author  wenzelm 
Tue, 16 May 2006 21:33:01 +0200  
changeset 19656  09be06943252 
parent 19363  667b5ea637dd 
child 20716  a6686a8e1b68 
permissions  rwrr 
10358  1 
(* Title: HOL/Relation.thy 
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset

2 
ID: $Id$ 
1983  3 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 
4 
Copyright 1996 University of Cambridge 

1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset

5 
*) 
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset

6 

12905  7 
header {* Relations *} 
8 

15131  9 
theory Relation 
15140  10 
imports Product_Type 
15131  11 
begin 
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset

12 

12913  13 
subsection {* Definitions *} 
14 

19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset

15 
definition 
10358  16 
converse :: "('a * 'b) set => ('b * 'a) set" ("(_^1)" [1000] 999) 
17 
"r^1 == {(y, x). (x, y) : r}" 

7912  18 

19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset

19 
const_syntax (xsymbols) 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset

20 
converse ("(_\<inverse>)" [1000] 999) 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset

21 

09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset

22 
definition 
12487  23 
rel_comp :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set" (infixr "O" 60) 
12913  24 
"r O s == {(x,z). EX y. (x, y) : s & (y, z) : r}" 
25 

11136  26 
Image :: "[('a * 'b) set, 'a set] => 'b set" (infixl "``" 90) 
12913  27 
"r `` s == {y. EX x:s. (x,y):r}" 
7912  28 

12905  29 
Id :: "('a * 'a) set"  {* the identity relation *} 
12913  30 
"Id == {p. EX x. p = (x,x)}" 
7912  31 

12905  32 
diag :: "'a set => ('a * 'a) set"  {* diagonal: identity over a set *} 
13830  33 
"diag A == \<Union>x\<in>A. {(x,x)}" 
12913  34 

11136  35 
Domain :: "('a * 'b) set => 'a set" 
12913  36 
"Domain r == {x. EX y. (x,y):r}" 
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset

37 

11136  38 
Range :: "('a * 'b) set => 'b set" 
12913  39 
"Range r == Domain(r^1)" 
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset

40 

11136  41 
Field :: "('a * 'a) set => 'a set" 
13830  42 
"Field r == Domain r \<union> Range r" 
10786  43 

12905  44 
refl :: "['a set, ('a * 'a) set] => bool"  {* reflexivity over a set *} 
12913  45 
"refl A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)" 
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset

46 

12905  47 
sym :: "('a * 'a) set => bool"  {* symmetry predicate *} 
12913  48 
"sym r == ALL x y. (x,y): r > (y,x): r" 
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset

49 

12905  50 
antisym:: "('a * 'a) set => bool"  {* antisymmetry predicate *} 
12913  51 
"antisym r == ALL x y. (x,y):r > (y,x):r > x=y" 
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset

52 

12905  53 
trans :: "('a * 'a) set => bool"  {* transitivity predicate *} 
12913  54 
"trans r == (ALL x y z. (x,y):r > (y,z):r > (x,z):r)" 
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset

55 

11136  56 
single_valued :: "('a * 'b) set => bool" 
12913  57 
"single_valued r == ALL x y. (x,y):r > (ALL z. (x,z):r > y=z)" 
7014
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6806
diff
changeset

58 

11136  59 
inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" 
12913  60 
"inv_image r f == {(x, y). (f x, f y) : r}" 
11136  61 

19363  62 
abbreviation 
12905  63 
reflexive :: "('a * 'a) set => bool"  {* reflexivity over a type *} 
19363  64 
"reflexive == refl UNIV" 
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset

65 

12905  66 

12913  67 
subsection {* The identity relation *} 
12905  68 

69 
lemma IdI [intro]: "(a, a) : Id" 

70 
by (simp add: Id_def) 

71 

72 
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P" 

17589  73 
by (unfold Id_def) (iprover elim: CollectE) 
12905  74 

75 
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)" 

