converted legacy ML scripts;
authorwenzelm
Sun, 26 Nov 2006 23:43:53 +0100
changeset 21539 c5cf9243ad62
parent 21538 678299eac351
child 21540 f3faed8276e6
converted legacy ML scripts;
src/FOL/FOL.ML
src/FOL/FOL.thy
src/FOL/FOL_lemmas1.ML
src/FOL/IFOL.ML
src/FOL/IFOL.thy
src/FOL/IFOL_lemmas.ML
src/FOL/IsaMakefile
src/FOL/ROOT.ML
src/FOL/blastdata.ML
src/FOL/cladata.ML
src/FOL/hypsubstdata.ML
src/FOL/intprover.ML
src/FOL/simpdata.ML
src/ZF/Integ/int_arith.ML
src/ZF/ind_syntax.ML
--- a/src/FOL/FOL.ML	Sun Nov 26 23:09:25 2006 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,6 +0,0 @@
-
-structure FOL =
-struct
-  val thy = the_context ();
-  val classical = classical;
-end;
--- a/src/FOL/FOL.thy	Sun Nov 26 23:09:25 2006 +0100
+++ b/src/FOL/FOL.thy	Sun Nov 26 23:43:53 2006 +0100
@@ -7,7 +7,7 @@
 
 theory FOL
 imports IFOL
-uses ("FOL_lemmas1.ML") ("cladata.ML") ("blastdata.ML") ("simpdata.ML")
+uses ("cladata.ML") ("blastdata.ML") ("simpdata.ML")
 begin
 
 
@@ -19,8 +19,151 @@
 
 subsection {* Lemmas and proof tools *}
 
-use "FOL_lemmas1.ML"
-theorems case_split = case_split_thm [case_names True False, cases type: o]
+lemma ccontr: "(\<not> P \<Longrightarrow> False) \<Longrightarrow> P"
+  by (erule FalseE [THEN classical])
+
+(*** Classical introduction rules for | and EX ***)
+
+lemma disjCI: "(~Q ==> P) ==> P|Q"
+  apply (rule classical)
+  apply (assumption | erule meta_mp | rule disjI1 notI)+
+  apply (erule notE disjI2)+
+  done
+
+(*introduction rule involving only EX*)
+lemma ex_classical:
+  assumes r: "~(EX x. P(x)) ==> P(a)"
+  shows "EX x. P(x)"
+  apply (rule classical)
+  apply (rule exI, erule r)
+  done
+
+(*version of above, simplifying ~EX to ALL~ *)
+lemma exCI:
+  assumes r: "ALL x. ~P(x) ==> P(a)"
+  shows "EX x. P(x)"
+  apply (rule ex_classical)
+  apply (rule notI [THEN allI, THEN r])
+  apply (erule notE)
+  apply (erule exI)
+  done
+
+lemma excluded_middle: "~P | P"
+  apply (rule disjCI)
+  apply assumption
+  done
+
+(*For disjunctive case analysis*)
+ML {*
+  local
+    val excluded_middle = thm "excluded_middle"
+    val disjE = thm "disjE"
+  in
+    fun excluded_middle_tac sP =
+      res_inst_tac [("Q",sP)] (excluded_middle RS disjE)
+  end
+*}
+
+lemma case_split_thm:
+  assumes r1: "P ==> Q"
+    and r2: "~P ==> Q"
+  shows Q
+  apply (rule excluded_middle [THEN disjE])
+  apply (erule r2)
+  apply (erule r1)
+  done
+
+lemmas case_split = case_split_thm [case_names True False, cases type: o]
+
+(*HOL's more natural case analysis tactic*)
+ML {*
+  local
+    val case_split_thm = thm "case_split_thm"
+  in
+    fun case_tac a = res_inst_tac [("P",a)] case_split_thm
+  end
+*}
+
+
+(*** Special elimination rules *)
+
+
+(*Classical implies (-->) elimination. *)
+lemma impCE:
+  assumes major: "P-->Q"
+    and r1: "~P ==> R"
+    and r2: "Q ==> R"
+  shows R
+  apply (rule excluded_middle [THEN disjE])
+   apply (erule r1)
+  apply (rule r2)
+  apply (erule major [THEN mp])
+  done
+
+(*This version of --> elimination works on Q before P.  It works best for
+  those cases in which P holds "almost everywhere".  Can't install as
+  default: would break old proofs.*)
+lemma impCE':
+  assumes major: "P-->Q"
+    and r1: "Q ==> R"
+    and r2: "~P ==> R"
+  shows R
+  apply (rule excluded_middle [THEN disjE])
+   apply (erule r2)
+  apply (rule r1)
+  apply (erule major [THEN mp])
+  done
+
+(*Double negation law*)
+lemma notnotD: "~~P ==> P"
+  apply (rule classical)
+  apply (erule notE)
+  apply assumption
+  done
+
+lemma contrapos2:  "[| Q; ~ P ==> ~ Q |] ==> P"
+  apply (rule classical)
+  apply (drule (1) meta_mp)
+  apply (erule (1) notE)
+  done
+
+(*** Tactics for implication and contradiction ***)
+
+(*Classical <-> elimination.  Proof substitutes P=Q in 
+    ~P ==> ~Q    and    P ==> Q  *)
+lemma iffCE:
+  assumes major: "P<->Q"
+    and r1: "[| P; Q |] ==> R"
+    and r2: "[| ~P; ~Q |] ==> R"
+  shows R
+  apply (rule major [unfolded iff_def, THEN conjE])
+  apply (elim impCE)
+     apply (erule (1) r2)
+    apply (erule (1) notE)+
+  apply (erule (1) r1)
+  done
+
+
+(*Better for fast_tac: needs no quantifier duplication!*)
+lemma alt_ex1E:
+  assumes major: "EX! x. P(x)"
+    and r: "!!x. [| P(x);  ALL y y'. P(y) & P(y') --> y=y' |] ==> R"
+  shows R
+  using major
+proof (rule ex1E)
+  fix x
+  assume * : "\<forall>y. P(y) \<longrightarrow> y = x"
+  assume "P(x)"
+  then show R
+  proof (rule r)
+    { fix y y'
+      assume "P(y)" and "P(y')"
+      with * have "x = y" and "x = y'" by - (tactic "IntPr.fast_tac 1")+
+      then have "y = y'" by (rule subst)
+    } note r' = this
+    show "\<forall>y y'. P(y) \<and> P(y') \<longrightarrow> y = y'" by (intro strip, elim conjE) (rule r')
+  qed
+qed
 
 use "cladata.ML"
 setup Cla.setup
@@ -32,9 +175,7 @@
 
 
 lemma ex1_functional: "[| EX! z. P(a,z);  P(a,b);  P(a,c) |] ==> b = c"
-by blast
-
-ML {* val ex1_functional = thm "ex1_functional" *}
+  by blast
 
 (* Elimination of True from asumptions: *)
 lemma True_implies_equals: "(True ==> PROP P) == PROP P"
@@ -46,6 +187,19 @@
   then show "PROP P" .
 qed
 
