author | wenzelm |
Thu, 30 Aug 2007 15:04:42 +0200 | |
changeset 24484 | 013b98b57b86 |
parent 24286 | 7619080e49f0 |
child 24915 | fc90277c0dd7 |
permissions | -rw-r--r-- |
10358 | 1 |
(* Title: HOL/Relation.thy |
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
2 |
ID: $Id$ |
1983 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
4 |
Copyright 1996 University of Cambridge |
|
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
5 |
*) |
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
6 |
|
12905 | 7 |
header {* Relations *} |
8 |
||
15131 | 9 |
theory Relation |
23709 | 10 |
imports Product_Type FixedPoint |
15131 | 11 |
begin |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
12 |
|
12913 | 13 |
subsection {* Definitions *} |
14 |
||
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset
|
15 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
16 |
converse :: "('a * 'b) set => ('b * 'a) set" |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
17 |
("(_^-1)" [1000] 999) where |
10358 | 18 |
"r^-1 == {(y, x). (x, y) : r}" |
7912 | 19 |
|
21210 | 20 |
notation (xsymbols) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset
|
21 |
converse ("(_\<inverse>)" [1000] 999) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset
|
22 |
|
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset
|
23 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
24 |
rel_comp :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set" |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
25 |
(infixr "O" 75) where |
12913 | 26 |
"r O s == {(x,z). EX y. (x, y) : s & (y, z) : r}" |
27 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
28 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
29 |
Image :: "[('a * 'b) set, 'a set] => 'b set" |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
30 |
(infixl "``" 90) where |
12913 | 31 |
"r `` s == {y. EX x:s. (x,y):r}" |
7912 | 32 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
33 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
34 |
Id :: "('a * 'a) set" where -- {* the identity relation *} |
12913 | 35 |
"Id == {p. EX x. p = (x,x)}" |
7912 | 36 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
37 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
38 |
diag :: "'a set => ('a * 'a) set" where -- {* diagonal: identity over a set *} |
13830 | 39 |
"diag A == \<Union>x\<in>A. {(x,x)}" |
12913 | 40 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
41 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
42 |
Domain :: "('a * 'b) set => 'a set" where |
12913 | 43 |
"Domain r == {x. EX y. (x,y):r}" |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
44 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
45 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
46 |
Range :: "('a * 'b) set => 'b set" where |
12913 | 47 |
"Range r == Domain(r^-1)" |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
48 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
49 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
50 |
Field :: "('a * 'a) set => 'a set" where |
13830 | 51 |
"Field r == Domain r \<union> Range r" |
10786 | 52 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
53 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
54 |
refl :: "['a set, ('a * 'a) set] => bool" where -- {* reflexivity over a set *} |
12913 | 55 |
"refl A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
56 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
57 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
58 |
sym :: "('a * 'a) set => bool" where -- {* symmetry predicate *} |
12913 | 59 |
"sym r == ALL x y. (x,y): r --> (y,x): r" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
