author | haftmann |
Tue, 28 Apr 2009 15:50:32 +0200 | |
changeset 31018 | b8a8cf6e16f2 |
parent 31017 | 2c227493ea56 |
child 31019 | 0a38079e789b |
--- a/src/HOL/Word/Num_Lemmas.thy Tue Apr 28 15:50:30 2009 +0200 +++ b/src/HOL/Word/Num_Lemmas.thy Tue Apr 28 15:50:32 2009 +0200 @@ -45,10 +45,6 @@ apply (simp add: number_of_eq nat_diff_distrib [symmetric]) done -lemma of_int_power: - "of_int (a ^ n) = (of_int a ^ n :: 'a :: {recpower, comm_ring_1})" - by (induct n) (auto simp add: power_Suc) - lemma zless2: "0 < (2 :: int)" by arith lemmas zless2p [simp] = zless2 [THEN zero_less_power]