| author | wenzelm | 
| Thu, 20 Aug 2015 17:39:07 +0200 | |
| changeset 60986 | 077f663b6c24 | 
| parent 60800 | 7d04351c795a | 
| child 61070 | b72a990adfe2 | 
| permissions | -rw-r--r-- | 
| 51524 | 1 | (* Title: HOL/Real_Vector_Spaces.thy | 
| 27552 
15cf4ed9c2a1
re-removed subclass relation real_field < field_char_0: coregularity violation in NSA/HyperDef
 haftmann parents: 
27515diff
changeset | 2 | Author: Brian Huffman | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 3 | Author: Johannes Hölzl | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 4 | *) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 5 | |
| 60758 | 6 | section \<open>Vector Spaces and Algebras over the Reals\<close> | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 7 | |
| 51524 | 8 | theory Real_Vector_Spaces | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 9 | imports Real Topological_Spaces | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 10 | begin | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 11 | |
| 60758 | 12 | subsection \<open>Locale for additive functions\<close> | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 13 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 14 | locale additive = | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 15 | fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add" | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 16 | assumes add: "f (x + y) = f x + f y" | 
| 27443 | 17 | begin | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 18 | |
| 27443 | 19 | lemma zero: "f 0 = 0" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 20 | proof - | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 21 | have "f 0 = f (0 + 0)" by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 22 | also have "\<dots> = f 0 + f 0" by (rule add) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 23 | finally show "f 0 = 0" by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 24 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 25 | |
| 27443 | 26 | lemma minus: "f (- x) = - f x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 27 | proof - | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 28 | have "f (- x) + f x = f (- x + x)" by (rule add [symmetric]) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 29 | also have "\<dots> = - f x + f x" by (simp add: zero) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 30 | finally show "f (- x) = - f x" by (rule add_right_imp_eq) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 31 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 32 | |
| 27443 | 33 | lemma diff: "f (x - y) = f x - f y" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53600diff
changeset | 34 | using add [of x "- y"] by (simp add: minus) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 35 | |
| 27443 | 36 | lemma setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))" | 
| 22942 | 37 | apply (cases "finite A") | 
| 38 | apply (induct set: finite) | |
| 39 | apply (simp add: zero) | |
| 40 | apply (simp add: add) | |
| 41 | apply (simp add: zero) | |
| 42 | done | |
| 43 | ||
| 27443 | 44 | end | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 45 | |
| 60758 | 46 | subsection \<open>Vector spaces\<close> | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 47 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 48 | locale vector_space = | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 49 | fixes scale :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 50 | assumes scale_right_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 51 | "scale a (x + y) = scale a x + scale a y" | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 52 | and scale_left_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 53 | "scale (a + b) x = scale a x + scale b x" | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 54 | and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 55 | and scale_one [simp]: "scale 1 x = x" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 56 | begin | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 57 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 58 | lemma scale_left_commute: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 59 | "scale a (scale b x) = scale b (scale a x)" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 60 | by (simp add: mult.commute) | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 61 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 62 | lemma scale_zero_left [simp]: "scale 0 x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 63 | and scale_minus_left [simp]: "scale (- a) x = - (scale a x)" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 64 | and scale_left_diff_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 65 | "scale (a - b) x = scale a x - scale b x" | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 66 | and scale_setsum_left: "scale (setsum f A) x = (\<Sum>a\<in>A. scale (f a) x)" | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 67 | proof - | 
| 29229 | 68 | interpret s: additive "\<lambda>a. scale a x" | 
| 28823 | 69 | proof qed (rule scale_left_distrib) | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 70 | show "scale 0 x = 0" by (rule s.zero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 71 | show "scale (- a) x = - (scale a x)" by (rule s.minus) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 72 | show "scale (a - b) x = scale a x - scale b x" by (rule s.diff) | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 73 | show "scale (setsum f A) x = (\<Sum>a\<in>A. scale (f a) x)" by (rule s.setsum) | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 74 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 75 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 76 | lemma scale_zero_right [simp]: "scale a 0 = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 77 | and scale_minus_right [simp]: "scale a (- x) = - (scale a x)" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 78 | and scale_right_diff_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 79 | "scale a (x - y) = scale a x - scale a y" | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 80 | and scale_setsum_right: "scale a (setsum f A) = (\<Sum>x\<in>A. scale a (f x))" | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 81 | proof - | 
| 29229 | 82 | interpret s: additive "\<lambda>x. scale a x" | 
| 28823 | 83 | proof qed (rule scale_right_distrib) | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 84 | show "scale a 0 = 0" by (rule s.zero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 85 | show "scale a (- x) = - (scale a x)" by (rule s.minus) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 86 | show "scale a (x - y) = scale a x - scale a y" by (rule s.diff) | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 87 | show "scale a (setsum f A) = (\<Sum>x\<in>A. scale a (f x))" by (rule s.setsum) | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 88 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 89 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 90 | lemma scale_eq_0_iff [simp]: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 91 | "scale a x = 0 \<longleftrightarrow> a = 0 \<or> x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 92 | proof cases | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 93 | assume "a = 0" thus ?thesis by simp | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 94 | next | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 95 | assume anz [simp]: "a \<noteq> 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 96 |   { assume "scale a x = 0"
 | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 97 | hence "scale (inverse a) (scale a x) = 0" by simp | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 98 | hence "x = 0" by simp } | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 99 | thus ?thesis by force | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 100 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 101 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 102 | lemma scale_left_imp_eq: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 103 | "\<lbrakk>a \<noteq> 0; scale a x = scale a y\<rbrakk> \<Longrightarrow> x = y" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 104 | proof - | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 105 | assume nonzero: "a \<noteq> 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 106 | assume "scale a x = scale a y" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 107 | hence "scale a (x - y) = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 108 | by (simp add: scale_right_diff_distrib) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 109 | hence "x - y = 0" by (simp add: nonzero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 110 | thus "x = y" by (simp only: right_minus_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 111 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 112 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 113 | lemma scale_right_imp_eq: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 114 | "\<lbrakk>x \<noteq> 0; scale a x = scale b x\<rbrakk> \<Longrightarrow> a = b" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 115 | proof - | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 116 | assume nonzero: "x \<noteq> 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 117 | assume "scale a x = scale b x" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 118 | hence "scale (a - b) x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 119 | by (simp add: scale_left_diff_distrib) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 120 | hence "a - b = 0" by (simp add: nonzero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 121 | thus "a = b" by (simp only: right_minus_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 122 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 123 | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 124 | lemma scale_cancel_left [simp]: | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 125 | "scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 126 | by (auto intro: scale_left_imp_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 127 | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 128 | lemma scale_cancel_right [simp]: | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 129 | "scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 130 | by (auto intro: scale_right_imp_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 131 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 132 | end | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 133 | |
| 60758 | 134 | subsection \<open>Real vector spaces\<close> | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 135 | |
| 29608 | 136 | class scaleR = | 
| 25062 | 137 | fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75) | 
| 24748 | 138 | begin | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 139 | |
| 20763 | 140 | abbreviation | 
| 25062 | 141 | divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "'/\<^sub>R" 70) | 
| 24748 | 142 | where | 
| 25062 | 143 | "x /\<^sub>R r == scaleR (inverse r) x" | 
| 24748 | 144 | |
| 145 | end | |
| 146 | ||
| 24588 | 147 | class real_vector = scaleR + ab_group_add + | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 148 | assumes scaleR_add_right: "scaleR a (x + y) = scaleR a x + scaleR a y" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 149 | and scaleR_add_left: "scaleR (a + b) x = scaleR a x + scaleR b x" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 150 | and scaleR_scaleR: "scaleR a (scaleR b x) = scaleR (a * b) x" | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 151 | and scaleR_one: "scaleR 1 x = x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 152 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 153 | interpretation real_vector: | 
| 29229 | 154 | vector_space "scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a::real_vector" | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 155 | apply unfold_locales | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 156 | apply (rule scaleR_add_right) | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 157 | apply (rule scaleR_add_left) | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 158 | apply (rule scaleR_scaleR) | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 159 | apply (rule scaleR_one) | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 160 | done | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 161 | |
| 60758 | 162 | text \<open>Recover original theorem names\<close> | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 163 | |
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 164 | lemmas scaleR_left_commute = real_vector.scale_left_commute | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 165 | lemmas scaleR_zero_left = real_vector.scale_zero_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 166 | lemmas scaleR_minus_left = real_vector.scale_minus_left | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 167 | lemmas scaleR_diff_left = real_vector.scale_left_diff_distrib | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 168 | lemmas scaleR_setsum_left = real_vector.scale_setsum_left | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 169 | lemmas scaleR_zero_right = real_vector.scale_zero_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 170 | lemmas scaleR_minus_right = real_vector.scale_minus_right | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 171 | lemmas scaleR_diff_right = real_vector.scale_right_diff_distrib | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 172 | lemmas scaleR_setsum_right = real_vector.scale_setsum_right | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 173 | lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 174 | lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 175 | lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 176 | lemmas scaleR_cancel_left = real_vector.scale_cancel_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 177 | lemmas scaleR_cancel_right = real_vector.scale_cancel_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 178 | |
| 60758 | 179 | text \<open>Legacy names\<close> | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 180 | |
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 181 | lemmas scaleR_left_distrib = scaleR_add_left | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 182 | lemmas scaleR_right_distrib = scaleR_add_right | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 183 | lemmas scaleR_left_diff_distrib = scaleR_diff_left | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 184 | lemmas scaleR_right_diff_distrib = scaleR_diff_right | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 185 | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 186 | lemma scaleR_minus1_left [simp]: | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 187 | fixes x :: "'a::real_vector" | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 188 | shows "scaleR (-1) x = - x" | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 189 | using scaleR_minus_left [of 1 x] by simp | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 190 | |
| 24588 | 191 | class real_algebra = real_vector + ring + | 
| 25062 | 192 | assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)" | 
| 193 | and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)" | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 194 | |
| 24588 | 195 | class real_algebra_1 = real_algebra + ring_1 | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 196 | |
| 24588 | 197 | class real_div_algebra = real_algebra_1 + division_ring | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 198 | |
| 24588 | 199 | class real_field = real_div_algebra + field | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 200 | |
| 30069 | 201 | instantiation real :: real_field | 
| 202 | begin | |
| 203 | ||
| 204 | definition | |
| 205 | real_scaleR_def [simp]: "scaleR a x = a * x" | |
| 206 | ||
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 207 | instance proof | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 208 | qed (simp_all add: algebra_simps) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 209 | |
| 30069 | 210 | end | 
| 211 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 212 | interpretation scaleR_left: additive "(\<lambda>a. scaleR a x::'a::real_vector)" | 
| 28823 | 213 | proof qed (rule scaleR_left_distrib) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 214 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 215 | interpretation scaleR_right: additive "(\<lambda>x. scaleR a x::'a::real_vector)" | 
| 28823 | 216 | proof qed (rule scaleR_right_distrib) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 217 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 218 | lemma nonzero_inverse_scaleR_distrib: | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 219 | fixes x :: "'a::real_div_algebra" shows | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 220 | "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)" | 
| 20763 | 221 | by (rule inverse_unique, simp) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 222 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 223 | lemma inverse_scaleR_distrib: | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59741diff
changeset | 224 |   fixes x :: "'a::{real_div_algebra, division_ring}"
 | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 225 | shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)" | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 226 | apply (case_tac "a = 0", simp) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 227 | apply (case_tac "x = 0", simp) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 228 | apply (erule (1) nonzero_inverse_scaleR_distrib) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 229 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 230 | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 231 | lemma real_vector_affinity_eq: | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 232 | fixes x :: "'a :: real_vector" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 233 | assumes m0: "m \<noteq> 0" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 234 | shows "m *\<^sub>R x + c = y \<longleftrightarrow> x = inverse m *\<^sub>R y - (inverse m *\<^sub>R c)" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 235 | proof | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 236 | assume h: "m *\<^sub>R x + c = y" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 237 | hence "m *\<^sub>R x = y - c" by (simp add: field_simps) | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 238 | hence "inverse m *\<^sub>R (m *\<^sub>R x) = inverse m *\<^sub>R (y - c)" by simp | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 239 | then show "x = inverse m *\<^sub>R y - (inverse m *\<^sub>R c)" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 240 | using m0 | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 241 | by (simp add: real_vector.scale_right_diff_distrib) | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 242 | next | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 243 | assume h: "x = inverse m *\<^sub>R y - (inverse m *\<^sub>R c)" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 244 | show "m *\<^sub>R x + c = y" unfolding h | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 245 | using m0 by (simp add: real_vector.scale_right_diff_distrib) | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 246 | qed | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 247 | |
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 248 | lemma real_vector_eq_affinity: | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 249 | fixes x :: "'a :: real_vector" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 250 | shows "m \<noteq> 0 ==> (y = m *\<^sub>R x + c \<longleftrightarrow> inverse m *\<^sub>R y - (inverse m *\<^sub>R c) = x)" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 251 | using real_vector_affinity_eq[where m=m and x=x and y=y and c=c] | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 252 | by metis | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 253 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 254 | |
| 60758 | 255 | subsection \<open>Embedding of the Reals into any @{text real_algebra_1}:
 | 
| 256 | @{term of_real}\<close>
 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 257 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 258 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 259 | of_real :: "real \<Rightarrow> 'a::real_algebra_1" where | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 260 | "of_real r = scaleR r 1" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 261 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 262 | lemma scaleR_conv_of_real: "scaleR r x = of_real r * x" | 
| 20763 | 263 | by (simp add: of_real_def) | 
| 264 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 265 | lemma of_real_0 [simp]: "of_real 0 = 0" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 266 | by (simp add: of_real_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 267 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 268 | lemma of_real_1 [simp]: "of_real 1 = 1" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 269 | by (simp add: of_real_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 270 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 271 | lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 272 | by (simp add: of_real_def scaleR_left_distrib) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 273 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 274 | lemma of_real_minus [simp]: "of_real (- x) = - of_real x" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 275 | by (simp add: of_real_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 276 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 277 | lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 278 | by (simp add: of_real_def scaleR_left_diff_distrib) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 279 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 280 | lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 281 | by (simp add: of_real_def mult.commute) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 282 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 283 | lemma of_real_setsum[simp]: "of_real (setsum f s) = (\<Sum>x\<in>s. of_real (f x))" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 284 | by (induct s rule: infinite_finite_induct) auto | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 285 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 286 | lemma of_real_setprod[simp]: "of_real (setprod f s) = (\<Prod>x\<in>s. of_real (f x))" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 287 | by (induct s rule: infinite_finite_induct) auto | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 288 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 289 | lemma nonzero_of_real_inverse: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 290 | "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) = | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 291 | inverse (of_real x :: 'a::real_div_algebra)" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 292 | by (simp add: of_real_def nonzero_inverse_scaleR_distrib) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 293 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 294 | lemma of_real_inverse [simp]: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 295 | "of_real (inverse x) = | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59741diff
changeset | 296 |    inverse (of_real x :: 'a::{real_div_algebra, division_ring})"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 297 | by (simp add: of_real_def inverse_scaleR_distrib) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 298 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 299 | lemma nonzero_of_real_divide: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 300 | "y \<noteq> 0 \<Longrightarrow> of_real (x / y) = | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 301 | (of_real x / of_real y :: 'a::real_field)" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 302 | by (simp add: divide_inverse nonzero_of_real_inverse) | 
| 20722 | 303 | |
| 304 | lemma of_real_divide [simp]: | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 305 | "of_real (x / y) = | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59741diff
changeset | 306 |    (of_real x / of_real y :: 'a::{real_field, field})"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 307 | by (simp add: divide_inverse) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 308 | |
| 20722 | 309 | lemma of_real_power [simp]: | 
| 31017 | 310 |   "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n"
 | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 311 | by (induct n) simp_all | 
| 20722 | 312 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 313 | lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)" | 
| 35216 | 314 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 315 | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 316 | lemma inj_of_real: | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 317 | "inj of_real" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 318 | by (auto intro: injI) | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 319 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 320 | lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified] | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 321 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 322 | lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 323 | proof | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 324 | fix r | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 325 | show "of_real r = id r" | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 326 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 327 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 328 | |
| 60758 | 329 | text\<open>Collapse nested embeddings\<close> | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 330 | lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n" | 
| 20772 | 331 | by (induct n) auto | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 332 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 333 | lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 334 | by (cases z rule: int_diff_cases, simp) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 335 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 336 | lemma of_real_real_of_nat_eq [simp]: "of_real (real n) = of_nat n" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 337 | by (simp add: real_of_nat_def) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 338 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 339 | lemma of_real_real_of_int_eq [simp]: "of_real (real z) = of_int z" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 340 | by (simp add: real_of_int_def) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 341 | |
| 60155 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
60026diff
changeset | 342 | lemma of_real_numeral [simp]: "of_real (numeral w) = numeral w" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 343 | using of_real_of_int_eq [of "numeral w"] by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 344 | |
| 60155 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
60026diff
changeset | 345 | lemma of_real_neg_numeral [simp]: "of_real (- numeral w) = - numeral w" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 346 | using of_real_of_int_eq [of "- numeral w"] by simp | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 347 | |
| 60758 | 348 | text\<open>Every real algebra has characteristic zero\<close> | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 349 | |
| 22912 | 350 | instance real_algebra_1 < ring_char_0 | 
| 351 | proof | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 352 | from inj_of_real inj_of_nat have "inj (of_real \<circ> of_nat)" by (rule inj_comp) | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 353 | then show "inj (of_nat :: nat \<Rightarrow> 'a)" by (simp add: comp_def) | 
| 22912 | 354 | qed | 
| 355 | ||
| 27553 | 356 | instance real_field < field_char_0 .. | 
| 357 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 358 | |
| 60758 | 359 | subsection \<open>The Set of Real Numbers\<close> | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 360 | |
| 37767 | 361 | definition Reals :: "'a::real_algebra_1 set" where | 
| 362 | "Reals = range of_real" | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 363 | |
| 21210 | 364 | notation (xsymbols) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 365 |   Reals  ("\<real>")
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 366 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 367 | lemma Reals_of_real [simp]: "of_real r \<in> Reals" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 368 | by (simp add: Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 369 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 370 | lemma Reals_of_int [simp]: "of_int z \<in> Reals" | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 371 | by (subst of_real_of_int_eq [symmetric], rule Reals_of_real) | 
| 20718 | 372 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 373 | lemma Reals_of_nat [simp]: "of_nat n \<in> Reals" | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 374 | by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real) | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 375 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 376 | lemma Reals_numeral [simp]: "numeral w \<in> Reals" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 377 | by (subst of_real_numeral [symmetric], rule Reals_of_real) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 378 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 379 | lemma Reals_0 [simp]: "0 \<in> Reals" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 380 | apply (unfold Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 381 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 382 | apply (rule of_real_0 [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 383 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 384 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 385 | lemma Reals_1 [simp]: "1 \<in> Reals" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 386 | apply (unfold Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 387 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 388 | apply (rule of_real_1 [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 389 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 390 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 391 | lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 392 | apply (auto simp add: Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 393 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 394 | apply (rule of_real_add [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 395 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 396 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 397 | lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 398 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 399 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 400 | apply (rule of_real_minus [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 401 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 402 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 403 | lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 404 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 405 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 406 | apply (rule of_real_diff [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 407 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 408 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 409 | lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 410 | apply (auto simp add: Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 411 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 412 | apply (rule of_real_mult [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 413 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 414 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 415 | lemma nonzero_Reals_inverse: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 416 | fixes a :: "'a::real_div_algebra" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 417 | shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 418 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 419 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 420 | apply (erule nonzero_of_real_inverse [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 421 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 422 | |
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 423 | lemma Reals_inverse: | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59741diff
changeset | 424 |   fixes a :: "'a::{real_div_algebra, division_ring}"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 425 | shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 426 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 427 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 428 | apply (rule of_real_inverse [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 429 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 430 | |
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 431 | lemma Reals_inverse_iff [simp]: | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59741diff
changeset | 432 |   fixes x:: "'a :: {real_div_algebra, division_ring}"
 | 
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 433 | shows "inverse x \<in> \<real> \<longleftrightarrow> x \<in> \<real>" | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 434 | by (metis Reals_inverse inverse_inverse_eq) | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 435 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 436 | lemma nonzero_Reals_divide: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 437 | fixes a b :: "'a::real_field" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 438 | shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 439 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 440 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 441 | apply (erule nonzero_of_real_divide [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 442 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 443 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 444 | lemma Reals_divide [simp]: | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59741diff
changeset | 445 |   fixes a b :: "'a::{real_field, field}"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 446 | shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 447 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 448 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 449 | apply (rule of_real_divide [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 450 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 451 | |
| 20722 | 452 | lemma Reals_power [simp]: | 
| 31017 | 453 |   fixes a :: "'a::{real_algebra_1}"
 | 
| 20722 | 454 | shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals" | 
| 455 | apply (auto simp add: Reals_def) | |
| 456 | apply (rule range_eqI) | |
| 457 | apply (rule of_real_power [symmetric]) | |
| 458 | done | |
| 459 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 460 | lemma Reals_cases [cases set: Reals]: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 461 | assumes "q \<in> \<real>" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 462 | obtains (of_real) r where "q = of_real r" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 463 | unfolding Reals_def | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 464 | proof - | 
