
+      by (simp add: r[of "(- (?d * ?t) - (?c *?s)) / (2 * ?c * ?d)"])
 
     also have "\<dots> \<longleftrightarrow> (2 * ?c * ?d) * (?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r) >= 0"
       
@@ -2356,8 +2356,11 @@
 
 lemma msubst_I: assumes lp: "islin p" and nc: "isnpoly c" and nd: "isnpoly d"
   shows "Ifm vs (x#bs) (msubst p ((c,t),(d,s))) = Ifm vs (((- Itm vs (x#bs) t /  Ipoly vs c + - Itm vs (x#bs) s / Ipoly vs d) /2)#bs) p"
-  using lp
-by (induct p rule: islin.induct, auto simp add: tmbound0_I[where b="(- (Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>) + - (Itm vs (x # bs) s / \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>)) / 2" and b'=x and bs = bs and vs=vs] bound0_I[where b="(- (Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>) + - (Itm vs (x # bs) s / \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>)) / 2" and b'=x and bs = bs and vs=vs] msubsteq msubstneq msubstlt[OF nc nd] msubstle[OF nc nd])
+  using lp by (induct p rule: islin.induct)
+    (auto simp add: tmbound0_I
+    [where b = "(- (Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>) - (Itm vs (x # bs) s / \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>)) / 2"
+      and b' = x and bs = bs and vs = vs]
+    msubsteq msubstneq msubstlt [OF nc nd] msubstle [OF nc nd])
 
 lemma msubst_nb: assumes lp: "islin p" and t: "tmbound0 t" and s: "tmbound0 s"
   shows "bound0 (msubst p ((c,t),(d,s)))"
@@ -2429,7 +2432,7 @@
   with evaldjf_bound0[of ?Up "(simpfm o (msubst (simpfm p)))"]
   have "bound0 (evaldjf (simpfm o (msubst (simpfm p))) ?Up)" by blast
   with mp_nb pp_nb 
-  have th1: "bound0 (disj ?mp (disj ?pp (evaldjf (simpfm o (msubst ?q)) ?Up )))" by (simp add: disj_nb)
+  have th1: "bound0 (disj ?mp (disj ?pp (evaldjf (simpfm o (msubst ?q)) ?Up )))" by simp
   from decr0_qf[OF th1] have thqf: "qfree (ferrack p)" by (simp add: ferrack_def Let_def)
   have "?lhs \<longleftrightarrow> (\<exists>x. Ifm vs (x#bs) ?q)" by simp
   also have "\<dots> \<longleftrightarrow> ?I ?mp \<or> ?I ?pp \<or> (\<exists>(c, t)\<in>set ?U. \<exists>(d, s)\<in>set ?U. ?I (msubst (simpfm p) ((c, t), d, s)))" using fr_eq_msubst[OF lq, of vs bs x] by simp
@@ -2612,7 +2615,7 @@
 lemma msubst2_nb: assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" and lp: "islin p" and tnb: "tmbound0 t"
   shows "bound0 (msubst2 p c t)"
 using lp tnb
-by (simp add: msubst2_def msubstneg_nb msubstpos_nb conj_nb disj_nb lt_nb simpfm_bound0)
+by (simp add: msubst2_def msubstneg_nb msubstpos_nb lt_nb simpfm_bound0)
 
 lemma mult_minus2_left: "-2 * (x::'a::comm_ring_1) = - (2 * x)"
   by simp
@@ -2666,8 +2669,8 @@
         using H(3) by (auto simp add: msubst2_def lt[OF stupid(1)]  lt[OF stupid(2)] zero_less_mult_iff mult_less_0_iff)
       from msubst2[OF lp nn nn'(1), of x bs ] H(3) nn'
       have "\<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0 \<and> \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0 \<and> Ifm vs ((- Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup> + - Itm vs (x # bs) s / \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>) / 2 # bs) p"
-        apply (simp add: add_divide_distrib mult_minus2_left)
-        by (simp add: mult_commute)}
+        by (simp add: add_divide_distrib diff_divide_distrib mult_minus2_left mult_commute)
+    }
     moreover
     {fix c t d s assume H: "(c,t) \<in> set (uset p)" "(d,s) \<in> set (uset p)" 
       "\<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" "\<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" "Ifm vs ((- Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup> + - Itm vs (x # bs) s / \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>) / 2 # bs) p"
@@ -2675,7 +2678,9 @@
       hence nn: "isnpoly (C (-2, 1) *\<^sub>p c*\<^sub>p d)" "\<lparr>(C (-2, 1) *\<^sub>p c*\<^sub>p d)\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0"
         using H(3,4) by (simp_all add: polymul_norm n2)
       from msubst2[OF lp nn, of x bs ] H(3,4,5) 
-      have "Ifm vs (x#bs) (msubst2 p (C (-2, 1) *\<^sub>p c*\<^sub>p d) (Add (Mul d t) (Mul c s)))" apply (simp add: add_divide_distrib mult_minus2_left) by (simp add: mult_commute)}
+      have "Ifm vs (x#bs) (msubst2 p (C (-2, 1) *\<^sub>p c*\<^sub>p d) (Add (Mul d t) (Mul c s)))"
+        by (simp add: diff_divide_distrib add_divide_distrib mult_minus2_left mult_commute)
+    }
     ultimately show ?thesis by blast
   qed
   from fr_eq2[OF lp, of vs bs x] show ?thesis
--- a/src/HOL/Decision_Procs/Polynomial_List.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Decision_Procs/Polynomial_List.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -419,7 +419,7 @@
 
 lemma (in comm_ring_1) poly_add_minus_mult_eq:
   "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))"
-  by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult distrib_left)
+  by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult algebra_simps)
 
 subclass (in idom_char_0) comm_ring_1 ..
 
@@ -445,10 +445,7 @@
 lemma (in comm_ring_1) poly_prime_eq_zero[simp]: "poly [a,1] \<noteq> poly []"
   apply (simp add: fun_eq)
   apply (rule_tac x = "minus one a" in exI)
-  apply (unfold diff_minus)
-  apply (subst add_commute)
-  apply (subst add_assoc)
-  apply simp
+  apply (simp add: add_commute [of a])
   done
 
 lemma (in idom) poly_exp_prime_eq_zero: "poly ([a, 1] %^ n) \<noteq> poly []"
@@ -639,7 +636,7 @@
   have "[- a, 1] %^ n divides mulexp n [- a, 1] q"
   proof (rule dividesI)
     show "poly (mulexp n [- a, 1] q) = poly ([- a, 1] %^ n *** q)"
-      by (induct n) (simp_all add: poly_add poly_cmult poly_mult distrib_left mult_ac)
+      by (induct n) (simp_all add: poly_add poly_cmult poly_mult algebra_simps)
   qed
   moreover have "\<not> [- a, 1] %^ Suc n divides mulexp n [- a, 1] q"
   proof
@@ -873,7 +870,7 @@
 proof
   assume eq: ?lhs
   hence "\<And>x. poly ((c#cs) +++ -- (d#ds)) x = 0"
-    by (simp only: poly_minus poly_add algebra_simps) simp
+    by (simp only: poly_minus poly_add algebra_simps) (simp add: algebra_simps)
   hence "poly ((c#cs) +++ -- (d#ds)) = poly []" by(simp add: fun_eq_iff)
   hence "c = d \<and> list_all (\<lambda>x. x=0) ((cs +++ -- ds))"
     unfolding poly_zero by (simp add: poly_minus_def algebra_simps)
--- a/src/HOL/Decision_Procs/Rat_Pair.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Decision_Procs/Rat_Pair.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -266,12 +266,13 @@
         by (simp add: x y th Nadd_def normNum_def INum_def split_def) }
     moreover {
       assume z: "a * b' + b * a' \<noteq> 0"
-      let ?g = "gcd (a * b' + b * a') (b*b')"
+      let ?g = "gcd (a * b' + b * a') (b * b')"
       have gz: "?g \<noteq> 0" using z by simp
       have ?thesis using aa' bb' z gz
         of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a * b' + b * a'" and y="b*b'"]]
         of_int_div[where ?'a = 'a, OF gz gcd_dvd2_int[where x="a * b' + b * a'" and y="b*b'"]]
-        by (simp add: x y Nadd_def INum_def normNum_def Let_def add_divide_distrib) }
+        by (simp add: x y Nadd_def INum_def normNum_def Let_def) (simp add: field_simps)
+    }
     ultimately have ?thesis using aa' bb'
       by (simp add: x y Nadd_def INum_def normNum_def Let_def) }
   ultimately show ?thesis by blast
--- a/src/HOL/Decision_Procs/mir_tac.ML	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Decision_Procs/mir_tac.ML	Fri Nov 01 18:51:14 2013 +0100
@@ -34,7 +34,7 @@
              @{thm "divide_zero"}, 
              @{thm "divide_divide_eq_left"}, @{thm "times_divide_eq_right"}, 
              @{thm "times_divide_eq_left"}, @{thm "divide_divide_eq_right"},
-             @{thm "diff_minus"}, @{thm "minus_divide_left"}]
+             @{thm uminus_add_conv_diff [symmetric]}, @{thm "minus_divide_left"}]
 val comp_ths = ths @ comp_arith @ @{thms simp_thms};
 
 
--- a/src/HOL/Deriv.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Deriv.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -98,7 +98,7 @@
 
 lemma FDERIV_diff[simp, FDERIV_intros]:
   "(f has_derivative f') F \<Longrightarrow> (g has_derivative g') F \<Longrightarrow> ((\<lambda>x. f x - g x) has_derivative (\<lambda>x. f' x - g' x)) F"
-  by (simp only: diff_minus FDERIV_add FDERIV_minus)
+  by (simp only: diff_conv_add_uminus FDERIV_add FDERIV_minus)
 
 abbreviation
   -- {* Frechet derivative: D is derivative of function f at x within s *}
@@ -718,13 +718,13 @@
       ((%x. (f(x)-f(a)) / (x-a)) -- a --> D)"
 apply (rule iffI)
 apply (drule_tac k="- a" in LIM_offset)
-apply (simp add: diff_minus)
+apply simp
 apply (drule_tac k="a" in LIM_offset)
 apply (simp add: add_commute)
 done
 
 lemma DERIV_iff2: "(DERIV f x :> D) \<longleftrightarrow> (\<lambda>z. (f z - f x) / (z - x)) --x --> D"
-  by (simp add: deriv_def diff_minus [symmetric] DERIV_LIM_iff)
+  by (simp add: deriv_def DERIV_LIM_iff)
 
 lemma DERIV_cong_ev: "x = y \<Longrightarrow> eventually (\<lambda>x. f x = g x) (nhds x) \<Longrightarrow> u = v \<Longrightarrow>
     DERIV f x :> u \<longleftrightarrow> DERIV g y :> v"
@@ -758,8 +758,7 @@
     let ?g = "(%z. if z = x then l else (f z - f x) / (z-x))"
     show "\<forall>z. f z - f x = ?g z * (z-x)" by simp
     show "isCont ?g x" using der
-      by (simp add: isCont_iff DERIV_iff diff_minus
-               cong: LIM_equal [rule_format])
+      by (simp add: isCont_iff DERIV_iff cong: LIM_equal [rule_format])
     show "?g x = l" by simp
   qed
 next
@@ -787,7 +786,7 @@
 proof -
   from l der [THEN DERIV_D, THEN LIM_D [where r = "l"]]
   have "\<exists>s > 0. (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l)"
-    by (simp add: diff_minus)
+    by simp
   then obtain s
         where s:   "0 < s"
           and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l"
@@ -798,8 +797,7 @@
     fix h::real
     assume "0 < h" "h < s"
     with all [of h] show "f x < f (x+h)"
-    proof (simp add: abs_if pos_less_divide_eq diff_minus [symmetric]
-    split add: split_if_asm)
+    proof (simp add: abs_if pos_less_divide_eq split add: split_if_asm)
       assume "~ (f (x+h) - f x) / h < l" and h: "0 < h"
       with l
       have "0 < (f (x+h) - f x) / h" by arith
@@ -817,7 +815,7 @@
 proof -
   from l der [THEN DERIV_D, THEN LIM_D [where r = "-l"]]
   have "\<exists>s > 0. (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l)"
-    by (simp add: diff_minus)
+    by simp
   then obtain s
         where s:   "0 < s"
           and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l"
@@ -828,8 +826,7 @@
     fix h::real
     assume "0 < h" "h < s"
     with all [of "-h"] show "f x < f (x-h)"
-    proof (simp add: abs_if pos_less_divide_eq diff_minus [symmetric]
-    split add: split_if_asm)
+    proof (simp add: abs_if pos_less_divide_eq split add: split_if_asm)
       assume " - ((f (x-h) - f x) / h) < l" and h: "0 < h"
       with l
       have "0 < (f (x-h) - f x) / h" by arith
@@ -1131,7 +1128,7 @@
 apply (rule linorder_cases [of a b], auto)
 apply (drule_tac [!] f = f in MVT)
 apply (auto dest: DERIV_isCont DERIV_unique simp add: differentiable_def)
-apply (auto dest: DERIV_unique simp add: ring_distribs diff_minus)
+apply (auto dest: DERIV_unique simp add: ring_distribs)
 done
 
 lemma DERIV_const_ratio_const2:
--- a/src/HOL/Divides.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Divides.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -439,24 +439,23 @@
 
 text {* Subtraction respects modular equivalence. *}
 
-lemma mod_diff_left_eq: "(a - b) mod c = (a mod c - b) mod c"
-  unfolding diff_minus
-  by (intro mod_add_cong mod_minus_cong) simp_all
-
-lemma mod_diff_right_eq: "(a - b) mod c = (a - b mod c) mod c"
-  unfolding diff_minus
-  by (intro mod_add_cong mod_minus_cong) simp_all
-
-lemma mod_diff_eq: "(a - b) mod c = (a mod c - b mod c) mod c"
-  unfolding diff_minus
-  by (intro mod_add_cong mod_minus_cong) simp_all
+lemma mod_diff_left_eq:
+  "(a - b) mod c = (a mod c - b) mod c"
+  using mod_add_cong [of a c "a mod c" "- b" "- b"] by simp
+
+lemma mod_diff_right_eq:
+  "(a - b) mod c = (a - b mod c) mod c"
+  using mod_add_cong [of a c a "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] by simp
+
+lemma mod_diff_eq:
+  "(a - b) mod c = (a mod c - b mod c) mod c"
+  using mod_add_cong [of a c "a mod c" "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] by simp
 
 lemma mod_diff_cong:
   assumes "a mod c = a' mod c"
   assumes "b mod c = b' mod c"
   shows "(a - b) mod c = (a' - b') mod c"
-  unfolding diff_minus using assms
-  by (intro mod_add_cong mod_minus_cong)
+  using assms mod_add_cong [of a c a' "- b" "- b'"] mod_minus_cong [of b c "b'"] by simp
 
 lemma dvd_neg_div: "y dvd x \<Longrightarrow> -x div y = - (x div y)"
 apply (case_tac "y = 0") apply simp
@@ -502,10 +501,7 @@
 
 lemma minus_mod_self1 [simp]: 
   "(b - a) mod b = - a mod b"
-proof -
-  have "b - a = - a + b" by (simp add: diff_minus add.commute)
-  then show ?thesis by simp
-qed
+  using mod_add_self2 [of "- a" b] by simp
 
 end
 
@@ -1749,7 +1745,7 @@
   val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
 
   val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac 
-    (@{thm diff_minus} :: @{thms add_0s} @ @{thms add_ac}))
+    (@{thm diff_conv_add_uminus} :: @{thms add_0s} @ @{thms add_ac}))
 )
 *}
 
