src/HOL/Relation.thy
author nipkow
Fri, 15 Feb 2008 17:36:21 +0100
changeset 26073 0e70d3bd2eb4
parent 24915 fc90277c0dd7
child 26271 e324f8918c98
permissions -rw-r--r--
more lemmas
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10358
ef2a753cda2a converse: syntax \<inverse>;
wenzelm
parents: 10212
diff changeset
     1
(*  Title:      HOL/Relation.thy
1128
64b30e3cc6d4 Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff changeset
     2
    ID:         $Id$
1983
f3f7bf0079fa Simplification and tidying of definitions
paulson
parents: 1695
diff changeset
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
f3f7bf0079fa Simplification and tidying of definitions
paulson
parents: 1695
diff changeset
     4
    Copyright   1996  University of Cambridge
1128
64b30e3cc6d4 Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff changeset
     5
*)
64b30e3cc6d4 Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff changeset
     6
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
     7
header {* Relations *}
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
     8
15131
c69542757a4d New theory header syntax.
nipkow
parents: 13830
diff changeset
     9
theory Relation
24915
fc90277c0dd7 integrated FixedPoint into Inductive
haftmann
parents: 24286
diff changeset
    10
imports Product_Type
15131
c69542757a4d New theory header syntax.
nipkow
parents: 13830
diff changeset
    11
begin
5978
fa2c2dd74f8c moved diag (diagonal relation) from Univ to Relation
paulson
parents: 5608
diff changeset
    12
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    13
subsection {* Definitions *}
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    14
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19363
diff changeset
    15
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    16
  converse :: "('a * 'b) set => ('b * 'a) set"
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    17
    ("(_^-1)" [1000] 999) where
10358
ef2a753cda2a converse: syntax \<inverse>;
wenzelm
parents: 10212
diff changeset
    18
  "r^-1 == {(y, x). (x, y) : r}"
7912
0e42be14f136 tidied using modern infix form
paulson
parents: 7014
diff changeset
    19
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20716
diff changeset
    20
notation (xsymbols)
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19363
diff changeset
    21
  converse  ("(_\<inverse>)" [1000] 999)
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19363
diff changeset
    22
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19363
diff changeset
    23
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    24
  rel_comp  :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set"
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    25
    (infixr "O" 75) where
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    26
  "r O s == {(x,z). EX y. (x, y) : s & (y, z) : r}"
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    27
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    28
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    29
  Image :: "[('a * 'b) set, 'a set] => 'b set"
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    30
    (infixl "``" 90) where
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    31
  "r `` s == {y. EX x:s. (x,y):r}"
7912
0e42be14f136 tidied using modern infix form
paulson
parents: 7014
diff changeset
    32
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    33
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    34
  Id :: "('a * 'a) set" where -- {* the identity relation *}
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    35
  "Id == {p. EX x. p = (x,x)}"
7912
0e42be14f136 tidied using modern infix form
paulson
parents: 7014
diff changeset
    36
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    37
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    38
  diag  :: "'a set => ('a * 'a) set" where -- {* diagonal: identity over a set *}
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
    39
  "diag A == \<Union>x\<in>A. {(x,x)}"
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    40
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    41
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    42
  Domain :: "('a * 'b) set => 'a set" where
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    43
  "Domain r == {x. EX y. (x,y):r}"
5978
fa2c2dd74f8c moved diag (diagonal relation) from Univ to Relation
paulson
parents: 5608
diff changeset
    44
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    45
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    46
  Range  :: "('a * 'b) set => 'b set" where
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    47
  "Range r == Domain(r^-1)"
5978
fa2c2dd74f8c moved diag (diagonal relation) from Univ to Relation
paulson
parents: 5608
diff changeset
    48
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    49
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    50
  Field :: "('a * 'a) set => 'a set" where
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
    51
  "Field r == Domain r \<union> Range r"
10786
04ee73606993 Field of a relation, and some Domain/Range rules
paulson
parents: 10358
diff changeset
    52
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    53
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    54
  refl :: "['a set, ('a * 'a) set] => bool" where -- {* reflexivity over a set *}
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    55
  "refl A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)"
6806
43c081a0858d new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents: 5978
diff changeset
    56
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    57
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    58
  sym :: "('a * 'a) set => bool" where -- {* symmetry predicate *}
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    59
  "sym r == ALL x y. (x,y): r --> (y,x): r"
6806
43c081a0858d new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents: 5978
diff changeset
    60
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    61
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    62
  antisym :: "('a * 'a) set => bool" where -- {* antisymmetry predicate *}
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    63
  "antisym r == ALL x y. (x,y):r --> (y,x):r --> x=y"
6806
43c081a0858d new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents: 5978
diff changeset
    64
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    65
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    66
  trans :: "('a * 'a) set => bool" where -- {* transitivity predicate *}
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    67
  "trans r == (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)"
5978
fa2c2dd74f8c moved diag (diagonal relation) from Univ to Relation
paulson
parents: 5608
diff changeset
    68
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    69
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    70
  single_valued :: "('a * 'b) set => bool" where
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    71
  "single_valued r == ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z)"
7014
11ee650edcd2 Added some definitions and theorems needed for the
berghofe
parents: 6806
diff changeset
    72
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    73
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    74
  inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" where
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    75
  "inv_image r f == {(x, y). (f x, f y) : r}"
11136
e34e7f6d9b57 moved inv_image to Relation
oheimb
parents: 10832
diff changeset
    76
19363
667b5ea637dd refined 'abbreviation';
wenzelm
parents: 19323
diff changeset
    77
abbreviation
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    78
  reflexive :: "('a * 'a) set => bool" where -- {* reflexivity over a type *}
19363
667b5ea637dd refined 'abbreviation';
wenzelm
parents: 19323
diff changeset
    79
  "reflexive == refl UNIV"
6806
43c081a0858d new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents: 5978
diff changeset
    80
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    81
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
    82
subsection {* The identity relation *}
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    83
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    84
lemma IdI [intro]: "(a, a) : Id"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    85
  by (simp add: Id_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    86
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    87
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
    88
  by (unfold Id_def) (iprover elim: CollectE)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    89
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    90
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    91
  by (unfold Id_def) blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    92
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    93
lemma reflexive_Id: "reflexive Id"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    94
  by (simp add: refl_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    95
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    96
lemma antisym_Id: "antisym Id"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    97
  -- {* A strange result, since @{text Id} is also symmetric. *}
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    98
  by (simp add: antisym_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
    99
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   100
lemma sym_Id: "sym Id"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   101
  by (simp add: sym_def)
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   102
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   103
lemma trans_Id: "trans Id"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   104
  by (simp add: trans_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   105
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   106
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   107
subsection {* Diagonal: identity over a set *}
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   108
13812
91713a1915ee converting HOL/UNITY to use unconditional fairness
paulson
parents: 13639
diff changeset
   109
lemma diag_empty [simp]: "diag {} = {}"
91713a1915ee converting HOL/UNITY to use unconditional fairness
paulson
parents: 13639
diff changeset
   110
  by (simp add: diag_def) 
91713a1915ee converting HOL/UNITY to use unconditional fairness
paulson
parents: 13639
diff changeset
   111
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   112
lemma diag_eqI: "a = b ==> a : A ==> (a, b) : diag A"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   113
  by (simp add: diag_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   114
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23709
diff changeset
   115
lemma diagI [intro!,noatp]: "a : A ==> (a, a) : diag A"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   116
  by (rule diag_eqI) (rule refl)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   117
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   118
lemma diagE [elim!]:
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   119
  "c : diag A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P"
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   120
  -- {* The general elimination rule. *}
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   121
  by (unfold diag_def) (iprover elim!: UN_E singletonE)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   122
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   123
lemma diag_iff: "((x, y) : diag A) = (x = y & x : A)"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   124
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   125
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   126
lemma diag_subset_Times: "diag A \<subseteq> A \<times> A"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   127
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   128
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   129
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   130
subsection {* Composition of two relations *}
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   131
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   132
lemma rel_compI [intro]:
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   133
  "(a, b) : s ==> (b, c) : r ==> (a, c) : r O s"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   134
  by (unfold rel_comp_def) blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   135
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   136
lemma rel_compE [elim!]: "xz : r O s ==>
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   137
  (!!x y z. xz = (x, z) ==> (x, y) : s ==> (y, z) : r  ==> P) ==> P"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   138
  by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   139
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   140
lemma rel_compEpair:
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   141
  "(a, c) : r O s ==> (!!y. (a, y) : s ==> (y, c) : r ==> P) ==> P"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   142
  by (iprover elim: rel_compE Pair_inject ssubst)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   143
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   144
lemma R_O_Id [simp]: "R O Id = R"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   145
  by fast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   146
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   147
lemma Id_O_R [simp]: "Id O R = R"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   148
  by fast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   149
23185
1fa87978cf27 Added simp-rules: "R O {} = {}" and "{} O R = {}"
krauss
parents: 22172
diff changeset
   150
lemma rel_comp_empty1[simp]: "{} O R = {}"
1fa87978cf27 Added simp-rules: "R O {} = {}" and "{} O R = {}"
krauss
parents: 22172
diff changeset
   151
  by blast
1fa87978cf27 Added simp-rules: "R O {} = {}" and "{} O R = {}"
krauss
parents: 22172
diff changeset
   152
1fa87978cf27 Added simp-rules: "R O {} = {}" and "{} O R = {}"
krauss
parents: 22172
diff changeset
   153
lemma rel_comp_empty2[simp]: "R O {} = {}"
1fa87978cf27 Added simp-rules: "R O {} = {}" and "{} O R = {}"
krauss
parents: 22172
diff changeset
   154
  by blast
1fa87978cf27 Added simp-rules: "R O {} = {}" and "{} O R = {}"
krauss
parents: 22172
diff changeset
   155
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   156
lemma O_assoc: "(R O S) O T = R O (S O T)"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   157