+lemma uncurry: "P --> Q --> R ==> P & Q --> R"
+  by blast
+
+lemma iff_allI: "(!!x. P(x) <-> Q(x)) ==> (ALL x. P(x)) <-> (ALL x. Q(x))"
+  by blast
+
+lemma iff_exI: "(!!x. P(x) <-> Q(x)) ==> (EX x. P(x)) <-> (EX x. Q(x))"
+  by blast
+
+lemma all_comm: "(ALL x y. P(x,y)) <-> (ALL y x. P(x,y))" by blast
+
+lemma ex_comm: "(EX x y. P(x,y)) <-> (EX y x. P(x,y))" by blast
+
 use "simpdata.ML"
 setup simpsetup
 setup "Simplifier.method_setup Splitter.split_modifiers"
--- a/src/FOL/FOL_lemmas1.ML	Sun Nov 26 23:09:25 2006 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,95 +0,0 @@
-(*  Title:      FOL/FOL_lemmas1.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1991  University of Cambridge
-
-Tactics and lemmas for theory FOL (classical First-Order Logic).
-*)
-
-val classical = thm "classical";
-bind_thm ("ccontr", FalseE RS classical);
-
-
-(*** Classical introduction rules for | and EX ***)
-
-val prems = Goal "(~Q ==> P) ==> P|Q";
-by (rtac classical 1);
-by (REPEAT (ares_tac (prems@[disjI1,notI]) 1));
-by (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ;
-qed "disjCI";
-
-(*introduction rule involving only EX*)
-val prems = Goal "( ~(EX x. P(x)) ==> P(a)) ==> EX x. P(x)";
-by (rtac classical 1);
-by (eresolve_tac (prems RL [exI]) 1) ;
-qed "ex_classical";
-
-(*version of above, simplifying ~EX to ALL~ *)
-val [prem]= Goal "(ALL x. ~P(x) ==> P(a)) ==> EX x. P(x)";
-by (rtac ex_classical 1);
-by (resolve_tac [notI RS allI RS prem] 1);
-by (etac notE 1);
-by (etac exI 1) ;
-qed "exCI";
-
-Goal"~P | P";
-by (rtac disjCI 1);
-by (assume_tac 1) ;
-qed "excluded_middle";
-
-(*For disjunctive case analysis*)
-fun excluded_middle_tac sP =
-    res_inst_tac [("Q",sP)] (excluded_middle RS disjE);
-
-val [p1,p2] = Goal"[| P ==> Q; ~P ==> Q |] ==> Q";
-by (rtac (excluded_middle RS disjE) 1);
-by (etac p2 1);
-by (etac p1 1);
-qed "case_split_thm";
-
-(*HOL's more natural case analysis tactic*)
-fun case_tac a = res_inst_tac [("P",a)] case_split_thm;
-
-
-(*** Special elimination rules *)
-
-
-(*Classical implies (-->) elimination. *)
-val major::prems = Goal "[| P-->Q;  ~P ==> R;  Q ==> R |] ==> R";
-by (resolve_tac [excluded_middle RS disjE] 1);
-by (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ;
-qed "impCE";
-
-(*This version of --> elimination works on Q before P.  It works best for
-  those cases in which P holds "almost everywhere".  Can't install as
-  default: would break old proofs.*)
-val major::prems = Goal "[| P-->Q;  Q ==> R;  ~P ==> R |] ==> R";
-by (resolve_tac [excluded_middle RS disjE] 1);
-by (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ;
-qed "impCE'";
-
-(*Double negation law*)
-Goal"~~P ==> P";
-by (rtac classical 1);
-by (etac notE 1);
-by (assume_tac 1);
-qed "notnotD";
-
-val [p1,p2] = Goal"[| Q; ~ P ==> ~ Q |] ==> P";
-by (rtac classical 1);
-by (dtac p2 1);
-by (etac notE 1);
-by (rtac p1 1);
-qed "contrapos2";
-
-(*** Tactics for implication and contradiction ***)
-
-(*Classical <-> elimination.  Proof substitutes P=Q in 
-    ~P ==> ~Q    and    P ==> Q  *)
-val major::prems = 
-Goalw  [iff_def] "[| P<->Q;  [| P; Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R";
-by (rtac (major RS conjE) 1);
-by (REPEAT_FIRST (etac impCE));
-by (REPEAT (DEPTH_SOLVE_1 (mp_tac 1  ORELSE  ares_tac prems 1)));
-qed "iffCE";
-
--- a/src/FOL/IFOL.ML	Sun Nov 26 23:09:25 2006 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,26 +0,0 @@
-
-structure IFOL =
-struct
-  val thy = the_context ();
-  val refl = refl;
-  val subst = subst;
-  val conjI = conjI;
-  val conjunct1 = conjunct1;
-  val conjunct2 = conjunct2;
-  val disjI1 = disjI1;
-  val disjI2 = disjI2;
-  val disjE = disjE;
-  val impI = impI;
-  val mp = mp;
-  val FalseE = FalseE;
-  val True_def = True_def;
-  val not_def = not_def;
-  val iff_def = iff_def;
-  val ex1_def = ex1_def;
-  val allI = allI;
-  val spec = spec;
-  val exI = exI;
-  val exE = exE;
-  val eq_reflection = eq_reflection;
-  val iff_reflection = iff_reflection;
-end;
--- a/src/FOL/IFOL.thy	Sun Nov 26 23:09:25 2006 +0100
+++ b/src/FOL/IFOL.thy	Sun Nov 26 23:43:53 2006 +0100
@@ -7,7 +7,7 @@
 
 theory IFOL
 imports Pure
-uses ("IFOL_lemmas.ML") ("fologic.ML") ("hypsubstdata.ML") ("intprover.ML")
+uses ("fologic.ML") ("hypsubstdata.ML") ("intprover.ML")
 begin
 
 
@@ -55,22 +55,22 @@
   not_equal  (infixl "\<noteq>" 50)
 
 notation (xsymbols)
-  Not  ("\<not> _" [40] 40) and
-  "op &"  (infixr "\<and>" 35) and
-  "op |"  (infixr "\<or>" 30) and
-  All  (binder "\<forall>" 10) and
-  Ex  (binder "\<exists>" 10) and
-  Ex1  (binder "\<exists>!" 10) and
+  Not       ("\<not> _" [40] 40) and
+  "op &"    (infixr "\<and>" 35) and
+  "op |"    (infixr "\<or>" 30) and
+  All       (binder "\<forall>" 10) and
+  Ex        (binder "\<exists>" 10) and
+  Ex1       (binder "\<exists>!" 10) and
   "op -->"  (infixr "\<longrightarrow>" 25) and
   "op <->"  (infixr "\<longleftrightarrow>" 25)
 
 notation (HTML output)
-  Not  ("\<not> _" [40] 40) and
-  "op &"  (infixr "\<and>" 35) and
-  "op |"  (infixr "\<or>" 30) and
-  All  (binder "\<forall>" 10) and
-  Ex  (binder "\<exists>" 10) and
-  Ex1  (binder "\<exists>!" 10)
+  Not       ("\<not> _" [40] 40) and
+  "op &"    (infixr "\<and>" 35) and
+  "op |"    (infixr "\<or>" 30) and
+  All       (binder "\<forall>" 10) and
+  Ex        (binder "\<exists>" 10) and
+  Ex1       (binder "\<exists>!" 10)
 