--- a/src/HOL/Fields.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Fields.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -156,7 +156,7 @@
   by (simp add: divide_inverse)
 
 lemma diff_divide_distrib: "(a - b) / c = a / c - b / c"
-  by (simp add: diff_minus add_divide_distrib)
+  using add_divide_distrib [of a "- b" c] by simp
 
 lemma nonzero_eq_divide_eq [field_simps]: "c \<noteq> 0 \<Longrightarrow> a = b / c \<longleftrightarrow> a * c = b"
 proof -
@@ -845,7 +845,7 @@
   fix x y :: 'a
   from less_add_one show "\<exists>y. x < y" .. 
   from less_add_one have "x + (- 1) < (x + 1) + (- 1)" by (rule add_strict_right_mono)
-  then have "x - 1 < x + 1 - 1" by (simp only: diff_minus [symmetric])
+  then have "x - 1 < x + 1 - 1" by simp
   then have "x - 1 < x" by (simp add: algebra_simps)
   then show "\<exists>y. y < x" ..
   show "x < y \<Longrightarrow> \<exists>z>x. z < y" by (blast intro!: less_half_sum gt_half_sum)
--- a/src/HOL/Groups.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Groups.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -321,9 +321,13 @@
 
 class group_add = minus + uminus + monoid_add +
   assumes left_minus [simp]: "- a + a = 0"
-  assumes diff_minus: "a - b = a + (- b)"
+  assumes add_uminus_conv_diff [simp]: "a + (- b) = a - b"
 begin
 
+lemma diff_conv_add_uminus:
+  "a - b = a + (- b)"
+  by simp
+
 lemma minus_unique:
   assumes "a + b = 0" shows "- a = b"
 proof -
@@ -332,8 +336,6 @@
   finally show ?thesis .
 qed
 
-lemmas equals_zero_I = minus_unique (* legacy name *)
-
 lemma minus_zero [simp]: "- 0 = 0"
 proof -
   have "0 + 0 = 0" by (rule add_0_right)
@@ -346,13 +348,17 @@
   thus "- (- a) = a" by (rule minus_unique)
 qed
 
-lemma right_minus [simp]: "a + - a = 0"
+lemma right_minus: "a + - a = 0"
 proof -
   have "a + - a = - (- a) + - a" by simp
   also have "\<dots> = 0" by (rule left_minus)
   finally show ?thesis .
 qed
 
+lemma diff_self [simp]:
+  "a - a = 0"
+  using right_minus [of a] by simp
+
 subclass cancel_semigroup_add
 proof
   fix a b c :: 'a
@@ -367,41 +373,57 @@
   then show "b = c" unfolding add_assoc by simp
 qed
 
-lemma minus_add_cancel: "- a + (a + b) = b"
-by (simp add: add_assoc [symmetric])
+lemma minus_add_cancel [simp]:
+  "- a + (a + b) = b"
+  by (simp add: add_assoc [symmetric])
+
+lemma add_minus_cancel [simp]:
+  "a + (- a + b) = b"
+  by (simp add: add_assoc [symmetric])
 
-lemma add_minus_cancel: "a + (- a + b) = b"
-by (simp add: add_assoc [symmetric])
+lemma diff_add_cancel [simp]:
+  "a - b + b = a"
+  by (simp only: diff_conv_add_uminus add_assoc) simp
 
-lemma minus_add: "- (a + b) = - b + - a"
+lemma add_diff_cancel [simp]:
+  "a + b - b = a"
+  by (simp only: diff_conv_add_uminus add_assoc) simp
+
+lemma minus_add:
+  "- (a + b) = - b + - a"
 proof -
   have "(a + b) + (- b + - a) = 0"
-    by (simp add: add_assoc add_minus_cancel)
-  thus "- (a + b) = - b + - a"
+    by (simp only: add_assoc add_minus_cancel) simp
+  then show "- (a + b) = - b + - a"
     by (rule minus_unique)
 qed
 
-lemma right_minus_eq: "a - b = 0 \<longleftrightarrow> a = b"
+lemma right_minus_eq [simp]:
+  "a - b = 0 \<longleftrightarrow> a = b"
 proof
   assume "a - b = 0"
-  have "a = (a - b) + b" by (simp add:diff_minus add_assoc)
+  have "a = (a - b) + b" by (simp add: add_assoc)
   also have "\<dots> = b" using `a - b = 0` by simp
   finally show "a = b" .
 next
-  assume "a = b" thus "a - b = 0" by (simp add: diff_minus)
+  assume "a = b" thus "a - b = 0" by simp
 qed
 
-lemma diff_self [simp]: "a - a = 0"
-by (simp add: diff_minus)
+lemma eq_iff_diff_eq_0:
+  "a = b \<longleftrightarrow> a - b = 0"
+  by (fact right_minus_eq [symmetric])
 
-lemma diff_0 [simp]: "0 - a = - a"
-by (simp add: diff_minus)
+lemma diff_0 [simp]:
+  "0 - a = - a"
+  by (simp only: diff_conv_add_uminus add_0_left)
 
-lemma diff_0_right [simp]: "a - 0 = a" 
-by (simp add: diff_minus)
+lemma diff_0_right [simp]:
+  "a - 0 = a" 
+  by (simp only: diff_conv_add_uminus minus_zero add_0_right)
 
-lemma diff_minus_eq_add [simp]: "a - - b = a + b"
-by (simp add: diff_minus)
+lemma diff_minus_eq_add [simp]:
+  "a - - b = a + b"
+  by (simp only: diff_conv_add_uminus minus_minus)
 
 lemma neg_equal_iff_equal [simp]:
   "- a = - b \<longleftrightarrow> a = b" 
@@ -416,11 +438,11 @@
 
 lemma neg_equal_0_iff_equal [simp]:
   "- a = 0 \<longleftrightarrow> a = 0"
-by (subst neg_equal_iff_equal [symmetric], simp)
+  by (subst neg_equal_iff_equal [symmetric]) simp
 
 lemma neg_0_equal_iff_equal [simp]:
   "0 = - a \<longleftrightarrow> 0 = a"
-by (subst neg_equal_iff_equal [symmetric], simp)
+  by (subst neg_equal_iff_equal [symmetric]) simp
 
 text{*The next two equations can make the simplifier loop!*}
 
@@ -438,15 +460,8 @@
   thus ?thesis by (simp add: eq_commute)
 qed
 
-lemma diff_add_cancel: "a - b + b = a"
-by (simp add: diff_minus add_assoc)
-
-lemma add_diff_cancel: "a + b - b = a"
-by (simp add: diff_minus add_assoc)
-
-declare diff_minus[symmetric, algebra_simps, field_simps]
-
-lemma eq_neg_iff_add_eq_0: "a = - b \<longleftrightarrow> a + b = 0"
+lemma eq_neg_iff_add_eq_0:
+  "a = - b \<longleftrightarrow> a + b = 0"
 proof
   assume "a = - b" then show "a + b = 0" by simp
 next
@@ -456,72 +471,88 @@
   ultimately show "a = - b" by simp
 qed
 
-lemma add_eq_0_iff: "x + y = 0 \<longleftrightarrow> y = - x"
-  unfolding eq_neg_iff_add_eq_0 [symmetric]
-  by (rule equation_minus_iff)
+lemma add_eq_0_iff2:
+  "a + b = 0 \<longleftrightarrow> a = - b"
+  by (fact eq_neg_iff_add_eq_0 [symmetric])
+
+lemma neg_eq_iff_add_eq_0:
+  "- a = b \<longleftrightarrow> a + b = 0"
+  by (auto simp add: add_eq_0_iff2)
 
-lemma minus_diff_eq [simp]: "- (a - b) = b - a"
-  by (simp add: diff_minus minus_add)
+lemma add_eq_0_iff:
+  "a + b = 0 \<longleftrightarrow> b = - a"
+  by (auto simp add: neg_eq_iff_add_eq_0 [symmetric])
 
-lemma add_diff_eq[algebra_simps, field_simps]: "a + (b - c) = (a + b) - c"
-  by (simp add: diff_minus add_assoc)
+lemma minus_diff_eq [simp]:
+  "- (a - b) = b - a"
+  by (simp only: neg_eq_iff_add_eq_0 diff_conv_add_uminus add_assoc minus_add_cancel) simp
 
-lemma diff_eq_eq[algebra_simps, field_simps]: "a - b = c \<longleftrightarrow> a = c + b"
-  by (auto simp add: diff_minus add_assoc)
+lemma add_diff_eq [algebra_simps, field_simps]:
+  "a + (b - c) = (a + b) - c"
+  by (simp only: diff_conv_add_uminus add_assoc)
 
-lemma eq_diff_eq[algebra_simps, field_simps]: "a = c - b \<longleftrightarrow> a + b = c"
-  by (auto simp add: diff_minus add_assoc)
+lemma diff_add_eq_diff_diff_swap:
+  "a - (b + c) = a - c - b"
+  by (simp only: diff_conv_add_uminus add_assoc minus_add)
 
-lemma diff_diff_eq2[algebra_simps, field_simps]: "a - (b - c) = (a + c) - b"
-  by (simp add: diff_minus minus_add add_assoc)
+lemma diff_eq_eq [algebra_simps, field_simps]:
+  "a - b = c \<longleftrightarrow> a = c + b"
+  by auto
 
-lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0"
-  by (fact right_minus_eq [symmetric])
+lemma eq_diff_eq [algebra_simps, field_simps]:
+  "a = c - b \<longleftrightarrow> a + b = c"
+  by auto
+
+lemma diff_diff_eq2 [algebra_simps, field_simps]:
+  "a - (b - c) = (a + c) - b"
+  by (simp only: diff_conv_add_uminus add_assoc) simp
 
 lemma diff_eq_diff_eq:
   "a - b = c - d \<Longrightarrow> a = b \<longleftrightarrow> c = d"
-  by (simp add: eq_iff_diff_eq_0 [of a b] eq_iff_diff_eq_0 [of c d])
+  by (simp only: eq_iff_diff_eq_0 [of a b] eq_iff_diff_eq_0 [of c d])
 
 end
 
 class ab_group_add = minus + uminus + comm_monoid_add +
   assumes ab_left_minus: "- a + a = 0"
-  assumes ab_diff_minus: "a - b = a + (- b)"
+  assumes ab_add_uminus_conv_diff: "a - b = a + (- b)"
 begin
 
 subclass group_add
-  proof qed (simp_all add: ab_left_minus ab_diff_minus)
+  proof qed (simp_all add: ab_left_minus ab_add_uminus_conv_diff)
 
 subclass cancel_comm_monoid_add
 proof
   fix a b c :: 'a
   assume "a + b = a + c"
   then have "- a + a + b = - a + a + c"
-    unfolding add_assoc by simp
+    by (simp only: add_assoc)
   then show "b = c" by simp
 qed
 
-lemma uminus_add_conv_diff[algebra_simps, field_simps]:
+lemma uminus_add_conv_diff [simp]:
   "- a + b = b - a"
-by (simp add:diff_minus add_commute)
+  by (simp add: add_commute)
 
 lemma minus_add_distrib [simp]:
   "- (a + b) = - a + - b"
-by (rule minus_unique) (simp add: add_ac)
+  by (simp add: algebra_simps)
 
-lemma diff_add_eq[algebra_simps, field_simps]: "(a - b) + c = (a + c) - b"
-by (simp add: diff_minus add_ac)
-
-lemma diff_diff_eq[algebra_simps, field_simps]: "(a - b) - c = a - (b + c)"
-by (simp add: diff_minus add_ac)
+lemma diff_add_eq [algebra_simps, field_simps]:
+  "(a - b) + c = (a + c) - b"
+  by (simp add: algebra_simps)
 
-(* FIXME: duplicates right_minus_eq from class group_add *)
-(* but only this one is declared as a simp rule. *)
-lemma diff_eq_0_iff_eq [simp]: "a - b = 0 \<longleftrightarrow> a = b"
-  by (rule right_minus_eq)
+lemma diff_diff_eq [algebra_simps, field_simps]:
+  "(a - b) - c = a - (b + c)"
+  by (simp add: algebra_simps)
 
-lemma add_diff_cancel_left: "(c + a) - (c + b) = a - b"
-  by (simp add: diff_minus add_ac)
+lemma diff_add_eq_diff_diff:
+  "a - (b + c) = a - b - c"
+  using diff_add_eq_diff_diff_swap [of a c b] by (simp add: add.commute)
+
+lemma add_diff_cancel_left [simp]:
+  "(c + a) - (c + b) = a - b"
+  by (simp add: algebra_simps)
 
 end
 
@@ -622,19 +653,19 @@
 
 lemma add_less_cancel_left [simp]:
   "c + a < c + b \<longleftrightarrow> a < b"
-by (blast intro: add_less_imp_less_left add_strict_left_mono) 
+  by (blast intro: add_less_imp_less_left add_strict_left_mono) 
 
 lemma add_less_cancel_right [simp]:
   "a + c < b + c \<longleftrightarrow> a < b"
-by (blast intro: add_less_imp_less_right add_strict_right_mono)
+  by (blast intro: add_less_imp_less_right add_strict_right_mono)
 
 lemma add_le_cancel_left [simp]:
   "c + a \<le> c + b \<longleftrightarrow> a \<le> b"
-by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) 
+  by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) 
 
 lemma add_le_cancel_right [simp]:
   "a + c \<le> b + c \<longleftrightarrow> a \<le> b"
-by (simp add: add_commute [of a c] add_commute [of b c])
+  by (simp add: add_commute [of a c] add_commute [of b c])
 
 lemma add_le_imp_le_right:
   "a + c \<le> b + c \<Longrightarrow> a \<le> b"
@@ -806,6 +837,22 @@
   then show "x + y = 0" by simp
 qed
 
+lemma add_increasing:
+  "0 \<le> a \<Longrightarrow> b \<le> c \<Longrightarrow> b \<le> a + c"
+  by (insert add_mono [of 0 a b c], simp)
+
+lemma add_increasing2:
+  "0 \<le> c \<Longrightarrow> b \<le> a \<Longrightarrow> b \<le> a + c"
+  by (simp add: add_increasing add_commute [of a])
+
+lemma add_strict_increasing:
+  "0 < a \<Longrightarrow> b \<le> c \<Longrightarrow> b < a + c"
+  by (insert add_less_le_mono [of 0 a b c], simp)
+
+lemma add_strict_increasing2:
+  "0 \<le> a \<Longrightarrow> b < c \<Longrightarrow> b < a + c"
+  by (insert add_le_less_mono [of 0 a b c], simp)
+
 end
 
 class ordered_ab_group_add =
@@ -825,21 +872,53 @@
 
 subclass ordered_comm_monoid_add ..
 