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   158
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   159
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   160
  by (unfold trans_def) blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   161
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   162
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   163
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   164
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   165
lemma rel_comp_subset_Sigma:
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   166
    "s \<subseteq> A \<times> B ==> r \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   167
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   168
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   169
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   170
subsection {* Reflexivity *}
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   171
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   172
lemma reflI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl A r"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   173
  by (unfold refl_def) (iprover intro!: ballI)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   174
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   175
lemma reflD: "refl A r ==> a : A ==> (a, a) : r"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   176
  by (unfold refl_def) blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   177
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   178
lemma reflD1: "refl A r ==> (x, y) : r ==> x : A"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   179
  by (unfold refl_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   180
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   181
lemma reflD2: "refl A r ==> (x, y) : r ==> y : A"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   182
  by (unfold refl_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   183
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   184
lemma refl_Int: "refl A r ==> refl B s ==> refl (A \<inter> B) (r \<inter> s)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   185
  by (unfold refl_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   186
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   187
lemma refl_Un: "refl A r ==> refl B s ==> refl (A \<union> B) (r \<union> s)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   188
  by (unfold refl_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   189
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   190
lemma refl_INTER:
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   191
  "ALL x:S. refl (A x) (r x) ==> refl (INTER S A) (INTER S r)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   192
  by (unfold refl_def) fast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   193
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   194
lemma refl_UNION:
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   195
  "ALL x:S. refl (A x) (r x) \<Longrightarrow> refl (UNION S A) (UNION S r)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   196
  by (unfold refl_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   197
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   198
lemma refl_diag: "refl A (diag A)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   199
  by (rule reflI [OF diag_subset_Times diagI])
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   200
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   201
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   202
subsection {* Antisymmetry *}
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   203
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   204
lemma antisymI:
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   205
  "(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   206
  by (unfold antisym_def) iprover
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   207
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   208
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   209
  by (unfold antisym_def) iprover
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   210
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   211
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   212
  by (unfold antisym_def) blast
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   213
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   214
lemma antisym_empty [simp]: "antisym {}"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   215
  by (unfold antisym_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   216
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   217
lemma antisym_diag [simp]: "antisym (diag A)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   218
  by (unfold antisym_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   219
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   220
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   221
subsection {* Symmetry *}
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   222
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   223
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   224
  by (unfold sym_def) iprover
15177
e7616269fdca new theorem symD
paulson
parents: 15140
diff changeset
   225
e7616269fdca new theorem symD
paulson
parents: 15140
diff changeset
   226
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r"
e7616269fdca new theorem symD
paulson
parents: 15140
diff changeset
   227
  by (unfold sym_def, blast)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   228
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   229
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   230
  by (fast intro: symI dest: symD)
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   231
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   232
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   233
  by (fast intro: symI dest: symD)
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   234
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   235
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   236
  by (fast intro: symI dest: symD)
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   237
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   238
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   239
  by (fast intro: symI dest: symD)
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   240
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   241
lemma sym_diag [simp]: "sym (diag A)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   242
  by (rule symI) clarify
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   243
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   244
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   245
subsection {* Transitivity *}
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   246
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   247
lemma transI:
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   248
  "(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   249
  by (unfold trans_def) iprover
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   250
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   251
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   252
  by (unfold trans_def) iprover