 local
 
@@ -145,7 +145,471 @@
 
 subsection {* Lemmas and proof tools *}
 
-use "IFOL_lemmas.ML"
+lemma TrueI: True
+  unfolding True_def by (rule impI)
+
+
+(*** Sequent-style elimination rules for & --> and ALL ***)
+
+lemma conjE:
+  assumes major: "P & Q"
+    and r: "[| P; Q |] ==> R"
+  shows R
+  apply (rule r)
+   apply (rule major [THEN conjunct1])
+  apply (rule major [THEN conjunct2])
+  done
+
+lemma impE:
+  assumes major: "P --> Q"
+    and P
+  and r: "Q ==> R"
+  shows R
+  apply (rule r)
+  apply (rule major [THEN mp])
+  apply (rule `P`)
+  done
+
+lemma allE:
+  assumes major: "ALL x. P(x)"
+    and r: "P(x) ==> R"
+  shows R
+  apply (rule r)
+  apply (rule major [THEN spec])
+  done
+
+(*Duplicates the quantifier; for use with eresolve_tac*)
+lemma all_dupE:
+  assumes major: "ALL x. P(x)"
+    and r: "[| P(x); ALL x. P(x) |] ==> R"
+  shows R
+  apply (rule r)
+   apply (rule major [THEN spec])
+  apply (rule major)
+  done
+
+
+(*** Negation rules, which translate between ~P and P-->False ***)
+
+lemma notI: "(P ==> False) ==> ~P"
+  unfolding not_def by (erule impI)
+
+lemma notE: "[| ~P;  P |] ==> R"
+  unfolding not_def by (erule mp [THEN FalseE])
+
+lemma rev_notE: "[| P; ~P |] ==> R"
+  by (erule notE)
+
+(*This is useful with the special implication rules for each kind of P. *)
+lemma not_to_imp:
+  assumes "~P"
+    and r: "P --> False ==> Q"
+  shows Q
+  apply (rule r)
+  apply (rule impI)
+  apply (erule notE [OF `~P`])
+  done
+
+(* For substitution into an assumption P, reduce Q to P-->Q, substitute into
+   this implication, then apply impI to move P back into the assumptions.
+   To specify P use something like
+      eres_inst_tac [ ("P","ALL y. ?S(x,y)") ] rev_mp 1   *)
+lemma rev_mp: "[| P;  P --> Q |] ==> Q"
+  by (erule mp)
+
+(*Contrapositive of an inference rule*)
+lemma contrapos:
+  assumes major: "~Q"
+    and minor: "P ==> Q"
+  shows "~P"
+  apply (rule major [THEN notE, THEN notI])
+  apply (erule minor)
+  done
+
+
+(*** Modus Ponens Tactics ***)
+
+(*Finds P-->Q and P in the assumptions, replaces implication by Q *)
+ML {*
+  local
+    val notE = thm "notE"
+    val impE = thm "impE"
+  in
+    fun mp_tac i = eresolve_tac [notE,impE] i  THEN  assume_tac i
+    fun eq_mp_tac i = eresolve_tac [notE,impE] i  THEN  eq_assume_tac i
+  end
+*}
+
+
+(*** If-and-only-if ***)
+
+lemma iffI: "[| P ==> Q; Q ==> P |] ==> P<->Q"
+  apply (unfold iff_def)
+  apply (rule conjI)
+   apply (erule impI)
+  apply (erule impI)
+  done
+
+
+(*Observe use of rewrite_rule to unfold "<->" in meta-assumptions (prems) *)
+lemma iffE:
+  assumes major: "P <-> Q"
+    and r: "P-->Q ==> Q-->P ==> R"
+  shows R
+  apply (insert major, unfold iff_def)
+  apply (erule conjE)
+  apply (erule r)
+  apply assumption
+  done
+
+(* Destruct rules for <-> similar to Modus Ponens *)
+
+lemma iffD1: "[| P <-> Q;  P |] ==> Q"
+  apply (unfold iff_def)
+  apply (erule conjunct1 [THEN mp])
+  apply assumption
+  done
+
+lemma iffD2: "[| P <-> Q;  Q |] ==> P"
+  apply (unfold iff_def)
+  apply (erule conjunct2 [THEN mp])
+  apply assumption
+  done
+
+lemma rev_iffD1: "[| P; P <-> Q |] ==> Q"
+  apply (erule iffD1)
+  apply assumption
+  done
+
+lemma rev_iffD2: "[| Q; P <-> Q |] ==> P"
+  apply (erule iffD2)
+  apply assumption
+  done
+
+lemma iff_refl: "P <-> P"
+  by (rule iffI)
+
+lemma iff_sym: "Q <-> P ==> P <-> Q"
+  apply (erule iffE)
+  apply (rule iffI)
+  apply (assumption | erule mp)+
+  done
+
+lemma iff_trans: "[| P <-> Q;  Q<-> R |] ==> P <-> R"
+  apply (rule iffI)
+  apply (assumption | erule iffE | erule (1) notE impE)+
+  done
+
+
+(*** Unique existence.  NOTE THAT the following 2 quantifications
+   EX!x such that [EX!y such that P(x,y)]     (sequential)
+   EX!x,y such that P(x,y)                    (simultaneous)
+ do NOT mean the same thing.  The parser treats EX!x y.P(x,y) as sequential.
+***)
+
+lemma ex1I:
+  assumes "P(a)"
+    and "!!x. P(x) ==> x=a"
+  shows "EX! x. P(x)"
+  apply (unfold ex1_def)
+  apply (assumption | rule assms exI conjI allI impI)+
+  done
+
+(*Sometimes easier to use: the premises have no shared variables.  Safe!*)
+lemma ex_ex1I:
+  assumes ex: "EX x. P(x)"
+    and eq: "!!x y. [| P(x); P(y) |] ==> x=y"
+  shows "EX! x. P(x)"
+  apply (rule ex [THEN exE])
+  apply (assumption | rule ex1I eq)+
+  done
+
+lemma ex1E:
+  assumes ex1: "EX! x. P(x)"
+    and r: "!!x. [| P(x);  ALL y. P(y) --> y=x |] ==> R"
+  shows R
+  apply (insert ex1, unfold ex1_def)
+  apply (assumption | erule exE conjE)+
+  done
+
+
+(*** <-> congruence rules for simplification ***)
+
+(*Use iffE on a premise.  For conj_cong, imp_cong, all_cong, ex_cong*)
+ML {*
+  local
+    val iffE = thm "iffE"
+    val mp = thm "mp"
+  in
+    fun iff_tac prems i =
+      resolve_tac (prems RL [iffE]) i THEN
+      REPEAT1 (eresolve_tac [asm_rl, mp] i)
+  end
+*}
+
+lemma conj_cong:
+  assumes "P <-> P'"
+    and "P' ==> Q <-> Q'"
+  shows "(P&Q) <-> (P'&Q')"
+  apply (insert assms)
+  apply (assumption | rule iffI conjI | erule iffE conjE mp |
+    tactic {* iff_tac (thms "assms") 1 *})+
+  done
+
+(*Reversed congruence rule!   Used in ZF/Order*)
+lemma conj_cong2:
+  assumes "P <-> P'"
+    and "P' ==> Q <-> Q'"
+  shows "(Q&P) <-> (Q'&P')"
+  apply (insert assms)
+  apply (assumption | rule iffI conjI | erule iffE conjE mp |
+    tactic {* iff_tac (thms "assms") 1 *})+
+  done
+
+lemma disj_cong:
+  assumes "P <-> P'" and "Q <-> Q'"
+  shows "(P|Q) <-> (P'|Q')"
+  apply (insert assms)
+  apply (erule iffE disjE disjI1 disjI2 | assumption | rule iffI | erule (1) notE impE)+
+  done
+
+lemma imp_cong:
+  assumes "P <-> P'"
+    and "P' ==> Q <-> Q'"
+  shows "(P-->Q) <-> (P'-->Q')"
+  apply (insert assms)
+  apply (assumption | rule iffI impI | erule iffE | erule (1) notE impE |
+    tactic {* iff_tac (thms "assms") 1 *})+
+  done
+
+lemma iff_cong: "[| P <-> P'; Q <-> Q' |] ==> (P<->Q) <-> (P'<->Q')"
+  apply (erule iffE | assumption | rule iffI | erule (1) notE impE)+
+  done
+
+lemma not_cong: "P <-> P' ==> ~P <-> ~P'"
+  apply (assumption | rule iffI notI | erule (1) notE impE | erule iffE notE)+
+  done
+
+lemma all_cong:
+  assumes "!!x. P(x) <-> Q(x)"
+  shows "(ALL x. P(x)) <-> (ALL x. Q(x))"
+  apply (assumption | rule iffI allI | erule (1) notE impE | erule allE |
+    tactic {* iff_tac (thms "assms") 1 *})+
+  done
+
+lemma ex_cong:
+  assumes "!!x. P(x) <-> Q(x)"
+  shows "(EX x. P(x)) <-> (EX x. Q(x))"
+  apply (erule exE | assumption | rule iffI exI | erule (1) notE impE |
+    tactic {* iff_tac (thms "assms") 1 *})+
+  done
+
+lemma ex1_cong:
+  assumes "!!x. P(x) <-> Q(x)"
+  shows "(EX! x. P(x)) <-> (EX! x. Q(x))"
+  apply (erule ex1E spec [THEN mp] | assumption | rule iffI ex1I | erule (1) notE impE |
+    tactic {* iff_tac (thms "assms") 1 *})+
+  done
+
+(*** Equality rules ***)
+
+lemma sym: "a=b ==> b=a"
+  apply (erule subst)
+  apply (rule refl)
+  done
+
+lemma trans: "[| a=b;  b=c |] ==> a=c"
+  apply (erule subst, assumption)
+  done
+
+(**  **)
+lemma not_sym: "b ~= a ==> a ~= b"
+  apply (erule contrapos)
+  apply (erule sym)
+  done
+  
+(* Two theorms for rewriting only one instance of a definition:
+   the first for definitions of formulae and the second for terms *)
+
+lemma def_imp_iff: "(A == B) ==> A <-> B"
+  apply unfold
+  apply (rule iff_refl)
+  done
+
+lemma meta_eq_to_obj_eq: "(A == B) ==> A = B"
+  apply unfold
+  apply (rule refl)
+  done
+
+lemma meta_eq_to_iff: "x==y ==> x<->y"
+  by unfold (rule iff_refl)
+
+(*substitution*)
+lemma ssubst: "[| b = a; P(a) |] ==> P(b)"
+  apply (drule sym)
+  apply (erule (1) subst)
+  done
+
+(*A special case of ex1E that would otherwise need quantifier expansion*)
+lemma ex1_equalsE:
+    "[| EX! x. P(x);  P(a);  P(b) |] ==> a=b"
+  apply (erule ex1E)
+  apply (rule trans)
+   apply (rule_tac [2] sym)
+   apply (assumption | erule spec [THEN mp])+
+  done
+
+(** Polymorphic congruence rules **)
+
+lemma subst_context: "[| a=b |]  ==>  t(a)=t(b)"
+  apply (erule ssubst)
+  apply (rule refl)
+  done
+
+lemma subst_context2: "[| a=b;  c=d |]  ==>  t(a,c)=t(b,d)"
+  apply (erule ssubst)+
+  apply (rule refl)
+  done
+
+lemma subst_context3: "[| a=b;  c=d;  e=f |]  ==>  t(a,c,e)=t(b,d,f)"
+  apply (erule ssubst)+
+  apply (rule refl)
+  done
+
+(*Useful with eresolve_tac for proving equalties from known equalities.
+        a = b
+        |   |
+        c = d   *)
+lemma box_equals: "[| a=b;  a=c;  b=d |] ==> c=d"
+  apply (rule trans)
+   apply (rule trans)
+    apply (rule sym)
+    apply assumption+
+  done
+
+(*Dual of box_equals: for proving equalities backwards*)
+lemma simp_equals: "[| a=c;  b=d;  c=d |] ==> a=b"
+  apply (rule trans)
+   apply (rule trans)
+    apply assumption+
+  apply (erule sym)
+  done
+
+(** Congruence rules for predicate letters **)
+
+lemma pred1_cong: "a=a' ==> P(a) <-> P(a')"
+  apply (rule iffI)
+   apply (erule (1) subst)
+  apply (erule (1) ssubst)
+  done
+
+lemma pred2_cong: "[| a=a';  b=b' |] ==> P(a,b) <-> P(a',b')"
+  apply (rule iffI)
+   apply (erule subst)+
+   apply assumption
+  apply (erule ssubst)+
+  apply assumption
+  done
+
+lemma pred3_cong: "[| a=a';  b=b';  c=c' |] ==> P(a,b,c) <-> P(a',b',c')"
+  apply (rule iffI)
+   apply (erule subst)+
+   apply assumption
+  apply (erule ssubst)+
+  apply assumption
+  done
+
+(*special cases for free variables P, Q, R, S -- up to 3 arguments*)
+
+ML {*
+bind_thms ("pred_congs",
+  List.concat (map (fn c => 
+               map (fn th => read_instantiate [("P",c)] th)
+                   [thm "pred1_cong", thm "pred2_cong", thm "pred3_cong"])
+               (explode"PQRS")))
+*}
+
+(*special case for the equality predicate!*)
+lemma eq_cong: "[| a = a'; b = b' |] ==> a = b <-> a' = b'"
+  apply (erule (1) pred2_cong)
+  done
+
+
+(*** Simplifications of assumed implications.
+     Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE
+     used with mp_tac (restricted to atomic formulae) is COMPLETE for 
+     intuitionistic propositional logic.  See
+   R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic
+    (preprint, University of St Andrews, 1991)  ***)
+
+lemma conj_impE:
+  assumes major: "(P&Q)-->S"
+    and r: "P-->(Q-->S) ==> R"
+  shows R
+  by (assumption | rule conjI impI major [THEN mp] r)+
+
+lemma disj_impE:
+  assumes major: "(P|Q)-->S"
+    and r: "[| P-->S; Q-->S |] ==> R"
+  shows R
+  by (assumption | rule disjI1 disjI2 impI major [THEN mp] r)+
+
+(*Simplifies the implication.  Classical version is stronger. 
+  Still UNSAFE since Q must be provable -- backtracking needed.  *)
+lemma imp_impE:
+  assumes major: "(P-->Q)-->S"
+    and r1: "[| P; Q-->S |] ==> Q"
+    and r2: "S ==> R"
+  shows R
+  by (assumption | rule impI major [THEN mp] r1 r2)+
+
+(*Simplifies the implication.  Classical version is stronger. 
+  Still UNSAFE since ~P must be provable -- backtracking needed.  *)
+lemma not_impE:
+  assumes major: "~P --> S"
+    and r1: "P ==> False"
+    and r2: "S ==> R"
+  shows R
+  apply (assumption | rule notI impI major [THEN mp] r1 r2)+
+  done
+
+(*Simplifies the implication.   UNSAFE.  *)
+lemma iff_impE:
+  assumes major: "(P<->Q)-->S"
+    and r1: "[| P; Q-->S |] ==> Q"
+    and r2: "[| Q; P-->S |] ==> P"
+    and r3: "S ==> R"
+  shows R
+  apply (assumption | rule iffI impI major [THEN mp] r1 r2 r3)+
+  done
+
+(*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*)
+lemma all_impE:
+  assumes major: "(ALL x. P(x))-->S"
+    and r1: "!!x. P(x)"
+    and r2: "S ==> R"
+  shows R
+  apply (assumption | rule allI impI major [THEN mp] r1 r2)+
+  done
+
+(*Unsafe: (EX x.P(x))-->S  is equivalent to  ALL x.P(x)-->S.  *)
+lemma ex_impE:
+  assumes major: "(EX x. P(x))-->S"
+    and r: "P(x)-->S ==> R"
+  shows R
+  apply (assumption | rule exI impI major [THEN mp] r)+
+  done
+
+(*** Courtesy of Krzysztof Grabczewski ***)
+
+lemma disj_imp_disj:
+  assumes major: "P|Q"
+    and "P==>R" and "Q==>S"
+  shows "R|S"
+  apply (rule disjE [OF major])
+  apply (rule disjI1) apply assumption
+  apply (rule disjI2) apply assumption
+  done
 