+lemma add_less_same_cancel1 [simp]:
+  "b + a < b \<longleftrightarrow> a < 0"
+  using add_less_cancel_left [of _ _ 0] by simp
+
+lemma add_less_same_cancel2 [simp]:
+  "a + b < b \<longleftrightarrow> a < 0"
+  using add_less_cancel_right [of _ _ 0] by simp
+
+lemma less_add_same_cancel1 [simp]:
+  "a < a + b \<longleftrightarrow> 0 < b"
+  using add_less_cancel_left [of _ 0] by simp
+
+lemma less_add_same_cancel2 [simp]:
+  "a < b + a \<longleftrightarrow> 0 < b"
+  using add_less_cancel_right [of 0] by simp
+
+lemma add_le_same_cancel1 [simp]:
+  "b + a \<le> b \<longleftrightarrow> a \<le> 0"
+  using add_le_cancel_left [of _ _ 0] by simp
+
+lemma add_le_same_cancel2 [simp]:
+  "a + b \<le> b \<longleftrightarrow> a \<le> 0"
+  using add_le_cancel_right [of _ _ 0] by simp
+
+lemma le_add_same_cancel1 [simp]:
+  "a \<le> a + b \<longleftrightarrow> 0 \<le> b"
+  using add_le_cancel_left [of _ 0] by simp
+
+lemma le_add_same_cancel2 [simp]:
+  "a \<le> b + a \<longleftrightarrow> 0 \<le> b"
+  using add_le_cancel_right [of 0] by simp
+
 lemma max_diff_distrib_left:
   shows "max x y - z = max (x - z) (y - z)"
-by (simp add: diff_minus, rule max_add_distrib_left) 
+  using max_add_distrib_left [of x y "- z"] by simp
 
 lemma min_diff_distrib_left:
   shows "min x y - z = min (x - z) (y - z)"
-by (simp add: diff_minus, rule min_add_distrib_left) 
+  using min_add_distrib_left [of x y "- z"] by simp
 
 lemma le_imp_neg_le:
   assumes "a \<le> b" shows "-b \<le> -a"
 proof -
   have "-a+a \<le> -a+b" using `a \<le> b` by (rule add_left_mono) 
-  hence "0 \<le> -a+b" by simp
-  hence "0 + (-b) \<le> (-a + b) + (-b)" by (rule add_right_mono) 
-  thus ?thesis by (simp add: add_assoc)
+  then have "0 \<le> -a+b" by simp
+  then have "0 + (-b) \<le> (-a + b) + (-b)" by (rule add_right_mono) 
+  then show ?thesis by (simp add: algebra_simps)
 qed
 
 lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b"
@@ -899,30 +978,32 @@
 lemma diff_less_0_iff_less [simp]:
   "a - b < 0 \<longleftrightarrow> a < b"
 proof -
-  have "a - b < 0 \<longleftrightarrow> a + (- b) < b + (- b)" by (simp add: diff_minus)
+  have "a - b < 0 \<longleftrightarrow> a + (- b) < b + (- b)" by simp
   also have "... \<longleftrightarrow> a < b" by (simp only: add_less_cancel_right)
   finally show ?thesis .
 qed
 
 lemmas less_iff_diff_less_0 = diff_less_0_iff_less [symmetric]
 
-lemma diff_less_eq[algebra_simps, field_simps]: "a - b < c \<longleftrightarrow> a < c + b"
+lemma diff_less_eq [algebra_simps, field_simps]:
+  "a - b < c \<longleftrightarrow> a < c + b"
 apply (subst less_iff_diff_less_0 [of a])
 apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
-apply (simp add: diff_minus add_ac)
+apply (simp add: algebra_simps)
 done
 
-lemma less_diff_eq[algebra_simps, field_simps]: "a < c - b \<longleftrightarrow> a + b < c"
+lemma less_diff_eq[algebra_simps, field_simps]:
+  "a < c - b \<longleftrightarrow> a + b < c"
 apply (subst less_iff_diff_less_0 [of "a + b"])
 apply (subst less_iff_diff_less_0 [of a])
-apply (simp add: diff_minus add_ac)
+apply (simp add: algebra_simps)
 done
 
 lemma diff_le_eq[algebra_simps, field_simps]: "a - b \<le> c \<longleftrightarrow> a \<le> c + b"
-by (auto simp add: le_less diff_less_eq diff_add_cancel add_diff_cancel)
+by (auto simp add: le_less diff_less_eq )
 
 lemma le_diff_eq[algebra_simps, field_simps]: "a \<le> c - b \<longleftrightarrow> a + b \<le> c"
-by (auto simp add: le_less less_diff_eq diff_add_cancel add_diff_cancel)
+by (auto simp add: le_less less_diff_eq)
 
 lemma diff_le_0_iff_le [simp]:
   "a - b \<le> 0 \<longleftrightarrow> a \<le> b"
@@ -1118,21 +1199,11 @@
 
 lemma le_minus_self_iff:
   "a \<le> - a \<longleftrightarrow> a \<le> 0"
-proof -
-  from add_le_cancel_left [of "- a" "a + a" 0]
-  have "a \<le> - a \<longleftrightarrow> a + a \<le> 0" 
-    by (simp add: add_assoc [symmetric])
-  thus ?thesis by simp
-qed
+  by (fact less_eq_neg_nonpos)
 
 lemma minus_le_self_iff:
   "- a \<le> a \<longleftrightarrow> 0 \<le> a"
-proof -
-  from add_le_cancel_left [of "- a" 0 "a + a"]
-  have "- a \<le> a \<longleftrightarrow> 0 \<le> a + a" 
-    by (simp add: add_assoc [symmetric])
-  thus ?thesis by simp
-qed
+  by (fact neg_less_eq_nonneg)
 
 lemma minus_max_eq_min:
   "- max x y = min (-x) (-y)"
@@ -1144,27 +1215,6 @@
 
 end
 
-context ordered_comm_monoid_add
-begin
-
-lemma add_increasing:
-  "0 \<le> a \<Longrightarrow> b \<le> c \<Longrightarrow> b \<le> a + c"
-  by (insert add_mono [of 0 a b c], simp)
-
-lemma add_increasing2:
-  "0 \<le> c \<Longrightarrow> b \<le> a \<Longrightarrow> b \<le> a + c"
-  by (simp add: add_increasing add_commute [of a])
-
-lemma add_strict_increasing:
-  "0 < a \<Longrightarrow> b \<le> c \<Longrightarrow> b < a + c"
-  by (insert add_less_le_mono [of 0 a b c], simp)
-
-lemma add_strict_increasing2:
-  "0 \<le> a \<Longrightarrow> b < c \<Longrightarrow> b < a + c"
-  by (insert add_le_less_mono [of 0 a b c], simp)
-
-end
-
 class abs =
   fixes abs :: "'a \<Rightarrow> 'a"
 begin
@@ -1299,7 +1349,7 @@
 lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>"
 proof -
   have "\<bar>a\<bar> = \<bar>b + (a - b)\<bar>"
-    by (simp add: algebra_simps add_diff_cancel)
+    by (simp add: algebra_simps)
   then have "\<bar>a\<bar> \<le> \<bar>b\<bar> + \<bar>a - b\<bar>"
     by (simp add: abs_triangle_ineq)
   then show ?thesis
@@ -1314,14 +1364,14 @@
 
 lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
 proof -
-  have "\<bar>a - b\<bar> = \<bar>a + - b\<bar>" by (subst diff_minus, rule refl)
+  have "\<bar>a - b\<bar> = \<bar>a + - b\<bar>" by (simp add: algebra_simps)
   also have "... \<le> \<bar>a\<bar> + \<bar>- b\<bar>" by (rule abs_triangle_ineq)
   finally show ?thesis by simp
 qed
 
 lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>"
 proof -
-  have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
+  have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: algebra_simps)
   also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
   finally show ?thesis .
 qed
@@ -1362,10 +1412,5 @@
 code_identifier
   code_module Groups \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
 
-
-text {* Legacy *}
-
-lemmas diff_def = diff_minus
-
 end
 
--- a/src/HOL/Hahn_Banach/Vector_Space.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Hahn_Banach/Vector_Space.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -112,7 +112,7 @@
 proof -
   assume x: "x \<in> V"
   have " (a - b) \<cdot> x = (a + - b) \<cdot> x"
-    by (simp add: diff_minus)
+    by simp
   also from x have "\<dots> = a \<cdot> x + (- b) \<cdot> x"
     by (rule add_mult_distrib2)
   also from x have "\<dots> = a \<cdot> x + - (b \<cdot> x)"
--- a/src/HOL/Int.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Int.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -220,7 +220,7 @@
   by (transfer fixing: uminus) clarsimp
 
 lemma of_int_diff [simp]: "of_int (w - z) = of_int w - of_int z"
-by (simp add: diff_minus Groups.diff_minus)
+  using of_int_add [of w "- z"] by simp
 
 lemma of_int_mult [simp]: "of_int (w*z) = of_int w * of_int z"
   by (transfer fixing: times) (clarsimp simp add: algebra_simps of_nat_mult)
@@ -749,7 +749,7 @@
 
 lemmas int_arith_rules =
   neg_le_iff_le numeral_One
-  minus_zero diff_minus left_minus right_minus
+  minus_zero left_minus right_minus
   mult_zero_left mult_zero_right mult_1_left mult_1_right
   mult_minus_left mult_minus_right
   minus_add_distrib minus_minus mult_assoc
@@ -793,7 +793,6 @@
 subsection{*The functions @{term nat} and @{term int}*}
 
 text{*Simplify the term @{term "w + - z"}*}
-lemmas diff_int_def_symmetric = diff_def [where 'a=int, symmetric, simp]
 
 lemma one_less_nat_eq [simp]: "(Suc 0 < nat z) = (1 < z)"
 apply (insert zless_nat_conj [of 1 z])
@@ -1510,10 +1509,13 @@
   "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)"
   "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1"
   "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1"
-  unfolding sub_def dup_def numeral.simps Pos_def Neg_def
-    neg_numeral_def numeral_BitM
-  by (simp_all only: algebra_simps)
-
+  apply (simp_all only: sub_def dup_def numeral.simps Pos_def Neg_def
+    neg_numeral_def numeral_BitM)
+  apply (simp_all only: algebra_simps minus_diff_eq)
+  apply (simp_all only: add.commute [of _ "- (numeral n + numeral n)"])
+  apply (simp_all only: minus_add add.assoc left_minus)
+  apply (simp_all only: algebra_simps right_minus)
+  done
 
 text {* Implementations *}
 
--- a/src/HOL/Library/BigO.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Library/BigO.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -215,7 +215,7 @@
     f : lb +o O(g)"
   apply (rule set_minus_imp_plus)
   apply (rule bigo_bounded)
-  apply (auto simp add: diff_minus fun_Compl_def func_plus)
+  apply (auto simp add: fun_Compl_def func_plus)
   apply (drule_tac x = x in spec)+
   apply force
   apply (drule_tac x = x in spec)+
@@ -390,7 +390,7 @@
   apply (rule set_minus_imp_plus)
   apply (drule set_plus_imp_minus)
   apply (drule bigo_minus)
-  apply (simp add: diff_minus)
+  apply simp
   done
 
 lemma bigo_minus3: "O(-f) = O(f)"
@@ -446,7 +446,7 @@
   apply (rule bigo_minus)
   apply (subst set_minus_plus)
   apply assumption
-  apply  (simp add: diff_minus add_ac)
+  apply (simp add: add_ac)
   done
 
 lemma bigo_add_commute: "(f : g +o O(h)) = (g : f +o O(h))"
@@ -545,10 +545,9 @@
 
 lemma bigo_compose2: "f =o g +o O(h) ==> (%x. f(k x)) =o (%x. g(k x)) +o 
     O(%x. h(k x))"
-  apply (simp only: set_minus_plus [symmetric] diff_minus fun_Compl_def
-      func_plus)
-  apply (erule bigo_compose1)
-done
+  apply (simp only: set_minus_plus [symmetric] fun_Compl_def func_plus)
+  apply (drule bigo_compose1) apply (simp add: fun_diff_def)
+  done
 
 
 subsection {* Setsum *}
@@ -779,7 +778,7 @@
   apply (subst abs_of_nonneg)
   apply (drule_tac x = x in spec) back
   apply (simp add: algebra_simps)
-  apply (subst diff_minus)+
+  apply (subst diff_conv_add_uminus)+
   apply (rule add_right_mono)
   apply (erule spec)
   apply (rule order_trans) 
@@ -803,7 +802,7 @@
   apply (subst abs_of_nonneg)
   apply (drule_tac x = x in spec) back
   apply (simp add: algebra_simps)
-  apply (subst diff_minus)+
+  apply (subst diff_conv_add_uminus)+
   apply (rule add_left_mono)
   apply (rule le_imp_neg_le)
   apply (erule spec)
--- a/src/HOL/Library/Convex.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Library/Convex.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -362,7 +362,7 @@
   shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
 proof -
   have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}"
-    unfolding diff_def by auto
+    by (auto simp add: diff_conv_add_uminus simp del: add_uminus_conv_diff)
   then show ?thesis
     using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto
 qed
--- a/src/HOL/Library/Float.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Library/Float.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -88,7 +88,7 @@
   done
 
 lemma minus_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> x - y \<in> float"
-  unfolding ab_diff_minus by (intro uminus_float plus_float)
+  using plus_float [of x "- y"] by simp
 
 lemma abs_float[simp]: "x \<in> float \<Longrightarrow> abs x \<in> float"
   by (cases x rule: linorder_cases[of 0]) auto
@@ -960,7 +960,7 @@
   also have "... < (1 / 2) * 2 powr real (rat_precision n (int x) (int y))"
     apply (rule mult_strict_right_mono) by (insert assms) auto
   also have "\<dots> = 2 powr real (rat_precision n (int x) (int y) - 1)"
-    by (simp add: powr_add diff_def powr_neg_numeral)
+    using powr_add [of 2 _ "- 1", simplified add_uminus_conv_diff] by (simp add: powr_neg_numeral)
   also have "\<dots> = 2 ^ nat (rat_precision n (int x) (int y) - 1)"
     using rat_precision_pos[of x y n] assms by (simp add: powr_realpow[symmetric])
   also have "\<dots> \<le> 2 ^ nat (rat_precision n (int x) (int y)) - 1"
--- a/src/HOL/Library/Formal_Power_Series.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Library/Formal_Power_Series.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -231,7 +231,7 @@
 proof
   fix a b :: "'a fps"
   show "- a + a = 0" by (simp add: fps_ext)
-  show "a - b = a + - b" by (simp add: fps_ext diff_minus)
+  show "a + - b = a - b" by (simp add: fps_ext)
 qed
 
 instance fps :: (ab_group_add) ab_group_add
@@ -348,10 +348,10 @@
 instance fps :: (ring) ring ..
 
