merged Well_Order_Extension into Zorn
authorpopescua
Tue, 28 May 2013 13:19:51 +0200
changeset 52199 d25fc4c0ff62
parent 52197 20071aef2a3b
child 52200 6324f30e23b6
merged Well_Order_Extension into Zorn
src/HOL/Library/Order_Union.thy
src/HOL/Library/Well_Order_Extension.thy
src/HOL/Library/Zorn.thy
--- a/src/HOL/Library/Order_Union.thy	Tue May 28 10:18:43 2013 +0200
+++ b/src/HOL/Library/Order_Union.thy	Tue May 28 13:19:51 2013 +0200
@@ -1,8 +1,7 @@
 (*  Title:      HOL/Library/Order_Union.thy
     Author:     Andrei Popescu, TU Muenchen
 
-Subset of Constructions_on_Wellorders that provides the ordinal sum but does
-not rely on the ~/HOL/Library/Zorn.thy.
+The ordinal-like sum of two orders with disjoint fields
 *)
 
 header {* Order Union *}
--- a/src/HOL/Library/Well_Order_Extension.thy	Tue May 28 10:18:43 2013 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,211 +0,0 @@
-(*  Title:      HOL/Library/Well_Order_Extension.thy
-    Author:     Christian Sternagel, JAIST
-*)
-
-header {*Extending Well-founded Relations to Well-Orders.*}
-
-theory Well_Order_Extension
-imports Zorn Order_Union
-begin
-
-text {*A \emph{downset} (also lower set, decreasing set, initial segment, or
-downward closed set) is closed w.r.t.\ smaller elements.*}
-definition downset_on where
-  "downset_on A r = (\<forall>x y. (x, y) \<in> r \<and> y \<in> A \<longrightarrow> x \<in> A)"
-
-(*
-text {*Connection to order filters of the @{theory Cardinals} theory.*}
-lemma (in wo_rel) ofilter_downset_on_conv:
-  "ofilter A \<longleftrightarrow> downset_on A r \<and> A \<subseteq> Field r"
-  by (auto simp: downset_on_def ofilter_def under_def)
-*)
-
-lemma downset_onI:
-  "(\<And>x y. (x, y) \<in> r \<Longrightarrow> y \<in> A \<Longrightarrow> x \<in> A) \<Longrightarrow> downset_on A r"
-  by (auto simp: downset_on_def)
-
-lemma downset_onD:
-  "downset_on A r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> y \<in> A \<Longrightarrow> x \<in> A"
-  by (auto simp: downset_on_def)
-
-text {*Extensions of relations w.r.t.\ a given set.*}
-definition extension_on where
-  "extension_on A r s = (\<forall>x\<in>A. \<forall>y\<in>A. (x, y) \<in> s \<longrightarrow> (x, y) \<in> r)"
-
-lemma extension_onI:
-  "(\<And>x y. \<lbrakk>x \<in> A; y \<in> A; (x, y) \<in> s\<rbrakk> \<Longrightarrow> (x, y) \<in> r) \<Longrightarrow> extension_on A r s"
-  by (auto simp: extension_on_def)
-
-lemma extension_onD:
-  "extension_on A r s \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> (x, y) \<in> s \<Longrightarrow> (x, y) \<in> r"
-  by (auto simp: extension_on_def)
-
-lemma downset_on_Union:
-  assumes "\<And>r. r \<in> R \<Longrightarrow> downset_on (Field r) p"
-  shows "downset_on (Field (\<Union>R)) p"
-  using assms by (auto intro: downset_onI dest: downset_onD)
-
-lemma chain_subset_extension_on_Union:
-  assumes "chain\<^sub>\<subseteq> R" and "\<And>r. r \<in> R \<Longrightarrow> extension_on (Field r) r p"
-  shows "extension_on (Field (\<Union>R)) (\<Union>R) p"
-  using assms
-  by (simp add: chain_subset_def extension_on_def)
-     (metis Field_def mono_Field set_mp)
-
-lemma downset_on_empty [simp]: "downset_on {} p"
-  by (auto simp: downset_on_def)
-
-lemma extension_on_empty [simp]: "extension_on {} p q"
-  by (auto simp: extension_on_def)
-
-text {*Every well-founded relation can be extended to a well-order.*}
-theorem well_order_extension:
