| author | wenzelm | 
| Tue, 29 Aug 2017 11:08:42 +0200 | |
| changeset 66542 | 075bbb78d33c | 
| parent 65466 | b0f89998c2a1 | 
| child 67091 | 1393c2340eec | 
| permissions | -rw-r--r-- | 
| 52265 | 1 | (* Title: HOL/Conditionally_Complete_Lattices.thy | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 2 | Author: Amine Chaieb and L C Paulson, University of Cambridge | 
| 51643 | 3 | Author: Johannes Hölzl, TU München | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 4 | Author: Luke S. Serafin, Carnegie Mellon University | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 5 | *) | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 6 | |
| 60758 | 7 | section \<open>Conditionally-complete Lattices\<close> | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 8 | |
| 51773 | 9 | theory Conditionally_Complete_Lattices | 
| 63331 | 10 | imports Finite_Set Lattices_Big Set_Interval | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 11 | begin | 
| 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 12 | |
| 65466 | 13 | context linorder | 
| 14 | begin | |
| 15 | ||
| 16 | lemma Sup_fin_eq_Max: | |
| 17 |   "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup_fin X = Max X"
 | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 18 | by (induct X rule: finite_ne_induct) (simp_all add: sup_max) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 19 | |
| 65466 | 20 | lemma Inf_fin_eq_Min: | 
| 21 |   "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf_fin X = Min X"
 | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 22 | by (induct X rule: finite_ne_induct) (simp_all add: inf_min) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 23 | |
| 65466 | 24 | end | 
| 25 | ||
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 26 | context preorder | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 27 | begin | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 28 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 29 | definition "bdd_above A \<longleftrightarrow> (\<exists>M. \<forall>x \<in> A. x \<le> M)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 30 | definition "bdd_below A \<longleftrightarrow> (\<exists>m. \<forall>x \<in> A. m \<le> x)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 31 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 32 | lemma bdd_aboveI[intro]: "(\<And>x. x \<in> A \<Longrightarrow> x \<le> M) \<Longrightarrow> bdd_above A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 33 | by (auto simp: bdd_above_def) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 34 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 35 | lemma bdd_belowI[intro]: "(\<And>x. x \<in> A \<Longrightarrow> m \<le> x) \<Longrightarrow> bdd_below A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 36 | by (auto simp: bdd_below_def) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 37 | |
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 38 | lemma bdd_aboveI2: "(\<And>x. x \<in> A \<Longrightarrow> f x \<le> M) \<Longrightarrow> bdd_above (f`A)" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 39 | by force | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 40 | |
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 41 | lemma bdd_belowI2: "(\<And>x. x \<in> A \<Longrightarrow> m \<le> f x) \<Longrightarrow> bdd_below (f`A)" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 42 | by force | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 43 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 44 | lemma bdd_above_empty [simp, intro]: "bdd_above {}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 45 | unfolding bdd_above_def by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 46 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 47 | lemma bdd_below_empty [simp, intro]: "bdd_below {}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 48 | unfolding bdd_below_def by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 49 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 50 | lemma bdd_above_mono: "bdd_above B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> bdd_above A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 51 | by (metis (full_types) bdd_above_def order_class.le_neq_trans psubsetD) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 52 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 53 | lemma bdd_below_mono: "bdd_below B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> bdd_below A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 54 | by (metis bdd_below_def order_class.le_neq_trans psubsetD) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 55 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 56 | lemma bdd_above_Int1 [simp]: "bdd_above A \<Longrightarrow> bdd_above (A \<inter> B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 57 | using bdd_above_mono by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 58 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 59 | lemma bdd_above_Int2 [simp]: "bdd_above B \<Longrightarrow> bdd_above (A \<inter> B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 60 | using bdd_above_mono by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 61 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 62 | lemma bdd_below_Int1 [simp]: "bdd_below A \<Longrightarrow> bdd_below (A \<inter> B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 63 | using bdd_below_mono by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 64 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 65 | lemma bdd_below_Int2 [simp]: "bdd_below B \<Longrightarrow> bdd_below (A \<inter> B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 66 | using bdd_below_mono by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 67 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 68 | lemma bdd_above_Ioo [simp, intro]: "bdd_above {a <..< b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 69 | by (auto simp add: bdd_above_def intro!: exI[of _ b] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 70 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 71 | lemma bdd_above_Ico [simp, intro]: "bdd_above {a ..< b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 72 | by (auto simp add: bdd_above_def intro!: exI[of _ b] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 73 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 74 | lemma bdd_above_Iio [simp, intro]: "bdd_above {..< b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 75 | by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 76 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 77 | lemma bdd_above_Ioc [simp, intro]: "bdd_above {a <.. b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 78 | by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 79 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 80 | lemma bdd_above_Icc [simp, intro]: "bdd_above {a .. b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 81 | by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 82 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 83 | lemma bdd_above_Iic [simp, intro]: "bdd_above {.. b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 84 | by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 85 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 86 | lemma bdd_below_Ioo [simp, intro]: "bdd_below {a <..< b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 87 | by (auto simp add: bdd_below_def intro!: exI[of _ a] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 88 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 89 | lemma bdd_below_Ioc [simp, intro]: "bdd_below {a <.. b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 90 | by (auto simp add: bdd_below_def intro!: exI[of _ a] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 91 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 92 | lemma bdd_below_Ioi [simp, intro]: "bdd_below {a <..}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 93 | by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 94 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 95 | lemma bdd_below_Ico [simp, intro]: "bdd_below {a ..< b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 96 | by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 97 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 98 | lemma bdd_below_Icc [simp, intro]: "bdd_below {a .. b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 99 | by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 100 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 101 | lemma bdd_below_Ici [simp, intro]: "bdd_below {a ..}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 102 | by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 103 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 104 | end | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 105 | |