 instance fps :: (ring_1) ring_1
-  by (intro_classes, auto simp add: diff_minus distrib_right)
+  by (intro_classes, auto simp add: distrib_right)
 
 instance fps :: (comm_ring_1) comm_ring_1
-  by (intro_classes, auto simp add: diff_minus distrib_right)
+  by (intro_classes, auto simp add: distrib_right)
 
 instance fps :: (ring_no_zero_divisors) ring_no_zero_divisors
 proof
@@ -888,7 +888,7 @@
   using fps_deriv_linear[of 1 f 1 g] by simp
 
 lemma fps_deriv_sub[simp]: "fps_deriv ((f:: ('a::comm_ring_1) fps) - g) = fps_deriv f - fps_deriv g"
-  unfolding diff_minus by simp
+  using fps_deriv_add [of f "- g"] by simp
 
 lemma fps_deriv_const[simp]: "fps_deriv (fps_const c) = 0"
   by (simp add: fps_ext fps_deriv_def fps_const_def)
@@ -978,7 +978,7 @@
 
 lemma fps_nth_deriv_sub[simp]:
   "fps_nth_deriv n ((f:: ('a::comm_ring_1) fps) - g) = fps_nth_deriv n f - fps_nth_deriv n g"
-  unfolding diff_minus fps_nth_deriv_add by simp
+  using fps_nth_deriv_add [of n f "- g"] by simp
 
 lemma fps_nth_deriv_0[simp]: "fps_nth_deriv n 0 = 0"
   by (induct n) simp_all
@@ -2634,7 +2634,7 @@
   by (simp add: fps_eq_iff fps_compose_nth field_simps setsum_negf[symmetric])
 
 lemma fps_compose_sub_distrib: "(a - b) oo (c::'a::ring_1 fps) = (a oo c) - (b oo c)"
-  unfolding diff_minus fps_compose_uminus fps_compose_add_distrib ..
+  using fps_compose_add_distrib [of a "- b" c] by (simp add: fps_compose_uminus)
 
 lemma X_fps_compose: "X oo a = Abs_fps (\<lambda>n. if n = 0 then (0::'a::comm_ring_1) else a$n)"
   by (simp add: fps_eq_iff fps_compose_nth mult_delta_left setsum_delta)
--- a/src/HOL/Library/Fraction_Field.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Library/Fraction_Field.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -132,7 +132,7 @@
 lemma diff_fract [simp]:
   assumes "b \<noteq> 0" and "d \<noteq> 0"
   shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
-  using assms by (simp add: diff_fract_def diff_minus)
+  using assms by (simp add: diff_fract_def)
 
 definition mult_fract_def:
   "q * r = Abs_fract (\<Union>x \<in> Rep_fract q. \<Union>y \<in> Rep_fract r.
--- a/src/HOL/Library/Function_Algebras.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Library/Function_Algebras.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -83,10 +83,10 @@
 
 instance "fun" :: (type, group_add) group_add
   by default
-    (simp_all add: fun_eq_iff diff_minus)
+    (simp_all add: fun_eq_iff)
 
 instance "fun" :: (type, ab_group_add) ab_group_add
-  by default (simp_all add: diff_minus)
+  by default simp_all
 
 
 text {* Multiplicative structures *}
--- a/src/HOL/Library/Fundamental_Theorem_Algebra.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Library/Fundamental_Theorem_Algebra.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -224,12 +224,12 @@
     from unimodular_reduce_norm[OF th0] o
     have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1"
       apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1", rule_tac x="1" in exI, simp)
-      apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1", rule_tac x="-1" in exI, simp add: diff_minus)
+      apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1", rule_tac x="-1" in exI, simp del: minus_one add: minus_one [symmetric])
       apply (cases "cmod (complex_of_real (cmod b) / b + ii) < 1")
       apply (cases "even m", rule_tac x="ii" in exI, simp add: m power_mult)
       apply (rule_tac x="- ii" in exI, simp add: m power_mult)
-      apply (cases "even m", rule_tac x="- ii" in exI, simp add: m power_mult diff_minus)
-      apply (rule_tac x="ii" in exI, simp add: m power_mult diff_minus)
+      apply (cases "even m", rule_tac x="- ii" in exI, simp add: m power_mult)
+      apply (rule_tac x="ii" in exI, simp add: m power_mult)
       done
     then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1" by blast
     let ?w = "v / complex_of_real (root n (cmod b))"
@@ -954,7 +954,7 @@
 
 lemma mpoly_sub_conv:
   "poly p (x::complex) - poly q x \<equiv> poly p x + -1 * poly q x"
-  by (simp add: diff_minus)
+  by simp
 
 lemma poly_pad_rule: "poly p x = 0 ==> poly (pCons 0 p) x = (0::complex)" by simp
 
--- a/src/HOL/Library/Inner_Product.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Library/Inner_Product.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -41,7 +41,7 @@
   using inner_add_left [of x "- x" y] by simp
 
 lemma inner_diff_left: "inner (x - y) z = inner x z - inner y z"
-  by (simp add: diff_minus inner_add_left)
+  using inner_add_left [of x "- y" z] by simp
 
 lemma inner_setsum_left: "inner (\<Sum>x\<in>A. f x) y = (\<Sum>x\<in>A. inner (f x) y)"
   by (cases "finite A", induct set: finite, simp_all add: inner_add_left)
--- a/src/HOL/Library/Lattice_Algebras.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Library/Lattice_Algebras.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -13,9 +13,7 @@
   apply (rule antisym)
   apply (simp_all add: le_infI)
   apply (rule add_le_imp_le_left [of "uminus a"])
-  apply (simp only: add_assoc [symmetric], simp)
-  apply rule
-  apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+
+  apply (simp only: add_assoc [symmetric], simp add: diff_le_eq add.commute)
   done
 
 lemma add_inf_distrib_right: "inf a b + c = inf (a + c) (b + c)"
@@ -33,11 +31,10 @@
 lemma add_sup_distrib_left: "a + sup b c = sup (a + b) (a + c)"
   apply (rule antisym)
   apply (rule add_le_imp_le_left [of "uminus a"])
-  apply (simp only: add_assoc[symmetric], simp)
-  apply rule
+  apply (simp only: add_assoc [symmetric], simp)
+  apply (simp add: le_diff_eq add.commute)
+  apply (rule le_supI)
   apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+
-  apply (rule le_supI)
-  apply (simp_all)
   done
 
 lemma add_sup_distrib_right: "sup a b + c = sup (a+c) (b+c)"
@@ -87,9 +84,15 @@
 lemma neg_inf_eq_sup: "- inf a b = sup (-a) (-b)"
   by (simp add: inf_eq_neg_sup)
 
+lemma diff_inf_eq_sup: "a - inf b c = a + sup (- b) (- c)"
+  using neg_inf_eq_sup [of b c, symmetric] by simp
+
 lemma neg_sup_eq_inf: "- sup a b = inf (-a) (-b)"
   by (simp add: sup_eq_neg_inf)
 
+lemma diff_sup_eq_inf: "a - sup b c = a + inf (- b) (- c)"
+  using neg_sup_eq_inf [of b c, symmetric] by simp
+
 lemma add_eq_inf_sup: "a + b = sup a b + inf a b"
 proof -
   have "0 = - inf 0 (a-b) + inf (a-b) 0"
@@ -97,8 +100,8 @@
   hence "0 = sup 0 (b-a) + inf (a-b) 0"
     by (simp add: inf_eq_neg_sup)
   hence "0 = (-a + sup a b) + (inf a b + (-b))"
-    by (simp add: add_sup_distrib_left add_inf_distrib_right) (simp add: algebra_simps)
-  thus ?thesis by (simp add: algebra_simps)
+    by (simp only: add_sup_distrib_left add_inf_distrib_right) simp
+  then show ?thesis by (simp add: algebra_simps)
 qed
 
 
@@ -251,7 +254,7 @@
     apply assumption
     apply (rule notI)
     unfolding double_zero [symmetric, of a]
-    apply simp
+    apply blast
     done
 qed
 
@@ -259,7 +262,8 @@
   "a + a \<le> 0 \<longleftrightarrow> a \<le> 0"
 proof -
   have "a + a \<le> 0 \<longleftrightarrow> 0 \<le> - (a + a)" by (subst le_minus_iff, simp)
-  moreover have "\<dots> \<longleftrightarrow> a \<le> 0" by simp
+  moreover have "\<dots> \<longleftrightarrow> a \<le> 0"
+    by (simp only: minus_add_distrib zero_le_double_add_iff_zero_le_single_add) simp
   ultimately show ?thesis by blast
 qed
 
@@ -267,11 +271,12 @@
   "a + a < 0 \<longleftrightarrow> a < 0"
 proof -
   have "a + a < 0 \<longleftrightarrow> 0 < - (a + a)" by (subst less_minus_iff, simp)
-  moreover have "\<dots> \<longleftrightarrow> a < 0" by simp
+  moreover have "\<dots> \<longleftrightarrow> a < 0"
+    by (simp only: minus_add_distrib zero_less_double_add_iff_zero_less_single_add) simp
   ultimately show ?thesis by blast
 qed
 
-declare neg_inf_eq_sup [simp] neg_sup_eq_inf [simp]
+declare neg_inf_eq_sup [simp] neg_sup_eq_inf [simp] diff_inf_eq_sup [simp] diff_sup_eq_inf [simp]
 
 lemma le_minus_self_iff: "a \<le> - a \<longleftrightarrow> a \<le> 0"
 proof -
@@ -326,7 +331,7 @@
   then have "0 \<le> sup a (- a)" unfolding abs_lattice .
   then have "sup (sup a (- a)) 0 = sup a (- a)" by (rule sup_absorb1)
   then show ?thesis
-    by (simp add: add_sup_inf_distribs sup_aci pprt_def nprt_def diff_minus abs_lattice)
+    by (simp add: add_sup_inf_distribs ac_simps pprt_def nprt_def abs_lattice)
 qed
 
 subclass ordered_ab_group_add_abs
@@ -355,16 +360,17 @@
   show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
   proof -
     have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n")
-      by (simp add: abs_lattice add_sup_inf_distribs sup_aci diff_minus)
+      by (simp add: abs_lattice add_sup_inf_distribs sup_aci ac_simps)
     have a: "a + b <= sup ?m ?n" by simp
     have b: "- a - b <= ?n" by simp
     have c: "?n <= sup ?m ?n" by simp
     from b c have d: "-a-b <= sup ?m ?n" by (rule order_trans)
-    have e:"-a-b = -(a+b)" by (simp add: diff_minus)
+    have e:"-a-b = -(a+b)" by simp
     from a d e have "abs(a+b) <= sup ?m ?n"
       apply -
       apply (drule abs_leI)
-      apply auto
+      apply (simp_all only: algebra_simps ac_simps minus_add)
+      apply (metis add_uminus_conv_diff d sup_commute uminus_add_conv_diff)
       done
     with g[symmetric] show ?thesis by simp
   qed
@@ -421,14 +427,12 @@
   }
   note b = this[OF refl[of a] refl[of b]]
   have xy: "- ?x <= ?y"
-    apply (simp)
-    apply (rule order_trans [OF add_nonpos_nonpos add_nonneg_nonneg])
-    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
+    apply simp
+    apply (metis (full_types) add_increasing add_uminus_conv_diff lattice_ab_group_add_class.minus_le_self_iff minus_add_distrib mult_nonneg_nonneg mult_nonpos_nonpos nprt_le_zero zero_le_pprt)
     done
   have yx: "?y <= ?x"
-    apply (simp add:diff_minus)
-    apply (rule order_trans [OF add_nonpos_nonpos add_nonneg_nonneg])
-    apply (simp_all add: mult_nonneg_nonpos mult_nonpos_nonneg)
+    apply simp
+    apply (metis (full_types) add_nonpos_nonpos add_uminus_conv_diff lattice_ab_group_add_class.le_minus_self_iff minus_add_distrib mult_nonneg_nonpos mult_nonpos_nonneg nprt_le_zero zero_le_pprt)
     done
   have i1: "a*b <= abs a * abs b" by (simp only: a b yx)
   have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy)
@@ -549,7 +553,7 @@
     by simp
   then have "-(- nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1) <= a * b"
     by (simp only: minus_le_iff)
-  then show ?thesis by simp
+  then show ?thesis by (simp add: algebra_simps)
 qed
 
 instance int :: lattice_ring
@@ -567,3 +571,4 @@
 qed
 
 end
+
--- a/src/HOL/Library/Polynomial.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Library/Polynomial.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -667,7 +667,7 @@
   show "- p + p = 0"
     by (simp add: poly_eq_iff)
   show "p - q = p + - q"
-    by (simp add: poly_eq_iff diff_minus)
+    by (simp add: poly_eq_iff)
 qed
 
 end
@@ -714,15 +714,15 @@
 
 lemma degree_diff_le_max: "degree (p - q) \<le> max (degree p) (degree q)"
   using degree_add_le [where p=p and q="-q"]
-  by (simp add: diff_minus)
+  by simp
 
 lemma degree_diff_le:
   "\<lbrakk>degree p \<le> n; degree q \<le> n\<rbrakk> \<Longrightarrow> degree (p - q) \<le> n"
-  by (simp add: diff_minus degree_add_le)
+  using degree_add_le [of p n "- q"] by simp
 
 lemma degree_diff_less:
   "\<lbrakk>degree p < n; degree q < n\<rbrakk> \<Longrightarrow> degree (p - q) < n"
-  by (simp add: diff_minus degree_add_less)
+  using degree_add_less [of p n "- q"] by simp
 
 lemma add_monom: "monom a n + monom b n = monom (a + b) n"
   by (rule poly_eqI) simp
@@ -793,7 +793,7 @@
 lemma poly_diff [simp]:
   fixes x :: "'a::comm_ring"
   shows "poly (p - q) x = poly p x - poly q x"
-  by (simp add: diff_minus)
+  using poly_add [of p "- q" x] by simp
 
 lemma poly_setsum: "poly (\<Sum>k\<in>A. p k) x = (\<Sum>k\<in>A. poly (p k) x)"
   by (induct A rule: infinite_finite_induct) simp_all
--- a/src/HOL/Library/Product_plus.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Library/Product_plus.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -104,7 +104,7 @@
   (cancel_comm_monoid_add, cancel_comm_monoid_add) cancel_comm_monoid_add ..
 
 instance prod :: (group_add, group_add) group_add
-  by default (simp_all add: prod_eq_iff diff_minus)
+  by default (simp_all add: prod_eq_iff)
 
 instance prod :: (ab_group_add, ab_group_add) ab_group_add
   by default (simp_all add: prod_eq_iff)
--- a/src/HOL/Library/Set_Algebras.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Library/Set_Algebras.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -190,12 +190,12 @@
   done
 
 lemma set_plus_imp_minus: "(a::'a::ab_group_add) : b +o C ==> (a - b) : C"
-  by (auto simp add: elt_set_plus_def add_ac diff_minus)
+  by (auto simp add: elt_set_plus_def add_ac)
 
 lemma set_minus_imp_plus: "(a::'a::ab_group_add) - b : C ==> a : b +o C"
-  apply (auto simp add: elt_set_plus_def add_ac diff_minus)
+  apply (auto simp add: elt_set_plus_def add_ac)
   apply (subgoal_tac "a = (a + - b) + b")
-   apply (rule bexI, assumption, assumption)
+   apply (rule bexI, assumption)
   apply (auto simp add: add_ac)
   done
 