| 60758 | 465 | from \<open>q \<in> \<real>\<close> have "q \<in> range of_real" unfolding Reals_def . | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 466 | then obtain r where "q = of_real r" .. | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 467 | then show thesis .. | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 468 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 469 | |
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 470 | lemma setsum_in_Reals [intro,simp]: | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 471 | assumes "\<And>i. i \<in> s \<Longrightarrow> f i \<in> \<real>" shows "setsum f s \<in> \<real>" | 
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 472 | proof (cases "finite s") | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 473 | case True then show ?thesis using assms | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 474 | by (induct s rule: finite_induct) auto | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 475 | next | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 476 | case False then show ?thesis using assms | 
| 57418 | 477 | by (metis Reals_0 setsum.infinite) | 
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 478 | qed | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 479 | |
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 480 | lemma setprod_in_Reals [intro,simp]: | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 481 | assumes "\<And>i. i \<in> s \<Longrightarrow> f i \<in> \<real>" shows "setprod f s \<in> \<real>" | 
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 482 | proof (cases "finite s") | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 483 | case True then show ?thesis using assms | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 484 | by (induct s rule: finite_induct) auto | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 485 | next | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 486 | case False then show ?thesis using assms | 
| 57418 | 487 | by (metis Reals_1 setprod.infinite) | 
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 488 | qed | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 489 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 490 | lemma Reals_induct [case_names of_real, induct set: Reals]: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 491 | "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 492 | by (rule Reals_cases) auto | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 493 | |
| 60758 | 494 | subsection \<open>Ordered real vector spaces\<close> | 
| 54778 | 495 | |
| 496 | class ordered_real_vector = real_vector + ordered_ab_group_add + | |
| 497 | assumes scaleR_left_mono: "x \<le> y \<Longrightarrow> 0 \<le> a \<Longrightarrow> a *\<^sub>R x \<le> a *\<^sub>R y" | |
| 498 | assumes scaleR_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> x \<Longrightarrow> a *\<^sub>R x \<le> b *\<^sub>R x" | |
| 499 | begin | |
| 500 | ||
| 501 | lemma scaleR_mono: | |
| 502 | "a \<le> b \<Longrightarrow> x \<le> y \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> x \<Longrightarrow> a *\<^sub>R x \<le> b *\<^sub>R y" | |
| 503 | apply (erule scaleR_right_mono [THEN order_trans], assumption) | |
| 504 | apply (erule scaleR_left_mono, assumption) | |
| 505 | done | |
| 506 | ||
| 507 | lemma scaleR_mono': | |
| 508 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a *\<^sub>R c \<le> b *\<^sub>R d" | |
| 509 | by (rule scaleR_mono) (auto intro: order.trans) | |
| 510 | ||
| 54785 | 511 | lemma pos_le_divideRI: | 
| 512 | assumes "0 < c" | |
| 513 | assumes "c *\<^sub>R a \<le> b" | |
| 514 | shows "a \<le> b /\<^sub>R c" | |
| 515 | proof - | |
| 516 | from scaleR_left_mono[OF assms(2)] assms(1) | |
| 517 | have "c *\<^sub>R a /\<^sub>R c \<le> b /\<^sub>R c" | |
| 518 | by simp | |
| 519 | with assms show ?thesis | |
| 520 | by (simp add: scaleR_one scaleR_scaleR inverse_eq_divide) | |
| 521 | qed | |
| 522 | ||
| 523 | lemma pos_le_divideR_eq: | |
| 524 | assumes "0 < c" | |
| 525 | shows "a \<le> b /\<^sub>R c \<longleftrightarrow> c *\<^sub>R a \<le> b" | |
| 526 | proof rule | |
| 527 | assume "a \<le> b /\<^sub>R c" | |
| 528 | from scaleR_left_mono[OF this] assms | |
| 529 | have "c *\<^sub>R a \<le> c *\<^sub>R (b /\<^sub>R c)" | |
| 530 | by simp | |
| 531 | with assms show "c *\<^sub>R a \<le> b" | |
| 532 | by (simp add: scaleR_one scaleR_scaleR inverse_eq_divide) | |
| 533 | qed (rule pos_le_divideRI[OF assms]) | |
| 534 | ||
| 535 | lemma scaleR_image_atLeastAtMost: | |
| 536 |   "c > 0 \<Longrightarrow> scaleR c ` {x..y} = {c *\<^sub>R x..c *\<^sub>R y}"
 | |
| 537 | apply (auto intro!: scaleR_left_mono) | |
| 538 | apply (rule_tac x = "inverse c *\<^sub>R xa" in image_eqI) | |
| 539 | apply (simp_all add: pos_le_divideR_eq[symmetric] scaleR_scaleR scaleR_one) | |
| 540 | done | |
| 541 | ||
| 54778 | 542 | end | 
| 543 | ||
| 60303 | 544 | lemma neg_le_divideR_eq: | 
| 545 | fixes a :: "'a :: ordered_real_vector" | |
| 546 | assumes "c < 0" | |
| 547 | shows "a \<le> b /\<^sub>R c \<longleftrightarrow> b \<le> c *\<^sub>R a" | |
| 548 | using pos_le_divideR_eq [of "-c" a "-b"] assms | |
| 549 | by simp | |
| 550 | ||
| 54778 | 551 | lemma scaleR_nonneg_nonneg: "0 \<le> a \<Longrightarrow> 0 \<le> (x::'a::ordered_real_vector) \<Longrightarrow> 0 \<le> a *\<^sub>R x" | 
| 552 | using scaleR_left_mono [of 0 x a] | |
| 553 | by simp | |
| 554 | ||
| 555 | lemma scaleR_nonneg_nonpos: "0 \<le> a \<Longrightarrow> (x::'a::ordered_real_vector) \<le> 0 \<Longrightarrow> a *\<^sub>R x \<le> 0" | |
| 556 | using scaleR_left_mono [of x 0 a] by simp | |
| 557 | ||
| 558 | lemma scaleR_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> (x::'a::ordered_real_vector) \<Longrightarrow> a *\<^sub>R x \<le> 0" | |
| 559 | using scaleR_right_mono [of a 0 x] by simp | |
| 560 | ||
| 561 | lemma split_scaleR_neg_le: "(0 \<le> a & x \<le> 0) | (a \<le> 0 & 0 \<le> x) \<Longrightarrow> | |
| 562 | a *\<^sub>R (x::'a::ordered_real_vector) \<le> 0" | |
| 563 | by (auto simp add: scaleR_nonneg_nonpos scaleR_nonpos_nonneg) | |
| 564 | ||
| 565 | lemma le_add_iff1: | |
| 566 | fixes c d e::"'a::ordered_real_vector" | |
| 567 | shows "a *\<^sub>R e + c \<le> b *\<^sub>R e + d \<longleftrightarrow> (a - b) *\<^sub>R e + c \<le> d" | |
| 568 | by (simp add: algebra_simps) | |
| 569 | ||
| 570 | lemma le_add_iff2: | |
| 571 | fixes c d e::"'a::ordered_real_vector" | |
| 572 | shows "a *\<^sub>R e + c \<le> b *\<^sub>R e + d \<longleftrightarrow> c \<le> (b - a) *\<^sub>R e + d" | |
| 573 | by (simp add: algebra_simps) | |
| 574 | ||
| 575 | lemma scaleR_left_mono_neg: | |
| 576 | fixes a b::"'a::ordered_real_vector" | |
| 577 | shows "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c *\<^sub>R a \<le> c *\<^sub>R b" | |
| 578 | apply (drule scaleR_left_mono [of _ _ "- c"]) | |
| 579 | apply simp_all | |
| 580 | done | |
| 581 | ||
| 582 | lemma scaleR_right_mono_neg: | |
| 583 | fixes c::"'a::ordered_real_vector" | |
| 584 | shows "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a *\<^sub>R c \<le> b *\<^sub>R c" | |
| 585 | apply (drule scaleR_right_mono [of _ _ "- c"]) | |
| 586 | apply simp_all | |
| 587 | done | |
| 588 | ||
| 589 | lemma scaleR_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> (b::'a::ordered_real_vector) \<le> 0 \<Longrightarrow> 0 \<le> a *\<^sub>R b" | |
| 590 | using scaleR_right_mono_neg [of a 0 b] by simp | |
| 591 | ||
| 592 | lemma split_scaleR_pos_le: | |
| 593 | fixes b::"'a::ordered_real_vector" | |
| 594 | shows "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a *\<^sub>R b" | |
| 595 | by (auto simp add: scaleR_nonneg_nonneg scaleR_nonpos_nonpos) | |
| 596 | ||
| 597 | lemma zero_le_scaleR_iff: | |
| 598 | fixes b::"'a::ordered_real_vector" | |
| 599 | shows "0 \<le> a *\<^sub>R b \<longleftrightarrow> 0 < a \<and> 0 \<le> b \<or> a < 0 \<and> b \<le> 0 \<or> a = 0" (is "?lhs = ?rhs") | |
| 600 | proof cases | |
| 601 | assume "a \<noteq> 0" | |
| 602 | show ?thesis | |
| 603 | proof | |
| 604 | assume lhs: ?lhs | |
| 605 |     {
 | |
| 606 | assume "0 < a" | |
| 607 | with lhs have "inverse a *\<^sub>R 0 \<le> inverse a *\<^sub>R (a *\<^sub>R b)" | |
| 608 | by (intro scaleR_mono) auto | |
| 60758 | 609 | hence ?rhs using \<open>0 < a\<close> | 
| 54778 | 610 | by simp | 
| 611 |     } moreover {
 | |
| 612 | assume "0 > a" | |
| 613 | with lhs have "- inverse a *\<^sub>R 0 \<le> - inverse a *\<^sub>R (a *\<^sub>R b)" | |
| 614 | by (intro scaleR_mono) auto | |
| 60758 | 615 | hence ?rhs using \<open>0 > a\<close> | 
| 54778 | 616 | by simp | 
| 60758 | 617 | } ultimately show ?rhs using \<open>a \<noteq> 0\<close> by arith | 
| 618 | qed (auto simp: not_le \<open>a \<noteq> 0\<close> intro!: split_scaleR_pos_le) | |
| 54778 | 619 | qed simp | 
| 620 | ||
| 621 | lemma scaleR_le_0_iff: | |
| 622 | fixes b::"'a::ordered_real_vector" | |
| 623 | shows "a *\<^sub>R b \<le> 0 \<longleftrightarrow> 0 < a \<and> b \<le> 0 \<or> a < 0 \<and> 0 \<le> b \<or> a = 0" | |
| 624 | by (insert zero_le_scaleR_iff [of "-a" b]) force | |
| 625 | ||
| 626 | lemma scaleR_le_cancel_left: | |
| 627 | fixes b::"'a::ordered_real_vector" | |
| 628 | shows "c *\<^sub>R a \<le> c *\<^sub>R b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 629 | by (auto simp add: neq_iff scaleR_left_mono scaleR_left_mono_neg | |
| 630 | dest: scaleR_left_mono[where a="inverse c"] scaleR_left_mono_neg[where c="inverse c"]) | |
| 631 | ||
| 632 | lemma scaleR_le_cancel_left_pos: | |
| 633 | fixes b::"'a::ordered_real_vector" | |
| 634 | shows "0 < c \<Longrightarrow> c *\<^sub>R a \<le> c *\<^sub>R b \<longleftrightarrow> a \<le> b" | |
| 635 | by (auto simp: scaleR_le_cancel_left) | |
| 636 | ||
| 637 | lemma scaleR_le_cancel_left_neg: | |
| 638 | fixes b::"'a::ordered_real_vector" | |
| 639 | shows "c < 0 \<Longrightarrow> c *\<^sub>R a \<le> c *\<^sub>R b \<longleftrightarrow> b \<le> a" | |
| 640 | by (auto simp: scaleR_le_cancel_left) | |
| 641 | ||
| 642 | lemma scaleR_left_le_one_le: | |
| 643 | fixes x::"'a::ordered_real_vector" and a::real | |
| 644 | shows "0 \<le> x \<Longrightarrow> a \<le> 1 \<Longrightarrow> a *\<^sub>R x \<le> x" | |
| 645 | using scaleR_right_mono[of a 1 x] by simp | |
| 646 | ||
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 647 | |
| 60758 | 648 | subsection \<open>Real normed vector spaces\<close> | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 649 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 650 | class dist = | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 651 | fixes dist :: "'a \<Rightarrow> 'a \<Rightarrow> real" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 652 | |
| 29608 | 653 | class norm = | 
| 22636 | 654 | fixes norm :: "'a \<Rightarrow> real" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 655 | |
| 24520 | 656 | class sgn_div_norm = scaleR + norm + sgn + | 
| 25062 | 657 | assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x" | 
| 24506 | 658 | |
| 31289 | 659 | class dist_norm = dist + norm + minus + | 
| 660 | assumes dist_norm: "dist x y = norm (x - y)" | |
| 661 | ||
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 662 | class open_dist = "open" + dist + | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 663 | assumes open_dist: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 664 | |
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 665 | class real_normed_vector = real_vector + sgn_div_norm + dist_norm + open_dist + | 
| 51002 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 666 | assumes norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0" | 
| 25062 | 667 | and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y" | 
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 668 | and norm_scaleR [simp]: "norm (scaleR a x) = \<bar>a\<bar> * norm x" | 
| 51002 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 669 | begin | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 670 | |
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 671 | lemma norm_ge_zero [simp]: "0 \<le> norm x" | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 672 | proof - | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 673 | have "0 = norm (x + -1 *\<^sub>R x)" | 
| 51002 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 674 | using scaleR_add_left[of 1 "-1" x] norm_scaleR[of 0 x] by (simp add: scaleR_one) | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 675 | also have "\<dots> \<le> norm x + norm (-1 *\<^sub>R x)" by (rule norm_triangle_ineq) | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 676 | finally show ?thesis by simp | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 677 | qed | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 678 | |
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 679 | end | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 680 | |
| 24588 | 681 | class real_normed_algebra = real_algebra + real_normed_vector + | 
| 25062 | 682 | assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 683 | |
| 24588 | 684 | class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra + | 
| 25062 | 685 | assumes norm_one [simp]: "norm 1 = 1" | 
| 22852 | 686 | |
| 24588 | 687 | class real_normed_div_algebra = real_div_algebra + real_normed_vector + | 
| 25062 | 688 | assumes norm_mult: "norm (x * y) = norm x * norm y" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 689 | |
| 24588 | 690 | class real_normed_field = real_field + real_normed_div_algebra | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 691 | |
| 22852 | 692 | instance real_normed_div_algebra < real_normed_algebra_1 | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 693 | proof | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 694 | fix x y :: 'a | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 695 | show "norm (x * y) \<le> norm x * norm y" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 696 | by (simp add: norm_mult) | 
| 22852 | 697 | next | 
| 698 | have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)" | |
| 699 | by (rule norm_mult) | |
| 700 | thus "norm (1::'a) = 1" by simp | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 701 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 702 | |
| 22852 | 703 | lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 704 | by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 705 | |
| 22852 | 706 | lemma zero_less_norm_iff [simp]: | 
| 707 | fixes x :: "'a::real_normed_vector" | |
| 708 | shows "(0 < norm x) = (x \<noteq> 0)" | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 709 | by (simp add: order_less_le) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 710 | |
| 22852 | 711 | lemma norm_not_less_zero [simp]: | 
| 712 | fixes x :: "'a::real_normed_vector" | |
| 713 | shows "\<not> norm x < 0" | |
| 20828 | 714 | by (simp add: linorder_not_less) | 
| 715 | ||
| 22852 | 716 | lemma norm_le_zero_iff [simp]: | 
| 717 | fixes x :: "'a::real_normed_vector" | |
| 718 | shows "(norm x \<le> 0) = (x = 0)" | |
| 20828 | 719 | by (simp add: order_le_less) | 
| 720 | ||
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 721 | lemma norm_minus_cancel [simp]: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 722 | fixes x :: "'a::real_normed_vector" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 723 | shows "norm (- x) = norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 724 | proof - | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 725 | have "norm (- x) = norm (scaleR (- 1) x)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 726 | by (simp only: scaleR_minus_left scaleR_one) | 
| 20533 | 727 | also have "\<dots> = \<bar>- 1\<bar> * norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 728 | by (rule norm_scaleR) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 729 | finally show ?thesis by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 730 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 731 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 732 | lemma norm_minus_commute: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 733 | fixes a b :: "'a::real_normed_vector" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 734 | shows "norm (a - b) = norm (b - a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 735 | proof - | 
| 22898 | 736 | have "norm (- (b - a)) = norm (b - a)" | 
| 737 | by (rule norm_minus_cancel) | |
| 738 | thus ?thesis by simp | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 739 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 740 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 741 | lemma norm_triangle_ineq2: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 742 | fixes a b :: "'a::real_normed_vector" | 
| 20533 | 743 | shows "norm a - norm b \<le> norm (a - b)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 744 | proof - | 
| 20533 | 745 | have "norm (a - b + b) \<le> norm (a - b) + norm b" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 746 | by (rule norm_triangle_ineq) | 
| 22898 | 747 | thus ?thesis by simp | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 748 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 749 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 750 | lemma norm_triangle_ineq3: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 751 | fixes a b :: "'a::real_normed_vector" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 752 | shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 753 | apply (subst abs_le_iff) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 754 | apply auto | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 755 | apply (rule norm_triangle_ineq2) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 756 | apply (subst norm_minus_commute) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 757 | apply (rule norm_triangle_ineq2) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 758 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 759 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 760 | lemma norm_triangle_ineq4: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 761 | fixes a b :: "'a::real_normed_vector" | 