| 54261 | 106 | lemma (in order_top) bdd_above_top[simp, intro!]: "bdd_above A" | 
| 107 | by (rule bdd_aboveI[of _ top]) simp | |
| 108 | ||
| 109 | lemma (in order_bot) bdd_above_bot[simp, intro!]: "bdd_below A" | |
| 110 | by (rule bdd_belowI[of _ bot]) simp | |
| 111 | ||
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 112 | lemma bdd_above_image_mono: "mono f \<Longrightarrow> bdd_above A \<Longrightarrow> bdd_above (f`A)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 113 | by (auto simp: bdd_above_def mono_def) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 114 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 115 | lemma bdd_below_image_mono: "mono f \<Longrightarrow> bdd_below A \<Longrightarrow> bdd_below (f`A)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 116 | by (auto simp: bdd_below_def mono_def) | 
| 63331 | 117 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 118 | lemma bdd_above_image_antimono: "antimono f \<Longrightarrow> bdd_below A \<Longrightarrow> bdd_above (f`A)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 119 | by (auto simp: bdd_above_def bdd_below_def antimono_def) | 
| 54262 
326fd7103cb4
generalize bdd_above/below_uminus to ordered_ab_group_add
 hoelzl parents: 
54261diff
changeset | 120 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 121 | lemma bdd_below_image_antimono: "antimono f \<Longrightarrow> bdd_above A \<Longrightarrow> bdd_below (f`A)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 122 | by (auto simp: bdd_above_def bdd_below_def antimono_def) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 123 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 124 | lemma | 
| 54262 
326fd7103cb4
generalize bdd_above/below_uminus to ordered_ab_group_add
 hoelzl parents: 
54261diff
changeset | 125 | fixes X :: "'a::ordered_ab_group_add set" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 126 | shows bdd_above_uminus[simp]: "bdd_above (uminus ` X) \<longleftrightarrow> bdd_below X" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 127 | and bdd_below_uminus[simp]: "bdd_below (uminus ` X) \<longleftrightarrow> bdd_above X" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 128 | using bdd_above_image_antimono[of uminus X] bdd_below_image_antimono[of uminus "uminus`X"] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 129 | using bdd_below_image_antimono[of uminus X] bdd_above_image_antimono[of uminus "uminus`X"] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 130 | by (auto simp: antimono_def image_image) | 
| 54262 
326fd7103cb4
generalize bdd_above/below_uminus to ordered_ab_group_add
 hoelzl parents: 
54261diff
changeset | 131 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 132 | context lattice | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 133 | begin | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 134 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 135 | lemma bdd_above_insert [simp]: "bdd_above (insert a A) = bdd_above A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 136 | by (auto simp: bdd_above_def intro: le_supI2 sup_ge1) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 137 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 138 | lemma bdd_below_insert [simp]: "bdd_below (insert a A) = bdd_below A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 139 | by (auto simp: bdd_below_def intro: le_infI2 inf_le1) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 140 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 141 | lemma bdd_finite [simp]: | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 142 | assumes "finite A" shows bdd_above_finite: "bdd_above A" and bdd_below_finite: "bdd_below A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 143 | using assms by (induct rule: finite_induct, auto) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 144 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 145 | lemma bdd_above_Un [simp]: "bdd_above (A \<union> B) = (bdd_above A \<and> bdd_above B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 146 | proof | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 147 | assume "bdd_above (A \<union> B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 148 | thus "bdd_above A \<and> bdd_above B" unfolding bdd_above_def by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 149 | next | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 150 | assume "bdd_above A \<and> bdd_above B" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 151 | then obtain a b where "\<forall>x\<in>A. x \<le> a" "\<forall>x\<in>B. x \<le> b" unfolding bdd_above_def by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 152 | hence "\<forall>x \<in> A \<union> B. x \<le> sup a b" by (auto intro: Un_iff le_supI1 le_supI2) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 153 | thus "bdd_above (A \<union> B)" unfolding bdd_above_def .. | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 154 | qed | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 155 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 156 | lemma bdd_below_Un [simp]: "bdd_below (A \<union> B) = (bdd_below A \<and> bdd_below B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 157 | proof | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 158 | assume "bdd_below (A \<union> B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 159 | thus "bdd_below A \<and> bdd_below B" unfolding bdd_below_def by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 160 | next | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 161 | assume "bdd_below A \<and> bdd_below B" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 162 | then obtain a b where "\<forall>x\<in>A. a \<le> x" "\<forall>x\<in>B. b \<le> x" unfolding bdd_below_def by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 163 | hence "\<forall>x \<in> A \<union> B. inf a b \<le> x" by (auto intro: Un_iff le_infI1 le_infI2) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 164 | thus "bdd_below (A \<union> B)" unfolding bdd_below_def .. | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 165 | qed | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 166 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 167 | lemma bdd_above_sup[simp]: "bdd_above ((\<lambda>x. sup (f x) (g x)) ` A) \<longleftrightarrow> bdd_above (f`A) \<and> bdd_above (g`A)" | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 168 | by (auto simp: bdd_above_def intro: le_supI1 le_supI2) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 169 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 170 | lemma bdd_below_inf[simp]: "bdd_below ((\<lambda>x. inf (f x) (g x)) ` A) \<longleftrightarrow> bdd_below (f`A) \<and> bdd_below (g`A)" | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 171 | by (auto simp: bdd_below_def intro: le_infI1 le_infI2) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 172 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 173 | end | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 174 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 175 | |
| 60758 | 176 | text \<open> | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 177 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 178 | To avoid name classes with the @{class complete_lattice}-class we prefix @{const Sup} and
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 179 | @{const Inf} in theorem names with c.
