| author | wenzelm | 
| Wed, 17 Nov 2021 12:55:02 +0100 | |
| changeset 74811 | 1f40ded31b78 | 
| parent 74157 | 8e2355ddce1b | 
| child 81974 | f30022be9213 | 
| permissions | -rw-r--r-- | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
1  | 
(* Title: HOL/Library/Mapping.thy  | 
| 
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
2  | 
Author: Florian Haftmann and Ondrej Kuncar  | 
| 
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
3  | 
*)  | 
| 29708 | 4  | 
|
| 60500 | 5  | 
section \<open>An abstract view on maps for code generation.\<close>  | 
| 29708 | 6  | 
|
7  | 
theory Mapping  | 
|
| 73832 | 8  | 
imports Main AList  | 
| 29708 | 9  | 
begin  | 
10  | 
||
| 60500 | 11  | 
subsection \<open>Parametricity transfer rules\<close>  | 
| 51379 | 12  | 
|
| 63462 | 13  | 
lemma map_of_foldr: "map_of xs = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) xs Map.empty" (* FIXME move *)  | 
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
14  | 
using map_add_map_of_foldr [of Map.empty] by auto  | 
| 
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
15  | 
|
| 63343 | 16  | 
context includes lifting_syntax  | 
| 
53013
 
3fbcfa911863
remove unnecessary dependencies on Library/Quotient_*
 
kuncar 
parents: 
51379 
diff
changeset
 | 
17  | 
begin  | 
| 56528 | 18  | 
|
| 63462 | 19  | 
lemma empty_parametric: "(A ===> rel_option B) Map.empty Map.empty"  | 
| 56528 | 20  | 
by transfer_prover  | 
| 51379 | 21  | 
|
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
22  | 
lemma lookup_parametric: "((A ===> B) ===> A ===> B) (\<lambda>m k. m k) (\<lambda>m k. m k)"  | 
| 56528 | 23  | 
by transfer_prover  | 
| 51379 | 24  | 
|
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
25  | 
lemma update_parametric:  | 
| 51379 | 26  | 
assumes [transfer_rule]: "bi_unique A"  | 
| 56528 | 27  | 
shows "(A ===> B ===> (A ===> rel_option B) ===> A ===> rel_option B)  | 
28  | 
(\<lambda>k v m. m(k \<mapsto> v)) (\<lambda>k v m. m(k \<mapsto> v))"  | 
|
29  | 
by transfer_prover  | 
|
| 51379 | 30  | 
|
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
31  | 
lemma delete_parametric:  | 
| 51379 | 32  | 
assumes [transfer_rule]: "bi_unique A"  | 
| 63462 | 33  | 
shows "(A ===> (A ===> rel_option B) ===> A ===> rel_option B)  | 
| 56528 | 34  | 
(\<lambda>k m. m(k := None)) (\<lambda>k m. m(k := None))"  | 
35  | 
by transfer_prover  | 
|
| 51379 | 36  | 
|
| 56528 | 37  | 
lemma is_none_parametric [transfer_rule]:  | 
38  | 
"(rel_option A ===> HOL.eq) Option.is_none Option.is_none"  | 
|
| 61068 | 39  | 
by (auto simp add: Option.is_none_def rel_fun_def rel_option_iff split: option.split)  | 
| 51379 | 40  | 
|
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
41  | 
lemma dom_parametric:  | 
| 51379 | 42  | 
assumes [transfer_rule]: "bi_total A"  | 
| 63462 | 43  | 
shows "((A ===> rel_option B) ===> rel_set A) dom dom"  | 
| 61068 | 44  | 
unfolding dom_def [abs_def] Option.is_none_def [symmetric] by transfer_prover  | 
| 51379 | 45  | 
|
| 73832 | 46  | 
lemma graph_parametric:  | 
47  | 
assumes "bi_total A"  | 
|
48  | 
shows "((A ===> rel_option B) ===> rel_set (rel_prod A B)) Map.graph Map.graph"  | 
|
49  | 
proof  | 
|
50  | 
fix f g assume "(A ===> rel_option B) f g"  | 
|
51  | 
with assms[unfolded bi_total_def] show "rel_set (rel_prod A B) (Map.graph f) (Map.graph g)"  | 
|
52  | 
unfolding graph_def rel_set_def rel_fun_def  | 
|
53  | 
by auto (metis option_rel_Some1 option_rel_Some2)+  | 
|
54  | 
qed  | 
|
55  | 
||
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
56  | 