-  assumes "wf p"
-  shows "\<exists>w. p \<subseteq> w \<and> Well_order w"
-proof -
-  let ?K = "{r. Well_order r \<and> downset_on (Field r) p \<and> extension_on (Field r) r p}"
-  def I \<equiv> "init_seg_of \<inter> ?K \<times> ?K"
-  have I_init: "I \<subseteq> init_seg_of" by (simp add: I_def)
-  then have subch: "\<And>R. R \<in> Chains I \<Longrightarrow> chain\<^sub>\<subseteq> R"
-    by (auto simp: init_seg_of_def chain_subset_def Chains_def)
-  have Chains_wo: "\<And>R r. R \<in> Chains I \<Longrightarrow> r \<in> R \<Longrightarrow>
-      Well_order r \<and> downset_on (Field r) p \<and> extension_on (Field r) r p"
-    by (simp add: Chains_def I_def) blast
-  have FI: "Field I = ?K" by (auto simp: I_def init_seg_of_def Field_def)
-  then have 0: "Partial_order I"
-    by (auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def
-      trans_def I_def elim: trans_init_seg_of)
-  { fix R assume "R \<in> Chains I"
-    then have Ris: "R \<in> Chains init_seg_of" using mono_Chains [OF I_init] by blast
-    have subch: "chain\<^sub>\<subseteq> R" using `R \<in> Chains I` I_init
-      by (auto simp: init_seg_of_def chain_subset_def Chains_def)
-    have "\<forall>r\<in>R. Refl r" and "\<forall>r\<in>R. trans r" and "\<forall>r\<in>R. antisym r" and
-      "\<forall>r\<in>R. Total r" and "\<forall>r\<in>R. wf (r - Id)" and
-      "\<And>r. r \<in> R \<Longrightarrow> downset_on (Field r) p" and
-      "\<And>r. r \<in> R \<Longrightarrow> extension_on (Field r) r p"
-      using Chains_wo [OF `R \<in> Chains I`] by (simp_all add: order_on_defs)
-    have "Refl (\<Union>R)" using `\<forall>r\<in>R. Refl r` by (auto simp: refl_on_def)
-    moreover have "trans (\<Union>R)"
-      by (rule chain_subset_trans_Union [OF subch `\<forall>r\<in>R. trans r`])
-    moreover have "antisym (\<Union>R)"
-      by (rule chain_subset_antisym_Union [OF subch `\<forall>r\<in>R. antisym r`])
-    moreover have "Total (\<Union>R)"
-      by (rule chain_subset_Total_Union [OF subch `\<forall>r\<in>R. Total r`])
-    moreover have "wf ((\<Union>R) - Id)"
-    proof -
-      have "(\<Union>R) - Id = \<Union>{r - Id | r. r \<in> R}" by blast
-      with `\<forall>r\<in>R. wf (r - Id)` wf_Union_wf_init_segs [OF Chains_inits_DiffI [OF Ris]]
-      show ?thesis by (simp (no_asm_simp)) blast
-    qed
-    ultimately have "Well_order (\<Union>R)" by (simp add: order_on_defs)
-    moreover have "\<forall>r\<in>R. r initial_segment_of \<Union>R" using Ris
-      by (simp add: Chains_init_seg_of_Union)
-    moreover have "downset_on (Field (\<Union>R)) p"
-      by (rule downset_on_Union [OF `\<And>r. r \<in> R \<Longrightarrow> downset_on (Field r) p`])
-    moreover have "extension_on (Field (\<Union>R)) (\<Union>R) p"
-      by (rule chain_subset_extension_on_Union [OF subch `\<And>r. r \<in> R \<Longrightarrow> extension_on (Field r) r p`])
-    ultimately have "\<Union>R \<in> ?K \<and> (\<forall>r\<in>R. (r,\<Union>R) \<in> I)"
-      using mono_Chains [OF I_init] and `R \<in> Chains I`
-      by (simp (no_asm) add: I_def del: Field_Union) (metis Chains_wo)
-  }
-  then have 1: "\<forall>R\<in>Chains I. \<exists>u\<in>Field I. \<forall>r\<in>R. (r, u) \<in> I" by (subst FI) blast
-  txt {*Zorn's Lemma yields a maximal well-order m.*}
-  from Zorns_po_lemma [OF 0 1] obtain m :: "('a \<times> 'a) set"