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 180 | |
| 60758 | 181 | \<close> | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 182 | |
| 51773 | 183 | class conditionally_complete_lattice = lattice + Sup + Inf + | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 184 | assumes cInf_lower: "x \<in> X \<Longrightarrow> bdd_below X \<Longrightarrow> Inf X \<le> x" | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 185 |     and cInf_greatest: "X \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> z \<le> Inf X"
 | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 186 | assumes cSup_upper: "x \<in> X \<Longrightarrow> bdd_above X \<Longrightarrow> x \<le> Sup X" | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 187 |     and cSup_least: "X \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup X \<le> z"
 | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 188 | begin | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 189 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 190 | lemma cSup_upper2: "x \<in> X \<Longrightarrow> y \<le> x \<Longrightarrow> bdd_above X \<Longrightarrow> y \<le> Sup X" | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 191 | by (metis cSup_upper order_trans) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 192 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 193 | lemma cInf_lower2: "x \<in> X \<Longrightarrow> x \<le> y \<Longrightarrow> bdd_below X \<Longrightarrow> Inf X \<le> y" | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 194 | by (metis cInf_lower order_trans) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 195 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 196 | lemma cSup_mono: "B \<noteq> {} \<Longrightarrow> bdd_above A \<Longrightarrow> (\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. b \<le> a) \<Longrightarrow> Sup B \<le> Sup A"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 197 | by (metis cSup_least cSup_upper2) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 198 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 199 | lemma cInf_mono: "B \<noteq> {} \<Longrightarrow> bdd_below A \<Longrightarrow> (\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<le> b) \<Longrightarrow> Inf A \<le> Inf B"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 200 | by (metis cInf_greatest cInf_lower2) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 201 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 202 | lemma cSup_subset_mono: "A \<noteq> {} \<Longrightarrow> bdd_above B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> Sup A \<le> Sup B"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 203 | by (metis cSup_least cSup_upper subsetD) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 204 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 205 | lemma cInf_superset_mono: "A \<noteq> {} \<Longrightarrow> bdd_below B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> Inf B \<le> Inf A"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 206 | by (metis cInf_greatest cInf_lower subsetD) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 207 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 208 | lemma cSup_eq_maximum: "z \<in> X \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup X = z" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 209 | by (intro antisym cSup_upper[of z X] cSup_least[of X z]) auto | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 210 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 211 | lemma cInf_eq_minimum: "z \<in> X \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> Inf X = z" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 212 | by (intro antisym cInf_lower[of z X] cInf_greatest[of X z]) auto | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 213 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 214 | lemma cSup_le_iff: "S \<noteq> {} \<Longrightarrow> bdd_above S \<Longrightarrow> Sup S \<le> a \<longleftrightarrow> (\<forall>x\<in>S. x \<le> a)"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 215 | by (metis order_trans cSup_upper cSup_least) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 216 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 217 | lemma le_cInf_iff: "S \<noteq> {} \<Longrightarrow> bdd_below S \<Longrightarrow> a \<le> Inf S \<longleftrightarrow> (\<forall>x\<in>S. a \<le> x)"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 218 | by (metis order_trans cInf_lower cInf_greatest) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 219 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 220 | lemma cSup_eq_non_empty: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 221 |   assumes 1: "X \<noteq> {}"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 222 | assumes 2: "\<And>x. x \<in> X \<Longrightarrow> x \<le> a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 223 | assumes 3: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> x \<le> y) \<Longrightarrow> a \<le> y" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 224 | shows "Sup X = a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 225 | by (intro 3 1 antisym cSup_least) (auto intro: 2 1 cSup_upper) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 226 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 227 | lemma cInf_eq_non_empty: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 228 |   assumes 1: "X \<noteq> {}"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 229 | assumes 2: "\<And>x. x \<in> X \<Longrightarrow> a \<le> x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 230 | assumes 3: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> y \<le> x) \<Longrightarrow> y \<le> a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 231 | shows "Inf X = a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 232 | by (intro 3 1 antisym cInf_greatest) (auto intro: 2 1 cInf_lower) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 233 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 234 | lemma cInf_cSup: "S \<noteq> {} \<Longrightarrow> bdd_below S \<Longrightarrow> Inf S = Sup {x. \<forall>s\<in>S. x \<le> s}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 235 | by (rule cInf_eq_non_empty) (auto intro!: cSup_upper cSup_least simp: bdd_below_def) | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 236 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 237 | lemma cSup_cInf: "S \<noteq> {} \<Longrightarrow> bdd_above S \<Longrightarrow> Sup S = Inf {x. \<forall>s\<in>S. s \<le> x}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 238 | by (rule cSup_eq_non_empty) (auto intro!: cInf_lower cInf_greatest simp: bdd_above_def) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 239 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 240 | lemma cSup_insert: "X \<noteq> {} \<Longrightarrow> bdd_above X \<Longrightarrow> Sup (insert a X) = sup a (Sup X)"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 241 | by (intro cSup_eq_non_empty) (auto intro: le_supI2 cSup_upper cSup_least) | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 242 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 243 | lemma cInf_insert: "X \<noteq> {} \<Longrightarrow> bdd_below X \<Longrightarrow> Inf (insert a X) = inf a (Inf X)"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 244 | by (intro cInf_eq_non_empty) (auto intro: le_infI2 cInf_lower cInf_greatest) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 245 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 246 | lemma cSup_singleton [simp]: "Sup {x} = x"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 247 | by (intro cSup_eq_maximum) auto | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 248 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 249 | lemma cInf_singleton [simp]: "Inf {x} = x"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 250 | by (intro cInf_eq_minimum) auto | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 251 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 252 | lemma cSup_insert_If:  "bdd_above X \<Longrightarrow> Sup (insert a X) = (if X = {} then a else sup a (Sup X))"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 253 | using cSup_insert[of X] by simp | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 254 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 255 | lemma cInf_insert_If: "bdd_below X \<Longrightarrow> Inf (insert a X) = (if X = {} then a else inf a (Inf X))"
 | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 256 | using cInf_insert[of X] by simp | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 257 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 258 | lemma le_cSup_finite: "finite X \<Longrightarrow> x \<in> X \<Longrightarrow> x \<le> Sup X" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 259 | proof (induct X arbitrary: x rule: finite_induct) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 260 | case (insert x X y) then show ?case | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 261 |     by (cases "X = {}") (auto simp: cSup_insert intro: le_supI2)
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 262 | qed simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 263 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 264 | lemma cInf_le_finite: "finite X \<Longrightarrow> x \<in> X \<Longrightarrow> Inf X \<le> x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 265 | proof (induct X arbitrary: x rule: finite_induct) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 266 | case (insert x X y) then show ?case | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 267 |     by (cases "X = {}") (auto simp: cInf_insert intro: le_infI2)
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 268 | qed simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 269 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 270 | lemma cSup_eq_Sup_fin: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup X = Sup_fin X"
 | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 271 | by (induct X rule: finite_ne_induct) (simp_all add: cSup_insert) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 272 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 273 | lemma cInf_eq_Inf_fin: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf X = Inf_fin X"
 | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 274 | by (induct X rule: finite_ne_induct) (simp_all add: cInf_insert) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 275 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 276 | lemma cSup_atMost[simp]: "Sup {..x} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 277 | by (auto intro!: cSup_eq_maximum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 278 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 279 | lemma cSup_greaterThanAtMost[simp]: "y < x \<Longrightarrow> Sup {y<..x} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 280 | by (auto intro!: cSup_eq_maximum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 281 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 282 | lemma cSup_atLeastAtMost[simp]: "y \<le> x \<Longrightarrow> Sup {y..x} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 283 | by (auto intro!: cSup_eq_maximum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 284 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 285 | lemma cInf_atLeast[simp]: "Inf {x..} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 286 | by (auto intro!: cInf_eq_minimum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 287 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 288 | lemma cInf_atLeastLessThan[simp]: "y < x \<Longrightarrow> Inf {y..<x} = y"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 289 | by (auto intro!: cInf_eq_minimum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 290 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 291 | lemma cInf_atLeastAtMost[simp]: "y \<le> x \<Longrightarrow> Inf {y..x} = y"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 292 | by (auto intro!: cInf_eq_minimum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 293 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 294 | lemma cINF_lower: "bdd_below (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> INFIMUM A f \<le> f x" | 
| 56166 | 295 | using cInf_lower [of _ "f ` A"] by simp | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 296 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 297 | lemma cINF_greatest: "A \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> m \<le> f x) \<Longrightarrow> m \<le> INFIMUM A f"
 | 
| 56166 | 298 | using cInf_greatest [of "f ` A"] by auto | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 299 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 300 | lemma cSUP_upper: "x \<in> A \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> f x \<le> SUPREMUM A f" | 
| 56166 | 301 | using cSup_upper [of _ "f ` A"] by simp | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 302 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 303 | lemma cSUP_least: "A \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<le> M) \<Longrightarrow> SUPREMUM A f \<le> M"
 | 
| 56166 | 304 | using cSup_least [of "f ` A"] by auto | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 305 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 306 | lemma cINF_lower2: "bdd_below (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<le> u \<Longrightarrow> INFIMUM A f \<le> u" | 
| 63092 | 307 | by (auto intro: cINF_lower order_trans) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 308 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 309 | lemma cSUP_upper2: "bdd_above (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> u \<le> f x \<Longrightarrow> u \<le> SUPREMUM A f" | 
| 63092 | 310 | by (auto intro: cSUP_upper order_trans) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 311 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 312 | lemma cSUP_const [simp]: "A \<noteq> {} \<Longrightarrow> (SUP x:A. c) = c"
 | 
| 54261 | 313 | by (intro antisym cSUP_least) (auto intro: cSUP_upper) | 
| 314 | ||
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 315 | lemma cINF_const [simp]: "A \<noteq> {} \<Longrightarrow> (INF x:A. c) = c"
 | 
| 54261 | 316 | by (intro antisym cINF_greatest) (auto intro: cINF_lower) | 
| 317 | ||
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 318 | lemma le_cINF_iff: "A \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> u \<le> INFIMUM A f \<longleftrightarrow> (\<forall>x\<in>A. u \<le> f x)"
 | 
| 63092 | 319 | by (metis cINF_greatest cINF_lower order_trans) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 320 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 321 | lemma cSUP_le_iff: "A \<noteq> {} \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> SUPREMUM A f \<le> u \<longleftrightarrow> (\<forall>x\<in>A. f x \<le> u)"
 | 
| 63092 | 322 | by (metis cSUP_least cSUP_upper order_trans) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 323 | |
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 324 | lemma less_cINF_D: "bdd_below (f`A) \<Longrightarrow> y < (INF i:A. f i) \<Longrightarrow> i \<in> A \<Longrightarrow> y < f i" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 325 | by (metis cINF_lower less_le_trans) | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 326 | |
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 327 | lemma cSUP_lessD: "bdd_above (f`A) \<Longrightarrow> (SUP i:A. f i) < y \<Longrightarrow> i \<in> A \<Longrightarrow> f i < y" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 328 | by (metis cSUP_upper le_less_trans) | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 329 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 330 | lemma cINF_insert: "A \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> INFIMUM (insert a A) f = inf (f a) (INFIMUM A f)"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61824diff
changeset | 331 | by (metis cInf_insert image_insert image_is_empty) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 332 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 333 | lemma cSUP_insert: "A \<noteq> {} \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> SUPREMUM (insert a A) f = sup (f a) (SUPREMUM A f)"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61824diff
changeset | 334 | by (metis cSup_insert image_insert image_is_empty) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 335 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 336 | lemma cINF_mono: "B \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> (\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<le> g m) \<Longrightarrow> INFIMUM A f \<le> INFIMUM B g"
 | 