lemma map_of_parametric [transfer_rule]:  | 
| 51379 | 57  | 
assumes [transfer_rule]: "bi_unique R1"  | 
| 55944 | 58  | 
shows "(list_all2 (rel_prod R1 R2) ===> R1 ===> rel_option R2) map_of map_of"  | 
| 56528 | 59  | 
unfolding map_of_def by transfer_prover  | 
| 51379 | 60  | 
|
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
61  | 
lemma map_entry_parametric [transfer_rule]:  | 
| 
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
62  | 
assumes [transfer_rule]: "bi_unique A"  | 
| 63462 | 63  | 
shows "(A ===> (B ===> B) ===> (A ===> rel_option B) ===> A ===> rel_option B)  | 
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
64  | 
(\<lambda>k f m. (case m k of None \<Rightarrow> m  | 
| 
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
65  | 
| Some v \<Rightarrow> m (k \<mapsto> (f v)))) (\<lambda>k f m. (case m k of None \<Rightarrow> m  | 
| 
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
66  | 
| Some v \<Rightarrow> m (k \<mapsto> (f v))))"  | 
| 
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
67  | 
by transfer_prover  | 
| 
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
68  | 
|
| 63462 | 69  | 
lemma tabulate_parametric:  | 
| 51379 | 70  | 
assumes [transfer_rule]: "bi_unique A"  | 
| 63462 | 71  | 
shows "(list_all2 A ===> (A ===> B) ===> A ===> rel_option B)  | 
| 56528 | 72  | 
(\<lambda>ks f. (map_of (map (\<lambda>k. (k, f k)) ks))) (\<lambda>ks f. (map_of (map (\<lambda>k. (k, f k)) ks)))"  | 
73  | 
by transfer_prover  | 
|
| 51379 | 74  | 
|
| 63462 | 75  | 
lemma bulkload_parametric:  | 
76  | 
"(list_all2 A ===> HOL.eq ===> rel_option A)  | 
|
77  | 
(\<lambda>xs k. if k < length xs then Some (xs ! k) else None)  | 
|
78  | 
(\<lambda>xs k. if k < length xs then Some (xs ! k) else None)"  | 
|
| 56528 | 79  | 
proof  | 
80  | 
fix xs ys  | 
|
81  | 
assume "list_all2 A xs ys"  | 
|
| 63462 | 82  | 
then show  | 
83  | 
"(HOL.eq ===> rel_option A)  | 
|
84  | 
(\<lambda>k. if k < length xs then Some (xs ! k) else None)  | 
|
85  | 
(\<lambda>k. if k < length ys then Some (ys ! k) else None)"  | 
|
| 56528 | 86  | 
apply induct  | 
| 63476 | 87  | 
apply auto  | 
| 56528 | 88  | 
unfolding rel_fun_def  | 
| 63462 | 89  | 
apply clarsimp  | 
90  | 
apply (case_tac xa)  | 
|
| 63476 | 91  | 
apply (auto dest: list_all2_lengthD list_all2_nthD)  | 
| 56528 | 92  | 
done  | 
93  | 
qed  | 
|
| 51379 | 94  | 
|
| 63462 | 95  | 
lemma map_parametric:  | 
96  | 
"((A ===> B) ===> (C ===> D) ===> (B ===> rel_option C) ===> A ===> rel_option D)  | 
|
| 56528 | 97  | 
(\<lambda>f g m. (map_option g \<circ> m \<circ> f)) (\<lambda>f g m. (map_option g \<circ> m \<circ> f))"  | 
98  | 
by transfer_prover  | 
|
| 63462 | 99  | 
|
100  | 
lemma combine_with_key_parametric:  | 
|
101  | 
"((A ===> B ===> B ===> B) ===> (A ===> rel_option B) ===> (A ===> rel_option B) ===>  | 
|
102  | 
(A ===> rel_option B)) (\<lambda>f m1 m2 x. combine_options (f x) (m1 x) (m2 x))  | 
|
103  | 
(\<lambda>f m1 m2 x. combine_options (f x) (m1 x) (m2 x))"  | 
|
| 63194 | 104  | 
unfolding combine_options_def by transfer_prover  | 
| 63462 | 105  | 
|
106  | 
lemma combine_parametric:  | 
|
107  | 
"((B ===> B ===> B) ===> (A ===> rel_option B) ===> (A ===> rel_option B) ===>  | 
|
108  | 
(A ===> rel_option B)) (\<lambda>f m1 m2 x. combine_options f (m1 x) (m2 x))  | 
|
109  | 
(\<lambda>f m1 m2 x. combine_options f (m1 x) (m2 x))"  | 
|
| 63194 | 110  | 
unfolding combine_options_def by transfer_prover  | 
| 51379 | 111  | 
|
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
112  | 
end  | 
| 51379 | 113  | 
|
| 
53013
 