--- a/src/HOL/Limits.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Limits.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -179,7 +179,7 @@
 apply (rule_tac x = K in exI, simp)
 apply (rule exI [where x = 0], auto)
 apply (erule order_less_le_trans, simp)
-apply (drule_tac x=n in spec, fold diff_minus)
+apply (drule_tac x=n in spec)
 apply (drule order_trans [OF norm_triangle_ineq2])
 apply simp
 done
@@ -192,9 +192,11 @@
   then obtain K
     where *: "0 < K" and **: "\<And>n. norm (X n) \<le> K" by (auto simp add: Bseq_def)
   from * have "0 < K + norm (X 0)" by (rule order_less_le_trans) simp
-  moreover from ** have "\<forall>n. norm (X n + - X 0) \<le> K + norm (X 0)"
-    by (auto intro: order_trans norm_triangle_ineq)
-  ultimately show ?Q by blast
+  from ** have "\<forall>n. norm (X n - X 0) \<le> K + norm (X 0)"
+    by (auto intro: order_trans norm_triangle_ineq4)
+  then have "\<forall>n. norm (X n + - X 0) \<le> K + norm (X 0)"
+    by simp
+  with `0 < K + norm (X 0)` show ?Q by blast
 next
   assume ?Q then show ?P by (auto simp add: Bseq_iff2)
 qed
@@ -205,6 +207,7 @@
 apply (drule_tac x = n in spec, arith)
 done
 
+
 subsubsection{*Upper Bounds and Lubs of Bounded Sequences*}
 
 lemma Bseq_isUb:
@@ -342,7 +345,7 @@
   unfolding Zfun_def by simp
 
 lemma Zfun_diff: "\<lbrakk>Zfun f F; Zfun g F\<rbrakk> \<Longrightarrow> Zfun (\<lambda>x. f x - g x) F"
-  by (simp only: diff_minus Zfun_add Zfun_minus)
+  using Zfun_add [of f F "\<lambda>x. - g x"] by (simp add: Zfun_minus)
 
 lemma (in bounded_linear) Zfun:
   assumes g: "Zfun g F"
@@ -532,7 +535,7 @@
 lemma tendsto_diff [tendsto_intros]:
   fixes a b :: "'a::real_normed_vector"
   shows "\<lbrakk>(f ---> a) F; (g ---> b) F\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x - g x) ---> a - b) F"
-  by (simp add: diff_minus tendsto_add tendsto_minus)
+  using tendsto_add [of f a F "\<lambda>x. - g x" "- b"] by (simp add: tendsto_minus)
 
 lemma continuous_diff [continuous_intros]:
   fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
--- a/src/HOL/Matrix_LP/LP.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Matrix_LP/LP.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -72,8 +72,7 @@
 proof -
   have "0 <= A - A1"    
   proof -
-    have 1: "A - A1 = A + (- A1)" by simp
-    show ?thesis by (simp only: 1 add_right_mono[of A1 A "-A1", simplified, simplified assms])
+    from assms add_right_mono [of A1 A "- A1"] show ?thesis by simp
   qed
   then have "abs (A-A1) = A-A1" by (rule abs_of_nonneg)
   with assms show "abs (A-A1) <= (A2-A1)" by simp
@@ -147,9 +146,9 @@
   then have "c * x <= y * b - (y * A - c) * x" by (simp add: le_diff_eq)
   then have cx: "c * x <= y * b + (c - y * A) * x" by (simp add: algebra_simps)
   have s2: "c - y * A <= c2 - y * A1"
-    by (simp add: diff_minus assms add_mono mult_left_mono)
+    by (simp add: assms add_mono mult_left_mono algebra_simps)
   have s1: "c1 - y * A2 <= c - y * A"
-    by (simp add: diff_minus assms add_mono mult_left_mono)
+    by (simp add: assms add_mono mult_left_mono algebra_simps)
   have prts: "(c - y * A) * x <= ?C"
     apply (simp add: Let_def)
     apply (rule mult_le_prts)
--- a/src/HOL/Matrix_LP/Matrix.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Matrix_LP/Matrix.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -1542,8 +1542,8 @@
   fix A B :: "'a matrix"
   show "- A + A = 0" 
     by (simp add: plus_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext)
-  show "A - B = A + - B"
-    by (simp add: plus_matrix_def diff_matrix_def minus_matrix_def Rep_matrix_inject [symmetric] ext diff_minus)
+  show "A + - B = A - B"
+    by (simp add: plus_matrix_def diff_matrix_def minus_matrix_def Rep_matrix_inject [symmetric] ext)
 qed
 
 instance matrix :: (ab_group_add) ab_group_add
--- a/src/HOL/Metis_Examples/Big_O.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Metis_Examples/Big_O.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -493,8 +493,10 @@
 
 lemma bigo_compose2:
 "f =o g +o O(h) \<Longrightarrow> (\<lambda>x. f(k x)) =o (\<lambda>x. g(k x)) +o O(\<lambda>x. h(k x))"
-apply (simp only: set_minus_plus [symmetric] diff_minus fun_Compl_def func_plus)
-by (erule bigo_compose1)
+apply (simp only: set_minus_plus [symmetric] fun_Compl_def func_plus)
+apply (drule bigo_compose1 [of "f - g" h k])
+apply (simp add: fun_diff_def)
+done
 
 subsection {* Setsum *}
 
--- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -1099,8 +1099,8 @@
   shows "(\<lambda>x. m *s x + c) o (\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) = id"
   "(\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) o (\<lambda>x. m *s x + c) = id"
   using m0
-  apply (auto simp add: fun_eq_iff vector_add_ldistrib)
-  apply (simp_all add: vector_smult_lneg[symmetric] vector_smult_assoc vector_sneg_minus1[symmetric])
+  apply (auto simp add: fun_eq_iff vector_add_ldistrib diff_conv_add_uminus simp del: add_uminus_conv_diff)
+  apply (simp_all add: vector_smult_lneg[symmetric] vector_smult_assoc vector_sneg_minus1 [symmetric])
   done
 
 lemma vector_affinity_eq:
@@ -1114,7 +1114,7 @@
     using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
 next
   assume h: "x = inverse m *s y + - (inverse m *s c)"
-  show "m *s x + c = y" unfolding h diff_minus[symmetric]
+  show "m *s x + c = y" unfolding h
     using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
 qed
 
--- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -858,9 +858,10 @@
   assumes "affine_parallel A B"
   shows "affine_parallel B A"
 proof -
-  from assms obtain a where "B = (\<lambda>x. a + x) ` A"
+  from assms obtain a where B: "B = (\<lambda>x. a + x) ` A"
     unfolding affine_parallel_def by auto
-  then show ?thesis
+  have [simp]: "(\<lambda>x. x - a) = plus (- a)" by (simp add: fun_eq_iff)
+  from B show ?thesis
     using translation_galois [of B a A]
     unfolding affine_parallel_def by auto
 qed
@@ -980,6 +981,7 @@
   assumes "affine S" "a \<in> S"
   shows "subspace ((\<lambda>x. (-a)+x) ` S)"
 proof -
+  have [simp]: "(\<lambda>x. x - a) = plus (- a)" by (simp add: fun_eq_iff)
   have "affine ((\<lambda>x. (-a)+x) ` S)"
     using  affine_translation assms by auto
   moreover have "0 : ((\<lambda>x. (-a)+x) ` S)"
@@ -992,15 +994,12 @@
   assumes "L \<equiv> {y. \<exists>x \<in> S. (-a)+x=y}"
   shows "subspace L & affine_parallel S L"
 proof -
-  have par: "affine_parallel S L"
-    unfolding affine_parallel_def using assms by auto
+  from assms have "L = plus (- a) ` S" by auto
+  then have par: "affine_parallel S L"
+    unfolding affine_parallel_def .. 
   then have "affine L" using assms parallel_is_affine by auto
   moreover have "0 \<in> L"
-    using assms
-    apply auto
-    using exI[of "(\<lambda>x. x:S \<and> -a+x=0)" a]
-    apply auto
-    done
+    using assms by auto
   ultimately show ?thesis
     using subspace_affine par by auto
 qed
@@ -2390,7 +2389,7 @@
   ultimately have h1: "affine hull ((\<lambda>x. a + x) `  S) \<subseteq> (\<lambda>x. a + x) ` (affine hull S)"
     by (metis hull_minimal)
   have "affine((\<lambda>x. -a + x) ` (affine hull ((\<lambda>x. a + x) `  S)))"
-    using affine_translation affine_affine_hull by auto
+    using affine_translation affine_affine_hull by (auto simp del: uminus_add_conv_diff)
   moreover have "(\<lambda>x. -a + x) ` (\<lambda>x. a + x) `  S \<subseteq> (\<lambda>x. -a + x) ` (affine hull ((\<lambda>x. a + x) `  S))"
     using hull_subset[of "(\<lambda>x. a + x) `  S"] by auto
   moreover have "S = (\<lambda>x. -a + x) ` (\<lambda>x. a + x) `  S"
@@ -2478,7 +2477,7 @@
     using affine_dependent_translation_eq[of "(insert a S)" "-a"]
       affine_dependent_imp_dependent2 assms
       dependent_imp_affine_dependent[of a S]
-    by auto
+    by (auto simp del: uminus_add_conv_diff)
 qed
 
 lemma affine_dependent_iff_dependent2:
@@ -2512,7 +2511,7 @@
     then have "insert 0 ((\<lambda>x. -a+x) ` (s - {a})) = (\<lambda>x. -a+x) ` s"
       by auto
     then have "span ((\<lambda>x. -a+x) ` (s - {a}))=span ((\<lambda>x. -a+x) ` s)"
-      using span_insert_0[of "op + (- a) ` (s - {a})"] by auto
+      using span_insert_0[of "op + (- a) ` (s - {a})"] by (auto simp del: uminus_add_conv_diff)
     moreover have "{x - a |x. x \<in> (s - {a})} = ((\<lambda>x. -a+x) ` (s - {a}))"
       by auto
     moreover have "insert a (s - {a}) = insert a s"
@@ -2652,7 +2651,7 @@
     moreover have h1: "card ((\<lambda>x. -a + x) ` (B-{a})) = card (B-{a})"
        apply (rule card_image)
        using translate_inj_on
-       apply auto
+       apply (auto simp del: uminus_add_conv_diff)
        done
     ultimately have "card (B-{a}) > 0" by auto
     then have *: "finite (B - {a})"
--- a/src/HOL/Multivariate_Analysis/Derivative.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Multivariate_Analysis/Derivative.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -516,7 +516,7 @@
       unfolding e_def
       using c[THEN conjunct1]
       using norm_minus_cancel[of "f' i - f'' i"]
-      by (auto simp add: add.commute ab_diff_minus)
+      by auto
     finally show False
       using c
       using d[THEN conjunct2,rule_format,of "x + c *\<^sub>R i"]
--- a/src/HOL/Multivariate_Analysis/Finite_Cartesian_Product.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Multivariate_Analysis/Finite_Cartesian_Product.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -115,7 +115,7 @@
 instance vec :: (cancel_comm_monoid_add, finite) cancel_comm_monoid_add ..
 
 instance vec :: (group_add, finite) group_add
-  by default (simp_all add: vec_eq_iff diff_minus)
+  by default (simp_all add: vec_eq_iff)
 
 instance vec :: (ab_group_add, finite) ab_group_add
   by default (simp_all add: vec_eq_iff)
--- a/src/HOL/Multivariate_Analysis/Integration.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Multivariate_Analysis/Integration.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -44,9 +44,7 @@
     by auto
   also have "\<dots> \<le> e"
     apply (rule cSup_asclose)
-    apply (auto simp add: S)
-    apply (metis abs_minus_add_cancel b add_commute diff_minus)
-    done
+    using abs_minus_add_cancel b by (auto simp add: S)
   finally have "\<bar>- Sup (uminus ` S) - l\<bar> \<le> e" .
   then show ?thesis
     by (simp add: Inf_real_def)
@@ -380,7 +378,7 @@
                 using Basis_le_norm[OF k, of "?z - y"] unfolding dist_norm by auto
               then have "y\<bullet>k < a\<bullet>k"
                 using e[THEN conjunct1] k
-                by (auto simp add: field_simps as inner_Basis inner_simps)
+                by (auto simp add: field_simps abs_less_iff as inner_Basis inner_simps)
               then have "y \<notin> i"
                 unfolding ab mem_interval by (auto intro!: bexI[OF _ k])
               then show False using yi by auto
@@ -11975,7 +11973,7 @@
     and "g absolutely_integrable_on s"
   shows "(\<lambda>x. f x - g x) absolutely_integrable_on s"
   using absolutely_integrable_add[OF assms(1) absolutely_integrable_neg[OF assms(2)]]
-  by (simp only: algebra_simps)
+  by (simp add: algebra_simps)
 
 lemma absolutely_integrable_linear:
   fixes f :: "'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space"
--- a/src/HOL/Multivariate_Analysis/Linear_Algebra.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Multivariate_Analysis/Linear_Algebra.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -303,7 +303,7 @@
   by (metis linear_iff)
 
 lemma linear_sub: "linear f \<Longrightarrow> f (x - y) = f x - f y"
-  by (simp add: diff_minus linear_add linear_neg)
+  using linear_add [of f x "- y"] by (simp add: linear_neg)
 
 lemma linear_setsum:
   assumes lin: "linear f"
@@ -384,10 +384,10 @@
   using bilinear_radd [OF assms, of x 0 0 ] by (simp add: eq_add_iff field_simps)
 
 lemma bilinear_lsub: "bilinear h \<Longrightarrow> h (x - y) z = h x z - h y z"
-  by (simp  add: diff_minus bilinear_ladd bilinear_lneg)
+  using bilinear_ladd [of h x "- y"] by (simp add: bilinear_lneg)
 
 lemma bilinear_rsub: "bilinear h \<Longrightarrow> h z (x - y) = h z x - h z y"
-  by (simp  add: diff_minus bilinear_radd bilinear_rneg)
+  using bilinear_radd [of h _ x "- y"] by (simp add: bilinear_rneg)
 
 lemma bilinear_setsum:
   assumes bh: "bilinear h"
@@ -730,7 +730,7 @@
   by (metis scaleR_minus1_left subspace_mul)
 
 lemma subspace_sub: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x - y \<in> S"
-  by (metis diff_minus subspace_add subspace_neg)
+  using subspace_add [of S x "- y"] by (simp add: subspace_neg)
 
 lemma (in real_vector) subspace_setsum:
   assumes sA: "subspace A"
@@ -1021,8 +1021,7 @@
     apply safe
     apply (rule_tac x=k in exI, simp)
     apply (erule rev_image_eqI [OF SigmaI [OF rangeI]])
-    apply simp
-    apply (rule right_minus)
+    apply auto
     done
   then show ?thesis by simp
 qed
@@ -2064,7 +2063,7 @@
       using C by simp
     have "orthogonal ?a y"
       unfolding orthogonal_def
-      unfolding inner_diff inner_setsum_left diff_eq_0_iff_eq
+      unfolding inner_diff inner_setsum_left right_minus_eq
       unfolding setsum_diff1' [OF `finite C` `y \<in> C`]
       apply (clarsimp simp add: inner_commute[of y a])
       apply (rule setsum_0')
@@ -3026,7 +3025,7 @@
         norm x * (norm y * (y \<bullet> x) - norm x * norm y * norm y) =  0)"
       using x y
       unfolding inner_simps
-      unfolding power2_norm_eq_inner[symmetric] power2_eq_square diff_eq_0_iff_eq
+      unfolding power2_norm_eq_inner[symmetric] power2_eq_square right_minus_eq
       apply (simp add: inner_commute)
       apply (simp add: field_simps)
       apply metis
--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -4858,8 +4858,8 @@
   assumes "uniformly_continuous_on s f"
     and "uniformly_continuous_on s g"
   shows "uniformly_continuous_on s (\<lambda>x. f x - g x)"
-  unfolding ab_diff_minus using assms
-  by (intro uniformly_continuous_on_add uniformly_continuous_on_minus)
+  using assms uniformly_continuous_on_add [of s f "- g"]
+    by (simp add: fun_Compl_def uniformly_continuous_on_minus)
 
 text{* Continuity of all kinds is preserved under composition. *}
 
@@ -5680,8 +5680,6 @@
     apply auto
     apply (rule_tac x= xa in exI)
     apply auto
-    apply (rule_tac x=xa in exI)
-    apply auto
     done
   then show ?thesis
     using compact_sums[OF assms(1) compact_negations[OF assms(2)]] by auto
@@ -7032,7 +7030,8 @@
   unfolding homeomorphic_minimal
   apply (rule_tac x="\<lambda>x. a + x" in exI)
   apply (rule_tac x="\<lambda>x. -a + x" in exI)
-  using continuous_on_add[OF continuous_on_const continuous_on_id]
+  using continuous_on_add [OF continuous_on_const continuous_on_id, of s a]
+    continuous_on_add [OF continuous_on_const continuous_on_id, of "plus a ` s" "- a"]
   apply auto
   done
 