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   253
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   254
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   255
  by (fast intro: transI elim: transD)
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   256
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   257
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   258
  by (fast intro: transI elim: transD)
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   259
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   260
lemma trans_diag [simp]: "trans (diag A)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   261
  by (fast intro: transI elim: transD)
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   262
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   263
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   264
subsection {* Converse *}
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   265
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   266
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   267
  by (simp add: converse_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   268
13343
3b2b18c58d80 *** empty log message ***
nipkow
parents: 12913
diff changeset
   269
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   270
  by (simp add: converse_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   271
13343
3b2b18c58d80 *** empty log message ***
nipkow
parents: 12913
diff changeset
   272
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   273
  by (simp add: converse_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   274
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   275
lemma converseE [elim!]:
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   276
  "yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P"
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   277
    -- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *}
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   278
  by (unfold converse_def) (iprover elim!: CollectE splitE bexE)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   279
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   280
lemma converse_converse [simp]: "(r^-1)^-1 = r"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   281
  by (unfold converse_def) blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   282
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   283
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   284
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   285
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   286
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   287
  by blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   288
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   289
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   290
  by blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   291
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   292
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   293
  by fast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   294
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   295
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   296
  by blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   297
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   298
lemma converse_Id [simp]: "Id^-1 = Id"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   299
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   300
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   301
lemma converse_diag [simp]: "(diag A)^-1 = diag A"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   302
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   303
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   304
lemma refl_converse [simp]: "refl A (converse r) = refl A r"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   305
  by (unfold refl_def) auto
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   306
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   307
lemma sym_converse [simp]: "sym (converse r) = sym r"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   308
  by (unfold sym_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   309
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   310
lemma antisym_converse [simp]: "antisym (converse r) = antisym r"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   311
  by (unfold antisym_def) blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   312
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   313
lemma trans_converse [simp]: "trans (converse r) = trans r"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   314
  by (unfold trans_def) blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   315
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   316
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   317
  by (unfold sym_def) fast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   318
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   319
lemma sym_Un_converse: "sym (r \<union> r^-1)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   320
  by (unfold sym_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   321
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   322
lemma sym_Int_converse: "sym (r \<inter> r^-1)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   323
  by (unfold sym_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   324
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   325
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   326
subsection {* Domain *}
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   327
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23709
diff changeset
   328
declare Domain_def [noatp]
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23709
diff changeset
   329
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   330
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   331
  by (unfold Domain_def) blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   332
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   333
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   334
  by (iprover intro!: iffD2 [OF Domain_iff])
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   335
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   336
lemma DomainE [elim!]:
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   337
  "a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   338
  by (iprover dest!: iffD1 [OF Domain_iff])
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   339
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   340
lemma Domain_empty [simp]: "Domain {} = {}"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   341
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   342
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   343
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   344
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   345
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   346
lemma Domain_Id [simp]: "Domain Id = UNIV"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   347
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   348
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   349
lemma Domain_diag [simp]: "Domain (diag A) = A"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   350