60 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
61 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
62 |
antisym :: "('a * 'a) set => bool" where -- {* antisymmetry predicate *} |
12913 | 63 |
"antisym r == ALL x y. (x,y):r --> (y,x):r --> x=y" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
64 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
65 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
66 |
trans :: "('a * 'a) set => bool" where -- {* transitivity predicate *} |
12913 | 67 |
"trans r == (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)" |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
68 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
69 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
70 |
single_valued :: "('a * 'b) set => bool" where |
12913 | 71 |
"single_valued r == ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z)" |
7014
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6806
diff
changeset
|
72 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
73 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
74 |
inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" where |
12913 | 75 |
"inv_image r f == {(x, y). (f x, f y) : r}" |
11136 | 76 |
|
19363 | 77 |
abbreviation |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
78 |
reflexive :: "('a * 'a) set => bool" where -- {* reflexivity over a type *} |
19363 | 79 |
"reflexive == refl UNIV" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
80 |
|
12905 | 81 |
|
12913 | 82 |
subsection {* The identity relation *} |
12905 | 83 |
|
84 |
lemma IdI [intro]: "(a, a) : Id" |
|
85 |
by (simp add: Id_def) |
|
86 |
||
87 |
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P" |
|
17589 | 88 |
by (unfold Id_def) (iprover elim: CollectE) |
12905 | 89 |
|
90 |
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)" |
|
91 |
by (unfold Id_def) blast |
|
92 |
||
93 |
lemma reflexive_Id: "reflexive Id" |
|
94 |
by (simp add: refl_def) |
|
95 |
||
96 |
lemma antisym_Id: "antisym Id" |
|
97 |
-- {* A strange result, since @{text Id} is also symmetric. *} |
|
98 |
by (simp add: antisym_def) |
|
99 |
||
19228 | 100 |
lemma sym_Id: "sym Id" |
101 |
by (simp add: sym_def) |
|
102 |
||
12905 | 103 |
lemma trans_Id: "trans Id" |
104 |
by (simp add: trans_def) |
|
105 |
||
106 |
||
12913 | 107 |
subsection {* Diagonal: identity over a set *} |
12905 | 108 |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
109 |
lemma diag_empty [simp]: "diag {} = {}" |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
110 |
by (simp add: diag_def) |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
111 |
|
12905 | 112 |
lemma diag_eqI: "a = b ==> a : A ==> (a, b) : diag A" |
113 |
by (simp add: diag_def) |
|
114 |
||
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
115 |
lemma diagI [intro!,noatp]: "a : A ==> (a, a) : diag A" |
12905 | 116 |
by (rule diag_eqI) (rule refl) |
117 |
||
118 |
lemma diagE [elim!]: |
|
119 |
"c : diag A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P" |
|
12913 | 120 |
-- {* The general elimination rule. *} |
17589 | 121 |
by (unfold diag_def) (iprover elim!: UN_E singletonE) |
12905 | 122 |
|
123 |
lemma diag_iff: "((x, y) : diag A) = (x = y & x : A)" |
|
124 |
by blast |
|
125 |
||
12913 | 126 |
lemma diag_subset_Times: "diag A \<subseteq> A \<times> A" |
12905 | 127 |
by blast |
128 |
||
129 |
||
130 |
subsection {* Composition of two relations *} |
|
131 |
||
12913 | 132 |
lemma rel_compI [intro]: |
12905 | 133 |
"(a, b) : s ==> (b, c) : r ==> (a, c) : r O s" |
134 |
by (unfold rel_comp_def) blast |
|
135 |
||
12913 | 136 |
lemma rel_compE [elim!]: "xz : r O s ==> |
12905 | 137 |
(!!x y z. xz = (x, z) ==> (x, y) : s ==> (y, z) : r ==> P) ==> P" |
17589 | 138 |