| 20533 | 762 | shows "norm (a - b) \<le> norm a + norm b" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 763 | proof - | 
| 22898 | 764 | have "norm (a + - b) \<le> norm a + norm (- b)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 765 | by (rule norm_triangle_ineq) | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53600diff
changeset | 766 | then show ?thesis by simp | 
| 22898 | 767 | qed | 
| 768 | ||
| 769 | lemma norm_diff_ineq: | |
| 770 | fixes a b :: "'a::real_normed_vector" | |
| 771 | shows "norm a - norm b \<le> norm (a + b)" | |
| 772 | proof - | |
| 773 | have "norm a - norm (- b) \<le> norm (a - - b)" | |
| 774 | by (rule norm_triangle_ineq2) | |
| 775 | thus ?thesis by simp | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 776 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 777 | |
| 20551 | 778 | lemma norm_diff_triangle_ineq: | 
| 779 | fixes a b c d :: "'a::real_normed_vector" | |
| 780 | shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)" | |
| 781 | proof - | |
| 782 | have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53600diff
changeset | 783 | by (simp add: algebra_simps) | 
| 20551 | 784 | also have "\<dots> \<le> norm (a - c) + norm (b - d)" | 
| 785 | by (rule norm_triangle_ineq) | |
| 786 | finally show ?thesis . | |
| 787 | qed | |
| 788 | ||
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 789 | lemma norm_diff_triangle_le: | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 790 | fixes x y z :: "'a::real_normed_vector" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 791 | assumes "norm (x - y) \<le> e1" "norm (y - z) \<le> e2" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 792 | shows "norm (x - z) \<le> e1 + e2" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 793 | using norm_diff_triangle_ineq [of x y y z] assms by simp | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 794 | |
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 795 | lemma norm_diff_triangle_less: | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 796 | fixes x y z :: "'a::real_normed_vector" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 797 | assumes "norm (x - y) < e1" "norm (y - z) < e2" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 798 | shows "norm (x - z) < e1 + e2" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 799 | using norm_diff_triangle_ineq [of x y y z] assms by simp | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 800 | |
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 801 | lemma norm_triangle_mono: | 
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 802 | fixes a b :: "'a::real_normed_vector" | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 803 | shows "\<lbrakk>norm a \<le> r; norm b \<le> s\<rbrakk> \<Longrightarrow> norm (a + b) \<le> r + s" | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 804 | by (metis add_mono_thms_linordered_semiring(1) norm_triangle_ineq order.trans) | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 805 | |
| 56194 | 806 | lemma norm_setsum: | 
| 807 | fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" | |
| 808 | shows "norm (setsum f A) \<le> (\<Sum>i\<in>A. norm (f i))" | |
| 809 | by (induct A rule: infinite_finite_induct) (auto intro: norm_triangle_mono) | |
| 810 | ||
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56194diff
changeset | 811 | lemma setsum_norm_le: | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56194diff
changeset | 812 | fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56194diff
changeset | 813 | assumes fg: "\<forall>x \<in> S. norm (f x) \<le> g x" | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56194diff
changeset | 814 | shows "norm (setsum f S) \<le> setsum g S" | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56194diff
changeset | 815 | by (rule order_trans [OF norm_setsum setsum_mono]) (simp add: fg) | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56194diff
changeset | 816 | |
| 22857 | 817 | lemma abs_norm_cancel [simp]: | 
| 818 | fixes a :: "'a::real_normed_vector" | |
| 819 | shows "\<bar>norm a\<bar> = norm a" | |
| 820 | by (rule abs_of_nonneg [OF norm_ge_zero]) | |
| 821 | ||
| 22880 | 822 | lemma norm_add_less: | 
| 823 | fixes x y :: "'a::real_normed_vector" | |
| 824 | shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s" | |
| 825 | by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono]) | |
| 826 | ||
| 827 | lemma norm_mult_less: | |
| 828 | fixes x y :: "'a::real_normed_algebra" | |
| 829 | shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s" | |
| 830 | apply (rule order_le_less_trans [OF norm_mult_ineq]) | |
| 831 | apply (simp add: mult_strict_mono') | |
| 832 | done | |
| 833 | ||
| 22857 | 834 | lemma norm_of_real [simp]: | 
| 835 | "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>" | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 836 | unfolding of_real_def by simp | 
| 20560 | 837 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 838 | lemma norm_numeral [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 839 | "norm (numeral w::'a::real_normed_algebra_1) = numeral w" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 840 | by (subst of_real_numeral [symmetric], subst norm_of_real, simp) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 841 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 842 | lemma norm_neg_numeral [simp]: | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 843 | "norm (- numeral w::'a::real_normed_algebra_1) = numeral w" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 844 | by (subst of_real_neg_numeral [symmetric], subst norm_of_real, simp) | 
| 22876 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 845 | |
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 846 | lemma norm_of_int [simp]: | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 847 | "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>" | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 848 | by (subst of_real_of_int_eq [symmetric], rule norm_of_real) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 849 | |
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 850 | lemma norm_of_nat [simp]: | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 851 | "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n" | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 852 | apply (subst of_real_of_nat_eq [symmetric]) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 853 | apply (subst norm_of_real, simp) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 854 | done | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 855 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 856 | lemma nonzero_norm_inverse: | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 857 | fixes a :: "'a::real_normed_div_algebra" | 
| 20533 | 858 | shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 859 | apply (rule inverse_unique [symmetric]) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 860 | apply (simp add: norm_mult [symmetric]) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 861 | done | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 862 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 863 | lemma norm_inverse: | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59741diff
changeset | 864 |   fixes a :: "'a::{real_normed_div_algebra, division_ring}"
 | 
| 20533 | 865 | shows "norm (inverse a) = inverse (norm a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 866 | apply (case_tac "a = 0", simp) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 867 | apply (erule nonzero_norm_inverse) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 868 | done | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 869 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 870 | lemma nonzero_norm_divide: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 871 | fixes a b :: "'a::real_normed_field" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 872 | shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 873 | by (simp add: divide_inverse norm_mult nonzero_norm_inverse) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 874 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 875 | lemma norm_divide: | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59741diff
changeset | 876 |   fixes a b :: "'a::{real_normed_field, field}"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 877 | shows "norm (a / b) = norm a / norm b" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 878 | by (simp add: divide_inverse norm_mult norm_inverse) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 879 | |
| 22852 | 880 | lemma norm_power_ineq: | 
| 31017 | 881 |   fixes x :: "'a::{real_normed_algebra_1}"
 | 
| 22852 | 882 | shows "norm (x ^ n) \<le> norm x ^ n" | 
| 883 | proof (induct n) | |
| 884 | case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp | |
| 885 | next | |
| 886 | case (Suc n) | |
| 887 | have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)" | |
| 888 | by (rule norm_mult_ineq) | |
| 889 | also from Suc have "\<dots> \<le> norm x * norm x ^ n" | |
| 890 | using norm_ge_zero by (rule mult_left_mono) | |
| 891 | finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 892 | by simp | 
| 22852 | 893 | qed | 
| 894 | ||
| 20684 | 895 | lemma norm_power: | 
| 31017 | 896 |   fixes x :: "'a::{real_normed_div_algebra}"
 | 
| 20684 | 897 | shows "norm (x ^ n) = norm x ^ n" | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 898 | by (induct n) (simp_all add: norm_mult) | 
| 20684 | 899 | |
| 60762 | 900 | lemma norm_mult_numeral1 [simp]: | 
| 901 |   fixes a b :: "'a::{real_normed_field, field}"
 | |
| 902 | shows "norm (numeral w * a) = numeral w * norm a" | |
| 903 | by (simp add: norm_mult) | |
| 904 | ||
| 905 | lemma norm_mult_numeral2 [simp]: | |
| 906 |   fixes a b :: "'a::{real_normed_field, field}"
 | |
| 907 | shows "norm (a * numeral w) = norm a * numeral w" | |
| 908 | by (simp add: norm_mult) | |
| 909 | ||
| 910 | lemma norm_divide_numeral [simp]: | |
| 911 |   fixes a b :: "'a::{real_normed_field, field}"
 | |
| 912 | shows "norm (a / numeral w) = norm a / numeral w" | |
| 913 | by (simp add: norm_divide) | |
| 914 | ||
| 915 | lemma norm_of_real_diff [simp]: | |
| 916 | "norm (of_real b - of_real a :: 'a::real_normed_algebra_1) \<le> \<bar>b - a\<bar>" | |
| 917 | by (metis norm_of_real of_real_diff order_refl) | |
| 918 | ||
| 60758 | 919 | text\<open>Despite a superficial resemblance, @{text norm_eq_1} is not relevant.\<close>
 | 
| 59613 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59587diff
changeset | 920 | lemma square_norm_one: | 
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59587diff
changeset | 921 | fixes x :: "'a::real_normed_div_algebra" | 
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59587diff
changeset | 922 | assumes "x^2 = 1" shows "norm x = 1" | 
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59587diff
changeset | 923 | by (metis assms norm_minus_cancel norm_one power2_eq_1_iff) | 
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59587diff
changeset | 924 | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 925 | lemma norm_less_p1: | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 926 | fixes x :: "'a::real_normed_algebra_1" | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 927 | shows "norm x < norm (of_real (norm x) + 1 :: 'a)" | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 928 | proof - | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 929 | have "norm x < norm (of_real (norm x + 1) :: 'a)" | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 930 | by (simp add: of_real_def) | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 931 | then show ?thesis | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 932 | by simp | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 933 | qed | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 934 | |
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 935 | lemma setprod_norm: | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 936 |   fixes f :: "'a \<Rightarrow> 'b::{comm_semiring_1,real_normed_div_algebra}"
 | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 937 | shows "setprod (\<lambda>x. norm(f x)) A = norm (setprod f A)" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 938 | by (induct A rule: infinite_finite_induct) (auto simp: norm_mult) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 939 | |
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 940 | lemma norm_setprod_le: | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 941 |   "norm (setprod f A) \<le> (\<Prod>a\<in>A. norm (f a :: 'a :: {real_normed_algebra_1, comm_monoid_mult}))"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 942 | proof (induction A rule: infinite_finite_induct) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 943 | case (insert a A) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 944 | then have "norm (setprod f (insert a A)) \<le> norm (f a) * norm (setprod f A)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 945 | by (simp add: norm_mult_ineq) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 946 | also have "norm (setprod f A) \<le> (\<Prod>a\<in>A. norm (f a))" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 947 | by (rule insert) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 948 | finally show ?case | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 949 | by (simp add: insert mult_left_mono) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 950 | qed simp_all | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 951 | |
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 952 | lemma norm_setprod_diff: | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 953 |   fixes z w :: "'i \<Rightarrow> 'a::{real_normed_algebra_1, comm_monoid_mult}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 954 | shows "(\<And>i. i \<in> I \<Longrightarrow> norm (z i) \<le> 1) \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> norm (w i) \<le> 1) \<Longrightarrow> | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 955 | norm ((\<Prod>i\<in>I. z i) - (\<Prod>i\<in>I. w i)) \<le> (\<Sum>i\<in>I. norm (z i - w i))" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 956 | proof (induction I rule: infinite_finite_induct) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 957 | case (insert i I) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 958 | note insert.hyps[simp] | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 959 | |
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 960 | have "norm ((\<Prod>i\<in>insert i I. z i) - (\<Prod>i\<in>insert i I. w i)) = | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 961 | norm ((\<Prod>i\<in>I. z i) * (z i - w i) + ((\<Prod>i\<in>I. z i) - (\<Prod>i\<in>I. w i)) * w i)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 962 | (is "_ = norm (?t1 + ?t2)") | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 963 | by (auto simp add: field_simps) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 964 | also have "... \<le> norm ?t1 + norm ?t2" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 965 | by (rule norm_triangle_ineq) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 966 | also have "norm ?t1 \<le> norm (\<Prod>i\<in>I. z i) * norm (z i - w i)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 967 | by (rule norm_mult_ineq) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 968 | also have "\<dots> \<le> (\<Prod>i\<in>I. norm (z i)) * norm(z i - w i)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 969 | by (rule mult_right_mono) (auto intro: norm_setprod_le) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 970 | also have "(\<Prod>i\<in>I. norm (z i)) \<le> (\<Prod>i\<in>I. 1)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 971 | by (intro setprod_mono) (auto intro!: insert) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 972 | also have "norm ?t2 \<le> norm ((\<Prod>i\<in>I. z i) - (\<Prod>i\<in>I. w i)) * norm (w i)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 973 | by (rule norm_mult_ineq) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 974 | also have "norm (w i) \<le> 1" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 975 | by (auto intro: insert) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 976 | also have "norm ((\<Prod>i\<in>I. z i) - (\<Prod>i\<in>I. w i)) \<le> (\<Sum>i\<in>I. norm (z i - w i))" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 977 | using insert by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 978 | finally show ?case | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 979 | by (auto simp add: ac_simps mult_right_mono mult_left_mono) | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 980 | qed simp_all | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 981 | |
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 982 | lemma norm_power_diff: | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 983 |   fixes z w :: "'a::{real_normed_algebra_1, comm_monoid_mult}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 984 | assumes "norm z \<le> 1" "norm w \<le> 1" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 985 | shows "norm (z^m - w^m) \<le> m * norm (z - w)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 986 | proof - | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 987 | have "norm (z^m - w^m) = norm ((\<Prod> i < m. z) - (\<Prod> i < m. w))" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 988 | by (simp add: setprod_constant) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 989 | also have "\<dots> \<le> (\<Sum>i<m. norm (z - w))" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 990 | by (intro norm_setprod_diff) (auto simp add: assms) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 991 | also have "\<dots> = m * norm (z - w)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 992 | by (simp add: real_of_nat_def) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 993 | finally show ?thesis . | 