| 56166 | 337 | using cInf_mono [of "g ` B" "f ` A"] by auto | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 338 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 339 | lemma cSUP_mono: "A \<noteq> {} \<Longrightarrow> bdd_above (g ` B) \<Longrightarrow> (\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<le> g m) \<Longrightarrow> SUPREMUM A f \<le> SUPREMUM B g"
 | 
| 56166 | 340 | using cSup_mono [of "f ` A" "g ` B"] by auto | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 341 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 342 | lemma cINF_superset_mono: "A \<noteq> {} \<Longrightarrow> bdd_below (g ` B) \<Longrightarrow> A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> g x \<le> f x) \<Longrightarrow> INFIMUM B g \<le> INFIMUM A f"
 | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 343 | by (rule cINF_mono) auto | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 344 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 345 | lemma cSUP_subset_mono: "A \<noteq> {} \<Longrightarrow> bdd_above (g ` B) \<Longrightarrow> A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<le> g x) \<Longrightarrow> SUPREMUM A f \<le> SUPREMUM B g"
 | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 346 | by (rule cSUP_mono) auto | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 347 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 348 | lemma less_eq_cInf_inter: "bdd_below A \<Longrightarrow> bdd_below B \<Longrightarrow> A \<inter> B \<noteq> {} \<Longrightarrow> inf (Inf A) (Inf B) \<le> Inf (A \<inter> B)"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 349 | by (metis cInf_superset_mono lattice_class.inf_sup_ord(1) le_infI1) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 350 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 351 | lemma cSup_inter_less_eq: "bdd_above A \<Longrightarrow> bdd_above B \<Longrightarrow> A \<inter> B \<noteq> {} \<Longrightarrow> Sup (A \<inter> B) \<le> sup (Sup A) (Sup B) "
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 352 | by (metis cSup_subset_mono lattice_class.inf_sup_ord(1) le_supI1) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 353 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 354 | lemma cInf_union_distrib: "A \<noteq> {} \<Longrightarrow> bdd_below A \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_below B \<Longrightarrow> Inf (A \<union> B) = inf (Inf A) (Inf B)"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 355 | by (intro antisym le_infI cInf_greatest cInf_lower) (auto intro: le_infI1 le_infI2 cInf_lower) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 356 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 357 | lemma cINF_union: "A \<noteq> {} \<Longrightarrow> bdd_below (f`A) \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_below (f`B) \<Longrightarrow> INFIMUM (A \<union> B) f = inf (INFIMUM A f) (INFIMUM B f)"
 | 
| 56166 | 358 | using cInf_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un [symmetric]) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 359 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 360 | lemma cSup_union_distrib: "A \<noteq> {} \<Longrightarrow> bdd_above A \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_above B \<Longrightarrow> Sup (A \<union> B) = sup (Sup A) (Sup B)"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 361 | by (intro antisym le_supI cSup_least cSup_upper) (auto intro: le_supI1 le_supI2 cSup_upper) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 362 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 363 | lemma cSUP_union: "A \<noteq> {} \<Longrightarrow> bdd_above (f`A) \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_above (f`B) \<Longrightarrow> SUPREMUM (A \<union> B) f = sup (SUPREMUM A f) (SUPREMUM B f)"
 | 
| 56166 | 364 | using cSup_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un [symmetric]) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 365 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 366 | lemma cINF_inf_distrib: "A \<noteq> {} \<Longrightarrow> bdd_below (f`A) \<Longrightarrow> bdd_below (g`A) \<Longrightarrow> inf (INFIMUM A f) (INFIMUM A g) = (INF a:A. inf (f a) (g a))"
 | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 367 | by (intro antisym le_infI cINF_greatest cINF_lower2) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 368 | (auto intro: le_infI1 le_infI2 cINF_greatest cINF_lower le_infI) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 369 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 370 | lemma SUP_sup_distrib: "A \<noteq> {} \<Longrightarrow> bdd_above (f`A) \<Longrightarrow> bdd_above (g`A) \<Longrightarrow> sup (SUPREMUM A f) (SUPREMUM A g) = (SUP a:A. sup (f a) (g a))"
 | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 371 | by (intro antisym le_supI cSUP_least cSUP_upper2) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 372 | (auto intro: le_supI1 le_supI2 cSUP_least cSUP_upper le_supI) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 373 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 374 | lemma cInf_le_cSup: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 375 |   "A \<noteq> {} \<Longrightarrow> bdd_above A \<Longrightarrow> bdd_below A \<Longrightarrow> Inf A \<le> Sup A"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 376 | by (auto intro!: cSup_upper2[of "SOME a. a \<in> A"] intro: someI cInf_lower) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 377 | |
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 378 | end | 
| 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 379 | |
| 51773 | 380 | instance complete_lattice \<subseteq> conditionally_complete_lattice | 
| 61169 | 381 | by standard (auto intro: Sup_upper Sup_least Inf_lower Inf_greatest) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 382 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 383 | lemma cSup_eq: | 
| 51773 | 384 |   fixes a :: "'a :: {conditionally_complete_lattice, no_bot}"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 385 | assumes upper: "\<And>x. x \<in> X \<Longrightarrow> x \<le> a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 386 | assumes least: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> x \<le> y) \<Longrightarrow> a \<le> y" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 387 | shows "Sup X = a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 388 | proof cases | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 389 |   assume "X = {}" with lt_ex[of a] least show ?thesis by (auto simp: less_le_not_le)
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 390 | qed (intro cSup_eq_non_empty assms) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 391 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 392 | lemma cInf_eq: | 
| 51773 | 393 |   fixes a :: "'a :: {conditionally_complete_lattice, no_top}"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 394 | assumes upper: "\<And>x. x \<in> X \<Longrightarrow> a \<le> x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 395 | assumes least: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> y \<le> x) \<Longrightarrow> y \<le> a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 396 | shows "Inf X = a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 397 | proof cases | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 398 |   assume "X = {}" with gt_ex[of a] least show ?thesis by (auto simp: less_le_not_le)
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 399 | qed (intro cInf_eq_non_empty assms) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 400 | |
| 51773 | 401 | class conditionally_complete_linorder = conditionally_complete_lattice + linorder | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 402 | begin | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 403 | |
| 63331 | 404 | lemma less_cSup_iff: | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 405 |   "X \<noteq> {} \<Longrightarrow> bdd_above X \<Longrightarrow> y < Sup X \<longleftrightarrow> (\<exists>x\<in>X. y < x)"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 406 | by (rule iffI) (metis cSup_least not_less, metis cSup_upper less_le_trans) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 407 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 408 | lemma cInf_less_iff: "X \<noteq> {} \<Longrightarrow> bdd_below X \<Longrightarrow> Inf X < y \<longleftrightarrow> (\<exists>x\<in>X. x < y)"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 409 | by (rule iffI) (metis cInf_greatest not_less, metis cInf_lower le_less_trans) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 410 | |