--- a/src/HOL/NSA/CLim.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/NSA/CLim.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -22,11 +22,11 @@
 lemma all_shift: "(\<forall>x::'a::comm_ring_1. P x) = (\<forall>x. P (x-a))";
 apply auto 
 apply (drule_tac x="x+a" in spec) 
-apply (simp add: diff_minus add_assoc) 
+apply (simp add: add_assoc) 
 done
 
 lemma complex_add_minus_iff [simp]: "(x + - a = (0::complex)) = (x=a)"
-by (simp add: diff_eq_eq diff_minus [symmetric])
+by (simp add: diff_eq_eq)
 
 lemma complex_add_eq_0_iff [iff]: "(x+y = (0::complex)) = (y = -x)"
 apply auto
--- a/src/HOL/NSA/HDeriv.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/NSA/HDeriv.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -81,8 +81,7 @@
 text{*second equivalence *}
 lemma NSDERIV_NSLIM_iff2:
      "(NSDERIV f x :> D) = ((%z. (f(z) - f(x)) / (z-x)) -- x --NS> D)"
-by (simp add: NSDERIV_NSLIM_iff DERIV_LIM_iff  diff_minus [symmetric]
-              LIM_NSLIM_iff [symmetric])
+  by (simp add: NSDERIV_NSLIM_iff DERIV_LIM_iff LIM_NSLIM_iff [symmetric])
 
 (* while we're at it! *)
 
@@ -120,11 +119,10 @@
                  hypreal_of_real (f x))\<approx> (hypreal_of_real D) * h)"
 apply (auto simp add: nsderiv_def)
 apply (case_tac "h = (0::hypreal) ")
-apply (auto simp add: diff_minus)
+apply auto
 apply (drule_tac x = h in bspec)
 apply (drule_tac [2] c = h in approx_mult1)
-apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
-            simp add: diff_minus)
+apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD])
 done
 
 lemma NSDERIVD3:
@@ -135,8 +133,7 @@
 apply (auto simp add: nsderiv_def)
 apply (rule ccontr, drule_tac x = h in bspec)
 apply (drule_tac [2] c = h in approx_mult1)
-apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
-            simp add: mult_assoc diff_minus)
+apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD] simp add: mult_assoc)
 done
 
 text{*Differentiability implies continuity
@@ -174,7 +171,7 @@
 apply (auto simp add: NSDERIV_NSLIM_iff NSLIM_def)
 apply (auto simp add: add_divide_distrib diff_divide_distrib dest!: spec)
 apply (drule_tac b = "star_of Da" and d = "star_of Db" in approx_add)
-apply (auto simp add: diff_minus add_ac)
+apply (auto simp add: add_ac algebra_simps)
 done
 
 text{*Product of functions - Proof is trivial but tedious
@@ -234,9 +231,11 @@
   hence deriv: "(\<lambda>h. - ((f(x+h) - f x) / h)) -- 0 --NS> - D"
     by (rule NSLIM_minus)
   have "\<forall>h. - ((f (x + h) - f x) / h) = (- f (x + h) + f x) / h"
-    by (simp add: minus_divide_left diff_minus)
+    by (simp add: minus_divide_left)
   with deriv
-  show "(\<lambda>h. (- f (x + h) + f x) / h) -- 0 --NS> - D" by simp
+  have "(\<lambda>h. (- f (x + h) + f x) / h) -- 0 --NS> - D" by simp
+  then show "(\<lambda>h. (f (x + h) - f x) / h) -- 0 --NS> D \<Longrightarrow>
+    (\<lambda>h. (f x - f (x + h)) / h) -- 0 --NS> - D" by simp
 qed
 
 text{*Subtraction*}
@@ -244,11 +243,8 @@
 by (blast dest: NSDERIV_add NSDERIV_minus)
 
 lemma NSDERIV_diff:
-     "[| NSDERIV f x :> Da; NSDERIV g x :> Db |]
-      ==> NSDERIV (%x. f x - g x) x :> Da-Db"
-apply (simp add: diff_minus)
-apply (blast intro: NSDERIV_add_minus)
-done
+  "NSDERIV f x :> Da \<Longrightarrow> NSDERIV g x :> Db \<Longrightarrow> NSDERIV (\<lambda>x. f x - g x) x :> Da-Db"
+  using NSDERIV_add_minus [of f x Da g Db] by simp
 
 text{*  Similarly to the above, the chain rule admits an entirely
    straightforward derivation. Compare this with Harrison's
@@ -294,7 +290,7 @@
                    - star_of (f (g x)))
               / (( *f* g) (star_of(x) + xa) - star_of (g x))
              \<approx> star_of(Da)"
-by (auto simp add: NSDERIV_NSLIM_iff2 NSLIM_def diff_minus [symmetric])
+by (auto simp add: NSDERIV_NSLIM_iff2 NSLIM_def)
 
 (*--------------------------------------------------------------
    from other version of differentiability
@@ -354,13 +350,23 @@
     from h_Inf have "h * star_of x \<in> Infinitesimal" by (rule Infinitesimal_HFinite_mult) simp
     with assms have "inverse (- (h * star_of x) + - (star_of x * star_of x)) \<approx>
       inverse (- (star_of x * star_of x))"
-      by (auto intro: inverse_add_Infinitesimal_approx2
+      apply - apply (rule inverse_add_Infinitesimal_approx2)
+      apply (auto
         dest!: hypreal_of_real_HFinite_diff_Infinitesimal
         simp add: inverse_minus_eq [symmetric] HFinite_minus_iff)
-    with not_0 `h \<noteq> 0` assms have "(inverse (star_of x + h) - inverse (star_of x)) / h \<approx>
+      done
+    moreover from not_0 `h \<noteq> 0` assms
+      have "inverse (- (h * star_of x) + - (star_of x * star_of x)) =
+        (inverse (star_of x + h) - inverse (star_of x)) / h"
+      apply (simp add: division_ring_inverse_diff nonzero_inverse_mult_distrib [symmetric]
+        nonzero_inverse_minus_eq [symmetric] ac_simps ring_distribs)
+      apply (subst nonzero_inverse_minus_eq [symmetric])
+      using distrib_right [symmetric, of h "star_of x" "star_of x"] apply simp
+      apply (simp add: field_simps) 
+      done
+    ultimately have "(inverse (star_of x + h) - inverse (star_of x)) / h \<approx>
       - (inverse (star_of x) * inverse (star_of x))"
-      by (simp add: inverse_add nonzero_inverse_mult_distrib [symmetric]
-        nonzero_inverse_minus_eq [symmetric] add_ac mult_ac diff_minus ring_distribs)
+      using assms by (simp add: nonzero_inverse_mult_distrib [symmetric] nonzero_inverse_minus_eq [symmetric])
   } then show ?thesis by (simp add: nsderiv_def)
 qed
 
--- a/src/HOL/NSA/HLim.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/NSA/HLim.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -71,7 +71,7 @@
 
 lemma NSLIM_diff:
   "\<lbrakk>f -- x --NS> l; g -- x --NS> m\<rbrakk> \<Longrightarrow> (\<lambda>x. f x - g x) -- x --NS> (l - m)"
-by (simp only: diff_minus NSLIM_add NSLIM_minus)
+  by (simp only: NSLIM_add NSLIM_minus diff_conv_add_uminus)
 
 lemma NSLIM_add_minus: "[| f -- x --NS> l; g -- x --NS> m |] ==> (%x. f(x) + -g(x)) -- x --NS> (l + -m)"
 by (simp only: NSLIM_add NSLIM_minus)
@@ -95,7 +95,7 @@
 
 lemma NSLIM_zero_cancel: "(%x. f(x) - l) -- x --NS> 0 ==> f -- x --NS> l"
 apply (drule_tac g = "%x. l" and m = l in NSLIM_add)
-apply (auto simp add: diff_minus add_assoc)
+apply (auto simp add: add_assoc)
 done
 
 lemma NSLIM_const_not_eq:
@@ -243,14 +243,14 @@
 apply (drule_tac [2] x = "- star_of a + x" in spec, safe, simp)
 apply (erule mem_infmal_iff [THEN iffD2, THEN Infinitesimal_add_approx_self [THEN approx_sym]])
 apply (erule_tac [3] approx_minus_iff2 [THEN iffD1])
- prefer 2 apply (simp add: add_commute diff_minus [symmetric])
+ prefer 2 apply (simp add: add_commute)
 apply (rule_tac x = x in star_cases)
 apply (rule_tac [2] x = x in star_cases)
-apply (auto simp add: starfun star_of_def star_n_minus star_n_add add_assoc approx_refl star_n_zero_num)
+apply (auto simp add: starfun star_of_def star_n_minus star_n_add add_assoc star_n_zero_num)
 done
 
 lemma NSLIM_isCont_iff: "(f -- a --NS> f a) = ((%h. f(a + h)) -- 0 --NS> f a)"
-by (rule NSLIM_h_iff)
+  by (fact NSLIM_h_iff)
 
 lemma isNSCont_minus: "isNSCont f a ==> isNSCont (%x. - f x) a"
 by (simp add: isNSCont_def)
--- a/src/HOL/NSA/HSEQ.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/NSA/HSEQ.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -73,14 +73,14 @@
 lemma NSLIMSEQ_minus_cancel: "(%n. -(X n)) ----NS> -a ==> X ----NS> a"
 by (drule NSLIMSEQ_minus, simp)
 
+lemma NSLIMSEQ_diff:
+     "[| X ----NS> a; Y ----NS> b |] ==> (%n. X n - Y n) ----NS> a - b"
+  using NSLIMSEQ_add [of X a "- Y" "- b"] by (simp add: NSLIMSEQ_minus fun_Compl_def)
+
 (* FIXME: delete *)
 lemma NSLIMSEQ_add_minus:
      "[| X ----NS> a; Y ----NS> b |] ==> (%n. X n + -Y n) ----NS> a + -b"
-by (simp add: NSLIMSEQ_add NSLIMSEQ_minus)
-
-lemma NSLIMSEQ_diff:
-     "[| X ----NS> a; Y ----NS> b |] ==> (%n. X n - Y n) ----NS> a - b"
-by (simp add: diff_minus NSLIMSEQ_add NSLIMSEQ_minus)
+  by (simp add: NSLIMSEQ_diff)
 
 lemma NSLIMSEQ_diff_const: "f ----NS> a ==> (%n.(f n - b)) ----NS> a - b"
 by (simp add: NSLIMSEQ_diff NSLIMSEQ_const)
@@ -233,11 +233,11 @@
 
 lemma NSLIMSEQ_inverse_real_of_nat_add_minus:
      "(%n. r + -inverse(real(Suc n))) ----NS> r"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_inverse_real_of_nat_add_minus)
+  using LIMSEQ_inverse_real_of_nat_add_minus by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric])
 
 lemma NSLIMSEQ_inverse_real_of_nat_add_minus_mult:
      "(%n. r*( 1 + -inverse(real(Suc n)))) ----NS> r"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_inverse_real_of_nat_add_minus_mult)
+  using LIMSEQ_inverse_real_of_nat_add_minus_mult by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric])
 
 
 subsection {* Convergence *}
--- a/src/HOL/NSA/HSeries.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/NSA/HSeries.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -131,7 +131,7 @@
 apply (auto simp add: approx_refl)
 apply (drule approx_sym [THEN approx_minus_iff [THEN iffD1]])
 apply (auto dest: approx_hrabs 
-            simp add: sumhr_split_diff diff_minus [symmetric])
+            simp add: sumhr_split_diff)
 done
 
 (*----------------------------------------------------------------
@@ -172,7 +172,7 @@
 apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym])
 apply (rule_tac [2] approx_minus_iff [THEN iffD2])
 apply (auto dest: approx_hrabs_zero_cancel 
-            simp add: sumhr_split_diff diff_minus [symmetric])
+            simp add: sumhr_split_diff)
 done
 