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 994 | qed | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 995 | |
| 60758 | 996 | subsection \<open>Metric spaces\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 997 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 998 | class metric_space = open_dist + | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 999 | assumes dist_eq_0_iff [simp]: "dist x y = 0 \<longleftrightarrow> x = y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1000 | assumes dist_triangle2: "dist x y \<le> dist x z + dist y z" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1001 | begin | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1002 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1003 | lemma dist_self [simp]: "dist x x = 0" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1004 | by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1005 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1006 | lemma zero_le_dist [simp]: "0 \<le> dist x y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1007 | using dist_triangle2 [of x x y] by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1008 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1009 | lemma zero_less_dist_iff: "0 < dist x y \<longleftrightarrow> x \<noteq> y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1010 | by (simp add: less_le) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1011 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1012 | lemma dist_not_less_zero [simp]: "\<not> dist x y < 0" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1013 | by (simp add: not_less) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1014 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1015 | lemma dist_le_zero_iff [simp]: "dist x y \<le> 0 \<longleftrightarrow> x = y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1016 | by (simp add: le_less) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1017 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1018 | lemma dist_commute: "dist x y = dist y x" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1019 | proof (rule order_antisym) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1020 | show "dist x y \<le> dist y x" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1021 | using dist_triangle2 [of x y x] by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1022 | show "dist y x \<le> dist x y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1023 | using dist_triangle2 [of y x y] by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1024 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1025 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1026 | lemma dist_triangle: "dist x z \<le> dist x y + dist y z" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1027 | using dist_triangle2 [of x z y] by (simp add: dist_commute) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1028 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1029 | lemma dist_triangle3: "dist x y \<le> dist a x + dist a y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1030 | using dist_triangle2 [of x y a] by (simp add: dist_commute) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1031 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1032 | lemma dist_triangle_alt: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1033 | shows "dist y z <= dist x y + dist x z" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1034 | by (rule dist_triangle3) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1035 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1036 | lemma dist_pos_lt: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1037 | shows "x \<noteq> y ==> 0 < dist x y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1038 | by (simp add: zero_less_dist_iff) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1039 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1040 | lemma dist_nz: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1041 | shows "x \<noteq> y \<longleftrightarrow> 0 < dist x y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1042 | by (simp add: zero_less_dist_iff) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1043 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1044 | lemma dist_triangle_le: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1045 | shows "dist x z + dist y z <= e \<Longrightarrow> dist x y <= e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1046 | by (rule order_trans [OF dist_triangle2]) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1047 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1048 | lemma dist_triangle_lt: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1049 | shows "dist x z + dist y z < e ==> dist x y < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1050 | by (rule le_less_trans [OF dist_triangle2]) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1051 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1052 | lemma dist_triangle_half_l: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1053 | shows "dist x1 y < e / 2 \<Longrightarrow> dist x2 y < e / 2 \<Longrightarrow> dist x1 x2 < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1054 | by (rule dist_triangle_lt [where z=y], simp) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1055 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1056 | lemma dist_triangle_half_r: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1057 | shows "dist y x1 < e / 2 \<Longrightarrow> dist y x2 < e / 2 \<Longrightarrow> dist x1 x2 < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1058 | by (rule dist_triangle_half_l, simp_all add: dist_commute) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1059 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1060 | subclass topological_space | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1061 | proof | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1062 | have "\<exists>e::real. 0 < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1063 | by (fast intro: zero_less_one) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1064 | then show "open UNIV" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1065 | unfolding open_dist by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1066 | next | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1067 | fix S T assume "open S" "open T" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1068 | then show "open (S \<inter> T)" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1069 | unfolding open_dist | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1070 | apply clarify | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1071 | apply (drule (1) bspec)+ | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1072 | apply (clarify, rename_tac r s) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1073 | apply (rule_tac x="min r s" in exI, simp) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1074 | done | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1075 | next | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1076 | fix K assume "\<forall>S\<in>K. open S" thus "open (\<Union>K)" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1077 | unfolding open_dist by fast | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1078 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1079 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1080 | lemma open_ball: "open {y. dist x y < d}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1081 | proof (unfold open_dist, intro ballI) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1082 |   fix y assume *: "y \<in> {y. dist x y < d}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1083 |   then show "\<exists>e>0. \<forall>z. dist z y < e \<longrightarrow> z \<in> {y. dist x y < d}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1084 | by (auto intro!: exI[of _ "d - dist x y"] simp: field_simps dist_triangle_lt) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1085 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1086 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1087 | subclass first_countable_topology | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1088 | proof | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1089 | fix x | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1090 | show "\<exists>A::nat \<Rightarrow> 'a set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1091 |   proof (safe intro!: exI[of _ "\<lambda>n. {y. dist x y < inverse (Suc n)}"])
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1092 | fix S assume "open S" "x \<in> S" | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52381diff
changeset | 1093 |     then obtain e where e: "0 < e" and "{y. dist x y < e} \<subseteq> S"
 | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1094 | by (auto simp: open_dist subset_eq dist_commute) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1095 | moreover | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52381diff
changeset | 1096 | from e obtain i where "inverse (Suc i) < e" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1097 | by (auto dest!: reals_Archimedean) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1098 |     then have "{y. dist x y < inverse (Suc i)} \<subseteq> {y. dist x y < e}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1099 | by auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1100 |     ultimately show "\<exists>i. {y. dist x y < inverse (Suc i)} \<subseteq> S"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1101 | by blast | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1102 | qed (auto intro: open_ball) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1103 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1104 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1105 | end | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1106 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1107 | instance metric_space \<subseteq> t2_space | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1108 | proof | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1109 | fix x y :: "'a::metric_space" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1110 | assume xy: "x \<noteq> y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1111 |   let ?U = "{y'. dist x y' < dist x y / 2}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1112 |   let ?V = "{x'. dist y x' < dist x y / 2}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1113 | have th0: "\<And>d x y z. (d x z :: real) \<le> d x y + d y z \<Longrightarrow> d y z = d z y | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1114 | \<Longrightarrow> \<not>(d x y * 2 < d x z \<and> d z y * 2 < d x z)" by arith | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1115 |   have "open ?U \<and> open ?V \<and> x \<in> ?U \<and> y \<in> ?V \<and> ?U \<inter> ?V = {}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1116 | using dist_pos_lt[OF xy] th0[of dist, OF dist_triangle dist_commute] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1117 | using open_ball[of _ "dist x y / 2"] by auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1118 |   then show "\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1119 | by blast | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1120 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1121 | |
| 60758 | 1122 | text \<open>Every normed vector space is a metric space.\<close> | 
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 1123 | |
| 31289 | 1124 | instance real_normed_vector < metric_space | 
| 1125 | proof | |
| 1126 | fix x y :: 'a show "dist x y = 0 \<longleftrightarrow> x = y" | |
| 1127 | unfolding dist_norm by simp | |
| 1128 | next | |
| 1129 | fix x y z :: 'a show "dist x y \<le> dist x z + dist y z" | |
| 1130 | unfolding dist_norm | |
| 1131 | using norm_triangle_ineq4 [of "x - z" "y - z"] by simp | |
| 1132 | qed | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 1133 | |
| 60758 | 1134 | subsection \<open>Class instances for real numbers\<close> | 
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1135 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1136 | instantiation real :: real_normed_field | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1137 | begin | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1138 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1139 | definition dist_real_def: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1140 | "dist x y = \<bar>x - y\<bar>" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1141 | |
| 52381 
63eec9cea2c7
pragmatic executability for instance real :: open
 haftmann parents: 
51775diff
changeset | 1142 | definition open_real_def [code del]: | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1143 | "open (S :: real set) \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1144 | |
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1145 | definition real_norm_def [simp]: | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1146 | "norm r = \<bar>r\<bar>" | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1147 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1148 | instance | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1149 | apply (intro_classes, unfold real_norm_def real_scaleR_def) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1150 | apply (rule dist_real_def) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1151 | apply (rule open_real_def) | 
| 36795 
e05e1283c550
new construction of real numbers using Cauchy sequences
 huffman parents: 
36409diff
changeset | 1152 | apply (simp add: sgn_real_def) | 
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1153 | apply (rule abs_eq_0) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1154 | apply (rule abs_triangle_ineq) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1155 | apply (rule abs_mult) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1156 | apply (rule abs_mult) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1157 | done | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1158 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1159 | end | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1160 | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1161 | lemma dist_of_real [simp]: | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1162 | fixes a :: "'a::real_normed_div_algebra" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1163 | shows "dist (of_real x :: 'a) (of_real y) = dist x y" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1164 | by (metis dist_norm norm_of_real of_real_diff real_norm_def) | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1165 | |
| 54890 
cb892d835803
fundamental treatment of undefined vs. universally partial replaces code_abort
 haftmann parents: 
54863diff
changeset | 1166 | declare [[code abort: "open :: real set \<Rightarrow> bool"]] | 
| 52381 
63eec9cea2c7
pragmatic executability for instance real :: open
 haftmann parents: 
51775diff
changeset | 1167 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1168 | instance real :: linorder_topology | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1169 | proof | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1170 | show "(open :: real set \<Rightarrow> bool) = generate_topology (range lessThan \<union> range greaterThan)" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1171 | proof (rule ext, safe) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1172 | fix S :: "real set" assume "open S" | 
| 53381 | 1173 | then obtain f where "\<forall>x\<in>S. 0 < f x \<and> (\<forall>y. dist y x < f x \<longrightarrow> y \<in> S)" | 
| 1174 | unfolding open_real_def bchoice_iff .. | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1175 |     then have *: "S = (\<Union>x\<in>S. {x - f x <..} \<inter> {..< x + f x})"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1176 | by (fastforce simp: dist_real_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1177 | show "generate_topology (range lessThan \<union> range greaterThan) S" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1178 | apply (subst *) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1179 | apply (intro generate_topology_Union generate_topology.Int) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1180 | apply (auto intro: generate_topology.Basis) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1181 | done | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1182 | next | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1183 | fix S :: "real set" assume "generate_topology (range lessThan \<union> range greaterThan) S" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1184 |     moreover have "\<And>a::real. open {..<a}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1185 | unfolding open_real_def dist_real_def | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1186 | proof clarify | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1187 | fix x a :: real assume "x < a" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1188 |       hence "0 < a - x \<and> (\<forall>y. \<bar>y - x\<bar> < a - x \<longrightarrow> y \<in> {..<a})" by auto
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1189 |       thus "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {..<a}" ..
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1190 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1191 |     moreover have "\<And>a::real. open {a <..}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1192 | unfolding open_real_def dist_real_def | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1193 | proof clarify | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1194 | fix x a :: real assume "a < x" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1195 |       hence "0 < x - a \<and> (\<forall>y. \<bar>y - x\<bar> < x - a \<longrightarrow> y \<in> {a<..})" by auto
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1196 |       thus "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {a<..}" ..