-    where "Well_order m" and "downset_on (Field m) p" and "extension_on (Field m) m p" and
-    max: "\<forall>r. Well_order r \<and> downset_on (Field r) p \<and> extension_on (Field r) r p \<and>
-      (m, r) \<in> I \<longrightarrow> r = m"
-    by (auto simp: FI)
-  have "Field p \<subseteq> Field m"
-  proof (rule ccontr)
-    let ?Q = "Field p - Field m"
-    assume "\<not> (Field p \<subseteq> Field m)"
-    with assms [unfolded wf_eq_minimal, THEN spec, of ?Q]
-      obtain x where "x \<in> Field p" and "x \<notin> Field m" and
-      min: "\<forall>y. (y, x) \<in> p \<longrightarrow> y \<notin> ?Q" by blast
-    txt {*Add @{term x} as topmost element to @{term m}.*}
-    let ?s = "{(y, x) | y. y \<in> Field m}"
-    let ?m = "insert (x, x) m \<union> ?s"
-    have Fm: "Field ?m = insert x (Field m)" by (auto simp: Field_def)
-    have "Refl m" and "trans m" and "antisym m" and "Total m" and "wf (m - Id)"
-      using `Well_order m` by (simp_all add: order_on_defs)
-    txt {*We show that the extension is a well-order.*}
-    have "Refl ?m" using `Refl m` Fm by (auto simp: refl_on_def)
-    moreover have "trans ?m" using `trans m` `x \<notin> Field m`
-      unfolding trans_def Field_def Domain_unfold Domain_converse [symmetric] by blast
-    moreover have "antisym ?m" using `antisym m` `x \<notin> Field m`
-      unfolding antisym_def Field_def Domain_unfold Domain_converse [symmetric] by blast
-    moreover have "Total ?m" using `Total m` Fm by (auto simp: Relation.total_on_def)
-    moreover have "wf (?m - Id)"
-    proof -
-      have "wf ?s" using `x \<notin> Field m`
-        by (simp add: wf_eq_minimal Field_def Domain_unfold Domain_converse [symmetric]) metis
-      thus ?thesis using `wf (m - Id)` `x \<notin> Field m`
-        wf_subset [OF `wf ?s` Diff_subset]
-        by (fastforce intro!: wf_Un simp add: Un_Diff Field_def)
-    qed
-    ultimately have "Well_order ?m" by (simp add: order_on_defs)
-    moreover have "extension_on (Field ?m) ?m p"
-      using `extension_on (Field m) m p` `downset_on (Field m) p`
-      by (subst Fm) (auto simp: extension_on_def dest: downset_onD)
-    moreover have "downset_on (Field ?m) p"
-      using `downset_on (Field m) p` and min
-      by (subst Fm, simp add: downset_on_def Field_def) (metis Domain_iff)
-    moreover have "(m, ?m) \<in> I"
-      using `Well_order m` and `Well_order ?m` and
-      `downset_on (Field m) p` and `downset_on (Field ?m) p` and
-      `extension_on (Field m) m p` and `extension_on (Field ?m) ?m p` and
-      `Refl m` and `x \<notin> Field m`
-      by (auto simp: I_def init_seg_of_def refl_on_def)
-    ultimately
-    --{*This contradicts maximality of m:*}
-    show False using max and `x \<notin> Field m` unfolding Field_def by blast
-  qed
-  have "p \<subseteq> m"
-    using `Field p \<subseteq> Field m` and `extension_on (Field m) m p`
-    by (force simp: Field_def extension_on_def)
-  with `Well_order m` show ?thesis by blast
-qed
-
-text {*Every well-founded relation can be extended to a total well-order.*}
-corollary total_well_order_extension:
-  assumes "wf p"
-  shows "\<exists>w. p \<subseteq> w \<and> Well_order w \<and> Field w = UNIV"
-proof -
-  from well_order_extension [OF assms] obtain w
-    where "p \<subseteq> w" and wo: "Well_order w" by blast
-  let ?A = "UNIV - Field w"
-  from well_order_on [of ?A] obtain w' where wo': "well_order_on ?A w'" ..
