more robust syntax for definition/abbreviation/notation;
authorwenzelm
Fri, 17 Nov 2006 02:20:03 +0100
changeset 21404 eb85850d3eb7
parent 21403 dd58f13a8eb4
child 21405 26b51f724fe6
more robust syntax for definition/abbreviation/notation;
src/CCL/Gfp.thy
src/CCL/Lfp.thy
src/CTT/Arith.thy
src/CTT/Bool.thy
src/CTT/CTT.thy
src/FOL/IFOL.thy
src/FOL/ex/NatClass.thy
src/HOL/Accessible_Part.thy
src/HOL/Algebra/Coset.thy
src/HOL/Algebra/Lattice.thy
src/HOL/Auth/CertifiedEmail.thy
src/HOL/Auth/Event.thy
src/HOL/Auth/Guard/Extensions.thy
src/HOL/Auth/Guard/Guard.thy
src/HOL/Auth/Guard/GuardK.thy
src/HOL/Auth/Guard/Guard_NS_Public.thy
src/HOL/Auth/Guard/Guard_OtwayRees.thy
src/HOL/Auth/Guard/Guard_Shared.thy
src/HOL/Auth/Guard/Guard_Yahalom.thy
src/HOL/Auth/Guard/List_Msg.thy
src/HOL/Auth/Guard/Proto.thy
src/HOL/Auth/KerberosIV.thy
src/HOL/Auth/KerberosIV_Gets.thy
src/HOL/Auth/KerberosV.thy
src/HOL/Auth/Kerberos_BAN.thy
src/HOL/Auth/Kerberos_BAN_Gets.thy
src/HOL/Auth/Public.thy
src/HOL/Auth/Recur.thy
src/HOL/Auth/Smartcard/EventSC.thy
src/HOL/Auth/TLS.thy
src/HOL/Auth/ZhouGollmann.thy
src/HOL/Bali/Example.thy
src/HOL/Code_Generator.thy
src/HOL/Complex/CLim.thy
src/HOL/Complex/Complex.thy
src/HOL/Complex/NSCA.thy
src/HOL/Complex/NSComplex.thy
src/HOL/Complex/ex/NSPrimes.thy
src/HOL/Complex/ex/Sqrt.thy
src/HOL/Complex/ex/Sqrt_Script.thy
src/HOL/Datatype.thy
src/HOL/Equiv_Relations.thy
src/HOL/Extraction/Pigeonhole.thy
src/HOL/Finite_Set.thy
src/HOL/FixedPoint.thy
src/HOL/FunDef.thy
src/HOL/HOL.thy
src/HOL/Hyperreal/Deriv.thy
src/HOL/Hyperreal/HLog.thy
src/HOL/Hyperreal/HSeries.thy
src/HOL/Hyperreal/HTranscendental.thy
src/HOL/Hyperreal/HyperArith.thy
src/HOL/Hyperreal/HyperDef.thy
src/HOL/Hyperreal/HyperNat.thy
src/HOL/Hyperreal/HyperPow.thy
src/HOL/Hyperreal/Integration.thy
src/HOL/Hyperreal/Lim.thy
src/HOL/Hyperreal/Log.thy
src/HOL/Hyperreal/NSA.thy
src/HOL/Hyperreal/NatStar.thy
src/HOL/Hyperreal/NthRoot.thy
src/HOL/Hyperreal/Poly.thy
src/HOL/Hyperreal/SEQ.thy
src/HOL/Hyperreal/Series.thy
src/HOL/Hyperreal/Star.thy
src/HOL/Hyperreal/StarDef.thy
src/HOL/Hyperreal/Transcendental.thy
src/HOL/Induct/Comb.thy
src/HOL/Induct/LFilter.thy
src/HOL/Induct/LList.thy
src/HOL/Induct/Mutil.thy
src/HOL/Induct/Ordinals.thy
src/HOL/Induct/PropLog.thy
src/HOL/Induct/QuoDataType.thy
src/HOL/Induct/QuoNestedDataType.thy
src/HOL/Induct/SList.thy
src/HOL/Induct/Sexp.thy
src/HOL/Induct/Tree.thy
src/HOL/Integ/IntDef.thy
src/HOL/Integ/NatBin.thy
src/HOL/Integ/Numeral.thy
src/HOL/Isar_examples/Hoare.thy
src/HOL/Lambda/Commutation.thy
src/HOL/Lambda/Eta.thy
src/HOL/Lambda/Lambda.thy
src/HOL/Lambda/ListApplication.thy
src/HOL/Lambda/ListBeta.thy
src/HOL/Lambda/ListOrder.thy
src/HOL/Lambda/ParRed.thy
src/HOL/Lambda/StrongNorm.thy
src/HOL/Lambda/Type.thy
src/HOL/Lambda/WeakNorm.thy
src/HOL/Lattice/Bounds.thy
src/HOL/Lattice/CompleteLattice.thy
src/HOL/Lattice/Lattice.thy
src/HOL/Library/AssocList.thy
src/HOL/Library/BigO.thy
src/HOL/Library/Char_ord.thy
src/HOL/Library/Coinductive_List.thy
src/HOL/Library/Commutative_Ring.thy
src/HOL/Library/Continuity.thy
src/HOL/Library/EfficientNat.thy
src/HOL/Library/ExecutableRat.thy
src/HOL/Library/ExecutableSet.thy
src/HOL/Library/FuncSet.thy
src/HOL/Library/GCD.thy
src/HOL/Library/Infinite_Set.thy
src/HOL/Library/List_Prefix.thy
src/HOL/Library/Multiset.thy
src/HOL/Library/NatPair.thy
src/HOL/Library/Nat_Infinity.thy
src/HOL/Library/OptionalSugar.thy
src/HOL/Library/Parity.thy
src/HOL/Library/Permutation.thy
src/HOL/Library/Primes.thy
src/HOL/Library/Quotient.thy
src/HOL/Library/SetsAndFunctions.thy
src/HOL/Library/State_Monad.thy
src/HOL/Library/While_Combinator.thy
src/HOL/Library/Word.thy
src/HOL/Library/Zorn.thy
src/HOL/List.thy
src/HOL/Map.thy
src/HOL/MicroJava/J/Example.thy
src/HOL/MicroJava/JVM/JVMListExample.thy
src/HOL/Nominal/Examples/Lam_Funs.thy
src/HOL/Nominal/Examples/SN.thy
src/HOL/Nominal/Examples/Weakening.thy
src/HOL/NumberTheory/BijectionRel.thy
src/HOL/NumberTheory/Chinese.thy
src/HOL/NumberTheory/Euler.thy
src/HOL/NumberTheory/EulerFermat.thy
src/HOL/NumberTheory/EvenOdd.thy
src/HOL/NumberTheory/Factorization.thy
src/HOL/NumberTheory/Gauss.thy
src/HOL/NumberTheory/Int2.thy
src/HOL/NumberTheory/IntPrimes.thy
src/HOL/NumberTheory/Quadratic_Reciprocity.thy
src/HOL/NumberTheory/Residues.thy
src/HOL/NumberTheory/WilsonBij.thy
src/HOL/NumberTheory/WilsonRuss.thy
src/HOL/Orderings.thy
src/HOL/Product_Type.thy
src/HOL/Real/ContNotDenum.thy
src/HOL/Real/Float.thy
src/HOL/Real/HahnBanach/Bounds.thy
src/HOL/Real/HahnBanach/FunctionOrder.thy
src/HOL/Real/HahnBanach/Subspace.thy
src/HOL/Real/Lubs.thy
src/HOL/Real/PReal.thy
src/HOL/Real/RComplete.thy
src/HOL/Real/Rational.thy
src/HOL/Real/RealDef.thy
src/HOL/Real/RealVector.thy
src/HOL/Relation.thy
src/HOL/Set.thy
src/HOL/Transitive_Closure.thy
src/HOL/Unix/Unix.thy
src/HOL/W0/W0.thy
src/HOL/ex/Abstract_NAT.thy
src/HOL/ex/Adder.thy
src/HOL/ex/CTL.thy
src/HOL/ex/Classpackage.thy
src/HOL/ex/CodeCollections.thy
src/HOL/ex/CodeEmbed.thy
src/HOL/ex/CodeRandom.thy
src/HOL/ex/Codegenerator.thy
src/HOL/ex/Higher_Order_Logic.thy
src/HOL/ex/InductiveInvariant.thy
src/HOL/ex/Lagrange.thy
src/HOL/ex/MonoidGroup.thy
src/HOL/ex/PER.thy
src/HOL/ex/Primrec.thy
src/HOL/ex/Records.thy
src/HOL/ex/Reflected_Presburger.thy
src/HOL/ex/Sorting.thy
src/HOL/ex/Tarski.thy
src/HOL/ex/ThreeDivides.thy
src/HOLCF/FOCUS/Buffer.thy
src/HOLCF/FOCUS/Fstream.thy
src/HOLCF/FOCUS/Fstreams.thy
src/HOLCF/FOCUS/Stream_adm.thy
src/HOLCF/IMP/Denotational.thy
src/HOLCF/IMP/HoareEx.thy
src/HOLCF/ex/Dagstuhl.thy
src/HOLCF/ex/Dnat.thy
src/HOLCF/ex/Focus_ex.thy
src/HOLCF/ex/Hoare.thy
src/HOLCF/ex/Loop.thy
src/HOLCF/ex/Stream.thy
src/ZF/Constructible/AC_in_L.thy
src/ZF/Constructible/DPow_absolute.thy
src/ZF/Constructible/Datatype_absolute.thy
src/ZF/Constructible/Formula.thy
src/ZF/Constructible/Internalize.thy
src/ZF/Constructible/L_axioms.thy
src/ZF/Constructible/MetaExists.thy
src/ZF/Constructible/Normal.thy
src/ZF/Constructible/Rank.thy
src/ZF/Constructible/Rec_Separation.thy
src/ZF/Constructible/Relative.thy
src/ZF/Constructible/Satisfies_absolute.thy
src/ZF/Constructible/WF_absolute.thy
src/ZF/Constructible/WFrec.thy
src/ZF/Constructible/Wellorderings.thy
src/ZF/IMP/Denotation.thy
src/ZF/ex/Commutation.thy
src/ZF/ex/Group.thy
src/ZF/ex/Ramsey.thy
src/ZF/ex/Ring.thy
--- a/src/CCL/Gfp.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/CCL/Gfp.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,7 +11,7 @@
 begin
 
 definition
-  gfp :: "['a set=>'a set] => 'a set"    (*greatest fixed point*)
+  gfp :: "['a set=>'a set] => 'a set" where -- "greatest fixed point"
   "gfp(f) == Union({u. u <= f(u)})"
 
 (* gfp(f) is the least upper bound of {u. u <= f(u)} *)
--- a/src/CCL/Lfp.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/CCL/Lfp.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,7 +11,7 @@
 begin
 
 definition
-  lfp :: "['a set=>'a set] => 'a set"     (*least fixed point*)
+  lfp :: "['a set=>'a set] => 'a set" where -- "least fixed point"
   "lfp(f) == Inter({u. f(u) <= u})"
 
 (* lfp(f) is the greatest lower bound of {u. f(u) <= u} *)
--- a/src/CTT/Arith.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/CTT/Arith.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -13,22 +13,27 @@
 subsection {* Arithmetic operators and their definitions *}
 
 definition
-  add :: "[i,i]=>i"   (infixr "#+" 65)
+  add :: "[i,i]=>i"   (infixr "#+" 65) where
   "a#+b == rec(a, b, %u v. succ(v))"
 
-  diff :: "[i,i]=>i"   (infixr "-" 65)
+definition
+  diff :: "[i,i]=>i"   (infixr "-" 65) where
   "a-b == rec(b, a, %u v. rec(v, 0, %x y. x))"
 
-  absdiff :: "[i,i]=>i"   (infixr "|-|" 65)
+definition
+  absdiff :: "[i,i]=>i"   (infixr "|-|" 65) where
   "a|-|b == (a-b) #+ (b-a)"
 
-  mult :: "[i,i]=>i"   (infixr "#*" 70)
+definition
+  mult :: "[i,i]=>i"   (infixr "#*" 70) where
   "a#*b == rec(a, 0, %u v. b #+ v)"
 
-  mod :: "[i,i]=>i"   (infixr "mod" 70)
+definition
+  mod :: "[i,i]=>i"   (infixr "mod" 70) where
   "a mod b == rec(a, 0, %u v. rec(succ(v) |-| b, 0, %x y. succ(v)))"
 
-  div :: "[i,i]=>i"   (infixr "div" 70)
+definition
+  div :: "[i,i]=>i"   (infixr "div" 70) where
   "a div b == rec(a, 0, %u v. rec(succ(u) mod b, succ(v), %x y. v))"
 
 
--- a/src/CTT/Bool.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/CTT/Bool.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,16 +11,19 @@
 begin
 
 definition
-  Bool :: "t"
+  Bool :: "t" where
   "Bool == T+T"
 
-  true :: "i"
+definition
+  true :: "i" where
   "true == inl(tt)"
 
-  false :: "i"
+definition
+  false :: "i" where
   "false == inr(tt)"
 
-  cond :: "[i,i,i]=>i"
+definition
+  cond :: "[i,i,i]=>i" where
   "cond(a,b,c) == when(a, %u. b, %u. c)"
 
 lemmas bool_defs = Bool_def true_def false_def cond_def
--- a/src/CTT/CTT.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/CTT/CTT.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -65,20 +65,21 @@
   "SUM x:A. B"  == "Sum(A, %x. B)"
 
 abbreviation
-  Arrow     :: "[t,t]=>t"           (infixr "-->" 30)
+  Arrow     :: "[t,t]=>t"  (infixr "-->" 30) where
   "A --> B == PROD _:A. B"
-  Times     :: "[t,t]=>t"           (infixr "*" 50)
+abbreviation
+  Times     :: "[t,t]=>t"  (infixr "*" 50) where
   "A * B == SUM _:A. B"
 
 notation (xsymbols)
-  Elem  ("(_ /\<in> _)" [10,10] 5)
-  Eqelem  ("(2_ =/ _ \<in>/ _)" [10,10,10] 5)
-  Arrow  (infixr "\<longrightarrow>" 30)
+  Elem  ("(_ /\<in> _)" [10,10] 5) and
+  Eqelem  ("(2_ =/ _ \<in>/ _)" [10,10,10] 5) and
+  Arrow  (infixr "\<longrightarrow>" 30) and
   Times  (infixr "\<times>" 50)
 
 notation (HTML output)
-  Elem  ("(_ /\<in> _)" [10,10] 5)
-  Eqelem  ("(2_ =/ _ \<in>/ _)" [10,10,10] 5)
+  Elem  ("(_ /\<in> _)" [10,10] 5) and
+  Eqelem  ("(2_ =/ _ \<in>/ _)" [10,10,10] 5) and
   Times  (infixr "\<times>" 50)
 
 syntax (xsymbols)
--- a/src/FOL/IFOL.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/FOL/IFOL.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -45,7 +45,7 @@
 
 
 abbreviation
-  not_equal     :: "['a, 'a] => o"              (infixl "~=" 50)
+  not_equal :: "['a, 'a] => o"  (infixl "~=" 50) where
   "x ~= y == ~ (x = y)"
 
 notation (xsymbols)
--- a/src/FOL/ex/NatClass.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/FOL/ex/NatClass.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -30,7 +30,7 @@
   rec_Suc:       "rec(Suc(m), a, f) = f(m, rec(m, a, f))"
 
 definition
-  add :: "['a::nat, 'a] => 'a"    (infixl "+" 60)
+  add :: "['a::nat, 'a] => 'a"  (infixl "+" 60) where
   "m + n = rec(m, n, %x y. Suc(y))"
 
 lemma Suc_n_not_n: "Suc(k) ~= (k::'a::nat)"
--- a/src/HOL/Accessible_Part.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Accessible_Part.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -24,7 +24,7 @@
     accI: "(!!y. (y, x) \<in> r ==> y \<in> acc r) ==> x \<in> acc r"
 
 abbreviation
-  termi :: "('a \<times> 'a) set => 'a set"
+  termi :: "('a \<times> 'a) set => 'a set" where
   "termi r == acc (r\<inverse>)"
 
 
--- a/src/HOL/Algebra/Coset.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Algebra/Coset.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -30,7 +30,7 @@
   assumes coset_eq: "(\<forall>x \<in> carrier G. H #> x = x <# H)"
 
 abbreviation
-  normal_rel :: "['a set, ('a, 'b) monoid_scheme] \<Rightarrow> bool"  (infixl "\<lhd>" 60)
+  normal_rel :: "['a set, ('a, 'b) monoid_scheme] \<Rightarrow> bool"  (infixl "\<lhd>" 60) where
   "H \<lhd> G \<equiv> normal H G"
 
 
--- a/src/HOL/Algebra/Lattice.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Algebra/Lattice.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -29,7 +29,7 @@
   definition command cannot specialise the types. *}
 
 definition (in order_syntax)
-  less (infixl "\<sqsubset>" 50) "x \<sqsubset> y == x \<sqsubseteq> y & x ~= y"
+  less (infixl "\<sqsubset>" 50) where "x \<sqsubset> y == x \<sqsubseteq> y & x ~= y"
 
 text {* Upper and lower bounds of a set. *}
 
@@ -38,35 +38,35 @@
   "Upper A == {u. (ALL x. x \<in> A \<inter> L --> x \<sqsubseteq> u)} \<inter> L"
 
 definition (in order_syntax)
-  Lower :: "'a set => 'a set"
+  Lower :: "'a set => 'a set" where
   "Lower A == {l. (ALL x. x \<in> A \<inter> L --> l \<sqsubseteq> x)} \<inter> L"
 
 text {* Least and greatest, as predicate. *}
 
 definition (in order_syntax)
-  least :: "['a, 'a set] => bool"
+  least :: "['a, 'a set] => bool" where
   "least l A == A \<subseteq> L & l \<in> A & (ALL x : A. l \<sqsubseteq> x)"
 
 definition (in order_syntax)
-  greatest :: "['a, 'a set] => bool"
+  greatest :: "['a, 'a set] => bool" where
   "greatest g A == A \<subseteq> L & g \<in> A & (ALL x : A. x \<sqsubseteq> g)"
 
 text {* Supremum and infimum *}
 
 definition (in order_syntax)
-  sup :: "'a set => 'a" ("\<Squnion>_" [90] 90)
+  sup :: "'a set => 'a" ("\<Squnion>_" [90] 90) where
   "\<Squnion>A == THE x. least x (Upper A)"
 
 definition (in order_syntax)
-  inf :: "'a set => 'a" ("\<Sqinter>_" [90] 90)
+  inf :: "'a set => 'a" ("\<Sqinter>_" [90] 90) where
   "\<Sqinter>A == THE x. greatest x (Lower A)"
 
 definition (in order_syntax)
-  join :: "['a, 'a] => 'a" (infixl "\<squnion>" 65)
+  join :: "['a, 'a] => 'a" (infixl "\<squnion>" 65) where
   "x \<squnion> y == sup {x, y}"
 
 definition (in order_syntax)
-  meet :: "['a, 'a] => 'a" (infixl "\<sqinter>" 70)
+  meet :: "['a, 'a] => 'a" (infixl "\<sqinter>" 70) where
   "x \<sqinter> y == inf {x, y}"
 
 locale partial_order = order_syntax +
@@ -79,7 +79,7 @@
                    x \<in> L; y \<in> L; z \<in> L |] ==> x \<sqsubseteq> z"
 
 abbreviation (in partial_order)
-  less (infixl "\<sqsubset>" 50) "less == order_syntax.less le"
+  less (infixl "\<sqsubset>" 50) where "less == order_syntax.less le"
 abbreviation (in partial_order)
   Upper where "Upper == order_syntax.Upper L le"
 abbreviation (in partial_order)
@@ -89,13 +89,13 @@
 abbreviation (in partial_order)
   greatest where "greatest == order_syntax.greatest L le"
 abbreviation (in partial_order)
-  sup ("\<Squnion>_" [90] 90) "sup == order_syntax.sup L le"
+  sup ("\<Squnion>_" [90] 90) where "sup == order_syntax.sup L le"
 abbreviation (in partial_order)
-  inf ("\<Sqinter>_" [90] 90) "inf == order_syntax.inf L le"
+  inf ("\<Sqinter>_" [90] 90) where "inf == order_syntax.inf L le"
 abbreviation (in partial_order)
-  join (infixl "\<squnion>" 65) "join == order_syntax.join L le"
+  join (infixl "\<squnion>" 65) where "join == order_syntax.join L le"
 abbreviation (in partial_order)
-  meet (infixl "\<sqinter>" 70) "meet == order_syntax.meet L le"
+  meet (infixl "\<sqinter>" 70) where "meet == order_syntax.meet L le"
 
 
 subsubsection {* Upper *}
@@ -207,7 +207,7 @@
     "[| x \<in> L; y \<in> L |] ==> EX s. order_syntax.greatest L le s (order_syntax.Lower L le {x, y})"
 
 abbreviation (in lattice)
-  less (infixl "\<sqsubset>" 50) "less == order_syntax.less le"
+  less (infixl "\<sqsubset>" 50) where "less == order_syntax.less le"
 abbreviation (in lattice)
   Upper where "Upper == order_syntax.Upper L le"
 abbreviation (in lattice)
@@ -217,13 +217,13 @@
 abbreviation (in lattice)
   greatest where "greatest == order_syntax.greatest L le"
 abbreviation (in lattice)
-  sup ("\<Squnion>_" [90] 90) "sup == order_syntax.sup L le"
+  sup ("\<Squnion>_" [90] 90) where "sup == order_syntax.sup L le"
 abbreviation (in lattice)
-  inf ("\<Sqinter>_" [90] 90) "inf == order_syntax.inf L le"
+  inf ("\<Sqinter>_" [90] 90) where "inf == order_syntax.inf L le"
 abbreviation (in lattice)
-  join (infixl "\<squnion>" 65) "join == order_syntax.join L le"
+  join (infixl "\<squnion>" 65) where "join == order_syntax.join L le"
 abbreviation (in lattice)
-  meet (infixl "\<sqinter>" 70) "meet == order_syntax.meet L le"
+  meet (infixl "\<sqinter>" 70) where "meet == order_syntax.meet L le"
 
 lemma (in order_syntax) least_Upper_above:
   "[| least s (Upper A); x \<in> A; A \<subseteq> L |] ==> x \<sqsubseteq> s"
@@ -690,7 +690,7 @@
   assumes total: "[| x \<in> L; y \<in> L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
 
 abbreviation (in total_order)
-  less (infixl "\<sqsubset>" 50) "less == order_syntax.less le"
+  less (infixl "\<sqsubset>" 50) where "less == order_syntax.less le"
 abbreviation (in total_order)
   Upper where "Upper == order_syntax.Upper L le"
 abbreviation (in total_order)
@@ -700,13 +700,13 @@
 abbreviation (in total_order)
   greatest where "greatest == order_syntax.greatest L le"
 abbreviation (in total_order)
-  sup ("\<Squnion>_" [90] 90) "sup == order_syntax.sup L le"
+  sup ("\<Squnion>_" [90] 90) where "sup == order_syntax.sup L le"
 abbreviation (in total_order)
-  inf ("\<Sqinter>_" [90] 90) "inf == order_syntax.inf L le"
+  inf ("\<Sqinter>_" [90] 90) where "inf == order_syntax.inf L le"
 abbreviation (in total_order)
-  join (infixl "\<squnion>" 65) "join == order_syntax.join L le"
+  join (infixl "\<squnion>" 65) where "join == order_syntax.join L le"
 abbreviation (in total_order)
-  meet (infixl "\<sqinter>" 70) "meet == order_syntax.meet L le"
+  meet (infixl "\<sqinter>" 70) where "meet == order_syntax.meet L le"
 
 text {* Introduction rule: the usual definition of total order *}
 
@@ -768,7 +768,7 @@
     "[| A \<subseteq> L |] ==> EX i. order_syntax.greatest L le i (order_syntax.Lower L le A)"
 
 abbreviation (in complete_lattice)
-  less (infixl "\<sqsubset>" 50) "less == order_syntax.less le"
+  less (infixl "\<sqsubset>" 50) where "less == order_syntax.less le"
 abbreviation (in complete_lattice)
   Upper where "Upper == order_syntax.Upper L le"
 abbreviation (in complete_lattice)
@@ -778,13 +778,13 @@
 abbreviation (in complete_lattice)
   greatest where "greatest == order_syntax.greatest L le"
 abbreviation (in complete_lattice)
-  sup ("\<Squnion>_" [90] 90) "sup == order_syntax.sup L le"
+  sup ("\<Squnion>_" [90] 90) where "sup == order_syntax.sup L le"
 abbreviation (in complete_lattice)
-  inf ("\<Sqinter>_" [90] 90) "inf == order_syntax.inf L le"
+  inf ("\<Sqinter>_" [90] 90) where "inf == order_syntax.inf L le"
 abbreviation (in complete_lattice)
-  join (infixl "\<squnion>" 65) "join == order_syntax.join L le"
+  join (infixl "\<squnion>" 65) where "join == order_syntax.join L le"
 abbreviation (in complete_lattice)
-  meet (infixl "\<sqinter>" 70) "meet == order_syntax.meet L le"
+  meet (infixl "\<sqinter>" 70) where "meet == order_syntax.meet L le"
 
 text {* Introduction rule: the usual definition of complete lattice *}
 
@@ -800,29 +800,29 @@
 qed (assumption | rule complete_lattice_axioms.intro)+
 
 definition (in order_syntax)
-  top ("\<top>")
+  top ("\<top>") where
   "\<top> == sup L"
 
 definition (in order_syntax)
-  bottom ("\<bottom>")
+  bottom ("\<bottom>") where
   "\<bottom> == inf L"
 
 abbreviation (in partial_order)
-  top ("\<top>") "top == order_syntax.top L le"
+  top ("\<top>") where "top == order_syntax.top L le"
 abbreviation (in partial_order)
-  bottom ("\<bottom>") "bottom == order_syntax.bottom L le"
+  bottom ("\<bottom>") where "bottom == order_syntax.bottom L le"
 abbreviation (in lattice)
-  top ("\<top>") "top == order_syntax.top L le"
+  top ("\<top>") where "top == order_syntax.top L le"
 abbreviation (in lattice)
-  bottom ("\<bottom>") "bottom == order_syntax.bottom L le"
+  bottom ("\<bottom>") where "bottom == order_syntax.bottom L le"
 abbreviation (in total_order)
-  top ("\<top>") "top == order_syntax.top L le"
+  top ("\<top>") where "top == order_syntax.top L le"
 abbreviation (in total_order)
-  bottom ("\<bottom>") "bottom == order_syntax.bottom L le"
+  bottom ("\<bottom>") where "bottom == order_syntax.bottom L le"
 abbreviation (in complete_lattice)
-  top ("\<top>") "top == order_syntax.top L le"
+  top ("\<top>") where "top == order_syntax.top L le"
 abbreviation (in complete_lattice)
-  bottom ("\<bottom>") "bottom == order_syntax.bottom L le"
+  bottom ("\<bottom>") where "bottom == order_syntax.bottom L le"
 
 
 lemma (in complete_lattice) supI:
--- a/src/HOL/Auth/CertifiedEmail.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/CertifiedEmail.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -8,10 +8,11 @@
 theory CertifiedEmail imports Public begin
 
 abbreviation
-  TTP :: agent
+  TTP :: agent where
   "TTP == Server"
 
-  RPwd :: "agent => key"
+abbreviation
+  RPwd :: "agent => key" where
   "RPwd == shrK"
 
  
--- a/src/HOL/Auth/Event.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Event.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -29,7 +29,7 @@
 text{*The constant "spies" is retained for compatibility's sake*}
 
 abbreviation (input)
-  spies  :: "event list => msg set"
+  spies  :: "event list => msg set" where
   "spies == knows Spy"
 
 text{*Spy has access to his own key for spoof messages, but Server is secure*}
--- a/src/HOL/Auth/Guard/Extensions.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Guard/Extensions.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -86,7 +86,7 @@
 by simp
 
 abbreviation
-  not_MPair :: "msg => bool"
+  not_MPair :: "msg => bool" where
   "not_MPair X == ~ is_MPair X"
 
 lemma is_MPairE: "[| is_MPair X ==> P; not_MPair X ==> P |] ==> P"
@@ -370,7 +370,7 @@
    ))"
 
 abbreviation
-  spies' :: "event list => msg set"
+  spies' :: "event list => msg set" where
   "spies' == knows' Spy"
 
 subsubsection{*decomposition of knows into knows' and initState*}
@@ -452,7 +452,7 @@
 "knows_max A evs == knows_max' A evs Un initState A"
 
 abbreviation
-  spies_max :: "event list => msg set"
+  spies_max :: "event list => msg set" where
   "spies_max evs == knows_max Spy evs"
 
 subsubsection{*basic facts about @{term knows_max}*}
--- a/src/HOL/Auth/Guard/Guard.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Guard/Guard.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -163,7 +163,7 @@
 subsection{*set obtained by decrypting a message*}
 
 abbreviation (input)
-  decrypt :: "msg set => key => msg => msg set"
+  decrypt :: "msg set => key => msg => msg set" where
   "decrypt H K Y == insert Y (H - {Crypt K Y})"
 
 lemma analz_decrypt: "[| Crypt K Y:H; Key (invKey K):H; Nonce n:analz H |]
--- a/src/HOL/Auth/Guard/GuardK.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Guard/GuardK.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -159,7 +159,7 @@
 subsection{*set obtained by decrypting a message*}
 
 abbreviation (input)
-  decrypt :: "msg set => key => msg => msg set"
+  decrypt :: "msg set => key => msg => msg set" where
   "decrypt H K Y == insert Y (H - {Crypt K Y})"
 
 lemma analz_decrypt: "[| Crypt K Y:H; Key (invKey K):H; Key n:analz H |]
--- a/src/HOL/Auth/Guard/Guard_NS_Public.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Guard/Guard_NS_Public.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -18,19 +18,23 @@
 subsection{*messages used in the protocol*}
 
 abbreviation (input)
-  ns1 :: "agent => agent => nat => event"
+  ns1 :: "agent => agent => nat => event" where
   "ns1 A B NA == Says A B (Crypt (pubK B) {|Nonce NA, Agent A|})"
 
-  ns1' :: "agent => agent => agent => nat => event"
+abbreviation (input)
+  ns1' :: "agent => agent => agent => nat => event" where
   "ns1' A' A B NA == Says A' B (Crypt (pubK B) {|Nonce NA, Agent A|})"
 
-  ns2 :: "agent => agent => nat => nat => event"
+abbreviation (input)
+  ns2 :: "agent => agent => nat => nat => event" where
   "ns2 B A NA NB == Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|})"
 
-  ns2' :: "agent => agent => agent => nat => nat => event"
+abbreviation (input)
+  ns2' :: "agent => agent => agent => nat => nat => event" where
   "ns2' B' B A NA NB == Says B' A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|})"
 
-  ns3 :: "agent => agent => nat => event"
+abbreviation (input)
+  ns3 :: "agent => agent => nat => event" where
   "ns3 A B NB == Says A B (Crypt (pubK B) (Nonce NB))"
 
 
--- a/src/HOL/Auth/Guard/Guard_OtwayRees.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Guard/Guard_OtwayRees.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -16,40 +16,48 @@
 subsection{*messages used in the protocol*}
 
 abbreviation
-  nil :: "msg"
+  nil :: "msg" where
   "nil == Number 0"
 
-  or1 :: "agent => agent => nat => event"
+abbreviation
+  or1 :: "agent => agent => nat => event" where
   "or1 A B NA ==
     Says A B {|Nonce NA, Agent A, Agent B, Ciph A {|Nonce NA, Agent A, Agent B|}|}"
 
-  or1' :: "agent => agent => agent => nat => msg => event"
+abbreviation
+  or1' :: "agent => agent => agent => nat => msg => event" where
   "or1' A' A B NA X == Says A' B {|Nonce NA, Agent A, Agent B, X|}"
 
-  or2 :: "agent => agent => nat => nat => msg => event"
+abbreviation
+  or2 :: "agent => agent => nat => nat => msg => event" where
   "or2 A B NA NB X ==
     Says B Server {|Nonce NA, Agent A, Agent B, X,
                     Ciph B {|Nonce NA, Nonce NB, Agent A, Agent B|}|}"
 
-  or2' :: "agent => agent => agent => nat => nat => event"
+abbreviation
+  or2' :: "agent => agent => agent => nat => nat => event" where
   "or2' B' A B NA NB ==
     Says B' Server {|Nonce NA, Agent A, Agent B,
                      Ciph A {|Nonce NA, Agent A, Agent B|},
                      Ciph B {|Nonce NA, Nonce NB, Agent A, Agent B|}|}"
 
-  or3 :: "agent => agent => nat => nat => key => event"
+abbreviation
+  or3 :: "agent => agent => nat => nat => key => event" where
   "or3 A B NA NB K ==
     Says Server B {|Nonce NA, Ciph A {|Nonce NA, Key K|},
                     Ciph B {|Nonce NB, Key K|}|}"
 
-  or3':: "agent => msg => agent => agent => nat => nat => key => event"
+abbreviation
+  or3':: "agent => msg => agent => agent => nat => nat => key => event" where
   "or3' S Y A B NA NB K ==
     Says S B {|Nonce NA, Y, Ciph B {|Nonce NB, Key K|}|}"
 
-  or4 :: "agent => agent => nat => msg => event"
+abbreviation
+  or4 :: "agent => agent => nat => msg => event" where
   "or4 A B NA X == Says B A {|Nonce NA, X, nil|}"
 
-  or4' :: "agent => agent => nat => key => event"
+abbreviation
+  or4' :: "agent => agent => nat => key => event" where
   "or4' B' A NA K == Says B' A {|Nonce NA, Ciph A {|Nonce NA, Key K|}, nil|}"
 
 subsection{*definition of the protocol*}
--- a/src/HOL/Auth/Guard/Guard_Shared.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Guard/Guard_Shared.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -20,7 +20,7 @@
 subsubsection{*a little abbreviation*}
 
 abbreviation
-  Ciph :: "agent => msg => msg"
+  Ciph :: "agent => msg => msg" where
   "Ciph A X == Crypt (shrK A) X"
 
 subsubsection{*agent associated to a key*}
--- a/src/HOL/Auth/Guard/Guard_Yahalom.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Guard/Guard_Yahalom.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -16,31 +16,38 @@
 subsection{*messages used in the protocol*}
 
 abbreviation (input)
-  ya1 :: "agent => agent => nat => event"
+  ya1 :: "agent => agent => nat => event" where
   "ya1 A B NA == Says A B {|Agent A, Nonce NA|}"
 
-  ya1' :: "agent => agent => agent => nat => event"
+abbreviation (input)
+  ya1' :: "agent => agent => agent => nat => event" where
   "ya1' A' A B NA == Says A' B {|Agent A, Nonce NA|}"
 
-  ya2 :: "agent => agent => nat => nat => event"
+abbreviation (input)
+  ya2 :: "agent => agent => nat => nat => event" where
   "ya2 A B NA NB == Says B Server {|Agent B, Ciph B {|Agent A, Nonce NA, Nonce NB|}|}"
 
-  ya2' :: "agent => agent => agent => nat => nat => event"
+abbreviation (input)
+  ya2' :: "agent => agent => agent => nat => nat => event" where
   "ya2' B' A B NA NB == Says B' Server {|Agent B, Ciph B {|Agent A, Nonce NA, Nonce NB|}|}"
 
-  ya3 :: "agent => agent => nat => nat => key => event"
+abbreviation (input)
+  ya3 :: "agent => agent => nat => nat => key => event" where
   "ya3 A B NA NB K ==
     Says Server A {|Ciph A {|Agent B, Key K, Nonce NA, Nonce NB|},
                     Ciph B {|Agent A, Key K|}|}"
 
-  ya3':: "agent => msg => agent => agent => nat => nat => key => event"
+abbreviation (input)
+  ya3':: "agent => msg => agent => agent => nat => nat => key => event" where
   "ya3' S Y A B NA NB K ==
     Says S A {|Ciph A {|Agent B, Key K, Nonce NA, Nonce NB|}, Y|}"
 
-  ya4 :: "agent => agent => nat => nat => msg => event"
+abbreviation (input)
+  ya4 :: "agent => agent => nat => nat => msg => event" where
   "ya4 A B K NB Y == Says A B {|Y, Crypt K (Nonce NB)|}"
 
-  ya4' :: "agent => agent => nat => nat => msg => event"
+abbreviation (input)
+  ya4' :: "agent => agent => nat => nat => msg => event" where
   "ya4' A' B K NB Y == Says A' B {|Y, Crypt K (Nonce NB)|}"
 
 
--- a/src/HOL/Auth/Guard/List_Msg.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Guard/List_Msg.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -18,7 +18,7 @@
 subsubsection{*nil is represented by any message which is not a pair*}
 
 abbreviation (input)
-  cons :: "msg => msg => msg"
+  cons :: "msg => msg => msg" where
   "cons x l == {|x,l|}"
 
 subsubsection{*induction principle*}
@@ -134,7 +134,7 @@
 subsubsection{*set of well-formed agent-list messages*}
 
 abbreviation
-  nil :: msg
+  nil :: msg where
   "nil == Number 0"
 
 consts agl :: "msg set"
--- a/src/HOL/Auth/Guard/Proto.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Guard/Proto.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -18,7 +18,7 @@
 types rule = "event set * event"
 
 abbreviation
-  msg' :: "rule => msg"
+  msg' :: "rule => msg" where
   "msg' R == msg (snd R)"
 
 types proto = "rule set"
@@ -77,16 +77,19 @@
 "ap s (Notes A X) = Notes (agent s A) (apm s X)"
 
 abbreviation
-  ap' :: "subs => rule => event"
+  ap' :: "subs => rule => event" where
   "ap' s R == ap s (snd R)"
 
-  apm' :: "subs => rule => msg"
+abbreviation
+  apm' :: "subs => rule => msg" where
   "apm' s R == apm s (msg' R)"
 
-  priK' :: "subs => agent => key"
+abbreviation
+  priK' :: "subs => agent => key" where
   "priK' s A == priK (agent s A)"
 
-  pubK' :: "subs => agent => key"
+abbreviation
+  pubK' :: "subs => agent => key" where
   "pubK' s A == pubK (agent s A)"
 
 subsection{*nonces generated by a rule*}
@@ -380,14 +383,16 @@
 ns :: proto
 
 abbreviation
-  ns1 :: rule
+  ns1 :: rule where
   "ns1 == ({}, Says a b (Crypt (pubK b) {|Nonce Na, Agent a|}))"
 
-  ns2 :: rule
+abbreviation
+  ns2 :: rule where
   "ns2 == ({Says a' b (Crypt (pubK b) {|Nonce Na, Agent a|})},
     Says b a (Crypt (pubK a) {|Nonce Na, Nonce Nb, Agent b|}))"
 
-  ns3 :: rule
+abbreviation
+  ns3 :: rule where
   "ns3 == ({Says a b (Crypt (pubK b) {|Nonce Na, Agent a|}),
     Says b' a (Crypt (pubK a) {|Nonce Na, Nonce Nb, Agent b|})},
     Says a b (Crypt (pubK b) (Nonce Nb)))"
@@ -398,10 +403,11 @@
 [iff]: "ns3:ns"
 
 abbreviation (input)
-  ns3a :: event
+  ns3a :: event where
   "ns3a == Says a b (Crypt (pubK b) {|Nonce Na, Agent a|})"
 
-  ns3b :: event
+abbreviation (input)
+  ns3b :: event where
   "ns3b == Says b' a (Crypt (pubK a) {|Nonce Na, Nonce Nb, Agent b|})"
 
 constdefs keys :: "keyfun"
--- a/src/HOL/Auth/KerberosIV.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/KerberosIV.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,11 +11,10 @@
 text{*The "u" prefix indicates theorems referring to an updated version of the protocol. The "r" suffix indicates theorems where the confidentiality assumptions are relaxed by the corresponding arguments.*}
 
 abbreviation
-  Kas :: agent
-  "Kas == Server"
+  Kas :: agent where "Kas == Server"
 
-  Tgs :: agent
-  "Tgs == Friend 0"
+abbreviation
+  Tgs :: agent where "Tgs == Friend 0"
 
 
 axioms
@@ -79,19 +78,23 @@
 
 abbreviation
   (*The current time is the length of the trace*)
-  CT :: "event list=>nat"
+  CT :: "event list=>nat" where
   "CT == length"
 
-  expiredAK :: "[nat, event list] => bool"
+abbreviation
+  expiredAK :: "[nat, event list] => bool" where
   "expiredAK Ta evs == authKlife + Ta < CT evs"
 
-  expiredSK :: "[nat, event list] => bool"
+abbreviation
+  expiredSK :: "[nat, event list] => bool" where
   "expiredSK Ts evs == servKlife + Ts < CT evs"
 
-  expiredA :: "[nat, event list] => bool"
+abbreviation
+  expiredA :: "[nat, event list] => bool" where
   "expiredA T evs == authlife + T < CT evs"
 
-  valid :: "[nat, nat] => bool" ("valid _ wrt _")
+abbreviation
+  valid :: "[nat, nat] => bool" ("valid _ wrt _") where
   "valid T1 wrt T2 == T1 <= replylife + T2"
 
 (*---------------------------------------------------------------------*)
--- a/src/HOL/Auth/KerberosIV_Gets.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/KerberosIV_Gets.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,11 +11,10 @@
 text{*The "u" prefix indicates theorems referring to an updated version of the protocol. The "r" suffix indicates theorems where the confidentiality assumptions are relaxed by the corresponding arguments.*}
 
 abbreviation
-  Kas :: agent
-  "Kas == Server"
+  Kas :: agent where "Kas == Server"
 
-  Tgs :: agent
-  "Tgs == Friend 0"
+abbreviation
+  Tgs :: agent where "Tgs == Friend 0"
 
 
 axioms
@@ -67,19 +66,23 @@
 
 abbreviation
   (*The current time is just the length of the trace!*)
-  CT :: "event list=>nat"
+  CT :: "event list=>nat" where
   "CT == length"
 
-  expiredAK :: "[nat, event list] => bool"
+abbreviation
+  expiredAK :: "[nat, event list] => bool" where
   "expiredAK Ta evs == authKlife + Ta < CT evs"
 
-  expiredSK :: "[nat, event list] => bool"
+abbreviation
+  expiredSK :: "[nat, event list] => bool" where
   "expiredSK Ts evs == servKlife + Ts < CT evs"
 
-  expiredA :: "[nat, event list] => bool"
+abbreviation
+  expiredA :: "[nat, event list] => bool" where
   "expiredA T evs == authlife + T < CT evs"
 
-  valid :: "[nat, nat] => bool" ("valid _ wrt _")
+abbreviation
+  valid :: "[nat, nat] => bool" ("valid _ wrt _") where
   "valid T1 wrt T2 == T1 <= replylife + T2"
 
 (*---------------------------------------------------------------------*)
--- a/src/HOL/Auth/KerberosV.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/KerberosV.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -9,10 +9,11 @@
 text{*The "u" prefix indicates theorems referring to an updated version of the protocol. The "r" suffix indicates theorems where the confidentiality assumptions are relaxed by the corresponding arguments.*}
 
 abbreviation
-  Kas :: agent
+  Kas :: agent where
   "Kas == Server"
 
-  Tgs :: agent
+abbreviation
+  Tgs :: agent where
   "Tgs == Friend 0"
 
 
@@ -68,19 +69,23 @@
 
 abbreviation
   (*The current time is just the length of the trace!*)
-  CT :: "event list=>nat"
+  CT :: "event list=>nat" where
   "CT == length"
 
-  expiredAK :: "[nat, event list] => bool"
+abbreviation
+  expiredAK :: "[nat, event list] => bool" where
   "expiredAK T evs == authKlife + T < CT evs"
 
-  expiredSK :: "[nat, event list] => bool"
+abbreviation
+  expiredSK :: "[nat, event list] => bool" where
   "expiredSK T evs == servKlife + T < CT evs"
 
-  expiredA :: "[nat, event list] => bool"
+abbreviation
+  expiredA :: "[nat, event list] => bool" where
   "expiredA T evs == authlife + T < CT evs"
 
-  valid :: "[nat, nat] => bool"  ("valid _ wrt _")
+abbreviation
+  valid :: "[nat, nat] => bool"  ("valid _ wrt _") where
   "valid T1 wrt T2 == T1 <= replylife + T2"
 
 (*---------------------------------------------------------------------*)
--- a/src/HOL/Auth/Kerberos_BAN.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Kerberos_BAN.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -39,13 +39,15 @@
     by blast
 
 abbreviation
-  CT :: "event list=>nat"
+  CT :: "event list=>nat" where
   "CT == length "
 
-  expiredK :: "[nat, event list] => bool"
+abbreviation
+  expiredK :: "[nat, event list] => bool" where
   "expiredK T evs == sesKlife + T < CT evs"
 
-  expiredA :: "[nat, event list] => bool"
+abbreviation
+  expiredA :: "[nat, event list] => bool" where
   "expiredA T evs == authlife + T < CT evs"
 
 
--- a/src/HOL/Auth/Kerberos_BAN_Gets.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Kerberos_BAN_Gets.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -40,13 +40,15 @@
 
 
 abbreviation
-  CT :: "event list=>nat"
+  CT :: "event list=>nat" where
   "CT == length"
 
-  expiredK :: "[nat, event list] => bool"
+abbreviation
+  expiredK :: "[nat, event list] => bool" where
   "expiredK T evs == sesKlife + T < CT evs"
 
-  expiredA :: "[nat, event list] => bool"
+abbreviation
+  expiredA :: "[nat, event list] => bool" where
   "expiredA T evs == authlife + T < CT evs"
 
 
--- a/src/HOL/Auth/Public.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Public.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -21,19 +21,24 @@
   publicKey :: "[keymode,agent] => key"
 
 abbreviation
-  pubEK :: "agent => key"
+  pubEK :: "agent => key" where
   "pubEK == publicKey Encryption"
 
-  pubSK :: "agent => key"
+abbreviation
+  pubSK :: "agent => key" where
   "pubSK == publicKey Signature"
 
-  privateKey :: "[keymode, agent] => key"
+abbreviation
+  privateKey :: "[keymode, agent] => key" where
   "privateKey b A == invKey (publicKey b A)"
 
+abbreviation
   (*BEWARE!! priEK, priSK DON'T WORK with inj, range, image, etc.*)
-  priEK :: "agent => key"
+  priEK :: "agent => key" where
   "priEK A == privateKey Encryption A"
-  priSK :: "agent => key"
+
+abbreviation
+  priSK :: "agent => key" where
   "priSK A == privateKey Signature A"
 
 
@@ -41,10 +46,11 @@
 simple situation where the signature and encryption keys are the same.*}
 
 abbreviation
-  pubK :: "agent => key"
+  pubK :: "agent => key" where
   "pubK A == pubEK A"
 
-  priK :: "agent => key"
+abbreviation
+  priK :: "agent => key" where
   "priK A == invKey (pubEK A)"
 
 
--- a/src/HOL/Auth/Recur.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Recur.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -10,7 +10,7 @@
 
 text{*End marker for message bundles*}
 abbreviation
-  END :: "msg"
+  END :: "msg" where
   "END == Number 0"
 
 (*Two session keys are distributed to each agent except for the initiator,
--- a/src/HOL/Auth/Smartcard/EventSC.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/Smartcard/EventSC.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -25,7 +25,7 @@
  secureM :: "bool"(*assumption of secure means between agents and their cards*)
 
 abbreviation
-  insecureM :: bool (*certain protocols make no assumption of secure means*)
+  insecureM :: bool where (*certain protocols make no assumption of secure means*)
   "insecureM == \<not>secureM"
 
 
--- a/src/HOL/Auth/TLS.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/TLS.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -64,10 +64,11 @@
   sessionK :: "(nat*nat*nat) * role => key"
 
 abbreviation
-  clientK :: "nat*nat*nat => key"
+  clientK :: "nat*nat*nat => key" where
   "clientK X == sessionK(X, ClientRole)"
 
-  serverK :: "nat*nat*nat => key"
+abbreviation
+  serverK :: "nat*nat*nat => key" where
   "serverK X == sessionK(X, ServerRole)"
 
 
--- a/src/HOL/Auth/ZhouGollmann.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Auth/ZhouGollmann.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -13,17 +13,12 @@
 theory ZhouGollmann imports Public begin
 
 abbreviation
-  TTP :: agent
-  "TTP == Server"
+  TTP :: agent where "TTP == Server"
 
-  f_sub :: nat
-  "f_sub == 5"
-  f_nro :: nat
-  "f_nro == 2"
-  f_nrr :: nat
-  "f_nrr == 3"
-  f_con :: nat
-  "f_con == 4"
+abbreviation f_sub :: nat where "f_sub == 5"
+abbreviation f_nro :: nat where "f_nro == 2"
+abbreviation f_nrr :: nat where "f_nrr == 3"
+abbreviation f_con :: nat where "f_con == 4"
 
 
 constdefs
--- a/src/HOL/Bali/Example.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Bali/Example.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -87,31 +87,39 @@
   surj_label_:" \<exists>m. n = label_ m"
 
 abbreviation
-  HasFoo :: qtname
+  HasFoo :: qtname where
   "HasFoo == \<lparr>pid=java_lang,tid=TName (tnam_ HasFoo_)\<rparr>"
 
-  Base :: qtname
+abbreviation
+  Base :: qtname where
   "Base == \<lparr>pid=java_lang,tid=TName (tnam_ Base_)\<rparr>"
 
-  Ext :: qtname
+abbreviation
+  Ext :: qtname where
   "Ext == \<lparr>pid=java_lang,tid=TName (tnam_ Ext_)\<rparr>"
 
-  Main :: qtname
+abbreviation
+  Main :: qtname where
   "Main == \<lparr>pid=java_lang,tid=TName (tnam_ Main_)\<rparr>"
 
-  arr :: vname
+abbreviation
+  arr :: vname where
   "arr == (vnam_ arr_)"
 
-  vee :: vname
+abbreviation
+  vee :: vname where
   "vee == (vnam_ vee_)"
 
-  z :: vname
+abbreviation
+  z :: vname where
   "z == (vnam_ z_)"
 
-  e :: vname
+abbreviation
+  e :: vname where
   "e == (vnam_ e_)"
 
-  lab1:: label
+abbreviation
+  lab1:: label where
   "lab1 == label_ lab1_"
 