76 
by (unfold Id_def) blast 

77 

78 
lemma reflexive_Id: "reflexive Id" 

79 
by (simp add: refl_def) 

80 

81 
lemma antisym_Id: "antisym Id" 

82 
 {* A strange result, since @{text Id} is also symmetric. *} 

83 
by (simp add: antisym_def) 

84 

19228  85 
lemma sym_Id: "sym Id" 
86 
by (simp add: sym_def) 

87 

12905  88 
lemma trans_Id: "trans Id" 
89 
by (simp add: trans_def) 

90 

91 

12913  92 
subsection {* Diagonal: identity over a set *} 
12905  93 

13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset

94 
lemma diag_empty [simp]: "diag {} = {}" 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset

95 
by (simp add: diag_def) 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset

96 

12905  97 
lemma diag_eqI: "a = b ==> a : A ==> (a, b) : diag A" 
98 
by (simp add: diag_def) 

99 

100 
lemma diagI [intro!]: "a : A ==> (a, a) : diag A" 

101 
by (rule diag_eqI) (rule refl) 

102 

103 
lemma diagE [elim!]: 

104 
"c : diag A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P" 

12913  105 
 {* The general elimination rule. *} 
17589  106 
by (unfold diag_def) (iprover elim!: UN_E singletonE) 
12905  107 

108 
lemma diag_iff: "((x, y) : diag A) = (x = y & x : A)" 

109 
by blast 

110 

12913  111 
lemma diag_subset_Times: "diag A \<subseteq> A \<times> A" 
12905  112 
by blast 
113 

114 

115 
subsection {* Composition of two relations *} 

116 

12913  117 
lemma rel_compI [intro]: 
12905  118 
"(a, b) : s ==> (b, c) : r ==> (a, c) : r O s" 
119 
by (unfold rel_comp_def) blast 

120 

12913  121 
lemma rel_compE [elim!]: "xz : r O s ==> 
12905  122 
(!!x y z. xz = (x, z) ==> (x, y) : s ==> (y, z) : r ==> P) ==> P" 
17589  123 
by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE) 
12905  124 

125 
lemma rel_compEpair: 

126 
"(a, c) : r O s ==> (!!y. (a, y) : s ==> (y, c) : r ==> P) ==> P" 

17589  127 
by (iprover elim: rel_compE Pair_inject ssubst) 
12905  128 

129 
lemma R_O_Id [simp]: "R O Id = R" 

130 
by fast 

131 

132 
lemma Id_O_R [simp]: "Id O R = R" 

133 
by fast 

134 

135 
lemma O_assoc: "(R O S) O T = R O (S O T)" 

136 
by blast 

137 

12913  138 
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r" 
12905  139 
by (unfold trans_def) blast 
140 

12913  141 
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)" 
12905  142 
by blast 
143 

144 
lemma rel_comp_subset_Sigma: 

12913  145 
"s \<subseteq> A \<times> B ==> r \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C" 
12905  146 
by blast 
147 

12913  148 

149 
subsection {* Reflexivity *} 

150 

151 
lemma reflI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl A r" 

17589  152 
by (unfold refl_def) (iprover intro!: ballI) 
12905  153 

154 
lemma reflD: "refl A r ==> a : A ==> (a, a) : r" 

155 
by (unfold refl_def) blast 

156 

19228  157 
lemma reflD1: "refl A r ==> (x, y) : r ==> x : A" 
158 
by (unfold refl_def) blast 

159 

160 
lemma reflD2: "refl A r ==> (x, y) : r ==> y : A" 

161 
by (unfold refl_def) blast 

162 

163 
lemma refl_Int: "refl A r ==> refl B s ==> refl (A \<inter> B) (r \<inter> s)" 

164 
by (unfold refl_def) blast 

165 

166 
lemma refl_Un: "refl A r ==> refl B s ==> refl (A \<union> B) (r \<union> s)" 