 ML {*
 structure ProjectRule = ProjectRuleFun
@@ -157,6 +621,9 @@
 *}
 
 use "fologic.ML"
+
+lemma thin_refl: "!!X. [|x=x; PROP W|] ==> PROP W" .
+
 use "hypsubstdata.ML"
 setup hypsubst_setup
 use "intprover.ML"
@@ -314,16 +781,51 @@
 
 
 lemma LetI: 
-    assumes prem: "(!!x. x=t ==> P(u(x)))"
-    shows "P(let x=t in u(x))"
-apply (unfold Let_def)
-apply (rule refl [THEN prem])
-done
+  assumes "!!x. x=t ==> P(u(x))"
+  shows "P(let x=t in u(x))"
+  apply (unfold Let_def)
+  apply (rule refl [THEN assms])
+  done
+
+
+subsection {* ML bindings *}
 
-ML
-{*
-val Let_def = thm "Let_def";
-val LetI = thm "LetI";
+ML {*
+val refl = thm "refl"
+val trans = thm "trans"
+val sym = thm "sym"
+val subst = thm "subst"
+val ssubst = thm "ssubst"
+val conjI = thm "conjI"
+val conjE = thm "conjE"
+val conjunct1 = thm "conjunct1"
+val conjunct2 = thm "conjunct2"
+val disjI1 = thm "disjI1"
+val disjI2 = thm "disjI2"
+val disjE = thm "disjE"
+val impI = thm "impI"
+val impE = thm "impE"
+val mp = thm "mp"
+val rev_mp = thm "rev_mp"
+val TrueI = thm "TrueI"
+val FalseE = thm "FalseE"
+val iff_refl = thm "iff_refl"
+val iff_trans = thm "iff_trans"
+val iffI = thm "iffI"
+val iffE = thm "iffE"
+val iffD1 = thm "iffD1"
+val iffD2 = thm "iffD2"
+val notI = thm "notI"
+val notE = thm "notE"
+val allI = thm "allI"
+val allE = thm "allE"
+val spec = thm "spec"
+val exI = thm "exI"
+val exE = thm "exE"
+val eq_reflection = thm "eq_reflection"
+val iff_reflection = thm "iff_reflection"
+val meta_eq_to_obj_eq = thm "meta_eq_to_obj_eq"
+val meta_eq_to_iff = thm "meta_eq_to_iff"
 *}
 