 
@@ -261,7 +269,7 @@
 section "program"
 
 abbreviation
-  tprg :: prog
+  tprg :: prog where
   "tprg == \<lparr>ifaces=Ifaces,classes=Classes\<rparr>"
 
 constdefs
@@ -1195,11 +1203,10 @@
   b :: loc
   c :: loc
 
-abbreviation
-  "one == Suc 0"
-  "two == Suc one"
-  "tree == Suc two"
-  "four == Suc tree"
+abbreviation "one == Suc 0"
+abbreviation "two == Suc one"
+abbreviation "tree == Suc two"
+abbreviation "four == Suc tree"
 
 syntax
   obj_a :: obj
--- a/src/HOL/Code_Generator.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Code_Generator.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -175,7 +175,7 @@
 text {* lazy @{const If} *}
 
 definition
-  if_delayed :: "bool \<Rightarrow> (bool \<Rightarrow> 'a) \<Rightarrow> (bool \<Rightarrow> 'a) \<Rightarrow> 'a"
+  if_delayed :: "bool \<Rightarrow> (bool \<Rightarrow> 'a) \<Rightarrow> (bool \<Rightarrow> 'a) \<Rightarrow> 'a" where
   "if_delayed b f g = (if b then f True else g False)"
 
 lemma [code func]:
--- a/src/HOL/Complex/CLim.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Complex/CLim.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -34,43 +34,50 @@
 done
 
 abbreviation
-
   CLIM :: "[complex=>complex,complex,complex] => bool"
-				("((_)/ -- (_)/ --C> (_))" [60, 0, 60] 60)
+				("((_)/ -- (_)/ --C> (_))" [60, 0, 60] 60) where
   "CLIM == LIM"
 
+abbreviation
   NSCLIM :: "[complex=>complex,complex,complex] => bool"
-			      ("((_)/ -- (_)/ --NSC> (_))" [60, 0, 60] 60)
+			      ("((_)/ -- (_)/ --NSC> (_))" [60, 0, 60] 60) where
   "NSCLIM == NSLIM"
 
+abbreviation
   (* f: C --> R *)
   CRLIM :: "[complex=>real,complex,real] => bool"
-				("((_)/ -- (_)/ --CR> (_))" [60, 0, 60] 60)
+				("((_)/ -- (_)/ --CR> (_))" [60, 0, 60] 60) where
   "CRLIM == LIM"
 
+abbreviation
   NSCRLIM :: "[complex=>real,complex,real] => bool"
-			      ("((_)/ -- (_)/ --NSCR> (_))" [60, 0, 60] 60)
+			      ("((_)/ -- (_)/ --NSCR> (_))" [60, 0, 60] 60) where
   "NSCRLIM == NSLIM"
 
-
-  isContc :: "[complex=>complex,complex] => bool"
+abbreviation
+  isContc :: "[complex=>complex,complex] => bool" where
   "isContc == isCont"
 
+abbreviation
   (* NS definition dispenses with limit notions *)
-  isNSContc :: "[complex=>complex,complex] => bool"
+  isNSContc :: "[complex=>complex,complex] => bool" where
   "isNSContc == isNSCont"
 
-  isContCR :: "[complex=>real,complex] => bool"
+abbreviation
+  isContCR :: "[complex=>real,complex] => bool" where
   "isContCR == isCont"
 
+abbreviation
   (* NS definition dispenses with limit notions *)
-  isNSContCR :: "[complex=>real,complex] => bool"
+  isNSContCR :: "[complex=>real,complex] => bool" where
   "isNSContCR == isNSCont"
 
-  isUContc :: "(complex=>complex) => bool"
+abbreviation
+  isUContc :: "(complex=>complex) => bool" where
   "isUContc == isUCont"
 
-  isNSUContc :: "(complex=>complex) => bool"
+abbreviation
+  isNSUContc :: "(complex=>complex) => bool" where
   "isNSUContc == isNSUCont"
 
 
@@ -129,25 +136,27 @@
 by (rule isNSUCont_def)
 
 
+  (* differentiation: D is derivative of function f at x *)
 definition
-
-  (* differentiation: D is derivative of function f at x *)
   cderiv:: "[complex=>complex,complex,complex] => bool"
-			    ("(CDERIV (_)/ (_)/ :> (_))" [60, 0, 60] 60)
+			    ("(CDERIV (_)/ (_)/ :> (_))" [60, 0, 60] 60) where
   "CDERIV f x :> D = ((%h. (f(x + h) - f(x))/h) -- 0 --C> D)"
 
+definition
   nscderiv :: "[complex=>complex,complex,complex] => bool"
-			    ("(NSCDERIV (_)/ (_)/ :> (_))" [60, 0, 60] 60)
+			    ("(NSCDERIV (_)/ (_)/ :> (_))" [60, 0, 60] 60) where
   "NSCDERIV f x :> D = (\<forall>h \<in> Infinitesimal - {0}.
 			      (( *f* f)(hcomplex_of_complex x + h)
         			 - hcomplex_of_complex (f x))/h @= hcomplex_of_complex D)"
 
+definition
   cdifferentiable :: "[complex=>complex,complex] => bool"
-                     (infixl "cdifferentiable" 60)
+                     (infixl "cdifferentiable" 60) where
   "f cdifferentiable x = (\<exists>D. CDERIV f x :> D)"
 
+definition
   NSCdifferentiable :: "[complex=>complex,complex] => bool"
-                        (infixl "NSCdifferentiable" 60)
+                        (infixl "NSCdifferentiable" 60) where
   "f NSCdifferentiable x = (\<exists>D. NSCDERIV f x :> D)"
 
 
--- a/src/HOL/Complex/Complex.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Complex/Complex.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -235,7 +235,7 @@
 subsection{*Embedding Properties for @{term complex_of_real} Map*}
 
 abbreviation
-  complex_of_real :: "real => complex"
+  complex_of_real :: "real => complex" where
   "complex_of_real == of_real"
 
 lemma complex_of_real_def: "complex_of_real r = Complex r 0"
@@ -321,7 +321,7 @@
 subsection{*Conjugation is an Automorphism*}
 
 definition
-  cnj :: "complex => complex"
+  cnj :: "complex => complex" where
   "cnj z = Complex (Re z) (-Im z)"
 
 lemma complex_cnj: "cnj (Complex x y) = Complex x (-y)"
@@ -385,7 +385,7 @@
   complex_norm_def: "norm z == sqrt(Re(z) ^ 2 + Im(z) ^ 2)"
 
 abbreviation
-  cmod :: "complex => real"
+  cmod :: "complex => real" where
   "cmod == norm"
 
 lemmas cmod_def = complex_norm_def
@@ -575,10 +575,11 @@
 definition
   (*------------ Argand -------------*)
 
-  sgn :: "complex => complex"
+  sgn :: "complex => complex" where
   "sgn z = z / complex_of_real(cmod z)"
 
-  arg :: "complex => real"
+definition
+  arg :: "complex => real" where
   "arg z = (SOME a. Re(sgn z) = cos a & Im(sgn z) = sin a & -pi < a & a \<le> pi)"
 
 lemma sgn_zero [simp]: "sgn 0 = 0"
@@ -671,15 +672,17 @@
 definition
 
   (* abbreviation for (cos a + i sin a) *)
-  cis :: "real => complex"
+  cis :: "real => complex" where
   "cis a = Complex (cos a) (sin a)"
 
+definition
   (* abbreviation for r*(cos a + i sin a) *)
-  rcis :: "[real, real] => complex"
+  rcis :: "[real, real] => complex" where
   "rcis r a = complex_of_real r * cis a"
 
+definition
   (* e ^ (x + iy) *)
-  expi :: "complex => complex"
+  expi :: "complex => complex" where
   "expi z = complex_of_real(exp (Re z)) * cis (Im z)"
 
 lemma complex_split_polar:
--- a/src/HOL/Complex/NSCA.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Complex/NSCA.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,10 +11,11 @@
 
 definition
    (* standard complex numbers reagarded as an embedded subset of NS complex *)
-   SComplex  :: "hcomplex set"
+   SComplex  :: "hcomplex set" where
    "SComplex = {x. \<exists>r. x = hcomplex_of_complex r}"
 
-   stc :: "hcomplex => hcomplex"
+definition
+   stc :: "hcomplex => hcomplex" where
     --{* standard part map*}
    "stc x = (SOME r. x \<in> HFinite & r:SComplex & r @= x)"
 
--- a/src/HOL/Complex/NSComplex.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Complex/NSComplex.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -14,63 +14,74 @@
 types hcomplex = "complex star"
 
 abbreviation
-  hcomplex_of_complex :: "complex => complex star"
+  hcomplex_of_complex :: "complex => complex star" where
   "hcomplex_of_complex == star_of"
 
-  hcmod :: "complex star => real star"
+abbreviation
+  hcmod :: "complex star => real star" where
   "hcmod == hnorm"
 
-definition
 
   (*--- real and Imaginary parts ---*)
 
-  hRe :: "hcomplex => hypreal"
+definition
+  hRe :: "hcomplex => hypreal" where
   "hRe = *f* Re"
 
-  hIm :: "hcomplex => hypreal"
+definition
+  hIm :: "hcomplex => hypreal" where
   "hIm = *f* Im"
 
 
   (*------ imaginary unit ----------*)
 
-  iii :: hcomplex
+definition
+  iii :: hcomplex where
   "iii = star_of ii"
 
   (*------- complex conjugate ------*)
 
-  hcnj :: "hcomplex => hcomplex"
+definition
+  hcnj :: "hcomplex => hcomplex" where
   "hcnj = *f* cnj"
 
   (*------------ Argand -------------*)
 
-  hsgn :: "hcomplex => hcomplex"
+definition
+  hsgn :: "hcomplex => hcomplex" where
   "hsgn = *f* sgn"
 
-  harg :: "hcomplex => hypreal"
+definition
+  harg :: "hcomplex => hypreal" where
   "harg = *f* arg"
 
+definition
   (* abbreviation for (cos a + i sin a) *)
-  hcis :: "hypreal => hcomplex"
+  hcis :: "hypreal => hcomplex" where
   "hcis = *f* cis"
 
   (*----- injection from hyperreals -----*)
 
-  hcomplex_of_hypreal :: "hypreal => hcomplex"
+definition
+  hcomplex_of_hypreal :: "hypreal => hcomplex" where
   "hcomplex_of_hypreal = *f* complex_of_real"
 
+definition
   (* abbreviation for r*(cos a + i sin a) *)
-  hrcis :: "[hypreal, hypreal] => hcomplex"
+  hrcis :: "[hypreal, hypreal] => hcomplex" where
   "hrcis = *f2* rcis"
 
   (*------------ e ^ (x + iy) ------------*)
-
-  hexpi :: "hcomplex => hcomplex"
+definition
+  hexpi :: "hcomplex => hcomplex" where
   "hexpi = *f* expi"
 
-  HComplex :: "[hypreal,hypreal] => hcomplex"
+definition
+  HComplex :: "[hypreal,hypreal] => hcomplex" where
   "HComplex = *f2* Complex"
 
-  hcpow :: "[hcomplex,hypnat] => hcomplex"  (infixr "hcpow" 80)
+definition
+  hcpow :: "[hcomplex,hypnat] => hcomplex"  (infixr "hcpow" 80) where
   "(z::hcomplex) hcpow (n::hypnat) = ( *f2* op ^) z n"
 
 lemmas hcomplex_defs [transfer_unfold] =
--- a/src/HOL/Complex/ex/NSPrimes.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Complex/ex/NSPrimes.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -14,13 +14,15 @@
 primes by considering a property of nonstandard sets.*}
 
 definition
-  hdvd  :: "[hypnat, hypnat] => bool"       (infixl "hdvd" 50)
+  hdvd  :: "[hypnat, hypnat] => bool"       (infixl "hdvd" 50) where
   [transfer_unfold]: "(M::hypnat) hdvd N = ( *p2* (op dvd)) M N"
 
-  starprime :: "hypnat set"
+definition
+  starprime :: "hypnat set" where
   [transfer_unfold]: "starprime = ( *s* {p. prime p})"
 
-  choicefun :: "'a set => 'a"
+definition
+  choicefun :: "'a set => 'a" where
   "choicefun E = (@x. \<exists>X \<in> Pow(E) -{{}}. x : X)"
 
 consts injf_max :: "nat => ('a::{order} set) => 'a"
--- a/src/HOL/Complex/ex/Sqrt.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Complex/ex/Sqrt.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -18,7 +18,7 @@
 *}
 
 definition
-  rationals  ("\<rat>")
+  rationals  ("\<rat>") where
   "\<rat> = {x. \<exists>m n. n \<noteq> 0 \<and> \<bar>x\<bar> = real (m::nat) / real (n::nat)}"
 
 theorem rationals_rep [elim?]:
--- a/src/HOL/Complex/ex/Sqrt_Script.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Complex/ex/Sqrt_Script.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -53,7 +53,7 @@
 subsection {* The set of rational numbers *}
 
 definition
-  rationals :: "real set"    ("\<rat>")
+  rationals :: "real set"    ("\<rat>") where
   "\<rat> = {x. \<exists>m n. n \<noteq> 0 \<and> \<bar>x\<bar> = real (m::nat) / real (n::nat)}"
 
 
--- a/src/HOL/Datatype.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Datatype.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -726,7 +726,7 @@
 subsubsection {* Code generator setup *}
 
 definition
-  is_none :: "'a option \<Rightarrow> bool"
+  is_none :: "'a option \<Rightarrow> bool" where
   is_none_none [normal post, symmetric, code inline]: "is_none x \<longleftrightarrow> x = None"
 
 lemma is_none_code [code]:
--- a/src/HOL/Equiv_Relations.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Equiv_Relations.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -164,7 +164,8 @@
   assumes congruent: "(y,z) \<in> r ==> f y = f z"
 
 abbreviation
-  RESPECTS :: "('a => 'b) => ('a * 'a) set => bool"  (infixr "respects" 80)
+  RESPECTS :: "('a => 'b) => ('a * 'a) set => bool"
+    (infixr "respects" 80) where
   "f respects r == congruent r f"
 
 
@@ -222,7 +223,8 @@
 
 text{*Abbreviation for the common case where the relations are identical*}
 abbreviation
-  RESPECTS2:: "['a => 'a => 'b, ('a * 'a)set] => bool" (infixr "respects2 " 80)
+  RESPECTS2:: "['a => 'a => 'b, ('a * 'a) set] => bool"
+    (infixr "respects2 " 80) where
   "f respects2 r == congruent2 r r f"
 
 
--- a/src/HOL/Extraction/Pigeonhole.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Extraction/Pigeonhole.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -302,9 +302,10 @@
 ML "PH.pigeonhole 8 (PH.sel [0,1,2,3,4,5,6,3,7,8])"
 
 definition
-  arbitrary_nat :: "nat \<times> nat"
+  arbitrary_nat :: "nat \<times> nat" where
   [symmetric, code inline]: "arbitrary_nat = arbitrary"
-  arbitrary_nat_subst :: "nat \<times> nat"
+definition
+  arbitrary_nat_subst :: "nat \<times> nat" where
   "arbitrary_nat_subst = (0, 0)"
 
 code_axioms
@@ -312,6 +313,7 @@
 
 definition
   "test n = pigeonhole n (\<lambda>m. m - 1)"
+definition
   "test' n = pigeonhole_slow n (\<lambda>m. m - 1)"
 
 code_gen test test' "op !" (SML *)
--- a/src/HOL/Finite_Set.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Finite_Set.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -803,7 +803,7 @@
   "setsum f A == if finite A then fold (op +) f 0 A else 0"
 
 abbreviation
-  Setsum  ("\<Sum>_" [1000] 999)
+  Setsum  ("\<Sum>_" [1000] 999) where
   "\<Sum>A == setsum (%x. x) A"
 
 text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is
@@ -1275,7 +1275,7 @@
   "setprod f A == if finite A then fold (op *) f 1 A else 1"
 
 abbreviation
-  Setprod  ("\<Prod>_" [1000] 999)
+  Setprod  ("\<Prod>_" [1000] 999) where
   "\<Prod>A == setprod (%x. x) A"
 
 syntax
--- a/src/HOL/FixedPoint.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/FixedPoint.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -20,12 +20,13 @@
 defs Sup_def: "Sup A == Meet {b. \<forall>a \<in> A. a <= b}"
 
 definition
- SUP :: "('a \<Rightarrow> 'b::order) \<Rightarrow> 'b" (binder "SUP " 10)
-"SUP x. f x == Sup (f ` UNIV)"
+  SUP :: "('a \<Rightarrow> 'b::order) \<Rightarrow> 'b"  (binder "SUP " 10) where
+  "SUP x. f x == Sup (f ` UNIV)"
+
 (*
 abbreviation
- bot :: "'a::order"
-"bot == Sup {}"
+  bot :: "'a::order" where
+  "bot == Sup {}"
 *)
 axclass comp_lat < order
   Meet_lower: "x \<in> A \<Longrightarrow> Meet A <= x"
--- a/src/HOL/FunDef.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/FunDef.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -108,7 +108,7 @@
 section {* Definitions with default value *}
 
 definition
-  THE_default :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a"
+  THE_default :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a" where
   "THE_default d P = (if (\<exists>!x. P x) then (THE x. P x) else d)"
 
 lemma THE_defaultI': "\<exists>!x. P x \<Longrightarrow> P (THE_default d P)"
@@ -178,9 +178,9 @@
 inductive rpg
 intros
   "(Inr y, y) : rpg"
-definition
-  "lproj x = (THE y. (x,y) : lpg)"
-  "rproj x = (THE y. (x,y) : rpg)"
+
+definition "lproj x = (THE y. (x,y) : lpg)"
+definition "rproj x = (THE y. (x,y) : rpg)"
 
 lemma lproj_inl:
   "lproj (Inl x) = x"
--- a/src/HOL/HOL.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/HOL.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -58,27 +58,27 @@
   "op ="  (infix "=" 50)
 
 abbreviation
-  not_equal     :: "['a, 'a] => bool"               (infixl "~=" 50)
+  not_equal :: "['a, 'a] => bool"  (infixl "~=" 50) where
   "x ~= y == ~ (x = y)"
 
 notation (output)
   not_equal  (infix "~=" 50)
 
 notation (xsymbols)
-  Not  ("\<not> _" [40] 40)
-  "op &"  (infixr "\<and>" 35)
-  "op |"  (infixr "\<or>" 30)
-  "op -->"  (infixr "\<longrightarrow>" 25)
+  Not  ("\<not> _" [40] 40) and
+  "op &"  (infixr "\<and>" 35) and
+  "op |"  (infixr "\<or>" 30) and
+  "op -->"  (infixr "\<longrightarrow>" 25) and
   not_equal  (infix "\<noteq>" 50)
 
 notation (HTML output)
-  Not  ("\<not> _" [40] 40)
-  "op &"  (infixr "\<and>" 35)
-  "op |"  (infixr "\<or>" 30)
+  Not  ("\<not> _" [40] 40) and
+  "op &"  (infixr "\<and>" 35) and
+  "op |"  (infixr "\<or>" 30) and
   not_equal  (infix "\<noteq>" 50)
 
 abbreviation (iff)
-  iff :: "[bool, bool] => bool"  (infixr "<->" 25)
+  iff :: "[bool, bool] => bool"  (infixr "<->" 25) where
   "A <-> B == A = B"
 
 notation (xsymbols)
--- a/src/HOL/Hyperreal/Deriv.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/Deriv.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -15,26 +15,29 @@
 text{*Standard and Nonstandard Definitions*}
 
 definition
-
   deriv :: "[real \<Rightarrow> 'a::real_normed_vector, real, 'a] \<Rightarrow> bool"
     --{*Differentiation: D is derivative of function f at x*}
-          ("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
+          ("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) where
   "DERIV f x :> D = ((%h. (f(x + h) - f x) /# h) -- 0 --> D)"
 
+definition
   nsderiv :: "[real=>real,real,real] => bool"
-          ("(NSDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
+          ("(NSDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) where
   "NSDERIV f x :> D = (\<forall>h \<in> Infinitesimal - {0}.
       (( *f* f)(hypreal_of_real x + h)
        - hypreal_of_real (f x))/h @= hypreal_of_real D)"
 
-  differentiable :: "[real=>real,real] => bool"   (infixl "differentiable" 60)
+definition
+  differentiable :: "[real=>real,real] => bool"   (infixl "differentiable" 60) where
   "f differentiable x = (\<exists>D. DERIV f x :> D)"
 
+definition
   NSdifferentiable :: "[real=>real,real] => bool"
-                       (infixl "NSdifferentiable" 60)
+                       (infixl "NSdifferentiable" 60) where
   "f NSdifferentiable x = (\<exists>D. NSDERIV f x :> D)"
 
-  increment :: "[real=>real,real,hypreal] => hypreal"
+definition
+  increment :: "[real=>real,real,hypreal] => hypreal" where
   "increment f x h = (@inc. f NSdifferentiable x &
            inc = ( *f* f)(hypreal_of_real x + h) - hypreal_of_real (f x))"
 
--- a/src/HOL/Hyperreal/HLog.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/HLog.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -19,10 +19,11 @@
 
 
 definition
-  powhr  :: "[hypreal,hypreal] => hypreal"     (infixr "powhr" 80)
+  powhr  :: "[hypreal,hypreal] => hypreal"     (infixr "powhr" 80) where
   "x powhr a = starfun2 (op powr) x a"
   
-  hlog :: "[hypreal,hypreal] => hypreal"
+definition
+  hlog :: "[hypreal,hypreal] => hypreal" where
   "hlog a x = starfun2 log a x"
 
 declare powhr_def [transfer_unfold]
--- a/src/HOL/Hyperreal/HSeries.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/HSeries.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -12,17 +12,20 @@
 begin
 
 definition
-  sumhr :: "(hypnat * hypnat * (nat=>real)) => hypreal"
+  sumhr :: "(hypnat * hypnat * (nat=>real)) => hypreal" where
   "sumhr = 
       (%(M,N,f). starfun2 (%m n. setsum f {m..<n}) M N)"
 
-  NSsums  :: "[nat=>real,real] => bool"     (infixr "NSsums" 80)
+definition
+  NSsums  :: "[nat=>real,real] => bool"     (infixr "NSsums" 80) where
   "f NSsums s = (%n. setsum f {0..<n}) ----NS> s"
 
-  NSsummable :: "(nat=>real) => bool"
+definition
+  NSsummable :: "(nat=>real) => bool" where
   "NSsummable f = (\<exists>s. f NSsums s)"
 
-  NSsuminf   :: "(nat=>real) => real"
+definition
+  NSsuminf   :: "(nat=>real) => real" where
   "NSsuminf f = (THE s. f NSsums s)"
 
 
--- a/src/HOL/Hyperreal/HTranscendental.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/HTranscendental.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -31,15 +31,17 @@
 
 
 definition
-  exphr :: "real => hypreal"
+  exphr :: "real => hypreal" where
     --{*define exponential function using standard part *}
   "exphr x =  st(sumhr (0, whn, %n. inverse(real (fact n)) * (x ^ n)))"
 
-  sinhr :: "real => hypreal"
+definition
+  sinhr :: "real => hypreal" where
   "sinhr x = st(sumhr (0, whn, %n. (if even(n) then 0 else
              ((-1) ^ ((n - 1) div 2))/(real (fact n))) * (x ^ n)))"
   
-  coshr :: "real => hypreal"
+definition
+  coshr :: "real => hypreal" where
   "coshr x = st(sumhr (0, whn, %n. (if even(n) then
             ((-1) ^ (n div 2))/(real (fact n)) else 0) * x ^ n))"
 
--- a/src/HOL/Hyperreal/HyperArith.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/HyperArith.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -34,7 +34,7 @@
 subsection{*Embedding the Naturals into the Hyperreals*}
 
 abbreviation
-  hypreal_of_nat   :: "nat => hypreal"
+  hypreal_of_nat :: "nat => hypreal" where
   "hypreal_of_nat == of_nat"
 
 lemma SNat_eq: "Nats = {n. \<exists>N. n = hypreal_of_nat N}"
--- a/src/HOL/Hyperreal/HyperDef.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/HyperDef.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -15,22 +15,23 @@
 types hypreal = "real star"
 
 abbreviation
-  hypreal_of_real :: "real => real star"
+  hypreal_of_real :: "real => real star" where
   "hypreal_of_real == star_of"
 
 definition
-  omega   :: hypreal   -- {*an infinite number @{text "= [<1,2,3,...>]"} *}
+  omega :: hypreal where   -- {*an infinite number @{text "= [<1,2,3,...>]"} *}
   "omega = star_n (%n. real (Suc n))"
 
-  epsilon :: hypreal   -- {*an infinitesimal number @{text "= [<1,1/2,1/3,...>]"} *}
+definition
+  epsilon :: hypreal where   -- {*an infinitesimal number @{text "= [<1,1/2,1/3,...>]"} *}
   "epsilon = star_n (%n. inverse (real (Suc n)))"
 
 notation (xsymbols)
-  omega  ("\<omega>")
+  omega  ("\<omega>") and
   epsilon  ("\<epsilon>")
 
 notation (HTML output)
-  omega  ("\<omega>")
+  omega  ("\<omega>") and
   epsilon  ("\<epsilon>")
 
 
--- a/src/HOL/Hyperreal/HyperNat.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/HyperNat.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -14,7 +14,7 @@
 types hypnat = "nat star"
 
 abbreviation
-  hypnat_of_nat :: "nat => nat star"
+  hypnat_of_nat :: "nat => nat star" where
   "hypnat_of_nat == star_of"
 
 subsection{*Properties Transferred from Naturals*}
@@ -161,7 +161,7 @@
 
 definition
   (* the set of infinite hypernatural numbers *)
-  HNatInfinite :: "hypnat set"
+  HNatInfinite :: "hypnat set" where
   "HNatInfinite = {n. n \<notin> Nats}"
 
 lemma Nats_not_HNatInfinite_iff: "(x \<in> Nats) = (x \<notin> HNatInfinite)"
@@ -254,7 +254,7 @@
 
 definition
   (* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *)
-  whn :: hypnat
+  whn :: hypnat where
   hypnat_omega_def: "whn = star_n (%n::nat. n)"
 
 lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n \<noteq> whn"
@@ -362,7 +362,7 @@
 text{*Obtained using the nonstandard extension of the naturals*}
 
 definition
-  hypreal_of_hypnat :: "hypnat => hypreal"
+  hypreal_of_hypnat :: "hypnat => hypreal" where
   "hypreal_of_hypnat = *f* real"
 
 declare hypreal_of_hypnat_def [transfer_unfold]
--- a/src/HOL/Hyperreal/HyperPow.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/HyperPow.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -20,7 +20,7 @@
 
 definition
   (* hypernatural powers of hyperreals *)
-  pow :: "[hypreal,hypnat] => hypreal"     (infixr "pow" 80)
+  pow :: "[hypreal,hypnat] => hypreal"     (infixr "pow" 80) where
   hyperpow_def [transfer_unfold]:
   "(R::hypreal) pow (N::hypnat) = ( *f2* op ^) R N"
 
--- a/src/HOL/Hyperreal/Integration.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/Integration.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -13,38 +13,43 @@
 text{*We follow John Harrison in formalizing the Gauge integral.*}
 
 definition
-
   --{*Partitions and tagged partitions etc.*}
 
-  partition :: "[(real*real),nat => real] => bool"
+  partition :: "[(real*real),nat => real] => bool" where
   "partition = (%(a,b) D. D 0 = a &
                          (\<exists>N. (\<forall>n < N. D(n) < D(Suc n)) &
                               (\<forall>n \<ge> N. D(n) = b)))"
 
-  psize :: "(nat => real) => nat"
+definition
+  psize :: "(nat => real) => nat" where
   "psize D = (SOME N. (\<forall>n < N. D(n) < D(Suc n)) &
                       (\<forall>n \<ge> N. D(n) = D(N)))"
 
-  tpart :: "[(real*real),((nat => real)*(nat =>real))] => bool"
+definition
+  tpart :: "[(real*real),((nat => real)*(nat =>real))] => bool" where
   "tpart = (%(a,b) (D,p). partition(a,b) D &
                           (\<forall>n. D(n) \<le> p(n) & p(n) \<le> D(Suc n)))"
 
   --{*Gauges and gauge-fine divisions*}
 
-  gauge :: "[real => bool, real => real] => bool"
+definition
+  gauge :: "[real => bool, real => real] => bool" where
   "gauge E g = (\<forall>x. E x --> 0 < g(x))"
 
-  fine :: "[real => real, ((nat => real)*(nat => real))] => bool"
+definition
+  fine :: "[real => real, ((nat => real)*(nat => real))] => bool" where
   "fine = (%g (D,p). \<forall>n. n < (psize D) --> D(Suc n) - D(n) < g(p n))"
 
   --{*Riemann sum*}
 
-  rsum :: "[((nat=>real)*(nat=>real)),real=>real] => real"
+definition
+  rsum :: "[((nat=>real)*(nat=>real)),real=>real] => real" where
   "rsum = (%(D,p) f. \<Sum>n=0..<psize(D). f(p n) * (D(Suc n) - D(n)))"
 
   --{*Gauge integrability (definite)*}
 
-  Integral :: "[(real*real),real=>real,real] => bool"
+definition
+  Integral :: "[(real*real),real=>real,real] => bool" where
   "Integral = (%(a,b) f k. \<forall>e > 0.
                                (\<exists>g. gauge(%x. a \<le> x & x \<le> b) g &
                                (\<forall>D p. tpart(a,b) (D,p) & fine(g)(D,p) -->
--- a/src/HOL/Hyperreal/Lim.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/Lim.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -15,28 +15,33 @@
 
 definition
   LIM :: "['a::real_normed_vector => 'b::real_normed_vector, 'a, 'b] => bool"
-        ("((_)/ -- (_)/ --> (_))" [60, 0, 60] 60)
+        ("((_)/ -- (_)/ --> (_))" [60, 0, 60] 60) where
   "f -- a --> L =
      (\<forall>r > 0. \<exists>s > 0. \<forall>x. x \<noteq> a & norm (x - a) < s
         --> norm (f x - L) < r)"
 
+definition
   NSLIM :: "['a::real_normed_vector => 'b::real_normed_vector, 'a, 'b] => bool"
-            ("((_)/ -- (_)/ --NS> (_))" [60, 0, 60] 60)
+            ("((_)/ -- (_)/ --NS> (_))" [60, 0, 60] 60) where
   "f -- a --NS> L =
     (\<forall>x. (x \<noteq> star_of a & x @= star_of a --> ( *f* f) x @= star_of L))"
 
-  isCont :: "['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool"
+definition
+  isCont :: "['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool" where
   "isCont f a = (f -- a --> (f a))"
 
-  isNSCont :: "['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool"
+definition
+  isNSCont :: "['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool" where
     --{*NS definition dispenses with limit notions*}
   "isNSCont f a = (\<forall>y. y @= star_of a -->
          ( *f* f) y @= star_of (f a))"
 
-  isUCont :: "['a::real_normed_vector => 'b::real_normed_vector] => bool"
+definition
+  isUCont :: "['a::real_normed_vector => 'b::real_normed_vector] => bool" where
   "isUCont f = (\<forall>r>0. \<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r)"
 
-  isNSUCont :: "['a::real_normed_vector => 'b::real_normed_vector] => bool"
+definition
+  isNSUCont :: "['a::real_normed_vector => 'b::real_normed_vector] => bool" where
   "isNSUCont f = (\<forall>x y. x @= y --> ( *f* f) x @= ( *f* f) y)"
 
 
--- a/src/HOL/Hyperreal/Log.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/Log.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,11 +11,12 @@
 begin
 
 definition
-  powr  :: "[real,real] => real"     (infixr "powr" 80)
+  powr  :: "[real,real] => real"     (infixr "powr" 80) where
     --{*exponentation with real exponent*}
   "x powr a = exp(a * ln x)"
 
-  log :: "[real,real] => real"
+definition
+  log :: "[real,real] => real" where
     --{*logarithm of @{term x} to base @{term a}*}
   "log a x = ln x / ln a"
 
--- a/src/HOL/Hyperreal/NSA.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/NSA.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -12,32 +12,37 @@
 begin
 
 definition
-
-  hnorm :: "'a::norm star \<Rightarrow> real star"
+  hnorm :: "'a::norm star \<Rightarrow> real star" where
   "hnorm = *f* norm"
 
-  Infinitesimal  :: "('a::real_normed_vector) star set"
+definition
+  Infinitesimal  :: "('a::real_normed_vector) star set" where
   "Infinitesimal = {x. \<forall>r \<in> Reals. 0 < r --> hnorm x < r}"
 
-  HFinite :: "('a::real_normed_vector) star set"
+definition
+  HFinite :: "('a::real_normed_vector) star set" where
   "HFinite = {x. \<exists>r \<in> Reals. hnorm x < r}"
 
-  HInfinite :: "('a::real_normed_vector) star set"
+definition
+  HInfinite :: "('a::real_normed_vector) star set" where
   "HInfinite = {x. \<forall>r \<in> Reals. r < hnorm x}"
 
-  approx :: "['a::real_normed_vector star, 'a star] => bool"
-    (infixl "@=" 50)
+definition
+  approx :: "['a::real_normed_vector star, 'a star] => bool"  (infixl "@=" 50) where
     --{*the `infinitely close' relation*}
   "(x @= y) = ((x - y) \<in> Infinitesimal)"
 
-  st        :: "hypreal => hypreal"
+definition
+  st        :: "hypreal => hypreal" where
     --{*the standard part of a hyperreal*}
   "st = (%x. @r. x \<in> HFinite & r \<in> Reals & r @= x)"
 
-  monad     :: "'a::real_normed_vector star => 'a star set"
+definition
+  monad     :: "'a::real_normed_vector star => 'a star set" where
   "monad x = {y. x @= y}"
 
-  galaxy    :: "'a::real_normed_vector star => 'a star set"
+definition
+  galaxy    :: "'a::real_normed_vector star => 'a star set" where
   "galaxy x = {y. (x + -y) \<in> HFinite}"
 
 notation (xsymbols)
@@ -52,7 +57,7 @@
 subsection {* Nonstandard Extension of the Norm Function *}
 
 definition
-  scaleHR :: "real star \<Rightarrow> 'a star \<Rightarrow> 'a::real_normed_vector star"
+  scaleHR :: "real star \<Rightarrow> 'a star \<Rightarrow> 'a::real_normed_vector star" where
   "scaleHR = starfun2 scaleR"
 
 declare hnorm_def [transfer_unfold]
--- a/src/HOL/Hyperreal/NatStar.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/NatStar.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -186,7 +186,7 @@
 subsection{*Nonstandard Characterization of Induction*}
 
 definition
-  hSuc :: "hypnat => hypnat"
+  hSuc :: "hypnat => hypnat" where
   "hSuc n = n + 1"
 
 lemma starP: "(( *p* P) (star_n X)) = ({n. P (X n)} \<in> FreeUltrafilterNat)"
--- a/src/HOL/Hyperreal/NthRoot.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/NthRoot.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,11 +11,11 @@
 begin
 
 definition
-
-  root :: "[nat, real] \<Rightarrow> real"
+  root :: "[nat, real] \<Rightarrow> real" where
   "root n x = (THE u. (0 < x \<longrightarrow> 0 < u) \<and> (u ^ n = x))"
 
-  sqrt :: "real \<Rightarrow> real"
+definition
+  sqrt :: "real \<Rightarrow> real" where
   "sqrt x = root 2 x"
 
 
--- a/src/HOL/Hyperreal/Poly.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/Poly.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -82,25 +82,30 @@
 text{*Other definitions*}
 
 definition
-  poly_minus :: "real list => real list"      ("-- _" [80] 80)
+  poly_minus :: "real list => real list"      ("-- _" [80] 80) where
   "-- p = (- 1) %* p"
 
-  pderiv :: "real list => real list"
+definition
+  pderiv :: "real list => real list" where
   "pderiv p = (if p = [] then [] else pderiv_aux 1 (tl p))"
 
-  divides :: "[real list,real list] => bool"  (infixl "divides" 70)
+definition
+  divides :: "[real list,real list] => bool"  (infixl "divides" 70) where
   "p1 divides p2 = (\<exists>q. poly p2 = poly(p1 *** q))"
 
-  order :: "real => real list => nat"
+definition
+  order :: "real => real list => nat" where
     --{*order of a polynomial*}
   "order a p = (SOME n. ([-a, 1] %^ n) divides p &
                       ~ (([-a, 1] %^ (Suc n)) divides p))"
 
-  degree :: "real list => nat"
+definition
+  degree :: "real list => nat" where
      --{*degree of a polynomial*}
   "degree p = length (pnormalize p)"
 
-  rsquarefree :: "real list => bool"
+definition
+  rsquarefree :: "real list => bool" where
      --{*squarefree polynomials --- NB with respect to real roots only.*}
   "rsquarefree p = (poly p \<noteq> poly [] &
                      (\<forall>a. (order a p = 0) | (order a p = 1)))"
@@ -108,7 +113,7 @@
 
 
 lemma padd_Nil2: "p +++ [] = p"
-by (induct "p", auto)
+by (induct p) auto
 declare padd_Nil2 [simp]
 
 lemma padd_Cons_Cons: "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)"
--- a/src/HOL/Hyperreal/SEQ.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/SEQ.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -13,54 +13,64 @@
 begin
 
 definition
-
   LIMSEQ :: "[nat => 'a::real_normed_vector, 'a] => bool"
-    ("((_)/ ----> (_))" [60, 60] 60)
+    ("((_)/ ----> (_))" [60, 60] 60) where
     --{*Standard definition of convergence of sequence*}
   "X ----> L = (\<forall>r. 0 < r --> (\<exists>no. \<forall>n. no \<le> n --> norm (X n - L) < r))"
 
+definition
   NSLIMSEQ :: "[nat => 'a::real_normed_vector, 'a] => bool"
-    ("((_)/ ----NS> (_))" [60, 60] 60)
+    ("((_)/ ----NS> (_))" [60, 60] 60) where
     --{*Nonstandard definition of convergence of sequence*}
   "X ----NS> L = (\<forall>N \<in> HNatInfinite. ( *f* X) N \<approx> star_of L)"
 
-  lim :: "(nat => 'a::real_normed_vector) => 'a"
+definition
+  lim :: "(nat => 'a::real_normed_vector) => 'a" where
     --{*Standard definition of limit using choice operator*}
   "lim X = (THE L. X ----> L)"
 
-  nslim :: "(nat => 'a::real_normed_vector) => 'a"
+definition
+  nslim :: "(nat => 'a::real_normed_vector) => 'a" where
     --{*Nonstandard definition of limit using choice operator*}
   "nslim X = (THE L. X ----NS> L)"
 
-  convergent :: "(nat => 'a::real_normed_vector) => bool"
+definition
+  convergent :: "(nat => 'a::real_normed_vector) => bool" where
     --{*Standard definition of convergence*}
   "convergent X = (\<exists>L. X ----> L)"
 
-  NSconvergent :: "(nat => 'a::real_normed_vector) => bool"
+definition
+  NSconvergent :: "(nat => 'a::real_normed_vector) => bool" where
     --{*Nonstandard definition of convergence*}
   "NSconvergent X = (\<exists>L. X ----NS> L)"
 
-  Bseq :: "(nat => 'a::real_normed_vector) => bool"
+definition
+  Bseq :: "(nat => 'a::real_normed_vector) => bool" where
     --{*Standard definition for bounded sequence*}
   "Bseq X = (\<exists>K>0.\<forall>n. norm (X n) \<le> K)"
 
-  NSBseq :: "(nat => 'a::real_normed_vector) => bool"
+definition
+  NSBseq :: "(nat => 'a::real_normed_vector) => bool" where
     --{*Nonstandard definition for bounded sequence*}
   "NSBseq X = (\<forall>N \<in> HNatInfinite. ( *f* X) N : HFinite)"
 
-  monoseq :: "(nat=>real)=>bool"
+definition
+  monoseq :: "(nat=>real)=>bool" where
     --{*Definition for monotonicity*}
   "monoseq X = ((\<forall>m. \<forall>n\<ge>m. X m \<le> X n) | (\<forall>m. \<forall>n\<ge>m. X n \<le> X m))"
 
-  subseq :: "(nat => nat) => bool"
+definition
+  subseq :: "(nat => nat) => bool" where
     --{*Definition of subsequence*}
   "subseq f = (\<forall>m. \<forall>n>m. (f m) < (f n))"
 
-  Cauchy :: "(nat => 'a::real_normed_vector) => bool"
+definition
+  Cauchy :: "(nat => 'a::real_normed_vector) => bool" where
     --{*Standard definition of the Cauchy condition*}
   "Cauchy X = (\<forall>e>0. \<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. norm (X m - X n) < e)"
 
-  NSCauchy :: "(nat => 'a::real_normed_vector) => bool"
+definition
+  NSCauchy :: "(nat => 'a::real_normed_vector) => bool" where
     --{*Nonstandard definition*}
   "NSCauchy X = (\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. ( *f* X) M \<approx> ( *f* X) N)"
 
--- a/src/HOL/Hyperreal/Series.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/Series.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -15,13 +15,15 @@
 
 definition
    sums  :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> 'a \<Rightarrow> bool"
-     (infixr "sums" 80)
+     (infixr "sums" 80) where
    "f sums s = (%n. setsum f {0..<n}) ----> s"
 
-   summable :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> bool"
+definition
+   summable :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> bool" where
    "summable f = (\<exists>s. f sums s)"
 
-   suminf   :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> 'a"
+definition
+   suminf   :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> 'a" where
    "suminf f = (THE s. f sums s)"
 
 syntax
--- a/src/HOL/Hyperreal/Star.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/Star.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -12,21 +12,26 @@
 
 definition
     (* internal sets *)
-  starset_n :: "(nat => 'a set) => 'a star set"        ("*sn* _" [80] 80)
+  starset_n :: "(nat => 'a set) => 'a star set" ("*sn* _" [80] 80) where
   "*sn* As = Iset (star_n As)"
 
-  InternalSets :: "'a star set set"
+definition
+  InternalSets :: "'a star set set" where
   "InternalSets = {X. \<exists>As. X = *sn* As}"
 
+definition
   (* nonstandard extension of function *)
-  is_starext  :: "['a star => 'a star, 'a => 'a] => bool"
+  is_starext  :: "['a star => 'a star, 'a => 'a] => bool" where
   "is_starext F f = (\<forall>x y. \<exists>X \<in> Rep_star(x). \<exists>Y \<in> Rep_star(y).
                         ((y = (F x)) = ({n. Y n = f(X n)} : FreeUltrafilterNat)))"
+
+definition
   (* internal functions *)
-  starfun_n :: "(nat => ('a => 'b)) => 'a star => 'b star"   ("*fn* _" [80] 80)
+  starfun_n :: "(nat => ('a => 'b)) => 'a star => 'b star"   ("*fn* _" [80] 80) where
   "*fn* F = Ifun (star_n F)"
 
-  InternalFuns :: "('a star => 'b star) set"
+definition
+  InternalFuns :: "('a star => 'b star) set" where
   "InternalFuns = {X. \<exists>F. X = *fn* F}"
 
 
--- a/src/HOL/Hyperreal/StarDef.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/StarDef.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -13,7 +13,7 @@
 subsection {* A Free Ultrafilter over the Naturals *}
 
 definition
-  FreeUltrafilterNat :: "nat set set"  ("\<U>")
+  FreeUltrafilterNat :: "nat set set"  ("\<U>") where
   "\<U> = (SOME U. freeultrafilter U)"
 
 lemma freeultrafilter_FUFNat: "freeultrafilter \<U>"
@@ -36,14 +36,14 @@
 subsection {* Definition of @{text star} type constructor *}
 
 definition
-  starrel :: "((nat \<Rightarrow> 'a) \<times> (nat \<Rightarrow> 'a)) set"
+  starrel :: "((nat \<Rightarrow> 'a) \<times> (nat \<Rightarrow> 'a)) set" where
   "starrel = {(X,Y). {n. X n = Y n} \<in> \<U>}"
 
 typedef 'a star = "(UNIV :: (nat \<Rightarrow> 'a) set) // starrel"
 by (auto intro: quotientI)
 
 definition
-  star_n :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a star"
+  star_n :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a star" where
   "star_n X = Abs_star (starrel `` {X})"
 
 theorem star_cases [case_names star_n, cases type: star]:
@@ -157,10 +157,11 @@
 subsection {* Standard elements *}
 
 definition
-  star_of :: "'a \<Rightarrow> 'a star"
+  star_of :: "'a \<Rightarrow> 'a star" where
   "star_of x == star_n (\<lambda>n. x)"
 
-  Standard :: "'a star set"
+definition
+  Standard :: "'a star set" where
   "Standard = range star_of"
 
 text {* Transfer tactic should remove occurrences of @{term star_of} *}
@@ -178,7 +179,7 @@
 subsection {* Internal functions *}
 
 definition
-  Ifun :: "('a \<Rightarrow> 'b) star \<Rightarrow> 'a star \<Rightarrow> 'b star" ("_ \<star> _" [300,301] 300)
+  Ifun :: "('a \<Rightarrow> 'b) star \<Rightarrow> 'a star \<Rightarrow> 'b star" ("_ \<star> _" [300,301] 300) where
   "Ifun f \<equiv> \<lambda>x. Abs_star
        (\<Union>F\<in>Rep_star f. \<Union>X\<in>Rep_star x. starrel``{\<lambda>n. F n (X n)})"
 
@@ -207,12 +208,12 @@
 text {* Nonstandard extensions of functions *}
 
 definition
-  starfun :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a star \<Rightarrow> 'b star)"
-    ("*f* _" [80] 80)
+  starfun :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a star \<Rightarrow> 'b star)"  ("*f* _" [80] 80) where
   "starfun f == \<lambda>x. star_of f \<star> x"
 
+definition
   starfun2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a star \<Rightarrow> 'b star \<Rightarrow> 'c star)"
-    ("*f2* _" [80] 80)
+    ("*f2* _" [80] 80) where
   "starfun2 f == \<lambda>x y. star_of f \<star> x \<star> y"
 
 declare starfun_def [transfer_unfold]
@@ -242,7 +243,7 @@
 subsection {* Internal predicates *}
 
 definition
-  unstar :: "bool star \<Rightarrow> bool"
+  unstar :: "bool star \<Rightarrow> bool" where
   "unstar b = (b = star_of True)"
 
 lemma unstar_star_n: "unstar (star_n P) = ({n. P n} \<in> \<U>)"
@@ -259,12 +260,11 @@
 by (simp only: unstar_star_n)
 
 definition
-  starP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> bool"
-    ("*p* _" [80] 80)
+  starP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> bool"  ("*p* _" [80] 80) where
   "*p* P = (\<lambda>x. unstar (star_of P \<star> x))"
 
-  starP2 :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> 'b star \<Rightarrow> bool"
-    ("*p2* _" [80] 80)
+definition
+  starP2 :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> 'b star \<Rightarrow> bool"  ("*p2* _" [80] 80) where
   "*p2* P = (\<lambda>x y. unstar (star_of P \<star> x \<star> y))"
 
 declare starP_def [transfer_unfold]
@@ -287,7 +287,7 @@
 subsection {* Internal sets *}
 
 definition
-  Iset :: "'a set star \<Rightarrow> 'a star set"
+  Iset :: "'a set star \<Rightarrow> 'a star set" where
   "Iset A = {x. ( *p2* op \<in>) x A}"
 
 lemma Iset_star_n:
@@ -329,7 +329,7 @@
 text {* Nonstandard extensions of sets. *}
 
 definition
-  starset :: "'a set \<Rightarrow> 'a star set" ("*s* _" [80] 80)
+  starset :: "'a set \<Rightarrow> 'a star set" ("*s* _" [80] 80) where
   "starset A = Iset (star_of A)"
 
 declare starset_def [transfer_unfold]
--- a/src/HOL/Hyperreal/Transcendental.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Hyperreal/Transcendental.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -12,37 +12,45 @@
 begin
 
 definition
-
-  exp :: "real => real"
+  exp :: "real => real" where
   "exp x = (\<Sum>n. inverse(real (fact n)) * (x ^ n))"
 
-  sin :: "real => real"
+definition
+  sin :: "real => real" where
   "sin x = (\<Sum>n. (if even(n) then 0 else
              ((- 1) ^ ((n - Suc 0) div 2))/(real (fact n))) * x ^ n)"
  
-  diffs :: "(nat => real) => nat => real"
+definition
+  diffs :: "(nat => real) => nat => real" where
   "diffs c = (%n. real (Suc n) * c(Suc n))"
 
-  cos :: "real => real"
+definition
+  cos :: "real => real" where
   "cos x = (\<Sum>n. (if even(n) then ((- 1) ^ (n div 2))/(real (fact n)) 
                             else 0) * x ^ n)"
   
-  ln :: "real => real"
+definition
+  ln :: "real => real" where
   "ln x = (SOME u. exp u = x)"
 
-  pi :: "real"
+definition
+  pi :: "real" where
   "pi = 2 * (@x. 0 \<le> (x::real) & x \<le> 2 & cos x = 0)"
 
-  tan :: "real => real"
+definition
+  tan :: "real => real" where
   "tan x = (sin x)/(cos x)"
 
-  arcsin :: "real => real"
+definition
+  arcsin :: "real => real" where
   "arcsin y = (SOME x. -(pi/2) \<le> x & x \<le> pi/2 & sin x = y)"
 
-  arcos :: "real => real"
+definition
+  arcos :: "real => real" where
   "arcos y = (SOME x. 0 \<le> x & x \<le> pi & cos x = y)"
-     
-  arctan :: "real => real"
+
+definition     
+  arctan :: "real => real" where
   "arctan y = (SOME x. -(pi/2) < x & x < pi/2 & tan x = y)"
 
 
--- a/src/HOL/Induct/Comb.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Induct/Comb.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -38,9 +38,11 @@
   contract  :: "(comb*comb) set"
 
 abbreviation
-  contract_rel1 :: "[comb,comb] => bool"   (infixl "-1->" 50)
+  contract_rel1 :: "[comb,comb] => bool"   (infixl "-1->" 50) where
   "x -1-> y == (x,y) \<in> contract"
-  contract_rel :: "[comb,comb] => bool"   (infixl "--->" 50)
+
+abbreviation
+  contract_rel :: "[comb,comb] => bool"   (infixl "--->" 50) where
   "x ---> y == (x,y) \<in> contract^*"
 
 inductive contract
@@ -59,9 +61,11 @@
   parcontract :: "(comb*comb) set"
 
 abbreviation
-  parcontract_rel1 :: "[comb,comb] => bool"   (infixl "=1=>" 50)
+  parcontract_rel1 :: "[comb,comb] => bool"   (infixl "=1=>" 50) where
   "x =1=> y == (x,y) \<in> parcontract"
-  parcontract_rel :: "[comb,comb] => bool"   (infixl "===>" 50)
+
+abbreviation
+  parcontract_rel :: "[comb,comb] => bool"   (infixl "===>" 50) where
   "x ===> y == (x,y) \<in> parcontract^*"
 
 inductive parcontract
@@ -76,10 +80,11 @@
 *}
 
 definition
-  I :: comb
+  I :: comb where
   "I = S##K##K"
 
-  diamond   :: "('a * 'a)set => bool"	
+definition
+  diamond   :: "('a * 'a)set => bool" where
     --{*confluence; Lambda/Commutation treats this more abstractly*}
   "diamond(r) = (\<forall>x y. (x,y) \<in> r --> 
                   (\<forall>y'. (x,y') \<in> r --> 
--- a/src/HOL/Induct/LFilter.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Induct/LFilter.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -20,10 +20,11 @@
 declare findRel.intros [intro]
 
 definition
-  find    :: "['a => bool, 'a llist] => 'a llist"
+  find    :: "['a => bool, 'a llist] => 'a llist" where
   "find p l = (SOME l'. (l,l'): findRel p | (l' = LNil & l ~: Domain(findRel p)))"
 