3fbcfa911863
remove unnecessary dependencies on Library/Quotient_*
 
kuncar 
parents: 
51379 
diff
changeset
 | 
114  | 
|
| 60500 | 115  | 
subsection \<open>Type definition and primitive operations\<close>  | 
| 29708 | 116  | 
|
| 49834 | 117  | 
typedef ('a, 'b) mapping = "UNIV :: ('a \<rightharpoonup> 'b) set"
 | 
| 63462 | 118  | 
morphisms rep Mapping ..  | 
| 
37700
 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 
haftmann 
parents: 
37299 
diff
changeset
 | 
119  | 
|
| 59485 | 120  | 
setup_lifting type_definition_mapping  | 
| 
37700
 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 
haftmann 
parents: 
37299 
diff
changeset
 | 
121  | 
|
| 56528 | 122  | 
lift_definition empty :: "('a, 'b) mapping"
 | 
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
123  | 
is Map.empty parametric empty_parametric .  | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
124  | 
|
| 56528 | 125  | 
lift_definition lookup :: "('a, 'b) mapping \<Rightarrow> 'a \<Rightarrow> 'b option"
 | 
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
126  | 
is "\<lambda>m k. m k" parametric lookup_parametric .  | 
| 56528 | 127  | 
|
| 63194 | 128  | 
definition "lookup_default d m k = (case Mapping.lookup m k of None \<Rightarrow> d | Some v \<Rightarrow> v)"  | 
129  | 
||
| 56528 | 130  | 
lift_definition update :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
 | 
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
131  | 
is "\<lambda>k v m. m(k \<mapsto> v)" parametric update_parametric .  | 
| 
37700
 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 
haftmann 
parents: 
37299 
diff
changeset
 | 
132  | 
|
| 56528 | 133  | 
lift_definition delete :: "'a \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
 | 
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
134  | 
is "\<lambda>k m. m(k := None)" parametric delete_parametric .  | 
| 
39380
 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 
haftmann 
parents: 
39302 
diff
changeset
 | 
135  | 
|
| 63194 | 136  | 
lift_definition filter :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
 | 
| 63462 | 137  | 
is "\<lambda>P m k. case m k of None \<Rightarrow> None | Some v \<Rightarrow> if P k v then Some v else None" .  | 
| 63194 | 138  | 
|
| 56528 | 139  | 
lift_definition keys :: "('a, 'b) mapping \<Rightarrow> 'a set"
 | 
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
140  | 
is dom parametric dom_parametric .  | 
| 29708 | 141  | 
|
| 73832 | 142  | 
lift_definition entries :: "('a, 'b) mapping \<Rightarrow> ('a \<times> 'b) set"
 | 
143  | 
is Map.graph parametric graph_parametric .  | 
|
144  | 
||
| 56528 | 145  | 
lift_definition tabulate :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping"
 | 
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
146  | 
is "\<lambda>ks f. (map_of (List.map (\<lambda>k. (k, f k)) ks))" parametric tabulate_parametric .  | 
| 29708 | 147  | 
|
| 56528 | 148  | 
lift_definition bulkload :: "'a list \<Rightarrow> (nat, 'a) mapping"  | 
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
149  | 
is "\<lambda>xs k. if k < length xs then Some (xs ! k) else None" parametric bulkload_parametric .  | 
| 29708 | 150  | 
|
| 56528 | 151  | 
lift_definition map :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('c, 'd) mapping"
 | 
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
152  | 
is "\<lambda>f g m. (map_option g \<circ> m \<circ> f)" parametric map_parametric .  | 
| 63462 | 153  | 
|
| 63194 | 154  | 
lift_definition map_values :: "('c \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> ('c, 'a) mapping \<Rightarrow> ('c, 'b) mapping"
 | 
| 63462 | 155  | 
is "\<lambda>f m x. map_option (f x) (m x)" .  | 
| 63194 | 156  | 
|
| 63462 | 157  | 
lift_definition combine_with_key ::  | 
| 63194 | 158  | 
  "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) mapping \<Rightarrow> ('a,'b) mapping \<Rightarrow> ('a,'b) mapping"
 | 
159  | 
is "\<lambda>f m1 m2 x. combine_options (f x) (m1 x) (m2 x)" parametric combine_with_key_parametric .  | 
|
160  | 
||
| 63462 | 161  | 
lift_definition combine ::  | 
| 63194 | 162  | 
  "('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) mapping \<Rightarrow> ('a,'b) mapping \<Rightarrow> ('a,'b) mapping"
 | 
163  | 
is "\<lambda>f m1 m2 x. combine_options f (m1 x) (m2 x)" parametric combine_parametric .  | 
|
164  | 
||
| 63462 | 165  | 
definition "All_mapping m P \<longleftrightarrow>  | 
166  | 
(\<forall>x. case Mapping.lookup m x of None \<Rightarrow> True | Some y \<Rightarrow> P x y)"  | 
|
| 29708 | 167  | 
|
| 59485 | 168  | 
declare [[code drop: map]]  | 
169  | 
||
| 
51161
 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 
haftmann 
parents: 
49975 
diff
changeset
 | 
170  | 
|
| 60500 | 171  | 
subsection \<open>Functorial structure\<close>  | 
| 40605 | 172  | 
|
| 
55467
 