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1197 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1198 | ultimately show "open S" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1199 | by induct auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1200 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1201 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1202 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1203 | instance real :: linear_continuum_topology .. | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 1204 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1205 | lemmas open_real_greaterThan = open_greaterThan[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1206 | lemmas open_real_lessThan = open_lessThan[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1207 | lemmas open_real_greaterThanLessThan = open_greaterThanLessThan[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1208 | lemmas closed_real_atMost = closed_atMost[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1209 | lemmas closed_real_atLeast = closed_atLeast[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1210 | lemmas closed_real_atLeastAtMost = closed_atLeastAtMost[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1211 | |
| 60758 | 1212 | subsection \<open>Extra type constraints\<close> | 
| 31446 | 1213 | |
| 60758 | 1214 | text \<open>Only allow @{term "open"} in class @{text topological_space}.\<close>
 | 
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 1215 | |
| 60758 | 1216 | setup \<open>Sign.add_const_constraint | 
| 1217 |   (@{const_name "open"}, SOME @{typ "'a::topological_space set \<Rightarrow> bool"})\<close>
 | |
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 1218 | |
| 60758 | 1219 | text \<open>Only allow @{term dist} in class @{text metric_space}.\<close>
 | 
| 31446 | 1220 | |
| 60758 | 1221 | setup \<open>Sign.add_const_constraint | 
| 1222 |   (@{const_name dist}, SOME @{typ "'a::metric_space \<Rightarrow> 'a \<Rightarrow> real"})\<close>
 | |
| 31446 | 1223 | |
| 60758 | 1224 | text \<open>Only allow @{term norm} in class @{text real_normed_vector}.\<close>
 | 
| 31446 | 1225 | |
| 60758 | 1226 | setup \<open>Sign.add_const_constraint | 
| 1227 |   (@{const_name norm}, SOME @{typ "'a::real_normed_vector \<Rightarrow> real"})\<close>
 | |
| 31446 | 1228 | |
| 60758 | 1229 | subsection \<open>Sign function\<close> | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1230 | |
| 24506 | 1231 | lemma norm_sgn: | 
| 1232 | "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)" | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 1233 | by (simp add: sgn_div_norm) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1234 | |
| 24506 | 1235 | lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0" | 
| 1236 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1237 | |
| 24506 | 1238 | lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)" | 
| 1239 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1240 | |
| 24506 | 1241 | lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)" | 
| 1242 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1243 | |
| 24506 | 1244 | lemma sgn_scaleR: | 
| 1245 | "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))" | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1246 | by (simp add: sgn_div_norm ac_simps) | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 1247 | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1248 | lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1" | 
| 24506 | 1249 | by (simp add: sgn_div_norm) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1250 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1251 | lemma sgn_of_real: | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1252 | "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)" | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1253 | unfolding of_real_def by (simp only: sgn_scaleR sgn_one) | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1254 | |
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 1255 | lemma sgn_mult: | 
| 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 1256 | fixes x y :: "'a::real_normed_div_algebra" | 
| 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 1257 | shows "sgn (x * y) = sgn x * sgn y" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 1258 | by (simp add: sgn_div_norm norm_mult mult.commute) | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 1259 | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1260 | lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>" | 
| 24506 | 1261 | by (simp add: sgn_div_norm divide_inverse) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1262 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1263 | lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 1264 | unfolding real_sgn_eq by simp | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1265 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1266 | lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 1267 | unfolding real_sgn_eq by simp | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1268 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1269 | lemma zero_le_sgn_iff [simp]: "0 \<le> sgn x \<longleftrightarrow> 0 \<le> (x::real)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1270 | by (cases "0::real" x rule: linorder_cases) simp_all | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1271 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1272 | lemma zero_less_sgn_iff [simp]: "0 < sgn x \<longleftrightarrow> 0 < (x::real)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1273 | by (cases "0::real" x rule: linorder_cases) simp_all | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1274 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1275 | lemma sgn_le_0_iff [simp]: "sgn x \<le> 0 \<longleftrightarrow> (x::real) \<le> 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1276 | by (cases "0::real" x rule: linorder_cases) simp_all | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1277 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1278 | lemma sgn_less_0_iff [simp]: "sgn x < 0 \<longleftrightarrow> (x::real) < 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1279 | by (cases "0::real" x rule: linorder_cases) simp_all | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1280 | |
| 51474 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51472diff
changeset | 1281 | lemma norm_conv_dist: "norm x = dist x 0" | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51472diff
changeset | 1282 | unfolding dist_norm by simp | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1283 | |
| 60307 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60303diff
changeset | 1284 | lemma dist_diff [simp]: "dist a (a - b) = norm b" "dist (a - b) a = norm b" | 
| 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60303diff
changeset | 1285 | by (simp_all add: dist_norm) | 
| 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60303diff
changeset | 1286 | |
| 60758 | 1287 | subsection \<open>Bounded Linear and Bilinear Operators\<close> | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1288 | |
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1289 | locale linear = additive f for f :: "'a::real_vector \<Rightarrow> 'b::real_vector" + | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1290 | assumes scaleR: "f (scaleR r x) = scaleR r (f x)" | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1291 | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1292 | lemma linear_imp_scaleR: | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1293 | assumes "linear D" obtains d where "D = (\<lambda>x. x *\<^sub>R d)" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1294 | by (metis assms linear.scaleR mult.commute mult.left_neutral real_scaleR_def) | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1295 | |
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1296 | lemma linearI: | 
| 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1297 | assumes "\<And>x y. f (x + y) = f x + f y" | 
| 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1298 | assumes "\<And>c x. f (c *\<^sub>R x) = c *\<^sub>R f x" | 
| 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1299 | shows "linear f" | 
| 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1300 | by default (rule assms)+ | 
| 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1301 | |
| 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1302 | locale bounded_linear = linear f for f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" + | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1303 | assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K" | 
| 27443 | 1304 | begin | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1305 | |
| 27443 | 1306 | lemma pos_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1307 | "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1308 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1309 | obtain K where K: "\<And>x. norm (f x) \<le> norm x * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1310 | using bounded by fast | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1311 | show ?thesis | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1312 | proof (intro exI impI conjI allI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1313 | show "0 < max 1 K" | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54785diff
changeset | 1314 | by (rule order_less_le_trans [OF zero_less_one max.cobounded1]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1315 | next | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1316 | fix x | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1317 | have "norm (f x) \<le> norm x * K" using K . | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1318 | also have "\<dots> \<le> norm x * max 1 K" | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54785diff
changeset | 1319 | by (rule mult_left_mono [OF max.cobounded2 norm_ge_zero]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1320 | finally show "norm (f x) \<le> norm x * max 1 K" . | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1321 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1322 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1323 | |
| 27443 | 1324 | lemma nonneg_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1325 | "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1326 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1327 | from pos_bounded | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1328 | show ?thesis by (auto intro: order_less_imp_le) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1329 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1330 | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56194diff
changeset | 1331 | lemma linear: "linear f" .. | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56194diff
changeset | 1332 | |
| 27443 | 1333 | end | 
| 1334 | ||
| 44127 | 1335 | lemma bounded_linear_intro: | 
| 1336 | assumes "\<And>x y. f (x + y) = f x + f y" | |
| 1337 | assumes "\<And>r x. f (scaleR r x) = scaleR r (f x)" | |
| 1338 | assumes "\<And>x. norm (f x) \<le> norm x * K" | |
| 1339 | shows "bounded_linear f" | |
| 1340 | by default (fast intro: assms)+ | |
| 1341 | ||
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1342 | locale bounded_bilinear = | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1343 | fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector] | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1344 | \<Rightarrow> 'c::real_normed_vector" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1345 | (infixl "**" 70) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1346 | assumes add_left: "prod (a + a') b = prod a b + prod a' b" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1347 | assumes add_right: "prod a (b + b') = prod a b + prod a b'" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1348 | assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1349 | assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1350 | assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K" | 
| 27443 | 1351 | begin | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1352 | |
| 27443 | 1353 | lemma pos_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1354 | "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1355 | apply (cut_tac bounded, erule exE) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1356 | apply (rule_tac x="max 1 K" in exI, safe) | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54785diff
changeset | 1357 | apply (rule order_less_le_trans [OF zero_less_one max.cobounded1]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1358 | apply (drule spec, drule spec, erule order_trans) | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54785diff
changeset | 1359 | apply (rule mult_left_mono [OF max.cobounded2]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1360 | apply (intro mult_nonneg_nonneg norm_ge_zero) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1361 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1362 | |
| 27443 | 1363 | lemma nonneg_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1364 | "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1365 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1366 | from pos_bounded | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1367 | show ?thesis by (auto intro: order_less_imp_le) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1368 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1369 | |
| 27443 | 1370 | lemma additive_right: "additive (\<lambda>b. prod a b)" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1371 | by (rule additive.intro, rule add_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1372 | |
| 27443 | 1373 | lemma additive_left: "additive (\<lambda>a. prod a b)" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1374 | by (rule additive.intro, rule add_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1375 | |
| 27443 | 1376 | lemma zero_left: "prod 0 b = 0" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1377 | by (rule additive.zero [OF additive_left]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1378 | |
| 27443 | 1379 | lemma zero_right: "prod a 0 = 0" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1380 | by (rule additive.zero [OF additive_right]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1381 | |
| 27443 | 1382 | lemma minus_left: "prod (- a) b = - prod a b" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1383 | by (rule additive.minus [OF additive_left]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1384 | |
| 27443 | 1385 | lemma minus_right: "prod a (- b) = - prod a b" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1386 | by (rule additive.minus [OF additive_right]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1387 | |
| 27443 | 1388 | lemma diff_left: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1389 | "prod (a - a') b = prod a b - prod a' b" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1390 | by (rule additive.diff [OF additive_left]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1391 | |
| 27443 | 1392 | lemma diff_right: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1393 | "prod a (b - b') = prod a b - prod a b'" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1394 | by (rule additive.diff [OF additive_right]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1395 | |
| 27443 | 1396 | lemma bounded_linear_left: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1397 | "bounded_linear (\<lambda>a. a ** b)" | 
| 44127 | 1398 | apply (cut_tac bounded, safe) | 
| 1399 | apply (rule_tac K="norm b * K" in bounded_linear_intro) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1400 | apply (rule add_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1401 | apply (rule scaleR_left) | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1402 | apply (simp add: ac_simps) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1403 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1404 | |
| 27443 | 1405 | lemma bounded_linear_right: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1406 | "bounded_linear (\<lambda>b. a ** b)" | 
| 44127 | 1407 | apply (cut_tac bounded, safe) | 
| 1408 | apply (rule_tac K="norm a * K" in bounded_linear_intro) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1409 | apply (rule add_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1410 | apply (rule scaleR_right) | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1411 | apply (simp add: ac_simps) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1412 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1413 | |
| 27443 | 1414 | lemma prod_diff_prod: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1415 | "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1416 | by (simp add: diff_left diff_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1417 | |
| 27443 | 1418 | end | 
| 1419 | ||
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1420 | lemma bounded_linear_ident[simp]: "bounded_linear (\<lambda>x. x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1421 | by default (auto intro!: exI[of _ 1]) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1422 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1423 | lemma bounded_linear_zero[simp]: "bounded_linear (\<lambda>x. 0)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1424 | by default (auto intro!: exI[of _ 1]) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1425 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1426 | lemma bounded_linear_add: | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1427 | assumes "bounded_linear f" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1428 | assumes "bounded_linear g" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1429 | shows "bounded_linear (\<lambda>x. f x + g x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1430 | proof - | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1431 | interpret f: bounded_linear f by fact | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1432 | interpret g: bounded_linear g by fact | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1433 | show ?thesis | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1434 | proof | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1435 | from f.bounded obtain Kf where Kf: "\<And>x. norm (f x) \<le> norm x * Kf" by blast | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1436 | from g.bounded obtain Kg where Kg: "\<And>x. norm (g x) \<le> norm x * Kg" by blast | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1437 | show "\<exists>K. \<forall>x. norm (f x + g x) \<le> norm x * K" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1438 | using add_mono[OF Kf Kg] | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1439 | by (intro exI[of _ "Kf + Kg"]) (auto simp: field_simps intro: norm_triangle_ineq order_trans) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1440 | qed (simp_all add: f.add g.add f.scaleR g.scaleR scaleR_right_distrib) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1441 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1442 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1443 | lemma bounded_linear_minus: | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1444 | assumes "bounded_linear f" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1445 | shows "bounded_linear (\<lambda>x. - f x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1446 | proof - | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1447 | interpret f: bounded_linear f by fact | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1448 | show ?thesis apply (unfold_locales) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1449 | apply (simp add: f.add) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1450 | apply (simp add: f.scaleR) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1451 | apply (simp add: f.bounded) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1452 | done | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1453 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1454 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1455 | lemma bounded_linear_compose: | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1456 | assumes "bounded_linear f" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1457 | assumes "bounded_linear g" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1458 | shows "bounded_linear (\<lambda>x. f (g x))" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1459 | proof - | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1460 | interpret f: bounded_linear f by fact | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1461 | interpret g: bounded_linear g by fact | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1462 | show ?thesis proof (unfold_locales) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1463 | fix x y show "f (g (x + y)) = f (g x) + f (g y)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1464 | by (simp only: f.add g.add) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1465 | next | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1466 | fix r x show "f (g (scaleR r x)) = scaleR r (f (g x))" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1467 | by (simp only: f.scaleR g.scaleR) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1468 | next | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1469 | from f.pos_bounded | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1470 | obtain Kf where f: "\<And>x. norm (f x) \<le> norm x * Kf" and Kf: "0 < Kf" by fast | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1471 | from g.pos_bounded | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1472 | obtain Kg where g: "\<And>x. norm (g x) \<le> norm x * Kg" by fast | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1473 | show "\<exists>K. \<forall>x. norm (f (g x)) \<le> norm x * K" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1474 | proof (intro exI allI) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1475 | fix x | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1476 | have "norm (f (g x)) \<le> norm (g x) * Kf" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1477 | using f . | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1478 | also have "\<dots> \<le> (norm x * Kg) * Kf" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1479 | using g Kf [THEN order_less_imp_le] by (rule mult_right_mono) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1480 | also have "(norm x * Kg) * Kf = norm x * (Kg * Kf)" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 1481 | by (rule mult.assoc) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1482 | finally show "norm (f (g x)) \<le> norm x * (Kg * Kf)" . | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1483 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1484 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1485 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1486 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1487 | lemma bounded_bilinear_mult: | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1488 | "bounded_bilinear (op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra)" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1489 | apply (rule bounded_bilinear.intro) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