-  lfilter :: "['a => bool, 'a llist] => 'a llist"
+definition
+  lfilter :: "['a => bool, 'a llist] => 'a llist" where
   "lfilter p l = llist_corec l (%l. case find p l of
                                             LNil => None
                                           | LCons y z => Some(y,z))"
--- a/src/HOL/Induct/LList.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Induct/LList.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -47,46 +47,54 @@
   by (blast intro: llist.NIL_I)
 
 definition
-  list_Fun   :: "['a item set, 'a item set] => 'a item set"
+  list_Fun   :: "['a item set, 'a item set] => 'a item set" where
     --{*Now used exclusively for abbreviating the coinduction rule*}
      "list_Fun A X = {z. z = NIL | (\<exists>M a. z = CONS a M & a \<in> A & M \<in> X)}"
 
+definition
   LListD_Fun :: 
       "[('a item * 'a item)set, ('a item * 'a item)set] => 
-       ('a item * 'a item)set"
+       ('a item * 'a item)set" where
     "LListD_Fun r X =   
        {z. z = (NIL, NIL) |   
            (\<exists>M N a b. z = (CONS a M, CONS b N) & (a, b) \<in> r & (M, N) \<in> X)}"
 
-  LNil :: "'a llist"
+definition
+  LNil :: "'a llist" where
      --{*abstract constructor*}
     "LNil = Abs_LList NIL"
 
-  LCons :: "['a, 'a llist] => 'a llist"
+definition
+  LCons :: "['a, 'a llist] => 'a llist" where
      --{*abstract constructor*}
     "LCons x xs = Abs_LList(CONS (Leaf x) (Rep_LList xs))"
 
-  llist_case :: "['b, ['a, 'a llist]=>'b, 'a llist] => 'b"
+definition
+  llist_case :: "['b, ['a, 'a llist]=>'b, 'a llist] => 'b" where
     "llist_case c d l =
        List_case c (%x y. d (inv Leaf x) (Abs_LList y)) (Rep_LList l)"
 
-  LList_corec_fun :: "[nat, 'a=> ('b item * 'a) option, 'a] => 'b item"
+definition
+  LList_corec_fun :: "[nat, 'a=> ('b item * 'a) option, 'a] => 'b item" where
     "LList_corec_fun k f ==
      nat_rec (%x. {})                         
              (%j r x. case f x of None    => NIL
                                 | Some(z,w) => CONS z (r w)) 
              k"
 
-  LList_corec     :: "['a, 'a => ('b item * 'a) option] => 'b item"
+definition
+  LList_corec     :: "['a, 'a => ('b item * 'a) option] => 'b item" where
     "LList_corec a f = (\<Union>k. LList_corec_fun k f a)"
 
-  llist_corec     :: "['a, 'a => ('b * 'a) option] => 'b llist"
+definition
+  llist_corec     :: "['a, 'a => ('b * 'a) option] => 'b llist" where
     "llist_corec a f =
        Abs_LList(LList_corec a 
                  (%z. case f z of None      => None
                                 | Some(v,w) => Some(Leaf(v), w)))"
 
-  llistD_Fun :: "('a llist * 'a llist)set => ('a llist * 'a llist)set"
+definition
+  llistD_Fun :: "('a llist * 'a llist)set => ('a llist * 'a llist)set" where
     "llistD_Fun(r) =   
         prod_fun Abs_LList Abs_LList `         
                 LListD_Fun (diag(range Leaf))   
@@ -105,25 +113,30 @@
 subsubsection{* Sample function definitions.  Item-based ones start with @{text L} *}
 
 definition
-  Lmap       :: "('a item => 'b item) => ('a item => 'b item)"
+  Lmap       :: "('a item => 'b item) => ('a item => 'b item)" where
     "Lmap f M = LList_corec M (List_case None (%x M'. Some((f(x), M'))))"
 
-  lmap       :: "('a=>'b) => ('a llist => 'b llist)"
+definition
+  lmap       :: "('a=>'b) => ('a llist => 'b llist)" where
     "lmap f l = llist_corec l (%z. case z of LNil => None 
                                            | LCons y z => Some(f(y), z))"
 
-  iterates   :: "['a => 'a, 'a] => 'a llist"
+definition
+  iterates   :: "['a => 'a, 'a] => 'a llist" where
     "iterates f a = llist_corec a (%x. Some((x, f(x))))"     
 
-  Lconst     :: "'a item => 'a item"
+definition
+  Lconst     :: "'a item => 'a item" where
     "Lconst(M) == lfp(%N. CONS M N)"
 
-  Lappend    :: "['a item, 'a item] => 'a item"
+definition
+  Lappend    :: "['a item, 'a item] => 'a item" where
    "Lappend M N = LList_corec (M,N)                                         
      (split(List_case (List_case None (%N1 N2. Some((N1, (NIL,N2))))) 
                       (%M1 M2 N. Some((M1, (M2,N))))))"
 
-  lappend    :: "['a llist, 'a llist] => 'a llist"
+definition
+  lappend    :: "['a llist, 'a llist] => 'a llist" where
     "lappend l n = llist_corec (l,n)                                         
        (split(llist_case (llist_case None (%n1 n2. Some((n1, (LNil,n2))))) 
                          (%l1 l2 n. Some((l1, (l2,n))))))"
--- a/src/HOL/Induct/Mutil.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Induct/Mutil.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -31,13 +31,15 @@
 text {* \medskip Sets of squares of the given colour*}
 
 definition
-  coloured :: "nat => (nat \<times> nat) set"
+  coloured :: "nat => (nat \<times> nat) set" where
   "coloured b = {(i, j). (i + j) mod 2 = b}"
 
 abbreviation
-  whites  :: "(nat \<times> nat) set"
+  whites  :: "(nat \<times> nat) set" where
   "whites == coloured 0"
-  blacks  :: "(nat \<times> nat) set"
+
+abbreviation
+  blacks  :: "(nat \<times> nat) set" where
   "blacks == coloured (Suc 0)"
 
 
--- a/src/HOL/Induct/Ordinals.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Induct/Ordinals.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -32,9 +32,11 @@
   "iter f (Suc n) = f \<circ> (iter f n)"
 
 definition
-  OpLim :: "(nat => (ordinal => ordinal)) => (ordinal => ordinal)"
+  OpLim :: "(nat => (ordinal => ordinal)) => (ordinal => ordinal)" where
   "OpLim F a = Limit (\<lambda>n. F n a)"
-  OpItw :: "(ordinal => ordinal) => (ordinal => ordinal)"    ("\<Squnion>")
+
+definition
+  OpItw :: "(ordinal => ordinal) => (ordinal => ordinal)"    ("\<Squnion>") where
   "\<Squnion>f = OpLim (iter f)"
 
 consts
@@ -52,7 +54,7 @@
   "\<nabla>f (Limit h) = Limit (\<lambda>n. \<nabla>f (h n))"
 
 definition
-  deriv :: "(ordinal => ordinal) => (ordinal => ordinal)"
+  deriv :: "(ordinal => ordinal) => (ordinal => ordinal)" where
   "deriv f = \<nabla>(\<Squnion>f)"
 
 consts
@@ -62,9 +64,8 @@
   "veblen (Succ a) = \<nabla>(OpLim (iter (veblen a)))"
   "veblen (Limit f) = \<nabla>(OpLim (\<lambda>n. veblen (f n)))"
 
-definition
-  "veb a = veblen a Zero"
-  "\<epsilon>\<^isub>0 = veb Zero"
-  "\<Gamma>\<^isub>0 = Limit (\<lambda>n. iter veb n Zero)"
+definition "veb a = veblen a Zero"
+definition "\<epsilon>\<^isub>0 = veb Zero"
+definition "\<Gamma>\<^isub>0 = Limit (\<lambda>n. iter veb n Zero)"
 
 end
--- a/src/HOL/Induct/PropLog.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Induct/PropLog.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -30,7 +30,7 @@
   thms  :: "'a pl set => 'a pl set"
 
 abbreviation
-  thm_rel :: "['a pl set, 'a pl] => bool"   (infixl "|-" 50)
+  thm_rel :: "['a pl set, 'a pl] => bool"   (infixl "|-" 50) where
   "H |- p == p \<in> thms H"
 
 inductive "thms(H)"
@@ -73,7 +73,7 @@
 *}
 
 definition
-  sat :: "['a pl set, 'a pl] => bool"   (infixl "|=" 50)
+  sat :: "['a pl set, 'a pl] => bool"   (infixl "|=" 50) where
     "H |= p  =  (\<forall>tt. (\<forall>q\<in>H. tt[[q]]) --> tt[[p]])"
 
 
--- a/src/HOL/Induct/QuoDataType.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Induct/QuoDataType.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -23,7 +23,7 @@
 consts  msgrel :: "(freemsg * freemsg) set"
 
 abbreviation
-  msg_rel :: "[freemsg, freemsg] => bool"  (infixl "~~" 50)
+  msg_rel :: "[freemsg, freemsg] => bool"  (infixl "~~" 50) where
   "X ~~ Y == (X,Y) \<in> msgrel"
 
 notation (xsymbols)
@@ -143,18 +143,21 @@
 
 text{*The abstract message constructors*}
 definition
-  Nonce :: "nat \<Rightarrow> msg"
+  Nonce :: "nat \<Rightarrow> msg" where
   "Nonce N = Abs_Msg(msgrel``{NONCE N})"
 
-  MPair :: "[msg,msg] \<Rightarrow> msg"
+definition
+  MPair :: "[msg,msg] \<Rightarrow> msg" where
    "MPair X Y =
        Abs_Msg (\<Union>U \<in> Rep_Msg X. \<Union>V \<in> Rep_Msg Y. msgrel``{MPAIR U V})"
 
-  Crypt :: "[nat,msg] \<Rightarrow> msg"
+definition
+  Crypt :: "[nat,msg] \<Rightarrow> msg" where
    "Crypt K X =
        Abs_Msg (\<Union>U \<in> Rep_Msg X. msgrel``{CRYPT K U})"
 
-  Decrypt :: "[nat,msg] \<Rightarrow> msg"
+definition
+  Decrypt :: "[nat,msg] \<Rightarrow> msg" where
    "Decrypt K X =
        Abs_Msg (\<Union>U \<in> Rep_Msg X. msgrel``{DECRYPT K U})"
 
@@ -228,7 +231,7 @@
 subsection{*The Abstract Function to Return the Set of Nonces*}
 
 definition
-  nonces :: "msg \<Rightarrow> nat set"
+  nonces :: "msg \<Rightarrow> nat set" where
    "nonces X = (\<Union>U \<in> Rep_Msg X. freenonces U)"
 
 lemma nonces_congruent: "freenonces respects msgrel"
@@ -263,7 +266,7 @@
 subsection{*The Abstract Function to Return the Left Part*}
 
 definition
-  left :: "msg \<Rightarrow> msg"
+  left :: "msg \<Rightarrow> msg" where
    "left X = Abs_Msg (\<Union>U \<in> Rep_Msg X. msgrel``{freeleft U})"
 
 lemma left_congruent: "(\<lambda>U. msgrel `` {freeleft U}) respects msgrel"
@@ -297,7 +300,7 @@
 subsection{*The Abstract Function to Return the Right Part*}
 
 definition
-  right :: "msg \<Rightarrow> msg"
+  right :: "msg \<Rightarrow> msg" where
    "right X = Abs_Msg (\<Union>U \<in> Rep_Msg X. msgrel``{freeright U})"
 
 lemma right_congruent: "(\<lambda>U. msgrel `` {freeright U}) respects msgrel"
@@ -432,7 +435,7 @@
 need this function in order to prove discrimination theorems.*}
 
 definition
-  discrim :: "msg \<Rightarrow> int"
+  discrim :: "msg \<Rightarrow> int" where
    "discrim X = contents (\<Union>U \<in> Rep_Msg X. {freediscrim U})"
 
 lemma discrim_congruent: "(\<lambda>U. {freediscrim U}) respects msgrel"
--- a/src/HOL/Induct/QuoNestedDataType.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Induct/QuoNestedDataType.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -21,7 +21,7 @@
 consts  exprel :: "(freeExp * freeExp) set"
 
 abbreviation
-  exp_rel :: "[freeExp, freeExp] => bool"  (infixl "~~" 50)
+  exp_rel :: "[freeExp, freeExp] => bool"  (infixl "~~" 50) where
   "X ~~ Y == (X,Y) \<in> exprel"
 
 notation (xsymbols)
@@ -160,14 +160,16 @@
 text{*The abstract message constructors*}
 
 definition
-  Var :: "nat \<Rightarrow> exp"
+  Var :: "nat \<Rightarrow> exp" where
   "Var N = Abs_Exp(exprel``{VAR N})"
 
-  Plus :: "[exp,exp] \<Rightarrow> exp"
+definition
+  Plus :: "[exp,exp] \<Rightarrow> exp" where
    "Plus X Y =
        Abs_Exp (\<Union>U \<in> Rep_Exp X. \<Union>V \<in> Rep_Exp Y. exprel``{PLUS U V})"
 
-  FnCall :: "[nat, exp list] \<Rightarrow> exp"
+definition
+  FnCall :: "[nat, exp list] \<Rightarrow> exp" where
    "FnCall F Xs =
        Abs_Exp (\<Union>Us \<in> listset (map Rep_Exp Xs). exprel `` {FNCALL F Us})"
 
@@ -207,7 +209,7 @@
   list of concrete expressions*}
 
 definition
-  Abs_ExpList :: "freeExp list => exp list"
+  Abs_ExpList :: "freeExp list => exp list" where
   "Abs_ExpList Xs = map (%U. Abs_Exp(exprel``{U})) Xs"
 
 lemma Abs_ExpList_Nil [simp]: "Abs_ExpList [] == []"
@@ -285,7 +287,7 @@
 subsection{*The Abstract Function to Return the Set of Variables*}
 
 definition
-  vars :: "exp \<Rightarrow> nat set"
+  vars :: "exp \<Rightarrow> nat set" where
   "vars X = (\<Union>U \<in> Rep_Exp X. freevars U)"
 
 lemma vars_respects: "freevars respects exprel"
@@ -351,7 +353,7 @@
 subsection{*Injectivity of @{term FnCall}*}
 
 definition
-  "fun" :: "exp \<Rightarrow> nat"
+  "fun" :: "exp \<Rightarrow> nat" where
   "fun X = contents (\<Union>U \<in> Rep_Exp X. {freefun U})"
 
 lemma fun_respects: "(%U. {freefun U}) respects exprel"
@@ -363,7 +365,7 @@
 done
 
 definition
-  args :: "exp \<Rightarrow> exp list"
+  args :: "exp \<Rightarrow> exp list" where
   "args X = contents (\<Union>U \<in> Rep_Exp X. {Abs_ExpList (freeargs U)})"
 
 text{*This result can probably be generalized to arbitrary equivalence
@@ -398,7 +400,7 @@
 function in order to prove discrimination theorems.*}
 
 definition
-  discrim :: "exp \<Rightarrow> int"
+  discrim :: "exp \<Rightarrow> int" where
   "discrim X = contents (\<Union>U \<in> Rep_Exp X. {freediscrim U})"
 
 lemma discrim_respects: "(\<lambda>U. {freediscrim U}) respects exprel"
--- a/src/HOL/Induct/SList.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Induct/SList.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -37,10 +37,11 @@
 
 (* Defining the Concrete Constructors *)
 definition
-  NIL  :: "'a item"
+  NIL  :: "'a item" where
   "NIL = In0(Numb(0))"
 
-  CONS :: "['a item, 'a item] => 'a item"
+definition
+  CONS :: "['a item, 'a item] => 'a item" where
   "CONS M N = In1(Scons M N)"
 
 consts
@@ -55,15 +56,15 @@
     'a list = "list(range Leaf) :: 'a item set" 
   by (blast intro: list.NIL_I)
 
-abbreviation
-  "Case == Datatype.Case"
-  "Split == Datatype.Split"
+abbreviation "Case == Datatype.Case"
+abbreviation "Split == Datatype.Split"
 
 definition
-  List_case :: "['b, ['a item, 'a item]=>'b, 'a item] => 'b"
+  List_case :: "['b, ['a item, 'a item]=>'b, 'a item] => 'b" where
   "List_case c d = Case(%x. c)(Split(d))"
   
-  List_rec  :: "['a item, 'b, ['a item, 'a item, 'b]=>'b] => 'b"
+definition
+  List_rec  :: "['a item, 'b, ['a item, 'a item, 'b]=>'b] => 'b" where
   "List_rec M c d = wfrec (trancl pred_sexp)
                            (%g. List_case c (%x y. d x y (g y))) M"
 
@@ -84,18 +85,21 @@
   Cons :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list"  (infixr "#" 65)
 
 definition
-  Nil       :: "'a list"                               ("[]")
+  Nil       :: "'a list"                               ("[]") where
    "Nil  = Abs_List(NIL)"
 
-  "Cons"       :: "['a, 'a list] => 'a list"           (infixr "#" 65)
+definition
+  "Cons"       :: "['a, 'a list] => 'a list"           (infixr "#" 65) where
    "x#xs = Abs_List(CONS (Leaf x)(Rep_List xs))"
 
+definition
   (* list Recursion -- the trancl is Essential; see list.ML *)
-  list_rec  :: "['a list, 'b, ['a, 'a list, 'b]=>'b] => 'b"
+  list_rec  :: "['a list, 'b, ['a, 'a list, 'b]=>'b] => 'b" where
    "list_rec l c d =
       List_rec(Rep_List l) c (%x y r. d(inv Leaf x)(Abs_List y) r)"
 
-  list_case :: "['b, ['a, 'a list]=>'b, 'a list] => 'b"
+definition
+  list_case :: "['b, ['a, 'a list]=>'b, 'a list] => 'b" where
    "list_case a f xs = list_rec xs a (%x xs r. f x xs)"
 
 (* list Enumeration *)
@@ -116,80 +120,98 @@
 (* Generalized Map Functionals *)
 
 definition
-  Rep_map   :: "('b => 'a item) => ('b list => 'a item)"
+  Rep_map   :: "('b => 'a item) => ('b list => 'a item)" where
    "Rep_map f xs = list_rec xs  NIL(%x l r. CONS(f x) r)"
 
-  Abs_map   :: "('a item => 'b) => 'a item => 'b list"
+definition
+  Abs_map   :: "('a item => 'b) => 'a item => 'b list" where
    "Abs_map g M  = List_rec M Nil (%N L r. g(N)#r)"
 
 
 (**** Function definitions ****)
 
 definition
-
-  null      :: "'a list => bool"
+  null      :: "'a list => bool" where
   "null xs  = list_rec xs True (%x xs r. False)"
 
-  hd        :: "'a list => 'a"
+definition
+  hd        :: "'a list => 'a" where
   "hd xs    = list_rec xs (@x. True) (%x xs r. x)"
 
-  tl        :: "'a list => 'a list"
+definition
+  tl        :: "'a list => 'a list" where
   "tl xs    = list_rec xs (@xs. True) (%x xs r. xs)"
 
+definition
   (* a total version of tl: *)
-  ttl       :: "'a list => 'a list"
+  ttl       :: "'a list => 'a list" where
   "ttl xs   = list_rec xs [] (%x xs r. xs)"
 
-  member :: "['a, 'a list] => bool"    (infixl "mem" 55)
+definition
+  member :: "['a, 'a list] => bool"    (infixl "mem" 55) where
   "x mem xs = list_rec xs False (%y ys r. if y=x then True else r)"
 
-  list_all  :: "('a => bool) => ('a list => bool)"
+definition
+  list_all  :: "('a => bool) => ('a list => bool)" where
   "list_all P xs = list_rec xs True(%x l r. P(x) & r)"
 
-  map       :: "('a=>'b) => ('a list => 'b list)"
+definition
+  map       :: "('a=>'b) => ('a list => 'b list)" where
   "map f xs = list_rec xs [] (%x l r. f(x)#r)"
 
-
-  append    :: "['a list, 'a list] => 'a list"   (infixr "@" 65)
+definition
+  append    :: "['a list, 'a list] => 'a list"   (infixr "@" 65) where
   "xs@ys = list_rec xs ys (%x l r. x#r)"
 
-  filter    :: "['a => bool, 'a list] => 'a list"
+definition
+  filter    :: "['a => bool, 'a list] => 'a list" where
   "filter P xs = list_rec xs []  (%x xs r. if P(x)then x#r else r)"
 
-  foldl     :: "[['b,'a] => 'b, 'b, 'a list] => 'b"
+definition
+  foldl     :: "[['b,'a] => 'b, 'b, 'a list] => 'b" where
   "foldl f a xs = list_rec xs (%a. a)(%x xs r.%a. r(f a x))(a)"
 
-  foldr     :: "[['a,'b] => 'b, 'b, 'a list] => 'b"
+definition
+  foldr     :: "[['a,'b] => 'b, 'b, 'a list] => 'b" where
   "foldr f a xs     = list_rec xs a (%x xs r. (f x r))"
 
-  length    :: "'a list => nat"
+definition
+  length    :: "'a list => nat" where
   "length xs = list_rec xs 0 (%x xs r. Suc r)"
 
-  drop      :: "['a list,nat] => 'a list"
+definition
+  drop      :: "['a list,nat] => 'a list" where
   "drop t n = (nat_rec(%x. x)(%m r xs. r(ttl xs)))(n)(t)"
 
-  copy      :: "['a, nat] => 'a list"      (* make list of n copies of x *)
+definition
+  copy      :: "['a, nat] => 'a list"  where     (* make list of n copies of x *)
   "copy t   = nat_rec [] (%m xs. t # xs)"
 
-  flat      :: "'a list list => 'a list"
+definition
+  flat      :: "'a list list => 'a list" where
   "flat     = foldr (op @) []"
 
-  nth       :: "[nat, 'a list] => 'a"
+definition
+  nth       :: "[nat, 'a list] => 'a" where
   "nth      = nat_rec hd (%m r xs. r(tl xs))"
 
-  rev       :: "'a list => 'a list"
+definition
+  rev       :: "'a list => 'a list" where
   "rev xs   = list_rec xs [] (%x xs xsa. xsa @ [x])"
 
 (* miscellaneous definitions *)
-  zipWith   :: "['a * 'b => 'c, 'a list * 'b list] => 'c list"
+definition
+  zipWith   :: "['a * 'b => 'c, 'a list * 'b list] => 'c list" where
   "zipWith f S = (list_rec (fst S)  (%T.[])
                             (%x xs r. %T. if null T then [] 
                                           else f(x,hd T) # r(tl T)))(snd(S))"
 
-  zip       :: "'a list * 'b list => ('a*'b) list"
+definition
+  zip       :: "'a list * 'b list => ('a*'b) list" where
   "zip      = zipWith  (%s. s)"
 
-  unzip     :: "('a*'b) list => ('a list * 'b list)"
+definition
+  unzip     :: "('a*'b) list => ('a list * 'b list)" where
   "unzip    = foldr(% (a,b)(c,d).(a#c,b#d))([],[])"
 
 
--- a/src/HOL/Induct/Sexp.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Induct/Sexp.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,9 +11,8 @@
 
 types
   'a item = "'a Datatype.item"
-abbreviation
-  "Leaf == Datatype.Leaf"
-  "Numb == Datatype.Numb"
+abbreviation "Leaf == Datatype.Leaf"
+abbreviation "Numb == Datatype.Numb"
 
 consts
   sexp      :: "'a item set"
@@ -26,16 +25,18 @@
 
 definition
   sexp_case :: "['a=>'b, nat=>'b, ['a item, 'a item]=>'b, 
-                'a item] => 'b"
+                'a item] => 'b" where
   "sexp_case c d e M = (THE z. (EX x.   M=Leaf(x) & z=c(x))  
                              | (EX k.   M=Numb(k) & z=d(k))  
                              | (EX N1 N2. M = Scons N1 N2  & z=e N1 N2))"
 
-  pred_sexp :: "('a item * 'a item)set"
+definition
+  pred_sexp :: "('a item * 'a item)set" where
      "pred_sexp = (\<Union>M \<in> sexp. \<Union>N \<in> sexp. {(M, Scons M N), (N, Scons M N)})"
 
+definition
   sexp_rec  :: "['a item, 'a=>'b, nat=>'b,      
-                ['a item, 'a item, 'b, 'b]=>'b] => 'b"
+                ['a item, 'a item, 'b, 'b]=>'b] => 'b" where
    "sexp_rec M c d e = wfrec pred_sexp
              (%g. sexp_case c d (%N1 N2. e N1 N2 (g N1) (g N2))) M"
 
--- a/src/HOL/Induct/Tree.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Induct/Tree.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -72,10 +72,11 @@
   closure. *} 
 
 definition
-  brouwer_pred :: "(brouwer * brouwer) set"
+  brouwer_pred :: "(brouwer * brouwer) set" where
   "brouwer_pred = (\<Union>i. {(m,n). n = Succ m \<or> (EX f. n = Lim f & m = f i)})"
 
-  brouwer_order :: "(brouwer * brouwer) set"
+definition
+  brouwer_order :: "(brouwer * brouwer) set" where
   "brouwer_order = brouwer_pred^+"
 
 lemma wf_brouwer_pred: "wf brouwer_pred"
--- a/src/HOL/Integ/IntDef.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Integ/IntDef.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -870,9 +870,11 @@
 *}
 
 definition
-  int_aux :: "int \<Rightarrow> nat \<Rightarrow> int"
+  int_aux :: "int \<Rightarrow> nat \<Rightarrow> int" where
   "int_aux i n = (i + int n)"
-  nat_aux :: "nat \<Rightarrow> int \<Rightarrow> nat"
+
+definition
+  nat_aux :: "nat \<Rightarrow> int \<Rightarrow> nat" where
   "nat_aux n i = (n + nat i)"
 
 lemma [code]:
--- a/src/HOL/Integ/NatBin.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Integ/NatBin.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -20,7 +20,7 @@
   nat_number_of_def: "number_of v == nat (number_of (v\<Colon>int))"
 
 abbreviation (xsymbols)
-  square :: "'a::power => 'a"  ("(_\<twosuperior>)" [1000] 999)
+  square :: "'a::power => 'a"  ("(_\<twosuperior>)" [1000] 999) where
   "x\<twosuperior> == x^2"
 
 notation (latex output)
--- a/src/HOL/Integ/Numeral.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Integ/Numeral.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -51,6 +51,8 @@
 
 abbreviation
   "Numeral0 \<equiv> number_of Pls"
+
+abbreviation
   "Numeral1 \<equiv> number_of (Pls BIT B1)"
 
 lemma Let_number_of [simp]: "Let (number_of v) f = f (number_of v)"
@@ -64,9 +66,11 @@
   unfolding Let_def ..
 
 definition
-  succ :: "int \<Rightarrow> int"
+  succ :: "int \<Rightarrow> int" where
   "succ k = k + 1"
-  pred :: "int \<Rightarrow> int"
+
+definition
+  pred :: "int \<Rightarrow> int" where
   "pred k = k - 1"
 
 lemmas numeral_simps = 
--- a/src/HOL/Isar_examples/Hoare.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Isar_examples/Hoare.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -32,7 +32,7 @@
   | While "'a bexp" "'a assn" "'a com"
 
 abbreviation
-  Skip  ("SKIP")
+  Skip  ("SKIP") where
   "SKIP == Basic id"
 
 types
--- a/src/HOL/Lambda/Commutation.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Lambda/Commutation.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,22 +11,25 @@
 subsection {* Basic definitions *}
 
 definition
-  square :: "[('a \<times> 'a) set, ('a \<times> 'a) set, ('a \<times> 'a) set, ('a \<times> 'a) set] => bool"
+  square :: "[('a \<times> 'a) set, ('a \<times> 'a) set, ('a \<times> 'a) set, ('a \<times> 'a) set] => bool" where
   "square R S T U =
     (\<forall>x y. (x, y) \<in> R --> (\<forall>z. (x, z) \<in> S --> (\<exists>u. (y, u) \<in> T \<and> (z, u) \<in> U)))"
 
-  commute :: "[('a \<times> 'a) set, ('a \<times> 'a) set] => bool"
+definition
+  commute :: "[('a \<times> 'a) set, ('a \<times> 'a) set] => bool" where
   "commute R S = square R S S R"
 
-  diamond :: "('a \<times> 'a) set => bool"
+definition
+  diamond :: "('a \<times> 'a) set => bool" where
   "diamond R = commute R R"
 
-  Church_Rosser :: "('a \<times> 'a) set => bool"
+definition
+  Church_Rosser :: "('a \<times> 'a) set => bool" where
   "Church_Rosser R =
     (\<forall>x y. (x, y) \<in> (R \<union> R^-1)^* --> (\<exists>z. (x, z) \<in> R^* \<and> (y, z) \<in> R^*))"
 
 abbreviation
-  confluent :: "('a \<times> 'a) set => bool"
+  confluent :: "('a \<times> 'a) set => bool" where
   "confluent R == diamond (R^*)"
 
 
--- a/src/HOL/Lambda/Eta.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Lambda/Eta.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -22,11 +22,15 @@
   eta :: "(dB \<times> dB) set"
 
 abbreviation
-  eta_red :: "[dB, dB] => bool"   (infixl "-e>" 50)
+  eta_red :: "[dB, dB] => bool"   (infixl "-e>" 50) where
   "s -e> t == (s, t) \<in> eta"
-  eta_reds :: "[dB, dB] => bool"   (infixl "-e>>" 50)
+
+abbreviation
+  eta_reds :: "[dB, dB] => bool"   (infixl "-e>>" 50) where
   "s -e>> t == (s, t) \<in> eta^*"
-  eta_red0 :: "[dB, dB] => bool"   (infixl "-e>=" 50)
+
+abbreviation
+  eta_red0 :: "[dB, dB] => bool"   (infixl "-e>=" 50) where
   "s -e>= t == (s, t) \<in> eta^="
 
 inductive eta
@@ -224,7 +228,7 @@
   par_eta :: "(dB \<times> dB) set"
 
 abbreviation
-  par_eta_red :: "[dB, dB] => bool"   (infixl "=e>" 50)
+  par_eta_red :: "[dB, dB] => bool"   (infixl "=e>" 50) where
   "s =e> t == (s, t) \<in> par_eta"
 
 notation (xsymbols)
--- a/src/HOL/Lambda/Lambda.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Lambda/Lambda.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -57,13 +57,15 @@
   beta :: "(dB \<times> dB) set"
 
 abbreviation
-  beta_red :: "[dB, dB] => bool"  (infixl "->" 50)
+  beta_red :: "[dB, dB] => bool"  (infixl "->" 50) where
   "s -> t == (s, t) \<in> beta"
-  beta_reds :: "[dB, dB] => bool"  (infixl "->>" 50)
+
+abbreviation
+  beta_reds :: "[dB, dB] => bool"  (infixl "->>" 50) where
   "s ->> t == (s, t) \<in> beta^*"
 
 notation (latex)
-  beta_red  (infixl "\<rightarrow>\<^sub>\<beta>" 50)
+  beta_red  (infixl "\<rightarrow>\<^sub>\<beta>" 50) and
   beta_reds  (infixl "\<rightarrow>\<^sub>\<beta>\<^sup>*" 50)
 
 inductive beta
--- a/src/HOL/Lambda/ListApplication.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Lambda/ListApplication.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -9,7 +9,7 @@
 theory ListApplication imports Lambda begin
 
 abbreviation
-  list_application :: "dB => dB list => dB"    (infixl "\<degree>\<degree>" 150)
+  list_application :: "dB => dB list => dB"  (infixl "\<degree>\<degree>" 150) where
   "t \<degree>\<degree> ts == foldl (op \<degree>) t ts"
 
 lemma apps_eq_tail_conv [iff]: "(r \<degree>\<degree> ts = s \<degree>\<degree> ts) = (r = s)"
--- a/src/HOL/Lambda/ListBeta.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Lambda/ListBeta.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -13,7 +13,7 @@
 *}
 
 abbreviation
-  list_beta :: "dB list => dB list => bool"   (infixl "=>" 50)
+  list_beta :: "dB list => dB list => bool"  (infixl "=>" 50) where
   "rs => ss == (rs, ss) : step1 beta"
 
 lemma head_Var_reduction:
--- a/src/HOL/Lambda/ListOrder.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Lambda/ListOrder.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -14,7 +14,7 @@
 *}
 
 definition
-  step1 :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
+  step1 :: "('a \<times> 'a) set => ('a list \<times> 'a list) set" where
   "step1 r =
     {(ys, xs). \<exists>us z z' vs. xs = us @ z # vs \<and> (z', z) \<in> r \<and> ys =
       us @ z' # vs}"
--- a/src/HOL/Lambda/ParRed.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Lambda/ParRed.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -18,7 +18,7 @@
   par_beta :: "(dB \<times> dB) set"
 
 abbreviation
-  par_beta_red :: "[dB, dB] => bool"  (infixl "=>" 50)
+  par_beta_red :: "[dB, dB] => bool"  (infixl "=>" 50) where
   "s => t == (s, t) \<in> par_beta"
 
 inductive par_beta
--- a/src/HOL/Lambda/StrongNorm.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Lambda/StrongNorm.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -190,7 +190,7 @@
               by (rule typing.App)
           qed
           with Cons True show ?thesis
-            by (simp add: map_compose [symmetric] o_def)
+            by (simp add: map_compose [symmetric] comp_def)
         qed
       next
         case False
--- a/src/HOL/Lambda/Type.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Lambda/Type.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -12,7 +12,7 @@
 subsection {* Environments *}
 
 definition
-  shift :: "(nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a"    ("_<_:_>" [90, 0, 0] 91)
+  shift :: "(nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a"  ("_<_:_>" [90, 0, 0] 91) where
   "e<i:a> = (\<lambda>j. if j < i then e j else if j = i then a else e (j - 1))"
 
 notation (xsymbols)
@@ -50,21 +50,23 @@
   typings :: "(nat \<Rightarrow> type) \<Rightarrow> dB list \<Rightarrow> type list \<Rightarrow> bool"
 
 abbreviation
-  funs :: "type list \<Rightarrow> type \<Rightarrow> type"    (infixr "=>>" 200)
+  funs :: "type list \<Rightarrow> type \<Rightarrow> type"  (infixr "=>>" 200) where
   "Ts =>> T == foldr Fun Ts T"
 
-  typing_rel :: "(nat \<Rightarrow> type) \<Rightarrow> dB \<Rightarrow> type \<Rightarrow> bool"    ("_ |- _ : _" [50, 50, 50] 50)
+abbreviation
+  typing_rel :: "(nat \<Rightarrow> type) \<Rightarrow> dB \<Rightarrow> type \<Rightarrow> bool"  ("_ |- _ : _" [50, 50, 50] 50) where
   "env |- t : T == (env, t, T) \<in> typing"
 
+abbreviation
   typings_rel :: "(nat \<Rightarrow> type) \<Rightarrow> dB list \<Rightarrow> type list \<Rightarrow> bool"
-    ("_ ||- _ : _" [50, 50, 50] 50)
+    ("_ ||- _ : _" [50, 50, 50] 50) where
   "env ||- ts : Ts == typings env ts Ts"
 
 notation (xsymbols)
   typing_rel  ("_ \<turnstile> _ : _" [50, 50, 50] 50)
 
 notation (latex)
-  funs  (infixr "\<Rrightarrow>" 200)
+  funs  (infixr "\<Rrightarrow>" 200) and
   typings_rel  ("_ \<tturnstile> _ : _" [50, 50, 50] 50)
 
 inductive typing
--- a/src/HOL/Lambda/WeakNorm.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Lambda/WeakNorm.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -17,7 +17,7 @@
 subsection {* Terms in normal form *}
 
 definition
-  listall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
+  listall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
   "listall P xs == (\<forall>i. i < length xs \<longrightarrow> P (xs ! i))"
 
 declare listall_def [extraction_expand]
@@ -362,7 +362,7 @@
   rtyping :: "((nat \<Rightarrow> type) \<times> dB \<times> type) set"
 
 abbreviation
-  rtyping_rel :: "(nat \<Rightarrow> type) \<Rightarrow> dB \<Rightarrow> type \<Rightarrow> bool"    ("_ |-\<^sub>R _ : _" [50, 50, 50] 50)
+  rtyping_rel :: "(nat \<Rightarrow> type) \<Rightarrow> dB \<Rightarrow> type \<Rightarrow> bool"  ("_ |-\<^sub>R _ : _" [50, 50, 50] 50) where
   "e |-\<^sub>R t : T == (e, t, T) \<in> rtyping"
 
 notation (xsymbols)
--- a/src/HOL/Lattice/Bounds.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Lattice/Bounds.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -16,16 +16,19 @@
 *}
 
 definition
-  is_inf :: "'a::partial_order \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
+  is_inf :: "'a::partial_order \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" where
   "is_inf x y inf = (inf \<sqsubseteq> x \<and> inf \<sqsubseteq> y \<and> (\<forall>z. z \<sqsubseteq> x \<and> z \<sqsubseteq> y \<longrightarrow> z \<sqsubseteq> inf))"
 
-  is_sup :: "'a::partial_order \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
+definition
+  is_sup :: "'a::partial_order \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" where
   "is_sup x y sup = (x \<sqsubseteq> sup \<and> y \<sqsubseteq> sup \<and> (\<forall>z. x \<sqsubseteq> z \<and> y \<sqsubseteq> z \<longrightarrow> sup \<sqsubseteq> z))"
 
-  is_Inf :: "'a::partial_order set \<Rightarrow> 'a \<Rightarrow> bool"
+definition
+  is_Inf :: "'a::partial_order set \<Rightarrow> 'a \<Rightarrow> bool" where
   "is_Inf A inf = ((\<forall>x \<in> A. inf \<sqsubseteq> x) \<and> (\<forall>z. (\<forall>x \<in> A. z \<sqsubseteq> x) \<longrightarrow> z \<sqsubseteq> inf))"
 
-  is_Sup :: "'a::partial_order set \<Rightarrow> 'a \<Rightarrow> bool"
+definition
+  is_Sup :: "'a::partial_order set \<Rightarrow> 'a \<Rightarrow> bool" where
   "is_Sup A sup = ((\<forall>x \<in> A. x \<sqsubseteq> sup) \<and> (\<forall>z. (\<forall>x \<in> A. x \<sqsubseteq> z) \<longrightarrow> sup \<sqsubseteq> z))"
 
 text {*
--- a/src/HOL/Lattice/CompleteLattice.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Lattice/CompleteLattice.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -32,13 +32,14 @@
 *}
 
 definition
-  Meet :: "'a::complete_lattice set \<Rightarrow> 'a"
+  Meet :: "'a::complete_lattice set \<Rightarrow> 'a" where
   "Meet A = (THE inf. is_Inf A inf)"
-  Join :: "'a::complete_lattice set \<Rightarrow> 'a"
+definition
+  Join :: "'a::complete_lattice set \<Rightarrow> 'a" where
   "Join A = (THE sup. is_Sup A sup)"
 
 notation (xsymbols)
-  Meet  ("\<Sqinter>_" [90] 90)
+  Meet  ("\<Sqinter>_" [90] 90) and
   Join  ("\<Squnion>_" [90] 90)
 
 text {*
@@ -143,9 +144,10 @@
 *}
 
 definition
-  bottom :: "'a::complete_lattice"    ("\<bottom>")
+  bottom :: "'a::complete_lattice"    ("\<bottom>") where
   "\<bottom> = \<Sqinter>UNIV"
-  top :: "'a::complete_lattice"    ("\<top>")
+definition
+  top :: "'a::complete_lattice"    ("\<top>") where
   "\<top> = \<Squnion>UNIV"
 
 lemma bottom_least [intro?]: "\<bottom> \<sqsubseteq> x"
--- a/src/HOL/Lattice/Lattice.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Lattice/Lattice.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -25,13 +25,14 @@
 *}
 
 definition
-  meet :: "'a::lattice \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "&&" 70)
+  meet :: "'a::lattice \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "&&" 70) where
   "x && y = (THE inf. is_inf x y inf)"
-  join :: "'a::lattice \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "||" 65)
+definition
+  join :: "'a::lattice \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "||" 65) where
   "x || y = (THE sup. is_sup x y sup)"
 
 notation (xsymbols)
-  meet  (infixl "\<sqinter>" 70)
+  meet  (infixl "\<sqinter>" 70) and
   join  (infixl "\<squnion>" 65)
 
 text {*
@@ -337,9 +338,10 @@
 *}
 
 definition
-  minimum :: "'a::linear_order \<Rightarrow> 'a \<Rightarrow> 'a"
+  minimum :: "'a::linear_order \<Rightarrow> 'a \<Rightarrow> 'a" where
   "minimum x y = (if x \<sqsubseteq> y then x else y)"
-  maximum :: "'a::linear_order \<Rightarrow> 'a \<Rightarrow> 'a"
+definition
+  maximum :: "'a::linear_order \<Rightarrow> 'a \<Rightarrow> 'a" where
   "maximum x y = (if x \<sqsubseteq> y then y else x)"
 
 lemma is_inf_minimum: "is_inf x y (minimum x y)"
--- a/src/HOL/Library/AssocList.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/AssocList.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -96,12 +96,12 @@
 (* ******************************************************************************** *)
 
 lemma delete_simps [simp]:
-"delete k [] = []"
-"delete k (p#ps) = (if fst p = k then delete k ps else p # delete k ps)"
+    "delete k [] = []"
+    "delete k (p#ps) = (if fst p = k then delete k ps else p # delete k ps)"
   by (simp_all add: delete_def)
 
 lemma delete_id[simp]: "k \<notin> fst ` set al \<Longrightarrow> delete k al = al"
-by(induct al, auto)
+  by (induct al) auto
 
 lemma delete_conv: "map_of (delete k al) k' = ((map_of al)(k := None)) k'"
   by (induct al) auto
@@ -112,9 +112,9 @@
 lemma delete_idem: "delete k (delete k al) = delete k al"
   by (induct al) auto
 
-lemma map_of_delete[simp]:
- "k' \<noteq> k \<Longrightarrow> map_of (delete k al) k' = map_of al k'"
-by(induct al, auto)
+lemma map_of_delete [simp]:
+    "k' \<noteq> k \<Longrightarrow> map_of (delete k al) k' = map_of al k'"
+  by (induct al) auto
 
 lemma delete_notin_dom: "k \<notin> fst ` set (delete k al)"
   by (induct al) auto
@@ -547,7 +547,7 @@
 
 lemma compose_conv: 
   shows "map_of (compose xs ys) k = (map_of ys \<circ>\<^sub>m map_of xs) k"
-proof (induct xs ys rule: compose_induct )
+proof (induct xs ys rule: compose_induct)
   case Nil thus ?case by simp
 next
   case (Cons x xs)
@@ -595,7 +595,7 @@
 using prems by (simp add: compose_conv)
 
 lemma dom_compose: "fst ` set (compose xs ys) \<subseteq> fst ` set xs"
-proof (induct xs ys rule: compose_induct )
+proof (induct xs ys rule: compose_induct)
   case Nil thus ?case by simp
 next
   case (Cons x xs)
@@ -799,12 +799,12 @@
  "map_of (update x y (restrict D al)) = map_of (update x y (restrict (D-{x}) al))"
   by (simp add: update_conv' restr_conv') (rule fun_upd_restrict)
 
-lemma upate_restr_conv[simp]:
+lemma upate_restr_conv [simp]:
  "x \<in> D \<Longrightarrow> 
  map_of (update x y (restrict D al)) = map_of (update x y (restrict (D-{x}) al))"
   by (simp add: update_conv' restr_conv')
 
-lemma restr_updates[simp]: "
+lemma restr_updates [simp]: "
  \<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
  \<Longrightarrow> map_of (restrict D (updates xs ys al)) = 
      map_of (updates xs ys (restrict (D - set xs) al))"
--- a/src/HOL/Library/BigO.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/BigO.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -39,7 +39,7 @@
 subsection {* Definitions *}
 
 definition
-  bigo :: "('a => 'b::ordered_idom) => ('a => 'b) set"    ("(1O'(_'))")
+  bigo :: "('a => 'b::ordered_idom) => ('a => 'b) set"  ("(1O'(_'))") where
   "O(f::('a => 'b)) =
       {h. EX c. ALL x. abs (h x) <= c * abs (f x)}"
 
@@ -736,7 +736,7 @@
 
 definition
   lesso :: "('a => 'b::ordered_idom) => ('a => 'b) => ('a => 'b)"
-      (infixl "<o" 70)
+    (infixl "<o" 70) where
   "f <o g = (%x. max (f x - g x) 0)"
 
 lemma bigo_lesseq1: "f =o O(h) ==> ALL x. abs (g x) <= abs (f x) ==>
--- a/src/HOL/Library/Char_ord.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/Char_ord.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -32,8 +32,8 @@
   "nibble_to_int NibbleF = 15"
 
 definition
-  int_to_nibble :: "int \<Rightarrow> nibble"
-  "int_to_nibble x \<equiv> (let y = x mod 16 in
+  int_to_nibble :: "int \<Rightarrow> nibble" where
+  "int_to_nibble x = (let y = x mod 16 in
     if y = 0 then Nibble0 else
     if y = 1 then Nibble1 else
     if y = 2 then Nibble2 else
--- a/src/HOL/Library/Coinductive_List.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/Coinductive_List.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -13,6 +13,7 @@
 
 definition
   "NIL = Datatype.In0 (Datatype.Numb 0)"
+definition
   "CONS M N = Datatype.In1 (Datatype.Scons M N)"
 
 lemma CONS_not_NIL [iff]: "CONS M N \<noteq> NIL"
@@ -146,6 +147,7 @@
 
 definition
   "LNil = Abs_llist NIL"
+definition
   "LCons x xs = Abs_llist (CONS (Datatype.Leaf x) (Rep_llist xs))"
 
 lemma LCons_not_LNil [iff]: "LCons x xs \<noteq> LNil"
@@ -573,6 +575,7 @@
 
 definition
   "Lmap f M = LList_corec M (List_case None (\<lambda>x M'. Some (f x, M')))"
+definition
   "lmap f l = llist_corec l
     (\<lambda>z.
       case z of LNil \<Rightarrow> None
@@ -671,6 +674,7 @@
     (split (List_case
         (List_case None (\<lambda>N1 N2. Some (N1, (NIL, N2))))
         (\<lambda>M1 M2 N. Some (M1, (M2, N)))))"
+definition
   "lappend l n = llist_corec (l, n)
     (split (llist_case
         (llist_case None (\<lambda>n1 n2. Some (n1, (LNil, n2))))
@@ -746,7 +750,7 @@
 text {* @{text llist_fun_equalityI} cannot be used here! *}
 
 definition
-  iterates :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a llist"
+  iterates :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a llist" where
   "iterates f a = llist_corec a (\<lambda>x. Some (x, f x))"
 
 lemma iterates: "iterates f x = LCons x (iterates f (f x))"
--- a/src/HOL/Library/Commutative_Ring.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/Commutative_Ring.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -48,14 +48,14 @@
 text {* Create polynomial normalized polynomials given normalized inputs. *}
 
 definition
-  mkPinj :: "nat \<Rightarrow> 'a pol \<Rightarrow> 'a pol"
+  mkPinj :: "nat \<Rightarrow> 'a pol \<Rightarrow> 'a pol" where
   "mkPinj x P = (case P of
     Pc c \<Rightarrow> Pc c |
     Pinj y P \<Rightarrow> Pinj (x + y) P |
     PX p1 y p2 \<Rightarrow> Pinj x P)"
 
 definition
-  mkPX :: "'a::{comm_ring,recpower} pol \<Rightarrow> nat \<Rightarrow> 'a pol \<Rightarrow> 'a pol"
+  mkPX :: "'a::{comm_ring,recpower} pol \<Rightarrow> nat \<Rightarrow> 'a pol \<Rightarrow> 'a pol" where
   "mkPX P i Q = (case P of
     Pc c \<Rightarrow> (if (c = 0) then (mkPinj 1 Q) else (PX P i Q)) |
     Pinj j R \<Rightarrow> PX P i Q |
@@ -128,7 +128,7 @@
 
 text {* Substraction *}
 definition
-  sub :: "'a::{comm_ring,recpower} pol \<Rightarrow> 'a pol \<Rightarrow> 'a pol"
+  sub :: "'a::{comm_ring,recpower} pol \<Rightarrow> 'a pol \<Rightarrow> 'a pol" where
   "sub p q = add (p, neg q)"
 
 text {* Square for Fast Exponentation *}
--- a/src/HOL/Library/Continuity.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/Continuity.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -18,8 +18,8 @@
 "continuous F == !M. chain M \<longrightarrow> F(SUP i. M i) = (SUP i. F(M i))"
 
 abbreviation
- bot :: "'a::order"
-"bot == Sup {}"
+  bot :: "'a::order" where
+  "bot == Sup {}"
 
 lemma SUP_nat_conv:
  "(SUP n::nat. M n::'a::comp_lat) = join (M 0) (SUP n. M(Suc n))"
@@ -91,7 +91,7 @@
 subsection "Chains"
 
 definition
-  up_chain :: "(nat => 'a set) => bool"
+  up_chain :: "(nat => 'a set) => bool" where
   "up_chain F = (\<forall>i. F i \<subseteq> F (Suc i))"
 
 lemma up_chainI: "(!!i. F i \<subseteq> F (Suc i)) ==> up_chain F"
@@ -113,7 +113,7 @@
 
 
 definition
-  down_chain :: "(nat => 'a set) => bool"
+  down_chain :: "(nat => 'a set) => bool" where
   "down_chain F = (\<forall>i. F (Suc i) \<subseteq> F i)"
 
 lemma down_chainI: "(!!i. F (Suc i) \<subseteq> F i) ==> down_chain F"
@@ -137,7 +137,7 @@
 subsection "Continuity"
 
 definition
-  up_cont :: "('a set => 'a set) => bool"
+  up_cont :: "('a set => 'a set) => bool" where
   "up_cont f = (\<forall>F. up_chain F --> f (\<Union>(range F)) = \<Union>(f ` range F))"
 
 lemma up_contI:
@@ -164,7 +164,7 @@
 
 
 definition
-  down_cont :: "('a set => 'a set) => bool"
+  down_cont :: "('a set => 'a set) => bool" where
   "down_cont f =
     (\<forall>F. down_chain F --> f (Inter (range F)) = Inter (f ` range F))"
 