-  have [simp]: "Field w' = ?A" using rel.well_order_on_Well_order [OF wo'] by simp
-  have *: "Field w \<inter> Field w' = {}" by simp
-  let ?w = "w \<union>o w'"
-  have "p \<subseteq> ?w" using `p \<subseteq> w` by (auto simp: Osum_def)
-  moreover have "Well_order ?w" using Osum_Well_order [OF * wo] and wo' by simp
-  moreover have "Field ?w = UNIV" by (simp add: Field_Osum)
-  ultimately show ?thesis by blast
-qed
-
-corollary well_order_on_extension:
-  assumes "wf p" and "Field p \<subseteq> A"
-  shows "\<exists>w. p \<subseteq> w \<and> well_order_on A w"
-proof -
-  from total_well_order_extension [OF `wf p`] obtain r
-    where "p \<subseteq> r" and wo: "Well_order r" and univ: "Field r = UNIV" by blast
-  let ?r = "{(x, y). x \<in> A \<and> y \<in> A \<and> (x, y) \<in> r}"
-  from `p \<subseteq> r` have "p \<subseteq> ?r" using `Field p \<subseteq> A` by (auto simp: Field_def)
-  have 1: "Field ?r = A" using wo univ
-    by (fastforce simp: Field_def order_on_defs refl_on_def)
-  have "Refl r" "trans r" "antisym r" "Total r" "wf (r - Id)"
-    using `Well_order r` by (simp_all add: order_on_defs)
-  have "refl_on A ?r" using `Refl r` by (auto simp: refl_on_def univ)
-  moreover have "trans ?r" using `trans r`
-    unfolding trans_def by blast
-  moreover have "antisym ?r" using `antisym r`
-    unfolding antisym_def by blast
-  moreover have "total_on A ?r" using `Total r` by (simp add: total_on_def univ)
-  moreover have "wf (?r - Id)" by (rule wf_subset [OF `wf(r - Id)`]) blast
-  ultimately have "well_order_on A ?r" by (simp add: order_on_defs)
-  with `p \<subseteq> ?r` show ?thesis by blast
-qed
-
-end
-
--- a/src/HOL/Library/Zorn.thy	Tue May 28 10:18:43 2013 +0200
+++ b/src/HOL/Library/Zorn.thy	Tue May 28 13:19:51 2013 +0200
@@ -5,12 +5,13 @@
 
 Zorn's Lemma (ported from Larry Paulson's Zorn.thy in ZF).
 The well-ordering theorem.
+The extension of any well-founded relation to a well-order. 
 *)
 
 header {* Zorn's Lemma *}
 
 theory Zorn
-imports Order_Relation
+imports Order_Union
 begin
 
 subsection {* Zorn's Lemma for the Subset Relation *}
@@ -712,5 +713,206 @@
   with 1 show ?thesis by metis
 qed
 
+subsection {* Extending Well-founded Relations to Well-Orders *}
+
+text {*A \emph{downset} (also lower set, decreasing set, initial segment, or
+downward closed set) is closed w.r.t.\ smaller elements.*}
+definition downset_on where
+  "downset_on A r = (\<forall>x y. (x, y) \<in> r \<and> y \<in> A \<longrightarrow> x \<in> A)"
+
+(*
+text {*Connection to order filters of the @{theory Cardinals} theory.*}
+lemma (in wo_rel) ofilter_downset_on_conv:
+  "ofilter A \<longleftrightarrow> downset_on A r \<and> A \<subseteq> Field r"
+  by (auto simp: downset_on_def ofilter_def under_def)
+*)
+
+lemma downset_onI:
+  "(\<And>x y. (x, y) \<in> r \<Longrightarrow> y \<in> A \<Longrightarrow> x \<in> A) \<Longrightarrow> downset_on A r"
+  by (auto simp: downset_on_def)
+
+lemma downset_onD:
+  "downset_on A r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> y \<in> A \<Longrightarrow> x \<in> A"
+  by (auto simp: downset_on_def)
+
+text {*Extensions of relations w.r.t.\ a given set.*}
+definition extension_on where