by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE) |
12905 | 139 |
|
140 |
lemma rel_compEpair: |
|
141 |
"(a, c) : r O s ==> (!!y. (a, y) : s ==> (y, c) : r ==> P) ==> P" |
|
17589 | 142 |
by (iprover elim: rel_compE Pair_inject ssubst) |
12905 | 143 |
|
144 |
lemma R_O_Id [simp]: "R O Id = R" |
|
145 |
by fast |
|
146 |
||
147 |
lemma Id_O_R [simp]: "Id O R = R" |
|
148 |
by fast |
|
149 |
||
23185 | 150 |
lemma rel_comp_empty1[simp]: "{} O R = {}" |
151 |
by blast |
|
152 |
||
153 |
lemma rel_comp_empty2[simp]: "R O {} = {}" |
|
154 |
by blast |
|
155 |
||
12905 | 156 |
lemma O_assoc: "(R O S) O T = R O (S O T)" |
157 |
by blast |
|
158 |
||
12913 | 159 |
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r" |
12905 | 160 |
by (unfold trans_def) blast |
161 |
||
12913 | 162 |
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)" |
12905 | 163 |
by blast |
164 |
||
165 |
lemma rel_comp_subset_Sigma: |
|
12913 | 166 |
"s \<subseteq> A \<times> B ==> r \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C" |
12905 | 167 |
by blast |
168 |
||
12913 | 169 |
|
170 |
subsection {* Reflexivity *} |
|
171 |
||
172 |
lemma reflI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl A r" |
|
17589 | 173 |
by (unfold refl_def) (iprover intro!: ballI) |
12905 | 174 |
|
175 |
lemma reflD: "refl A r ==> a : A ==> (a, a) : r" |
|
176 |
by (unfold refl_def) blast |
|
177 |
||
19228 | 178 |
lemma reflD1: "refl A r ==> (x, y) : r ==> x : A" |
179 |
by (unfold refl_def) blast |
|
180 |
||
181 |
lemma reflD2: "refl A r ==> (x, y) : r ==> y : A" |
|
182 |
by (unfold refl_def) blast |
|
183 |
||
184 |
lemma refl_Int: "refl A r ==> refl B s ==> refl (A \<inter> B) (r \<inter> s)" |
|
185 |
by (unfold refl_def) blast |
|
186 |
||
187 |
lemma refl_Un: "refl A r ==> refl B s ==> refl (A \<union> B) (r \<union> s)" |
|
188 |
by (unfold refl_def) blast |
|
189 |
||
190 |
lemma refl_INTER: |
|
191 |
"ALL x:S. refl (A x) (r x) ==> refl (INTER S A) (INTER S r)" |
|
192 |
by (unfold refl_def) fast |
|
193 |
||
194 |
lemma refl_UNION: |
|
195 |
"ALL x:S. refl (A x) (r x) \<Longrightarrow> refl (UNION S A) (UNION S r)" |
|
196 |
by (unfold refl_def) blast |
|
197 |
||
198 |
lemma refl_diag: "refl A (diag A)" |
|
199 |
by (rule reflI [OF diag_subset_Times diagI]) |
|
200 |
||
12913 | 201 |
|
202 |
subsection {* Antisymmetry *} |
|
12905 | 203 |
|
204 |
lemma antisymI: |
|
205 |
"(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r" |
|
17589 | 206 |
by (unfold antisym_def) iprover |
12905 | 207 |
|
208 |
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b" |
|
17589 | 209 |
by (unfold antisym_def) iprover |
12905 | 210 |
|
19228 | 211 |
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r" |
212 |
by (unfold antisym_def) blast |
|
12913 | 213 |
|
19228 | 214 |
lemma antisym_empty [simp]: "antisym {}" |
215 |
by (unfold antisym_def) blast |
|
216 |
||
217 |
lemma antisym_diag [simp]: "antisym (diag A)" |
|
218 |
by (unfold antisym_def) blast |
|
219 |
||
220 |
||
221 |
subsection {* Symmetry *} |
|
222 |
||
223 |
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r" |
|
224 |
by (unfold sym_def) iprover |
|
15177 | 225 |
|
226 |
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r" |
|
227 |
by (unfold sym_def, blast) |
|
12905 | 228 |
|
19228 | 229 |
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)" |
230 |
by (fast intro: symI dest: symD) |
|
231 |
||
232 |
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)" |
|
233 |
by (fast intro: symI dest: symD) |
|
234 |
||
235 |
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)" |
|
236 |
by (fast intro: symI dest: symD) |
|
237 |
||
238 |
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)" |
|
239 |
by (fast intro: symI dest: symD) |
|
240 |