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 411 | lemma cINF_less_iff: "A \<noteq> {} \<Longrightarrow> bdd_below (f`A) \<Longrightarrow> (INF i:A. f i) < a \<longleftrightarrow> (\<exists>x\<in>A. f x < a)"
 | 
| 56166 | 412 | using cInf_less_iff[of "f`A"] by auto | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 413 | |
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 414 | lemma less_cSUP_iff: "A \<noteq> {} \<Longrightarrow> bdd_above (f`A) \<Longrightarrow> a < (SUP i:A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a < f x)"
 | 
| 56166 | 415 | using less_cSup_iff[of "f`A"] by auto | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 416 | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 417 | lemma less_cSupE: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 418 |   assumes "y < Sup X" "X \<noteq> {}" obtains x where "x \<in> X" "y < x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 419 | by (metis cSup_least assms not_le that) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 420 | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 421 | lemma less_cSupD: | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 422 |   "X \<noteq> {} \<Longrightarrow> z < Sup X \<Longrightarrow> \<exists>x\<in>X. z < x"
 | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61169diff
changeset | 423 | by (metis less_cSup_iff not_le_imp_less bdd_above_def) | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 424 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 425 | lemma cInf_lessD: | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 426 |   "X \<noteq> {} \<Longrightarrow> Inf X < z \<Longrightarrow> \<exists>x\<in>X. x < z"
 | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61169diff
changeset | 427 | by (metis cInf_less_iff not_le_imp_less bdd_below_def) | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 428 | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 429 | lemma complete_interval: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 430 | assumes "a < b" and "P a" and "\<not> P b" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 431 | shows "\<exists>c. a \<le> c \<and> c \<le> b \<and> (\<forall>x. a \<le> x \<and> x < c \<longrightarrow> P x) \<and> | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 432 | (\<forall>d. (\<forall>x. a \<le> x \<and> x < d \<longrightarrow> P x) \<longrightarrow> d \<le> c)" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 433 | proof (rule exI [where x = "Sup {d. \<forall>x. a \<le> x & x < d --> P x}"], auto)
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 434 |   show "a \<le> Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
 | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 435 | by (rule cSup_upper, auto simp: bdd_above_def) | 
| 60758 | 436 | (metis \<open>a < b\<close> \<open>\<not> P b\<close> linear less_le) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 437 | next | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 438 |   show "Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c} \<le> b"
 | 
| 63331 | 439 | apply (rule cSup_least) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 440 | apply auto | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 441 | apply (metis less_le_not_le) | 
| 60758 | 442 | apply (metis \<open>a<b\<close> \<open>~ P b\<close> linear less_le) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 443 | done | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 444 | next | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 445 | fix x | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 446 |   assume x: "a \<le> x" and lt: "x < Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 447 | show "P x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 448 | apply (rule less_cSupE [OF lt], auto) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 449 | apply (metis less_le_not_le) | 
| 63331 | 450 | apply (metis x) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 451 | done | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 452 | next | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 453 | fix d | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 454 | assume 0: "\<forall>x. a \<le> x \<and> x < d \<longrightarrow> P x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 455 |     thus "d \<le> Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
 | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 456 | by (rule_tac cSup_upper, auto simp: bdd_above_def) | 
| 60758 | 457 | (metis \<open>a<b\<close> \<open>~ P b\<close> linear less_le) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 458 | qed | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 459 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 460 | end | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 461 | |
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
59452diff
changeset | 462 | instance complete_linorder < conditionally_complete_linorder | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
59452diff
changeset | 463 | .. | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
59452diff
changeset | 464 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 465 | lemma cSup_eq_Max: "finite (X::'a::conditionally_complete_linorder set) \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup X = Max X"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 466 | using cSup_eq_Sup_fin[of X] Sup_fin_eq_Max[of X] by simp | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 467 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 468 | lemma cInf_eq_Min: "finite (X::'a::conditionally_complete_linorder set) \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf X = Min X"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 469 | using cInf_eq_Inf_fin[of X] Inf_fin_eq_Min[of X] by simp | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 470 | |
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
53216diff
changeset | 471 | lemma cSup_lessThan[simp]: "Sup {..<x::'a::{conditionally_complete_linorder, no_bot, dense_linorder}} = x"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 472 | by (auto intro!: cSup_eq_non_empty intro: dense_le) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 473 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 474 | lemma cSup_greaterThanLessThan[simp]: "y < x \<Longrightarrow> Sup {y<..<x::'a::{conditionally_complete_linorder, dense_linorder}} = x"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 475 | by (auto intro!: cSup_eq_non_empty intro: dense_le_bounded) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 476 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 477 | lemma cSup_atLeastLessThan[simp]: "y < x \<Longrightarrow> Sup {y..<x::'a::{conditionally_complete_linorder, dense_linorder}} = x"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 478 | by (auto intro!: cSup_eq_non_empty intro: dense_le_bounded) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 479 | |
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
53216diff
changeset | 480 | lemma cInf_greaterThan[simp]: "Inf {x::'a::{conditionally_complete_linorder, no_top, dense_linorder} <..} = x"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 481 | by (auto intro!: cInf_eq_non_empty intro: dense_ge) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 482 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 483 | lemma cInf_greaterThanAtMost[simp]: "y < x \<Longrightarrow> Inf {y<..x::'a::{conditionally_complete_linorder, dense_linorder}} = y"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 484 | by (auto intro!: cInf_eq_non_empty intro: dense_ge_bounded) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 485 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 486 | lemma cInf_greaterThanLessThan[simp]: "y < x \<Longrightarrow> Inf {y<..<x::'a::{conditionally_complete_linorder, dense_linorder}} = y"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 487 | by (auto intro!: cInf_eq_non_empty intro: dense_ge_bounded) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 488 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 489 | class linear_continuum = conditionally_complete_linorder + dense_linorder + | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 490 | assumes UNIV_not_singleton: "\<exists>a b::'a. a \<noteq> b" | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 491 | begin | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 492 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 493 | lemma ex_gt_or_lt: "\<exists>b. a < b \<or> b < a" | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 494 | by (metis UNIV_not_singleton neq_iff) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 495 | |