 end
--- a/src/FOL/IFOL_lemmas.ML	Sun Nov 26 23:09:25 2006 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,451 +0,0 @@
-(*  Title:      FOL/IFOL_lemmas.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1992  University of Cambridge
-
-Tactics and lemmas for theory IFOL (intuitionistic first-order logic).
-*)
-
-(* ML bindings *)
-
-val refl = thm "refl";
-val subst = thm "subst";
-val conjI = thm "conjI";
-val conjunct1 = thm "conjunct1";
-val conjunct2 = thm "conjunct2";
-val disjI1 = thm "disjI1";
-val disjI2 = thm "disjI2";
-val disjE = thm "disjE";
-val impI = thm "impI";
-val mp = thm "mp";
-val FalseE = thm "FalseE";
-val True_def = thm "True_def";
-val not_def = thm "not_def";
-val iff_def = thm "iff_def";
-val ex1_def = thm "ex1_def";
-val allI = thm "allI";
-val spec = thm "spec";
-val exI = thm "exI";
-val exE = thm "exE";
-val eq_reflection = thm "eq_reflection";
-val iff_reflection = thm "iff_reflection";
-
-structure IFOL =
-struct
-  val thy = the_context ();
-  val refl = refl;
-  val subst = subst;
-  val conjI = conjI;
-  val conjunct1 = conjunct1;
-  val conjunct2 = conjunct2;
-  val disjI1 = disjI1;
-  val disjI2 = disjI2;
-  val disjE = disjE;
-  val impI = impI;
-  val mp = mp;
-  val FalseE = FalseE;
-  val True_def = True_def;
-  val not_def = not_def;
-  val iff_def = iff_def;
-  val ex1_def = ex1_def;
-  val allI = allI;
-  val spec = spec;
-  val exI = exI;
-  val exE = exE;
-  val eq_reflection = eq_reflection;
-  val iff_reflection = iff_reflection;
-end;
-
-
-Goalw [True_def]  "True";
-by (REPEAT (ares_tac [impI] 1)) ;
-qed "TrueI";
-
-(*** Sequent-style elimination rules for & --> and ALL ***)
-
-val major::prems = Goal 
-    "[| P&Q; [| P; Q |] ==> R |] ==> R";
-by (resolve_tac prems 1);
-by (rtac (major RS conjunct1) 1);
-by (rtac (major RS conjunct2) 1);
-qed "conjE";
-
-val major::prems = Goal 
-    "[| P-->Q;  P;  Q ==> R |] ==> R";
-by (resolve_tac prems 1);
-by (rtac (major RS mp) 1);
-by (resolve_tac prems 1);
-qed "impE";
-
-val major::prems = Goal 
-    "[| ALL x. P(x); P(x) ==> R |] ==> R";
-by (resolve_tac prems 1);
-by (rtac (major RS spec) 1);
-qed "allE";
-
-(*Duplicates the quantifier; for use with eresolve_tac*)
-val major::prems = Goal 
-    "[| ALL x. P(x);  [| P(x); ALL x. P(x) |] ==> R \
-\    |] ==> R";
-by (resolve_tac prems 1);
-by (rtac (major RS spec) 1);
-by (rtac major 1);
-qed "all_dupE";
-
-
-(*** Negation rules, which translate between ~P and P-->False ***)
-
-val prems = Goalw [not_def]  "(P ==> False) ==> ~P";
-by (REPEAT (ares_tac (prems@[impI]) 1)) ;
-qed "notI";
-
-Goalw [not_def]  "[| ~P;  P |] ==> R";
-by (etac (mp RS FalseE) 1);
-by (assume_tac 1);
-qed "notE";
-
-Goal "[| P; ~P |] ==> R";
-by (etac notE 1);
-by (assume_tac 1);
-qed "rev_notE";
-
-(*This is useful with the special implication rules for each kind of P. *)
-val prems = Goal 
-    "[| ~P;  (P-->False) ==> Q |] ==> Q";
-by (REPEAT (ares_tac (prems@[impI,notE]) 1)) ;
-qed "not_to_imp";
-
-(* For substitution into an assumption P, reduce Q to P-->Q, substitute into
-   this implication, then apply impI to move P back into the assumptions.
-   To specify P use something like
-      eres_inst_tac [ ("P","ALL y. ?S(x,y)") ] rev_mp 1   *)
-Goal "[| P;  P --> Q |] ==> Q";
-by (etac mp 1);
-by (assume_tac 1);
-qed "rev_mp";
-
-(*Contrapositive of an inference rule*)
-val [major,minor]= Goal "[| ~Q;  P==>Q |] ==> ~P";
-by (rtac (major RS notE RS notI) 1);
-by (etac minor 1) ;
-qed "contrapos";
-
-
-(*** Modus Ponens Tactics ***)
-
-(*Finds P-->Q and P in the assumptions, replaces implication by Q *)
-fun mp_tac i = eresolve_tac [notE,impE] i  THEN  assume_tac i;
-
-(*Like mp_tac but instantiates no variables*)
-fun eq_mp_tac i = eresolve_tac [notE,impE] i  THEN  eq_assume_tac i;
-
-
-(*** If-and-only-if ***)
-
-val prems = Goalw [iff_def] 
-   "[| P ==> Q;  Q ==> P |] ==> P<->Q";
-by (REPEAT (ares_tac (prems@[conjI, impI]) 1)) ;
-qed "iffI";
-
-
-(*Observe use of rewrite_rule to unfold "<->" in meta-assumptions (prems) *)
-val prems = Goalw [iff_def] 
-    "[| P <-> Q;  [| P-->Q; Q-->P |] ==> R |] ==> R";
-by (rtac conjE 1);
-by (REPEAT (ares_tac prems 1)) ;
-qed "iffE";
-
-(* Destruct rules for <-> similar to Modus Ponens *)
-
-Goalw [iff_def]  "[| P <-> Q;  P |] ==> Q";
-by (etac (conjunct1 RS mp) 1);
-by (assume_tac 1);
-qed "iffD1";
-
-val prems = Goalw [iff_def]  "[| P <-> Q;  Q |] ==> P";
-by (etac (conjunct2 RS mp) 1);
-by (assume_tac 1);
-qed "iffD2";
-
-Goal "[| P; P <-> Q |] ==> Q";
-by (etac iffD1 1);
-by (assume_tac 1);
-qed "rev_iffD1";
-
-Goal "[| Q; P <-> Q |] ==> P";
-by (etac iffD2 1);
-by (assume_tac 1);
-qed "rev_iffD2";
-
-Goal "P <-> P";
-by (REPEAT (ares_tac [iffI] 1)) ;
-qed "iff_refl";
-
-Goal "Q <-> P ==> P <-> Q";
-by (etac iffE 1);
-by (rtac iffI 1);
-by (REPEAT (eresolve_tac [asm_rl,mp] 1)) ;
-qed "iff_sym";
-
-Goal "[| P <-> Q;  Q<-> R |] ==> P <-> R";
-by (rtac iffI 1);
-by (REPEAT (eresolve_tac [asm_rl,iffE] 1 ORELSE mp_tac 1)) ;
-qed "iff_trans";
-
-
-(*** Unique existence.  NOTE THAT the following 2 quantifications
-   EX!x such that [EX!y such that P(x,y)]     (sequential)
-   EX!x,y such that P(x,y)                    (simultaneous)
- do NOT mean the same thing.  The parser treats EX!x y.P(x,y) as sequential.
-***)
-
-val prems = Goalw [ex1_def] 
-    "[| P(a);  !!x. P(x) ==> x=a |] ==> EX! x. P(x)";
-by (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ;
-qed "ex1I";
-
-(*Sometimes easier to use: the premises have no shared variables.  Safe!*)
-val [ex,eq] = Goal
-    "[| EX x. P(x);  !!x y. [| P(x); P(y) |] ==> x=y |] ==> EX! x. P(x)";
-by (rtac (ex RS exE) 1);
-by (REPEAT (ares_tac [ex1I,eq] 1)) ;
-qed "ex_ex1I";
-
-val prems = Goalw [ex1_def] 
-    "[| EX! x. P(x);  !!x. [| P(x);  ALL y. P(y) --> y=x |] ==> R |] ==> R";
-by (cut_facts_tac prems 1);
-by (REPEAT (eresolve_tac [exE,conjE] 1 ORELSE ares_tac prems 1)) ;
-qed "ex1E";
-
-
-(*** <-> congruence rules for simplification ***)
-
-(*Use iffE on a premise.  For conj_cong, imp_cong, all_cong, ex_cong*)
-fun iff_tac prems i =
-    resolve_tac (prems RL [iffE]) i THEN
-    REPEAT1 (eresolve_tac [asm_rl,mp] i);
-
-val prems = Goal 
-    "[| P <-> P';  P' ==> Q <-> Q' |] ==> (P&Q) <-> (P'&Q')";
-by (cut_facts_tac prems 1);
-by (REPEAT  (ares_tac [iffI,conjI] 1
-     ORELSE  eresolve_tac [iffE,conjE,mp] 1 
-     ORELSE  iff_tac prems 1)) ;
-qed "conj_cong";
-
-(*Reversed congruence rule!   Used in ZF/Order*)
-val prems = Goal 
-    "[| P <-> P';  P' ==> Q <-> Q' |] ==> (Q&P) <-> (Q'&P')";
-by (cut_facts_tac prems 1);
-by (REPEAT  (ares_tac [iffI,conjI] 1
-     ORELSE  eresolve_tac [iffE,conjE,mp] 1 ORELSE  iff_tac prems 1)) ;
-qed "conj_cong2";
-
-val prems = Goal 
-    "[| P <-> P';  Q <-> Q' |] ==> (P|Q) <-> (P'|Q')";
-by (cut_facts_tac prems 1);
-by (REPEAT  (eresolve_tac [iffE,disjE,disjI1,disjI2] 1
-             ORELSE  ares_tac [iffI] 1 ORELSE  mp_tac 1)) ;
-qed "disj_cong";
-