167 
by (unfold refl_def) blast 

168 

169 
lemma refl_INTER: 

170 
"ALL x:S. refl (A x) (r x) ==> refl (INTER S A) (INTER S r)" 

171 
by (unfold refl_def) fast 

172 

173 
lemma refl_UNION: 

174 
"ALL x:S. refl (A x) (r x) \<Longrightarrow> refl (UNION S A) (UNION S r)" 

175 
by (unfold refl_def) blast 

176 

177 
lemma refl_diag: "refl A (diag A)" 

178 
by (rule reflI [OF diag_subset_Times diagI]) 

179 

12913  180 

181 
subsection {* Antisymmetry *} 

12905  182 

183 
lemma antisymI: 

184 
"(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r" 

17589  185 
by (unfold antisym_def) iprover 
12905  186 

187 
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b" 

17589  188 
by (unfold antisym_def) iprover 
12905  189 

19228  190 
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r" 
191 
by (unfold antisym_def) blast 

12913  192 

19228  193 
lemma antisym_empty [simp]: "antisym {}" 
194 
by (unfold antisym_def) blast 

195 

196 
lemma antisym_diag [simp]: "antisym (diag A)" 

197 
by (unfold antisym_def) blast 

198 

199 

200 
subsection {* Symmetry *} 

201 

202 
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r" 

203 
by (unfold sym_def) iprover 

15177  204 

205 
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r" 

206 
by (unfold sym_def, blast) 

12905  207 

19228  208 
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)" 
209 
by (fast intro: symI dest: symD) 

210 

211 
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)" 

212 
by (fast intro: symI dest: symD) 

213 

214 
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)" 

215 
by (fast intro: symI dest: symD) 

216 

217 
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)" 

218 
by (fast intro: symI dest: symD) 

219 

220 
lemma sym_diag [simp]: "sym (diag A)" 

221 
by (rule symI) clarify 

222 

223 

224 
subsection {* Transitivity *} 

225 

12905  226 
lemma transI: 
227 
"(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r" 

17589  228 
by (unfold trans_def) iprover 
12905  229 

230 
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r" 

17589  231 
by (unfold trans_def) iprover 
12905  232 

19228  233 
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)" 
234 
by (fast intro: transI elim: transD) 

235 

236 
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)" 

237 
by (fast intro: transI elim: transD) 

238 

239 
lemma trans_diag [simp]: "trans (diag A)" 

240 
by (fast intro: transI elim: transD) 

241 

12905  242 

12913  243 
subsection {* Converse *} 
244 

245 
lemma converse_iff [iff]: "((a,b): r^1) = ((b,a) : r)" 

12905  246 
by (simp add: converse_def) 
247 

13343  248 
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^1" 
12905  249 
by (simp add: converse_def) 
250 

13343  251 
lemma converseD[sym]: "(a,b) : r^1 ==> (b, a) : r" 
12905  252 
by (simp add: converse_def) 
253 

254 
lemma converseE [elim!]: 

255 
"yx : r^1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P" 

12913  256 
 {* More general than @{text converseD}, as it ``splits'' the member of the relation. *} 
17589  257 
by (unfold converse_def) (iprover elim!: CollectE splitE bexE) 
12905  258 

259 
lemma converse_converse [simp]: "(r^1)^1 = r" 

260 
by (unfold converse_def) blast 

261 

262 
lemma converse_rel_comp: "(r O s)^1 = s^1 O r^1" 

263 
by blast 

264 

19228  265 
lemma converse_Int: "(r \<inter> s)^1 = r^1 \<inter> s^1" 
266 
by blast 

267 

268 
lemma converse_Un: "(r \<union> s)^1 = r^1 \<union> s^1" 

269 
by blast 

270 

271 
lemma converse_INTER: "(INTER S r)^1 = (INT x:S. (r x)^1)" 