47108diff
changeset | 1490 | apply (rule distrib_right) | 
| 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
47108diff
changeset | 1491 | apply (rule distrib_left) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1492 | apply (rule mult_scaleR_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1493 | apply (rule mult_scaleR_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1494 | apply (rule_tac x="1" in exI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1495 | apply (simp add: norm_mult_ineq) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1496 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1497 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1498 | lemma bounded_linear_mult_left: | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1499 | "bounded_linear (\<lambda>x::'a::real_normed_algebra. x * y)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1500 | using bounded_bilinear_mult | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1501 | by (rule bounded_bilinear.bounded_linear_left) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1502 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1503 | lemma bounded_linear_mult_right: | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1504 | "bounded_linear (\<lambda>y::'a::real_normed_algebra. x * y)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1505 | using bounded_bilinear_mult | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1506 | by (rule bounded_bilinear.bounded_linear_right) | 
| 23127 | 1507 | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1508 | lemmas bounded_linear_mult_const = | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1509 | bounded_linear_mult_left [THEN bounded_linear_compose] | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1510 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1511 | lemmas bounded_linear_const_mult = | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1512 | bounded_linear_mult_right [THEN bounded_linear_compose] | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1513 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1514 | lemma bounded_linear_divide: | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1515 | "bounded_linear (\<lambda>x::'a::real_normed_field. x / y)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1516 | unfolding divide_inverse by (rule bounded_linear_mult_left) | 
| 23120 | 1517 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1518 | lemma bounded_bilinear_scaleR: "bounded_bilinear scaleR" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1519 | apply (rule bounded_bilinear.intro) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1520 | apply (rule scaleR_left_distrib) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1521 | apply (rule scaleR_right_distrib) | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 1522 | apply simp | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1523 | apply (rule scaleR_left_commute) | 
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 1524 | apply (rule_tac x="1" in exI, simp) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1525 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1526 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1527 | lemma bounded_linear_scaleR_left: "bounded_linear (\<lambda>r. scaleR r x)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1528 | using bounded_bilinear_scaleR | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1529 | by (rule bounded_bilinear.bounded_linear_left) | 
| 23127 | 1530 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1531 | lemma bounded_linear_scaleR_right: "bounded_linear (\<lambda>x. scaleR r x)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1532 | using bounded_bilinear_scaleR | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1533 | by (rule bounded_bilinear.bounded_linear_right) | 
| 23127 | 1534 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1535 | lemma bounded_linear_of_real: "bounded_linear (\<lambda>r. of_real r)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1536 | unfolding of_real_def by (rule bounded_linear_scaleR_left) | 
| 22625 | 1537 | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1538 | lemma real_bounded_linear: | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1539 | fixes f :: "real \<Rightarrow> real" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1540 | shows "bounded_linear f \<longleftrightarrow> (\<exists>c::real. f = (\<lambda>x. x * c))" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1541 | proof - | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1542 |   { fix x assume "bounded_linear f"
 | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1543 | then interpret bounded_linear f . | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1544 | from scaleR[of x 1] have "f x = x * f 1" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1545 | by simp } | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1546 | then show ?thesis | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1547 | by (auto intro: exI[of _ "f 1"] bounded_linear_mult_left) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1548 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1549 | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1550 | lemma bij_linear_imp_inv_linear: | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1551 | assumes "linear f" "bij f" shows "linear (inv f)" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1552 | using assms unfolding linear_def linear_axioms_def additive_def | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1553 | by (auto simp: bij_is_surj bij_is_inj surj_f_inv_f intro!: Hilbert_Choice.inv_f_eq) | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1554 | |
| 44571 | 1555 | instance real_normed_algebra_1 \<subseteq> perfect_space | 
| 1556 | proof | |
| 1557 | fix x::'a | |
| 1558 |   show "\<not> open {x}"
 | |
| 1559 | unfolding open_dist dist_norm | |
| 1560 | by (clarsimp, rule_tac x="x + of_real (e/2)" in exI, simp) | |
| 1561 | qed | |
| 1562 | ||
| 60758 | 1563 | subsection \<open>Filters and Limits on Metric Space\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1564 | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1565 | lemma (in metric_space) nhds_metric: "nhds x = (INF e:{0 <..}. principal {y. dist y x < e})"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1566 | unfolding nhds_def | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1567 | proof (safe intro!: INF_eq) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1568 | fix S assume "open S" "x \<in> S" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1569 |   then obtain e where "{y. dist y x < e} \<subseteq> S" "0 < e"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1570 | by (auto simp: open_dist subset_eq) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1571 |   then show "\<exists>e\<in>{0<..}. principal {y. dist y x < e} \<le> principal S"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1572 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1573 | qed (auto intro!: exI[of _ "{y. dist x y < e}" for e] open_ball simp: dist_commute)
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1574 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1575 | lemma (in metric_space) tendsto_iff: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1576 | "(f ---> l) F \<longleftrightarrow> (\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) F)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1577 | unfolding nhds_metric filterlim_INF filterlim_principal by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1578 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1579 | lemma (in metric_space) tendstoI: "(\<And>e. 0 < e \<Longrightarrow> eventually (\<lambda>x. dist (f x) l < e) F) \<Longrightarrow> (f ---> l) F" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1580 | by (auto simp: tendsto_iff) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1581 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1582 | lemma (in metric_space) tendstoD: "(f ---> l) F \<Longrightarrow> 0 < e \<Longrightarrow> eventually (\<lambda>x. dist (f x) l < e) F" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1583 | by (auto simp: tendsto_iff) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1584 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1585 | lemma (in metric_space) eventually_nhds_metric: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1586 | "eventually P (nhds a) \<longleftrightarrow> (\<exists>d>0. \<forall>x. dist x a < d \<longrightarrow> P x)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1587 | unfolding nhds_metric | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1588 | by (subst eventually_INF_base) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1589 | (auto simp: eventually_principal Bex_def subset_eq intro: exI[of _ "min a b" for a b]) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1590 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1591 | lemma eventually_at: | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1592 | fixes a :: "'a :: metric_space" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1593 | shows "eventually P (at a within S) \<longleftrightarrow> (\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<and> dist x a < d \<longrightarrow> P x)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1594 | unfolding eventually_at_filter eventually_nhds_metric by (auto simp: dist_nz) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1595 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1596 | lemma eventually_at_le: | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1597 | fixes a :: "'a::metric_space" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1598 | shows "eventually P (at a within S) \<longleftrightarrow> (\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<and> dist x a \<le> d \<longrightarrow> P x)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1599 | unfolding eventually_at_filter eventually_nhds_metric | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1600 | apply auto | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1601 | apply (rule_tac x="d / 2" in exI) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1602 | apply auto | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1603 | done | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1604 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1605 | lemma metric_tendsto_imp_tendsto: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1606 | fixes a :: "'a :: metric_space" and b :: "'b :: metric_space" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1607 | assumes f: "(f ---> a) F" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1608 | assumes le: "eventually (\<lambda>x. dist (g x) b \<le> dist (f x) a) F" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1609 | shows "(g ---> b) F" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1610 | proof (rule tendstoI) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1611 | fix e :: real assume "0 < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1612 | with f have "eventually (\<lambda>x. dist (f x) a < e) F" by (rule tendstoD) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1613 | with le show "eventually (\<lambda>x. dist (g x) b < e) F" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1614 | using le_less_trans by (rule eventually_elim2) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1615 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1616 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1617 | lemma filterlim_real_sequentially: "LIM x sequentially. real x :> at_top" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1618 | unfolding filterlim_at_top | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1619 | apply (intro allI) | 
| 59587 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
58889diff
changeset | 1620 | apply (rule_tac c="nat(ceiling (Z + 1))" in eventually_sequentiallyI) | 
| 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
58889diff
changeset | 1621 | by linarith | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1622 | |
| 60758 | 1623 | subsubsection \<open>Limits of Sequences\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1624 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 1625 | lemma lim_sequentially: "X ----> (L::'a::metric_space) \<longleftrightarrow> (\<forall>r>0. \<exists>no. \<forall>n\<ge>no. dist (X n) L < r)" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1626 | unfolding tendsto_iff eventually_sequentially .. | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1627 | |
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1628 | lemmas LIMSEQ_def = lim_sequentially (*legacy binding*) | 
| 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1629 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1630 | lemma LIMSEQ_iff_nz: "X ----> (L::'a::metric_space) = (\<forall>r>0. \<exists>no>0. \<forall>n\<ge>no. dist (X n) L < r)" | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 1631 | unfolding lim_sequentially by (metis Suc_leD zero_less_Suc) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1632 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1633 | lemma metric_LIMSEQ_I: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1634 | "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. dist (X n) L < r) \<Longrightarrow> X ----> (L::'a::metric_space)" | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 1635 | by (simp add: lim_sequentially) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1636 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1637 | lemma metric_LIMSEQ_D: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1638 | "\<lbrakk>X ----> (L::'a::metric_space); 0 < r\<rbrakk> \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. dist (X n) L < r" | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 1639 | by (simp add: lim_sequentially) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1640 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1641 | |
| 60758 | 1642 | subsubsection \<open>Limits of Functions\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1643 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1644 | lemma LIM_def: "f -- (a::'a::metric_space) --> (L::'b::metric_space) = | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1645 | (\<forall>r > 0. \<exists>s > 0. \<forall>x. x \<noteq> a & dist x a < s | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1646 | --> dist (f x) L < r)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1647 | unfolding tendsto_iff eventually_at by simp | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1648 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1649 | lemma metric_LIM_I: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1650 | "(\<And>r. 0 < r \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> dist x a < s \<longrightarrow> dist (f x) L < r) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1651 | \<Longrightarrow> f -- (a::'a::metric_space) --> (L::'b::metric_space)" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1652 | by (simp add: LIM_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1653 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1654 | lemma metric_LIM_D: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1655 | "\<lbrakk>f -- (a::'a::metric_space) --> (L::'b::metric_space); 0 < r\<rbrakk> | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1656 | \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> dist x a < s \<longrightarrow> dist (f x) L < r" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1657 | by (simp add: LIM_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1658 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1659 | lemma metric_LIM_imp_LIM: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1660 | assumes f: "f -- a --> (l::'a::metric_space)" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1661 | assumes le: "\<And>x. x \<noteq> a \<Longrightarrow> dist (g x) m \<le> dist (f x) l" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1662 | shows "g -- a --> (m::'b::metric_space)" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1663 | by (rule metric_tendsto_imp_tendsto [OF f]) (auto simp add: eventually_at_topological le) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1664 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1665 | lemma metric_LIM_equal2: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1666 | assumes 1: "0 < R" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1667 | assumes 2: "\<And>x. \<lbrakk>x \<noteq> a; dist x a < R\<rbrakk> \<Longrightarrow> f x = g x" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1668 | shows "g -- a --> l \<Longrightarrow> f -- (a::'a::metric_space) --> l" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1669 | apply (rule topological_tendstoI) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1670 | apply (drule (2) topological_tendstoD) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1671 | apply (simp add: eventually_at, safe) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1672 | apply (rule_tac x="min d R" in exI, safe) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1673 | apply (simp add: 1) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1674 | apply (simp add: 2) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1675 | done | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1676 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1677 | lemma metric_LIM_compose2: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1678 | assumes f: "f -- (a::'a::metric_space) --> b" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1679 | assumes g: "g -- b --> c" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1680 | assumes inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> dist x a < d \<longrightarrow> f x \<noteq> b" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1681 | shows "(\<lambda>x. g (f x)) -- a --> c" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1682 | using inj | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1683 | by (intro tendsto_compose_eventually[OF g f]) (auto simp: eventually_at) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1684 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1685 | lemma metric_isCont_LIM_compose2: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1686 | fixes f :: "'a :: metric_space \<Rightarrow> _" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1687 | assumes f [unfolded isCont_def]: "isCont f a" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1688 | assumes g: "g -- f a --> l" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1689 | assumes inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> dist x a < d \<longrightarrow> f x \<noteq> f a" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1690 | shows "(\<lambda>x. g (f x)) -- a --> l" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1691 | by (rule metric_LIM_compose2 [OF f g inj]) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1692 | |
| 60758 | 1693 | subsection \<open>Complete metric spaces\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1694 | |