@@ -194,7 +194,7 @@
 subsection "Iteration"
 
 definition
-  up_iterate :: "('a set => 'a set) => nat => 'a set"
+  up_iterate :: "('a set => 'a set) => nat => 'a set" where
   "up_iterate f n = (f^n) {}"
 
 lemma up_iterate_0 [simp]: "up_iterate f 0 = {}"
@@ -246,7 +246,7 @@
 
 
 definition
-  down_iterate :: "('a set => 'a set) => nat => 'a set"
+  down_iterate :: "('a set => 'a set) => nat => 'a set" where
   "down_iterate f n = (f^n) UNIV"
 
 lemma down_iterate_0 [simp]: "down_iterate f 0 = UNIV"
--- a/src/HOL/Library/EfficientNat.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/EfficientNat.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -25,7 +25,7 @@
 *}
 
 definition
-  nat_of_int :: "int \<Rightarrow> nat"
+  nat_of_int :: "int \<Rightarrow> nat" where
   "k \<ge> 0 \<Longrightarrow> nat_of_int k = nat k"
 
 lemma nat_of_int_int:
--- a/src/HOL/Library/ExecutableRat.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/ExecutableRat.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -27,8 +27,8 @@
 instance erat :: ord ..
 
 definition
-  norm :: "erat \<Rightarrow> erat"
-  norm_def: "norm r = (case r of (Rat a p q) \<Rightarrow>
+  norm :: "erat \<Rightarrow> erat" where
+  "norm r = (case r of (Rat a p q) \<Rightarrow>
      if p = 0 then Rat True 0 1
      else
        let
@@ -36,19 +36,28 @@
        in let
          m = zgcd (absp, q)
        in Rat (a = (0 <= p)) (absp div m) (q div m))"
-  common :: "(int * int) * (int * int) \<Rightarrow> (int * int) * int"
-  common_def: "common r = (case r of ((p1, q1), (p2, q2)) \<Rightarrow>
+
+definition
+  common :: "(int * int) * (int * int) \<Rightarrow> (int * int) * int" where
+  "common r = (case r of ((p1, q1), (p2, q2)) \<Rightarrow>
        let q' = q1 * q2 div int (gcd (nat q1, nat q2))
        in ((p1 * (q' div q1), p2 * (q' div q2)), q'))"
-  of_quotient :: "int \<Rightarrow> int \<Rightarrow> erat"
-  of_quotient_def: "of_quotient a b =
-       norm (Rat True a b)"
-  of_rat :: "rat \<Rightarrow> erat"
-  of_rat_def: "of_rat r = split of_quotient (SOME s. s : Rep_Rat r)"
-  to_rat :: "erat \<Rightarrow> rat"
-  to_rat_def: "to_rat r = (case r of (Rat a p q) \<Rightarrow>
+
+definition
+  of_quotient :: "int \<Rightarrow> int \<Rightarrow> erat" where
+  "of_quotient a b = norm (Rat True a b)"
+
+definition
+  of_rat :: "rat \<Rightarrow> erat" where
+  "of_rat r = split of_quotient (SOME s. s : Rep_Rat r)"
+
+definition
+  to_rat :: "erat \<Rightarrow> rat" where
+  "to_rat r = (case r of (Rat a p q) \<Rightarrow>
        if a then Fract p q else Fract (uminus p) q)"
-  eq_erat :: "erat \<Rightarrow> erat \<Rightarrow> bool"
+
+definition
+  eq_erat :: "erat \<Rightarrow> erat \<Rightarrow> bool" where
   "eq_erat r s = (norm r = norm s)"
 
 axiomatization
--- a/src/HOL/Library/ExecutableSet.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/ExecutableSet.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -14,7 +14,7 @@
 instance set :: (eq) eq ..
 
 definition
-  minus_set :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set"
+  minus_set :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" where
   "minus_set xs ys = ys - xs"
 
 lemma [code inline]:
@@ -22,8 +22,8 @@
   unfolding minus_set_def ..
 
 definition
-  subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
-  subset_def: "subset = op \<subseteq>"
+  subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
+  "subset = op \<subseteq>"
 
 lemmas [symmetric, code inline] = subset_def
 
@@ -44,8 +44,8 @@
   unfolding bex_triv_one_point1 ..
 
 definition
-  filter_set :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set"
-  filter_set_def: "filter_set P xs = {x\<in>xs. P x}"
+  filter_set :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" where
+  "filter_set P xs = {x\<in>xs. P x}"
 
 lemmas [symmetric, code inline] = filter_set_def
 
@@ -55,11 +55,15 @@
 subsection {* Basic definitions *}
 
 definition
-  flip :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'c"
+  flip :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'c" where
   "flip f a b = f b a"
-  member :: "'a list \<Rightarrow> 'a \<Rightarrow> bool"
+
+definition
+  member :: "'a list \<Rightarrow> 'a \<Rightarrow> bool" where
   "member xs x = (x \<in> set xs)"
-  insertl :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list"
+
+definition
+  insertl :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
   "insertl x xs = (if member xs x then xs else x#xs)"
 
 lemma
@@ -174,9 +178,11 @@
   "intersects (x#xs) = foldr intersect xs x"
 
 definition
-  map_union :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list"
+  map_union :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list" where
   "map_union xs f = unions (map f xs)"
-  map_inter :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list"
+
+definition
+  map_inter :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list" where
   "map_inter xs f = intersects (map f xs)"
 
 
@@ -237,9 +243,10 @@
   unfolding map_inter_def iso_intersects by (induct xs) (simp_all add: iso_member, auto)
 
 definition
-  Blall :: "'a list \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+  Blall :: "'a list \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
   "Blall = flip list_all"
-  Blex :: "'a list \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+definition
+  Blex :: "'a list \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
   "Blex = flip list_ex"
 
 lemma iso_Ball:
--- a/src/HOL/Library/FuncSet.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/FuncSet.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -10,17 +10,20 @@
 begin
 
 definition
-  Pi :: "['a set, 'a => 'b set] => ('a => 'b) set"
+  Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where
   "Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}"
 
-  extensional :: "'a set => ('a => 'b) set"
+definition
+  extensional :: "'a set => ('a => 'b) set" where
   "extensional A = {f. \<forall>x. x~:A --> f x = arbitrary}"
 
-  "restrict" :: "['a => 'b, 'a set] => ('a => 'b)"
+definition
+  "restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where
   "restrict f A = (%x. if x \<in> A then f x else arbitrary)"
 
 abbreviation
-  funcset :: "['a set, 'b set] => ('a => 'b) set"      (infixr "->" 60)
+  funcset :: "['a set, 'b set] => ('a => 'b) set"
+    (infixr "->" 60) where
   "A -> B == Pi A (%_. B)"
 
 notation (xsymbols)
@@ -43,7 +46,7 @@
   "%x:A. f" == "CONST restrict (%x. f) A"
 
 definition
-  "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)"
+  "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where
   "compose A g f = (\<lambda>x\<in>A. g (f x))"
 
 
@@ -142,7 +145,7 @@
 the theorems belong here, or need at least @{term Hilbert_Choice}.*}
 
 definition
-  bij_betw :: "['a => 'b, 'a set, 'b set] => bool"         -- {* bijective *}
+  bij_betw :: "['a => 'b, 'a set, 'b set] => bool" where -- {* bijective *}
   "bij_betw f A B = (inj_on f A & f ` A = B)"
 
 lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
--- a/src/HOL/Library/GCD.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/GCD.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -22,7 +22,7 @@
   "gcd (m, n) = (if n = 0 then m else gcd (n, m mod n))"
 
 definition
-  is_gcd :: "nat => nat => nat => bool"  -- {* @{term gcd} as a relation *}
+  is_gcd :: "nat => nat => nat => bool" where -- {* @{term gcd} as a relation *}
   "is_gcd p m n = (p dvd m \<and> p dvd n \<and>
     (\<forall>d. d dvd m \<and> d dvd n --> d dvd p))"
 
--- a/src/HOL/Library/Infinite_Set.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/Infinite_Set.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -18,7 +18,7 @@
 *}
 
 abbreviation
-  infinite :: "'a set \<Rightarrow> bool"
+  infinite :: "'a set \<Rightarrow> bool" where
   "infinite S == \<not> finite S"
 
 text {*
@@ -349,17 +349,19 @@
 *}
 
 definition
-  Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool"      (binder "INF " 10)
+  Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "INF " 10) where
   "Inf_many P = infinite {x. P x}"
-  Alm_all  :: "('a \<Rightarrow> bool) \<Rightarrow> bool"      (binder "MOST " 10)
+
+definition
+  Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "MOST " 10) where
   "Alm_all P = (\<not> (INF x. \<not> P x))"
 
 notation (xsymbols)
-  Inf_many  (binder "\<exists>\<^sub>\<infinity>" 10)
+  Inf_many  (binder "\<exists>\<^sub>\<infinity>" 10) and
   Alm_all  (binder "\<forall>\<^sub>\<infinity>" 10)
 
 notation (HTML output)
-  Inf_many  (binder "\<exists>\<^sub>\<infinity>" 10)
+  Inf_many  (binder "\<exists>\<^sub>\<infinity>" 10) and
   Alm_all  (binder "\<forall>\<^sub>\<infinity>" 10)
 
 lemma INF_EX:
@@ -453,7 +455,7 @@
 *}
 
 definition
-  atmost_one :: "'a set \<Rightarrow> bool"
+  atmost_one :: "'a set \<Rightarrow> bool" where
   "atmost_one S = (\<forall>x y. x\<in>S \<and> y\<in>S \<longrightarrow> x=y)"
 
 lemma atmost_one_empty: "S = {} \<Longrightarrow> atmost_one S"
--- a/src/HOL/Library/List_Prefix.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/List_Prefix.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -159,7 +159,7 @@
 subsection {* Parallel lists *}
 
 definition
-  parallel :: "'a list => 'a list => bool"    (infixl "\<parallel>" 50)
+  parallel :: "'a list => 'a list => bool"  (infixl "\<parallel>" 50) where
   "(xs \<parallel> ys) = (\<not> xs \<le> ys \<and> \<not> ys \<le> xs)"
 
 lemma parallelI [intro]: "\<not> xs \<le> ys ==> \<not> ys \<le> xs ==> xs \<parallel> ys"
@@ -218,7 +218,7 @@
 subsection {* Postfix order on lists *}
 
 definition
-  postfix :: "'a list => 'a list => bool"  ("(_/ >>= _)" [51, 50] 50)
+  postfix :: "'a list => 'a list => bool"  ("(_/ >>= _)" [51, 50] 50) where
   "(xs >>= ys) = (\<exists>zs. xs = zs @ ys)"
 
 lemma postfixI [intro?]: "xs = zs @ ys ==> xs >>= ys"
--- a/src/HOL/Library/Multiset.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/Multiset.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -21,20 +21,23 @@
   and [simp] = Rep_multiset_inject [symmetric]
 
 definition
-  Mempty :: "'a multiset"    ("{#}")
+  Mempty :: "'a multiset"  ("{#}") where
   "{#} = Abs_multiset (\<lambda>a. 0)"
 
-  single :: "'a => 'a multiset"    ("{#_#}")
+definition
+  single :: "'a => 'a multiset"  ("{#_#}") where
   "{#a#} = Abs_multiset (\<lambda>b. if b = a then 1 else 0)"
 
-  count :: "'a multiset => 'a => nat"
+definition
+  count :: "'a multiset => 'a => nat" where
   "count = Rep_multiset"
 
-  MCollect :: "'a multiset => ('a => bool) => 'a multiset"
+definition
+  MCollect :: "'a multiset => ('a => bool) => 'a multiset" where
   "MCollect M P = Abs_multiset (\<lambda>x. if P x then Rep_multiset M x else 0)"
 
 abbreviation
-  Melem :: "'a => 'a multiset => bool"    ("(_/ :# _)" [50, 51] 50)
+  Melem :: "'a => 'a multiset => bool"  ("(_/ :# _)" [50, 51] 50) where
   "a :# M == 0 < count M a"
 
 syntax
@@ -43,7 +46,7 @@
   "{#x:M. P#}" == "CONST MCollect M (\<lambda>x. P)"
 
 definition
-  set_of :: "'a multiset => 'a set"
+  set_of :: "'a multiset => 'a set" where
   "set_of M = {x. x :# M}"
 
 instance multiset :: (type) "{plus, minus, zero}" ..
@@ -55,7 +58,7 @@
   size_def: "size M == setsum (count M) (set_of M)"
 
 definition
-  multiset_inter :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" (infixl "#\<inter>" 70)
+  multiset_inter :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset"  (infixl "#\<inter>" 70) where
   "multiset_inter A B = A - (A - B)"
 
 
@@ -380,12 +383,13 @@
 subsubsection {* Well-foundedness *}
 
 definition
-  mult1 :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set"
+  mult1 :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" where
   "mult1 r =
     {(N, M). \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and>
       (\<forall>b. b :# K --> (b, a) \<in> r)}"
 
-  mult :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set"
+definition
+  mult :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" where
   "mult r = (mult1 r)\<^sup>+"
 
 lemma not_less_empty [iff]: "(M, {#}) \<notin> mult1 r"
@@ -796,7 +800,7 @@
 subsection {* Pointwise ordering induced by count *}
 
 definition
-  mset_le :: "['a multiset, 'a multiset] \<Rightarrow> bool"   ("_ \<le># _"  [50,51] 50)
+  mset_le :: "['a multiset, 'a multiset] \<Rightarrow> bool"  ("_ \<le># _"  [50,51] 50) where
   "(xs \<le># ys) = (\<forall>a. count xs a \<le> count ys a)"
 
 lemma mset_le_refl[simp]: "xs \<le># xs"
--- a/src/HOL/Library/NatPair.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/NatPair.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -16,7 +16,7 @@
 *}
 
 definition
-  nat2_to_nat:: "(nat * nat) \<Rightarrow> nat"
+  nat2_to_nat:: "(nat * nat) \<Rightarrow> nat" where
   "nat2_to_nat pair = (let (n,m) = pair in (n+m) * Suc (n+m) div 2 + n)"
 
 lemma dvd2_a_x_suc_a: "2 dvd a * (Suc a)"
--- a/src/HOL/Library/Nat_Infinity.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/Nat_Infinity.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -28,7 +28,7 @@
 instance inat :: "{ord, zero}" ..
 
 definition
-  iSuc :: "inat => inat"
+  iSuc :: "inat => inat" where
   "iSuc i = (case i of Fin n => Fin (Suc n) | \<infinity> => \<infinity>)"
 
 defs (overloaded)
--- a/src/HOL/Library/OptionalSugar.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/OptionalSugar.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -18,7 +18,7 @@
 
 (* aligning equations *)
 notation (tab output)
-  "op ="  ("(_) \<^raw:}\putisatab\isa{\ >=\<^raw:}\putisatab\isa{> (_)" [50,49] 50)
+  "op ="  ("(_) \<^raw:}\putisatab\isa{\ >=\<^raw:}\putisatab\isa{> (_)" [50,49] 50) and
   "=="  ("(_) \<^raw:}\putisatab\isa{\ >\<equiv>\<^raw:}\putisatab\isa{> (_)")
 
 (* Let *)
--- a/src/HOL/Library/Parity.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/Parity.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -22,7 +22,7 @@
   even_nat_def: "even (x::nat) == even (int x)"
 
 abbreviation
-  odd :: "'a::even_odd => bool"
+  odd :: "'a::even_odd => bool" where
   "odd x == \<not> even x"
 
 
--- a/src/HOL/Library/Permutation.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/Permutation.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -12,7 +12,7 @@
   perm :: "('a list * 'a list) set"
 
 abbreviation
-  perm_rel :: "'a list => 'a list => bool"    ("_ <~~> _"  [50, 50] 50)
+  perm_rel :: "'a list => 'a list => bool"  ("_ <~~> _"  [50, 50] 50) where
   "x <~~> y == (x, y) \<in> perm"
 
 inductive perm
--- a/src/HOL/Library/Primes.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/Primes.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,10 +11,11 @@
 begin
 
 definition
-  coprime :: "nat => nat => bool"
+  coprime :: "nat => nat => bool" where
   "coprime m n = (gcd (m, n) = 1)"
 
-  prime :: "nat \<Rightarrow> bool"
+definition
+  prime :: "nat \<Rightarrow> bool" where
   "prime p = (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
 
 
--- a/src/HOL/Library/Quotient.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/Quotient.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -75,7 +75,7 @@
 *}
 
 definition
-  "class" :: "'a::equiv => 'a quot"    ("\<lfloor>_\<rfloor>")
+  "class" :: "'a::equiv => 'a quot"  ("\<lfloor>_\<rfloor>") where
   "\<lfloor>a\<rfloor> = Abs_quot {x. a \<sim> x}"
 
 theorem quot_exhaust: "\<exists>a. A = \<lfloor>a\<rfloor>"
@@ -134,7 +134,7 @@
 subsection {* Picking representing elements *}
 
 definition
-  pick :: "'a::equiv quot => 'a"
+  pick :: "'a::equiv quot => 'a" where
   "pick A = (SOME a. A = \<lfloor>a\<rfloor>)"
 
 theorem pick_equiv [intro]: "pick \<lfloor>a\<rfloor> \<sim> a"
--- a/src/HOL/Library/SetsAndFunctions.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/SetsAndFunctions.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -52,14 +52,15 @@
   set_one: "1::('a::one)set == {1}"
 
 definition
-  elt_set_plus :: "'a::plus => 'a set => 'a set"    (infixl "+o" 70)
+  elt_set_plus :: "'a::plus => 'a set => 'a set"  (infixl "+o" 70) where
   "a +o B = {c. EX b:B. c = a + b}"
 
-  elt_set_times :: "'a::times => 'a set => 'a set"  (infixl "*o" 80)
+definition
+  elt_set_times :: "'a::times => 'a set => 'a set"  (infixl "*o" 80) where
   "a *o B = {c. EX b:B. c = a * b}"
 
 abbreviation (input)
-  elt_set_eq :: "'a => 'a set => bool"      (infix "=o" 50)
+  elt_set_eq :: "'a => 'a set => bool"  (infix "=o" 50) where
   "x =o A == x : A"
 
 instance "fun" :: (type,semigroup_add)semigroup_add
--- a/src/HOL/Library/State_Monad.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/State_Monad.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -68,12 +68,16 @@
 
 definition
   mbind :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd"
-    (infixl ">>=" 60)
+    (infixl ">>=" 60) where
   "f >>= g = split g \<circ> f"
+
+definition
   fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c"
-    (infixl ">>" 60)
+    (infixl ">>" 60) where
   "f >> g = g \<circ> f"
-  run :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
+
+definition
+  run :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where
   "run f = f"
 
 print_ast_translation {*[
--- a/src/HOL/Library/While_Combinator.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/While_Combinator.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -36,7 +36,7 @@
   done
 
 definition
-  while :: "('a => bool) => ('a => 'a) => 'a => 'a"
+  while :: "('a => bool) => ('a => 'a) => 'a => 'a" where
   "while b c s = while_aux (b, c, s)"
 
 lemma while_aux_unfold:
--- a/src/HOL/Library/Word.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/Word.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -57,15 +57,15 @@
   bitxor :: "bit => bit => bit" (infixr "bitxor" 30)
 
 notation (xsymbols)
-  bitnot ("\<not>\<^sub>b _" [40] 40)
-  bitand (infixr "\<and>\<^sub>b" 35)
-  bitor  (infixr "\<or>\<^sub>b" 30)
+  bitnot ("\<not>\<^sub>b _" [40] 40) and
+  bitand (infixr "\<and>\<^sub>b" 35) and
+  bitor  (infixr "\<or>\<^sub>b" 30) and
   bitxor (infixr "\<oplus>\<^sub>b" 30)
 
 notation (HTML output)
-  bitnot ("\<not>\<^sub>b _" [40] 40)
-  bitand (infixr "\<and>\<^sub>b" 35)
-  bitor  (infixr "\<or>\<^sub>b" 30)
+  bitnot ("\<not>\<^sub>b _" [40] 40) and
+  bitand (infixr "\<and>\<^sub>b" 35) and
+  bitor  (infixr "\<or>\<^sub>b" 30) and
   bitxor (infixr "\<oplus>\<^sub>b" 30)
 
 primrec
@@ -142,11 +142,15 @@
 qed
 
 definition
-  bv_msb :: "bit list => bit"
+  bv_msb :: "bit list => bit" where
   "bv_msb w = (if w = [] then \<zero> else hd w)"
-  bv_extend :: "[nat,bit,bit list]=>bit list"
+
+definition
+  bv_extend :: "[nat,bit,bit list]=>bit list" where
   "bv_extend i b w = (replicate (i - length w) b) @ w"
-  bv_not :: "bit list => bit list"
+
+definition
+  bv_not :: "bit list => bit list" where
   "bv_not w = map bitnot w"
 
 lemma bv_length_extend [simp]: "length w \<le> i ==> length (bv_extend i b w) = i"
@@ -177,7 +181,7 @@
   by (induct w,simp_all)
 
 definition
-  bv_to_nat :: "bit list => nat"
+  bv_to_nat :: "bit list => nat" where
   "bv_to_nat = foldl (%bn b. 2 * bn + bitval b) 0"
 
 lemma bv_to_nat_Nil [simp]: "bv_to_nat [] = 0"
@@ -327,7 +331,7 @@
 qed
 
 definition
-  norm_unsigned :: "bit list => bit list"
+  norm_unsigned :: "bit list => bit list" where
   "norm_unsigned = rem_initial \<zero>"
 
 lemma norm_unsigned_Nil [simp]: "norm_unsigned [] = []"
@@ -350,7 +354,7 @@
                                else nat_to_bv_helper (n div 2) ((if n mod 2 = 0 then \<zero> else \<one>)#bs)))"
 
 definition
-  nat_to_bv :: "nat => bit list"
+  nat_to_bv :: "nat => bit list" where
   "nat_to_bv n = nat_to_bv_helper n []"
 
 lemma nat_to_bv0 [simp]: "nat_to_bv 0 = []"
@@ -857,7 +861,7 @@
 subsection {* Unsigned Arithmetic Operations *}
 
 definition
-  bv_add :: "[bit list, bit list ] => bit list"
+  bv_add :: "[bit list, bit list ] => bit list" where
   "bv_add w1 w2 = nat_to_bv (bv_to_nat w1 + bv_to_nat w2)"
 
 lemma bv_add_type1 [simp]: "bv_add (norm_unsigned w1) w2 = bv_add w1 w2"
@@ -909,7 +913,7 @@
 qed
 
 definition
-  bv_mult :: "[bit list, bit list ] => bit list"
+  bv_mult :: "[bit list, bit list ] => bit list" where
   "bv_mult w1 w2 = nat_to_bv (bv_to_nat w1 * bv_to_nat w2)"
 
 lemma bv_mult_type1 [simp]: "bv_mult (norm_unsigned w1) w2 = bv_mult w1 w2"
@@ -969,7 +973,7 @@
 lemmas [simp del] = norm_signed_Cons
 
 definition
-  int_to_bv :: "int => bit list"
+  int_to_bv :: "int => bit list" where
   "int_to_bv n = (if 0 \<le> n
                  then norm_signed (\<zero>#nat_to_bv (nat n))
                  else norm_signed (bv_not (\<zero>#nat_to_bv (nat (-n- 1)))))"
@@ -1004,7 +1008,7 @@
 qed
 
 definition
-  bv_to_int :: "bit list => int"
+  bv_to_int :: "bit list => int" where
   "bv_to_int w =
     (case bv_msb w of \<zero> => int (bv_to_nat w)
     | \<one> => - int (bv_to_nat (bv_not w) + 1))"
@@ -1589,7 +1593,7 @@
 subsubsection {* Conversion from unsigned to signed *}
 
 definition
-  utos :: "bit list => bit list"
+  utos :: "bit list => bit list" where
   "utos w = norm_signed (\<zero> # w)"
 
 lemma utos_type [simp]: "utos (norm_unsigned w) = utos w"
@@ -1613,7 +1617,7 @@
 subsubsection {* Unary minus *}
 
 definition
-  bv_uminus :: "bit list => bit list"
+  bv_uminus :: "bit list => bit list" where
   "bv_uminus w = int_to_bv (- bv_to_int w)"
 
 lemma bv_uminus_type [simp]: "bv_uminus (norm_signed w) = bv_uminus w"
@@ -1712,7 +1716,7 @@
 qed
 
 definition
-  bv_sadd :: "[bit list, bit list ] => bit list"
+  bv_sadd :: "[bit list, bit list ] => bit list" where
   "bv_sadd w1 w2 = int_to_bv (bv_to_int w1 + bv_to_int w2)"
 
 lemma bv_sadd_type1 [simp]: "bv_sadd (norm_signed w1) w2 = bv_sadd w1 w2"
@@ -1823,7 +1827,7 @@
 qed
 
 definition
-  bv_sub :: "[bit list, bit list] => bit list"
+  bv_sub :: "[bit list, bit list] => bit list" where
   "bv_sub w1 w2 = bv_sadd w1 (bv_uminus w2)"
 
 lemma bv_sub_type1 [simp]: "bv_sub (norm_signed w1) w2 = bv_sub w1 w2"
@@ -1917,7 +1921,7 @@
 qed
 
 definition
-  bv_smult :: "[bit list, bit list] => bit list"
+  bv_smult :: "[bit list, bit list] => bit list" where
   "bv_smult w1 w2 = int_to_bv (bv_to_int w1 * bv_to_int w2)"
 
 lemma bv_smult_type1 [simp]: "bv_smult (norm_signed w1) w2 = bv_smult w1 w2"
@@ -2203,11 +2207,15 @@
 subsection {* Structural operations *}
 
 definition
-  bv_select :: "[bit list,nat] => bit"
+  bv_select :: "[bit list,nat] => bit" where
   "bv_select w i = w ! (length w - 1 - i)"
-  bv_chop :: "[bit list,nat] => bit list * bit list"
+
+definition
+  bv_chop :: "[bit list,nat] => bit list * bit list" where
   "bv_chop w i = (let len = length w in (take (len - i) w,drop (len - i) w))"
-  bv_slice :: "[bit list,nat*nat] => bit list"
+
+definition
+  bv_slice :: "[bit list,nat*nat] => bit list" where
   "bv_slice w = (\<lambda>(b,e). fst (bv_chop (snd (bv_chop w (b+1))) e))"
 
 lemma bv_select_rev:
@@ -2280,7 +2288,7 @@
   by (auto simp add: bv_slice_def)
 
 definition
-  length_nat :: "nat => nat"
+  length_nat :: "nat => nat" where
   "length_nat x = (LEAST n. x < 2 ^ n)"
 
 lemma length_nat: "length (nat_to_bv n) = length_nat n"
@@ -2312,7 +2320,7 @@
   done
 
 definition
-  length_int :: "int => nat"
+  length_int :: "int => nat" where
   "length_int x =
     (if 0 < x then Suc (length_nat (nat x))
     else if x = 0 then 0
@@ -2546,7 +2554,7 @@
 declare bv_to_nat_helper [simp del]
 
 definition
-  bv_mapzip :: "[bit => bit => bit,bit list, bit list] => bit list"
+  bv_mapzip :: "[bit => bit => bit,bit list, bit list] => bit list" where
   "bv_mapzip f w1 w2 =
     (let g = bv_extend (max (length w1) (length w2)) \<zero>
      in map (split f) (zip (g w1) (g w2)))"
--- a/src/HOL/Library/Zorn.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Library/Zorn.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -16,16 +16,19 @@
 *}
 
 definition
-  chain     ::  "'a set set => 'a set set set"
+  chain     ::  "'a set set => 'a set set set" where
   "chain S  = {F. F \<subseteq> S & (\<forall>x \<in> F. \<forall>y \<in> F. x \<subseteq> y | y \<subseteq> x)}"
 
-  super     ::  "['a set set,'a set set] => 'a set set set"
+definition
+  super     ::  "['a set set,'a set set] => 'a set set set" where
   "super S c = {d. d \<in> chain S & c \<subset> d}"
 
-  maxchain  ::  "'a set set => 'a set set set"
+definition
+  maxchain  ::  "'a set set => 'a set set set" where
   "maxchain S = {c. c \<in> chain S & super S c = {}}"
 
-  succ      ::  "['a set set,'a set set] => 'a set set"
+definition
+  succ      ::  "['a set set,'a set set] => 'a set set" where
   "succ S c =
     (if c \<notin> chain S | c \<in> maxchain S
     then c else SOME c'. c' \<in> super S c)"
--- a/src/HOL/List.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/List.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -43,7 +43,7 @@
   splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
 
 abbreviation
-  upto:: "nat => nat => nat list"    ("(1[_../_])")
+  upto:: "nat => nat => nat list"  ("(1[_../_])") where
   "[i..j] == [i..<(Suc j)]"
 
 
@@ -82,7 +82,7 @@
   refer to the list version as @{text length}. *}
 
 abbreviation
-  length :: "'a list => nat"
+  length :: "'a list => nat" where
   "length == size"
 
 primrec
@@ -187,16 +187,21 @@
   replicate_Suc: "replicate (Suc n) x = x # replicate n x"
 
 definition
-  rotate1 :: "'a list \<Rightarrow> 'a list"
-  rotate1_def: "rotate1 xs = (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])"
-  rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
-  rotate_def:  "rotate n = rotate1 ^ n"
-  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool"
-  list_all2_def: "list_all2 P xs ys =
+  rotate1 :: "'a list \<Rightarrow> 'a list" where
+  "rotate1 xs = (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])"
+
+definition
+  rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
+  "rotate n = rotate1 ^ n"
+
+definition
+  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" where
+  "list_all2 P xs ys =
     (length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y))"
-  sublist :: "'a list => nat set => 'a list"
-  sublist_def: "sublist xs A =
-    map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))"
+
+definition
+  sublist :: "'a list => nat set => 'a list" where
+  "sublist xs A = map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))"
 
 primrec
   "splice [] ys = ys"
--- a/src/HOL/Map.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Map.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -19,34 +19,37 @@
   "~=>" :: "[type, type] => type"  (infixr "\<rightharpoonup>" 0)
 
 abbreviation
-  empty :: "'a ~=> 'b"
+  empty :: "'a ~=> 'b" where
   "empty == %x. None"
 
 definition
-  map_comp :: "('b ~=> 'c)  => ('a ~=> 'b) => ('a ~=> 'c)"  (infixl "o'_m" 55)
+  map_comp :: "('b ~=> 'c)  => ('a ~=> 'b) => ('a ~=> 'c)"  (infixl "o'_m" 55) where
   "f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
 
 notation (xsymbols)
   map_comp  (infixl "\<circ>\<^sub>m" 55)
 
 definition
-  map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)"  (infixl "++" 100)
+  map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)"  (infixl "++" 100) where
   "m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)"
 
-  restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)"  (infixl "|`"  110)
+definition
+  restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)"  (infixl "|`"  110) where
   "m|`A = (\<lambda>x. if x : A then m x else None)"
 
 notation (latex output)
   restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
 
 definition
-  dom :: "('a ~=> 'b) => 'a set"
+  dom :: "('a ~=> 'b) => 'a set" where
   "dom m = {a. m a ~= None}"
 
-  ran :: "('a ~=> 'b) => 'b set"
+definition
+  ran :: "('a ~=> 'b) => 'b set" where
   "ran m = {b. EX a. m a = Some b}"
 
-  map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool"  (infix "\<subseteq>\<^sub>m" 50)
+definition
+  map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool"  (infix "\<subseteq>\<^sub>m" 50) where
   "(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)"
 
 consts
--- a/src/HOL/MicroJava/J/Example.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/MicroJava/J/Example.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -111,19 +111,21 @@
 
 
 abbreviation
-  NP  :: xcpt
+  NP  :: xcpt where
   "NP == NullPointer"
 
-  tprg  ::"java_mb prog"
+abbreviation
+  tprg  ::"java_mb prog" where
   "tprg == [ObjectC, BaseC, ExtC, ClassCastC, NullPointerC, OutOfMemoryC]"
 
-  obj1  :: obj
+abbreviation
+  obj1  :: obj where
   "obj1 == (Ext, empty((vee, Base)\<mapsto>Bool False) ((vee, Ext )\<mapsto>Intg 0))"
 
-  "s0 == Norm    (empty, empty)"
-  "s1 == Norm    (empty(a\<mapsto>obj1),empty(e\<mapsto>Addr a))"
-  "s2 == Norm    (empty(a\<mapsto>obj1),empty(x\<mapsto>Null)(This\<mapsto>Addr a))"
-  "s3 == (Some NP, empty(a\<mapsto>obj1),empty(e\<mapsto>Addr a))"
+abbreviation "s0 == Norm    (empty, empty)"
+abbreviation "s1 == Norm    (empty(a\<mapsto>obj1),empty(e\<mapsto>Addr a))"
+abbreviation "s2 == Norm    (empty(a\<mapsto>obj1),empty(x\<mapsto>Null)(This\<mapsto>Addr a))"
+abbreviation "s3 == (Some NP, empty(a\<mapsto>obj1),empty(e\<mapsto>Addr a))"
 
 ML {* bind_thm ("map_of_Cons", hd (tl (thms "map_of.simps"))) *}
 lemma map_of_Cons1 [simp]: "map_of ((aa,bb)#ps) aa = Some bb"
--- a/src/HOL/MicroJava/JVM/JVMListExample.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/MicroJava/JVM/JVMListExample.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -124,14 +124,14 @@
   and instr :: eq ..
 
 definition
-  arbitrary_val :: val
+  arbitrary_val :: val where
   [symmetric, code inline]: "arbitrary_val = arbitrary"
-  arbitrary_cname :: cname
+definition
+  arbitrary_cname :: cname where
   [symmetric, code inline]: "arbitrary_cname = arbitrary"
 
-definition
-  "unit' = Unit"
-  "object' = Object"
+definition "unit' = Unit"
+definition "object' = Object"
 
 code_axioms
   arbitrary_val \<equiv> unit'
@@ -153,7 +153,7 @@
   "test_loc p v l = (if p l then v l else test_loc p v (incr l))"
 
 definition
-  new_addr' :: "(loc \<Rightarrow> (cname \<times> (vname \<times> cname \<Rightarrow> val option)) option) \<Rightarrow> loc \<times> val option"
+  new_addr' :: "(loc \<Rightarrow> (cname \<times> (vname \<times> cname \<Rightarrow> val option)) option) \<Rightarrow> loc \<times> val option" where
   "new_addr' hp =
     test_loc (\<lambda>i. hp (Loc i) = None) (\<lambda>i. (Loc i, None)) zero_loc"
 
--- a/src/HOL/Nominal/Examples/Lam_Funs.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Nominal/Examples/Lam_Funs.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -1,4 +1,4 @@
-(* $Id: *)
+(* $Id$ *)
 
 theory Lam_Funs
 imports Nominal
@@ -73,7 +73,7 @@
   "subst_Lam b t \<equiv> \<lambda>a _ r. Lam [a].r"
 
 abbreviation
-  subst_syn  :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" ("_[_::=_]" [100,100,100] 900) 
+  subst_syn  :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" ("_[_::=_]" [100,100,100] 900) where
   "t'[b::=t] \<equiv> (lam_rec (subst_Var b t) (subst_App b t) (subst_Lam b t)) t'"
 
 (* FIXME: this lemma needs to be in Nominal.thy *)
@@ -200,7 +200,7 @@
   "psubst_Lam \<theta> \<equiv> \<lambda>a _ r. Lam [a].r"
 
 abbreviation
-  psubst_lam :: "lam \<Rightarrow> (name\<times>lam) list \<Rightarrow> lam" ("_[<_>]" [100,100] 900)
+  psubst_lam :: "lam \<Rightarrow> (name\<times>lam) list \<Rightarrow> lam" ("_[<_>]" [100,100] 900) where
   "t[<\<theta>>] \<equiv> (lam_rec (psubst_Var \<theta>) (psubst_App \<theta>) (psubst_Lam \<theta>)) t"
 
 lemma fin_supp_psubst:
@@ -241,4 +241,4 @@
   apply(simp add: psubst_Lam_def)
 done
 
-end
\ No newline at end of file
+end
--- a/src/HOL/Nominal/Examples/SN.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Nominal/Examples/SN.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -344,7 +344,7 @@
 qed
 
 abbreviation
-  "sub" :: "(name\<times>ty) list \<Rightarrow> (name\<times>ty) list \<Rightarrow> bool" (" _ \<lless> _ " [80,80] 80)
+  "sub" :: "(name\<times>ty) list \<Rightarrow> (name\<times>ty) list \<Rightarrow> bool" (" _ \<lless> _ " [80,80] 80) where
   "\<Gamma>1 \<lless> \<Gamma>2 \<equiv> \<forall>a \<sigma>. (a,\<sigma>)\<in>set \<Gamma>1 \<longrightarrow>  (a,\<sigma>)\<in>set \<Gamma>2"
 
 lemma weakening: 
--- a/src/HOL/Nominal/Examples/Weakening.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Nominal/Examples/Weakening.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -193,7 +193,7 @@
 text {* definition of a subcontext *}
 
 abbreviation
-  "sub" :: "(name\<times>ty) list \<Rightarrow> (name\<times>ty) list \<Rightarrow> bool" (" _ \<lless> _ " [80,80] 80)
+  "sub" :: "(name\<times>ty) list \<Rightarrow> (name\<times>ty) list \<Rightarrow> bool" (" _ \<lless> _ " [80,80] 80) where
   "\<Gamma>1 \<lless> \<Gamma>2 \<equiv> \<forall>a \<sigma>. (a,\<sigma>)\<in>set \<Gamma>1 \<longrightarrow> (a,\<sigma>)\<in>set \<Gamma>2"
 
 text {* Now it comes: The Weakening Lemma *}
--- a/src/HOL/NumberTheory/BijectionRel.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/NumberTheory/BijectionRel.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -30,13 +30,15 @@
 *}
 
 definition
-  bijP :: "('a => 'a => bool) => 'a set => bool"
+  bijP :: "('a => 'a => bool) => 'a set => bool" where
   "bijP P F = (\<forall>a b. a \<in> F \<and> P a b --> b \<in> F)"
 
-  uniqP :: "('a => 'a => bool) => bool"
+definition
+  uniqP :: "('a => 'a => bool) => bool" where
   "uniqP P = (\<forall>a b c d. P a b \<and> P c d --> (a = c) = (b = d))"
 
-  symP :: "('a => 'a => bool) => bool"
+definition
+  symP :: "('a => 'a => bool) => bool" where
   "symP P = (\<forall>a b. P a b = P b a)"
 
 consts
--- a/src/HOL/NumberTheory/Chinese.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/NumberTheory/Chinese.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -32,32 +32,37 @@
   "funsum f i (Suc n) = f (Suc (i + n)) + funsum f i n"
 
 definition
-  m_cond :: "nat => (nat => int) => bool"
+  m_cond :: "nat => (nat => int) => bool" where
   "m_cond n mf =
     ((\<forall>i. i \<le> n --> 0 < mf i) \<and>
       (\<forall>i j. i \<le> n \<and> j \<le> n \<and> i \<noteq> j --> zgcd (mf i, mf j) = 1))"
 
-  km_cond :: "nat => (nat => int) => (nat => int) => bool"
+definition
+  km_cond :: "nat => (nat => int) => (nat => int) => bool" where
   "km_cond n kf mf = (\<forall>i. i \<le> n --> zgcd (kf i, mf i) = 1)"
 
+definition
   lincong_sol ::
-    "nat => (nat => int) => (nat => int) => (nat => int) => int => bool"
+    "nat => (nat => int) => (nat => int) => (nat => int) => int => bool" where
   "lincong_sol n kf bf mf x = (\<forall>i. i \<le> n --> zcong (kf i * x) (bf i) (mf i))"
 
-  mhf :: "(nat => int) => nat => nat => int"
+definition
+  mhf :: "(nat => int) => nat => nat => int" where
   "mhf mf n i =
     (if i = 0 then funprod mf (Suc 0) (n - Suc 0)
      else if i = n then funprod mf 0 (n - Suc 0)
      else funprod mf 0 (i - Suc 0) * funprod mf (Suc i) (n - Suc 0 - i))"
 
+definition
   xilin_sol ::
-    "nat => nat => (nat => int) => (nat => int) => (nat => int) => int"
+    "nat => nat => (nat => int) => (nat => int) => (nat => int) => int" where
   "xilin_sol i n kf bf mf =
     (if 0 < n \<and> i \<le> n \<and> m_cond n mf \<and> km_cond n kf mf then
         (SOME x. 0 \<le> x \<and> x < mf i \<and> zcong (kf i * mhf mf n i * x) (bf i) (mf i))
      else 0)"
 
-  x_sol :: "nat => (nat => int) => (nat => int) => (nat => int) => int"
+definition
+  x_sol :: "nat => (nat => int) => (nat => int) => (nat => int) => int" where
   "x_sol n kf bf mf = funsum (\<lambda>i. xilin_sol i n kf bf mf * mhf mf n i) 0 n"
 
 
--- a/src/HOL/NumberTheory/Euler.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/NumberTheory/Euler.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -8,10 +8,11 @@
 theory Euler imports Residues EvenOdd begin
 
 definition
-  MultInvPair :: "int => int => int => int set"
+  MultInvPair :: "int => int => int => int set" where
   "MultInvPair a p j = {StandardRes p j, StandardRes p (a * (MultInv p j))}"
 
-  SetS        :: "int => int => int set set"
+definition
+  SetS        :: "int => int => int set set" where
   "SetS        a p   =  (MultInvPair a p ` SRStar p)"
 
 
--- a/src/HOL/NumberTheory/EulerFermat.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/NumberTheory/EulerFermat.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -38,25 +38,30 @@
     else {})"
 
 definition
-  norRRset :: "int => int set"
+  norRRset :: "int => int set" where
   "norRRset m = BnorRset (m - 1, m)"
 
-  noXRRset :: "int => int => int set"
+definition
+  noXRRset :: "int => int => int set" where
   "noXRRset m x = (\<lambda>a. a * x) ` norRRset m"
 
-  phi :: "int => nat"
+definition
+  phi :: "int => nat" where
   "phi m = card (norRRset m)"
 
-  is_RRset :: "int set => int => bool"
+definition
+  is_RRset :: "int set => int => bool" where
   "is_RRset A m = (A \<in> RsetR m \<and> card A = phi m)"
 
-  RRset2norRR :: "int set => int => int => int"
+definition
+  RRset2norRR :: "int set => int => int => int" where
   "RRset2norRR A m a =
      (if 1 < m \<and> is_RRset A m \<and> a \<in> A then
         SOME b. zcong a b m \<and> b \<in> norRRset m
       else 0)"
 
-  zcongm :: "int => int => int => bool"
+definition
+  zcongm :: "int => int => int => bool" where
   "zcongm m = (\<lambda>a b. zcong a b m)"
 
 lemma abs_eq_1_iff [iff]: "(abs z = (1::int)) = (z = 1 \<or> z = -1)"
--- a/src/HOL/NumberTheory/EvenOdd.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/NumberTheory/EvenOdd.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -8,9 +8,11 @@
 theory EvenOdd imports Int2 begin
 
 definition
-  zOdd    :: "int set"
+  zOdd    :: "int set" where
   "zOdd = {x. \<exists>k. x = 2 * k + 1}"
-  zEven   :: "int set"
+
+definition
+  zEven   :: "int set" where
   "zEven = {x. \<exists>k. x = 2 * k}"
 
 subsection {* Some useful properties about even and odd *}
--- a/src/HOL/NumberTheory/Factorization.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/NumberTheory/Factorization.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -12,7 +12,7 @@
 subsection {* Definitions *}
 
 definition
-  primel :: "nat list => bool "
+  primel :: "nat list => bool" where
   "primel xs = (\<forall>p \<in> set xs. prime p)"
 
 consts
--- a/src/HOL/NumberTheory/Gauss.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/NumberTheory/Gauss.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -18,22 +18,27 @@
 begin
 
 definition
-  A :: "int set"
+  A :: "int set" where
   "A = {(x::int). 0 < x & x \<le> ((p - 1) div 2)}"
 
-  B :: "int set"
+definition
+  B :: "int set" where
   "B = (%x. x * a) ` A"
 
-  C :: "int set"
+definition
+  C :: "int set" where
   "C = StandardRes p ` B"
 
-  D :: "int set"
+definition
+  D :: "int set" where
   "D = C \<inter> {x. x \<le> ((p - 1) div 2)}"
 
-  E :: "int set"
+definition
+  E :: "int set" where
   "E = C \<inter> {x. ((p - 1) div 2) < x}"
 
-  F :: "int set"
+definition
+  F :: "int set" where
   "F = (%x. (p - x)) ` E"
 
 
--- a/src/HOL/NumberTheory/Int2.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/NumberTheory/Int2.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -8,7 +8,7 @@
 theory Int2 imports Finite2 WilsonRuss begin
 
 definition
-  MultInv :: "int => int => int"
+  MultInv :: "int => int => int" where
   "MultInv p x = x ^ nat (p - 2)"
 
 
--- a/src/HOL/NumberTheory/IntPrimes.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/NumberTheory/IntPrimes.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -32,16 +32,19 @@
 		      t, t' - (r' div r) * t))"
 
 definition
-  zgcd :: "int * int => int"
+  zgcd :: "int * int => int" where
   "zgcd = (\<lambda>(x,y). int (gcd (nat (abs x), nat (abs y))))"
 
-  zprime :: "int \<Rightarrow> bool"
+definition
+  zprime :: "int \<Rightarrow> bool" where
   "zprime p = (1 < p \<and> (\<forall>m. 0 <= m & m dvd p --> m = 1 \<or> m = p))"
 
-  xzgcd :: "int => int => int * int * int"
+definition
+  xzgcd :: "int => int => int * int * int" where
   "xzgcd m n = xzgcda (m, n, m, n, 1, 0, 0, 1)"
 
-  zcong :: "int => int => int => bool"    ("(1[_ = _] '(mod _'))")
+definition
+  zcong :: "int => int => int => bool"  ("(1[_ = _] '(mod _'))") where
   "[a = b] (mod m) = (m dvd (a - b))"
 
 
--- a/src/HOL/NumberTheory/Quadratic_Reciprocity.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/NumberTheory/Quadratic_Reciprocity.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -168,25 +168,31 @@
 begin
 
 definition
-  P_set :: "int set"
+  P_set :: "int set" where
   "P_set = {x. 0 < x & x \<le> ((p - 1) div 2) }"
 
-  Q_set :: "int set"
+definition
+  Q_set :: "int set" where
   "Q_set = {x. 0 < x & x \<le> ((q - 1) div 2) }"
   
-  S :: "(int * int) set"
+definition
+  S :: "(int * int) set" where
   "S = P_set <*> Q_set"
 
-  S1 :: "(int * int) set"
+definition
+  S1 :: "(int * int) set" where
   "S1 = { (x, y). (x, y):S & ((p * y) < (q * x)) }"
 
-  S2 :: "(int * int) set"
+definition
+  S2 :: "(int * int) set" where
   "S2 = { (x, y). (x, y):S & ((q * x) < (p * y)) }"
 
-  f1 :: "int => (int * int) set"
+definition
+  f1 :: "int => (int * int) set" where
   "f1 j = { (j1, y). (j1, y):S & j1 = j & (y \<le> (q * j) div p) }"
 
-  f2 :: "int => (int * int) set"
+definition
+  f2 :: "int => (int * int) set" where
   "f2 j = { (x, j1). (x, j1):S & j1 = j & (x \<le> (p * j) div q) }"
 
 lemma p_fact: "0 < (p - 1) div 2"
--- a/src/HOL/NumberTheory/Residues.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/NumberTheory/Residues.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -12,24 +12,29 @@
   quadratic residues, and prove some basic properties. *}
 
 definition
-  ResSet      :: "int => int set => bool"
+  ResSet      :: "int => int set => bool" where
   "ResSet m X = (\<forall>y1 y2. (y1 \<in> X & y2 \<in> X & [y1 = y2] (mod m) --> y1 = y2))"
 
-  StandardRes :: "int => int => int"
+definition
+  StandardRes :: "int => int => int" where
   "StandardRes m x = x mod m"
 
-  QuadRes     :: "int => int => bool"
+definition
+  QuadRes     :: "int => int => bool" where
   "QuadRes m x = (\<exists>y. ([(y ^ 2) = x] (mod m)))"
 
-  Legendre    :: "int => int => int"      
+definition
+  Legendre    :: "int => int => int" where
   "Legendre a p = (if ([a = 0] (mod p)) then 0
                      else if (QuadRes p a) then 1
                      else -1)"
 
-  SR          :: "int => int set"
+definition
+  SR          :: "int => int set" where
   "SR p = {x. (0 \<le> x) & (x < p)}"
 
-  SRStar      :: "int => int set"
+definition
+  SRStar      :: "int => int set" where
   "SRStar p = {x. (0 < x) & (x < p)}"
 