||
241 |
lemma sym_diag [simp]: "sym (diag A)" |
|
242 |
by (rule symI) clarify |
|
243 |
||
244 |
||
245 |
subsection {* Transitivity *} |
|
246 |
||
12905 | 247 |
lemma transI: |
248 |
"(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r" |
|
17589 | 249 |
by (unfold trans_def) iprover |
12905 | 250 |
|
251 |
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r" |
|
17589 | 252 |
by (unfold trans_def) iprover |
12905 | 253 |
|
19228 | 254 |
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)" |
255 |
by (fast intro: transI elim: transD) |
|
256 |
||
257 |
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)" |
|
258 |
by (fast intro: transI elim: transD) |
|
259 |
||
260 |
lemma trans_diag [simp]: "trans (diag A)" |
|
261 |
by (fast intro: transI elim: transD) |
|
262 |
||
12905 | 263 |
|
12913 | 264 |
subsection {* Converse *} |
265 |
||
266 |
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)" |
|
12905 | 267 |
by (simp add: converse_def) |
268 |
||
13343 | 269 |
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1" |
12905 | 270 |
by (simp add: converse_def) |
271 |
||
13343 | 272 |
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r" |
12905 | 273 |
by (simp add: converse_def) |
274 |
||
275 |
lemma converseE [elim!]: |
|
276 |
"yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P" |
|
12913 | 277 |
-- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *} |
17589 | 278 |
by (unfold converse_def) (iprover elim!: CollectE splitE bexE) |
12905 | 279 |
|
280 |
lemma converse_converse [simp]: "(r^-1)^-1 = r" |
|
281 |
by (unfold converse_def) blast |
|
282 |
||
283 |
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1" |
|
284 |
by blast |
|
285 |
||
19228 | 286 |
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1" |
287 |
by blast |
|
288 |
||
289 |
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1" |
|
290 |
by blast |
|
291 |
||
292 |
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)" |
|
293 |
by fast |
|
294 |
||
295 |
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)" |
|
296 |
by blast |
|
297 |
||
12905 | 298 |
lemma converse_Id [simp]: "Id^-1 = Id" |
299 |
by blast |
|
300 |
||
12913 | 301 |
lemma converse_diag [simp]: "(diag A)^-1 = diag A" |
12905 | 302 |
by blast |
303 |
||
19228 | 304 |
lemma refl_converse [simp]: "refl A (converse r) = refl A r" |
305 |
by (unfold refl_def) auto |
|
12905 | 306 |
|
19228 | 307 |
lemma sym_converse [simp]: "sym (converse r) = sym r" |
308 |
by (unfold sym_def) blast |
|
309 |
||
310 |
lemma antisym_converse [simp]: "antisym (converse r) = antisym r" |
|
12905 | 311 |
by (unfold antisym_def) blast |
312 |
||
19228 | 313 |
lemma trans_converse [simp]: "trans (converse r) = trans r" |
12905 | 314 |
by (unfold trans_def) blast |
315 |
||
19228 | 316 |
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)" |
317 |
by (unfold sym_def) fast |
|
318 |
||
319 |
lemma sym_Un_converse: "sym (r \<union> r^-1)" |
|
320 |
by (unfold sym_def) blast |
|
321 |
||
322 |
lemma sym_Int_converse: "sym (r \<inter> r^-1)" |
|
323 |
by (unfold sym_def) blast |
|
324 |
||
12913 | 325 |
|
12905 | 326 |
subsection {* Domain *} |
327 |
||
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
328 |
declare Domain_def [noatp] |
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
329 |
|
12905 | 330 |
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)" |
331 |
by (unfold Domain_def) blast |
|
332 |
||
333 |
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r" |
|
17589 | 334 |
by (iprover intro!: iffD2 [OF Domain_iff]) |
12905 | 335 |
|
336 |
lemma DomainE [elim!]: |
|
337 |
"a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P" |
|
17589 | 338 |
by (iprover dest!: iffD1 [OF Domain_iff]) |
12905 | 339 |
|