-val prems = Goal 
-    "[| P <-> P';  P' ==> Q <-> Q' |] ==> (P-->Q) <-> (P'-->Q')";
-by (cut_facts_tac prems 1);
-by (REPEAT   (ares_tac [iffI,impI] 1
-      ORELSE  etac iffE 1 ORELSE  mp_tac 1 ORELSE iff_tac prems 1)) ;
-qed "imp_cong";
-
-val prems = Goal 
-    "[| P <-> P';  Q <-> Q' |] ==> (P<->Q) <-> (P'<->Q')";
-by (cut_facts_tac prems 1);
-by (REPEAT   (etac iffE 1 ORELSE  ares_tac [iffI] 1 ORELSE  mp_tac 1)) ;
-qed "iff_cong";
-
-val prems = Goal 
-    "P <-> P' ==> ~P <-> ~P'";
-by (cut_facts_tac prems 1);
-by (REPEAT   (ares_tac [iffI,notI] 1
-      ORELSE  mp_tac 1 ORELSE  eresolve_tac [iffE,notE] 1)) ;
-qed "not_cong";
-
-val prems = Goal 
-    "(!!x. P(x) <-> Q(x)) ==> (ALL x. P(x)) <-> (ALL x. Q(x))";
-by (REPEAT   (ares_tac [iffI,allI] 1
-     ORELSE   mp_tac 1 ORELSE   etac allE 1 ORELSE iff_tac prems 1)) ;
-qed "all_cong";
-
-val prems = Goal 
-    "(!!x. P(x) <-> Q(x)) ==> (EX x. P(x)) <-> (EX x. Q(x))";
-by (REPEAT   (etac exE 1 ORELSE ares_tac [iffI,exI] 1
-     ORELSE   mp_tac 1 ORELSE   iff_tac prems 1)) ;
-qed "ex_cong";
-
-val prems = Goal 
-    "(!!x. P(x) <-> Q(x)) ==> (EX! x. P(x)) <-> (EX! x. Q(x))";
-by (REPEAT   (eresolve_tac [ex1E, spec RS mp] 1
-       ORELSE ares_tac [iffI,ex1I] 1 ORELSE   mp_tac 1
-       ORELSE   iff_tac prems 1)) ;
-qed "ex1_cong";
-
-(*** Equality rules ***)
-
-Goal "a=b ==> b=a";
-by (etac subst 1);
-by (rtac refl 1) ;
-qed "sym";
-
-Goal "[| a=b;  b=c |] ==> a=c";
-by (etac subst 1 THEN assume_tac 1) ;
-qed "trans";
-
-(** ~ b=a ==> ~ a=b **)
-bind_thm ("not_sym", hd (compose(sym,2,contrapos)));
-
-
-(* Two theorms for rewriting only one instance of a definition:
-   the first for definitions of formulae and the second for terms *)
-
-val prems = goal (the_context()) "(A == B) ==> A <-> B";
-by (rewrite_goals_tac prems);
-by (rtac iff_refl 1);
-qed "def_imp_iff";
-
-val prems = goal (the_context()) "(A == B) ==> A = B";
-by (rewrite_goals_tac prems);
-by (rtac refl 1);
-qed "meta_eq_to_obj_eq";
-
-(*substitution*)
-bind_thm ("ssubst", sym RS subst);
-
-(*A special case of ex1E that would otherwise need quantifier expansion*)
-val prems = Goal
-    "[| EX! x. P(x);  P(a);  P(b) |] ==> a=b";
-by (cut_facts_tac prems 1);
-by (etac ex1E 1);
-by (rtac trans 1);
-by (rtac sym 2);
-by (REPEAT (eresolve_tac [asm_rl, spec RS mp] 1)) ;
-qed "ex1_equalsE";
-
-(** Polymorphic congruence rules **)
-
-Goal "[| a=b |]  ==>  t(a)=t(b)";
-by (etac ssubst 1);
-by (rtac refl 1) ;
-qed "subst_context";
-
-Goal "[| a=b;  c=d |]  ==>  t(a,c)=t(b,d)";
-by (REPEAT (etac ssubst 1));
-by (rtac refl 1) ;
-qed "subst_context2";
-
-Goal "[| a=b;  c=d;  e=f |]  ==>  t(a,c,e)=t(b,d,f)";
-by (REPEAT (etac ssubst 1));
-by (rtac refl 1) ;
-qed "subst_context3";
-
-(*Useful with eresolve_tac for proving equalties from known equalities.
-        a = b
-        |   |
-        c = d   *)
-Goal "[| a=b;  a=c;  b=d |] ==> c=d";
-by (rtac trans 1);
-by (rtac trans 1);
-by (rtac sym 1);
-by (REPEAT (assume_tac 1));
-qed "box_equals";
-
-(*Dual of box_equals: for proving equalities backwards*)
-Goal "[| a=c;  b=d;  c=d |] ==> a=b";
-by (rtac trans 1);
-by (rtac trans 1);
-by (REPEAT (assume_tac 1));
-by (etac sym 1);
-qed "simp_equals";
-
-(** Congruence rules for predicate letters **)
-
-Goal "a=a' ==> P(a) <-> P(a')";
-by (rtac iffI 1);
-by (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ;
-qed "pred1_cong";
-
-Goal "[| a=a';  b=b' |] ==> P(a,b) <-> P(a',b')";
-by (rtac iffI 1);
-by (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ;
-qed "pred2_cong";
-
-Goal "[| a=a';  b=b';  c=c' |] ==> P(a,b,c) <-> P(a',b',c')";
-by (rtac iffI 1);
-by (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ;
-qed "pred3_cong";
-
-(*special cases for free variables P, Q, R, S -- up to 3 arguments*)
-
-val pred_congs = 
-    List.concat (map (fn c => 
-               map (fn th => read_instantiate [("P",c)] th)
-                   [pred1_cong,pred2_cong,pred3_cong])
-               (explode"PQRS"));
-
-(*special case for the equality predicate!*)
-bind_thm ("eq_cong", read_instantiate [("P","op =")] pred2_cong);
-
-
-(*** Simplifications of assumed implications.
-     Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE
-     used with mp_tac (restricted to atomic formulae) is COMPLETE for 
-     intuitionistic propositional logic.  See
-   R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic
-    (preprint, University of St Andrews, 1991)  ***)
-
-val major::prems= Goal 
-    "[| (P&Q)-->S;  P-->(Q-->S) ==> R |] ==> R";
-by (REPEAT (ares_tac ([conjI, impI, major RS mp]@prems) 1)) ;
-qed "conj_impE";
-
-val major::prems= Goal 
-    "[| (P|Q)-->S;  [| P-->S; Q-->S |] ==> R |] ==> R";
-by (DEPTH_SOLVE (ares_tac ([disjI1, disjI2, impI, major RS mp]@prems) 1)) ;
-qed "disj_impE";
-
-(*Simplifies the implication.  Classical version is stronger. 
-  Still UNSAFE since Q must be provable -- backtracking needed.  *)
-val major::prems= Goal 
-    "[| (P-->Q)-->S;  [| P; Q-->S |] ==> Q;  S ==> R |] ==> R";
-by (REPEAT (ares_tac ([impI, major RS mp]@prems) 1)) ;
-qed "imp_impE";
-
-(*Simplifies the implication.  Classical version is stronger. 
-  Still UNSAFE since ~P must be provable -- backtracking needed.  *)
-val major::prems= Goal
-    "[| ~P --> S;  P ==> False;  S ==> R |] ==> R";
-by (REPEAT (ares_tac ([notI, impI, major RS mp]@prems) 1)) ;
-qed "not_impE";
-
-(*Simplifies the implication.   UNSAFE.  *)
-val major::prems= Goal 
-    "[| (P<->Q)-->S;  [| P; Q-->S |] ==> Q;  [| Q; P-->S |] ==> P;  \
-\       S ==> R |] ==> R";
-by (REPEAT (ares_tac ([iffI, impI, major RS mp]@prems) 1)) ;
-qed "iff_impE";
-
-(*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*)
-val major::prems= Goal 
-    "[| (ALL x. P(x))-->S;  !!x. P(x);  S ==> R |] ==> R";
-by (REPEAT (ares_tac ([allI, impI, major RS mp]@prems) 1)) ;
-qed "all_impE";
-
-(*Unsafe: (EX x.P(x))-->S  is equivalent to  ALL x.P(x)-->S.  *)
-val major::prems= Goal 
-    "[| (EX x. P(x))-->S;  P(x)-->S ==> R |] ==> R";
-by (REPEAT (ares_tac ([exI, impI, major RS mp]@prems) 1)) ;
-qed "ex_impE";
-
-(*** Courtesy of Krzysztof Grabczewski ***)
-
-val major::prems = Goal "[| P|Q;  P==>R;  Q==>S |] ==> R|S";
-by (rtac (major RS disjE) 1);
-by (REPEAT (eresolve_tac (prems RL [disjI1, disjI2]) 1));
-qed "disj_imp_disj";
--- a/src/FOL/IsaMakefile	Sun Nov 26 23:09:25 2006 +0100
+++ b/src/FOL/IsaMakefile	Sun Nov 26 23:43:53 2006 +0100
@@ -37,8 +37,7 @@
   $(SRC)/Provers/eqsubst.ML $(SRC)/Provers/hypsubst.ML			\
   $(SRC)/Provers/ind.ML $(SRC)/Provers/induct_method.ML			\
   $(SRC)/Provers/project_rule.ML $(SRC)/Provers/quantifier1.ML		\
-  $(SRC)/Provers/splitter.ML FOL.ML FOL.thy FOL_lemmas1.ML IFOL.ML	\
-  IFOL.thy IFOL_lemmas.ML ROOT.ML blastdata.ML cladata.ML 		\
+  $(SRC)/Provers/splitter.ML FOL.thy IFOL.thy ROOT.ML blastdata.ML cladata.ML 		\
   document/root.tex fologic.ML hypsubstdata.ML intprover.ML simpdata.ML
 	@$(ISATOOL) usedir -p 2 -b $(OUT)/Pure FOL
 