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   351
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   352
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   353
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   354
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   355
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   356
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   357
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   358
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   359
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   360
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   361
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   362
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   363
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   364
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   365
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   366
22172
e7d6cb237b5e some new lemmas
paulson
parents: 21404
diff changeset
   367
lemma fst_eq_Domain: "fst ` R = Domain R";
e7d6cb237b5e some new lemmas
paulson
parents: 21404
diff changeset
   368
  apply auto
e7d6cb237b5e some new lemmas
paulson
parents: 21404
diff changeset
   369
  apply (rule image_eqI, auto) 
e7d6cb237b5e some new lemmas
paulson
parents: 21404
diff changeset
   370
  done
e7d6cb237b5e some new lemmas
paulson
parents: 21404
diff changeset
   371
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   372
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   373
subsection {* Range *}
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   374
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   375
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   376
  by (simp add: Domain_def Range_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   377
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   378
lemma RangeI [intro]: "(a, b) : r ==> b : Range r"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   379
  by (unfold Range_def) (iprover intro!: converseI DomainI)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   380
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   381
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   382
  by (unfold Range_def) (iprover elim!: DomainE dest!: converseD)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   383
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   384
lemma Range_empty [simp]: "Range {} = {}"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   385
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   386
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   387
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   388
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   389
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   390
lemma Range_Id [simp]: "Range Id = UNIV"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   391
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   392
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   393
lemma Range_diag [simp]: "Range (diag A) = A"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   394
  by auto
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   395
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   396
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   397
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   398
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   399
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   400
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   401
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   402
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   403
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   404
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   405
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   406
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   407
22172
e7d6cb237b5e some new lemmas
paulson
parents: 21404
diff changeset
   408
lemma snd_eq_Range: "snd ` R = Range R";
e7d6cb237b5e some new lemmas
paulson
parents: 21404
diff changeset
   409
  apply auto
e7d6cb237b5e some new lemmas
paulson
parents: 21404
diff changeset
   410
  apply (rule image_eqI, auto) 
e7d6cb237b5e some new lemmas
paulson
parents: 21404
diff changeset
   411
  done
e7d6cb237b5e some new lemmas
paulson
parents: 21404
diff changeset
   412
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   413
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   414
subsection {* Image of a set under a relation *}
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   415
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23709
diff changeset
   416
declare Image_def [noatp]
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23709
diff changeset
   417
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   418
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   419
  by (simp add: Image_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   420
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   421
lemma Image_singleton: "r``{a} = {b. (a, b) : r}"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   422
  by (simp add: Image_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   423
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   424
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   425
  by (rule Image_iff [THEN trans]) simp
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   426
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23709
diff changeset
   427
lemma ImageI [intro,noatp]: "(a, b) : r ==> a : A ==> b : r``A"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   428
  by (unfold Image_def) blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   429
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   430
lemma ImageE [elim!]:
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   431
    "b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   432
  by (unfold Image_def) (iprover elim!: CollectE bexE)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   433
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   434
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   435
  -- {* This version's more effective when we already have the required @{text a} *}
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   436
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   437
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   438
lemma Image_empty [simp]: "R``{} = {}"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   439
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   440
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   441
lemma Image_Id [simp]: "Id `` A = A"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   442
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   443
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   444
lemma Image_diag [simp]: "diag A `` B = A \<inter> B"
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   445
  by blast
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   446
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   447
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   448
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   449
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   450
lemma Image_Int_eq:
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   451