340 |
lemma Domain_empty [simp]: "Domain {} = {}" |
|
341 |
by blast |
|
342 |
||
343 |
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)" |
|
344 |
by blast |
|
345 |
||
346 |
lemma Domain_Id [simp]: "Domain Id = UNIV" |
|
347 |
by blast |
|
348 |
||
349 |
lemma Domain_diag [simp]: "Domain (diag A) = A" |
|
350 |
by blast |
|
351 |
||
13830 | 352 |
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)" |
12905 | 353 |
by blast |
354 |
||
13830 | 355 |
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)" |
12905 | 356 |
by blast |
357 |
||
12913 | 358 |
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)" |
12905 | 359 |
by blast |
360 |
||
13830 | 361 |
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)" |
12905 | 362 |
by blast |
363 |
||
12913 | 364 |
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s" |
12905 | 365 |
by blast |
366 |
||
22172 | 367 |
lemma fst_eq_Domain: "fst ` R = Domain R"; |
368 |
apply auto |
|
369 |
apply (rule image_eqI, auto) |
|
370 |
done |
|
371 |
||
12905 | 372 |
|
373 |
subsection {* Range *} |
|
374 |
||
375 |
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)" |
|
376 |
by (simp add: Domain_def Range_def) |
|
377 |
||
378 |
lemma RangeI [intro]: "(a, b) : r ==> b : Range r" |
|
17589 | 379 |
by (unfold Range_def) (iprover intro!: converseI DomainI) |
12905 | 380 |
|
381 |
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P" |
|
17589 | 382 |
by (unfold Range_def) (iprover elim!: DomainE dest!: converseD) |
12905 | 383 |
|
384 |
lemma Range_empty [simp]: "Range {} = {}" |
|
385 |
by blast |
|
386 |
||
387 |
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)" |
|
388 |
by blast |
|
389 |
||
390 |
lemma Range_Id [simp]: "Range Id = UNIV" |
|
391 |
by blast |
|
392 |
||
393 |
lemma Range_diag [simp]: "Range (diag A) = A" |
|
394 |
by auto |
|
395 |
||
13830 | 396 |
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)" |
12905 | 397 |
by blast |
398 |
||
13830 | 399 |
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)" |
12905 | 400 |
by blast |
401 |
||
12913 | 402 |
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)" |
12905 | 403 |
by blast |
404 |
||
13830 | 405 |
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)" |
12905 | 406 |
by blast |
407 |
||
22172 | 408 |
lemma snd_eq_Range: "snd ` R = Range R"; |
409 |
apply auto |
|
410 |
apply (rule image_eqI, auto) |
|
411 |
done |
|
412 |
||
12905 | 413 |
|
414 |
subsection {* Image of a set under a relation *} |
|
415 |
||
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
416 |
declare Image_def [noatp] |
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
417 |
|
12913 | 418 |
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)" |
12905 | 419 |
by (simp add: Image_def) |
420 |
||
12913 | 421 |
lemma Image_singleton: "r``{a} = {b. (a, b) : r}" |
12905 | 422 |
by (simp add: Image_def) |
423 |
||
12913 | 424 |
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)" |
12905 | 425 |
by (rule Image_iff [THEN trans]) simp |
426 |
||
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
427 |
lemma ImageI [intro,noatp]: "(a, b) : r ==> a : A ==> b : r``A" |
12905 | 428 |
by (unfold Image_def) blast |
429 |
||
430 |
lemma ImageE [elim!]: |
|
12913 | 431 |
"b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P" |
17589 | 432 |
by (unfold Image_def) (iprover elim!: CollectE bexE) |
12905 | 433 |
|
434 |
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A" |
|
435 |
-- {* This version's more effective when we already have the required @{text a} *} |
|
436 |
by blast |
|
437 |
||
438 |
lemma Image_empty [simp]: "R``{} = {}" |
|
439 |
by blast |
|
440 |
||
441 |
lemma Image_Id [simp]: "Id `` A = A" |
|
442 |
by blast |
|
443 |
||
13830 | 444 |