--- a/src/FOL/ROOT.ML	Sun Nov 26 23:09:25 2006 +0100
+++ b/src/FOL/ROOT.ML	Sun Nov 26 23:43:53 2006 +0100
@@ -24,3 +24,13 @@
 use "~~/src/Provers/project_rule.ML";
 
 use_thy "FOL";
+
+structure IFOL =
+struct
+  val thy = theory "IFOL";
+end;
+
+structure FOL =
+struct
+  val thy = theory "FOL";
+end;
--- a/src/FOL/blastdata.ML	Sun Nov 26 23:09:25 2006 +0100
+++ b/src/FOL/blastdata.ML	Sun Nov 26 23:43:53 2006 +0100
@@ -1,3 +1,5 @@
+
+val ccontr = thm "ccontr";
 
 (*** Applying BlastFun to create Blast_tac ***)
 structure Blast_Data = 
--- a/src/FOL/cladata.ML	Sun Nov 26 23:09:25 2006 +0100
+++ b/src/FOL/cladata.ML	Sun Nov 26 23:43:53 2006 +0100
@@ -13,7 +13,7 @@
   struct
   val mp        = mp
   val not_elim  = notE
-  val classical = classical
+  val classical = thm "classical"
   val sizef     = size_of_thm
   val hyp_subst_tacs=[hyp_subst_tac]
   end;
@@ -22,25 +22,15 @@
 structure BasicClassical: BASIC_CLASSICAL = Cla; open BasicClassical;
 
 
-(*Better for fast_tac: needs no quantifier duplication!*)
-qed_goal "alt_ex1E" IFOL.thy
-    "[| EX! x. P(x);                                              \
-\       !!x. [| P(x);  ALL y y'. P(y) & P(y') --> y=y' |] ==> R  \
-\    |] ==> R"
- (fn major::prems =>
-  [ (rtac (major RS ex1E) 1),
-    (REPEAT (ares_tac (allI::prems) 1)),
-    (etac (dup_elim allE) 1),
-    (IntPr.fast_tac 1)]);
-
 
 (*Propositional rules*)
-val prop_cs = empty_cs addSIs [refl,TrueI,conjI,disjCI,impI,notI,iffI] 
-                       addSEs [conjE,disjE,impCE,FalseE,iffCE];
+val prop_cs = empty_cs
+  addSIs [refl, TrueI, conjI, thm "disjCI", impI, notI, iffI]
+  addSEs [conjE, disjE, thm "impCE", FalseE, thm "iffCE"];
 
 (*Quantifier rules*)
-val FOL_cs = prop_cs addSIs [allI,ex_ex1I] addIs [exI] 
-                     addSEs [exE,alt_ex1E] addEs [allE];
+val FOL_cs = prop_cs addSIs [allI, thm "ex_ex1I"] addIs [exI]
+                     addSEs [exE, thm "alt_ex1E"] addEs [allE];
 
 val cla_setup = (fn thy => (change_claset_of thy (fn _ => FOL_cs); thy));
 
--- a/src/FOL/hypsubstdata.ML	Sun Nov 26 23:09:25 2006 +0100
+++ b/src/FOL/hypsubstdata.ML	Sun Nov 26 23:43:53 2006 +0100
@@ -6,13 +6,13 @@
   val dest_eq = FOLogic.dest_eq
   val dest_Trueprop = FOLogic.dest_Trueprop
   val dest_imp = FOLogic.dest_imp
-  val eq_reflection = eq_reflection
-  val rev_eq_reflection = meta_eq_to_obj_eq
-  val imp_intr = impI
-  val rev_mp = rev_mp
-  val subst = subst
-  val sym = sym
-  val thin_refl = prove_goal (the_context ()) "!!X. [|x=x; PROP W|] ==> PROP W" (K [atac 1]);
+  val eq_reflection = thm "eq_reflection"
+  val rev_eq_reflection = thm "meta_eq_to_obj_eq"
+  val imp_intr = thm "impI"
+  val rev_mp = thm "rev_mp"
+  val subst = thm "subst"
+  val sym = thm "sym"
+  val thin_refl = thm "thin_refl"
 end;
 
 structure Hypsubst = HypsubstFun(Hypsubst_Data);
--- a/src/FOL/intprover.ML	Sun Nov 26 23:09:25 2006 +0100
+++ b/src/FOL/intprover.ML	Sun Nov 26 23:43:53 2006 +0100
@@ -41,22 +41,22 @@
   step of an intuitionistic proof.
 *)
 val safe_brls = sort (make_ord lessb)
-    [ (true,FalseE), (false,TrueI), (false,refl),
-      (false,impI), (false,notI), (false,allI),
-      (true,conjE), (true,exE),
-      (false,conjI), (true,conj_impE),
-      (true,disj_impE), (true,disjE), 
-      (false,iffI), (true,iffE), (true,not_to_imp) ];
+    [ (true, thm "FalseE"), (false, thm "TrueI"), (false, thm "refl"),
+      (false, thm "impI"), (false, thm "notI"), (false, thm "allI"),
+      (true, thm "conjE"), (true, thm "exE"),
+      (false, thm "conjI"), (true, thm "conj_impE"),
+      (true, thm "disj_impE"), (true, thm "disjE"), 
+      (false, thm "iffI"), (true, thm "iffE"), (true, thm "not_to_imp") ];
 
 val haz_brls =
-    [ (false,disjI1), (false,disjI2), (false,exI), 
-      (true,allE), (true,not_impE), (true,imp_impE), (true,iff_impE),
-      (true,all_impE), (true,ex_impE), (true,impE) ];
+    [ (false, thm "disjI1"), (false, thm "disjI2"), (false, thm "exI"), 
+      (true, thm "allE"), (true, thm "not_impE"), (true, thm "imp_impE"), (true, thm "iff_impE"),
+      (true, thm "all_impE"), (true, thm "ex_impE"), (true, thm "impE") ];
 
 val haz_dup_brls =
-    [ (false,disjI1), (false,disjI2), (false,exI), 
-      (true,all_dupE), (true,not_impE), (true,imp_impE), (true,iff_impE),
-      (true,all_impE), (true,ex_impE), (true,impE) ];
+    [ (false, thm "disjI1"), (false, thm "disjI2"), (false, thm "exI"),
+      (true, thm "all_dupE"), (true, thm "not_impE"), (true, thm "imp_impE"), (true, thm "iff_impE"),
+      (true, thm "all_impE"), (true, thm "ex_impE"), (true, thm "impE") ];
 
 (*0 subgoals vs 1 or more: the p in safep is for positive*)
 val (safe0_brls, safep_brls) =
--- a/src/FOL/simpdata.ML	Sun Nov 26 23:09:25 2006 +0100
+++ b/src/FOL/simpdata.ML	Sun Nov 26 23:43:53 2006 +0100
@@ -6,16 +6,11 @@
 Simplification data for FOL.
 *)
 