     "single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B"
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   452
  by (simp add: single_valued_def, blast) 
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   453
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   454
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   455
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   456
13812
91713a1915ee converting HOL/UNITY to use unconditional fairness
paulson
parents: 13639
diff changeset
   457
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A"
91713a1915ee converting HOL/UNITY to use unconditional fairness
paulson
parents: 13639
diff changeset
   458
  by blast
91713a1915ee converting HOL/UNITY to use unconditional fairness
paulson
parents: 13639
diff changeset
   459
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   460
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 15177
diff changeset
   461
  by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   462
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   463
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   464
  -- {* NOT suitable for rewriting *}
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   465
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   466
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   467
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   468
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   469
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   470
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))"
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   471
  by blast
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   472
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   473
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   474
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   475
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   476
text{*Converse inclusion requires some assumptions*}
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   477
lemma Image_INT_eq:
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   478
     "[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)"
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   479
apply (rule equalityI)
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   480
 apply (rule Image_INT_subset) 
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   481
apply  (simp add: single_valued_def, blast)
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
   482
done
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   483
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   484
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   485
  by blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   486
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   487
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   488
subsection {* Single valued relations *}
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   489
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   490
lemma single_valuedI:
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   491
  "ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   492
  by (unfold single_valued_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   493
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   494
lemma single_valuedD:
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   495
  "single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   496
  by (simp add: single_valued_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   497
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   498
lemma single_valued_rel_comp:
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   499
  "single_valued r ==> single_valued s ==> single_valued (r O s)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   500
  by (unfold single_valued_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   501
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   502
lemma single_valued_subset:
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   503
  "r \<subseteq> s ==> single_valued s ==> single_valued r"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   504
  by (unfold single_valued_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   505
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   506
lemma single_valued_Id [simp]: "single_valued Id"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   507
  by (unfold single_valued_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   508
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   509
lemma single_valued_diag [simp]: "single_valued (diag A)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   510
  by (unfold single_valued_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   511
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   512
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   513
subsection {* Graphs given by @{text Collect} *}
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   514
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   515
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   516
  by auto
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   517
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   518
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   519
  by auto
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   520
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   521
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}"
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   522
  by auto
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   523
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   524
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   525
subsection {* Inverse image *}
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   526
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   527
lemma sym_inv_image: "sym r ==> sym (inv_image r f)"
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   528
  by (unfold sym_def inv_image_def) blast
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   529
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   530
lemma trans_inv_image: "trans r ==> trans (inv_image r f)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   531
  apply (unfold trans_def inv_image_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   532
  apply (simp (no_asm))
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   533
  apply blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   534
  done
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   535
23709
fd31da8f752a moved lfp_induct2 here
haftmann
parents: 23185
diff changeset
   536
fd31da8f752a moved lfp_induct2 here
haftmann
parents: 23185
diff changeset
   537
subsection {* Version of @{text lfp_induct} for binary relations *}
fd31da8f752a moved lfp_induct2 here
haftmann
parents: 23185
diff changeset
   538
fd31da8f752a moved lfp_induct2 here
haftmann
parents: 23185
diff changeset
   539
lemmas lfp_induct2 = 
fd31da8f752a moved lfp_induct2 here
haftmann
parents: 23185
diff changeset
   540
  lfp_induct_set [of "(a, b)", split_format (complete)]
fd31da8f752a moved lfp_induct2 here
haftmann
parents: 23185
diff changeset
   541
1128
64b30e3cc6d4 Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff changeset
   542
end