272 
by fast 

273 

274 
lemma converse_UNION: "(UNION S r)^1 = (UN x:S. (r x)^1)" 

275 
by blast 

276 

12905  277 
lemma converse_Id [simp]: "Id^1 = Id" 
278 
by blast 

279 

12913  280 
lemma converse_diag [simp]: "(diag A)^1 = diag A" 
12905  281 
by blast 
282 

19228  283 
lemma refl_converse [simp]: "refl A (converse r) = refl A r" 
284 
by (unfold refl_def) auto 

12905  285 

19228  286 
lemma sym_converse [simp]: "sym (converse r) = sym r" 
287 
by (unfold sym_def) blast 

288 

289 
lemma antisym_converse [simp]: "antisym (converse r) = antisym r" 

12905  290 
by (unfold antisym_def) blast 
291 

19228  292 
lemma trans_converse [simp]: "trans (converse r) = trans r" 
12905  293 
by (unfold trans_def) blast 
294 

19228  295 
lemma sym_conv_converse_eq: "sym r = (r^1 = r)" 
296 
by (unfold sym_def) fast 

297 

298 
lemma sym_Un_converse: "sym (r \<union> r^1)" 

299 
by (unfold sym_def) blast 

300 

301 
lemma sym_Int_converse: "sym (r \<inter> r^1)" 

302 
by (unfold sym_def) blast 

303 

12913  304 

12905  305 
subsection {* Domain *} 
306 

307 
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)" 

308 
by (unfold Domain_def) blast 

309 

310 
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r" 

17589  311 
by (iprover intro!: iffD2 [OF Domain_iff]) 
12905  312 

313 
lemma DomainE [elim!]: 

314 
"a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P" 

17589  315 
by (iprover dest!: iffD1 [OF Domain_iff]) 
12905  316 

317 
lemma Domain_empty [simp]: "Domain {} = {}" 

318 
by blast 

319 

320 
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)" 

321 
by blast 

322 

323 
lemma Domain_Id [simp]: "Domain Id = UNIV" 

324 
by blast 

325 

326 
lemma Domain_diag [simp]: "Domain (diag A) = A" 

327 
by blast 

328 

13830  329 
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)" 
12905  330 
by blast 
331 

13830  332 
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)" 
12905  333 
by blast 
334 

12913  335 
lemma Domain_Diff_subset: "Domain(A)  Domain(B) \<subseteq> Domain(A  B)" 
12905  336 
by blast 
337 

13830  338 
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)" 
12905  339 
by blast 
340 

12913  341 
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s" 
12905  342 
by blast 
343 

344 

345 
subsection {* Range *} 

346 

347 
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)" 

348 
by (simp add: Domain_def Range_def) 

349 

350 
lemma RangeI [intro]: "(a, b) : r ==> b : Range r" 

17589  351 
by (unfold Range_def) (iprover intro!: converseI DomainI) 
12905  352 

353 
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P" 

17589  354 
by (unfold Range_def) (iprover elim!: DomainE dest!: converseD) 
12905  355 

356 
lemma Range_empty [simp]: "Range {} = {}" 

357 
by blast 

358 

359 
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)" 

360 
by blast 

361 

362 
lemma Range_Id [simp]: "Range Id = UNIV" 

363 
by blast 

364 

365 
lemma Range_diag [simp]: "Range (diag A) = A" 

366 
by auto 

367 

13830  368 
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)" 
12905  369 
by blast 
370 

13830  371 
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)" 
12905  372 
by blast 
373 

12913  374 
lemma Range_Diff_subset: "Range(A)  Range(B) \<subseteq> Range(A  B)" 
12905  375 
by blast 
376 

13830  377 
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)" 
12905  378 
by blast 
379 

380 

381 
subsection {* Image of a set under a relation *} 

382 

12913  383 
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)" 
12905  384 
by (simp add: Image_def) 
385 