+  "extension_on A r s = (\<forall>x\<in>A. \<forall>y\<in>A. (x, y) \<in> s \<longrightarrow> (x, y) \<in> r)"
+
+lemma extension_onI:
+  "(\<And>x y. \<lbrakk>x \<in> A; y \<in> A; (x, y) \<in> s\<rbrakk> \<Longrightarrow> (x, y) \<in> r) \<Longrightarrow> extension_on A r s"
+  by (auto simp: extension_on_def)
+
+lemma extension_onD:
+  "extension_on A r s \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> (x, y) \<in> s \<Longrightarrow> (x, y) \<in> r"
+  by (auto simp: extension_on_def)
+
+lemma downset_on_Union:
+  assumes "\<And>r. r \<in> R \<Longrightarrow> downset_on (Field r) p"
+  shows "downset_on (Field (\<Union>R)) p"
+  using assms by (auto intro: downset_onI dest: downset_onD)
+
+lemma chain_subset_extension_on_Union:
+  assumes "chain\<^sub>\<subseteq> R" and "\<And>r. r \<in> R \<Longrightarrow> extension_on (Field r) r p"
+  shows "extension_on (Field (\<Union>R)) (\<Union>R) p"
+  using assms
+  by (simp add: chain_subset_def extension_on_def)
+     (metis Field_def mono_Field set_mp)
+
+lemma downset_on_empty [simp]: "downset_on {} p"
+  by (auto simp: downset_on_def)
+
+lemma extension_on_empty [simp]: "extension_on {} p q"
+  by (auto simp: extension_on_def)
+
+text {*Every well-founded relation can be extended to a well-order.*}
+theorem well_order_extension:
+  assumes "wf p"
+  shows "\<exists>w. p \<subseteq> w \<and> Well_order w"
+proof -
+  let ?K = "{r. Well_order r \<and> downset_on (Field r) p \<and> extension_on (Field r) r p}"
+  def I \<equiv> "init_seg_of \<inter> ?K \<times> ?K"
+  have I_init: "I \<subseteq> init_seg_of" by (simp add: I_def)
+  then have subch: "\<And>R. R \<in> Chains I \<Longrightarrow> chain\<^sub>\<subseteq> R"
+    by (auto simp: init_seg_of_def chain_subset_def Chains_def)
+  have Chains_wo: "\<And>R r. R \<in> Chains I \<Longrightarrow> r \<in> R \<Longrightarrow>
+      Well_order r \<and> downset_on (Field r) p \<and> extension_on (Field r) r p"
+    by (simp add: Chains_def I_def) blast
+  have FI: "Field I = ?K" by (auto simp: I_def init_seg_of_def Field_def)
+  then have 0: "Partial_order I"
+    by (auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def
+      trans_def I_def elim: trans_init_seg_of)
+  { fix R assume "R \<in> Chains I"
+    then have Ris: "R \<in> Chains init_seg_of" using mono_Chains [OF I_init] by blast
+    have subch: "chain\<^sub>\<subseteq> R" using `R \<in> Chains I` I_init
+      by (auto simp: init_seg_of_def chain_subset_def Chains_def)
+    have "\<forall>r\<in>R. Refl r" and "\<forall>r\<in>R. trans r" and "\<forall>r\<in>R. antisym r" and
+      "\<forall>r\<in>R. Total r" and "\<forall>r\<in>R. wf (r - Id)" and
+      "\<And>r. r \<in> R \<Longrightarrow> downset_on (Field r) p" and
+      "\<And>r. r \<in> R \<Longrightarrow> extension_on (Field r) r p"
+      using Chains_wo [OF `R \<in> Chains I`] by (simp_all add: order_on_defs)
+    have "Refl (\<Union>R)" using `\<forall>r\<in>R. Refl r` by (auto simp: refl_on_def)
+    moreover have "trans (\<Union>R)"
+      by (rule chain_subset_trans_Union [OF subch `\<forall>r\<in>R. trans r`])
+    moreover have "antisym (\<Union>R)"
+      by (rule chain_subset_antisym_Union [OF subch `\<forall>r\<in>R. antisym r`])
+    moreover have "Total (\<Union>R)"