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 496 | end | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 497 | |
| 54281 | 498 | instantiation nat :: conditionally_complete_linorder | 
| 499 | begin | |
| 500 | ||
| 501 | definition "Sup (X::nat set) = Max X" | |
| 502 | definition "Inf (X::nat set) = (LEAST n. n \<in> X)" | |
| 503 | ||
| 504 | lemma bdd_above_nat: "bdd_above X \<longleftrightarrow> finite (X::nat set)" | |
| 505 | proof | |
| 506 | assume "bdd_above X" | |
| 507 |   then obtain z where "X \<subseteq> {.. z}"
 | |
| 508 | by (auto simp: bdd_above_def) | |
| 509 | then show "finite X" | |
| 510 | by (rule finite_subset) simp | |
| 511 | qed simp | |
| 512 | ||
| 513 | instance | |
| 514 | proof | |
| 63540 | 515 | fix x :: nat | 
| 516 | fix X :: "nat set" | |
| 517 | show "Inf X \<le> x" if "x \<in> X" "bdd_below X" | |
| 518 | using that by (simp add: Inf_nat_def Least_le) | |
| 519 |   show "x \<le> Inf X" if "X \<noteq> {}" "\<And>y. y \<in> X \<Longrightarrow> x \<le> y"
 | |
| 520 | using that unfolding Inf_nat_def ex_in_conv[symmetric] by (rule LeastI2_ex) | |
| 521 | show "x \<le> Sup X" if "x \<in> X" "bdd_above X" | |
| 522 | using that by (simp add: Sup_nat_def bdd_above_nat) | |
| 523 |   show "Sup X \<le> x" if "X \<noteq> {}" "\<And>y. y \<in> X \<Longrightarrow> y \<le> x"
 | |
| 524 | proof - | |
| 525 | from that have "bdd_above X" | |
| 54281 | 526 | by (auto simp: bdd_above_def) | 
| 63540 | 527 | with that show ?thesis | 
| 528 | by (simp add: Sup_nat_def bdd_above_nat) | |
| 529 | qed | |
| 54281 | 530 | qed | 
| 63540 | 531 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 532 | end | 
| 54281 | 533 | |
| 534 | instantiation int :: conditionally_complete_linorder | |
| 535 | begin | |
| 536 | ||
| 537 | definition "Sup (X::int set) = (THE x. x \<in> X \<and> (\<forall>y\<in>X. y \<le> x))" | |
| 538 | definition "Inf (X::int set) = - (Sup (uminus ` X))" | |
| 539 | ||
| 540 | instance | |
| 541 | proof | |
| 542 |   { fix x :: int and X :: "int set" assume "X \<noteq> {}" "bdd_above X"
 | |
| 543 |     then obtain x y where "X \<subseteq> {..y}" "x \<in> X"
 | |
| 544 | by (auto simp: bdd_above_def) | |
| 545 |     then have *: "finite (X \<inter> {x..y})" "X \<inter> {x..y} \<noteq> {}" and "x \<le> y"
 | |
| 546 | by (auto simp: subset_eq) | |
| 547 | have "\<exists>!x\<in>X. (\<forall>y\<in>X. y \<le> x)" | |
| 548 | proof | |
| 549 |       { fix z assume "z \<in> X"
 | |
| 550 |         have "z \<le> Max (X \<inter> {x..y})"
 | |
| 551 | proof cases | |
| 60758 | 552 |           assume "x \<le> z" with \<open>z \<in> X\<close> \<open>X \<subseteq> {..y}\<close> *(1) show ?thesis
 | 
| 54281 | 553 | by (auto intro!: Max_ge) | 
| 554 | next | |
| 555 | assume "\<not> x \<le> z" | |
| 556 | then have "z < x" by simp | |
| 557 |           also have "x \<le> Max (X \<inter> {x..y})"
 | |
| 60758 | 558 | using \<open>x \<in> X\<close> *(1) \<open>x \<le> y\<close> by (intro Max_ge) auto | 
| 54281 | 559 | finally show ?thesis by simp | 
| 560 | qed } | |
| 561 | note le = this | |
| 562 |       with Max_in[OF *] show ex: "Max (X \<inter> {x..y}) \<in> X \<and> (\<forall>z\<in>X. z \<le> Max (X \<inter> {x..y}))" by auto
 | |
| 563 | ||
| 564 | fix z assume *: "z \<in> X \<and> (\<forall>y\<in>X. y \<le> z)" | |
| 565 |       with le have "z \<le> Max (X \<inter> {x..y})"
 | |
| 566 | by auto | |
| 567 |       moreover have "Max (X \<inter> {x..y}) \<le> z"
 | |
| 568 | using * ex by auto | |
| 569 |       ultimately show "z = Max (X \<inter> {x..y})"
 | |
| 570 | by auto | |
| 571 | qed | |
| 572 | then have "Sup X \<in> X \<and> (\<forall>y\<in>X. y \<le> Sup X)" | |
| 573 | unfolding Sup_int_def by (rule theI') } | |
| 574 | note Sup_int = this | |
| 575 | ||
| 576 |   { fix x :: int and X :: "int set" assume "x \<in> X" "bdd_above X" then show "x \<le> Sup X"
 | |
| 577 | using Sup_int[of X] by auto } | |
| 578 | note le_Sup = this | |
| 579 |   { fix x :: int and X :: "int set" assume "X \<noteq> {}" "\<And>y. y \<in> X \<Longrightarrow> y \<le> x" then show "Sup X \<le> x"
 | |
| 580 | using Sup_int[of X] by (auto simp: bdd_above_def) } | |
| 581 | note Sup_le = this | |
| 582 | ||
| 583 |   { fix x :: int and X :: "int set" assume "x \<in> X" "bdd_below X" then show "Inf X \<le> x"
 | |
| 584 | using le_Sup[of "-x" "uminus ` X"] by (auto simp: Inf_int_def) } | |
| 585 |   { fix x :: int and X :: "int set" assume "X \<noteq> {}" "\<And>y. y \<in> X \<Longrightarrow> x \<le> y" then show "x \<le> Inf X"
 | |
| 586 | using Sup_le[of "uminus ` X" "-x"] by (force simp: Inf_int_def) } | |
| 587 | qed | |
| 588 | end | |
| 589 | ||
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 590 | lemma interval_cases: | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 591 | fixes S :: "'a :: conditionally_complete_linorder set" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 592 | assumes ivl: "\<And>a b x. a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> x \<in> S" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 593 |   shows "\<exists>a b. S = {} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 594 | S = UNIV \<or> | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 595 |     S = {..<b} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 596 |     S = {..b} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 597 |     S = {a<..} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 598 |     S = {a..} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 599 |     S = {a<..<b} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 600 |     S = {a<..b} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 601 |     S = {a..<b} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 602 |     S = {a..b}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 603 | proof - | 
| 63040 | 604 |   define lower upper where "lower = {x. \<exists>s\<in>S. s \<le> x}" and "upper = {x. \<exists>s\<in>S. x \<le> s}"
 | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 605 | with ivl have "S = lower \<inter> upper" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 606 | by auto | 
| 63331 | 607 | moreover | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 608 |   have "\<exists>a. upper = UNIV \<or> upper = {} \<or> upper = {.. a} \<or> upper = {..< a}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 609 | proof cases | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 610 |     assume *: "bdd_above S \<and> S \<noteq> {}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 611 |     from * have "upper \<subseteq> {.. Sup S}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 612 | by (auto simp: upper_def intro: cSup_upper2) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 613 |     moreover from * have "{..< Sup S} \<subseteq> upper"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 614 | by (force simp add: less_cSup_iff upper_def subset_eq Ball_def) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 615 |     ultimately have "upper = {.. Sup S} \<or> upper = {..< Sup S}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 616 | unfolding ivl_disj_un(2)[symmetric] by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 617 | then show ?thesis by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 618 | next | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 619 |     assume "\<not> (bdd_above S \<and> S \<noteq> {})"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 620 |     then have "upper = UNIV \<or> upper = {}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 621 | by (auto simp: upper_def bdd_above_def not_le dest: less_imp_le) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 622 | then show ?thesis | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 623 | by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 624 | qed | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 625 | moreover | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 626 |   have "\<exists>b. lower = UNIV \<or> lower = {} \<or> lower = {b ..