 
--- a/src/HOL/NumberTheory/WilsonBij.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/NumberTheory/WilsonBij.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -18,9 +18,11 @@
 subsection {* Definitions and lemmas *}
 
 definition
-  reciR :: "int => int => int => bool"
+  reciR :: "int => int => int => bool" where
   "reciR p = (\<lambda>a b. zcong (a * b) 1 p \<and> 1 < a \<and> a < p - 1 \<and> 1 < b \<and> b < p - 1)"
-  inv :: "int => int => int"
+
+definition
+  inv :: "int => int => int" where
   "inv p a =
     (if zprime p \<and> 0 < a \<and> a < p then
       (SOME x. 0 \<le> x \<and> x < p \<and> zcong (a * x) 1 p)
--- a/src/HOL/NumberTheory/WilsonRuss.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/NumberTheory/WilsonRuss.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -16,7 +16,7 @@
 subsection {* Definitions and lemmas *}
 
 definition
-  inv :: "int => int => int"
+  inv :: "int => int => int" where
   "inv p a = (a^(nat (p - 2))) mod p"
 
 consts
--- a/src/HOL/Orderings.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Orderings.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -19,23 +19,25 @@
 begin
 
 notation
-  less_eq  ("op \<^loc><=")
-  less_eq  ("(_/ \<^loc><= _)" [51, 51] 50)
-  less  ("op \<^loc><")
+  less_eq  ("op \<^loc><=") and
+  less_eq  ("(_/ \<^loc><= _)" [51, 51] 50) and
+  less  ("op \<^loc><") and
   less  ("(_/ \<^loc>< _)"  [51, 51] 50)
 
 notation (xsymbols)
-  less_eq  ("op \<^loc>\<le>")
+  less_eq  ("op \<^loc>\<le>") and
   less_eq  ("(_/ \<^loc>\<le> _)"  [51, 51] 50)
 
 notation (HTML output)
-  less_eq  ("op \<^loc>\<le>")
+  less_eq  ("op \<^loc>\<le>") and
   less_eq  ("(_/ \<^loc>\<le> _)"  [51, 51] 50)
 
 abbreviation (input)
-  greater  (infix "\<^loc>>" 50)
+  greater  (infix "\<^loc>>" 50) where
   "x \<^loc>> y \<equiv> y \<^loc>< x"
-  greater_eq  (infix "\<^loc>>=" 50)
+
+abbreviation (input)
+  greater_eq  (infix "\<^loc>>=" 50) where
   "x \<^loc>>= y \<equiv> y \<^loc><= x"
 
 notation (xsymbols)
@@ -44,23 +46,25 @@
 end
 
 notation
-  less_eq  ("op <=")
-  less_eq  ("(_/ <= _)" [51, 51] 50)
-  less  ("op <")
+  less_eq  ("op <=") and
+  less_eq  ("(_/ <= _)" [51, 51] 50) and
+  less  ("op <") and
   less  ("(_/ < _)"  [51, 51] 50)
   
 notation (xsymbols)
-  less_eq  ("op \<le>")
+  less_eq  ("op \<le>") and
   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 
 notation (HTML output)
-  less_eq  ("op \<le>")
+  less_eq  ("op \<le>") and
   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 
 abbreviation (input)
-  greater  (infix ">" 50)
+  greater  (infix ">" 50) where
   "x > y \<equiv> y < x"
-  greater_eq  (infix ">=" 50)
+
+abbreviation (input)
+  greater_eq  (infix ">=" 50) where
   "x >= y \<equiv> y <= x"
   
 notation (xsymbols)
@@ -78,11 +82,11 @@
 begin
 
 abbreviation (input)
-  greater_eq (infixl "\<sqsupseteq>" 50)
+  greater_eq  (infixl "\<sqsupseteq>" 50) where
   "x \<sqsupseteq> y \<equiv> y \<sqsubseteq> x"
 
 abbreviation (input)
-  greater (infixl "\<sqsupset>" 50)
+  greater (infixl "\<sqsupset>" 50) where
   "x \<sqsupset> y \<equiv> y \<sqsubset> x"
 
 text {* Reflexivity. *}
@@ -202,8 +206,6 @@
 
 locale linorder = partial_order +
   assumes linear: "x \<sqsubseteq> y \<or> y \<sqsubseteq> x"
-
-context linorder
 begin
 
 lemma trichotomy: "x \<sqsubset> y \<or> x = y \<or> y \<sqsubset> x"
@@ -259,9 +261,11 @@
 (* min/max *)
 
 definition
-  min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
+  min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
   "min a b = (if a \<sqsubseteq> b then a else b)"
-  max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
+
+definition
+  max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
   "max a b = (if a \<sqsubseteq> b then b else a)"
 
 lemma min_le_iff_disj:
--- a/src/HOL/Product_Type.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Product_Type.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -110,7 +110,8 @@
   Sigma_def:    "Sigma A B == UN x:A. UN y:B x. {Pair x y}"
 
 abbreviation
-  Times :: "['a set, 'b set] => ('a * 'b) set"  (infixr "<*>" 80)
+  Times :: "['a set, 'b set] => ('a * 'b) set"
+    (infixr "<*>" 80) where
   "A <*> B == Sigma A (%_. B)"
 
 notation (xsymbols)
--- a/src/HOL/Real/ContNotDenum.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Real/ContNotDenum.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -37,7 +37,7 @@
 subsubsection {* Definition *}
 
 definition
-  closed_int :: "real \<Rightarrow> real \<Rightarrow> real set"
+  closed_int :: "real \<Rightarrow> real \<Rightarrow> real set" where
   "closed_int x y = {z. x \<le> z \<and> z \<le> y}"
 
 subsubsection {* Properties *}
--- a/src/HOL/Real/Float.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Real/Float.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,9 +11,11 @@
 begin
 
 definition
-  pow2 :: "int \<Rightarrow> real"
+  pow2 :: "int \<Rightarrow> real" where
   "pow2 a = (if (0 <= a) then (2^(nat a)) else (inverse (2^(nat (-a)))))"
-  float :: "int * int \<Rightarrow> real"
+
+definition
+  float :: "int * int \<Rightarrow> real" where
   "float x = real (fst x) * pow2 (snd x)"
 
 lemma pow2_0[simp]: "pow2 0 = 1"
@@ -99,9 +101,11 @@
 by (simp add: float_def ring_eq_simps)
 
 definition
-  int_of_real :: "real \<Rightarrow> int"
+  int_of_real :: "real \<Rightarrow> int" where
   "int_of_real x = (SOME y. real y = x)"
-  real_is_int :: "real \<Rightarrow> bool"
+
+definition
+  real_is_int :: "real \<Rightarrow> bool" where
   "real_is_int x = (EX (u::int). x = real u)"
 
 lemma real_is_int_def2: "real_is_int x = (x = real (int_of_real x))"
--- a/src/HOL/Real/HahnBanach/Bounds.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Real/HahnBanach/Bounds.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -15,7 +15,7 @@
 lemmas [elim?] = lub.least lub.upper
 
 definition
-  the_lub :: "'a::order set \<Rightarrow> 'a"
+  the_lub :: "'a::order set \<Rightarrow> 'a" where
   "the_lub A = The (lub A)"
 
 notation (xsymbols)
--- a/src/HOL/Real/HahnBanach/FunctionOrder.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Real/HahnBanach/FunctionOrder.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -23,7 +23,7 @@
 types 'a graph = "('a \<times> real) set"
 
 definition
-  graph :: "'a set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> 'a graph"
+  graph :: "'a set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> 'a graph" where
   "graph F f = {(x, f x) | x. x \<in> F}"
 
 lemma graphI [intro]: "x \<in> F \<Longrightarrow> (x, f x) \<in> graph F f"
@@ -66,10 +66,11 @@
 *}
 
 definition
-  "domain" :: "'a graph \<Rightarrow> 'a set"
+  "domain" :: "'a graph \<Rightarrow> 'a set" where
   "domain g = {x. \<exists>y. (x, y) \<in> g}"
 
-  funct :: "'a graph \<Rightarrow> ('a \<Rightarrow> real)"
+definition
+  funct :: "'a graph \<Rightarrow> ('a \<Rightarrow> real)" where
   "funct g = (\<lambda>x. (SOME y. (x, y) \<in> g))"
 
 text {*
@@ -104,7 +105,7 @@
 definition
   norm_pres_extensions ::
     "'a::{plus, minus, zero} set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> real)
-      \<Rightarrow> 'a graph set"
+      \<Rightarrow> 'a graph set" where
     "norm_pres_extensions E p F f
       = {g. \<exists>H h. g = graph H h
           \<and> linearform H h
--- a/src/HOL/Real/HahnBanach/Subspace.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Real/HahnBanach/Subspace.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -131,7 +131,7 @@
 *}
 
 definition
-  lin :: "('a::{minus, plus, zero}) \<Rightarrow> 'a set"
+  lin :: "('a::{minus, plus, zero}) \<Rightarrow> 'a set" where
   "lin x = {a \<cdot> x | a. True}"
 
 lemma linI [intro]: "y = a \<cdot> x \<Longrightarrow> y \<in> lin x"
--- a/src/HOL/Real/Lubs.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Real/Lubs.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -13,23 +13,27 @@
 text{*Thanks to suggestions by James Margetson*}
 
 definition
-
-  setle :: "['a set, 'a::ord] => bool"     (infixl "*<=" 70)
+  setle :: "['a set, 'a::ord] => bool"  (infixl "*<=" 70) where
   "S *<= x = (ALL y: S. y <= x)"
 
-  setge :: "['a::ord, 'a set] => bool"     (infixl "<=*" 70)
+definition
+  setge :: "['a::ord, 'a set] => bool"  (infixl "<=*" 70) where
   "x <=* S = (ALL y: S. x <= y)"
 
-  leastP      :: "['a =>bool,'a::ord] => bool"
+definition
+  leastP      :: "['a =>bool,'a::ord] => bool" where
   "leastP P x = (P x & x <=* Collect P)"
 
-  isUb        :: "['a set, 'a set, 'a::ord] => bool"
+definition
+  isUb        :: "['a set, 'a set, 'a::ord] => bool" where
   "isUb R S x = (S *<= x & x: R)"
 
-  isLub       :: "['a set, 'a set, 'a::ord] => bool"
+definition
+  isLub       :: "['a set, 'a set, 'a::ord] => bool" where
   "isLub R S x = leastP (isUb R S) x"
 
-  ubs         :: "['a set, 'a::ord set] => 'a set"
+definition
+  ubs         :: "['a set, 'a::ord set] => 'a set" where
   "ubs R S = Collect (isUb R S)"
 
 
--- a/src/HOL/Real/PReal.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Real/PReal.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -28,7 +28,7 @@
 
 
 definition
-  cut :: "rat set => bool"
+  cut :: "rat set => bool" where
   "cut A = ({} \<subset> A &
             A < {r. 0 < r} &
             (\<forall>y \<in> A. ((\<forall>z. 0<z & z < y --> z \<in> A) & (\<exists>u \<in> A. y < u))))"
@@ -56,22 +56,27 @@
 instance preal :: "{ord, plus, minus, times, inverse}" ..
 
 definition
-  preal_of_rat :: "rat => preal"
+  preal_of_rat :: "rat => preal" where
   "preal_of_rat q = Abs_preal {x::rat. 0 < x & x < q}"
 
-  psup :: "preal set => preal"
+definition
+  psup :: "preal set => preal" where
   "psup P = Abs_preal (\<Union>X \<in> P. Rep_preal X)"
 
-  add_set :: "[rat set,rat set] => rat set"
+definition
+  add_set :: "[rat set,rat set] => rat set" where
   "add_set A B = {w. \<exists>x \<in> A. \<exists>y \<in> B. w = x + y}"
 
-  diff_set :: "[rat set,rat set] => rat set"
+definition
+  diff_set :: "[rat set,rat set] => rat set" where
   "diff_set A B = {w. \<exists>x. 0 < w & 0 < x & x \<notin> B & x + w \<in> A}"
 
-  mult_set :: "[rat set,rat set] => rat set"
+definition
+  mult_set :: "[rat set,rat set] => rat set" where
   "mult_set A B = {w. \<exists>x \<in> A. \<exists>y \<in> B. w = x * y}"
 
-  inverse_set :: "rat set => rat set"
+definition
+  inverse_set :: "rat set => rat set" where
   "inverse_set A = {x. \<exists>y. 0 < x & x < y & inverse y \<notin> A}"
 
 
--- a/src/HOL/Real/RComplete.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Real/RComplete.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -432,18 +432,19 @@
 subsection{*Floor and Ceiling Functions from the Reals to the Integers*}
 
 definition
-  floor :: "real => int"
+  floor :: "real => int" where
   "floor r = (LEAST n::int. r < real (n+1))"
 
-  ceiling :: "real => int"
+definition
+  ceiling :: "real => int" where
   "ceiling r = - floor (- r)"
 
 notation (xsymbols)
-  floor  ("\<lfloor>_\<rfloor>")
+  floor  ("\<lfloor>_\<rfloor>") and
   ceiling  ("\<lceil>_\<rceil>")
 
 notation (HTML output)
-  floor  ("\<lfloor>_\<rfloor>")
+  floor  ("\<lfloor>_\<rfloor>") and
   ceiling  ("\<lceil>_\<rceil>")
 
 
@@ -933,9 +934,11 @@
 subsection {* Versions for the natural numbers *}
 
 definition
-  natfloor :: "real => nat"
+  natfloor :: "real => nat" where
   "natfloor x = nat(floor x)"
-  natceiling :: "real => nat"
+
+definition
+  natceiling :: "real => nat" where
   "natceiling x = nat(ceiling x)"
 
 lemma natfloor_zero [simp]: "natfloor 0 = 0"
--- a/src/HOL/Real/Rational.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Real/Rational.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -15,10 +15,11 @@
 subsubsection {* Equivalence of fractions *}
 
 definition
-  fraction :: "(int \<times> int) set"
+  fraction :: "(int \<times> int) set" where
   "fraction = {x. snd x \<noteq> 0}"
 
-  ratrel :: "((int \<times> int) \<times> (int \<times> int)) set"
+definition
+  ratrel :: "((int \<times> int) \<times> (int \<times> int)) set" where
   "ratrel = {(x,y). snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x}"
 
 lemma fraction_iff [simp]: "(x \<in> fraction) = (snd x \<noteq> 0)"
@@ -79,12 +80,12 @@
 
 
 definition
-  Fract :: "int \<Rightarrow> int \<Rightarrow> rat"
+  Fract :: "int \<Rightarrow> int \<Rightarrow> rat" where
   "Fract a b = Abs_Rat (ratrel``{(a,b)})"
 
 theorem Rat_cases [case_names Fract, cases type: rat]:
-  "(!!a b. q = Fract a b ==> b \<noteq> 0 ==> C) ==> C"
-by (cases q, clarsimp simp add: Fract_def Rat_def fraction_def quotient_def)
+    "(!!a b. q = Fract a b ==> b \<noteq> 0 ==> C) ==> C"
+  by (cases q) (clarsimp simp add: Fract_def Rat_def fraction_def quotient_def)
 
 theorem Rat_induct [case_names Fract, induct type: rat]:
     "(!!a b. b \<noteq> 0 ==> P (Fract a b)) ==> P q"
--- a/src/HOL/Real/RealDef.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Real/RealDef.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -14,7 +14,7 @@
 begin
 
 definition
-  realrel   ::  "((preal * preal) * (preal * preal)) set"
+  realrel   ::  "((preal * preal) * (preal * preal)) set" where
   "realrel = {p. \<exists>x1 y1 x2 y2. p = ((x1,y1),(x2,y2)) & x1+y2 = x2+y1}"
 
 typedef (Real)  real = "UNIV//realrel"
@@ -26,7 +26,7 @@
 
   (** these don't use the overloaded "real" function: users don't see them **)
 
-  real_of_preal :: "preal => real"
+  real_of_preal :: "preal => real" where
   "real_of_preal m = Abs_Real(realrel``{(m + preal_of_rat 1, preal_of_rat 1)})"
 
 consts
--- a/src/HOL/Real/RealVector.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Real/RealVector.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -41,11 +41,11 @@
   scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a::scaleR" (infixr "*#" 75)
 
 abbreviation
-  divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a::scaleR" (infixl "'/#" 70)
+  divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a::scaleR" (infixl "'/#" 70) where
   "x /# r == inverse r *# x"
 
 notation (xsymbols)
-  scaleR (infixr "*\<^sub>R" 75)
+  scaleR (infixr "*\<^sub>R" 75) and
   divideR (infixl "'/\<^sub>R" 70)
 
 instance real :: scaleR ..
@@ -175,7 +175,7 @@
 @{term of_real} *}
 
 definition
-  of_real :: "real \<Rightarrow> 'a::real_algebra_1"
+  of_real :: "real \<Rightarrow> 'a::real_algebra_1" where
   "of_real r = r *# 1"
 
 lemma scaleR_conv_of_real: "r *# x = of_real r * x"
@@ -250,7 +250,7 @@
 subsection {* The Set of Real Numbers *}
 
 definition
-  Reals :: "'a::real_algebra_1 set"
+  Reals :: "'a::real_algebra_1 set" where
   "Reals \<equiv> range of_real"
 
 notation (xsymbols)
--- a/src/HOL/Relation.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Relation.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -13,54 +13,69 @@
 subsection {* Definitions *}
 
 definition
-  converse :: "('a * 'b) set => ('b * 'a) set"    ("(_^-1)" [1000] 999)
+  converse :: "('a * 'b) set => ('b * 'a) set"
+    ("(_^-1)" [1000] 999) where
   "r^-1 == {(y, x). (x, y) : r}"
 
 notation (xsymbols)
   converse  ("(_\<inverse>)" [1000] 999)
 
 definition
-  rel_comp  :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set"  (infixr "O" 75)
+  rel_comp  :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set"
+    (infixr "O" 75) where
   "r O s == {(x,z). EX y. (x, y) : s & (y, z) : r}"
 
-  Image :: "[('a * 'b) set, 'a set] => 'b set"                (infixl "``" 90)
+definition
+  Image :: "[('a * 'b) set, 'a set] => 'b set"
+    (infixl "``" 90) where
   "r `` s == {y. EX x:s. (x,y):r}"
 
-  Id    :: "('a * 'a) set"  -- {* the identity relation *}
+definition
+  Id :: "('a * 'a) set" where -- {* the identity relation *}
   "Id == {p. EX x. p = (x,x)}"
 
-  diag  :: "'a set => ('a * 'a) set"  -- {* diagonal: identity over a set *}
+definition
+  diag  :: "'a set => ('a * 'a) set" where -- {* diagonal: identity over a set *}
   "diag A == \<Union>x\<in>A. {(x,x)}"
 
-  Domain :: "('a * 'b) set => 'a set"
+definition
+  Domain :: "('a * 'b) set => 'a set" where
   "Domain r == {x. EX y. (x,y):r}"
 
-  Range  :: "('a * 'b) set => 'b set"
+definition
+  Range  :: "('a * 'b) set => 'b set" where
   "Range r == Domain(r^-1)"
 
-  Field :: "('a * 'a) set => 'a set"
+definition
+  Field :: "('a * 'a) set => 'a set" where
   "Field r == Domain r \<union> Range r"
 
-  refl   :: "['a set, ('a * 'a) set] => bool"  -- {* reflexivity over a set *}
+definition
+  refl :: "['a set, ('a * 'a) set] => bool" where -- {* reflexivity over a set *}
   "refl A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)"
 
-  sym    :: "('a * 'a) set => bool"  -- {* symmetry predicate *}
+definition
+  sym :: "('a * 'a) set => bool" where -- {* symmetry predicate *}
   "sym r == ALL x y. (x,y): r --> (y,x): r"
 
-  antisym:: "('a * 'a) set => bool"  -- {* antisymmetry predicate *}
+definition
+  antisym :: "('a * 'a) set => bool" where -- {* antisymmetry predicate *}
   "antisym r == ALL x y. (x,y):r --> (y,x):r --> x=y"
 
-  trans  :: "('a * 'a) set => bool"  -- {* transitivity predicate *}
+definition
+  trans :: "('a * 'a) set => bool" where -- {* transitivity predicate *}
   "trans r == (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)"
 
-  single_valued :: "('a * 'b) set => bool"
+definition
+  single_valued :: "('a * 'b) set => bool" where
   "single_valued r == ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z)"
 
-  inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set"
+definition
+  inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" where
   "inv_image r f == {(x, y). (f x, f y) : r}"
 
 abbreviation
-  reflexive :: "('a * 'a) set => bool"  -- {* reflexivity over a type *}
+  reflexive :: "('a * 'a) set => bool" where -- {* reflexivity over a type *}
   "reflexive == refl UNIV"
 
 
--- a/src/HOL/Set.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Set.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -38,7 +38,7 @@
   "op :"        :: "'a => 'a set => bool"                -- "membership"
 
 notation
-  "op :"  ("op :")
+  "op :"  ("op :") and
   "op :"  ("(_/ : _)" [50, 51] 50)
 
 local
@@ -47,32 +47,32 @@
 subsection {* Additional concrete syntax *}
 
 abbreviation
-  range :: "('a => 'b) => 'b set"             -- "of function"
+  range :: "('a => 'b) => 'b set" where -- "of function"
   "range f == f ` UNIV"
 
 abbreviation
-  "not_mem x A == ~ (x : A)"                  -- "non-membership"
+  "not_mem x A == ~ (x : A)" -- "non-membership"
 
 notation
-  not_mem  ("op ~:")
+  not_mem  ("op ~:") and
   not_mem  ("(_/ ~: _)" [50, 51] 50)
 
 notation (xsymbols)
-  "op Int"  (infixl "\<inter>" 70)
-  "op Un"  (infixl "\<union>" 65)
-  "op :"  ("op \<in>")
-  "op :"  ("(_/ \<in> _)" [50, 51] 50)
-  not_mem  ("op \<notin>")
-  not_mem  ("(_/ \<notin> _)" [50, 51] 50)
-  Union  ("\<Union>_" [90] 90)
+  "op Int"  (infixl "\<inter>" 70) and
+  "op Un"  (infixl "\<union>" 65) and
+  "op :"  ("op \<in>") and
+  "op :"  ("(_/ \<in> _)" [50, 51] 50) and
+  not_mem  ("op \<notin>") and
+  not_mem  ("(_/ \<notin> _)" [50, 51] 50) and
+  Union  ("\<Union>_" [90] 90) and
   Inter  ("\<Inter>_" [90] 90)
 
 notation (HTML output)
-  "op Int"  (infixl "\<inter>" 70)
-  "op Un"  (infixl "\<union>" 65)
-  "op :"  ("op \<in>")
-  "op :"  ("(_/ \<in> _)" [50, 51] 50)
-  not_mem  ("op \<notin>")
+  "op Int"  (infixl "\<inter>" 70) and
+  "op Un"  (infixl "\<union>" 65) and
+  "op :"  ("op \<in>") and
+  "op :"  ("(_/ \<in> _)" [50, 51] 50) and
+  not_mem  ("op \<notin>") and
   not_mem  ("(_/ \<notin> _)" [50, 51] 50)
 
 syntax
@@ -149,33 +149,37 @@
   psubset_def:  "A < B          == (A::'a set) <= B & ~ A=B" ..
 
 abbreviation
-  subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
+  subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
   "subset == less"
-  subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
+
+abbreviation
+  subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
   "subset_eq == less_eq"
 
 notation (output)
-  subset  ("op <")
-  subset  ("(_/ < _)" [50, 51] 50)
-  subset_eq  ("op <=")
+  subset  ("op <") and
+  subset  ("(_/ < _)" [50, 51] 50) and
+  subset_eq  ("op <=") and
   subset_eq  ("(_/ <= _)" [50, 51] 50)
 
 notation (xsymbols)
-  subset  ("op \<subset>")
-  subset  ("(_/ \<subset> _)" [50, 51] 50)
-  subset_eq  ("op \<subseteq>")
+  subset  ("op \<subset>") and
+  subset  ("(_/ \<subset> _)" [50, 51] 50) and
+  subset_eq  ("op \<subseteq>") and
   subset_eq  ("(_/ \<subseteq> _)" [50, 51] 50)
 
 notation (HTML output)
-  subset  ("op \<subset>")
-  subset  ("(_/ \<subset> _)" [50, 51] 50)
-  subset_eq  ("op \<subseteq>")
+  subset  ("op \<subset>") and
+  subset  ("(_/ \<subset> _)" [50, 51] 50) and
+  subset_eq  ("op \<subseteq>") and
   subset_eq  ("(_/ \<subseteq> _)" [50, 51] 50)
 
 abbreviation (input)
-  supset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"    (infixl "\<supset>" 50)
+  supset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"  (infixl "\<supset>" 50) where
   "supset == greater"
-  supset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"  (infixl "\<supseteq>" 50)
+
+abbreviation (input)
+  supset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"  (infixl "\<supseteq>" 50) where
   "supset_eq == greater_eq"
 
 
@@ -216,6 +220,7 @@
  "\<exists>A\<subseteq>B. P"   =>  "EX A. A \<subseteq> B & P"
  "\<exists>!A\<subseteq>B. P"  =>  "EX! A. A \<subseteq> B & P"
 
+(* FIXME re-use version in Orderings.thy *)
 print_translation {*
 let
   fun
--- a/src/HOL/Transitive_Closure.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Transitive_Closure.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -37,17 +37,17 @@
     trancl_into_trancl [Pure.intro]: "(a, b) : r^+ ==> (b, c) : r ==> (a,c) : r^+"
 
 abbreviation
-  reflcl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^=)" [1000] 999)
+  reflcl :: "('a \<times> 'a) set => ('a \<times> 'a) set"  ("(_^=)" [1000] 999) where
   "r^= == r \<union> Id"
 
 notation (xsymbols)
-  rtrancl  ("(_\<^sup>*)" [1000] 999)
-  trancl  ("(_\<^sup>+)" [1000] 999)
+  rtrancl  ("(_\<^sup>*)" [1000] 999) and
+  trancl  ("(_\<^sup>+)" [1000] 999) and
   reflcl  ("(_\<^sup>=)" [1000] 999)
 
 notation (HTML output)
-  rtrancl  ("(_\<^sup>*)" [1000] 999)
-  trancl  ("(_\<^sup>+)" [1000] 999)
+  rtrancl  ("(_\<^sup>*)" [1000] 999) and
+  trancl  ("(_\<^sup>+)" [1000] 999) and
   reflcl  ("(_\<^sup>=)" [1000] 999)
 
 
--- a/src/HOL/Unix/Unix.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/Unix/Unix.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -166,6 +166,7 @@
       Val (att, text) \<Rightarrow> att
     | Env att dir \<Rightarrow> att)"
 
+definition
   "map_attributes f file =
     (case file of
       Val (att, text) \<Rightarrow> Val (f att, text)
@@ -830,6 +831,7 @@
      [Mkdir user\<^isub>1 perms\<^isub>1 [user\<^isub>1, name\<^isub>1],
       Mkdir user\<^isub>2 perms\<^isub>2 [user\<^isub>1, name\<^isub>1, name\<^isub>2],
       Creat user\<^isub>2 perms\<^isub>2 [user\<^isub>1, name\<^isub>1, name\<^isub>2, name\<^isub>3]]"
+definition
   "bogus_path = [user\<^isub>1, name\<^isub>1, name\<^isub>2]"
 
 text {*
--- a/src/HOL/W0/W0.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/W0/W0.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -12,7 +12,7 @@
 datatype 'a maybe = Ok 'a | Fail
 
 definition
-  bind :: "'a maybe \<Rightarrow> ('a \<Rightarrow> 'b maybe) \<Rightarrow> 'b maybe"    (infixl "\<bind>" 60)
+  bind :: "'a maybe \<Rightarrow> ('a \<Rightarrow> 'b maybe) \<Rightarrow> 'b maybe"    (infixl "\<bind>" 60) where
   "m \<bind> f = (case m of Ok r \<Rightarrow> f r | Fail \<Rightarrow> Fail)"
 
 syntax
@@ -85,11 +85,12 @@
   "free_tv (x # xs) = free_tv x \<union> free_tv xs"
 
 definition
-  dom :: "subst \<Rightarrow> nat set"
+  dom :: "subst \<Rightarrow> nat set" where
   "dom s = {n. s n \<noteq> TVar n}"
   -- {* domain of a substitution *}
 
-  cod :: "subst \<Rightarrow> nat set"
+definition
+  cod :: "subst \<Rightarrow> nat set" where
   "cod s = (\<Union>m \<in> dom s. free_tv (s m))"
   -- {* codomain of a substitutions: the introduced variables *}
 
@@ -103,14 +104,14 @@
 *}
 
 definition
-  new_tv :: "nat \<Rightarrow> 'a::type_struct \<Rightarrow> bool"
+  new_tv :: "nat \<Rightarrow> 'a::type_struct \<Rightarrow> bool" where
   "new_tv n ts = (\<forall>m. m \<in> free_tv ts \<longrightarrow> m < n)"
 
 
 subsubsection {* Identity substitution *}
 
 definition
-  id_subst :: subst
+  id_subst :: subst where
   "id_subst = (\<lambda>n. TVar n)"
 
 lemma app_subst_id_te [simp]:
@@ -384,7 +385,7 @@
   has_type :: "(typ list \<times> expr \<times> typ) set"
 
 abbreviation
-  has_type_rel  ("((_) |-/ (_) :: (_))" [60, 0, 60] 60)
+  has_type_rel  ("((_) |-/ (_) :: (_))" [60, 0, 60] 60) where
   "a |- e :: t == (a, e, t) \<in> has_type"
 
 inductive has_type
--- a/src/HOL/ex/Abstract_NAT.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/Abstract_NAT.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -66,7 +66,7 @@
 text {* \medskip The recursion operator -- polymorphic! *}
 
 definition
-  rec :: "'a \<Rightarrow> ('n \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'n \<Rightarrow> 'a"
+  rec :: "'a \<Rightarrow> ('n \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'n \<Rightarrow> 'a" where
   "rec e r x = (THE y. Rec e r x y)"
 
 lemma rec_eval:
@@ -92,7 +92,7 @@
 text {* \medskip Example: addition (monomorphic) *}
 
 definition
-  add :: "'n \<Rightarrow> 'n \<Rightarrow> 'n"
+  add :: "'n \<Rightarrow> 'n \<Rightarrow> 'n" where
   "add m n = rec n (\<lambda>_ k. succ k) m"
 
 lemma add_zero [simp]: "add zero n = n"
@@ -116,7 +116,7 @@
 text {* \medskip Example: replication (polymorphic) *}
 
 definition
-  repl :: "'n \<Rightarrow> 'a \<Rightarrow> 'a list"
+  repl :: "'n \<Rightarrow> 'a \<Rightarrow> 'a list" where
   "repl n x = rec [] (\<lambda>_ xs. x # xs) n"
 
 lemma repl_zero [simp]: "repl zero x = []"
--- a/src/HOL/ex/Adder.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/Adder.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -15,7 +15,7 @@
   by (cases bv) (simp_all add: bv_to_nat_helper)
 
 definition
-  half_adder :: "[bit, bit] => bit list"
+  half_adder :: "[bit, bit] => bit list" where
   "half_adder a b = [a bitand b, a bitxor b]"
 
 lemma half_adder_correct: "bv_to_nat (half_adder a b) = bitval a + bitval b"
@@ -28,7 +28,7 @@
   by (simp add: half_adder_def)
 
 definition
-  full_adder :: "[bit, bit, bit] => bit list"
+  full_adder :: "[bit, bit, bit] => bit list" where
   "full_adder a b c =
       (let x = a bitxor b in [a bitand b bitor c bitand x, x bitxor c])"
 
--- a/src/HOL/ex/CTL.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/CTL.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -25,7 +25,7 @@
 types 'a ctl = "'a set"
 
 definition
-  imp :: "'a ctl \<Rightarrow> 'a ctl \<Rightarrow> 'a ctl"    (infixr "\<rightarrow>" 75)
+  imp :: "'a ctl \<Rightarrow> 'a ctl \<Rightarrow> 'a ctl"    (infixr "\<rightarrow>" 75) where
   "p \<rightarrow> q = - p \<union> q"
 
 lemma [intro!]: "p \<inter> p \<rightarrow> q \<subseteq> q" unfolding imp_def by auto
@@ -58,9 +58,11 @@
 *}
 
 definition
-  EX :: "'a ctl \<Rightarrow> 'a ctl"    ("\<EX> _" [80] 90)    "\<EX> p = {s. \<exists>s'. (s, s') \<in> \<M> \<and> s' \<in> p}"
-  EF :: "'a ctl \<Rightarrow> 'a ctl"    ("\<EF> _" [80] 90)    "\<EF> p = lfp (\<lambda>s. p \<union> \<EX> s)"
-  EG :: "'a ctl \<Rightarrow> 'a ctl"    ("\<EG> _" [80] 90)    "\<EG> p = gfp (\<lambda>s. p \<inter> \<EX> s)"
+  EX  ("\<EX> _" [80] 90) where "\<EX> p = {s. \<exists>s'. (s, s') \<in> \<M> \<and> s' \<in> p}"
+definition
+  EF ("\<EF> _" [80] 90)  where "\<EF> p = lfp (\<lambda>s. p \<union> \<EX> s)"
+definition
+  EG ("\<EG> _" [80] 90)  where "\<EG> p = gfp (\<lambda>s. p \<inter> \<EX> s)"
 
 text {*
   @{text "\<AX>"}, @{text "\<AF>"} and @{text "\<AG>"} are now defined
@@ -69,9 +71,11 @@
 *}
 
 definition
-  AX :: "'a ctl \<Rightarrow> 'a ctl"    ("\<AX> _" [80] 90)    "\<AX> p = - \<EX> - p"
-  AF :: "'a ctl \<Rightarrow> 'a ctl"    ("\<AF> _" [80] 90)    "\<AF> p = - \<EG> - p"
-  AG :: "'a ctl \<Rightarrow> 'a ctl"    ("\<AG> _" [80] 90)    "\<AG> p = - \<EF> - p"
+  AX  ("\<AX> _" [80] 90) where "\<AX> p = - \<EX> - p"
+definition
+  AF  ("\<AF> _" [80] 90) where "\<AF> p = - \<EG> - p"
+definition
+  AG  ("\<AG> _" [80] 90) where "\<AG> p = - \<EF> - p"
 
 lemmas [simp] = EX_def EG_def AX_def EF_def AF_def AG_def
 
--- a/src/HOL/ex/Classpackage.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/Classpackage.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -97,8 +97,8 @@
 qed
 
 definition (in monoid)
-  units :: "'a set"
-  units_def: "units = { y. \<exists>x. x \<^loc>\<otimes> y = \<^loc>\<one> \<and> y \<^loc>\<otimes> x = \<^loc>\<one> }"
+  units :: "'a set" where
+  "units = { y. \<exists>x. x \<^loc>\<otimes> y = \<^loc>\<one> \<and> y \<^loc>\<otimes> x = \<^loc>\<one> }"
 
 lemma (in monoid) inv_obtain:
   assumes ass: "x \<in> units"
@@ -139,11 +139,11 @@
   "reduce f g (Suc n) x = f x (reduce f g n x)"
 
 definition (in monoid)
-  npow :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
+  npow :: "nat \<Rightarrow> 'a \<Rightarrow> 'a" where
   npow_def_prim: "npow n x = reduce (op \<^loc>\<otimes>) \<^loc>\<one> n x"
 
 abbreviation (in monoid)
-  abbrev_npow :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infix "\<^loc>\<up>" 75)
+  abbrev_npow :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infix "\<^loc>\<up>" 75) where
   "x \<^loc>\<up> n \<equiv> npow n x"
 
 lemma (in monoid) npow_def:
@@ -272,12 +272,12 @@
 using invr invl by simp
 
 definition (in group)
-  pow :: "int \<Rightarrow> 'a \<Rightarrow> 'a"
-  pow_def: "pow k x = (if k < 0 then \<^loc>\<div> (monoid.npow (op \<^loc>\<otimes>) \<^loc>\<one> (nat (-k)) x)
+  pow :: "int \<Rightarrow> 'a \<Rightarrow> 'a" where
+  "pow k x = (if k < 0 then \<^loc>\<div> (monoid.npow (op \<^loc>\<otimes>) \<^loc>\<one> (nat (-k)) x)
     else (monoid.npow (op \<^loc>\<otimes>) \<^loc>\<one> (nat k) x))"
 
 abbreviation (in group)
-  abbrev_pow :: "'a \<Rightarrow> int \<Rightarrow> 'a" (infix "\<^loc>\<up>" 75)
+  abbrev_pow :: "'a \<Rightarrow> int \<Rightarrow> 'a" (infix "\<^loc>\<up>" 75) where
   "x \<^loc>\<up> k \<equiv> pow k x"
 
 lemma (in group) int_pow_zero:
@@ -312,12 +312,12 @@
 
 definition
   "X a b c = (a \<otimes> \<one> \<otimes> b, a \<otimes> \<one> \<otimes> b, [a, b] \<otimes> \<one> \<otimes> [a, b, c])"
+definition
   "Y a b c = (a, \<div> a) \<otimes> \<one> \<otimes> \<div> (b, \<div> c)"
 
-definition
-  "x1 = X (1::nat) 2 3"
-  "x2 = X (1::int) 2 3"
-  "y2 = Y (1::int) 2 3"
+definition "x1 = X (1::nat) 2 3"
+definition "x2 = X (1::int) 2 3"
+definition "y2 = Y (1::int) 2 3"
 
 code_gen "op \<otimes>" \<one> inv
 code_gen X Y (SML) (Haskell)
--- a/src/HOL/ex/CodeCollections.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/CodeCollections.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -55,15 +55,19 @@
 qed
 
 definition (in ordered)
-  min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
+  min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
   "min x y = (if x \<^loc><<= y then x else y)"
-  max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
+
+definition (in ordered)
+  max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
   "max x y = (if x \<^loc><<= y then y else x)"
 
 definition
-  min :: "'a::ordered \<Rightarrow> 'a \<Rightarrow> 'a"
+  min :: "'a::ordered \<Rightarrow> 'a \<Rightarrow> 'a" where
   "min x y = (if x <<= y then x else y)"
-  max :: "'a::ordered \<Rightarrow> 'a \<Rightarrow> 'a"
+
+definition
+  max :: "'a::ordered \<Rightarrow> 'a \<Rightarrow> 'a" where
   "max x y = (if x <<= y then y else x)"
 
 fun abs_sorted :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
@@ -366,15 +370,15 @@
   "get_index p n (x#xs) = (if p x then Some n else get_index p (Suc n) xs)"
 
 definition
-  between :: "'a::enum \<Rightarrow> 'a \<Rightarrow> 'a option"
+  between :: "'a::enum \<Rightarrow> 'a \<Rightarrow> 'a option" where
   "between x y = get_first (\<lambda>z. x << z & z << y) enum"
 
 definition
-  index :: "'a::enum \<Rightarrow> nat"
+  index :: "'a::enum \<Rightarrow> nat" where
   "index x = the (get_index (\<lambda>y. y = x) 0 enum)"
 
 definition
-  add :: "'a::enum \<Rightarrow> 'a \<Rightarrow> 'a"
+  add :: "'a::enum \<Rightarrow> 'a \<Rightarrow> 'a" where
   "add x y =
     (let
       enm = enum
@@ -387,9 +391,8 @@
   "sum [] = inf"
   "sum (x#xs) = add x (sum xs)"
 
-definition
-  "test1 = sum [None, Some True, None, Some False]"
-  "test2 = (inf :: nat \<times> unit)"
+definition "test1 = sum [None, Some True, None, Some False]"
+definition "test2 = (inf :: nat \<times> unit)"
 
 code_gen "op <<="
 code_gen "op <<"
--- a/src/HOL/ex/CodeEmbed.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/CodeEmbed.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -22,9 +22,10 @@
   | TFix vname sort (infix "\<Colon>\<epsilon>" 117)
 
 abbreviation
-  Fun :: "typ \<Rightarrow> typ \<Rightarrow> typ" (infixr "\<rightarrow>" 115)
+  Fun :: "typ \<Rightarrow> typ \<Rightarrow> typ" (infixr "\<rightarrow>" 115) where
   "ty1 \<rightarrow> ty2 \<equiv> Type (STR ''fun'') [ty1, ty2]"
-  Funs :: "typ list \<Rightarrow> typ \<Rightarrow> typ" (infixr "{\<rightarrow>}" 115)
+abbreviation
+  Funs :: "typ list \<Rightarrow> typ \<Rightarrow> typ" (infixr "{\<rightarrow>}" 115) where
   "tys {\<rightarrow>} ty \<equiv> foldr (op \<rightarrow>) tys ty"
 
 datatype "term" =
@@ -33,7 +34,7 @@
   | App   "term" "term" (infixl "\<bullet>" 110)
 
 abbreviation
-  Apps :: "term \<Rightarrow> term list \<Rightarrow> term"  (infixl "{\<bullet>}" 110)
+  Apps :: "term \<Rightarrow> term list \<Rightarrow> term"  (infixl "{\<bullet>}" 110) where
   "t {\<bullet>} ts \<equiv> foldl (op \<bullet>) t ts"
 
 
--- a/src/HOL/ex/CodeRandom.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/CodeRandom.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -30,7 +30,7 @@
   random_seed :: "randseed \<Rightarrow> nat"
 
 definition
-  random :: "nat \<Rightarrow> randseed \<Rightarrow> nat \<times> randseed"
+  random :: "nat \<Rightarrow> randseed \<Rightarrow> nat \<times> randseed" where
   "random n s = (random_seed s mod n, random_shift s)"
 
 lemma random_bound:
@@ -45,12 +45,13 @@
   "snd (random n s) = random_shift s" unfolding random_def by simp
 
 definition
-  select :: "'a list \<Rightarrow> randseed \<Rightarrow> 'a \<times> randseed"
+  select :: "'a list \<Rightarrow> randseed \<Rightarrow> 'a \<times> randseed" where
   [simp]: "select xs = (do
       n \<leftarrow> random (length xs);
       return (nth xs n)
     done)"
-  select_weight :: "(nat \<times> 'a) list \<Rightarrow> randseed \<Rightarrow> 'a \<times> randseed"
+definition
+  select_weight :: "(nat \<times> 'a) list \<Rightarrow> randseed \<Rightarrow> 'a \<times> randseed" where
   [simp]: "select_weight xs = (do
       n \<leftarrow> random (foldl (op +) 0 (map fst xs));
       return (pick xs n)
@@ -123,7 +124,7 @@
 qed
 
 definition
-  random_int :: "int \<Rightarrow> randseed \<Rightarrow> int * randseed"
+  random_int :: "int \<Rightarrow> randseed \<Rightarrow> int * randseed" where
   "random_int k = (do n \<leftarrow> random (nat k); return (int n) done)"
 
 lemma random_nat [code]:
--- a/src/HOL/ex/Codegenerator.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/Codegenerator.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,23 +11,27 @@
 subsection {* booleans *}
 
 definition
-  xor :: "bool \<Rightarrow> bool \<Rightarrow> bool"
+  xor :: "bool \<Rightarrow> bool \<Rightarrow> bool" where
   "xor p q = ((p | q) & \<not> (p & q))"
 
 subsection {* natural numbers *}
 
 definition
-  n :: nat
+  n :: nat where
   "n = 42"
 
 subsection {* pairs *}
 
 definition
-  swap :: "'a * 'b \<Rightarrow> 'b * 'a"
+  swap :: "'a * 'b \<Rightarrow> 'b * 'a" where
   "swap p = (let (x, y) = p in (y, x))"
-  appl :: "('a \<Rightarrow> 'b) * 'a \<Rightarrow> 'b"
+
+definition
+  appl :: "('a \<Rightarrow> 'b) * 'a \<Rightarrow> 'b" where
   "appl p = (let (f, x) = p in f x)"
-  snd_three :: "'a * 'b * 'c => 'b"
+
+definition
+  snd_three :: "'a * 'b * 'c => 'b" where
   "snd_three a = id (\<lambda>(a, b, c). b) a"
 
 lemma [code]:
@@ -41,7 +45,7 @@
 subsection {* integers *}
 
 definition
-  k :: "int"
+  k :: "int" where
   "k = -42"
 
 function
@@ -59,9 +63,11 @@
 subsection {* lists *}
 
 definition
-  ps :: "nat list"
+  ps :: "nat list" where
   "ps = [2, 3, 5, 7, 11]"
-  qs :: "nat list"
+
+definition
+  qs :: "nat list" where
   "qs == rev ps"
 
 subsection {* mutual datatypes *}
--- a/src/HOL/ex/Higher_Order_Logic.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/Higher_Order_Logic.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -80,21 +80,31 @@
 subsubsection {* Derived connectives *}
 
 definition
-  false :: o    ("\<bottom>")
+  false :: o  ("\<bottom>") where
   "\<bottom> \<equiv> \<forall>A. A"
-  true :: o    ("\<top>")
+
+definition
+  true :: o  ("\<top>") where
   "\<top> \<equiv> \<bottom> \<longrightarrow> \<bottom>"
-  not :: "o \<Rightarrow> o"     ("\<not> _" [40] 40)
+
+definition
+  not :: "o \<Rightarrow> o"  ("\<not> _" [40] 40) where
   "not \<equiv> \<lambda>A. A \<longrightarrow> \<bottom>"
-  conj :: "o \<Rightarrow> o \<Rightarrow> o"    (infixr "\<and>" 35)
+
+definition
+  conj :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<and>" 35) where
   "conj \<equiv> \<lambda>A B. \<forall>C. (A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C"
-  disj :: "o \<Rightarrow> o \<Rightarrow> o"    (infixr "\<or>" 30)
+
+definition
+  disj :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<or>" 30) where
   "disj \<equiv> \<lambda>A B. \<forall>C. (A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
-  Ex :: "('a \<Rightarrow> o) \<Rightarrow> o"    (binder "\<exists>" 10)
+
+definition
+  Ex :: "('a \<Rightarrow> o) \<Rightarrow> o"  (binder "\<exists>" 10) where
   "Ex \<equiv> \<lambda>P. \<forall>C. (\<forall>x. P x \<longrightarrow> C) \<longrightarrow> C"
 
 abbreviation
-  not_equal :: "'a \<Rightarrow> 'a \<Rightarrow> o"    (infixl "\<noteq>" 50)
+  not_equal :: "'a \<Rightarrow> 'a \<Rightarrow> o"  (infixl "\<noteq>" 50) where
   "x \<noteq> y \<equiv> \<not> (x = y)"
 
 theorem falseE [elim]: "\<bottom> \<Longrightarrow> A"
--- a/src/HOL/ex/InductiveInvariant.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/InductiveInvariant.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -15,14 +15,14 @@
 text "S is an inductive invariant of the functional F with respect to the wellfounded relation r."
 
 definition
-  indinv :: "('a * 'a) set => ('a => 'b => bool) => (('a => 'b) => ('a => 'b)) => bool"
+  indinv :: "('a * 'a) set => ('a => 'b => bool) => (('a => 'b) => ('a => 'b)) => bool" where
   "indinv r S F = (\<forall>f x. (\<forall>y. (y,x) : r --> S y (f y)) --> S x (F f x))"
 
 
 text "S is an inductive invariant of the functional F on set D with respect to the wellfounded relation r."
 
 definition
-  indinv_on :: "('a * 'a) set => 'a set => ('a => 'b => bool) => (('a => 'b) => ('a => 'b)) => bool"
+  indinv_on :: "('a * 'a) set => 'a set => ('a => 'b => bool) => (('a => 'b) => ('a => 'b)) => bool" where
   "indinv_on r D S F = (\<forall>f. \<forall>x\<in>D. (\<forall>y\<in>D. (y,x) \<in> r --> S y (f y)) --> S x (F f x))"
 
 
--- a/src/HOL/ex/Lagrange.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/Lagrange.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -17,7 +17,7 @@
 theorem.  *}
 
 definition
-  sq :: "'a::times => 'a"
+  sq :: "'a::times => 'a" where
   "sq x == x*x"
 
 text {* The following lemma essentially shows that every natural
--- a/src/HOL/ex/MonoidGroup.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/MonoidGroup.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -15,16 +15,18 @@
   inv :: "'a => 'a"
 
 definition
-  monoid :: "(| times :: 'a => 'a => 'a, one :: 'a, ... :: 'b |) => bool"
+  monoid :: "(| times :: 'a => 'a => 'a, one :: 'a, ... :: 'b |) => bool" where
   "monoid M = (\<forall>x y z.
     times M (times M x y) z = times M x (times M y z) \<and>
     times M (one M) x = x \<and> times M x (one M) = x)"
 
-  group :: "(| times :: 'a => 'a => 'a, one :: 'a, inv :: 'a => 'a, ... :: 'b |) => bool"
+definition
+  group :: "(| times :: 'a => 'a => 'a, one :: 'a, inv :: 'a => 'a, ... :: 'b |) => bool" where
   "group G = (monoid G \<and> (\<forall>x. times G (inv G x) x = one G))"
 
+definition
   reverse :: "(| times :: 'a => 'a => 'a, one :: 'a, ... :: 'b |) =>
-    (| times :: 'a => 'a => 'a, one :: 'a, ... :: 'b |)"
+    (| times :: 'a => 'a => 'a, one :: 'a, ... :: 'b |)" where
   "reverse M = M (| times := \<lambda>x y. times M y x |)"
 
 end
--- a/src/HOL/ex/PER.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/PER.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -45,7 +45,7 @@
 *}
 
 definition
-  "domain" :: "'a::partial_equiv set"
+  "domain" :: "'a::partial_equiv set" where
   "domain = {x. x \<sim> x}"
 
 lemma domainI [intro]: "x \<sim> x ==> x \<in> domain"
@@ -165,7 +165,7 @@
 *}
 
 definition
-  eqv_class :: "('a::partial_equiv) => 'a quot"    ("\<lfloor>_\<rfloor>")
+  eqv_class :: "('a::partial_equiv) => 'a quot"    ("\<lfloor>_\<rfloor>") where
   "\<lfloor>a\<rfloor> = Abs_quot {x. a \<sim> x}"
 
 theorem quot_rep: "\<exists>a. A = \<lfloor>a\<rfloor>"
@@ -232,7 +232,7 @@
 subsection {* Picking representing elements *}
 
 definition
-  pick :: "'a::partial_equiv quot => 'a"
+  pick :: "'a::partial_equiv quot => 'a" where
   "pick A = (SOME a. A = \<lfloor>a\<rfloor>)"
 
 theorem pick_eqv' [intro?, simp]: "a \<in> domain ==> pick \<lfloor>a\<rfloor> \<sim> a"
--- a/src/HOL/ex/Primrec.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/Primrec.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -43,19 +43,23 @@
 text {* The set of primitive recursive functions of type @{typ "nat list => nat"}. *}
 
 definition
-  SC :: "nat list => nat"
+  SC :: "nat list => nat" where
   "SC l = Suc (zeroHd l)"
 
-  CONSTANT :: "nat => nat list => nat"
+definition
+  CONSTANT :: "nat => nat list => nat" where
   "CONSTANT k l = k"
 
-  PROJ :: "nat => nat list => nat"
+definition
+  PROJ :: "nat => nat list => nat" where
   "PROJ i l = zeroHd (drop i l)"
 
-  COMP :: "(nat list => nat) => (nat list => nat) list => nat list => nat"
+definition
+  COMP :: "(nat list => nat) => (nat list => nat) list => nat list => nat" where
   "COMP g fs l = g (map (\<lambda>f. f l) fs)"
 
-  PREC :: "(nat list => nat) => (nat list => nat) => nat list => nat"
+definition
+  PREC :: "(nat list => nat) => (nat list => nat) => nat list => nat" where
   "PREC f g l =
     (case l of
       [] => 0
--- a/src/HOL/ex/Records.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/Records.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -51,9 +51,11 @@
 subsubsection {* Record selection and record update *}
 
 definition
-  getX :: "'a point_scheme => nat"
+  getX :: "'a point_scheme => nat" where
   "getX r = xpos r"
-  setX :: "'a point_scheme => nat => 'a point_scheme"
+
+definition
+  setX :: "'a point_scheme => nat => 'a point_scheme" where
   "setX r n = r (| xpos := n |)"
 
 
@@ -145,14 +147,14 @@
 *}
 
 definition
-  foo5 :: nat
+  foo5 :: nat where
   "foo5 = getX (| xpos = 1, ypos = 0 |)"
 
 
 text {* \medskip Manipulating the ``@{text "..."}'' (more) part. *}
 
 definition
-  incX :: "'a point_scheme => 'a point_scheme"
+  incX :: "'a point_scheme => 'a point_scheme" where
   "incX r = (| xpos = xpos r + 1, ypos = ypos r, ... = point.more r |)"
 
 lemma "incX r = setX r (Suc (getX r))"
@@ -162,7 +164,7 @@
 text {* An alternative definition. *}
 
 definition
-  incX' :: "'a point_scheme => 'a point_scheme"
+  incX' :: "'a point_scheme => 'a point_scheme" where
   "incX' r = r (| xpos := xpos r + 1 |)"
 
 
@@ -194,7 +196,7 @@
 *}
 
 definition
-  foo10 :: nat
+  foo10 :: nat where
   "foo10 = getX (| xpos = 2, ypos = 0, colour = Blue |)"
 
 
@@ -206,7 +208,7 @@
 *}
 
 definition
-  foo11 :: cpoint
+  foo11 :: cpoint where
   "foo11 = setX (| xpos = 2, ypos = 0, colour = Blue |) 0"
 