+      by (rule chain_subset_Total_Union [OF subch `\<forall>r\<in>R. Total r`])
+    moreover have "wf ((\<Union>R) - Id)"
+    proof -
+      have "(\<Union>R) - Id = \<Union>{r - Id | r. r \<in> R}" by blast
+      with `\<forall>r\<in>R. wf (r - Id)` wf_Union_wf_init_segs [OF Chains_inits_DiffI [OF Ris]]
+      show ?thesis by (simp (no_asm_simp)) blast
+    qed
+    ultimately have "Well_order (\<Union>R)" by (simp add: order_on_defs)
+    moreover have "\<forall>r\<in>R. r initial_segment_of \<Union>R" using Ris
+      by (simp add: Chains_init_seg_of_Union)
+    moreover have "downset_on (Field (\<Union>R)) p"
+      by (rule downset_on_Union [OF `\<And>r. r \<in> R \<Longrightarrow> downset_on (Field r) p`])
+    moreover have "extension_on (Field (\<Union>R)) (\<Union>R) p"
+      by (rule chain_subset_extension_on_Union [OF subch `\<And>r. r \<in> R \<Longrightarrow> extension_on (Field r) r p`])
+    ultimately have "\<Union>R \<in> ?K \<and> (\<forall>r\<in>R. (r,\<Union>R) \<in> I)"
+      using mono_Chains [OF I_init] and `R \<in> Chains I`
+      by (simp (no_asm) add: I_def del: Field_Union) (metis Chains_wo)
+  }
+  then have 1: "\<forall>R\<in>Chains I. \<exists>u\<in>Field I. \<forall>r\<in>R. (r, u) \<in> I" by (subst FI) blast
+  txt {*Zorn's Lemma yields a maximal well-order m.*}
+  from Zorns_po_lemma [OF 0 1] obtain m :: "('a \<times> 'a) set"
+    where "Well_order m" and "downset_on (Field m) p" and "extension_on (Field m) m p" and
+    max: "\<forall>r. Well_order r \<and> downset_on (Field r) p \<and> extension_on (Field r) r p \<and>
+      (m, r) \<in> I \<longrightarrow> r = m"
+    by (auto simp: FI)
+  have "Field p \<subseteq> Field m"
+  proof (rule ccontr)
+    let ?Q = "Field p - Field m"
+    assume "\<not> (Field p \<subseteq> Field m)"
+    with assms [unfolded wf_eq_minimal, THEN spec, of ?Q]
+      obtain x where "x \<in> Field p" and "x \<notin> Field m" and
+      min: "\<forall>y. (y, x) \<in> p \<longrightarrow> y \<notin> ?Q" by blast
+    txt {*Add @{term x} as topmost element to @{term m}.*}
+    let ?s = "{(y, x) | y. y \<in> Field m}"
+    let ?m = "insert (x, x) m \<union> ?s"
+    have Fm: "Field ?m = insert x (Field m)" by (auto simp: Field_def)
+    have "Refl m" and "trans m" and "antisym m" and "Total m" and "wf (m - Id)"
+      using `Well_order m` by (simp_all add: order_on_defs)
+    txt {*We show that the extension is a well-order.*}
+    have "Refl ?m" using `Refl m` Fm by (auto simp: refl_on_def)
+    moreover have "trans ?m" using `trans m` `x \<notin> Field m`
+      unfolding trans_def Field_def Domain_unfold Domain_converse [symmetric] by blast
+    moreover have "antisym ?m" using `antisym m` `x \<notin> Field m`
+      unfolding antisym_def Field_def Domain_unfold Domain_converse [symmetric] by blast
+    moreover have "Total ?m" using `Total m` Fm by (auto simp: Relation.total_on_def)
+    moreover have "wf (?m - Id)"
+    proof -
+      have "wf ?s" using `x \<notin> Field m`
+        by (simp add: wf_eq_minimal Field_def Domain_unfold Domain_converse [symmetric]) metis
+      thus ?thesis using `wf (m - Id)` `x \<notin> Field m`
+        wf_subset [OF `wf ?s` Diff_subset]