| 60758 | 1695 | subsection \<open>Cauchy sequences\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1696 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1697 | definition (in metric_space) Cauchy :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1698 | "Cauchy X = (\<forall>e>0. \<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. dist (X m) (X n) < e)" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1699 | |
| 60758 | 1700 | subsection \<open>Cauchy Sequences\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1701 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1702 | lemma metric_CauchyI: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1703 | "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e) \<Longrightarrow> Cauchy X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1704 | by (simp add: Cauchy_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1705 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1706 | lemma metric_CauchyD: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1707 | "Cauchy X \<Longrightarrow> 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1708 | by (simp add: Cauchy_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1709 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1710 | lemma metric_Cauchy_iff2: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1711 | "Cauchy X = (\<forall>j. (\<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. dist (X m) (X n) < inverse(real (Suc j))))" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1712 | apply (simp add: Cauchy_def, auto) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1713 | apply (drule reals_Archimedean, safe) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1714 | apply (drule_tac x = n in spec, auto) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1715 | apply (rule_tac x = M in exI, auto) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1716 | apply (drule_tac x = m in spec, simp) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1717 | apply (drule_tac x = na in spec, auto) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1718 | done | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1719 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1720 | lemma Cauchy_iff2: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1721 | "Cauchy X = (\<forall>j. (\<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. \<bar>X m - X n\<bar> < inverse(real (Suc j))))" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1722 | unfolding metric_Cauchy_iff2 dist_real_def .. | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1723 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1724 | lemma Cauchy_subseq_Cauchy: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1725 | "\<lbrakk> Cauchy X; subseq f \<rbrakk> \<Longrightarrow> Cauchy (X o f)" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1726 | apply (auto simp add: Cauchy_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1727 | apply (drule_tac x=e in spec, clarify) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1728 | apply (rule_tac x=M in exI, clarify) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1729 | apply (blast intro: le_trans [OF _ seq_suble] dest!: spec) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1730 | done | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1731 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1732 | theorem LIMSEQ_imp_Cauchy: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1733 | assumes X: "X ----> a" shows "Cauchy X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1734 | proof (rule metric_CauchyI) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1735 | fix e::real assume "0 < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1736 | hence "0 < e/2" by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1737 | with X have "\<exists>N. \<forall>n\<ge>N. dist (X n) a < e/2" by (rule metric_LIMSEQ_D) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1738 | then obtain N where N: "\<forall>n\<ge>N. dist (X n) a < e/2" .. | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1739 | show "\<exists>N. \<forall>m\<ge>N. \<forall>n\<ge>N. dist (X m) (X n) < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1740 | proof (intro exI allI impI) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1741 | fix m assume "N \<le> m" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1742 | hence m: "dist (X m) a < e/2" using N by fast | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1743 | fix n assume "N \<le> n" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1744 | hence n: "dist (X n) a < e/2" using N by fast | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1745 | have "dist (X m) (X n) \<le> dist (X m) a + dist (X n) a" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1746 | by (rule dist_triangle2) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1747 | also from m n have "\<dots> < e" by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1748 | finally show "dist (X m) (X n) < e" . | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1749 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1750 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1751 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1752 | lemma convergent_Cauchy: "convergent X \<Longrightarrow> Cauchy X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1753 | unfolding convergent_def | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1754 | by (erule exE, erule LIMSEQ_imp_Cauchy) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1755 | |
| 60758 | 1756 | subsubsection \<open>Cauchy Sequences are Convergent\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1757 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1758 | class complete_space = metric_space + | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1759 | assumes Cauchy_convergent: "Cauchy X \<Longrightarrow> convergent X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1760 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1761 | lemma Cauchy_convergent_iff: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1762 | fixes X :: "nat \<Rightarrow> 'a::complete_space" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1763 | shows "Cauchy X = convergent X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1764 | by (fast intro: Cauchy_convergent convergent_Cauchy) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1765 | |
| 60758 | 1766 | subsection \<open>The set of real numbers is a complete metric space\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1767 | |
| 60758 | 1768 | text \<open> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1769 | Proof that Cauchy sequences converge based on the one from | 
| 54703 | 1770 | @{url "http://pirate.shu.edu/~wachsmut/ira/numseq/proofs/cauconv.html"}
 | 
| 60758 | 1771 | \<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1772 | |
| 60758 | 1773 | text \<open> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1774 |   If sequence @{term "X"} is Cauchy, then its limit is the lub of
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1775 |   @{term "{r::real. \<exists>N. \<forall>n\<ge>N. r < X n}"}
 | 
| 60758 | 1776 | \<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1777 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1778 | lemma increasing_LIMSEQ: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1779 | fixes f :: "nat \<Rightarrow> real" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1780 | assumes inc: "\<And>n. f n \<le> f (Suc n)" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1781 | and bdd: "\<And>n. f n \<le> l" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1782 | and en: "\<And>e. 0 < e \<Longrightarrow> \<exists>n. l \<le> f n + e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1783 | shows "f ----> l" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1784 | proof (rule increasing_tendsto) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1785 | fix x assume "x < l" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1786 | with dense[of 0 "l - x"] obtain e where "0 < e" "e < l - x" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1787 | by auto | 
| 60758 | 1788 | from en[OF \<open>0 < e\<close>] obtain n where "l - e \<le> f n" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1789 | by (auto simp: field_simps) | 
| 60758 | 1790 | with \<open>e < l - x\<close> \<open>0 < e\<close> have "x < f n" by simp | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1791 | with incseq_SucI[of f, OF inc] show "eventually (\<lambda>n. x < f n) sequentially" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1792 | by (auto simp: eventually_sequentially incseq_def intro: less_le_trans) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1793 | qed (insert bdd, auto) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1794 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1795 | lemma real_Cauchy_convergent: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1796 | fixes X :: "nat \<Rightarrow> real" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1797 | assumes X: "Cauchy X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1798 | shows "convergent X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1799 | proof - | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1800 |   def S \<equiv> "{x::real. \<exists>N. \<forall>n\<ge>N. x < X n}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1801 | then have mem_S: "\<And>N x. \<forall>n\<ge>N. x < X n \<Longrightarrow> x \<in> S" by auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1802 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1803 |   { fix N x assume N: "\<forall>n\<ge>N. X n < x"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1804 | fix y::real assume "y \<in> S" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1805 | hence "\<exists>M. \<forall>n\<ge>M. y < X n" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1806 | by (simp add: S_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1807 | then obtain M where "\<forall>n\<ge>M. y < X n" .. | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1808 | hence "y < X (max M N)" by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1809 | also have "\<dots> < x" using N by simp | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 1810 | finally have "y \<le> x" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 1811 | by (rule order_less_imp_le) } | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1812 | note bound_isUb = this | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1813 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1814 | obtain N where "\<forall>m\<ge>N. \<forall>n\<ge>N. dist (X m) (X n) < 1" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1815 | using X[THEN metric_CauchyD, OF zero_less_one] by auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1816 | hence N: "\<forall>n\<ge>N. dist (X n) (X N) < 1" by simp | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 1817 |   have [simp]: "S \<noteq> {}"
 | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 1818 | proof (intro exI ex_in_conv[THEN iffD1]) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1819 | from N have "\<forall>n\<ge>N. X N - 1 < X n" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1820 | by (simp add: abs_diff_less_iff dist_real_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1821 | thus "X N - 1 \<in> S" by (rule mem_S) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1822 | qed | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 1823 | have [simp]: "bdd_above S" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1824 | proof | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1825 | from N have "\<forall>n\<ge>N. X n < X N + 1" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1826 | by (simp add: abs_diff_less_iff dist_real_def) | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 1827 | thus "\<And>s. s \<in> S \<Longrightarrow> s \<le> X N + 1" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1828 | by (rule bound_isUb) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1829 | qed | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 1830 | have "X ----> Sup S" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1831 | proof (rule metric_LIMSEQ_I) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1832 | fix r::real assume "0 < r" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1833 | hence r: "0 < r/2" by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1834 | obtain N where "\<forall>n\<ge>N. \<forall>m\<ge>N. dist (X n) (X m) < r/2" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1835 | using metric_CauchyD [OF X r] by auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1836 | hence "\<forall>n\<ge>N. dist (X n) (X N) < r/2" by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1837 | hence N: "\<forall>n\<ge>N. X N - r/2 < X n \<and> X n < X N + r/2" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1838 | by (simp only: dist_real_def abs_diff_less_iff) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1839 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1840 | from N have "\<forall>n\<ge>N. X N - r/2 < X n" by fast | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1841 | hence "X N - r/2 \<in> S" by (rule mem_S) | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 1842 | hence 1: "X N - r/2 \<le> Sup S" by (simp add: cSup_upper) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1843 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1844 | from N have "\<forall>n\<ge>N. X n < X N + r/2" by fast | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 1845 | from bound_isUb[OF this] | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 1846 | have 2: "Sup S \<le> X N + r/2" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 1847 | by (intro cSup_least) simp_all | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1848 | |
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 1849 | show "\<exists>N. \<forall>n\<ge>N. dist (X n) (Sup S) < r" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1850 | proof (intro exI allI impI) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1851 | fix n assume n: "N \<le> n" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1852 | from N n have "X n < X N + r/2" and "X N - r/2 < X n" by simp+ | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 1853 | thus "dist (X n) (Sup S) < r" using 1 2 | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1854 | by (simp add: abs_diff_less_iff dist_real_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1855 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1856 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1857 | then show ?thesis unfolding convergent_def by auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1858 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1859 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1860 | instance real :: complete_space | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1861 | by intro_classes (rule real_Cauchy_convergent) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1862 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1863 | class banach = real_normed_vector + complete_space | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1864 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1865 | instance real :: banach by default | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1866 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1867 | lemma tendsto_at_topI_sequentially: | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1868 | fixes f :: "real \<Rightarrow> 'b::first_countable_topology" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1869 | assumes *: "\<And>X. filterlim X at_top sequentially \<Longrightarrow> (\<lambda>n. f (X n)) ----> y" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1870 | shows "(f ---> y) at_top" | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1871 | proof - | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1872 | from nhds_countable[of y] guess A . note A = this | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1873 | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1874 | have "\<forall>m. \<exists>k. \<forall>x\<ge>k. f x \<in> A m" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1875 | proof (rule ccontr) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1876 | assume "\<not> (\<forall>m. \<exists>k. \<forall>x\<ge>k. f x \<in> A m)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1877 | then obtain m where "\<And>k. \<exists>x\<ge>k. f x \<notin> A m" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1878 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1879 | then have "\<exists>X. \<forall>n. (f (X n) \<notin> A m) \<and> max n (X n) + 1 \<le> X (Suc n)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1880 | by (intro dependent_nat_choice) (auto simp del: max.bounded_iff) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1881 | then obtain X where X: "\<And>n. f (X n) \<notin> A m" "\<And>n. max n (X n) + 1 \<le> X (Suc n)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1882 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1883 |     { fix n have "1 \<le> n \<longrightarrow> real n \<le> X n"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1884 | using X[of "n - 1"] by auto } | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1885 | then have "filterlim X at_top sequentially" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1886 | by (force intro!: filterlim_at_top_mono[OF filterlim_real_sequentially] | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1887 | simp: eventually_sequentially) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1888 | from topological_tendstoD[OF *[OF this] A(2, 3), of m] X(1) show False | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1889 | by auto | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1890 | qed | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1891 | then obtain k where "\<And>m x. k m \<le> x \<Longrightarrow> f x \<in> A m" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1892 | by metis | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1893 | then show ?thesis | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1894 | unfolding at_top_def A | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1895 | by (intro filterlim_base[where i=k]) auto | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1896 | qed | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1897 | |
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1898 | lemma tendsto_at_topI_sequentially_real: | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1899 | fixes f :: "real \<Rightarrow> real" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1900 | assumes mono: "mono f" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1901 | assumes limseq: "(\<lambda>n. f (real n)) ----> y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1902 | shows "(f ---> y) at_top" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1903 | proof (rule tendstoI) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1904 | fix e :: real assume "0 < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1905 | with limseq obtain N :: nat where N: "\<And>n. N \<le> n \<Longrightarrow> \<bar>f (real n) - y\<bar> < e" | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 1906 | by (auto simp: lim_sequentially dist_real_def) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1907 |   { fix x :: real
 | 
| 53381 | 1908 | obtain n where "x \<le> real_of_nat n" | 
| 1909 | using ex_le_of_nat[of x] .. | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1910 | note monoD[OF mono this] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1911 | also have "f (real_of_nat n) \<le> y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1912 | by (rule LIMSEQ_le_const[OF limseq]) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1913 | (auto intro: exI[of _ n] monoD[OF mono] simp: real_eq_of_nat[symmetric]) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1914 | finally have "f x \<le> y" . } | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1915 | note le = this | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1916 | have "eventually (\<lambda>x. real N \<le> x) at_top" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1917 | by (rule eventually_ge_at_top) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1918 | then show "eventually (\<lambda>x. dist (f x) y < e) at_top" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1919 | proof eventually_elim | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1920 | fix x assume N': "real N \<le> x" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1921 | with N[of N] le have "y - f (real N) < e" by auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1922 | moreover note monoD[OF mono N'] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1923 | ultimately show "dist (f x) y < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1924 | using le[of x] by (auto simp: dist_real_def field_simps) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1925 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1926 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1927 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 1928 | end | 
| 57276 | 1929 |