 
--- a/src/HOL/ex/Reflected_Presburger.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/Reflected_Presburger.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -530,7 +530,7 @@
 "islintn (n0, t) = False"
 
 definition
-  islint :: "intterm \<Rightarrow> bool"
+  islint :: "intterm \<Rightarrow> bool" where
   "islint t = islintn(0,t)"
 
 (* And the equivalence to the first definition *)
@@ -730,7 +730,7 @@
 
 (* lin_neg neagtes a linear term *)
 definition
-  lin_neg :: "intterm \<Rightarrow> intterm"
+  lin_neg :: "intterm \<Rightarrow> intterm" where
   "lin_neg i = lin_mul ((-1::int),i)"
 
 (* lin_neg has the semantics of Neg *)
@@ -1625,11 +1625,11 @@
 
 (* Definitions and lemmas about gcd and lcm *)
 definition
-  lcm :: "nat \<times> nat \<Rightarrow> nat"
+  lcm :: "nat \<times> nat \<Rightarrow> nat" where
   "lcm = (\<lambda>(m,n). m*n div gcd(m,n))"
 
 definition
-  ilcm :: "int \<Rightarrow> int \<Rightarrow> int"
+  ilcm :: "int \<Rightarrow> int \<Rightarrow> int" where
   "ilcm = (\<lambda>i.\<lambda>j. int (lcm(nat(abs i),nat(abs j))))"
 
 (* ilcm_dvd12 are needed later *)
@@ -1879,7 +1879,7 @@
 
 (* unitycoeff expects a quantifier free formula an transforms it to an equivalent formula where the bound variable occurs only with coeffitient 1  or -1 *)
 definition
-  unitycoeff :: "QF \<Rightarrow> QF"
+  unitycoeff :: "QF \<Rightarrow> QF" where
   "unitycoeff p =
   (let l = formlcm p;
        p' = adjustcoeff (l,p)
@@ -5091,7 +5091,7 @@
 
 (* An implementation of sets trough lists *)
 definition
-  list_insert :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list"
+  list_insert :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
   "list_insert x xs = (if x mem xs then xs else x#xs)"
 
 lemma list_insert_set: "set (list_insert x xs) = set (x#xs)"
@@ -5368,7 +5368,7 @@
 (* An implementation of cooper's method for both plus/minus/infinity *)
 
 (* unify the formula *)
-definition unify:: "QF \<Rightarrow> (QF \<times> intterm list)"
+definition unify:: "QF \<Rightarrow> (QF \<times> intterm list)" where
   "unify p =
   (let q = unitycoeff p;
        B = list_set(bset q);
@@ -5484,7 +5484,7 @@
 qed
 (* An implementation of cooper's method *)
 definition
-  cooper:: "QF \<Rightarrow> QF option"
+  cooper:: "QF \<Rightarrow> QF option" where
   "cooper p = lift_un (\<lambda>q. decrvars(explode_minf (unify q))) (linform (nnf p))"
 
 (* cooper eliminates quantifiers *)
@@ -5538,7 +5538,7 @@
 
 (* A decision procedure for Presburger Arithmetics *)
 definition
-  pa:: "QF \<Rightarrow> QF option"
+  pa:: "QF \<Rightarrow> QF option" where
   "pa p \<equiv> lift_un psimpl (qelim(cooper, p))"
 
 lemma psimpl_qfree: "isqfree p \<Longrightarrow> isqfree (psimpl p)"
--- a/src/HOL/ex/Sorting.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/Sorting.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -25,10 +25,11 @@
 
 
 definition
-  total  :: "('a \<Rightarrow> 'a \<Rightarrow> bool) => bool"
+  total  :: "('a \<Rightarrow> 'a \<Rightarrow> bool) => bool" where
    "total r = (\<forall>x y. r x y | r y x)"
   
-  transf :: "('a \<Rightarrow> 'a \<Rightarrow> bool) => bool"
+definition
+  transf :: "('a \<Rightarrow> 'a \<Rightarrow> bool) => bool" where
    "transf f = (\<forall>x y z. f x y & f y z --> f x z)"
 
 
--- a/src/HOL/ex/Tarski.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/Tarski.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -21,75 +21,88 @@
   order :: "('a * 'a) set"
 
 definition
-  monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool"
+  monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool" where
   "monotone f A r = (\<forall>x\<in>A. \<forall>y\<in>A. (x, y): r --> ((f x), (f y)) : r)"
 
-  least :: "['a => bool, 'a potype] => 'a"
+definition
+  least :: "['a => bool, 'a potype] => 'a" where
   "least P po = (SOME x. x: pset po & P x &
                        (\<forall>y \<in> pset po. P y --> (x,y): order po))"
 
-  greatest :: "['a => bool, 'a potype] => 'a"
+definition
+  greatest :: "['a => bool, 'a potype] => 'a" where
   "greatest P po = (SOME x. x: pset po & P x &
                           (\<forall>y \<in> pset po. P y --> (y,x): order po))"
 
-  lub  :: "['a set, 'a potype] => 'a"
+definition
+  lub  :: "['a set, 'a potype] => 'a" where
   "lub S po = least (%x. \<forall>y\<in>S. (y,x): order po) po"
 
-  glb  :: "['a set, 'a potype] => 'a"
+definition
+  glb  :: "['a set, 'a potype] => 'a" where
   "glb S po = greatest (%x. \<forall>y\<in>S. (x,y): order po) po"
 
-  isLub :: "['a set, 'a potype, 'a] => bool"
+definition
+  isLub :: "['a set, 'a potype, 'a] => bool" where
   "isLub S po = (%L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) &
                    (\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) --> (L,z): order po)))"
 
-  isGlb :: "['a set, 'a potype, 'a] => bool"
+definition
+  isGlb :: "['a set, 'a potype, 'a] => bool" where
   "isGlb S po = (%G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) &
                  (\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) --> (z,G): order po)))"
 
-  "fix"    :: "[('a => 'a), 'a set] => 'a set"
+definition
+  "fix"    :: "[('a => 'a), 'a set] => 'a set" where
   "fix f A  = {x. x: A & f x = x}"
 
-  interval :: "[('a*'a) set,'a, 'a ] => 'a set"
+definition
+  interval :: "[('a*'a) set,'a, 'a ] => 'a set" where
   "interval r a b = {x. (a,x): r & (x,b): r}"
 
 
 definition
-  Bot :: "'a potype => 'a"
+  Bot :: "'a potype => 'a" where
   "Bot po = least (%x. True) po"
 
-  Top :: "'a potype => 'a"
+definition
+  Top :: "'a potype => 'a" where
   "Top po = greatest (%x. True) po"
 
-  PartialOrder :: "('a potype) set"
+definition
+  PartialOrder :: "('a potype) set" where
   "PartialOrder = {P. refl (pset P) (order P) & antisym (order P) &
                        trans (order P)}"
 
-  CompleteLattice :: "('a potype) set"
+definition
+  CompleteLattice :: "('a potype) set" where
   "CompleteLattice = {cl. cl: PartialOrder &
                         (\<forall>S. S \<subseteq> pset cl --> (\<exists>L. isLub S cl L)) &
                         (\<forall>S. S \<subseteq> pset cl --> (\<exists>G. isGlb S cl G))}"
 
-  CLF :: "('a potype * ('a => 'a)) set"
+definition
+  CLF :: "('a potype * ('a => 'a)) set" where
   "CLF = (SIGMA cl: CompleteLattice.
             {f. f: pset cl -> pset cl & monotone f (pset cl) (order cl)})"
 
-  induced :: "['a set, ('a * 'a) set] => ('a *'a)set"
+definition
+  induced :: "['a set, ('a * 'a) set] => ('a *'a)set" where
   "induced A r = {(a,b). a : A & b: A & (a,b): r}"
 
 
 definition
-  sublattice :: "('a potype * 'a set)set"
+  sublattice :: "('a potype * 'a set)set" where
   "sublattice =
       (SIGMA cl: CompleteLattice.
           {S. S \<subseteq> pset cl &
            (| pset = S, order = induced S (order cl) |): CompleteLattice})"
 
 abbreviation
-  sublat :: "['a set, 'a potype] => bool"  ("_ <<= _" [51,50]50)
+  sublat :: "['a set, 'a potype] => bool"  ("_ <<= _" [51,50]50) where
   "S <<= cl == S : sublattice `` {cl}"
 
 definition
-  dual :: "'a potype => 'a potype"
+  dual :: "'a potype => 'a potype" where
   "dual po = (| pset = pset po, order = converse (order po) |)"
 
 locale (open) PO =
--- a/src/HOL/ex/ThreeDivides.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOL/ex/ThreeDivides.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -156,7 +156,7 @@
 some number n. *}
 
 definition
-  sumdig :: "nat \<Rightarrow> nat"
+  sumdig :: "nat \<Rightarrow> nat" where
   "sumdig n = (\<Sum>x < nlen n. n div 10^x mod 10)"
 
 text {* Some properties of these functions follow. *}
--- a/src/HOLCF/FOCUS/Buffer.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOLCF/FOCUS/Buffer.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -42,47 +42,56 @@
   SPECS11       = "SPSF11 set"
 
 definition
-
-  BufEq_F       :: "SPEC11 \<Rightarrow> SPEC11"
+  BufEq_F       :: "SPEC11 \<Rightarrow> SPEC11" where
   "BufEq_F B = {f. \<forall>d. f\<cdot>(Md d\<leadsto><>) = <> \<and>
                 (\<forall>x. \<exists>ff\<in>B. f\<cdot>(Md d\<leadsto>\<bullet>\<leadsto>x) = d\<leadsto>ff\<cdot>x)}"
 
-  BufEq         :: "SPEC11"
+definition
+  BufEq         :: "SPEC11" where
   "BufEq = gfp BufEq_F"
 
-  BufEq_alt     :: "SPEC11"
+definition
+  BufEq_alt     :: "SPEC11" where
   "BufEq_alt = gfp (\<lambda>B. {f. \<forall>d. f\<cdot>(Md d\<leadsto><> ) = <> \<and>
                          (\<exists>ff\<in>B. (\<forall>x. f\<cdot>(Md d\<leadsto>\<bullet>\<leadsto>x) = d\<leadsto>ff\<cdot>x))})"
 
-  BufAC_Asm_F   :: " (M fstream set) \<Rightarrow> (M fstream set)"
+definition
+  BufAC_Asm_F   :: " (M fstream set) \<Rightarrow> (M fstream set)" where
   "BufAC_Asm_F A = {s. s = <> \<or>
                   (\<exists>d x. s = Md d\<leadsto>x \<and> (x = <> \<or> (ft\<cdot>x = Def \<bullet> \<and> (rt\<cdot>x)\<in>A)))}"
 
-  BufAC_Asm     :: " (M fstream set)"
+definition
+  BufAC_Asm     :: " (M fstream set)" where
   "BufAC_Asm = gfp BufAC_Asm_F"
 
+definition
   BufAC_Cmt_F   :: "((M fstream * D fstream) set) \<Rightarrow>
-                    ((M fstream * D fstream) set)"
+                    ((M fstream * D fstream) set)" where
   "BufAC_Cmt_F C = {(s,t). \<forall>d x.
                            (s = <>         \<longrightarrow>     t = <>                 ) \<and>
                            (s = Md d\<leadsto><>   \<longrightarrow>     t = <>                 ) \<and>
                            (s = Md d\<leadsto>\<bullet>\<leadsto>x \<longrightarrow> (ft\<cdot>t = Def d \<and> (x,rt\<cdot>t)\<in>C))}"
 
-  BufAC_Cmt     :: "((M fstream * D fstream) set)"
+definition
+  BufAC_Cmt     :: "((M fstream * D fstream) set)" where
   "BufAC_Cmt = gfp BufAC_Cmt_F"
 
-  BufAC         :: "SPEC11"
+definition
+  BufAC         :: "SPEC11" where
   "BufAC = {f. \<forall>x. x\<in>BufAC_Asm \<longrightarrow> (x,f\<cdot>x)\<in>BufAC_Cmt}"
 
-  BufSt_F       :: "SPECS11 \<Rightarrow> SPECS11"
+definition
+  BufSt_F       :: "SPECS11 \<Rightarrow> SPECS11" where
   "BufSt_F H = {h. \<forall>s  . h s      \<cdot><>        = <>         \<and>
                                  (\<forall>d x. h \<currency>     \<cdot>(Md d\<leadsto>x) = h (Sd d)\<cdot>x \<and>
                                 (\<exists>hh\<in>H. h (Sd d)\<cdot>(\<bullet>   \<leadsto>x) = d\<leadsto>(hh \<currency>\<cdot>x)))}"
 
-  BufSt_P       :: "SPECS11"
+definition
+  BufSt_P       :: "SPECS11" where
   "BufSt_P = gfp BufSt_F"
 
-  BufSt         :: "SPEC11"
+definition
+  BufSt         :: "SPEC11" where
   "BufSt = {f. \<exists>h\<in>BufSt_P. f = h \<currency>}"
 
 
--- a/src/HOLCF/FOCUS/Fstream.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOLCF/FOCUS/Fstream.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -17,24 +17,27 @@
 types 'a fstream = "'a lift stream"
 
 definition
-  fscons        :: "'a     \<Rightarrow> 'a fstream \<rightarrow> 'a fstream"
+  fscons        :: "'a     \<Rightarrow> 'a fstream \<rightarrow> 'a fstream" where
   "fscons a = (\<Lambda> s. Def a && s)"
 
-  fsfilter      :: "'a set \<Rightarrow> 'a fstream \<rightarrow> 'a fstream"
+definition
+  fsfilter      :: "'a set \<Rightarrow> 'a fstream \<rightarrow> 'a fstream" where
   "fsfilter A = (sfilter\<cdot>(flift2 (\<lambda>x. x\<in>A)))"
 
 abbreviation
-  emptystream   :: "'a fstream"                          ("<>")
+  emptystream   :: "'a fstream"                          ("<>") where
   "<> == \<bottom>"
 
-  fscons'       :: "'a \<Rightarrow> 'a fstream \<Rightarrow> 'a fstream"       ("(_~>_)"    [66,65] 65)
+abbreviation
+  fscons'       :: "'a \<Rightarrow> 'a fstream \<Rightarrow> 'a fstream"       ("(_~>_)"    [66,65] 65) where
   "a~>s == fscons a\<cdot>s"
 
-  fsfilter'     :: "'a set \<Rightarrow> 'a fstream \<Rightarrow> 'a fstream"   ("(_'(C')_)" [64,63] 63)
+abbreviation
+  fsfilter'     :: "'a set \<Rightarrow> 'a fstream \<Rightarrow> 'a fstream"   ("(_'(C')_)" [64,63] 63) where
   "A(C)s == fsfilter A\<cdot>s"
 
 notation (xsymbols)
-  fscons'  ("(_\<leadsto>_)"                                                 [66,65] 65)
+  fscons'  ("(_\<leadsto>_)"                                                 [66,65] 65) and
   fsfilter'  ("(_\<copyright>_)"                                               [64,63] 63)
 
 
--- a/src/HOLCF/FOCUS/Fstreams.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOLCF/FOCUS/Fstreams.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -13,30 +13,37 @@
 types 'a fstream = "('a lift) stream"
 
 definition
-  fsingleton    :: "'a => 'a fstream"  ("<_>" [1000] 999)
+  fsingleton    :: "'a => 'a fstream"  ("<_>" [1000] 999) where
   fsingleton_def2: "fsingleton = (%a. Def a && UU)"
 
-  fsfilter      :: "'a set \<Rightarrow> 'a fstream \<rightarrow> 'a fstream"
+definition
+  fsfilter      :: "'a set \<Rightarrow> 'a fstream \<rightarrow> 'a fstream" where
   "fsfilter A = sfilter\<cdot>(flift2 (\<lambda>x. x\<in>A))"
 
-  fsmap		:: "('a => 'b) => 'a fstream -> 'b fstream"
+definition
+  fsmap		:: "('a => 'b) => 'a fstream -> 'b fstream" where
   "fsmap f = smap$(flift2 f)"
 
-  jth           :: "nat => 'a fstream => 'a"
+definition
+  jth           :: "nat => 'a fstream => 'a" where
   "jth = (%n s. if Fin n < #s then THE a. i_th n s = Def a else arbitrary)"
 
-  first         :: "'a fstream => 'a"
+definition
+  first         :: "'a fstream => 'a" where
   "first = (%s. jth 0 s)"
 
-  last          :: "'a fstream => 'a"
+definition
+  last          :: "'a fstream => 'a" where
   "last = (%s. case #s of Fin n => (if n~=0 then jth (THE k. Suc k = n) s else arbitrary)
               | Infty => arbitrary)"
 
 
 abbreviation
-  emptystream :: "'a fstream" 			("<>")
+  emptystream :: "'a fstream"  ("<>") where
   "<> == \<bottom>"
-  fsfilter' :: "'a set \<Rightarrow> 'a fstream \<Rightarrow> 'a fstream"	("(_'(C')_)" [64,63] 63)
+
+abbreviation
+  fsfilter' :: "'a set \<Rightarrow> 'a fstream \<Rightarrow> 'a fstream"	("(_'(C')_)" [64,63] 63) where
   "A(C)s == fsfilter A\<cdot>s"
 
 notation (xsymbols)
--- a/src/HOLCF/FOCUS/Stream_adm.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOLCF/FOCUS/Stream_adm.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -10,18 +10,19 @@
 begin
 
 definition
-
-  stream_monoP  :: "(('a stream) set \<Rightarrow> ('a stream) set) \<Rightarrow> bool"
+  stream_monoP  :: "(('a stream) set \<Rightarrow> ('a stream) set) \<Rightarrow> bool" where
   "stream_monoP F = (\<exists>Q i. \<forall>P s. Fin i \<le> #s \<longrightarrow>
                     (s \<in> F P) = (stream_take i\<cdot>s \<in> Q \<and> iterate i\<cdot>rt\<cdot>s \<in> P))"
 
-  stream_antiP  :: "(('a stream) set \<Rightarrow> ('a stream) set) \<Rightarrow> bool"
+definition
+  stream_antiP  :: "(('a stream) set \<Rightarrow> ('a stream) set) \<Rightarrow> bool" where
   "stream_antiP F = (\<forall>P x. \<exists>Q i.
                 (#x  < Fin i \<longrightarrow> (\<forall>y. x \<sqsubseteq> y \<longrightarrow> y \<in> F P \<longrightarrow> x \<in> F P)) \<and>
                 (Fin i <= #x \<longrightarrow> (\<forall>y. x \<sqsubseteq> y \<longrightarrow>
                 (y \<in> F P) = (stream_take i\<cdot>y \<in> Q \<and> iterate i\<cdot>rt\<cdot>y \<in> P))))"
 
-  antitonP :: "'a set => bool"
+definition
+  antitonP :: "'a set => bool" where
   "antitonP P = (\<forall>x y. x \<sqsubseteq> y \<longrightarrow> y\<in>P \<longrightarrow> x\<in>P)"
 
 
--- a/src/HOLCF/IMP/Denotational.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOLCF/IMP/Denotational.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,7 +11,7 @@
 subsection "Definition"
 
 definition
-  dlift :: "(('a::type) discr -> 'b::pcpo) => ('a lift -> 'b)"
+  dlift :: "(('a::type) discr -> 'b::pcpo) => ('a lift -> 'b)" where
   "dlift f = (LAM x. case x of UU => UU | Def y => f\<cdot>(Discr y))"
 
 consts D :: "com => state discr -> state lift"
--- a/src/HOLCF/IMP/HoareEx.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOLCF/IMP/HoareEx.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -17,7 +17,7 @@
 types assn = "state => bool"
 
 definition
-  hoare_valid :: "[assn, com, assn] => bool"    ("|= {(1_)}/ (_)/ {(1_)}" 50)
+  hoare_valid :: "[assn, com, assn] => bool"  ("|= {(1_)}/ (_)/ {(1_)}" 50) where
   "|= {A} c {B} = (\<forall>s t. A s \<and> D c $(Discr s) = Def t --> B t)"
 
 lemma WHILE_rule_sound:
--- a/src/HOLCF/ex/Dagstuhl.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOLCF/ex/Dagstuhl.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -8,9 +8,11 @@
   y  :: "'a"
 
 definition
-  YS :: "'a stream"
+  YS :: "'a stream" where
   "YS = fix$(LAM x. y && x)"
-  YYS :: "'a stream"
+
+definition
+  YYS :: "'a stream" where
   "YYS = fix$(LAM z. y && y && z)"
 
 lemma YS_def2: "YS = y && YS"
--- a/src/HOLCF/ex/Dnat.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOLCF/ex/Dnat.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -10,7 +10,7 @@
 domain dnat = dzero | dsucc (dpred :: dnat)
 
 definition
-  iterator :: "dnat -> ('a -> 'a) -> 'a -> 'a"
+  iterator :: "dnat -> ('a -> 'a) -> 'a -> 'a" where
   "iterator = fix $ (LAM h n f x.
     case n of dzero => x
       | dsucc $ m => f $ (h $ m $ f $ x))"
--- a/src/HOLCF/ex/Focus_ex.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOLCF/ex/Focus_ex.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -111,19 +111,22 @@
   Rf :: "('b stream * ('b,'c) tc stream * 'c stream * ('b,'c) tc stream) => bool"
 
 definition
-  is_f :: "('b stream * ('b,'c) tc stream -> 'c stream * ('b,'c) tc stream) => bool"
+  is_f :: "('b stream * ('b,'c) tc stream -> 'c stream * ('b,'c) tc stream) => bool" where
   "is_f f = (!i1 i2 o1 o2. f$<i1,i2> = <o1,o2> --> Rf(i1,i2,o1,o2))"
 
+definition
   is_net_g :: "('b stream *('b,'c) tc stream -> 'c stream * ('b,'c) tc stream) =>
-    'b stream => 'c stream => bool"
+    'b stream => 'c stream => bool" where
   "is_net_g f x y == (? z.
                         <y,z> = f$<x,z> &
                         (!oy hz. <oy,hz> = f$<x,hz> --> z << hz))"
 
-  is_g :: "('b stream -> 'c stream) => bool"
+definition
+  is_g :: "('b stream -> 'c stream) => bool" where
   "is_g g  == (? f. is_f f  & (!x y. g$x = y --> is_net_g f x y))"
 
-  def_g :: "('b stream -> 'c stream) => bool"
+definition
+  def_g :: "('b stream -> 'c stream) => bool" where
   "def_g g == (? f. is_f f  & g = (LAM x. cfst$(f$<x,fix$(LAM  k. csnd$(f$<x,k>))>)))"
 
 
--- a/src/HOLCF/ex/Hoare.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOLCF/ex/Hoare.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -30,10 +30,11 @@
   g :: "'a -> 'a"
 
 definition
-  p :: "'a -> 'a"
+  p :: "'a -> 'a" where
   "p = fix$(LAM f. LAM x. If b1$x then f$(g$x) else x fi)"
 
-  q :: "'a -> 'a"
+definition
+  q :: "'a -> 'a" where
   "q = fix$(LAM f. LAM x. If b1$x orelse b2$x then f$(g$x) else x fi)"
 
 
--- a/src/HOLCF/ex/Loop.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOLCF/ex/Loop.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -10,10 +10,11 @@
 begin
 
 definition
-  step  :: "('a -> tr)->('a -> 'a)->'a->'a"
+  step  :: "('a -> tr)->('a -> 'a)->'a->'a" where
   "step = (LAM b g x. If b$x then g$x else x fi)"
 
-  while :: "('a -> tr)->('a -> 'a)->'a->'a"
+definition
+  while :: "('a -> tr)->('a -> 'a)->'a->'a" where
   "while = (LAM b g. fix$(LAM f x. If b$x then f$(g$x) else x fi))"
 
 (* ------------------------------------------------------------------------- *)
--- a/src/HOLCF/ex/Stream.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/HOLCF/ex/Stream.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -12,27 +12,31 @@
 domain 'a stream = "&&" (ft::'a) (lazy rt::"'a stream") (infixr 65)
 
 definition
-  smap          :: "('a \<rightarrow> 'b) \<rightarrow> 'a stream \<rightarrow> 'b stream"
+  smap :: "('a \<rightarrow> 'b) \<rightarrow> 'a stream \<rightarrow> 'b stream" where
   "smap = fix\<cdot>(\<Lambda> h f s. case s of x && xs \<Rightarrow> f\<cdot>x && h\<cdot>f\<cdot>xs)"
 
-  sfilter       :: "('a \<rightarrow> tr) \<rightarrow> 'a stream \<rightarrow> 'a stream"
+definition
+  sfilter :: "('a \<rightarrow> tr) \<rightarrow> 'a stream \<rightarrow> 'a stream" where
   "sfilter = fix\<cdot>(\<Lambda> h p s. case s of x && xs \<Rightarrow>
                                      If p\<cdot>x then x && h\<cdot>p\<cdot>xs else h\<cdot>p\<cdot>xs fi)"
 
-  slen          :: "'a stream \<Rightarrow> inat"                   ("#_" [1000] 1000)
+definition
+  slen :: "'a stream \<Rightarrow> inat"  ("#_" [1000] 1000) where
   "#s = (if stream_finite s then Fin (LEAST n. stream_take n\<cdot>s = s) else \<infinity>)"
 
 
 (* concatenation *)
 
 definition
-  i_rt :: "nat => 'a stream => 'a stream" (* chops the first i elements *)
+  i_rt :: "nat => 'a stream => 'a stream" where (* chops the first i elements *)
   "i_rt = (%i s. iterate i$rt$s)"
 
-  i_th :: "nat => 'a stream => 'a"        (* the i-th element *)
+definition
+  i_th :: "nat => 'a stream => 'a" where (* the i-th element *)
   "i_th = (%i s. ft$(i_rt i s))"
 
-  sconc         :: "'a stream => 'a stream => 'a stream" (infixr "ooo" 65)
+definition
+  sconc :: "'a stream => 'a stream => 'a stream"  (infixr "ooo" 65) where
   "s1 ooo s2 = (case #s1 of
                   Fin n \<Rightarrow> (SOME s. (stream_take n$s=s1) & (i_rt n s = s2))
                | \<infinity>     \<Rightarrow> s1)"
@@ -45,7 +49,7 @@
                                                     constr_sconc' n (rt$s1) s2"
 
 definition
-  constr_sconc  :: "'a stream => 'a stream => 'a stream" (* constructive *)
+  constr_sconc  :: "'a stream => 'a stream => 'a stream" where (* constructive *)
   "constr_sconc s1 s2 = (case #s1 of
                           Fin n \<Rightarrow> constr_sconc' n s1 s2
                         | \<infinity>    \<Rightarrow> s1)"
--- a/src/ZF/Constructible/AC_in_L.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/AC_in_L.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -223,18 +223,20 @@
 "DPow(A)"}, we take the minimum such ordinal.*}
 
 definition
-  env_form_r :: "[i,i,i]=>i"
+  env_form_r :: "[i,i,i]=>i" where
     --{*wellordering on (environment, formula) pairs*}
    "env_form_r(f,r,A) ==
       rmult(list(A), rlist(A, r),
 	    formula, measure(formula, enum(f)))"
 
-  env_form_map :: "[i,i,i,i]=>i"
+definition
+  env_form_map :: "[i,i,i,i]=>i" where
     --{*map from (environment, formula) pairs to ordinals*}
    "env_form_map(f,r,A,z)
       == ordermap(list(A) * formula, env_form_r(f,r,A)) ` z"
 
-  DPow_ord :: "[i,i,i,i,i]=>o"
+definition
+  DPow_ord :: "[i,i,i,i,i]=>o" where
     --{*predicate that holds if @{term k} is a valid index for @{term X}*}
    "DPow_ord(f,r,A,X,k) ==
            \<exists>env \<in> list(A). \<exists>p \<in> formula.
@@ -242,11 +244,13 @@
              X = {x\<in>A. sats(A, p, Cons(x,env))} &
              env_form_map(f,r,A,<env,p>) = k"
 
-  DPow_least :: "[i,i,i,i]=>i"
+definition
+  DPow_least :: "[i,i,i,i]=>i" where
     --{*function yielding the smallest index for @{term X}*}
    "DPow_least(f,r,A,X) == \<mu> k. DPow_ord(f,r,A,X,k)"
 
-  DPow_r :: "[i,i,i]=>i"
+definition
+  DPow_r :: "[i,i,i]=>i" where
     --{*a wellordering on @{term "DPow(A)"}*}
    "DPow_r(f,r,A) == measure(DPow(A), DPow_least(f,r,A))"
 
@@ -318,7 +322,7 @@
 of wellorderings for smaller ordinals.*}
 
 definition
-  rlimit :: "[i,i=>i]=>i"
+  rlimit :: "[i,i=>i]=>i" where
   --{*Expresses the wellordering at limit ordinals.  The conditional
       lets us remove the premise @{term "Limit(i)"} from some theorems.*}
     "rlimit(i,r) ==
@@ -329,7 +333,8 @@
 		  (lrank(x') = lrank(x) & <x',x> \<in> r(succ(lrank(x)))))}
        else 0"
 
-  Lset_new :: "i=>i"
+definition
+  Lset_new :: "i=>i" where
   --{*This constant denotes the set of elements introduced at level
       @{term "succ(i)"}*}
     "Lset_new(i) == {x \<in> Lset(succ(i)). lrank(x) = i}"
@@ -401,7 +406,7 @@
 subsection{*Transfinite Definition of the Wellordering on @{term "L"}*}
 
 definition
- L_r :: "[i, i] => i"
+  L_r :: "[i, i] => i" where
   "L_r(f) == %i.
       transrec3(i, 0, \<lambda>x r. DPow_r(f, r, Lset(x)), 
                 \<lambda>x r. rlimit(x, \<lambda>y. r`y))"
--- a/src/ZF/Constructible/DPow_absolute.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/DPow_absolute.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -23,7 +23,8 @@
              successor(M,dp,i) & fun_apply(M,f,p,z) & is_transrec(M,MH,i,f)"
 *)
 
-definition formula_rec_fm :: "[i, i, i]=>i"
+definition
+  formula_rec_fm :: "[i, i, i]=>i" where
  "formula_rec_fm(mh,p,z) == 
     Exists(Exists(Exists(
       And(finite_ordinal_fm(2),
@@ -80,7 +81,8 @@
 subsubsection{*The Operator @{term is_satisfies}*}
 
 (* is_satisfies(M,A,p,z) == is_formula_rec (M, satisfies_MH(M,A), p, z) *)
-definition satisfies_fm :: "[i,i,i]=>i"
+definition
+  satisfies_fm :: "[i,i,i]=>i" where
     "satisfies_fm(x) == formula_rec_fm (satisfies_MH_fm(x#+5#+6, 2, 1, 0))"
 
 lemma is_satisfies_type [TC]:
@@ -120,7 +122,7 @@
 text{*Relativize the use of @{term sats} within @{term DPow'}
 (the comprehension).*}
 definition
-  is_DPow_sats :: "[i=>o,i,i,i,i] => o"
+  is_DPow_sats :: "[i=>o,i,i,i,i] => o" where
    "is_DPow_sats(M,A,env,p,x) ==
       \<forall>n1[M]. \<forall>e[M]. \<forall>sp[M]. 
              is_satisfies(M,A,p,sp) --> is_Cons(M,x,env,e) --> 
@@ -148,8 +150,9 @@
              is_satisfies(M,A,p,sp) --> is_Cons(M,x,env,e) --> 
              fun_apply(M, sp, e, n1) --> number1(M, n1) *)
 
-definition DPow_sats_fm :: "[i,i,i,i]=>i"
- "DPow_sats_fm(A,env,p,x) ==
+definition
+  DPow_sats_fm :: "[i,i,i,i]=>i" where
+  "DPow_sats_fm(A,env,p,x) ==
    Forall(Forall(Forall(
      Implies(satisfies_fm(A#+3,p#+3,0), 
        Implies(Cons_fm(x#+3,env#+3,1), 
@@ -219,7 +222,7 @@
 
 text{*Relativization of the Operator @{term DPow'}*}
 definition 
-  is_DPow' :: "[i=>o,i,i] => o"
+  is_DPow' :: "[i=>o,i,i] => o" where
     "is_DPow'(M,A,Z) == 
        \<forall>X[M]. X \<in> Z <-> 
          subset(M,X,A) & 
@@ -310,7 +313,8 @@
 (* is_Collect :: "[i=>o,i,i=>o,i] => o"
     "is_Collect(M,A,P,z) == \<forall>x[M]. x \<in> z <-> x \<in> A & P(x)" *)
 
-definition Collect_fm :: "[i, i, i]=>i"
+definition
+  Collect_fm :: "[i, i, i]=>i" where
  "Collect_fm(A,is_P,z) == 
         Forall(Iff(Member(0,succ(z)),
                    And(Member(0,succ(A)), is_P)))"
@@ -360,8 +364,9 @@
 (*  is_Replace :: "[i=>o,i,[i,i]=>o,i] => o"
     "is_Replace(M,A,P,z) == \<forall>u[M]. u \<in> z <-> (\<exists>x[M]. x\<in>A & P(x,u))" *)
 
-definition Replace_fm :: "[i, i, i]=>i"
- "Replace_fm(A,is_P,z) == 
+definition
+  Replace_fm :: "[i, i, i]=>i" where
+  "Replace_fm(A,is_P,z) == 
         Forall(Iff(Member(0,succ(z)),
                    Exists(And(Member(0,A#+2), is_P))))"
 
@@ -413,7 +418,8 @@
            (\<exists>env[M]. \<exists>p[M]. mem_formula(M,p) & mem_list(M,A,env) &
                     is_Collect(M, A, is_DPow_sats(M,A,env,p), X))" *)
 
-definition DPow'_fm :: "[i,i]=>i"
+definition
+  DPow'_fm :: "[i,i]=>i" where
     "DPow'_fm(A,Z) == 
       Forall(
        Iff(Member(0,succ(Z)),
@@ -452,7 +458,7 @@
 subsection{*A Locale for Relativizing the Operator @{term Lset}*}
 
 definition
-  transrec_body :: "[i=>o,i,i,i,i] => o"
+  transrec_body :: "[i=>o,i,i,i,i] => o" where
     "transrec_body(M,g,x) ==
       \<lambda>y z. \<exists>gy[M]. y \<in> x & fun_apply(M,g,y,gy) & is_DPow'(M,gy,z)"
 
@@ -504,7 +510,7 @@
 text{*Relativization of the Operator @{term Lset}*}
 
 definition
-  is_Lset :: "[i=>o, i, i] => o"
+  is_Lset :: "[i=>o, i, i] => o" where
    --{*We can use the term language below because @{term is_Lset} will
        not have to be internalized: it isn't used in any instance of
        separation.*}
@@ -610,7 +616,7 @@
 
 
 definition
-  constructible :: "[i=>o,i] => o"
+  constructible :: "[i=>o,i] => o" where
     "constructible(M,x) ==
        \<exists>i[M]. \<exists>Li[M]. ordinal(M,i) & is_Lset(M,i,Li) & x \<in> Li"
 
--- a/src/ZF/Constructible/Datatype_absolute.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/Datatype_absolute.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,10 +11,11 @@
 subsection{*The lfp of a continuous function can be expressed as a union*}
 
 definition
-  directed :: "i=>o"
+  directed :: "i=>o" where
    "directed(A) == A\<noteq>0 & (\<forall>x\<in>A. \<forall>y\<in>A. x \<union> y \<in> A)"
 
-  contin :: "(i=>i) => o"
+definition
+  contin :: "(i=>i) => o" where
    "contin(h) == (\<forall>A. directed(A) --> h(\<Union>A) = (\<Union>X\<in>A. h(X)))"
 
 lemma bnd_mono_iterates_subset: "[|bnd_mono(D, h); n \<in> nat|] ==> h^n (0) <= D"
@@ -114,18 +115,19 @@
 subsection {*Absoluteness for "Iterates"*}
 
 definition
-
-  iterates_MH :: "[i=>o, [i,i]=>o, i, i, i, i] => o"
+  iterates_MH :: "[i=>o, [i,i]=>o, i, i, i, i] => o" where
    "iterates_MH(M,isF,v,n,g,z) ==
         is_nat_case(M, v, \<lambda>m u. \<exists>gm[M]. fun_apply(M,g,m,gm) & isF(gm,u),
                     n, z)"
 
-  is_iterates :: "[i=>o, [i,i]=>o, i, i, i] => o"
+definition
+  is_iterates :: "[i=>o, [i,i]=>o, i, i, i] => o" where
     "is_iterates(M,isF,v,n,Z) == 
       \<exists>sn[M]. \<exists>msn[M]. successor(M,n,sn) & membership(M,sn,msn) &
                        is_wfrec(M, iterates_MH(M,isF,v), msn, n, Z)"
 
-  iterates_replacement :: "[i=>o, [i,i]=>o, i] => o"
+definition
+  iterates_replacement :: "[i=>o, [i,i]=>o, i] => o" where
    "iterates_replacement(M,isF,v) ==
       \<forall>n[M]. n\<in>nat --> 
          wfrec_replacement(M, iterates_MH(M,isF,v), Memrel(succ(n)))"
@@ -208,7 +210,7 @@
 
 
 definition
-  is_list_functor :: "[i=>o,i,i,i] => o"
+  is_list_functor :: "[i=>o,i,i,i] => o" where
     "is_list_functor(M,A,X,Z) == 
         \<exists>n1[M]. \<exists>AX[M]. 
          number1(M,n1) & cartprod(M,A,X,AX) & is_sum(M,n1,AX,Z)"
@@ -261,7 +263,7 @@
 
 
 definition
-  is_formula_functor :: "[i=>o,i,i] => o"
+  is_formula_functor :: "[i=>o,i,i] => o" where
     "is_formula_functor(M,X,Z) == 
         \<exists>nat'[M]. \<exists>natnat[M]. \<exists>natnatsum[M]. \<exists>XX[M]. \<exists>X3[M]. 
           omega(M,nat') & cartprod(M,nat',nat',natnat) & 
@@ -279,7 +281,7 @@
 subsection{*@{term M} Contains the List and Formula Datatypes*}
 
 definition
-  list_N :: "[i,i] => i"
+  list_N :: "[i,i] => i" where
     "list_N(A,n) == (\<lambda>X. {0} + A * X)^n (0)"
 
 lemma Nil_in_list_N [simp]: "[] \<in> list_N(A,succ(n))"
@@ -340,17 +342,19 @@
 done
 
 definition
-  is_list_N :: "[i=>o,i,i,i] => o"
+  is_list_N :: "[i=>o,i,i,i] => o" where
     "is_list_N(M,A,n,Z) == 
       \<exists>zero[M]. empty(M,zero) & 
                 is_iterates(M, is_list_functor(M,A), zero, n, Z)"
-  
-  mem_list :: "[i=>o,i,i] => o"
+
+definition  
+  mem_list :: "[i=>o,i,i] => o" where
     "mem_list(M,A,l) == 
       \<exists>n[M]. \<exists>listn[M]. 
        finite_ordinal(M,n) & is_list_N(M,A,n,listn) & l \<in> listn"
 
-  is_list :: "[i=>o,i,i] => o"
+definition
+  is_list :: "[i=>o,i,i] => o" where
     "is_list(M,A,Z) == \<forall>l[M]. l \<in> Z <-> mem_list(M,A,l)"
 
 subsubsection{*Towards Absoluteness of @{term formula_rec}*}
@@ -367,7 +371,7 @@
 
 
 definition
-  formula_N :: "i => i"
+  formula_N :: "i => i" where
     "formula_N(n) == (\<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X)) ^ n (0)"
 
 lemma Member_in_formula_N [simp]:
@@ -442,20 +446,20 @@
 done
 
 definition
-  is_formula_N :: "[i=>o,i,i] => o"
+  is_formula_N :: "[i=>o,i,i] => o" where
     "is_formula_N(M,n,Z) == 
       \<exists>zero[M]. empty(M,zero) & 
                 is_iterates(M, is_formula_functor(M), zero, n, Z)"
 
 
-definition
-  
-  mem_formula :: "[i=>o,i] => o"
+definition  
+  mem_formula :: "[i=>o,i] => o" where
     "mem_formula(M,p) == 
       \<exists>n[M]. \<exists>formn[M]. 
        finite_ordinal(M,n) & is_formula_N(M,n,formn) & p \<in> formn"
 
-  is_formula :: "[i=>o,i] => o"
+definition
+  is_formula :: "[i=>o,i] => o" where
     "is_formula(M,Z) == \<forall>p[M]. p \<in> Z <-> mem_formula(M,p)"
 
 locale M_datatypes = M_trancl +
@@ -585,15 +589,17 @@
 done
 
 definition
-  is_eclose_n :: "[i=>o,i,i,i] => o"
+  is_eclose_n :: "[i=>o,i,i,i] => o" where
     "is_eclose_n(M,A,n,Z) == is_iterates(M, big_union(M), A, n, Z)"
 
-  mem_eclose :: "[i=>o,i,i] => o"
+definition
+  mem_eclose :: "[i=>o,i,i] => o" where
     "mem_eclose(M,A,l) ==
       \<exists>n[M]. \<exists>eclosen[M].
        finite_ordinal(M,n) & is_eclose_n(M,A,n,eclosen) & l \<in> eclosen"
 
-  is_eclose :: "[i=>o,i,i] => o"
+definition
+  is_eclose :: "[i=>o,i,i] => o" where
     "is_eclose(M,A,Z) == \<forall>u[M]. u \<in> Z <-> mem_eclose(M,A,u)"
 
 
@@ -643,15 +649,16 @@
 subsection {*Absoluteness for @{term transrec}*}
 
 text{* @{term "transrec(a,H) \<equiv> wfrec(Memrel(eclose({a})), a, H)"} *}
+
 definition
-
-  is_transrec :: "[i=>o, [i,i,i]=>o, i, i] => o"
+  is_transrec :: "[i=>o, [i,i,i]=>o, i, i] => o" where
    "is_transrec(M,MH,a,z) ==
       \<exists>sa[M]. \<exists>esa[M]. \<exists>mesa[M].
        upair(M,a,a,sa) & is_eclose(M,sa,esa) & membership(M,esa,mesa) &
        is_wfrec(M,MH,mesa,a,z)"
 
-  transrec_replacement :: "[i=>o, [i,i,i]=>o, i] => o"
+definition
+  transrec_replacement :: "[i=>o, [i,i,i]=>o, i] => o" where
    "transrec_replacement(M,MH,a) ==
       \<exists>sa[M]. \<exists>esa[M]. \<exists>mesa[M].
        upair(M,a,a,sa) & is_eclose(M,sa,esa) & membership(M,esa,mesa) &
@@ -692,7 +699,7 @@
 text{*But it is never used.*}
 
 definition
-  is_length :: "[i=>o,i,i,i] => o"
+  is_length :: "[i=>o,i,i,i] => o" where
     "is_length(M,A,l,n) ==
        \<exists>sn[M]. \<exists>list_n[M]. \<exists>list_sn[M].
         is_list_N(M,A,n,list_n) & l \<notin> list_n &
@@ -740,7 +747,7 @@
 done
 
 definition
-  is_nth :: "[i=>o,i,i,i] => o"
+  is_nth :: "[i=>o,i,i,i] => o" where
     "is_nth(M,n,l,Z) ==
       \<exists>X[M]. is_iterates(M, is_tl(M), l, n, X) & is_hd(M,X,Z)"
 
@@ -758,7 +765,7 @@
 subsection{*Relativization and Absoluteness for the @{term formula} Constructors*}
 
 definition
-  is_Member :: "[i=>o,i,i,i] => o"
+  is_Member :: "[i=>o,i,i,i] => o" where
      --{* because @{term "Member(x,y) \<equiv> Inl(Inl(\<langle>x,y\<rangle>))"}*}
     "is_Member(M,x,y,Z) ==
 	\<exists>p[M]. \<exists>u[M]. pair(M,x,y,p) & is_Inl(M,p,u) & is_Inl(M,u,Z)"
@@ -772,7 +779,7 @@
 by (simp add: Member_def)
 
 definition
-  is_Equal :: "[i=>o,i,i,i] => o"
+  is_Equal :: "[i=>o,i,i,i] => o" where
      --{* because @{term "Equal(x,y) \<equiv> Inl(Inr(\<langle>x,y\<rangle>))"}*}
     "is_Equal(M,x,y,Z) ==
 	\<exists>p[M]. \<exists>u[M]. pair(M,x,y,p) & is_Inr(M,p,u) & is_Inl(M,u,Z)"
@@ -785,7 +792,7 @@
 by (simp add: Equal_def)
 
 definition
-  is_Nand :: "[i=>o,i,i,i] => o"
+  is_Nand :: "[i=>o,i,i,i] => o" where
      --{* because @{term "Nand(x,y) \<equiv> Inr(Inl(\<langle>x,y\<rangle>))"}*}
     "is_Nand(M,x,y,Z) ==
 	\<exists>p[M]. \<exists>u[M]. pair(M,x,y,p) & is_Inl(M,p,u) & is_Inr(M,u,Z)"
@@ -798,7 +805,7 @@
 by (simp add: Nand_def)
 
 definition
-  is_Forall :: "[i=>o,i,i] => o"
+  is_Forall :: "[i=>o,i,i] => o" where
      --{* because @{term "Forall(x) \<equiv> Inr(Inr(p))"}*}
     "is_Forall(M,p,Z) == \<exists>u[M]. is_Inr(M,p,u) & is_Inr(M,u,Z)"
 
@@ -814,8 +821,7 @@
 subsection {*Absoluteness for @{term formula_rec}*}
 
 definition
-
-  formula_rec_case :: "[[i,i]=>i, [i,i]=>i, [i,i,i,i]=>i, [i,i]=>i, i, i] => i"
+  formula_rec_case :: "[[i,i]=>i, [i,i]=>i, [i,i,i,i]=>i, [i,i]=>i, i, i] => i" where
     --{* the instance of @{term formula_case} in @{term formula_rec}*}
    "formula_rec_case(a,b,c,d,h) ==
         formula_case (a, b,
@@ -847,9 +853,9 @@
 
 
 subsubsection{*Absoluteness for the Formula Operator @{term depth}*}
+
 definition
-
-  is_depth :: "[i=>o,i,i] => o"
+  is_depth :: "[i=>o,i,i] => o" where
     "is_depth(M,p,n) ==
        \<exists>sn[M]. \<exists>formula_n[M]. \<exists>formula_sn[M].
         is_formula_N(M,n,formula_n) & p \<notin> formula_n &
@@ -874,9 +880,8 @@
 subsubsection{*@{term is_formula_case}: relativization of @{term formula_case}*}
 
 definition
-
  is_formula_case ::
-    "[i=>o, [i,i,i]=>o, [i,i,i]=>o, [i,i,i]=>o, [i,i]=>o, i, i] => o"
+    "[i=>o, [i,i,i]=>o, [i,i,i]=>o, [i,i,i]=>o, [i,i]=>o, i, i] => o" where
   --{*no constraint on non-formulas*}
   "is_formula_case(M, is_a, is_b, is_c, is_d, p, z) ==
       (\<forall>x[M]. \<forall>y[M]. finite_ordinal(M,x) --> finite_ordinal(M,y) -->
@@ -910,7 +915,7 @@
 subsubsection {*Absoluteness for @{term formula_rec}: Final Results*}
 
 definition
-  is_formula_rec :: "[i=>o, [i,i,i]=>o, i, i] => o"
+  is_formula_rec :: "[i=>o, [i,i,i]=>o, i, i] => o" where
     --{* predicate to relativize the functional @{term formula_rec}*}
    "is_formula_rec(M,MH,p,z)  ==
       \<exists>dp[M]. \<exists>i[M]. \<exists>f[M]. finite_ordinal(M,dp) & is_depth(M,p,dp) &
--- a/src/ZF/Constructible/Formula.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/Formula.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -21,23 +21,29 @@
 
 declare formula.intros [TC]
 
-definition Neg :: "i=>i"
-    "Neg(p) == Nand(p,p)"
+definition
+  Neg :: "i=>i" where
+  "Neg(p) == Nand(p,p)"
 
-definition And :: "[i,i]=>i"
-    "And(p,q) == Neg(Nand(p,q))"
+definition
+  And :: "[i,i]=>i" where
+  "And(p,q) == Neg(Nand(p,q))"
 
-definition Or :: "[i,i]=>i"
-    "Or(p,q) == Nand(Neg(p),Neg(q))"
+definition
+  Or :: "[i,i]=>i" where
+  "Or(p,q) == Nand(Neg(p),Neg(q))"
 
-definition Implies :: "[i,i]=>i"
-    "Implies(p,q) == Nand(p,Neg(q))"
+definition
+  Implies :: "[i,i]=>i" where
+  "Implies(p,q) == Nand(p,Neg(q))"
 
-definition Iff :: "[i,i]=>i"
-    "Iff(p,q) == And(Implies(p,q), Implies(q,p))"
+definition
+  Iff :: "[i,i]=>i" where
+  "Iff(p,q) == And(Implies(p,q), Implies(q,p))"
 
-definition Exists :: "i=>i"
-    "Exists(p) == Neg(Forall(Neg(p)))";
+definition
+  Exists :: "i=>i" where
+  "Exists(p) == Neg(Forall(Neg(p)))";
 
 lemma Neg_type [TC]: "p \<in> formula ==> Neg(p) \<in> formula"
 by (simp add: Neg_def) 
@@ -79,7 +85,7 @@
 by (induct set: formula) simp_all
 
 abbreviation
-  sats :: "[i,i,i] => o"
+  sats :: "[i,i,i] => o" where
   "sats(A,p,env) == satisfies(A,p)`env = 1"
 
 lemma [simp]:
@@ -246,8 +252,9 @@
 
 subsection{*Renaming Some de Bruijn Variables*}
 
-definition incr_var :: "[i,i]=>i"
-    "incr_var(x,nq) == if x<nq then x else succ(x)"
+definition
+  incr_var :: "[i,i]=>i" where
+  "incr_var(x,nq) == if x<nq then x else succ(x)"
 
 lemma incr_var_lt: "x<nq ==> incr_var(x,nq) = x"
 by (simp add: incr_var_def)
@@ -334,8 +341,9 @@
 
 subsection{*Renaming all but the First de Bruijn Variable*}
 
-definition incr_bv1 :: "i => i"
-    "incr_bv1(p) == incr_bv(p)`1"
+definition
+  incr_bv1 :: "i => i" where
+  "incr_bv1(p) == incr_bv(p)`1"
 
 
 lemma incr_bv1_type [TC]: "p \<in> formula ==> incr_bv1(p) \<in> formula"
@@ -385,7 +393,8 @@
 subsection{*Definable Powerset*}
 
 text{*The definable powerset operation: Kunen's definition VI 1.1, page 165.*}
-definition DPow :: "i => i"
+definition
+  DPow :: "i => i" where
   "DPow(A) == {X \<in> Pow(A). 
                \<exists>env \<in> list(A). \<exists>p \<in> formula. 
                  arity(p) \<le> succ(length(env)) & 
@@ -507,8 +516,9 @@
 
 subsubsection{*The subset relation*}
 
-definition subset_fm :: "[i,i]=>i"
-    "subset_fm(x,y) == Forall(Implies(Member(0,succ(x)), Member(0,succ(y))))"
+definition
+  subset_fm :: "[i,i]=>i" where
+  "subset_fm(x,y) == Forall(Implies(Member(0,succ(x)), Member(0,succ(y))))"
 
 lemma subset_type [TC]: "[| x \<in> nat; y \<in> nat |] ==> subset_fm(x,y) \<in> formula"
 by (simp add: subset_fm_def) 
@@ -527,8 +537,9 @@
 
 subsubsection{*Transitive sets*}
 
-definition transset_fm :: "i=>i"
-   "transset_fm(x) == Forall(Implies(Member(0,succ(x)), subset_fm(0,succ(x))))"
+definition
+  transset_fm :: "i=>i" where
+  "transset_fm(x) == Forall(Implies(Member(0,succ(x)), subset_fm(0,succ(x))))"
 
 lemma transset_type [TC]: "x \<in> nat ==> transset_fm(x) \<in> formula"
 by (simp add: transset_fm_def) 
@@ -547,9 +558,10 @@
 
 subsubsection{*Ordinals*}
 
-definition ordinal_fm :: "i=>i"
-   "ordinal_fm(x) == 
-      And(transset_fm(x), Forall(Implies(Member(0,succ(x)), transset_fm(0))))"
+definition
+  ordinal_fm :: "i=>i" where
+  "ordinal_fm(x) == 
+    And(transset_fm(x), Forall(Implies(Member(0,succ(x)), transset_fm(0))))"
 
 lemma ordinal_type [TC]: "x \<in> nat ==> ordinal_fm(x) \<in> formula"
 by (simp add: ordinal_fm_def) 
@@ -579,11 +591,12 @@
 subsection{* Constant Lset: Levels of the Constructible Universe *}
 
 definition
-  Lset :: "i=>i"
-    "Lset(i) == transrec(i, %x f. \<Union>y\<in>x. DPow(f`y))"
+  Lset :: "i=>i" where
+  "Lset(i) == transrec(i, %x f. \<Union>y\<in>x. DPow(f`y))"
 