+        by (fastforce intro!: wf_Un simp add: Un_Diff Field_def)
+    qed
+    ultimately have "Well_order ?m" by (simp add: order_on_defs)
+    moreover have "extension_on (Field ?m) ?m p"
+      using `extension_on (Field m) m p` `downset_on (Field m) p`
+      by (subst Fm) (auto simp: extension_on_def dest: downset_onD)
+    moreover have "downset_on (Field ?m) p"
+      using `downset_on (Field m) p` and min
+      by (subst Fm, simp add: downset_on_def Field_def) (metis Domain_iff)
+    moreover have "(m, ?m) \<in> I"
+      using `Well_order m` and `Well_order ?m` and
+      `downset_on (Field m) p` and `downset_on (Field ?m) p` and
+      `extension_on (Field m) m p` and `extension_on (Field ?m) ?m p` and
+      `Refl m` and `x \<notin> Field m`
+      by (auto simp: I_def init_seg_of_def refl_on_def)
+    ultimately
+    --{*This contradicts maximality of m:*}
+    show False using max and `x \<notin> Field m` unfolding Field_def by blast
+  qed
+  have "p \<subseteq> m"
+    using `Field p \<subseteq> Field m` and `extension_on (Field m) m p`
+    by (force simp: Field_def extension_on_def)
+  with `Well_order m` show ?thesis by blast
+qed
+
+text {*Every well-founded relation can be extended to a total well-order.*}
+corollary total_well_order_extension:
+  assumes "wf p"
+  shows "\<exists>w. p \<subseteq> w \<and> Well_order w \<and> Field w = UNIV"
+proof -
+  from well_order_extension [OF assms] obtain w
+    where "p \<subseteq> w" and wo: "Well_order w" by blast
+  let ?A = "UNIV - Field w"
+  from well_order_on [of ?A] obtain w' where wo': "well_order_on ?A w'" ..
+  have [simp]: "Field w' = ?A" using rel.well_order_on_Well_order [OF wo'] by simp
+  have *: "Field w \<inter> Field w' = {}" by simp
+  let ?w = "w \<union>o w'"
+  have "p \<subseteq> ?w" using `p \<subseteq> w` by (auto simp: Osum_def)
+  moreover have "Well_order ?w" using Osum_Well_order [OF * wo] and wo' by simp
+  moreover have "Field ?w = UNIV" by (simp add: Field_Osum)
+  ultimately show ?thesis by blast
+qed
+
+corollary well_order_on_extension:
+  assumes "wf p" and "Field p \<subseteq> A"
+  shows "\<exists>w. p \<subseteq> w \<and> well_order_on A w"
+proof -
+  from total_well_order_extension [OF `wf p`] obtain r
+    where "p \<subseteq> r" and wo: "Well_order r" and univ: "Field r = UNIV" by blast
+  let ?r = "{(x, y). x \<in> A \<and> y \<in> A \<and> (x, y) \<in> r}"
+  from `p \<subseteq> r` have "p \<subseteq> ?r" using `Field p \<subseteq> A` by (auto simp: Field_def)
+  have 1: "Field ?r = A" using wo univ
+    by (fastforce simp: Field_def order_on_defs refl_on_def)
+  have "Refl r" "trans r" "antisym r" "Total r" "wf (r - Id)"
+    using `Well_order r` by (simp_all add: order_on_defs)
+  have "refl_on A ?r" using `Refl r` by (auto simp: refl_on_def univ)
+  moreover have "trans ?r" using `trans r`
+    unfolding trans_def by blast
+  moreover have "antisym ?r" using `antisym r`
+    unfolding antisym_def by blast
+  moreover have "total_on A ?r" using `Total r` by (simp add: total_on_def univ)
+  moreover have "wf (?r - Id)" by (rule wf_subset [OF `wf(r - Id)`]) blast
+  ultimately have "well_order_on A ?r" by (simp add: order_on_defs)
+  with `p \<subseteq> ?r` show ?thesis by blast
+qed
+
 end