 
--- a/src/HOL/NSA/HTranscendental.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/NSA/HTranscendental.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -258,7 +258,7 @@
             simp add: mult_assoc)
 apply (rule approx_add_right_cancel [where d="-1"])
 apply (rule approx_sym [THEN [2] approx_trans2])
-apply (auto simp add: diff_minus mem_infmal_iff)
+apply (auto simp add: mem_infmal_iff minus_one [symmetric] simp del: minus_one)
 done
 
 lemma STAR_exp_epsilon [simp]: "( *f* exp) epsilon @= 1"
@@ -450,7 +450,7 @@
 apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
             simp add: mult_assoc)
 apply (rule approx_add_right_cancel [where d = "-1"])
-apply (simp add: diff_minus)
+apply (simp add: minus_one [symmetric] del: minus_one)
 done
 
 lemma STAR_tan_zero [simp]: "( *f* tan) 0 = 0"
@@ -587,7 +587,7 @@
      "x \<in> Infinitesimal ==> ( *f* cos) x @= 1 - x\<^sup>2"
 apply (rule STAR_cos_Infinitesimal [THEN approx_trans])
 apply (auto simp add: Infinitesimal_approx_minus [symmetric] 
-            diff_minus add_assoc [symmetric] numeral_2_eq_2)
+            add_assoc [symmetric] numeral_2_eq_2)
 done
 
 lemma STAR_cos_Infinitesimal_approx2:
--- a/src/HOL/NSA/NSA.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/NSA/NSA.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -368,7 +368,7 @@
 
 lemma Infinitesimal_diff:
      "[| x \<in> Infinitesimal;  y \<in> Infinitesimal |] ==> x-y \<in> Infinitesimal"
-by (simp add: diff_minus Infinitesimal_add)
+  using Infinitesimal_add [of x "- y"] by simp
 
 lemma Infinitesimal_mult:
   fixes x y :: "'a::real_normed_algebra star"
@@ -491,7 +491,9 @@
      "[|(x::hypreal) \<in> HInfinite; y \<le> 0; x \<le> 0|] ==> (x + y): HInfinite"
 apply (drule HInfinite_minus_iff [THEN iffD2])
 apply (rule HInfinite_minus_iff [THEN iffD1])
-apply (auto intro: HInfinite_add_ge_zero)
+apply (simp only: minus_add add.commute)
+apply (rule HInfinite_add_ge_zero)
+apply simp_all
 done
 
 lemma HInfinite_add_lt_zero:
@@ -620,7 +622,7 @@
 by (simp add: approx_def)
 
 lemma approx_minus_iff2: " (x @= y) = (-y + x @= 0)"
-by (simp add: approx_def diff_minus add_commute)
+by (simp add: approx_def add_commute)
 
 lemma approx_refl [iff]: "x @= x"
 by (simp add: approx_def Infinitesimal_def)
@@ -637,7 +639,7 @@
 lemma approx_trans: "[| x @= y; y @= z |] ==> x @= z"
 apply (simp add: approx_def)
 apply (drule (1) Infinitesimal_add)
-apply (simp add: diff_minus)
+apply simp
 done
 
 lemma approx_trans2: "[| r @= x; s @= x |] ==> r @= s"
@@ -687,7 +689,7 @@
 lemma approx_minus: "a @= b ==> -a @= -b"
 apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym])
 apply (drule approx_minus_iff [THEN iffD1])
-apply (simp add: add_commute diff_minus)
+apply (simp add: add_commute)
 done
 
 lemma approx_minus2: "-a @= -b ==> a @= b"
@@ -700,7 +702,7 @@
 by (blast intro!: approx_add approx_minus)
 
 lemma approx_diff: "[| a @= b; c @= d |] ==> a - c @= b - d"
-by (simp only: diff_minus approx_add approx_minus)
+  using approx_add [of a b "- c" "- d"] by simp
 
 lemma approx_mult1:
   fixes a b c :: "'a::real_normed_algebra star"
@@ -1213,7 +1215,9 @@
          r \<in> Reals;  0 < r |]
       ==> -(x + -t) \<le> r"
 apply (subgoal_tac "(t + -r \<le> x)") 
-apply (auto intro: lemma_st_part_le2)
+apply simp
+apply (rule lemma_st_part_le2)
+apply auto
 done
 
 lemma lemma_SReal_ub:
@@ -1238,7 +1242,7 @@
       ==> x + -t \<noteq> r"
 apply auto
 apply (frule isLubD1a [THEN Reals_minus])
-apply (drule Reals_add_cancel, assumption)
+using Reals_add_cancel [of x "- t"] apply simp
 apply (drule_tac x = x in lemma_SReal_lub)
 apply (drule hypreal_isLub_unique, assumption, auto)
 done
@@ -1250,8 +1254,7 @@
       ==> -(x + -t) \<noteq> r"
 apply (auto)
 apply (frule isLubD1a)
-apply (drule Reals_add_cancel, assumption)
-apply (drule_tac a = "-x" in Reals_minus, simp)
+using Reals_add_cancel [of "- x" t] apply simp
 apply (drule_tac x = x in lemma_SReal_lub)
 apply (drule hypreal_isLub_unique, assumption, auto)
 done
--- a/src/HOL/NSA/NSCA.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/NSA/NSCA.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -165,7 +165,7 @@
 
 lemma approx_hcmod_approx_zero: "(x @= y) = (hcmod (y - x) @= 0)"
 apply (subst hnorm_minus_commute)
-apply (simp add: approx_def Infinitesimal_hcmod_iff diff_minus)
+apply (simp add: approx_def Infinitesimal_hcmod_iff)
 done
 
 lemma approx_approx_zero_iff: "(x @= 0) = (hcmod x @= 0)"
@@ -178,14 +178,14 @@
      "u @= 0 ==> hcmod(x + u) - hcmod x \<in> Infinitesimal"
 apply (drule approx_approx_zero_iff [THEN iffD1])
 apply (rule_tac e = "hcmod u" and e' = "- hcmod u" in Infinitesimal_interval2)
-apply (auto simp add: mem_infmal_iff [symmetric] diff_minus)
+apply (auto simp add: mem_infmal_iff [symmetric])
 apply (rule_tac c1 = "hcmod x" in add_le_cancel_left [THEN iffD1])
-apply (auto simp add: diff_minus [symmetric])
+apply auto
 done
 
 lemma approx_hcmod_add_hcmod: "u @= 0 ==> hcmod(x + u) @= hcmod x"
 apply (rule approx_minus_iff [THEN iffD2])
-apply (auto intro: Infinitesimal_hcmod_add_diff simp add: mem_infmal_iff [symmetric] diff_minus [symmetric])
+apply (auto intro: Infinitesimal_hcmod_add_diff simp add: mem_infmal_iff [symmetric])
 done
 
 
--- a/src/HOL/NSA/StarDef.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/NSA/StarDef.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -803,7 +803,7 @@
 instance star :: (ab_group_add) ab_group_add
 apply (intro_classes)
 apply (transfer, rule left_minus)
-apply (transfer, rule diff_minus)
+apply (transfer, rule diff_conv_add_uminus)
 done
 
 instance star :: (ordered_ab_semigroup_add) ordered_ab_semigroup_add
--- a/src/HOL/Num.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Num.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -407,7 +407,7 @@
   apply (simp add: add_assoc [symmetric], simp add: add_assoc)
   apply (rule_tac a=x in add_left_imp_eq)
   apply (rule_tac a=x in add_right_imp_eq)
-  apply (simp add: add_assoc minus_add_cancel add_minus_cancel)
+  apply (simp add: add_assoc)
   apply (simp add: add_assoc, simp add: add_assoc [symmetric])
   done
 
@@ -418,7 +418,7 @@
 lemmas is_num_normalize =
   add_assoc is_num_add_commute is_num_add_left_commute
   is_num.intros is_num_numeral
-  diff_minus minus_add add_minus_cancel minus_add_cancel
+  minus_add
 
 definition dbl :: "'a \<Rightarrow> 'a" where "dbl x = x + x"
 definition dbl_inc :: "'a \<Rightarrow> 'a" where "dbl_inc x = x + x + 1"
@@ -435,24 +435,21 @@
   "dbl 0 = 0"
   "dbl 1 = 2"
   "dbl (numeral k) = numeral (Bit0 k)"
-  unfolding dbl_def neg_numeral_def numeral.simps
-  by (simp_all add: minus_add)
+  by (simp_all add: dbl_def neg_numeral_def numeral.simps minus_add)
 
 lemma dbl_inc_simps [simp]:
   "dbl_inc (neg_numeral k) = neg_numeral (BitM k)"
   "dbl_inc 0 = 1"
   "dbl_inc 1 = 3"
   "dbl_inc (numeral k) = numeral (Bit1 k)"
-  unfolding dbl_inc_def neg_numeral_def numeral.simps numeral_BitM
-  by (simp_all add: is_num_normalize)
+  by (simp_all add: dbl_inc_def neg_numeral_def numeral.simps numeral_BitM is_num_normalize algebra_simps del: add_uminus_conv_diff)
 
 lemma dbl_dec_simps [simp]:
   "dbl_dec (neg_numeral k) = neg_numeral (Bit1 k)"
   "dbl_dec 0 = -1"
   "dbl_dec 1 = 1"
   "dbl_dec (numeral k) = numeral (BitM k)"
-  unfolding dbl_dec_def neg_numeral_def numeral.simps numeral_BitM
-  by (simp_all add: is_num_normalize)
+  by (simp_all add: dbl_dec_def neg_numeral_def numeral.simps numeral_BitM is_num_normalize)
 
 lemma sub_num_simps [simp]:
   "sub One One = 0"
@@ -464,38 +461,35 @@
   "sub (Bit0 k) (Bit1 l) = dbl_dec (sub k l)"
   "sub (Bit1 k) (Bit0 l) = dbl_inc (sub k l)"
   "sub (Bit1 k) (Bit1 l) = dbl (sub k l)"
-  unfolding dbl_def dbl_dec_def dbl_inc_def sub_def
-  unfolding neg_numeral_def numeral.simps numeral_BitM
-  by (simp_all add: is_num_normalize)
+  by (simp_all add: dbl_def dbl_dec_def dbl_inc_def sub_def neg_numeral_def numeral.simps
+    numeral_BitM is_num_normalize del: add_uminus_conv_diff add: diff_conv_add_uminus)
 
 lemma add_neg_numeral_simps:
   "numeral m + neg_numeral n = sub m n"
   "neg_numeral m + numeral n = sub n m"
   "neg_numeral m + neg_numeral n = neg_numeral (m + n)"
-  unfolding sub_def diff_minus neg_numeral_def numeral_add numeral.simps
-  by (simp_all add: is_num_normalize)
+  by (simp_all add: sub_def neg_numeral_def numeral_add numeral.simps is_num_normalize
+    del: add_uminus_conv_diff add: diff_conv_add_uminus)
 
 lemma add_neg_numeral_special:
   "1 + neg_numeral m = sub One m"
   "neg_numeral m + 1 = sub One m"
-  unfolding sub_def diff_minus neg_numeral_def numeral_add numeral.simps
-  by (simp_all add: is_num_normalize)
+  by (simp_all add: sub_def neg_numeral_def numeral_add numeral.simps is_num_normalize)
 
 lemma diff_numeral_simps:
   "numeral m - numeral n = sub m n"
   "numeral m - neg_numeral n = numeral (m + n)"
   "neg_numeral m - numeral n = neg_numeral (m + n)"
   "neg_numeral m - neg_numeral n = sub n m"
-  unfolding neg_numeral_def sub_def diff_minus numeral_add numeral.simps
-  by (simp_all add: is_num_normalize)
+  by (simp_all add: neg_numeral_def sub_def numeral_add numeral.simps is_num_normalize
+    del: add_uminus_conv_diff add: diff_conv_add_uminus)
 
 lemma diff_numeral_special:
   "1 - numeral n = sub One n"
   "1 - neg_numeral n = numeral (One + n)"
   "numeral m - 1 = sub m One"
   "neg_numeral m - 1 = neg_numeral (m + One)"
-  unfolding neg_numeral_def sub_def diff_minus numeral_add numeral.simps
-  by (simp_all add: is_num_normalize)
+  by (simp_all add: neg_numeral_def sub_def numeral_add numeral.simps add: is_num_normalize)
 
 lemma minus_one: "- 1 = -1"
   unfolding neg_numeral_def numeral.simps ..
--- a/src/HOL/Number_Theory/Cong.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Number_Theory/Cong.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -543,7 +543,8 @@
   apply (subgoal_tac "a * b = (-a * -b)")
   apply (erule ssubst)
   apply (subst zmod_zmult2_eq)
-  apply (auto simp add: mod_add_left_eq)
+  apply (auto simp add: mod_add_left_eq mod_minus_right div_minus_right)
+  apply (metis mod_diff_left_eq mod_diff_right_eq mod_mult_self1_is_0 semiring_numeral_div_class.diff_zero)+
   done
 
 lemma cong_to_1_nat: "([(a::nat) = 1] (mod n)) \<Longrightarrow> (n dvd (a - 1))"
--- a/src/HOL/Probability/Borel_Space.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Probability/Borel_Space.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -677,7 +677,7 @@
   assumes f: "f \<in> borel_measurable M"
   assumes g: "g \<in> borel_measurable M"
   shows "(\<lambda>x. f x - g x) \<in> borel_measurable M"
-  unfolding diff_minus using assms by simp
+  using borel_measurable_add [of f M "- g"] assms by (simp add: fun_Compl_def)
 
 lemma borel_measurable_times[measurable (raw)]:
   fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_algebra}"
@@ -719,7 +719,8 @@
   proof cases
     assume "b \<noteq> 0"
     with `open S` have "open ((\<lambda>x. (- a + x) /\<^sub>R b) ` S)" (is "open ?S")
-      by (auto intro!: open_affinity simp: scaleR_add_right)
+      using open_affinity [of S "inverse b" "- a /\<^sub>R b"]
+      by (auto simp: algebra_simps)
     hence "?S \<in> sets borel" by auto
     moreover
     from `b \<noteq> 0` have "(\<lambda>x. a + b *\<^sub>R f x) -` S = f -` ?S"
--- a/src/HOL/Probability/Lebesgue_Integration.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Probability/Lebesgue_Integration.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -1528,7 +1528,7 @@
     using mono by auto
   ultimately show ?thesis using fg
     by (auto intro!: add_mono positive_integral_mono_AE real_of_ereal_positive_mono
-             simp: positive_integral_positive lebesgue_integral_def diff_minus)
+             simp: positive_integral_positive lebesgue_integral_def algebra_simps)
 qed
 
 lemma integral_mono:
@@ -1732,7 +1732,7 @@
   shows "integrable M (\<lambda>t. f t - g t)"
   and "(\<integral> t. f t - g t \<partial>M) = integral\<^sup>L M f - integral\<^sup>L M g"
   using integral_add[OF f integral_minus(1)[OF g]]
-  unfolding diff_minus integral_minus(2)[OF g]
+  unfolding integral_minus(2)[OF g]
   by auto
 
 lemma integral_indicator[simp, intro]:
--- a/src/HOL/Rat.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Rat.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -468,7 +468,7 @@
     unfolding less_eq_rat_def less_rat_def
     by (auto, drule (1) positive_add, simp add: positive_zero)
   show "a \<le> b \<Longrightarrow> c + a \<le> c + b"
-    unfolding less_eq_rat_def less_rat_def by (auto simp: diff_minus)
+    unfolding less_eq_rat_def less_rat_def by auto
   show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
     by (rule sgn_rat_def)
   show "a \<le> b \<or> b \<le> a"
@@ -665,7 +665,7 @@
   by transfer simp
 
 lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
-by (simp only: diff_minus of_rat_add of_rat_minus)
+  using of_rat_add [of a "- b"] by (simp add: of_rat_minus)
 
 lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
 apply transfer
--- a/src/HOL/Real.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Real.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -98,7 +98,7 @@
 lemma vanishes_diff:
   assumes X: "vanishes X" and Y: "vanishes Y"
   shows "vanishes (\<lambda>n. X n - Y n)"
-unfolding diff_minus by (intro vanishes_add vanishes_minus X Y)
+  unfolding diff_conv_add_uminus by (intro vanishes_add vanishes_minus X Y)
 