12913  386 
lemma Image_singleton: "r``{a} = {b. (a, b) : r}" 
12905  387 
by (simp add: Image_def) 
388 

12913  389 
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)" 
12905  390 
by (rule Image_iff [THEN trans]) simp 
391 

12913  392 
lemma ImageI [intro]: "(a, b) : r ==> a : A ==> b : r``A" 
12905  393 
by (unfold Image_def) blast 
394 

395 
lemma ImageE [elim!]: 

12913  396 
"b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P" 
17589  397 
by (unfold Image_def) (iprover elim!: CollectE bexE) 
12905  398 

399 
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A" 

400 
 {* This version's more effective when we already have the required @{text a} *} 

401 
by blast 

402 

403 
lemma Image_empty [simp]: "R``{} = {}" 

404 
by blast 

405 

406 
lemma Image_Id [simp]: "Id `` A = A" 

407 
by blast 

408 

13830  409 
lemma Image_diag [simp]: "diag A `` B = A \<inter> B" 
410 
by blast 

411 

412 
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B" 

12905  413 
by blast 
414 

13830  415 
lemma Image_Int_eq: 
416 
"single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B" 

417 
by (simp add: single_valued_def, blast) 

12905  418 

13830  419 
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B" 
12905  420 
by blast 
421 

13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset

422 
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A" 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset

423 
by blast 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset

424 

12913  425 
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B" 
17589  426 
by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2) 
12905  427 

13830  428 
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})" 
12905  429 
 {* NOT suitable for rewriting *} 
430 
by blast 

431 

12913  432 
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)" 
12905  433 
by blast 
434 

13830  435 
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))" 
436 
by blast 

437 

438 
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))" 

12905  439 
by blast 
440 

13830  441 
text{*Converse inclusion requires some assumptions*} 
442 
lemma Image_INT_eq: 

443 
"[single_valued (r\<inverse>); A\<noteq>{}] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)" 

444 
apply (rule equalityI) 

445 
apply (rule Image_INT_subset) 

446 
apply (simp add: single_valued_def, blast) 

447 
done 

12905  448 

12913  449 
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq>  ((r^1) `` (B)))" 
12905  450 
by blast 
451 

452 

12913  453 
subsection {* Single valued relations *} 
454 

455 
lemma single_valuedI: 

12905  456 
"ALL x y. (x,y):r > (ALL z. (x,z):r > y=z) ==> single_valued r" 
457 
by (unfold single_valued_def) 

458 

459 
lemma single_valuedD: 

460 
"single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z" 

461 
by (simp add: single_valued_def) 

462 

19228  463 
lemma single_valued_rel_comp: 
464 
"single_valued r ==> single_valued s ==> single_valued (r O s)" 

465 
by (unfold single_valued_def) blast 

466 

467 
lemma single_valued_subset: 

468 
"r \<subseteq> s ==> single_valued s ==> single_valued r" 

469 
by (unfold single_valued_def) blast 

470 

471 
lemma single_valued_Id [simp]: "single_valued Id" 

472 
by (unfold single_valued_def) blast 

473 

474 
lemma single_valued_diag [simp]: "single_valued (diag A)" 

475 
by (unfold single_valued_def) blast 

476 

12905  477 

478 
subsection {* Graphs given by @{text Collect} *} 

479 

480 
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}" 

481 
by auto 

482 

483 
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}" 

484 
by auto 

485 

486 
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}" 

487 
by auto 

488 

489 

12913  490 
subsection {* Inverse image *} 
12905  491 

19228  492 
lemma sym_inv_image: "sym r ==> sym (inv_image r f)" 
493 
by (unfold sym_def inv_image_def) blast 

494 

12913  495 
lemma trans_inv_image: "trans r ==> trans (inv_image r f)" 
12905  496 
apply (unfold trans_def inv_image_def) 
497 
apply (simp (no_asm)) 

498 
apply blast 

499 
done 

500 

1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset

501 
end 