} \<or> lower = {b <..}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 627 | proof cases | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 628 |     assume *: "bdd_below S \<and> S \<noteq> {}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 629 |     from * have "lower \<subseteq> {Inf S ..}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 630 | by (auto simp: lower_def intro: cInf_lower2) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 631 |     moreover from * have "{Inf S <..} \<subseteq> lower"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 632 | by (force simp add: cInf_less_iff lower_def subset_eq Ball_def) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 633 |     ultimately have "lower = {Inf S ..} \<or> lower = {Inf S <..}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 634 | unfolding ivl_disj_un(1)[symmetric] by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 635 | then show ?thesis by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 636 | next | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 637 |     assume "\<not> (bdd_below S \<and> S \<noteq> {})"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 638 |     then have "lower = UNIV \<or> lower = {}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 639 | by (auto simp: lower_def bdd_below_def not_le dest: less_imp_le) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 640 | then show ?thesis | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 641 | by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 642 | qed | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 643 | ultimately show ?thesis | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 644 | unfolding greaterThanAtMost_def greaterThanLessThan_def atLeastAtMost_def atLeastLessThan_def | 
| 63171 | 645 | by (metis inf_bot_left inf_bot_right inf_top.left_neutral inf_top.right_neutral) | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 646 | qed | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 647 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 648 | lemma cSUP_eq_cINF_D: | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 649 | fixes f :: "_ \<Rightarrow> 'b::conditionally_complete_lattice" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 650 | assumes eq: "(SUP x:A. f x) = (INF x:A. f x)" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 651 | and bdd: "bdd_above (f ` A)" "bdd_below (f ` A)" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 652 | and a: "a \<in> A" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 653 | shows "f a = (INF x:A. f x)" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 654 | apply (rule antisym) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 655 | using a bdd | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 656 | apply (auto simp: cINF_lower) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 657 | apply (metis eq cSUP_upper) | 
| 63331 | 658 | done | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 659 | |
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 660 | lemma cSUP_UNION: | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 661 | fixes f :: "_ \<Rightarrow> 'b::conditionally_complete_lattice" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 662 |   assumes ne: "A \<noteq> {}" "\<And>x. x \<in> A \<Longrightarrow> B(x) \<noteq> {}"
 | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 663 | and bdd_UN: "bdd_above (\<Union>x\<in>A. f ` B x)" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 664 | shows "(SUP z : \<Union>x\<in>A. B x. f z) = (SUP x:A. SUP z:B x. f z)" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 665 | proof - | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 666 | have bdd: "\<And>x. x \<in> A \<Longrightarrow> bdd_above (f ` B x)" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 667 | using bdd_UN by (meson UN_upper bdd_above_mono) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 668 | obtain M where "\<And>x y. x \<in> A \<Longrightarrow> y \<in> B(x) \<Longrightarrow> f y \<le> M" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 669 | using bdd_UN by (auto simp: bdd_above_def) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 670 | then have bdd2: "bdd_above ((\<lambda>x. SUP z:B x. f z) ` A)" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 671 | unfolding bdd_above_def by (force simp: bdd cSUP_le_iff ne(2)) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 672 | have "(SUP z:\<Union>x\<in>A. B x. f z) \<le> (SUP x:A. SUP z:B x. f z)" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 673 | using assms by (fastforce simp add: intro!: cSUP_least intro: cSUP_upper2 simp: bdd2 bdd) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 674 | moreover have "(SUP x:A. SUP z:B x. f z) \<le> (SUP z:\<Union>x\<in>A. B x. f z)" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 675 | using assms by (fastforce simp add: intro!: cSUP_least intro: cSUP_upper simp: image_UN bdd_UN) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 676 | ultimately show ?thesis | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 677 | by (rule order_antisym) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 678 | qed | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 679 | |
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 680 | lemma cINF_UNION: | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 681 | fixes f :: "_ \<Rightarrow> 'b::conditionally_complete_lattice" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 682 |   assumes ne: "A \<noteq> {}" "\<And>x. x \<in> A \<Longrightarrow> B(x) \<noteq> {}"
 | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 683 | and bdd_UN: "bdd_below (\<Union>x\<in>A. f ` B x)" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 684 | shows "(INF z : \<Union>x\<in>A. B x. f z) = (INF x:A. INF z:B x. f z)" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 685 | proof - | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 686 | have bdd: "\<And>x. x \<in> A \<Longrightarrow> bdd_below (f ` B x)" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 687 | using bdd_UN by (meson UN_upper bdd_below_mono) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 688 | obtain M where "\<And>x y. x \<in> A \<Longrightarrow> y \<in> B(x) \<Longrightarrow> f y \<ge> M" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 689 | using bdd_UN by (auto simp: bdd_below_def) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 690 | then have bdd2: "bdd_below ((\<lambda>x. INF z:B x. f z) ` A)" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 691 | unfolding bdd_below_def by (force simp: bdd le_cINF_iff ne(2)) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 692 | have "(INF z:\<Union>x\<in>A. B x. f z) \<le> (INF x:A. INF z:B x. f z)" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 693 | using assms by (fastforce simp add: intro!: cINF_greatest intro: cINF_lower simp: bdd2 bdd) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 694 | moreover have "(INF x:A. INF z:B x. f z) \<le> (INF z:\<Union>x\<in>A. B x. f z)" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 695 | using assms by (fastforce simp add: intro!: cINF_greatest intro: cINF_lower2 simp: bdd bdd_UN bdd2) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 696 | ultimately show ?thesis | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 697 | by (rule order_antisym) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 698 | qed | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62343diff
changeset | 699 | |
| 63331 | 700 | lemma cSup_abs_le: | 
| 62626 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62379diff
changeset | 701 |   fixes S :: "('a::{linordered_idom,conditionally_complete_linorder}) set"
 | 
| 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62379diff
changeset | 702 |   shows "S \<noteq> {} \<Longrightarrow> (\<And>x. x\<in>S \<Longrightarrow> \<bar>x\<bar> \<le> a) \<Longrightarrow> \<bar>Sup S\<bar> \<le> a"
 | 
| 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62379diff
changeset | 703 | apply (auto simp add: abs_le_iff intro: cSup_least) | 
| 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62379diff
changeset | 704 | by (metis bdd_aboveI cSup_upper neg_le_iff_le order_trans) | 
| 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62379diff
changeset | 705 | |
| 54281 | 706 | end |