-val ex1_functional = thm "ex1_functional";
-val True_implies_equals = thm "True_implies_equals";
-
-
-
 (*** Rewrite rules ***)
 
 fun int_prove_fun s =
  (writeln s;
-  prove_goal IFOL.thy s
+  prove_goal (theory "IFOL") s
    (fn prems => [ (cut_facts_tac prems 1),
                   (IntPr.fast_tac 1) ]));
 
@@ -88,7 +83,7 @@
 (*Replace premises x=y, X<->Y by X==Y*)
 val mk_meta_prems =
     rule_by_tactic
-      (REPEAT_FIRST (resolve_tac [meta_eq_to_obj_eq, def_imp_iff]));
+      (REPEAT_FIRST (resolve_tac [meta_eq_to_obj_eq, thm "def_imp_iff"]));
 
 (*Congruence rules for = or <-> (instead of ==)*)
 fun mk_meta_cong rl =
@@ -169,7 +164,7 @@
 
 (*** Named rewrite rules proved for IFOL ***)
 
-fun int_prove nm thm  = qed_goal nm IFOL.thy thm
+fun int_prove nm thm  = qed_goal nm (theory "IFOL") thm
     (fn prems => [ (cut_facts_tac prems 1),
                    (IntPr.fast_tac 1) ]);
 
@@ -213,23 +208,6 @@
     "(ALL x. P(x) & Q(x)) <-> ((ALL x. P(x)) & (ALL x. Q(x)))";
 
 
-local
-val uncurry = prove_goal (the_context()) "P --> Q --> R ==> P & Q --> R"
-              (fn prems => [cut_facts_tac prems 1, Blast_tac 1]);
-
-val iff_allI = allI RS
-    prove_goal (the_context()) "ALL x. P(x) <-> Q(x) ==> (ALL x. P(x)) <-> (ALL x. Q(x))"
-               (fn prems => [cut_facts_tac prems 1, Blast_tac 1])
-val iff_exI = allI RS
-    prove_goal (the_context()) "ALL x. P(x) <-> Q(x) ==> (EX x. P(x)) <-> (EX x. Q(x))"
-               (fn prems => [cut_facts_tac prems 1, Blast_tac 1])
-
-val all_comm = prove_goal (the_context()) "(ALL x y. P(x,y)) <-> (ALL y x. P(x,y))"
-               (fn _ => [Blast_tac 1])
-val ex_comm = prove_goal (the_context()) "(EX x y. P(x,y)) <-> (EX y x. P(x,y))"
-               (fn _ => [Blast_tac 1])
-in
-
 (** make simplification procedures for quantifier elimination **)
 structure Quantifier1 = Quantifier1Fun(
 struct
@@ -250,17 +228,15 @@
   val conjE= conjE
   val impI = impI
   val mp   = mp
-  val uncurry = uncurry
+  val uncurry = thm "uncurry"
   val exI  = exI
   val exE  = exE
-  val iff_allI = iff_allI
-  val iff_exI = iff_exI
-  val all_comm = all_comm
-  val ex_comm = ex_comm
+  val iff_allI = thm "iff_allI"
+  val iff_exI = thm "iff_exI"
+  val all_comm = thm "all_comm"
+  val ex_comm = thm "ex_comm"
 end);
 
-end;
-
 val defEX_regroup =
   Simplifier.simproc (the_context ())
     "defined EX" ["EX x. P(x)"] Quantifier1.rearrange_ex;
@@ -272,9 +248,6 @@
 
 (*** Case splitting ***)
 
-bind_thm ("meta_eq_to_iff", prove_goal IFOL.thy "x==y ==> x<->y"
-  (fn [prem] => [rewtac prem, rtac iffI 1, atac 1, atac 1]));
-
 structure SplitterData =
   struct
   structure Simplifier = Simplifier
@@ -284,9 +257,9 @@
   val disjE          = disjE
   val conjE          = conjE
   val exE            = exE
-  val contrapos      = contrapos
-  val contrapos2     = contrapos2
-  val notnotD        = notnotD
+  val contrapos      = thm "contrapos"
+  val contrapos2     = thm "contrapos2"
+  val notnotD        = thm "notnotD"
   end;
 
 structure Splitter = SplitterFun(SplitterData);
@@ -302,21 +275,22 @@
 
 (*** Standard simpsets ***)
 
-structure Induction = InductionFun(struct val spec=IFOL.spec end);
+structure Induction = InductionFun(struct val spec = spec end);
 
 open Induction;
 
 
 bind_thms ("meta_simps",
  [triv_forall_equality,   (* prunes params *)
-  True_implies_equals]);  (* prune asms `True' *)
+  thm "True_implies_equals"]);  (* prune asms `True' *)
 
 bind_thms ("IFOL_simps",
  [refl RS P_iff_T] @ conj_simps @ disj_simps @ not_simps @
   imp_simps @ iff_simps @ quant_simps);
 
 bind_thm ("notFalseI", int_prove_fun "~False");
-bind_thms ("triv_rls", [TrueI,refl,reflexive_thm,iff_refl,notFalseI]);
+bind_thms ("triv_rls",
+  [TrueI, refl, reflexive_thm, iff_refl, thm "notFalseI"]);
 
 fun unsafe_solver prems = FIRST'[resolve_tac (triv_rls@prems),
                                  atac, etac FalseE];
@@ -339,10 +313,11 @@
 
 
 (*intuitionistic simprules only*)
-val IFOL_ss = FOL_basic_ss
+val IFOL_ss =
+  FOL_basic_ss
   addsimps (meta_simps @ IFOL_simps @ int_ex_simps @ int_all_simps)
   addsimprocs [defALL_regroup, defEX_regroup]    
-  addcongs [imp_cong];
+  addcongs [thm "imp_cong"];
 
 bind_thms ("cla_simps",
   [de_Morgan_conj, de_Morgan_disj, imp_disj1, imp_disj2,
--- a/src/ZF/Integ/int_arith.ML	Sun Nov 26 23:09:25 2006 +0100
+++ b/src/ZF/Integ/int_arith.ML	Sun Nov 26 23:43:53 2006 +0100
@@ -20,7 +20,7 @@
 AddIffs [inst "y" "integ_of(?w)" zminus_zle,
          inst "x" "integ_of(?w)" zle_zminus];
 
-Addsimps [inst "s" "integ_of(?w)" Let_def];
+Addsimps [inst "s" "integ_of(?w)" (thm "Let_def")];
 
 (*** Simprocs for numeric literals ***)
 
--- a/src/ZF/ind_syntax.ML	Sun Nov 26 23:09:25 2006 +0100
+++ b/src/ZF/ind_syntax.ML	Sun Nov 26 23:43:53 2006 +0100
@@ -136,20 +136,20 @@
 
 
 (*Could go to FOL, but it's hardly general*)
-val def_swap_iff = prove_goal IFOL.thy "a==b ==> a=c <-> c=b"
- (fn [def] => [(rewtac def), (rtac iffI 1), (REPEAT (etac sym 1))]);
+val def_swap_iff = prove_goal (the_context ()) "a==b ==> a=c <-> c=b"
+  (fn [def] => [(rewtac def), (rtac iffI 1), (REPEAT (etac sym 1))]);
 
-val def_trans = prove_goal IFOL.thy "[| f==g;  g(a)=b |] ==> f(a)=b"
+val def_trans = prove_goal (the_context ()) "[| f==g;  g(a)=b |] ==> f(a)=b"
   (fn [rew,prem] => [ rewtac rew, rtac prem 1 ]);
 
 (*Delete needless equality assumptions*)
-val refl_thin = prove_goal IFOL.thy "!!P. [| a=a;  P |] ==> P"
+val refl_thin = prove_goal (the_context ()) "!!P. [| a=a;  P |] ==> P"
      (fn _ => [assume_tac 1]);
 
 (*Includes rules for succ and Pair since they are common constructions*)
-val elim_rls = [asm_rl, FalseE, succ_neq_0, sym RS succ_neq_0, 
-                Pair_neq_0, sym RS Pair_neq_0, Pair_inject,
-                make_elim succ_inject, 
+val elim_rls = [asm_rl, FalseE, thm "succ_neq_0", sym RS thm "succ_neq_0",
+                thm "Pair_neq_0", sym RS thm "Pair_neq_0", thm "Pair_inject",
+                make_elim (thm "succ_inject"),
                 refl_thin, conjE, exE, disjE];
 
 
@@ -163,7 +163,6 @@
 (*Turns iff rules into safe elimination rules*)
 fun mk_free_SEs iffs = map (gen_make_elim [conjE,FalseE]) (iffs RL [iffD1]);
 
-
 end;