-  L :: "i=>o" --{*Kunen's definition VI 1.5, page 167*}
-    "L(x) == \<exists>i. Ord(i) & x \<in> Lset(i)"
+definition
+  L :: "i=>o" where --{*Kunen's definition VI 1.5, page 167*}
+  "L(x) == \<exists>i. Ord(i) & x \<in> Lset(i)"
   
 text{*NOT SUITABLE FOR REWRITING -- RECURSIVE!*}
 lemma Lset: "Lset(i) = (UN j:i. DPow(Lset(j)))"
@@ -825,8 +838,8 @@
 
 text{*The rank function for the constructible universe*}
 definition
-  lrank :: "i=>i" --{*Kunen's definition VI 1.7*}
-    "lrank(x) == \<mu> i. x \<in> Lset(succ(i))"
+  lrank :: "i=>i" where --{*Kunen's definition VI 1.7*}
+  "lrank(x) == \<mu> i. x \<in> Lset(succ(i))"
 
 lemma L_I: "[|x \<in> Lset(i); Ord(i)|] ==> L(x)"
 by (simp add: L_def, blast)
@@ -984,7 +997,8 @@
 
 
 text{*A simpler version of @{term DPow}: no arity check!*}
-definition DPow' :: "i => i"
+definition
+  DPow' :: "i => i" where
   "DPow'(A) == {X \<in> Pow(A). 
                 \<exists>env \<in> list(A). \<exists>p \<in> formula. 
                     X = {x\<in>A. sats(A, p, Cons(x,env))}}"
--- a/src/ZF/Constructible/Internalize.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/Internalize.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -10,7 +10,8 @@
 subsubsection{*The Formula @{term is_Inl}, Internalized*}
 
 (*  is_Inl(M,a,z) == \<exists>zero[M]. empty(M,zero) & pair(M,zero,a,z) *)
-definition Inl_fm :: "[i,i]=>i"
+definition
+  Inl_fm :: "[i,i]=>i" where
     "Inl_fm(a,z) == Exists(And(empty_fm(0), pair_fm(0,succ(a),succ(z))))"
 
 lemma Inl_type [TC]:
@@ -39,7 +40,8 @@
 subsubsection{*The Formula @{term is_Inr}, Internalized*}
 
 (*  is_Inr(M,a,z) == \<exists>n1[M]. number1(M,n1) & pair(M,n1,a,z) *)
-definition Inr_fm :: "[i,i]=>i"
+definition
+  Inr_fm :: "[i,i]=>i" where
     "Inr_fm(a,z) == Exists(And(number1_fm(0), pair_fm(0,succ(a),succ(z))))"
 
 lemma Inr_type [TC]:
@@ -69,7 +71,8 @@
 
 (* is_Nil(M,xs) == \<exists>zero[M]. empty(M,zero) & is_Inl(M,zero,xs) *)
 
-definition Nil_fm :: "i=>i"
+definition
+  Nil_fm :: "i=>i" where
     "Nil_fm(x) == Exists(And(empty_fm(0), Inl_fm(0,succ(x))))"
 
 lemma Nil_type [TC]: "x \<in> nat ==> Nil_fm(x) \<in> formula"
@@ -97,7 +100,8 @@
 
 
 (*  "is_Cons(M,a,l,Z) == \<exists>p[M]. pair(M,a,l,p) & is_Inr(M,p,Z)" *)
-definition Cons_fm :: "[i,i,i]=>i"
+definition
+  Cons_fm :: "[i,i,i]=>i" where
     "Cons_fm(a,l,Z) ==
        Exists(And(pair_fm(succ(a),succ(l),0), Inr_fm(0,succ(Z))))"
 
@@ -128,7 +132,8 @@
 
 (* is_quasilist(M,xs) == is_Nil(M,z) | (\<exists>x[M]. \<exists>l[M]. is_Cons(M,x,l,z))" *)
 
-definition quasilist_fm :: "i=>i"
+definition
+  quasilist_fm :: "i=>i" where
     "quasilist_fm(x) ==
        Or(Nil_fm(x), Exists(Exists(Cons_fm(1,0,succ(succ(x))))))"
 
@@ -162,7 +167,8 @@
        (is_Nil(M,xs) --> empty(M,H)) &
        (\<forall>x[M]. \<forall>l[M]. ~ is_Cons(M,x,l,xs) | H=x) &
        (is_quasilist(M,xs) | empty(M,H))" *)
-definition hd_fm :: "[i,i]=>i"
+definition
+  hd_fm :: "[i,i]=>i" where
     "hd_fm(xs,H) == 
        And(Implies(Nil_fm(xs), empty_fm(H)),
            And(Forall(Forall(Or(Neg(Cons_fm(1,0,xs#+2)), Equal(H#+2,1)))),
@@ -198,7 +204,8 @@
        (is_Nil(M,xs) --> T=xs) &
        (\<forall>x[M]. \<forall>l[M]. ~ is_Cons(M,x,l,xs) | T=l) &
        (is_quasilist(M,xs) | empty(M,T))" *)
-definition tl_fm :: "[i,i]=>i"
+definition
+  tl_fm :: "[i,i]=>i" where
     "tl_fm(xs,T) ==
        And(Implies(Nil_fm(xs), Equal(T,xs)),
            And(Forall(Forall(Or(Neg(Cons_fm(1,0,xs#+2)), Equal(T#+2,0)))),
@@ -234,8 +241,9 @@
    "is_bool_of_o(M,P,z) == (P & number1(M,z)) | (~P & empty(M,z))" *)
 
 text{*The formula @{term p} has no free variables.*}
-definition bool_of_o_fm :: "[i, i]=>i"
- "bool_of_o_fm(p,z) == 
+definition
+  bool_of_o_fm :: "[i, i]=>i" where
+  "bool_of_o_fm(p,z) == 
     Or(And(p,number1_fm(z)),
        And(Neg(p),empty_fm(z)))"
 
@@ -276,8 +284,9 @@
     "is_lambda(M, A, is_b, z) == 
        \<forall>p[M]. p \<in> z <->
         (\<exists>u[M]. \<exists>v[M]. u\<in>A & pair(M,u,v,p) & is_b(u,v))" *)
-definition lambda_fm :: "[i, i, i]=>i"
- "lambda_fm(p,A,z) == 
+definition
+  lambda_fm :: "[i, i, i]=>i" where
+  "lambda_fm(p,A,z) == 
     Forall(Iff(Member(0,succ(z)),
             Exists(Exists(And(Member(1,A#+3),
                            And(pair_fm(1,0,2), p))))))"
@@ -315,7 +324,8 @@
 
 (*    "is_Member(M,x,y,Z) ==
 	\<exists>p[M]. \<exists>u[M]. pair(M,x,y,p) & is_Inl(M,p,u) & is_Inl(M,u,Z)" *)
-definition Member_fm :: "[i,i,i]=>i"
+definition
+  Member_fm :: "[i,i,i]=>i" where
     "Member_fm(x,y,Z) ==
        Exists(Exists(And(pair_fm(x#+2,y#+2,1), 
                       And(Inl_fm(1,0), Inl_fm(0,Z#+2)))))"
@@ -347,7 +357,8 @@
 
 (*    "is_Equal(M,x,y,Z) ==
 	\<exists>p[M]. \<exists>u[M]. pair(M,x,y,p) & is_Inr(M,p,u) & is_Inl(M,u,Z)" *)
-definition Equal_fm :: "[i,i,i]=>i"
+definition
+  Equal_fm :: "[i,i,i]=>i" where
     "Equal_fm(x,y,Z) ==
        Exists(Exists(And(pair_fm(x#+2,y#+2,1), 
                       And(Inr_fm(1,0), Inl_fm(0,Z#+2)))))"
@@ -379,7 +390,8 @@
 
 (*    "is_Nand(M,x,y,Z) ==
 	\<exists>p[M]. \<exists>u[M]. pair(M,x,y,p) & is_Inl(M,p,u) & is_Inr(M,u,Z)" *)
-definition Nand_fm :: "[i,i,i]=>i"
+definition
+  Nand_fm :: "[i,i,i]=>i" where
     "Nand_fm(x,y,Z) ==
        Exists(Exists(And(pair_fm(x#+2,y#+2,1), 
                       And(Inl_fm(1,0), Inr_fm(0,Z#+2)))))"
@@ -410,7 +422,8 @@
 subsubsection{*The Operator @{term is_Forall}, Internalized*}
 
 (* "is_Forall(M,p,Z) == \<exists>u[M]. is_Inr(M,p,u) & is_Inr(M,u,Z)" *)
-definition Forall_fm :: "[i,i]=>i"
+definition
+  Forall_fm :: "[i,i]=>i" where
     "Forall_fm(x,Z) ==
        Exists(And(Inr_fm(succ(x),0), Inr_fm(0,succ(Z))))"
 
@@ -442,7 +455,8 @@
 
 (* is_and(M,a,b,z) == (number1(M,a)  & z=b) | 
                        (~number1(M,a) & empty(M,z)) *)
-definition and_fm :: "[i,i,i]=>i"
+definition
+  and_fm :: "[i,i,i]=>i" where
     "and_fm(a,b,z) ==
        Or(And(number1_fm(a), Equal(z,b)),
           And(Neg(number1_fm(a)),empty_fm(z)))"
@@ -476,7 +490,8 @@
 (* is_or(M,a,b,z) == (number1(M,a)  & number1(M,z)) | 
                      (~number1(M,a) & z=b) *)
 
-definition or_fm :: "[i,i,i]=>i"
+definition
+  or_fm :: "[i,i,i]=>i" where
     "or_fm(a,b,z) ==
        Or(And(number1_fm(a), number1_fm(z)),
           And(Neg(number1_fm(a)), Equal(z,b)))"
@@ -510,7 +525,8 @@
 
 (* is_not(M,a,z) == (number1(M,a)  & empty(M,z)) | 
                      (~number1(M,a) & number1(M,z)) *)
-definition not_fm :: "[i,i]=>i"
+definition
+  not_fm :: "[i,i]=>i" where
     "not_fm(a,z) ==
        Or(And(number1_fm(a), empty_fm(z)),
           And(Neg(number1_fm(a)), number1_fm(z)))"
@@ -576,8 +592,9 @@
 *)
 
 text{*The three arguments of @{term p} are always 2, 1, 0 and z*}
-definition is_recfun_fm :: "[i, i, i, i]=>i"
- "is_recfun_fm(p,r,a,f) == 
+definition
+  is_recfun_fm :: "[i, i, i, i]=>i" where
+  "is_recfun_fm(p,r,a,f) == 
    Forall(Iff(Member(0,succ(f)),
     Exists(Exists(Exists(
      And(p, 
@@ -638,8 +655,9 @@
 (* is_wfrec :: "[i=>o, i, [i,i,i]=>o, i, i] => o"
     "is_wfrec(M,MH,r,a,z) == 
       \<exists>f[M]. M_is_recfun(M,MH,r,a,f) & MH(a,f,z)" *)
-definition is_wfrec_fm :: "[i, i, i, i]=>i"
- "is_wfrec_fm(p,r,a,z) == 
+definition
+  is_wfrec_fm :: "[i, i, i, i]=>i" where
+  "is_wfrec_fm(p,r,a,z) == 
     Exists(And(is_recfun_fm(p, succ(r), succ(a), 0),
            Exists(Exists(Exists(Exists(
              And(Equal(2,a#+5), And(Equal(1,4), And(Equal(0,z#+5), p)))))))))"
@@ -696,7 +714,8 @@
 
 subsubsection{*Binary Products, Internalized*}
 
-definition cartprod_fm :: "[i,i,i]=>i"
+definition
+  cartprod_fm :: "[i,i,i]=>i" where
 (* "cartprod(M,A,B,z) ==
         \<forall>u[M]. u \<in> z <-> (\<exists>x[M]. x\<in>A & (\<exists>y[M]. y\<in>B & pair(M,x,y,u)))" *)
     "cartprod_fm(A,B,z) ==
@@ -736,7 +755,8 @@
          3      2       1        0
        number1(M,n1) & cartprod(M,n1,A,A0) & upair(M,n1,n1,s1) &
        cartprod(M,s1,B,B1) & union(M,A0,B1,Z)"  *)
-definition sum_fm :: "[i,i,i]=>i"
+definition
+  sum_fm :: "[i,i,i]=>i" where
     "sum_fm(A,B,Z) ==
        Exists(Exists(Exists(Exists(
         And(number1_fm(2),
@@ -771,7 +791,8 @@
 subsubsection{*The Operator @{term quasinat}*}
 
 (* "is_quasinat(M,z) == empty(M,z) | (\<exists>m[M]. successor(M,m,z))" *)
-definition quasinat_fm :: "i=>i"
+definition
+  quasinat_fm :: "i=>i" where
     "quasinat_fm(z) == Or(empty_fm(z), Exists(succ_fm(0,succ(z))))"
 
 lemma quasinat_type [TC]:
@@ -808,7 +829,8 @@
        (\<forall>m[M]. successor(M,m,k) --> is_b(m,z)) &
        (is_quasinat(M,k) | empty(M,z))" *)
 text{*The formula @{term is_b} has free variables 1 and 0.*}
-definition is_nat_case_fm :: "[i, i, i, i]=>i"
+definition
+  is_nat_case_fm :: "[i, i, i, i]=>i" where
  "is_nat_case_fm(a,is_b,k,z) == 
     And(Implies(empty_fm(k), Equal(z,a)),
         And(Forall(Implies(succ_fm(0,succ(k)), 
@@ -863,7 +885,8 @@
    "iterates_MH(M,isF,v,n,g,z) ==
         is_nat_case(M, v, \<lambda>m u. \<exists>gm[M]. fun_apply(M,g,m,gm) & isF(gm,u),
                     n, z)" *)
-definition iterates_MH_fm :: "[i, i, i, i, i]=>i"
+definition
+  iterates_MH_fm :: "[i, i, i, i, i]=>i" where
  "iterates_MH_fm(isF,v,n,g,z) == 
     is_nat_case_fm(v, 
       Exists(And(fun_apply_fm(succ(succ(succ(g))),2,0), 
@@ -928,8 +951,9 @@
       \<exists>sn[M]. \<exists>msn[M]. successor(M,n,sn) & membership(M,sn,msn) &
        1       0       is_wfrec(M, iterates_MH(M,isF,v), msn, n, Z)"*)
 
-definition is_iterates_fm :: "[i, i, i, i]=>i"
- "is_iterates_fm(p,v,n,Z) == 
+definition
+  is_iterates_fm :: "[i, i, i, i]=>i" where
+  "is_iterates_fm(p,v,n,Z) == 
      Exists(Exists(
       And(succ_fm(n#+2,1),
        And(Memrel_fm(1,0),
@@ -998,7 +1022,8 @@
 
 (* is_eclose_n(M,A,n,Z) == is_iterates(M, big_union(M), A, n, Z) *)
 
-definition eclose_n_fm :: "[i,i,i]=>i"
+definition
+  eclose_n_fm :: "[i,i,i]=>i" where
   "eclose_n_fm(A,n,Z) == is_iterates_fm(big_union_fm(1,0), A, n, Z)"
 
 lemma eclose_n_fm_type [TC]:
@@ -1034,7 +1059,8 @@
 (* mem_eclose(M,A,l) == 
       \<exists>n[M]. \<exists>eclosen[M]. 
        finite_ordinal(M,n) & is_eclose_n(M,A,n,eclosen) & l \<in> eclosen *)
-definition mem_eclose_fm :: "[i,i]=>i"
+definition
+  mem_eclose_fm :: "[i,i]=>i" where
     "mem_eclose_fm(x,y) ==
        Exists(Exists(
          And(finite_ordinal_fm(1),
@@ -1066,7 +1092,8 @@
 subsubsection{*The Predicate ``Is @{term "eclose(A)"}''*}
 
 (* is_eclose(M,A,Z) == \<forall>l[M]. l \<in> Z <-> mem_eclose(M,A,l) *)
-definition is_eclose_fm :: "[i,i]=>i"
+definition
+  is_eclose_fm :: "[i,i]=>i" where
     "is_eclose_fm(A,Z) ==
        Forall(Iff(Member(0,succ(Z)), mem_eclose_fm(succ(A),0)))"
 
@@ -1095,7 +1122,8 @@
 
 subsubsection{*The List Functor, Internalized*}
 
-definition list_functor_fm :: "[i,i,i]=>i"
+definition
+  list_functor_fm :: "[i,i,i]=>i" where
 (* "is_list_functor(M,A,X,Z) ==
         \<exists>n1[M]. \<exists>AX[M].
          number1(M,n1) & cartprod(M,A,X,AX) & is_sum(M,n1,AX,Z)" *)
@@ -1135,7 +1163,8 @@
       \<exists>zero[M]. empty(M,zero) & 
                 is_iterates(M, is_list_functor(M,A), zero, n, Z)" *)
 
-definition list_N_fm :: "[i,i,i]=>i"
+definition
+  list_N_fm :: "[i,i,i]=>i" where
   "list_N_fm(A,n,Z) == 
      Exists(
        And(empty_fm(0),
@@ -1175,7 +1204,8 @@
 (* mem_list(M,A,l) == 
       \<exists>n[M]. \<exists>listn[M]. 
        finite_ordinal(M,n) & is_list_N(M,A,n,listn) & l \<in> listn *)
-definition mem_list_fm :: "[i,i]=>i"
+definition
+  mem_list_fm :: "[i,i]=>i" where
     "mem_list_fm(x,y) ==
        Exists(Exists(
          And(finite_ordinal_fm(1),
@@ -1207,7 +1237,8 @@
 subsubsection{*The Predicate ``Is @{term "list(A)"}''*}
 
 (* is_list(M,A,Z) == \<forall>l[M]. l \<in> Z <-> mem_list(M,A,l) *)
-definition is_list_fm :: "[i,i]=>i"
+definition
+  is_list_fm :: "[i,i]=>i" where
     "is_list_fm(A,Z) ==
        Forall(Iff(Member(0,succ(Z)), mem_list_fm(succ(A),0)))"
 
@@ -1236,7 +1267,7 @@
 
 subsubsection{*The Formula Functor, Internalized*}
 
-definition formula_functor_fm :: "[i,i]=>i"
+definition formula_functor_fm :: "[i,i]=>i" where
 (*     "is_formula_functor(M,X,Z) ==
         \<exists>nat'[M]. \<exists>natnat[M]. \<exists>natnatsum[M]. \<exists>XX[M]. \<exists>X3[M].
            4           3               2       1       0
@@ -1282,7 +1313,8 @@
 (*  "is_formula_N(M,n,Z) == 
       \<exists>zero[M]. empty(M,zero) & 
                 is_iterates(M, is_formula_functor(M), zero, n, Z)" *) 
-definition formula_N_fm :: "[i,i]=>i"
+definition
+  formula_N_fm :: "[i,i]=>i" where
   "formula_N_fm(n,Z) == 
      Exists(
        And(empty_fm(0),
@@ -1322,7 +1354,8 @@
 (*  mem_formula(M,p) == 
       \<exists>n[M]. \<exists>formn[M]. 
        finite_ordinal(M,n) & is_formula_N(M,n,formn) & p \<in> formn *)
-definition mem_formula_fm :: "i=>i"
+definition
+  mem_formula_fm :: "i=>i" where
     "mem_formula_fm(x) ==
        Exists(Exists(
          And(finite_ordinal_fm(1),
@@ -1354,7 +1387,8 @@
 subsubsection{*The Predicate ``Is @{term "formula"}''*}
 
 (* is_formula(M,Z) == \<forall>p[M]. p \<in> Z <-> mem_formula(M,p) *)
-definition is_formula_fm :: "i=>i"
+definition
+  is_formula_fm :: "i=>i" where
     "is_formula_fm(Z) == Forall(Iff(Member(0,succ(Z)), mem_formula_fm(0)))"
 
 lemma is_formula_type [TC]:
@@ -1392,7 +1426,8 @@
        2       1         0
        upair(M,a,a,sa) & is_eclose(M,sa,esa) & membership(M,esa,mesa) &
        is_wfrec(M,MH,mesa,a,z)" *)
-definition is_transrec_fm :: "[i, i, i]=>i"
+definition
+  is_transrec_fm :: "[i, i, i]=>i" where
  "is_transrec_fm(p,a,z) == 
     Exists(Exists(Exists(
       And(upair_fm(a#+3,a#+3,2),
--- a/src/ZF/Constructible/L_axioms.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/L_axioms.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -114,21 +114,24 @@
 subsection{*Instantiation of the locale @{text reflection}*}
 
 text{*instances of locale constants*}
+
 definition
-  L_F0 :: "[i=>o,i] => i"
+  L_F0 :: "[i=>o,i] => i" where
     "L_F0(P,y) == \<mu> b. (\<exists>z. L(z) \<and> P(<y,z>)) --> (\<exists>z\<in>Lset(b). P(<y,z>))"
 
-  L_FF :: "[i=>o,i] => i"
+definition
+  L_FF :: "[i=>o,i] => i" where
     "L_FF(P)   == \<lambda>a. \<Union>y\<in>Lset(a). L_F0(P,y)"
 
-  L_ClEx :: "[i=>o,i] => o"
+definition
+  L_ClEx :: "[i=>o,i] => o" where
     "L_ClEx(P) == \<lambda>a. Limit(a) \<and> normalize(L_FF(P),a) = a"
 
 
 text{*We must use the meta-existential quantifier; otherwise the reflection
       terms become enormous!*}
 definition
-  L_Reflects :: "[i=>o,[i,i]=>o] => prop"      ("(3REFLECTS/ [_,/ _])")
+  L_Reflects :: "[i=>o,[i,i]=>o] => prop"  ("(3REFLECTS/ [_,/ _])") where
     "REFLECTS[P,Q] == (??Cl. Closed_Unbounded(Cl) &
                            (\<forall>a. Cl(a) --> (\<forall>x \<in> Lset(a). P(x) <-> Q(a,x))))"
 
@@ -266,25 +269,31 @@
 subsubsection{*Some numbers to help write de Bruijn indices*}
 
 abbreviation
-  digit3 :: i   ("3")
-  "3 == succ(2)"
-  digit4 :: i   ("4")
-  "4 == succ(3)"
-  digit5 :: i   ("5")
-  "5 == succ(4)"
-  digit6 :: i   ("6")
-  "6 == succ(5)"
-  digit7 :: i   ("7")
-  "7 == succ(6)"
-  digit8 :: i   ("8")
-  "8 == succ(7)"
-  digit9 :: i   ("9")
-  "9 == succ(8)"
+  digit3 :: i   ("3") where "3 == succ(2)"
+
+abbreviation
+  digit4 :: i   ("4") where "4 == succ(3)"
+
+abbreviation
+  digit5 :: i   ("5") where "5 == succ(4)"
+
+abbreviation
+  digit6 :: i   ("6") where "6 == succ(5)"
+
+abbreviation
+  digit7 :: i   ("7") where "7 == succ(6)"
+
+abbreviation
+  digit8 :: i   ("8") where "8 == succ(7)"
+
+abbreviation
+  digit9 :: i   ("9") where "9 == succ(8)"
 
 
 subsubsection{*The Empty Set, Internalized*}
 
-definition empty_fm :: "i=>i"
+definition
+  empty_fm :: "i=>i" where
     "empty_fm(x) == Forall(Neg(Member(0,succ(x))))"
 
 lemma empty_type [TC]:
@@ -322,7 +331,8 @@
 
 subsubsection{*Unordered Pairs, Internalized*}
 
-definition upair_fm :: "[i,i,i]=>i"
+definition
+  upair_fm :: "[i,i,i]=>i" where
     "upair_fm(x,y,z) ==
        And(Member(x,z),
            And(Member(y,z),
@@ -364,7 +374,8 @@
 
 subsubsection{*Ordered pairs, Internalized*}
 
-definition pair_fm :: "[i,i,i]=>i"
+definition
+  pair_fm :: "[i,i,i]=>i" where
     "pair_fm(x,y,z) ==
        Exists(And(upair_fm(succ(x),succ(x),0),
               Exists(And(upair_fm(succ(succ(x)),succ(succ(y)),0),
@@ -396,7 +407,8 @@
 
 subsubsection{*Binary Unions, Internalized*}
 
-definition union_fm :: "[i,i,i]=>i"
+definition
+  union_fm :: "[i,i,i]=>i" where
     "union_fm(x,y,z) ==
        Forall(Iff(Member(0,succ(z)),
                   Or(Member(0,succ(x)),Member(0,succ(y)))))"
@@ -427,7 +439,8 @@
 
 subsubsection{*Set ``Cons,'' Internalized*}
 
-definition cons_fm :: "[i,i,i]=>i"
+definition
+  cons_fm :: "[i,i,i]=>i" where
     "cons_fm(x,y,z) ==
        Exists(And(upair_fm(succ(x),succ(x),0),
                   union_fm(0,succ(y),succ(z))))"
@@ -459,7 +472,8 @@
 
 subsubsection{*Successor Function, Internalized*}
 
-definition succ_fm :: "[i,i]=>i"
+definition
+  succ_fm :: "[i,i]=>i" where
     "succ_fm(x,y) == cons_fm(x,x,y)"
 
 lemma succ_type [TC]:
@@ -489,7 +503,8 @@
 subsubsection{*The Number 1, Internalized*}
 
 (* "number1(M,a) == (\<exists>x[M]. empty(M,x) & successor(M,x,a))" *)
-definition number1_fm :: "i=>i"
+definition
+  number1_fm :: "i=>i" where
     "number1_fm(a) == Exists(And(empty_fm(0), succ_fm(0,succ(a))))"
 
 lemma number1_type [TC]:
@@ -518,7 +533,8 @@
 subsubsection{*Big Union, Internalized*}
 
 (*  "big_union(M,A,z) == \<forall>x[M]. x \<in> z <-> (\<exists>y[M]. y\<in>A & x \<in> y)" *)
-definition big_union_fm :: "[i,i]=>i"
+definition
+  big_union_fm :: "[i,i]=>i" where
     "big_union_fm(A,z) ==
        Forall(Iff(Member(0,succ(z)),
                   Exists(And(Member(0,succ(succ(A))), Member(1,0)))))"
@@ -598,7 +614,8 @@
 
 subsubsection{*Membership Relation, Internalized*}
 
-definition Memrel_fm :: "[i,i]=>i"
+definition
+  Memrel_fm :: "[i,i]=>i" where
     "Memrel_fm(A,r) ==
        Forall(Iff(Member(0,succ(r)),
                   Exists(And(Member(0,succ(succ(A))),
@@ -631,7 +648,8 @@
 
 subsubsection{*Predecessor Set, Internalized*}
 
-definition pred_set_fm :: "[i,i,i,i]=>i"
+definition
+  pred_set_fm :: "[i,i,i,i]=>i" where
     "pred_set_fm(A,x,r,B) ==
        Forall(Iff(Member(0,succ(B)),
                   Exists(And(Member(0,succ(succ(r))),
@@ -669,7 +687,8 @@
 
 (* "is_domain(M,r,z) ==
         \<forall>x[M]. (x \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>y[M]. pair(M,x,y,w))))" *)
-definition domain_fm :: "[i,i]=>i"
+definition
+  domain_fm :: "[i,i]=>i" where
     "domain_fm(r,z) ==
        Forall(Iff(Member(0,succ(z)),
                   Exists(And(Member(0,succ(succ(r))),
@@ -703,7 +722,8 @@
 
 (* "is_range(M,r,z) ==
         \<forall>y[M]. (y \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>x[M]. pair(M,x,y,w))))" *)
-definition range_fm :: "[i,i]=>i"
+definition
+  range_fm :: "[i,i]=>i" where
     "range_fm(r,z) ==
        Forall(Iff(Member(0,succ(z)),
                   Exists(And(Member(0,succ(succ(r))),
@@ -738,7 +758,8 @@
 (* "is_field(M,r,z) ==
         \<exists>dr[M]. is_domain(M,r,dr) &
             (\<exists>rr[M]. is_range(M,r,rr) & union(M,dr,rr,z))" *)
-definition field_fm :: "[i,i]=>i"
+definition
+  field_fm :: "[i,i]=>i" where
     "field_fm(r,z) ==
        Exists(And(domain_fm(succ(r),0),
               Exists(And(range_fm(succ(succ(r)),0),
@@ -773,7 +794,8 @@
 
 (* "image(M,r,A,z) ==
         \<forall>y[M]. (y \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>x[M]. x\<in>A & pair(M,x,y,w))))" *)
-definition image_fm :: "[i,i,i]=>i"
+definition
+  image_fm :: "[i,i,i]=>i" where
     "image_fm(r,A,z) ==
        Forall(Iff(Member(0,succ(z)),
                   Exists(And(Member(0,succ(succ(r))),
@@ -808,7 +830,8 @@
 
 (* "pre_image(M,r,A,z) ==
         \<forall>x[M]. x \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>y[M]. y\<in>A & pair(M,x,y,w)))" *)
-definition pre_image_fm :: "[i,i,i]=>i"
+definition
+  pre_image_fm :: "[i,i,i]=>i" where
     "pre_image_fm(r,A,z) ==
        Forall(Iff(Member(0,succ(z)),
                   Exists(And(Member(0,succ(succ(r))),
@@ -844,7 +867,8 @@
 (* "fun_apply(M,f,x,y) ==
         (\<exists>xs[M]. \<exists>fxs[M].
          upair(M,x,x,xs) & image(M,f,xs,fxs) & big_union(M,fxs,y))" *)
-definition fun_apply_fm :: "[i,i,i]=>i"
+definition
+  fun_apply_fm :: "[i,i,i]=>i" where
     "fun_apply_fm(f,x,y) ==
        Exists(Exists(And(upair_fm(succ(succ(x)), succ(succ(x)), 1),
                          And(image_fm(succ(succ(f)), 1, 0),
@@ -879,7 +903,8 @@
 
 (* "is_relation(M,r) ==
         (\<forall>z[M]. z\<in>r --> (\<exists>x[M]. \<exists>y[M]. pair(M,x,y,z)))" *)
-definition relation_fm :: "i=>i"
+definition
+  relation_fm :: "i=>i" where
     "relation_fm(r) ==
        Forall(Implies(Member(0,succ(r)), Exists(Exists(pair_fm(1,0,2)))))"
 
@@ -911,7 +936,8 @@
 (* "is_function(M,r) ==
         \<forall>x[M]. \<forall>y[M]. \<forall>y'[M]. \<forall>p[M]. \<forall>p'[M].
            pair(M,x,y,p) --> pair(M,x,y',p') --> p\<in>r --> p'\<in>r --> y=y'" *)
-definition function_fm :: "i=>i"
+definition
+  function_fm :: "i=>i" where
     "function_fm(r) ==
        Forall(Forall(Forall(Forall(Forall(
          Implies(pair_fm(4,3,1),
@@ -948,7 +974,8 @@
         is_function(M,r) & is_relation(M,r) & is_domain(M,r,A) &
         (\<forall>u[M]. u\<in>r --> (\<forall>x[M]. \<forall>y[M]. pair(M,x,y,u) --> y\<in>B))" *)
 
-definition typed_function_fm :: "[i,i,i]=>i"
+definition
+  typed_function_fm :: "[i,i,i]=>i" where
     "typed_function_fm(A,B,r) ==
        And(function_fm(r),
          And(relation_fm(r),
@@ -1007,7 +1034,8 @@
                (\<exists>x[M]. \<exists>y[M]. \<exists>z[M]. \<exists>xy[M]. \<exists>yz[M].
                 pair(M,x,z,p) & pair(M,x,y,xy) & pair(M,y,z,yz) &
                 xy \<in> s & yz \<in> r)" *)
-definition composition_fm :: "[i,i,i]=>i"
+definition
+  composition_fm :: "[i,i,i]=>i" where
   "composition_fm(r,s,t) ==
      Forall(Iff(Member(0,succ(t)),
              Exists(Exists(Exists(Exists(Exists(
@@ -1046,8 +1074,9 @@
         typed_function(M,A,B,f) &
         (\<forall>x[M]. \<forall>x'[M]. \<forall>y[M]. \<forall>p[M]. \<forall>p'[M].
           pair(M,x,y,p) --> pair(M,x',y,p') --> p\<in>f --> p'\<in>f --> x=x')" *)
-definition injection_fm :: "[i,i,i]=>i"
- "injection_fm(A,B,f) ==
+definition
+  injection_fm :: "[i,i,i]=>i" where
+  "injection_fm(A,B,f) ==
     And(typed_function_fm(A,B,f),
        Forall(Forall(Forall(Forall(Forall(
          Implies(pair_fm(4,2,1),
@@ -1086,8 +1115,9 @@
     "surjection(M,A,B,f) ==
         typed_function(M,A,B,f) &
         (\<forall>y[M]. y\<in>B --> (\<exists>x[M]. x\<in>A & fun_apply(M,f,x,y)))" *)
-definition surjection_fm :: "[i,i,i]=>i"
- "surjection_fm(A,B,f) ==
+definition
+  surjection_fm :: "[i,i,i]=>i" where
+  "surjection_fm(A,B,f) ==
     And(typed_function_fm(A,B,f),
        Forall(Implies(Member(0,succ(B)),
                       Exists(And(Member(0,succ(succ(A))),
@@ -1122,8 +1152,9 @@
 
 (*   bijection :: "[i=>o,i,i,i] => o"
     "bijection(M,A,B,f) == injection(M,A,B,f) & surjection(M,A,B,f)" *)
-definition bijection_fm :: "[i,i,i]=>i"
- "bijection_fm(A,B,f) == And(injection_fm(A,B,f), surjection_fm(A,B,f))"
+definition
+  bijection_fm :: "[i,i,i]=>i" where
+  "bijection_fm(A,B,f) == And(injection_fm(A,B,f), surjection_fm(A,B,f))"
 
 lemma bijection_type [TC]:
      "[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> bijection_fm(x,y,z) \<in> formula"
@@ -1154,7 +1185,8 @@
 
 (* "restriction(M,r,A,z) ==
         \<forall>x[M]. x \<in> z <-> (x \<in> r & (\<exists>u[M]. u\<in>A & (\<exists>v[M]. pair(M,u,v,x))))" *)
-definition restriction_fm :: "[i,i,i]=>i"
+definition
+  restriction_fm :: "[i,i,i]=>i" where
     "restriction_fm(r,A,z) ==
        Forall(Iff(Member(0,succ(z)),
                   And(Member(0,succ(r)),
@@ -1195,7 +1227,8 @@
             pair(M,fx,fy,q) --> (p\<in>r <-> q\<in>s))))"
   *)
 
-definition order_isomorphism_fm :: "[i,i,i,i,i]=>i"
+definition
+  order_isomorphism_fm :: "[i,i,i,i,i]=>i" where
  "order_isomorphism_fm(A,r,B,s,f) ==
    And(bijection_fm(A,B,f),
      Forall(Implies(Member(0,succ(A)),
@@ -1242,7 +1275,8 @@
         ordinal(M,a) & ~ empty(M,a) &
         (\<forall>x[M]. x\<in>a --> (\<exists>y[M]. y\<in>a & successor(M,x,y)))" *)
 
-definition limit_ordinal_fm :: "i=>i"
+definition
+  limit_ordinal_fm :: "i=>i" where
     "limit_ordinal_fm(x) ==
         And(ordinal_fm(x),
             And(Neg(empty_fm(x)),
@@ -1278,7 +1312,8 @@
 (*     "finite_ordinal(M,a) == 
 	ordinal(M,a) & ~ limit_ordinal(M,a) & 
         (\<forall>x[M]. x\<in>a --> ~ limit_ordinal(M,x))" *)
-definition finite_ordinal_fm :: "i=>i"
+definition
+  finite_ordinal_fm :: "i=>i" where
     "finite_ordinal_fm(x) ==
        And(ordinal_fm(x),
           And(Neg(limit_ordinal_fm(x)),
@@ -1311,7 +1346,8 @@
 subsubsection{*Omega: The Set of Natural Numbers*}
 
 (* omega(M,a) == limit_ordinal(M,a) & (\<forall>x[M]. x\<in>a --> ~ limit_ordinal(M,x)) *)
-definition omega_fm :: "i=>i"
+definition
+  omega_fm :: "i=>i" where
     "omega_fm(x) ==
        And(limit_ordinal_fm(x),
            Forall(Implies(Member(0,succ(x)),
--- a/src/ZF/Constructible/MetaExists.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/MetaExists.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -11,7 +11,7 @@
 quantify over classes.  Yields a proposition rather than a FOL formula.*}
 
 definition
-  ex :: "(('a::{}) => prop) => prop"            (binder "?? " 0)
+  ex :: "(('a::{}) => prop) => prop"  (binder "?? " 0) where
   "ex(P) == (!!Q. (!!x. PROP P(x) ==> PROP Q) ==> PROP Q)"
 
 notation (xsymbols)
--- a/src/ZF/Constructible/Normal.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/Normal.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -19,13 +19,15 @@
 subsection {*Closed and Unbounded (c.u.) Classes of Ordinals*}
 
 definition
-  Closed :: "(i=>o) => o"
+  Closed :: "(i=>o) => o" where
     "Closed(P) == \<forall>I. I \<noteq> 0 --> (\<forall>i\<in>I. Ord(i) \<and> P(i)) --> P(\<Union>(I))"
 
-  Unbounded :: "(i=>o) => o"
+definition
+  Unbounded :: "(i=>o) => o" where
     "Unbounded(P) == \<forall>i. Ord(i) --> (\<exists>j. i<j \<and> P(j))"
 
-  Closed_Unbounded :: "(i=>o) => o"
+definition
+  Closed_Unbounded :: "(i=>o) => o" where
     "Closed_Unbounded(P) == Closed(P) \<and> Unbounded(P)"
 
 
@@ -201,16 +203,19 @@
 subsection {*Normal Functions*} 
 
 definition
-  mono_le_subset :: "(i=>i) => o"
+  mono_le_subset :: "(i=>i) => o" where
     "mono_le_subset(M) == \<forall>i j. i\<le>j --> M(i) \<subseteq> M(j)"
 
-  mono_Ord :: "(i=>i) => o"
+definition
+  mono_Ord :: "(i=>i) => o" where
     "mono_Ord(F) == \<forall>i j. i<j --> F(i) < F(j)"
 
-  cont_Ord :: "(i=>i) => o"
+definition
+  cont_Ord :: "(i=>i) => o" where
     "cont_Ord(F) == \<forall>l. Limit(l) --> F(l) = (\<Union>i<l. F(i))"
 
-  Normal :: "(i=>i) => o"
+definition
+  Normal :: "(i=>i) => o" where
     "Normal(F) == mono_Ord(F) \<and> cont_Ord(F)"
 
 
@@ -373,7 +378,7 @@
       normal function, by @{thm [source] Normal_imp_fp_Unbounded}.
 *}
 definition
-  normalize :: "[i=>i, i] => i"
+  normalize :: "[i=>i, i] => i" where
     "normalize(F,a) == transrec2(a, F(0), \<lambda>x r. F(succ(x)) Un succ(r))"
 
 
@@ -425,7 +430,7 @@
 numbers.*}
 
 definition
-  Aleph :: "i => i"
+  Aleph :: "i => i" where
     "Aleph(a) == transrec2(a, nat, \<lambda>x r. csucc(r))"
 
 notation (xsymbols)
--- a/src/ZF/Constructible/Rank.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/Rank.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -136,22 +136,22 @@
 done
 
 
-definition
-  
-  obase :: "[i=>o,i,i] => i"
+definition  
+  obase :: "[i=>o,i,i] => i" where
        --{*the domain of @{text om}, eventually shown to equal @{text A}*}
    "obase(M,A,r) == {a\<in>A. \<exists>x[M]. \<exists>g[M]. Ord(x) & 
                           g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))}"
 
-  omap :: "[i=>o,i,i,i] => o"  
+definition
+  omap :: "[i=>o,i,i,i] => o" where
     --{*the function that maps wosets to order types*}
    "omap(M,A,r,f) == 
 	\<forall>z[M].
          z \<in> f <-> (\<exists>a\<in>A. \<exists>x[M]. \<exists>g[M]. z = <a,x> & Ord(x) & 
                         g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))"
 
-
-  otype :: "[i=>o,i,i,i] => o"  --{*the order types themselves*}
+definition
+  otype :: "[i=>o,i,i,i] => o" where --{*the order types themselves*}
    "otype(M,A,r,i) == \<exists>f[M]. omap(M,A,r,f) & is_range(M,f,i)"
 
 
@@ -414,12 +414,12 @@
 subsubsection{*Ordinal Addition*}
 
 (*FIXME: update to use new techniques!!*)
-definition
  (*This expresses ordinal addition in the language of ZF.  It also 
    provides an abbreviation that can be used in the instance of strong
    replacement below.  Here j is used to define the relation, namely
    Memrel(succ(j)), while x determines the domain of f.*)
- is_oadd_fun :: "[i=>o,i,i,i,i] => o"
+definition
+  is_oadd_fun :: "[i=>o,i,i,i,i] => o" where
     "is_oadd_fun(M,i,j,x,f) == 
        (\<forall>sj msj. M(sj) --> M(msj) --> 
                  successor(M,j,sj) --> membership(M,sj,msj) --> 
@@ -427,7 +427,8 @@
 		     %x g y. \<exists>gx[M]. image(M,g,x,gx) & union(M,i,gx,y),
 		     msj, x, f))"
 
- is_oadd :: "[i=>o,i,i,i] => o"
+definition
+  is_oadd :: "[i=>o,i,i,i] => o" where
     "is_oadd(M,i,j,k) == 
         (~ ordinal(M,i) & ~ ordinal(M,j) & k=0) |
         (~ ordinal(M,i) & ordinal(M,j) & k=j) |
@@ -437,21 +438,24 @@
 		    successor(M,j,sj) & is_oadd_fun(M,i,sj,sj,f) & 
 		    fun_apply(M,f,j,fj) & fj = k))"
 
+definition
  (*NEEDS RELATIVIZATION*)
- omult_eqns :: "[i,i,i,i] => o"
+  omult_eqns :: "[i,i,i,i] => o" where
     "omult_eqns(i,x,g,z) ==
             Ord(x) & 
 	    (x=0 --> z=0) &
             (\<forall>j. x = succ(j) --> z = g`j ++ i) &
             (Limit(x) --> z = \<Union>(g``x))"
 
- is_omult_fun :: "[i=>o,i,i,i] => o"
+definition
+  is_omult_fun :: "[i=>o,i,i,i] => o" where
     "is_omult_fun(M,i,j,f) == 
 	    (\<exists>df. M(df) & is_function(M,f) & 
                   is_domain(M,f,df) & subset(M, j, df)) & 
             (\<forall>x\<in>j. omult_eqns(i,x,f,f`x))"
 
- is_omult :: "[i=>o,i,i,i] => o"
+definition
+  is_omult :: "[i=>o,i,i,i] => o" where
     "is_omult(M,i,j,k) == 
 	\<exists>f fj sj. M(f) & M(fj) & M(sj) & 
                   successor(M,j,sj) & is_omult_fun(M,i,sj,f) & 
@@ -726,7 +730,7 @@
 text{*This function, defined using replacement, is a rank function for
 well-founded relations within the class M.*}
 definition
- wellfoundedrank :: "[i=>o,i,i] => i"
+  wellfoundedrank :: "[i=>o,i,i] => i" where
     "wellfoundedrank(M,r,A) ==
         {p. x\<in>A, \<exists>y[M]. \<exists>f[M]. 
                        p = <x,y> & is_recfun(r^+, x, %x f. range(f), f) &
--- a/src/ZF/Constructible/Rec_Separation.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/Rec_Separation.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -30,7 +30,8 @@
           (\<exists>fj[M]. \<exists>sj[M]. \<exists>fsj[M]. \<exists>ffp[M].
             fun_apply(M,f,j,fj) & successor(M,j,sj) &
             fun_apply(M,f,sj,fsj) & pair(M,fj,fsj,ffp) & ffp \<in> r)))"*)
-definition rtran_closure_mem_fm :: "[i,i,i]=>i"
+definition
+  rtran_closure_mem_fm :: "[i,i,i]=>i" where
  "rtran_closure_mem_fm(A,r,p) ==
    Exists(Exists(Exists(
     And(omega_fm(2),
@@ -87,8 +88,9 @@
 (*  "rtran_closure(M,r,s) ==
         \<forall>A[M]. is_field(M,r,A) -->
          (\<forall>p[M]. p \<in> s <-> rtran_closure_mem(M,A,r,p))" *)
-definition rtran_closure_fm :: "[i,i]=>i"
- "rtran_closure_fm(r,s) ==
+definition
+  rtran_closure_fm :: "[i,i]=>i" where
+  "rtran_closure_fm(r,s) ==
    Forall(Implies(field_fm(succ(r),0),
                   Forall(Iff(Member(0,succ(succ(s))),
                              rtran_closure_mem_fm(1,succ(succ(r)),0)))))"
@@ -121,8 +123,9 @@
 
 (*  "tran_closure(M,r,t) ==
          \<exists>s[M]. rtran_closure(M,r,s) & composition(M,r,s,t)" *)
-definition tran_closure_fm :: "[i,i]=>i"
- "tran_closure_fm(r,s) ==
+definition
+  tran_closure_fm :: "[i,i]=>i" where
+  "tran_closure_fm(r,s) ==
    Exists(And(rtran_closure_fm(succ(r),0), composition_fm(succ(r),0,succ(s))))"
 
 lemma tran_closure_type [TC]:
@@ -293,7 +296,8 @@
 
 (* "is_nth(M,n,l,Z) ==
       \<exists>X[M]. is_iterates(M, is_tl(M), l, n, X) & is_hd(M,X,Z)" *)
-definition nth_fm :: "[i,i,i]=>i"
+definition
+  nth_fm :: "[i,i,i]=>i" where
     "nth_fm(n,l,Z) == 
        Exists(And(is_iterates_fm(tl_fm(1,0), succ(l), succ(n), 0), 
               hd_fm(0,succ(Z))))"
--- a/src/ZF/Constructible/Relative.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/Relative.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -10,95 +10,120 @@
 subsection{* Relativized versions of standard set-theoretic concepts *}
 
 definition
-  empty :: "[i=>o,i] => o"
+  empty :: "[i=>o,i] => o" where
     "empty(M,z) == \<forall>x[M]. x \<notin> z"
 
-  subset :: "[i=>o,i,i] => o"
+definition
+  subset :: "[i=>o,i,i] => o" where
     "subset(M,A,B) == \<forall>x[M]. x\<in>A --> x \<in> B"
 
-  upair :: "[i=>o,i,i,i] => o"
+definition
+  upair :: "[i=>o,i,i,i] => o" where
     "upair(M,a,b,z) == a \<in> z & b \<in> z & (\<forall>x[M]. x\<in>z --> x = a | x = b)"
 
-  pair :: "[i=>o,i,i,i] => o"
+definition
+  pair :: "[i=>o,i,i,i] => o" where
     "pair(M,a,b,z) == \<exists>x[M]. upair(M,a,a,x) &
-                          (\<exists>y[M]. upair(M,a,b,y) & upair(M,x,y,z))"
+                     (\<exists>y[M]. upair(M,a,b,y) & upair(M,x,y,z))"
 
 
-  union :: "[i=>o,i,i,i] => o"
+definition
+  union :: "[i=>o,i,i,i] => o" where
     "union(M,a,b,z) == \<forall>x[M]. x \<in> z <-> x \<in> a | x \<in> b"
 
-  is_cons :: "[i=>o,i,i,i] => o"
+definition
+  is_cons :: "[i=>o,i,i,i] => o" where
     "is_cons(M,a,b,z) == \<exists>x[M]. upair(M,a,a,x) & union(M,x,b,z)"
 
-  successor :: "[i=>o,i,i] => o"
+definition
+  successor :: "[i=>o,i,i] => o" where
     "successor(M,a,z) == is_cons(M,a,a,z)"
 
-  number1 :: "[i=>o,i] => o"
+definition
+  number1 :: "[i=>o,i] => o" where
     "number1(M,a) == \<exists>x[M]. empty(M,x) & successor(M,x,a)"
 
-  number2 :: "[i=>o,i] => o"
+definition
+  number2 :: "[i=>o,i] => o" where
     "number2(M,a) == \<exists>x[M]. number1(M,x) & successor(M,x,a)"
 
-  number3 :: "[i=>o,i] => o"
+definition
+  number3 :: "[i=>o,i] => o" where
     "number3(M,a) == \<exists>x[M]. number2(M,x) & successor(M,x,a)"
 
-  powerset :: "[i=>o,i,i] => o"
+definition
+  powerset :: "[i=>o,i,i] => o" where
     "powerset(M,A,z) == \<forall>x[M]. x \<in> z <-> subset(M,x,A)"
 
-  is_Collect :: "[i=>o,i,i=>o,i] => o"
+definition
+  is_Collect :: "[i=>o,i,i=>o,i] => o" where
     "is_Collect(M,A,P,z) == \<forall>x[M]. x \<in> z <-> x \<in> A & P(x)"
 