lemma Image_diag [simp]: "diag A `` B = A \<inter> B" |
445 |
by blast |
|
446 |
||
447 |
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B" |
|
12905 | 448 |
by blast |
449 |
||
13830 | 450 |
lemma Image_Int_eq: |
451 |
"single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B" |
|
452 |
by (simp add: single_valued_def, blast) |
|
12905 | 453 |
|
13830 | 454 |
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B" |
12905 | 455 |
by blast |
456 |
||
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
457 |
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A" |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
458 |
by blast |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
459 |
|
12913 | 460 |
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B" |
17589 | 461 |
by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2) |
12905 | 462 |
|
13830 | 463 |
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})" |
12905 | 464 |
-- {* NOT suitable for rewriting *} |
465 |
by blast |
|
466 |
||
12913 | 467 |
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)" |
12905 | 468 |
by blast |
469 |
||
13830 | 470 |
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))" |
471 |
by blast |
|
472 |
||
473 |
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))" |
|
12905 | 474 |
by blast |
475 |
||
13830 | 476 |
text{*Converse inclusion requires some assumptions*} |
477 |
lemma Image_INT_eq: |
|
478 |
"[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)" |
|
479 |
apply (rule equalityI) |
|
480 |
apply (rule Image_INT_subset) |
|
481 |
apply (simp add: single_valued_def, blast) |
|
482 |
done |
|
12905 | 483 |
|
12913 | 484 |
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))" |
12905 | 485 |
by blast |
486 |
||
487 |
||
12913 | 488 |
subsection {* Single valued relations *} |
489 |
||
490 |
lemma single_valuedI: |
|
12905 | 491 |
"ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r" |
492 |
by (unfold single_valued_def) |
|
493 |
||
494 |
lemma single_valuedD: |
|
495 |
"single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z" |
|
496 |
by (simp add: single_valued_def) |
|
497 |
||
19228 | 498 |
lemma single_valued_rel_comp: |
499 |
"single_valued r ==> single_valued s ==> single_valued (r O s)" |
|
500 |
by (unfold single_valued_def) blast |
|
501 |
||
502 |
lemma single_valued_subset: |
|
503 |
"r \<subseteq> s ==> single_valued s ==> single_valued r" |
|
504 |
by (unfold single_valued_def) blast |
|
505 |
||
506 |
lemma single_valued_Id [simp]: "single_valued Id" |
|
507 |
by (unfold single_valued_def) blast |
|
508 |
||
509 |
lemma single_valued_diag [simp]: "single_valued (diag A)" |
|
510 |
by (unfold single_valued_def) blast |
|
511 |
||
12905 | 512 |
|
513 |
subsection {* Graphs given by @{text Collect} *} |
|
514 |
||
515 |
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}" |
|
516 |
by auto |
|
517 |
||
518 |
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}" |
|
519 |
by auto |
|
520 |
||
521 |
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}" |
|
522 |
by auto |
|
523 |
||
524 |
||
12913 | 525 |
subsection {* Inverse image *} |
12905 | 526 |
|
19228 | 527 |
lemma sym_inv_image: "sym r ==> sym (inv_image r f)" |
528 |
by (unfold sym_def inv_image_def) blast |
|
529 |
||
12913 | 530 |
lemma trans_inv_image: "trans r ==> trans (inv_image r f)" |
12905 | 531 |
apply (unfold trans_def inv_image_def) |
532 |
apply (simp (no_asm)) |
|
533 |
apply blast |
|
534 |
done |
|
535 |
||
23709 | 536 |
|
537 |
subsection {* Version of @{text lfp_induct} for binary relations *} |
|
538 |
||
539 |
lemmas lfp_induct2 = |
|
540 |
lfp_induct_set [of "(a, b)", split_format (complete)] |
|
541 |
||
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
542 |
end |