 lemma vanishes_mult_bounded:
   assumes X: "\<exists>a>0. \<forall>n. \<bar>X n\<bar> < a"
@@ -170,7 +170,7 @@
 lemma cauchy_diff [simp]:
   assumes X: "cauchy X" and Y: "cauchy Y"
   shows "cauchy (\<lambda>n. X n - Y n)"
-using assms unfolding diff_minus by simp
+  using assms unfolding diff_conv_add_uminus by (simp del: add_uminus_conv_diff)
 
 lemma cauchy_imp_bounded:
   assumes "cauchy X" shows "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b"
@@ -456,7 +456,7 @@
 lemma diff_Real:
   assumes X: "cauchy X" and Y: "cauchy Y"
   shows "Real X - Real Y = Real (\<lambda>n. X n - Y n)"
-  unfolding minus_real_def diff_minus
+  unfolding minus_real_def
   by (simp add: minus_Real add_Real X Y)
 
 lemma mult_Real:
@@ -607,7 +607,7 @@
     unfolding less_eq_real_def less_real_def
     by (auto, drule (1) positive_add, simp add: positive_zero)
   show "a \<le> b \<Longrightarrow> c + a \<le> c + b"
-    unfolding less_eq_real_def less_real_def by (auto simp: diff_minus) (* by auto *)
+    unfolding less_eq_real_def less_real_def by auto
     (* FIXME: Procedure int_combine_numerals: c + b - (c + a) \<equiv> b + - a *)
     (* Should produce c + b - (c + a) \<equiv> b - a *)
   show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
--- a/src/HOL/Real_Vector_Spaces.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Real_Vector_Spaces.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -31,7 +31,7 @@
 qed
 
 lemma diff: "f (x - y) = f x - f y"
-by (simp add: add minus diff_minus)
+  using add [of x "- y"] by (simp add: minus)
 
 lemma setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))"
 apply (cases "finite A")
@@ -553,8 +553,7 @@
 proof -
   have "norm (a + - b) \<le> norm a + norm (- b)"
     by (rule norm_triangle_ineq)
-  thus ?thesis
-    by (simp only: diff_minus norm_minus_cancel)
+  then show ?thesis by simp
 qed
 
 lemma norm_diff_ineq:
@@ -571,7 +570,7 @@
   shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)"
 proof -
   have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))"
-    by (simp add: diff_minus add_ac)
+    by (simp add: algebra_simps)
   also have "\<dots> \<le> norm (a - c) + norm (b - d)"
     by (rule norm_triangle_ineq)
   finally show ?thesis .
--- a/src/HOL/Rings.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Rings.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -255,11 +255,13 @@
 lemma minus_mult_commute: "- a * b = a * - b"
 by simp
 
-lemma right_diff_distrib[algebra_simps, field_simps]: "a * (b - c) = a * b - a * c"
-by (simp add: distrib_left diff_minus)
+lemma right_diff_distrib [algebra_simps, field_simps]:
+  "a * (b - c) = a * b - a * c"
+  using distrib_left [of a b "-c "] by simp
 
-lemma left_diff_distrib[algebra_simps, field_simps]: "(a - b) * c = a * c - b * c"
-by (simp add: distrib_right diff_minus)
+lemma left_diff_distrib [algebra_simps, field_simps]:
+  "(a - b) * c = a * c - b * c"
+  using distrib_right [of a "- b" c] by simp
 
 lemmas ring_distribs =
   distrib_left distrib_right left_diff_distrib right_diff_distrib
@@ -331,8 +333,9 @@
   then show "- x dvd y" ..
 qed
 
-lemma dvd_diff[simp]: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)"
-by (simp only: diff_minus dvd_add dvd_minus_iff)
+lemma dvd_diff [simp]:
+  "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)"
+  using dvd_add [of x y "- z"] by simp
 
 end
 
@@ -755,9 +758,7 @@
 proof
   fix a b
   show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
-    by (auto simp add: abs_if not_less)
-    (auto simp del: minus_add_distrib simp add: minus_add_distrib [symmetric],
-     auto intro!: less_imp_le add_neg_neg)
+    by (auto simp add: abs_if not_le not_less algebra_simps simp del: add.commute dest: add_neg_neg add_nonneg_nonneg)
 qed (auto simp add: abs_if)
 
 lemma zero_le_square [simp]: "0 \<le> a * a"
--- a/src/HOL/Semiring_Normalization.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Semiring_Normalization.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -137,7 +137,7 @@
 lemma normalizing_ring_rules:
   "- x = (- 1) * x"
   "x - y = x + (- y)"
-  by (simp_all add: diff_minus)
+  by simp_all
 
 lemmas normalizing_comm_ring_1_axioms =
   comm_ring_1_axioms [normalizer
--- a/src/HOL/Series.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Series.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -34,7 +34,7 @@
 
 lemma sumr_diff_mult_const:
  "setsum f {0..<n} - (real n*r) = setsum (%i. f i - r) {0..<n::nat}"
-by (simp add: diff_minus setsum_addf real_of_nat_def)
+  by (simp add: setsum_subtractf real_of_nat_def)
 
 lemma real_setsum_nat_ivl_bounded:
      "(!!p. p < n \<Longrightarrow> f(p) \<le> K)
--- a/src/HOL/Tools/group_cancel.ML	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Tools/group_cancel.ML	Fri Nov 01 18:51:14 2013 +0100
@@ -25,7 +25,7 @@
 val sub1 = @{lemma "(A::'a::ab_group_add) == k + a ==> A - b == k + (a - b)"
       by (simp only: add_diff_eq)}
 val sub2 = @{lemma "(B::'a::ab_group_add) == k + b ==> a - B == - k + (a - b)"
-      by (simp only: diff_minus minus_add add_ac)}
+      by (simp only: minus_add diff_conv_add_uminus add_ac)}
 val neg1 = @{lemma "(A::'a::ab_group_add) == k + a ==> - A == - k + - a"
       by (simp only: minus_add_distrib)}
 val rule0 = @{lemma "(a::'a::comm_monoid_add) == a + 0"
--- a/src/HOL/Tools/numeral_simprocs.ML	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Tools/numeral_simprocs.ML	Fri Nov 01 18:51:14 2013 +0100
@@ -220,7 +220,7 @@
 val minus_simps = [@{thm minus_zero}, @{thm minus_one}, @{thm minus_numeral}, @{thm minus_neg_numeral}];
 
 (*To let us treat subtraction as addition*)
-val diff_simps = [@{thm diff_minus}, @{thm minus_add_distrib}, @{thm minus_minus}];
+val diff_simps = [@{thm diff_conv_add_uminus}, @{thm minus_add_distrib}, @{thm minus_minus}];
 
 (*To let us treat division as multiplication*)
 val divide_simps = [@{thm divide_inverse}, @{thm inverse_mult_distrib}, @{thm inverse_inverse_eq}];
@@ -719,7 +719,7 @@
            @{thm "times_divide_eq_left"}, @{thm "times_divide_eq_right"},
            @{thm "times_divide_times_eq"},
            @{thm "divide_divide_eq_right"},
-           @{thm "diff_minus"}, @{thm "minus_divide_left"},
+           @{thm diff_conv_add_uminus}, @{thm "minus_divide_left"},
            @{thm "add_divide_distrib"} RS sym,
            @{thm field_divide_inverse} RS sym, @{thm inverse_divide}, 
            Conv.fconv_rule (Conv.arg_conv (Conv.arg1_conv (Conv.rewr_conv (mk_meta_eq @{thm mult_commute}))))   
--- a/src/HOL/Transcendental.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Transcendental.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -453,7 +453,7 @@
   apply simp
   apply (simp only: lemma_termdiff1 setsum_right_distrib)
   apply (rule setsum_cong [OF refl])
-  apply (simp add: diff_minus [symmetric] less_iff_Suc_add)
+  apply (simp add: less_iff_Suc_add)
   apply (clarify)
   apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 mult_ac
               del: setsum_op_ivl_Suc power_Suc)
@@ -1129,8 +1129,7 @@
   by (rule inverse_unique [symmetric], simp add: mult_exp_exp)
 
 lemma exp_diff: "exp (x - y) = exp x / exp y"
-  unfolding diff_minus divide_inverse
-  by (simp add: exp_add exp_minus)
+  using exp_add [of x "- y"] by (simp add: exp_minus divide_inverse)
 
 
 subsubsection {* Properties of the Exponential Function on Reals *}
@@ -2410,13 +2409,13 @@
   using sin_cos_minus_lemma [where x=x] by simp
 
 lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
-  by (simp add: diff_minus sin_add)
+  using sin_add [of x "- y"] by simp
 
 lemma sin_diff2: "sin (x - y) = cos y * sin x - sin y * cos x"
   by (simp add: sin_diff mult_commute)
 
 lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
-  by (simp add: diff_minus cos_add)
+  using cos_add [of x "- y"] by simp
 
 lemma cos_diff2: "cos (x - y) = cos y * cos x + sin y * sin x"
   by (simp add: cos_diff mult_commute)
@@ -2526,8 +2525,9 @@
         by (simp add: inverse_eq_divide less_divide_eq)
     }
     note *** = this
+    have [simp]: "\<And>x y::real. 0 < x - y \<longleftrightarrow> y < x" by arith
     from ** show ?thesis by (rule sumr_pos_lt_pair)
-      (simp add: divide_inverse real_0_less_add_iff mult_assoc [symmetric] ***)
+      (simp add: divide_inverse mult_assoc [symmetric] ***)
   qed
   ultimately have "0 < (\<Sum>n. - (-1 ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
     by (rule order_less_trans)
@@ -2810,7 +2810,7 @@
 apply (cut_tac x="-x" in cos_zero_lemma, simp, simp)
 apply (force simp add: minus_equation_iff [of x])
 apply (auto simp only: odd_Suc_mult_two_ex real_of_nat_Suc distrib_right)
-apply (auto simp add: cos_add)
+apply (auto simp add: cos_diff cos_add)
 done
 
 (* ditto: but to a lesser extent *)
@@ -3833,7 +3833,7 @@
               by (rule DERIV_arctan_suminf[OF `0 < r` `r < 1` `\<bar>x\<bar> < r`])
             from DERIV_add_minus[OF this DERIV_arctan]
             show "DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
-              unfolding diff_minus by auto
+              by auto
           qed
           hence DERIV_in_rball: "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0"
             using `-r < a` `b < r` by auto
@@ -3922,9 +3922,10 @@
       }
       hence "\<forall> x \<in> { 0 <..< 1 }. 0 \<le> ?a x n - ?diff x n" by auto
       moreover have "\<And>x. isCont (\<lambda> x. ?a x n - ?diff x n) x"
-        unfolding diff_minus divide_inverse
+        unfolding diff_conv_add_uminus divide_inverse
         by (auto intro!: isCont_add isCont_rabs isCont_ident isCont_minus isCont_arctan
-          isCont_inverse isCont_mult isCont_power isCont_const isCont_setsum)
+          isCont_inverse isCont_mult isCont_power isCont_const isCont_setsum
+          simp del: add_uminus_conv_diff)
       ultimately have "0 \<le> ?a 1 n - ?diff 1 n"
         by (rule LIM_less_bound)
       hence "?diff 1 n \<le> ?a 1 n" by auto
--- a/src/HOL/Word/Bit_Representation.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Word/Bit_Representation.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -636,12 +636,12 @@
   unfolding no_sbintr_alt2 by (drule sb_inc_lem') simp
 
 lemma sb_dec_lem:
-  "(0::int) <= - (2^k) + a ==> (a + 2^k) mod (2 * 2 ^ k) <= - (2 ^ k) + a"
-  by (rule int_mod_le' [where n = "2 ^ (Suc k)" and b = "a + 2 ^ k", simplified])
+  "(0::int) \<le> - (2 ^ k) + a \<Longrightarrow> (a + 2 ^ k) mod (2 * 2 ^ k) \<le> - (2 ^ k) + a"
+  using int_mod_le'[where n = "2 ^ (Suc k)" and b = "a + 2 ^ k"] by simp
 
 lemma sb_dec_lem':
-  "(2::int) ^ k <= a ==> (a + 2 ^ k) mod (2 * 2 ^ k) <= - (2 ^ k) + a"
-  by (rule iffD1 [OF diff_le_eq', THEN sb_dec_lem, simplified])
+  "(2::int) ^ k \<le> a \<Longrightarrow> (a + 2 ^ k) mod (2 * 2 ^ k) \<le> - (2 ^ k) + a"
+  by (rule sb_dec_lem) simp
 
 lemma sbintrunc_dec:
   "x >= (2 ^ n) ==> x - 2 ^ (Suc n) >= sbintrunc n x"
--- a/src/HOL/Word/WordBitwise.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/Word/WordBitwise.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -65,7 +65,7 @@
 
 lemma bl_word_sub:
   "to_bl (x - y) = to_bl (x + (- y))"
-  by (simp add: diff_def)
+  by simp
 
 lemma rbl_word_1:
   "rev (to_bl (1 :: ('a :: len0) word))
--- a/src/HOL/ex/Dedekind_Real.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/ex/Dedekind_Real.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -1520,14 +1520,14 @@
   have "z + x - (z + y) = (z + -z) + (x - y)" 
     by (simp add: algebra_simps) 
   with le show ?thesis 
-    by (simp add: real_le_eq_diff[of x] real_le_eq_diff[of "z+x"] diff_minus)
+    by (simp add: real_le_eq_diff[of x] real_le_eq_diff[of "z+x"])
 qed
 
 lemma real_sum_gt_zero_less: "(0 < S + (-W::real)) ==> (W < S)"
-by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S] diff_minus)
+by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S])
 
 lemma real_less_sum_gt_zero: "(W < S) ==> (0 < S + (-W::real))"
-by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S] diff_minus)
+by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S])
 
 lemma real_mult_order: "[| 0 < x; 0 < y |] ==> (0::real) < x * y"
 apply (cases x, cases y)
@@ -1543,7 +1543,7 @@
 apply (rule real_sum_gt_zero_less)
 apply (drule real_less_sum_gt_zero [of x y])
 apply (drule real_mult_order, assumption)
-apply (simp add: distrib_left)
+apply (simp add: algebra_simps)
 done
 
 instantiation real :: distrib_lattice
--- a/src/HOL/ex/Gauge_Integration.thy	Thu Oct 31 16:54:22 2013 +0100
+++ b/src/HOL/ex/Gauge_Integration.thy	Fri Nov 01 18:51:14 2013 +0100
@@ -511,9 +511,9 @@
   case False
   then have "inverse (z - x) * (f z - f x - f' x * (z - x)) = (f z - f x) / (z - x) - f' x"
     apply (subst mult_commute)
-    apply (simp add: distrib_right diff_minus)
+    apply (simp add: left_diff_distrib)
     apply (simp add: mult_assoc divide_inverse)
-    apply (simp add: distrib_right)
+    apply (simp add: ring_distribs)
     done
   moreover from False `\<bar>z - x\<bar> < s` have "\<bar>(f z - f x) / (z - x) - f' x\<bar> < e / 2"
     by (rule P)