-  is_Replace :: "[i=>o,i,[i,i]=>o,i] => o"
+definition
+  is_Replace :: "[i=>o,i,[i,i]=>o,i] => o" where
     "is_Replace(M,A,P,z) == \<forall>u[M]. u \<in> z <-> (\<exists>x[M]. x\<in>A & P(x,u))"
 
-  inter :: "[i=>o,i,i,i] => o"
+definition
+  inter :: "[i=>o,i,i,i] => o" where
     "inter(M,a,b,z) == \<forall>x[M]. x \<in> z <-> x \<in> a & x \<in> b"
 
-  setdiff :: "[i=>o,i,i,i] => o"
+definition
+  setdiff :: "[i=>o,i,i,i] => o" where
     "setdiff(M,a,b,z) == \<forall>x[M]. x \<in> z <-> x \<in> a & x \<notin> b"
 
-  big_union :: "[i=>o,i,i] => o"
+definition
+  big_union :: "[i=>o,i,i] => o" where
     "big_union(M,A,z) == \<forall>x[M]. x \<in> z <-> (\<exists>y[M]. y\<in>A & x \<in> y)"
 
-  big_inter :: "[i=>o,i,i] => o"
+definition
+  big_inter :: "[i=>o,i,i] => o" where
     "big_inter(M,A,z) ==
              (A=0 --> z=0) &
 	     (A\<noteq>0 --> (\<forall>x[M]. x \<in> z <-> (\<forall>y[M]. y\<in>A --> x \<in> y)))"
 
-  cartprod :: "[i=>o,i,i,i] => o"
+definition
+  cartprod :: "[i=>o,i,i,i] => o" where
     "cartprod(M,A,B,z) ==
 	\<forall>u[M]. u \<in> z <-> (\<exists>x[M]. x\<in>A & (\<exists>y[M]. y\<in>B & pair(M,x,y,u)))"
 
-  is_sum :: "[i=>o,i,i,i] => o"
+definition
+  is_sum :: "[i=>o,i,i,i] => o" where
     "is_sum(M,A,B,Z) ==
        \<exists>A0[M]. \<exists>n1[M]. \<exists>s1[M]. \<exists>B1[M].
        number1(M,n1) & cartprod(M,n1,A,A0) & upair(M,n1,n1,s1) &
        cartprod(M,s1,B,B1) & union(M,A0,B1,Z)"
 
-  is_Inl :: "[i=>o,i,i] => o"
+definition
+  is_Inl :: "[i=>o,i,i] => o" where
     "is_Inl(M,a,z) == \<exists>zero[M]. empty(M,zero) & pair(M,zero,a,z)"
 
-  is_Inr :: "[i=>o,i,i] => o"
+definition
+  is_Inr :: "[i=>o,i,i] => o" where
     "is_Inr(M,a,z) == \<exists>n1[M]. number1(M,n1) & pair(M,n1,a,z)"
 
-  is_converse :: "[i=>o,i,i] => o"
+definition
+  is_converse :: "[i=>o,i,i] => o" where
     "is_converse(M,r,z) ==
 	\<forall>x[M]. x \<in> z <->
              (\<exists>w[M]. w\<in>r & (\<exists>u[M]. \<exists>v[M]. pair(M,u,v,w) & pair(M,v,u,x)))"
 
-  pre_image :: "[i=>o,i,i,i] => o"
+definition
+  pre_image :: "[i=>o,i,i,i] => o" where
     "pre_image(M,r,A,z) ==
 	\<forall>x[M]. x \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>y[M]. y\<in>A & pair(M,x,y,w)))"
 
-  is_domain :: "[i=>o,i,i] => o"
+definition
+  is_domain :: "[i=>o,i,i] => o" where
     "is_domain(M,r,z) ==
 	\<forall>x[M]. x \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>y[M]. pair(M,x,y,w)))"
 
-  image :: "[i=>o,i,i,i] => o"
+definition
+  image :: "[i=>o,i,i,i] => o" where
     "image(M,r,A,z) ==
         \<forall>y[M]. y \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>x[M]. x\<in>A & pair(M,x,y,w)))"
 
-  is_range :: "[i=>o,i,i] => o"
+definition
+  is_range :: "[i=>o,i,i] => o" where
     --{*the cleaner
       @{term "\<exists>r'[M]. is_converse(M,r,r') & is_domain(M,r',z)"}
       unfortunately needs an instance of separation in order to prove
@@ -106,121 +131,147 @@
     "is_range(M,r,z) ==
 	\<forall>y[M]. y \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>x[M]. pair(M,x,y,w)))"
 
-  is_field :: "[i=>o,i,i] => o"
+definition
+  is_field :: "[i=>o,i,i] => o" where
     "is_field(M,r,z) ==
 	\<exists>dr[M]. \<exists>rr[M]. is_domain(M,r,dr) & is_range(M,r,rr) &
                         union(M,dr,rr,z)"
 
-  is_relation :: "[i=>o,i] => o"
+definition
+  is_relation :: "[i=>o,i] => o" where
     "is_relation(M,r) ==
         (\<forall>z[M]. z\<in>r --> (\<exists>x[M]. \<exists>y[M]. pair(M,x,y,z)))"
 
-  is_function :: "[i=>o,i] => o"
+definition
+  is_function :: "[i=>o,i] => o" where
     "is_function(M,r) ==
 	\<forall>x[M]. \<forall>y[M]. \<forall>y'[M]. \<forall>p[M]. \<forall>p'[M].
            pair(M,x,y,p) --> pair(M,x,y',p') --> p\<in>r --> p'\<in>r --> y=y'"
 
-  fun_apply :: "[i=>o,i,i,i] => o"
+definition
+  fun_apply :: "[i=>o,i,i,i] => o" where
     "fun_apply(M,f,x,y) ==
         (\<exists>xs[M]. \<exists>fxs[M].
          upair(M,x,x,xs) & image(M,f,xs,fxs) & big_union(M,fxs,y))"
 
-  typed_function :: "[i=>o,i,i,i] => o"
+definition
+  typed_function :: "[i=>o,i,i,i] => o" where
     "typed_function(M,A,B,r) ==
         is_function(M,r) & is_relation(M,r) & is_domain(M,r,A) &
         (\<forall>u[M]. u\<in>r --> (\<forall>x[M]. \<forall>y[M]. pair(M,x,y,u) --> y\<in>B))"
 
-  is_funspace :: "[i=>o,i,i,i] => o"
+definition
+  is_funspace :: "[i=>o,i,i,i] => o" where
     "is_funspace(M,A,B,F) ==
         \<forall>f[M]. f \<in> F <-> typed_function(M,A,B,f)"
 
-  composition :: "[i=>o,i,i,i] => o"
+definition
+  composition :: "[i=>o,i,i,i] => o" where
     "composition(M,r,s,t) ==
         \<forall>p[M]. p \<in> t <->
                (\<exists>x[M]. \<exists>y[M]. \<exists>z[M]. \<exists>xy[M]. \<exists>yz[M].
                 pair(M,x,z,p) & pair(M,x,y,xy) & pair(M,y,z,yz) &
                 xy \<in> s & yz \<in> r)"
 
-  injection :: "[i=>o,i,i,i] => o"
+definition
+  injection :: "[i=>o,i,i,i] => o" where
     "injection(M,A,B,f) ==
 	typed_function(M,A,B,f) &
         (\<forall>x[M]. \<forall>x'[M]. \<forall>y[M]. \<forall>p[M]. \<forall>p'[M].
           pair(M,x,y,p) --> pair(M,x',y,p') --> p\<in>f --> p'\<in>f --> x=x')"
 
-  surjection :: "[i=>o,i,i,i] => o"
+definition
+  surjection :: "[i=>o,i,i,i] => o" where
     "surjection(M,A,B,f) ==
         typed_function(M,A,B,f) &
         (\<forall>y[M]. y\<in>B --> (\<exists>x[M]. x\<in>A & fun_apply(M,f,x,y)))"
 
-  bijection :: "[i=>o,i,i,i] => o"
+definition
+  bijection :: "[i=>o,i,i,i] => o" where
     "bijection(M,A,B,f) == injection(M,A,B,f) & surjection(M,A,B,f)"
 
-  restriction :: "[i=>o,i,i,i] => o"
+definition
+  restriction :: "[i=>o,i,i,i] => o" where
     "restriction(M,r,A,z) ==
 	\<forall>x[M]. x \<in> z <-> (x \<in> r & (\<exists>u[M]. u\<in>A & (\<exists>v[M]. pair(M,u,v,x))))"
 
-  transitive_set :: "[i=>o,i] => o"
+definition
+  transitive_set :: "[i=>o,i] => o" where
     "transitive_set(M,a) == \<forall>x[M]. x\<in>a --> subset(M,x,a)"
 
-  ordinal :: "[i=>o,i] => o"
+definition
+  ordinal :: "[i=>o,i] => o" where
      --{*an ordinal is a transitive set of transitive sets*}
     "ordinal(M,a) == transitive_set(M,a) & (\<forall>x[M]. x\<in>a --> transitive_set(M,x))"
 
-  limit_ordinal :: "[i=>o,i] => o"
+definition
+  limit_ordinal :: "[i=>o,i] => o" where
     --{*a limit ordinal is a non-empty, successor-closed ordinal*}
     "limit_ordinal(M,a) ==
 	ordinal(M,a) & ~ empty(M,a) &
         (\<forall>x[M]. x\<in>a --> (\<exists>y[M]. y\<in>a & successor(M,x,y)))"
 
-  successor_ordinal :: "[i=>o,i] => o"
+definition
+  successor_ordinal :: "[i=>o,i] => o" where
     --{*a successor ordinal is any ordinal that is neither empty nor limit*}
     "successor_ordinal(M,a) ==
 	ordinal(M,a) & ~ empty(M,a) & ~ limit_ordinal(M,a)"
 
-  finite_ordinal :: "[i=>o,i] => o"
+definition
+  finite_ordinal :: "[i=>o,i] => o" where
     --{*an ordinal is finite if neither it nor any of its elements are limit*}
     "finite_ordinal(M,a) ==
 	ordinal(M,a) & ~ limit_ordinal(M,a) &
         (\<forall>x[M]. x\<in>a --> ~ limit_ordinal(M,x))"
 
-  omega :: "[i=>o,i] => o"
+definition
+  omega :: "[i=>o,i] => o" where
     --{*omega is a limit ordinal none of whose elements are limit*}
     "omega(M,a) == limit_ordinal(M,a) & (\<forall>x[M]. x\<in>a --> ~ limit_ordinal(M,x))"
 
-  is_quasinat :: "[i=>o,i] => o"
+definition
+  is_quasinat :: "[i=>o,i] => o" where
     "is_quasinat(M,z) == empty(M,z) | (\<exists>m[M]. successor(M,m,z))"
 
-  is_nat_case :: "[i=>o, i, [i,i]=>o, i, i] => o"
+definition
+  is_nat_case :: "[i=>o, i, [i,i]=>o, i, i] => o" where
     "is_nat_case(M, a, is_b, k, z) ==
        (empty(M,k) --> z=a) &
        (\<forall>m[M]. successor(M,m,k) --> is_b(m,z)) &
        (is_quasinat(M,k) | empty(M,z))"
 
-  relation1 :: "[i=>o, [i,i]=>o, i=>i] => o"
+definition
+  relation1 :: "[i=>o, [i,i]=>o, i=>i] => o" where
     "relation1(M,is_f,f) == \<forall>x[M]. \<forall>y[M]. is_f(x,y) <-> y = f(x)"
 
-  Relation1 :: "[i=>o, i, [i,i]=>o, i=>i] => o"
+definition
+  Relation1 :: "[i=>o, i, [i,i]=>o, i=>i] => o" where
     --{*as above, but typed*}
     "Relation1(M,A,is_f,f) ==
         \<forall>x[M]. \<forall>y[M]. x\<in>A --> is_f(x,y) <-> y = f(x)"
 
-  relation2 :: "[i=>o, [i,i,i]=>o, [i,i]=>i] => o"
+definition
+  relation2 :: "[i=>o, [i,i,i]=>o, [i,i]=>i] => o" where
     "relation2(M,is_f,f) == \<forall>x[M]. \<forall>y[M]. \<forall>z[M]. is_f(x,y,z) <-> z = f(x,y)"
 
-  Relation2 :: "[i=>o, i, i, [i,i,i]=>o, [i,i]=>i] => o"
+definition
+  Relation2 :: "[i=>o, i, i, [i,i,i]=>o, [i,i]=>i] => o" where
     "Relation2(M,A,B,is_f,f) ==
         \<forall>x[M]. \<forall>y[M]. \<forall>z[M]. x\<in>A --> y\<in>B --> is_f(x,y,z) <-> z = f(x,y)"
 
-  relation3 :: "[i=>o, [i,i,i,i]=>o, [i,i,i]=>i] => o"
+definition
+  relation3 :: "[i=>o, [i,i,i,i]=>o, [i,i,i]=>i] => o" where
     "relation3(M,is_f,f) ==
        \<forall>x[M]. \<forall>y[M]. \<forall>z[M]. \<forall>u[M]. is_f(x,y,z,u) <-> u = f(x,y,z)"
 
-  Relation3 :: "[i=>o, i, i, i, [i,i,i,i]=>o, [i,i,i]=>i] => o"
+definition
+  Relation3 :: "[i=>o, i, i, i, [i,i,i,i]=>o, [i,i,i]=>i] => o" where
     "Relation3(M,A,B,C,is_f,f) ==
        \<forall>x[M]. \<forall>y[M]. \<forall>z[M]. \<forall>u[M].
          x\<in>A --> y\<in>B --> z\<in>C --> is_f(x,y,z,u) <-> u = f(x,y,z)"
 
-  relation4 :: "[i=>o, [i,i,i,i,i]=>o, [i,i,i,i]=>i] => o"
+definition
+  relation4 :: "[i=>o, [i,i,i,i,i]=>o, [i,i,i,i]=>i] => o" where
     "relation4(M,is_f,f) ==
        \<forall>u[M]. \<forall>x[M]. \<forall>y[M]. \<forall>z[M]. \<forall>a[M]. is_f(u,x,y,z,a) <-> a = f(u,x,y,z)"
 
@@ -236,13 +287,14 @@
 
 
 subsection {*The relativized ZF axioms*}
+
 definition
-
-  extensionality :: "(i=>o) => o"
+  extensionality :: "(i=>o) => o" where
     "extensionality(M) ==
 	\<forall>x[M]. \<forall>y[M]. (\<forall>z[M]. z \<in> x <-> z \<in> y) --> x=y"
 
-  separation :: "[i=>o, i=>o] => o"
+definition
+  separation :: "[i=>o, i=>o] => o" where
     --{*The formula @{text P} should only involve parameters
         belonging to @{text M} and all its quantifiers must be relativized
         to @{text M}.  We do not have separation as a scheme; every instance
@@ -250,30 +302,37 @@
     "separation(M,P) ==
 	\<forall>z[M]. \<exists>y[M]. \<forall>x[M]. x \<in> y <-> x \<in> z & P(x)"
 
-  upair_ax :: "(i=>o) => o"
+definition
+  upair_ax :: "(i=>o) => o" where
     "upair_ax(M) == \<forall>x[M]. \<forall>y[M]. \<exists>z[M]. upair(M,x,y,z)"
 
-  Union_ax :: "(i=>o) => o"
+definition
+  Union_ax :: "(i=>o) => o" where
     "Union_ax(M) == \<forall>x[M]. \<exists>z[M]. big_union(M,x,z)"
 
-  power_ax :: "(i=>o) => o"
+definition
+  power_ax :: "(i=>o) => o" where
     "power_ax(M) == \<forall>x[M]. \<exists>z[M]. powerset(M,x,z)"
 
-  univalent :: "[i=>o, i, [i,i]=>o] => o"
+definition
+  univalent :: "[i=>o, i, [i,i]=>o] => o" where
     "univalent(M,A,P) ==
 	\<forall>x[M]. x\<in>A --> (\<forall>y[M]. \<forall>z[M]. P(x,y) & P(x,z) --> y=z)"
 
-  replacement :: "[i=>o, [i,i]=>o] => o"
+definition
+  replacement :: "[i=>o, [i,i]=>o] => o" where
     "replacement(M,P) ==
       \<forall>A[M]. univalent(M,A,P) -->
       (\<exists>Y[M]. \<forall>b[M]. (\<exists>x[M]. x\<in>A & P(x,b)) --> b \<in> Y)"
 
-  strong_replacement :: "[i=>o, [i,i]=>o] => o"
+definition
+  strong_replacement :: "[i=>o, [i,i]=>o] => o" where
     "strong_replacement(M,P) ==
       \<forall>A[M]. univalent(M,A,P) -->
       (\<exists>Y[M]. \<forall>b[M]. b \<in> Y <-> (\<exists>x[M]. x\<in>A & P(x,b)))"
 
-  foundation_ax :: "(i=>o) => o"
+definition
+  foundation_ax :: "(i=>o) => o" where
     "foundation_ax(M) ==
 	\<forall>x[M]. (\<exists>y[M]. y\<in>x) --> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & z \<in> y))"
 
@@ -441,9 +500,9 @@
 
 
 text{*More constants, for order types*}
+
 definition
-
-  order_isomorphism :: "[i=>o,i,i,i,i,i] => o"
+  order_isomorphism :: "[i=>o,i,i,i,i,i] => o" where
     "order_isomorphism(M,A,r,B,s,f) ==
         bijection(M,A,B,f) &
         (\<forall>x[M]. x\<in>A --> (\<forall>y[M]. y\<in>A -->
@@ -451,11 +510,13 @@
             pair(M,x,y,p) --> fun_apply(M,f,x,fx) --> fun_apply(M,f,y,fy) -->
             pair(M,fx,fy,q) --> (p\<in>r <-> q\<in>s))))"
 
-  pred_set :: "[i=>o,i,i,i,i] => o"
+definition
+  pred_set :: "[i=>o,i,i,i,i] => o" where
     "pred_set(M,A,x,r,B) ==
 	\<forall>y[M]. y \<in> B <-> (\<exists>p[M]. p\<in>r & y \<in> A & pair(M,y,x,p))"
 
-  membership :: "[i=>o,i,i] => o" --{*membership relation*}
+definition
+  membership :: "[i=>o,i,i] => o" where --{*membership relation*}
     "membership(M,A,r) ==
 	\<forall>p[M]. p \<in> r <-> (\<exists>x[M]. x\<in>A & (\<exists>y[M]. y\<in>A & x\<in>y & pair(M,x,y,p)))"
 
@@ -713,7 +774,7 @@
 subsubsection {*Absoluteness for @{term Lambda}*}
 
 definition
- is_lambda :: "[i=>o, i, [i,i]=>o, i] => o"
+ is_lambda :: "[i=>o, i, [i,i]=>o, i] => o" where
     "is_lambda(M, A, is_b, z) ==
        \<forall>p[M]. p \<in> z <->
         (\<exists>u[M]. \<exists>v[M]. u\<in>A & pair(M,u,v,p) & is_b(u,v))"
@@ -1313,18 +1374,21 @@
 subsection{*Relativization and Absoluteness for Boolean Operators*}
 
 definition
-  is_bool_of_o :: "[i=>o, o, i] => o"
+  is_bool_of_o :: "[i=>o, o, i] => o" where
    "is_bool_of_o(M,P,z) == (P & number1(M,z)) | (~P & empty(M,z))"
 
-  is_not :: "[i=>o, i, i] => o"
+definition
+  is_not :: "[i=>o, i, i] => o" where
    "is_not(M,a,z) == (number1(M,a)  & empty(M,z)) |
                      (~number1(M,a) & number1(M,z))"
 
-  is_and :: "[i=>o, i, i, i] => o"
+definition
+  is_and :: "[i=>o, i, i, i] => o" where
    "is_and(M,a,b,z) == (number1(M,a)  & z=b) |
                        (~number1(M,a) & empty(M,z))"
 
-  is_or :: "[i=>o, i, i, i] => o"
+definition
+  is_or :: "[i=>o, i, i, i] => o" where
    "is_or(M,a,b,z) == (number1(M,a)  & number1(M,z)) |
                       (~number1(M,a) & z=b)"
 
@@ -1366,12 +1430,12 @@
 subsection{*Relativization and Absoluteness for List Operators*}
 
 definition
-
-  is_Nil :: "[i=>o, i] => o"
+  is_Nil :: "[i=>o, i] => o" where
      --{* because @{term "[] \<equiv> Inl(0)"}*}
     "is_Nil(M,xs) == \<exists>zero[M]. empty(M,zero) & is_Inl(M,zero,xs)"
 
-  is_Cons :: "[i=>o,i,i,i] => o"
+definition
+  is_Cons :: "[i=>o,i,i,i] => o" where
      --{* because @{term "Cons(a, l) \<equiv> Inr(\<langle>a,l\<rangle>)"}*}
     "is_Cons(M,a,l,Z) == \<exists>p[M]. pair(M,a,l,p) & is_Inr(M,p,Z)"
 
@@ -1391,34 +1455,39 @@
 
 
 definition
-
-  quasilist :: "i => o"
+  quasilist :: "i => o" where
     "quasilist(xs) == xs=Nil | (\<exists>x l. xs = Cons(x,l))"
 
-  is_quasilist :: "[i=>o,i] => o"
+definition
+  is_quasilist :: "[i=>o,i] => o" where
     "is_quasilist(M,z) == is_Nil(M,z) | (\<exists>x[M]. \<exists>l[M]. is_Cons(M,x,l,z))"
 
-  list_case' :: "[i, [i,i]=>i, i] => i"
+definition
+  list_case' :: "[i, [i,i]=>i, i] => i" where
     --{*A version of @{term list_case} that's always defined.*}
     "list_case'(a,b,xs) ==
        if quasilist(xs) then list_case(a,b,xs) else 0"
 
-  is_list_case :: "[i=>o, i, [i,i,i]=>o, i, i] => o"
+definition
+  is_list_case :: "[i=>o, i, [i,i,i]=>o, i, i] => o" where
     --{*Returns 0 for non-lists*}
     "is_list_case(M, a, is_b, xs, z) ==
        (is_Nil(M,xs) --> z=a) &
        (\<forall>x[M]. \<forall>l[M]. is_Cons(M,x,l,xs) --> is_b(x,l,z)) &
        (is_quasilist(M,xs) | empty(M,z))"
 
-  hd' :: "i => i"
+definition
+  hd' :: "i => i" where
     --{*A version of @{term hd} that's always defined.*}
     "hd'(xs) == if quasilist(xs) then hd(xs) else 0"
 
-  tl' :: "i => i"
+definition
+  tl' :: "i => i" where
     --{*A version of @{term tl} that's always defined.*}
     "tl'(xs) == if quasilist(xs) then tl(xs) else 0"
 
-  is_hd :: "[i=>o,i,i] => o"
+definition
+  is_hd :: "[i=>o,i,i] => o" where
      --{* @{term "hd([]) = 0"} no constraints if not a list.
           Avoiding implication prevents the simplifier's looping.*}
     "is_hd(M,xs,H) ==
@@ -1426,7 +1495,8 @@
        (\<forall>x[M]. \<forall>l[M]. ~ is_Cons(M,x,l,xs) | H=x) &
        (is_quasilist(M,xs) | empty(M,H))"
 
-  is_tl :: "[i=>o,i,i] => o"
+definition
+  is_tl :: "[i=>o,i,i] => o" where
      --{* @{term "tl([]) = []"}; see comments about @{term is_hd}*}
     "is_tl(M,xs,T) ==
        (is_Nil(M,xs) --> T=xs) &
--- a/src/ZF/Constructible/Satisfies_absolute.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/Satisfies_absolute.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -17,7 +17,8 @@
          2          1                0
         is_formula_N(M,n,formula_n) & p \<notin> formula_n &
         successor(M,n,sn) & is_formula_N(M,sn,formula_sn) & p \<in> formula_sn" *)
-definition depth_fm :: "[i,i]=>i"
+definition
+  depth_fm :: "[i,i]=>i" where
   "depth_fm(p,n) == 
      Exists(Exists(Exists(
        And(formula_N_fm(n#+3,1),
@@ -66,8 +67,9 @@
                      is_Nand(M,x,y,v) --> is_c(x,y,z)) &
       (\<forall>x[M]. x\<in>formula --> is_Forall(M,x,v) --> is_d(x,z))" *)
 
-definition formula_case_fm :: "[i, i, i, i, i, i]=>i"
- "formula_case_fm(is_a, is_b, is_c, is_d, v, z) == 
+definition
+  formula_case_fm :: "[i, i, i, i, i, i]=>i" where
+  "formula_case_fm(is_a, is_b, is_c, is_d, v, z) == 
         And(Forall(Forall(Implies(finite_ordinal_fm(1), 
                            Implies(finite_ordinal_fm(0), 
                             Implies(Member_fm(1,0,v#+2), 
@@ -174,9 +176,9 @@
 subsection {*Absoluteness for the Function @{term satisfies}*}
 
 definition
-  is_depth_apply :: "[i=>o,i,i,i] => o"
+  is_depth_apply :: "[i=>o,i,i,i] => o" where
    --{*Merely a useful abbreviation for the sequel.*}
-   "is_depth_apply(M,h,p,z) ==
+  "is_depth_apply(M,h,p,z) ==
     \<exists>dp[M]. \<exists>sdp[M]. \<exists>hsdp[M]. 
 	finite_ordinal(M,dp) & is_depth(M,p,dp) & successor(M,dp,sdp) &
 	fun_apply(M,h,sdp,hsdp) & fun_apply(M,hsdp,p,z)"
@@ -194,11 +196,12 @@
 text{*These constants let us instantiate the parameters @{term a}, @{term b},
       @{term c}, @{term d}, etc., of the locale @{text Formula_Rec}.*}
 definition
-  satisfies_a :: "[i,i,i]=>i"
+  satisfies_a :: "[i,i,i]=>i" where
    "satisfies_a(A) == 
     \<lambda>x y. \<lambda>env \<in> list(A). bool_of_o (nth(x,env) \<in> nth(y,env))"
 
-  satisfies_is_a :: "[i=>o,i,i,i,i]=>o"
+definition
+  satisfies_is_a :: "[i=>o,i,i,i,i]=>o" where
    "satisfies_is_a(M,A) == 
     \<lambda>x y zz. \<forall>lA[M]. is_list(M,A,lA) -->
              is_lambda(M, lA, 
@@ -207,24 +210,28 @@
  		       is_nth(M,x,env,nx) & is_nth(M,y,env,ny) & nx \<in> ny, z),
                 zz)"
 
-  satisfies_b :: "[i,i,i]=>i"
+definition
+  satisfies_b :: "[i,i,i]=>i" where
    "satisfies_b(A) ==
     \<lambda>x y. \<lambda>env \<in> list(A). bool_of_o (nth(x,env) = nth(y,env))"
 
-  satisfies_is_b :: "[i=>o,i,i,i,i]=>o"
+definition
+  satisfies_is_b :: "[i=>o,i,i,i,i]=>o" where
    --{*We simplify the formula to have just @{term nx} rather than 
        introducing @{term ny} with  @{term "nx=ny"} *}
-   "satisfies_is_b(M,A) == 
+  "satisfies_is_b(M,A) == 
     \<lambda>x y zz. \<forall>lA[M]. is_list(M,A,lA) -->
              is_lambda(M, lA, 
                 \<lambda>env z. is_bool_of_o(M, 
                       \<exists>nx[M]. is_nth(M,x,env,nx) & is_nth(M,y,env,nx), z),
                 zz)"
- 
-  satisfies_c :: "[i,i,i,i,i]=>i"
+
+definition 
+  satisfies_c :: "[i,i,i,i,i]=>i" where
    "satisfies_c(A) == \<lambda>p q rp rq. \<lambda>env \<in> list(A). not(rp ` env and rq ` env)"
 
-  satisfies_is_c :: "[i=>o,i,i,i,i,i]=>o"
+definition
+  satisfies_is_c :: "[i=>o,i,i,i,i,i]=>o" where
    "satisfies_is_c(M,A,h) == 
     \<lambda>p q zz. \<forall>lA[M]. is_list(M,A,lA) -->
              is_lambda(M, lA, \<lambda>env z. \<exists>hp[M]. \<exists>hq[M]. 
@@ -233,11 +240,13 @@
                  (\<exists>pq[M]. is_and(M,hp,hq,pq) & is_not(M,pq,z)),
                 zz)"
 
-  satisfies_d :: "[i,i,i]=>i"
+definition
+  satisfies_d :: "[i,i,i]=>i" where
    "satisfies_d(A) 
     == \<lambda>p rp. \<lambda>env \<in> list(A). bool_of_o (\<forall>x\<in>A. rp ` (Cons(x,env)) = 1)"
 
-  satisfies_is_d :: "[i=>o,i,i,i,i]=>o"
+definition
+  satisfies_is_d :: "[i=>o,i,i,i,i]=>o" where
    "satisfies_is_d(M,A,h) == 
     \<lambda>p zz. \<forall>lA[M]. is_list(M,A,lA) -->
              is_lambda(M, lA, 
@@ -249,10 +258,11 @@
                   z),
                zz)"
 
-  satisfies_MH :: "[i=>o,i,i,i,i]=>o"
+definition
+  satisfies_MH :: "[i=>o,i,i,i,i]=>o" where
     --{*The variable @{term u} is unused, but gives @{term satisfies_MH} 
         the correct arity.*}
-   "satisfies_MH == 
+  "satisfies_MH == 
     \<lambda>M A u f z. 
          \<forall>fml[M]. is_formula(M,fml) -->
              is_lambda (M, fml, 
@@ -261,8 +271,9 @@
                                 satisfies_is_c(M,A,f), satisfies_is_d(M,A,f)),
                z)"
 
-  is_satisfies :: "[i=>o,i,i,i]=>o"
-   "is_satisfies(M,A) == is_formula_rec (M, satisfies_MH(M,A))"
+definition
+  is_satisfies :: "[i=>o,i,i,i]=>o" where
+  "is_satisfies(M,A) == is_formula_rec (M, satisfies_MH(M,A))"
 
 
 text{*This lemma relates the fragments defined above to the original primitive
@@ -504,7 +515,8 @@
       2        1         0
 	finite_ordinal(M,dp) & is_depth(M,p,dp) & successor(M,dp,sdp) &
 	fun_apply(M,h,sdp,hsdp) & fun_apply(M,hsdp,p,z) *)
-definition depth_apply_fm :: "[i,i,i]=>i"
+definition
+  depth_apply_fm :: "[i,i,i]=>i" where
     "depth_apply_fm(h,p,z) ==
        Exists(Exists(Exists(
         And(finite_ordinal_fm(2),
@@ -547,8 +559,9 @@
  		       is_nth(M,x,env,nx) & is_nth(M,y,env,ny) & nx \<in> ny, z),
                 zz)  *)
 
-definition satisfies_is_a_fm :: "[i,i,i,i]=>i"
- "satisfies_is_a_fm(A,x,y,z) ==
+definition
+  satisfies_is_a_fm :: "[i,i,i,i]=>i" where
+  "satisfies_is_a_fm(A,x,y,z) ==
    Forall(
      Implies(is_list_fm(succ(A),0),
        lambda_fm(
@@ -598,7 +611,8 @@
                       \<exists>nx[M]. is_nth(M,x,env,nx) & is_nth(M,y,env,nx), z),
                 zz) *)
 
-definition satisfies_is_b_fm :: "[i,i,i,i]=>i"
+definition
+  satisfies_is_b_fm :: "[i,i,i,i]=>i" where
  "satisfies_is_b_fm(A,x,y,z) ==
    Forall(
      Implies(is_list_fm(succ(A),0),
@@ -647,7 +661,8 @@
                  (\<exists>pq[M]. is_and(M,hp,hq,pq) & is_not(M,pq,z)),
                 zz) *)
 
-definition satisfies_is_c_fm :: "[i,i,i,i,i]=>i"
+definition
+  satisfies_is_c_fm :: "[i,i,i,i,i]=>i" where
  "satisfies_is_c_fm(A,h,p,q,zz) ==
    Forall(
      Implies(is_list_fm(succ(A),0),
@@ -700,7 +715,8 @@
                   z),
                zz) *)
 
-definition satisfies_is_d_fm :: "[i,i,i,i]=>i"
+definition
+  satisfies_is_d_fm :: "[i,i,i,i]=>i" where
  "satisfies_is_d_fm(A,h,p,zz) ==
    Forall(
      Implies(is_list_fm(succ(A),0),
@@ -754,7 +770,8 @@
                                 satisfies_is_c(M,A,f), satisfies_is_d(M,A,f)),
                zz) *)
 
-definition satisfies_MH_fm :: "[i,i,i,i]=>i"
+definition
+  satisfies_MH_fm :: "[i,i,i,i]=>i" where
  "satisfies_MH_fm(A,u,f,zz) ==
    Forall(
      Implies(is_formula_fm(0),
--- a/src/ZF/Constructible/WF_absolute.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/WF_absolute.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -10,7 +10,7 @@
 subsection{*Transitive closure without fixedpoints*}
 
 definition
-  rtrancl_alt :: "[i,i]=>i"
+  rtrancl_alt :: "[i,i]=>i" where
     "rtrancl_alt(A,r) ==
        {p \<in> A*A. \<exists>n\<in>nat. \<exists>f \<in> succ(n) -> A.
                  (\<exists>x y. p = <x,y> &  f`0 = x & f`n = y) &
@@ -60,8 +60,7 @@
 
 
 definition
-
-  rtran_closure_mem :: "[i=>o,i,i,i] => o"
+  rtran_closure_mem :: "[i=>o,i,i,i] => o" where
     --{*The property of belonging to @{text "rtran_closure(r)"}*}
     "rtran_closure_mem(M,A,r,p) ==
 	      \<exists>nnat[M]. \<exists>n[M]. \<exists>n'[M]. 
@@ -74,12 +73,14 @@
 		      fun_apply(M,f,j,fj) & successor(M,j,sj) &
 		      fun_apply(M,f,sj,fsj) & pair(M,fj,fsj,ffp) & ffp \<in> r)))"
 
-  rtran_closure :: "[i=>o,i,i] => o"
+definition
+  rtran_closure :: "[i=>o,i,i] => o" where
     "rtran_closure(M,r,s) == 
         \<forall>A[M]. is_field(M,r,A) -->
  	 (\<forall>p[M]. p \<in> s <-> rtran_closure_mem(M,A,r,p))"
 
-  tran_closure :: "[i=>o,i,i] => o"
+definition
+  tran_closure :: "[i=>o,i,i] => o" where
     "tran_closure(M,r,t) ==
          \<exists>s[M]. rtran_closure(M,r,s) & composition(M,r,s,t)"
 
--- a/src/ZF/Constructible/WFrec.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/WFrec.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -272,7 +272,7 @@
 subsection{*Relativization of the ZF Predicate @{term is_recfun}*}
 
 definition
-  M_is_recfun :: "[i=>o, [i,i,i]=>o, i, i, i] => o"
+  M_is_recfun :: "[i=>o, [i,i,i]=>o, i, i, i] => o" where
    "M_is_recfun(M,MH,r,a,f) == 
      \<forall>z[M]. z \<in> f <-> 
             (\<exists>x[M]. \<exists>y[M]. \<exists>xa[M]. \<exists>sx[M]. \<exists>r_sx[M]. \<exists>f_r_sx[M]. 
@@ -280,11 +280,13 @@
                pre_image(M,r,sx,r_sx) & restriction(M,f,r_sx,f_r_sx) &
                xa \<in> r & MH(x, f_r_sx, y))"
 
-  is_wfrec :: "[i=>o, [i,i,i]=>o, i, i, i] => o"
+definition
+  is_wfrec :: "[i=>o, [i,i,i]=>o, i, i, i] => o" where
    "is_wfrec(M,MH,r,a,z) == 
       \<exists>f[M]. M_is_recfun(M,MH,r,a,f) & MH(a,f,z)"
 
-  wfrec_replacement :: "[i=>o, [i,i,i]=>o, i] => o"
+definition
+  wfrec_replacement :: "[i=>o, [i,i,i]=>o, i] => o" where
    "wfrec_replacement(M,MH,r) ==
         strong_replacement(M, 
              \<lambda>x z. \<exists>y[M]. pair(M,x,y,z) & is_wfrec(M,MH,r,x,y))"
--- a/src/ZF/Constructible/Wellorderings.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/Constructible/Wellorderings.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -17,28 +17,33 @@
 subsection{*Wellorderings*}
 
 definition
-  irreflexive :: "[i=>o,i,i]=>o"
+  irreflexive :: "[i=>o,i,i]=>o" where
     "irreflexive(M,A,r) == \<forall>x[M]. x\<in>A --> <x,x> \<notin> r"
   
-  transitive_rel :: "[i=>o,i,i]=>o"
+definition
+  transitive_rel :: "[i=>o,i,i]=>o" where
     "transitive_rel(M,A,r) == 
 	\<forall>x[M]. x\<in>A --> (\<forall>y[M]. y\<in>A --> (\<forall>z[M]. z\<in>A --> 
                           <x,y>\<in>r --> <y,z>\<in>r --> <x,z>\<in>r))"
 
-  linear_rel :: "[i=>o,i,i]=>o"
+definition
+  linear_rel :: "[i=>o,i,i]=>o" where
     "linear_rel(M,A,r) == 
 	\<forall>x[M]. x\<in>A --> (\<forall>y[M]. y\<in>A --> <x,y>\<in>r | x=y | <y,x>\<in>r)"
 
-  wellfounded :: "[i=>o,i]=>o"
+definition
+  wellfounded :: "[i=>o,i]=>o" where
     --{*EVERY non-empty set has an @{text r}-minimal element*}
     "wellfounded(M,r) == 
 	\<forall>x[M]. x\<noteq>0 --> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))"
-  wellfounded_on :: "[i=>o,i,i]=>o"
+definition
+  wellfounded_on :: "[i=>o,i,i]=>o" where
     --{*every non-empty SUBSET OF @{text A} has an @{text r}-minimal element*}
     "wellfounded_on(M,A,r) == 
 	\<forall>x[M]. x\<noteq>0 --> x\<subseteq>A --> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))"
 
-  wellordered :: "[i=>o,i,i]=>o"
+definition
+  wellordered :: "[i=>o,i,i]=>o" where
     --{*linear and wellfounded on @{text A}*}
     "wellordered(M,A,r) == 
 	transitive_rel(M,A,r) & linear_rel(M,A,r) & wellfounded_on(M,A,r)"
--- a/src/ZF/IMP/Denotation.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/IMP/Denotation.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -15,7 +15,7 @@
   C     :: "i => i"
 
 definition
-  Gamma :: "[i,i,i] => i"    ("\<Gamma>")
+  Gamma :: "[i,i,i] => i"  ("\<Gamma>") where
   "\<Gamma>(b,cden) ==
     (\<lambda>phi. {io \<in> (phi O cden). B(b,fst(io))=1} \<union>
            {io \<in> id(loc->nat). B(b,fst(io))=0})"
--- a/src/ZF/ex/Commutation.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/ex/Commutation.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -10,23 +10,29 @@
 theory Commutation imports Main begin
 
 definition
-  square  :: "[i, i, i, i] => o"
+  square  :: "[i, i, i, i] => o" where
   "square(r,s,t,u) ==
     (\<forall>a b. <a,b> \<in> r --> (\<forall>c. <a, c> \<in> s --> (\<exists>x. <b,x> \<in> t & <c,x> \<in> u)))"
 
-  commute :: "[i, i] => o"
+definition
+  commute :: "[i, i] => o" where
   "commute(r,s) == square(r,s,s,r)"
 
-  diamond :: "i=>o"
+definition
+  diamond :: "i=>o" where
   "diamond(r)   == commute(r, r)"
 
-  strip :: "i=>o"
+definition
+  strip :: "i=>o" where
   "strip(r) == commute(r^*, r)"
 
-  Church_Rosser :: "i => o"
+definition
+  Church_Rosser :: "i => o" where
   "Church_Rosser(r) == (\<forall>x y. <x,y> \<in>  (r Un converse(r))^* -->
                         (\<exists>z. <x,z> \<in> r^* & <y,z> \<in> r^*))"
-  confluent :: "i=>o"
+
+definition
+  confluent :: "i=>o" where
   "confluent(r) == diamond(r^*)"
 
 
--- a/src/ZF/ex/Group.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/ex/Group.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -21,20 +21,23 @@
 *)
 
 definition
-  carrier :: "i => i"
+  carrier :: "i => i" where
   "carrier(M) == fst(M)"
 
-  mmult :: "[i, i, i] => i" (infixl "\<cdot>\<index>" 70)
+definition
+  mmult :: "[i, i, i] => i" (infixl "\<cdot>\<index>" 70) where
   "mmult(M,x,y) == fst(snd(M)) ` <x,y>"
 
-  one :: "i => i" ("\<one>\<index>")
+definition
+  one :: "i => i" ("\<one>\<index>") where
   "one(M) == fst(snd(snd(M)))"
 
-  update_carrier :: "[i,i] => i"
+definition
+  update_carrier :: "[i,i] => i" where
   "update_carrier(M,A) == <A,snd(M)>"
 
 definition
-  m_inv :: "i => i => i" ("inv\<index> _" [81] 80)
+  m_inv :: "i => i => i" ("inv\<index> _" [81] 80) where
   "inv\<^bsub>G\<^esub> x == (THE y. y \<in> carrier(G) & y \<cdot>\<^bsub>G\<^esub> x = \<one>\<^bsub>G\<^esub> & x \<cdot>\<^bsub>G\<^esub> y = \<one>\<^bsub>G\<^esub>)"
 
 locale monoid = struct G +
@@ -295,7 +298,7 @@
 subsection {* Direct Products *}
 
 definition
-  DirProdGroup :: "[i,i] => i"  (infixr "\<Otimes>" 80)
+  DirProdGroup :: "[i,i] => i"  (infixr "\<Otimes>" 80) where
   "G \<Otimes> H == <carrier(G) \<times> carrier(H),
               (\<lambda><<g,h>, <g', h'>>
                    \<in> (carrier(G) \<times> carrier(H)) \<times> (carrier(G) \<times> carrier(H)).
@@ -333,7 +336,7 @@
 subsection {* Isomorphisms *}
 
 definition
-  hom :: "[i,i] => i"
+  hom :: "[i,i] => i" where
   "hom(G,H) ==
     {h \<in> carrier(G) -> carrier(H).
       (\<forall>x \<in> carrier(G). \<forall>y \<in> carrier(G). h ` (x \<cdot>\<^bsub>G\<^esub> y) = (h ` x) \<cdot>\<^bsub>H\<^esub> (h ` y))}"
@@ -359,7 +362,7 @@
 subsection {* Isomorphisms *}
 
 definition
-  iso :: "[i,i] => i"  (infixr "\<cong>" 60)
+  iso :: "[i,i] => i"  (infixr "\<cong>" 60) where
   "G \<cong> H == hom(G,H) \<inter> bij(carrier(G), carrier(H))"
 
 lemma (in group) iso_refl: "id(carrier(G)) \<in> G \<cong> G"
@@ -479,7 +482,7 @@
 subsection {* Bijections of a Set, Permutation Groups, Automorphism Groups *}
 
 definition
-  BijGroup :: "i=>i"
+  BijGroup :: "i=>i" where
   "BijGroup(S) ==
     <bij(S,S),
      \<lambda><g,f> \<in> bij(S,S) \<times> bij(S,S). g O f,
@@ -514,10 +517,11 @@
 
 
 definition
-  auto :: "i=>i"
+  auto :: "i=>i" where
   "auto(G) == iso(G,G)"
 
-  AutoGroup :: "i=>i"
+definition
+  AutoGroup :: "i=>i" where
   "AutoGroup(G) == update_carrier(BijGroup(carrier(G)), auto(G))"
 
 
@@ -552,19 +556,23 @@
 subsection{*Cosets and Quotient Groups*}
 
 definition
-  r_coset  :: "[i,i,i] => i"    (infixl "#>\<index>" 60)
+  r_coset  :: "[i,i,i] => i"  (infixl "#>\<index>" 60) where
   "H #>\<^bsub>G\<^esub> a == \<Union>h\<in>H. {h \<cdot>\<^bsub>G\<^esub> a}"
 
-  l_coset  :: "[i,i,i] => i"    (infixl "<#\<index>" 60)
+definition
+  l_coset  :: "[i,i,i] => i"  (infixl "<#\<index>" 60) where
   "a <#\<^bsub>G\<^esub> H == \<Union>h\<in>H. {a \<cdot>\<^bsub>G\<^esub> h}"
 
-  RCOSETS  :: "[i,i] => i"          ("rcosets\<index> _" [81] 80)
+definition
+  RCOSETS  :: "[i,i] => i"  ("rcosets\<index> _" [81] 80) where
   "rcosets\<^bsub>G\<^esub> H == \<Union>a\<in>carrier(G). {H #>\<^bsub>G\<^esub> a}"
 
-  set_mult :: "[i,i,i] => i"    (infixl "<#>\<index>" 60)
+definition
+  set_mult :: "[i,i,i] => i"  (infixl "<#>\<index>" 60) where
   "H <#>\<^bsub>G\<^esub> K == \<Union>h\<in>H. \<Union>k\<in>K. {h \<cdot>\<^bsub>G\<^esub> k}"
 
-  SET_INV  :: "[i,i] => i"  ("set'_inv\<index> _" [81] 80)
+definition
+  SET_INV  :: "[i,i] => i"  ("set'_inv\<index> _" [81] 80) where
   "set_inv\<^bsub>G\<^esub> H == \<Union>h\<in>H. {inv\<^bsub>G\<^esub> h}"
 
 
@@ -833,7 +841,7 @@
 subsubsection{*Two distinct right cosets are disjoint*}
 
 definition
-  r_congruent :: "[i,i] => i" ("rcong\<index> _" [60] 60)
+  r_congruent :: "[i,i] => i" ("rcong\<index> _" [60] 60) where
   "rcong\<^bsub>G\<^esub> H == {<x,y> \<in> carrier(G) * carrier(G). inv\<^bsub>G\<^esub> x \<cdot>\<^bsub>G\<^esub> y \<in> H}"
 
 
@@ -900,7 +908,7 @@
 subsection {*Order of a Group and Lagrange's Theorem*}
 
 definition
-  order :: "i => i"
+  order :: "i => i" where
   "order(S) == |carrier(S)|"
 
 lemma (in group) rcos_self:
@@ -972,7 +980,7 @@
 subsection {*Quotient Groups: Factorization of a Group*}
 
 definition
-  FactGroup :: "[i,i] => i" (infixl "Mod" 65)
+  FactGroup :: "[i,i] => i" (infixl "Mod" 65) where
     --{*Actually defined for groups rather than monoids*}
   "G Mod H == 
      <rcosets\<^bsub>G\<^esub> H, \<lambda><K1,K2> \<in> (rcosets\<^bsub>G\<^esub> H) \<times> (rcosets\<^bsub>G\<^esub> H). K1 <#>\<^bsub>G\<^esub> K2, H, 0>"
@@ -1035,7 +1043,7 @@
   range of that homomorphism.*}
 
 definition
-  kernel :: "[i,i,i] => i" 
+  kernel :: "[i,i,i] => i" where
     --{*the kernel of a homomorphism*}
   "kernel(G,H,h) == {x \<in> carrier(G). h ` x = \<one>\<^bsub>H\<^esub>}";
 
--- a/src/ZF/ex/Ramsey.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/ex/Ramsey.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -29,19 +29,23 @@
 theory Ramsey imports Main begin
 
 definition
-  Symmetric :: "i=>o"
+  Symmetric :: "i=>o" where
     "Symmetric(E) == (\<forall>x y. <x,y>:E --> <y,x>:E)"
 
-  Atleast :: "[i,i]=>o"  (*not really necessary: ZF defines cardinality*)
+definition
+  Atleast :: "[i,i]=>o" where -- "not really necessary: ZF defines cardinality"
     "Atleast(n,S) == (\<exists>f. f \<in> inj(n,S))"
 
-  Clique  :: "[i,i,i]=>o"
+definition
+  Clique  :: "[i,i,i]=>o" where
     "Clique(C,V,E) == (C \<subseteq> V) & (\<forall>x \<in> C. \<forall>y \<in> C. x\<noteq>y --> <x,y> \<in> E)"
 
-  Indept  :: "[i,i,i]=>o"
+definition
+  Indept  :: "[i,i,i]=>o" where
     "Indept(I,V,E) == (I \<subseteq> V) & (\<forall>x \<in> I. \<forall>y \<in> I. x\<noteq>y --> <x,y> \<notin> E)"
   
-  Ramsey  :: "[i,i,i]=>o"
+definition
+  Ramsey  :: "[i,i,i]=>o" where
     "Ramsey(n,i,j) == \<forall>V E. Symmetric(E) & Atleast(n,V) -->  
          (\<exists>C. Clique(C,V,E) & Atleast(i,C)) |       
          (\<exists>I. Indept(I,V,E) & Atleast(j,I))"
--- a/src/ZF/ex/Ring.thy	Fri Nov 17 02:19:55 2006 +0100
+++ b/src/ZF/ex/Ring.thy	Fri Nov 17 02:20:03 2006 +0100
@@ -14,13 +14,15 @@
 *)
 
 definition
-  add_field :: "i => i"
+  add_field :: "i => i" where
   "add_field(M) = fst(snd(snd(snd(M))))"
 
-  ring_add :: "[i, i, i] => i" (infixl "\<oplus>\<index>" 65)
+definition
+  ring_add :: "[i, i, i] => i" (infixl "\<oplus>\<index>" 65) where
   "ring_add(M,x,y) = add_field(M) ` <x,y>"
 
-  zero :: "i => i" ("\<zero>\<index>")
+definition
+  zero :: "i => i" ("\<zero>\<index>") where
   "zero(M) = fst(snd(snd(snd(snd(M)))))"
 
 
@@ -37,10 +39,11 @@
 text {* Derived operations. *}
 
 definition
-  a_inv :: "[i,i] => i" ("\<ominus>\<index> _" [81] 80)
+  a_inv :: "[i,i] => i" ("\<ominus>\<index> _" [81] 80) where
   "a_inv(R) == m_inv (<carrier(R), add_field(R), zero(R), 0>)"
 
-  minus :: "[i,i,i] => i" (infixl "\<ominus>\<index>" 65)
+definition
+  minus :: "[i,i,i] => i" (infixl "\<ominus>\<index>" 65) where
   "\<lbrakk>x \<in> carrier(R); y \<in> carrier(R)\<rbrakk> \<Longrightarrow> x \<ominus>\<^bsub>R\<^esub> y = x \<oplus>\<^bsub>R\<^esub> (\<ominus>\<^bsub>R\<^esub> y)"
 
 locale abelian_monoid = struct G +
@@ -225,7 +228,7 @@
 subsection {* Morphisms *}
 
 definition
-  ring_hom :: "[i,i] => i"
+  ring_hom :: "[i,i] => i" where
   "ring_hom(R,S) ==
     {h \<in> carrier(R) -> carrier(S).
       (\<forall>x y. x \<in> carrier(R) & y \<in> carrier(R) -->