a5c9002bc54d
renamed 'enriched_type' to more informative 'functor' (following the renaming of enriched type constructors to bounded natural functors)
 
blanchet 
parents: 
55466 
diff
changeset
 | 
173  | 
functor map: map  | 
| 55466 | 174  | 
by (transfer, auto simp add: fun_eq_iff option.map_comp option.map_id)+  | 
| 40605 | 175  | 
|
| 
51161
 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 
haftmann 
parents: 
49975 
diff
changeset
 | 
176  | 
|
| 60500 | 177  | 
subsection \<open>Derived operations\<close>  | 
| 29708 | 178  | 
|
| 61076 | 179  | 
definition ordered_keys :: "('a::linorder, 'b) mapping \<Rightarrow> 'a list"
 | 
| 63462 | 180  | 
where "ordered_keys m = (if finite (keys m) then sorted_list_of_set (keys m) else [])"  | 
| 35194 | 181  | 
|
| 73832 | 182  | 
definition ordered_entries :: "('a::linorder, 'b) mapping \<Rightarrow> ('a \<times> 'b) list"
 | 
183  | 
where "ordered_entries m = (if finite (entries m) then sorted_key_list_of_set fst (entries m)  | 
|
184  | 
else [])"  | 
|
185  | 
||
186  | 
definition fold :: "('a::linorder \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> 'c \<Rightarrow> 'c"
 | 
|
187  | 
where "fold f m a = List.fold (case_prod f) (ordered_entries m) a"  | 
|
188  | 
||
| 56528 | 189  | 
definition is_empty :: "('a, 'b) mapping \<Rightarrow> bool"
 | 
| 63462 | 190  | 
  where "is_empty m \<longleftrightarrow> keys m = {}"
 | 
| 35157 | 191  | 
|
| 56528 | 192  | 
definition size :: "('a, 'b) mapping \<Rightarrow> nat"
 | 
| 63462 | 193  | 
where "size m = (if finite (keys m) then card (keys m) else 0)"  | 
| 35157 | 194  | 
|
| 56528 | 195  | 
definition replace :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
 | 
| 63462 | 196  | 
where "replace k v m = (if k \<in> keys m then update k v m else m)"  | 
| 29814 | 197  | 
|
| 56528 | 198  | 
definition default :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
 | 
| 63462 | 199  | 
where "default k v m = (if k \<in> keys m then m else update k v m)"  | 
| 
37026
 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 
haftmann 
parents: 
36176 
diff
changeset
 | 
200  | 
|
| 60500 | 201  | 
text \<open>Manual derivation of transfer rule is non-trivial\<close>  | 
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
202  | 
|
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
203  | 
lift_definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" is
 | 
| 63462 | 204  | 
"\<lambda>k f m.  | 
205  | 
(case m k of  | 
|
206  | 
None \<Rightarrow> m  | 
|
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
207  | 
| Some v \<Rightarrow> m (k \<mapsto> (f v)))" parametric map_entry_parametric .  | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
208  | 
|
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
209  | 
lemma map_entry_code [code]:  | 
| 63462 | 210  | 
"map_entry k f m =  | 
211  | 
(case lookup m k of  | 
|
212  | 
None \<Rightarrow> m  | 
|
| 
49975
 
faf4afed009f
transfer package: more flexible handling of equality relations using is_equality predicate
 
huffman 
parents: 
49973 
diff
changeset
 | 
213  | 
| Some v \<Rightarrow> update k (f v) m)"  | 
| 
 
faf4afed009f
transfer package: more flexible handling of equality relations using is_equality predicate
 
huffman 
parents: 
49973 
diff
changeset
 | 
214  | 
by transfer rule  | 
| 
37026
 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 
haftmann 
parents: 
36176 
diff
changeset
 | 
215  | 
|
| 56528 | 216  | 
definition map_default :: "'a \<Rightarrow> 'b \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
 | 
| 63462 | 217  | 
where "map_default k v f m = map_entry k f (default k v m)"  | 
| 
37026
 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 
haftmann 
parents: 
36176 
diff
changeset
 | 
218  | 
|
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
219  | 
definition of_alist :: "('k \<times> 'v) list \<Rightarrow> ('k, 'v) mapping"
 | 
| 63462 | 220  | 
where "of_alist xs = foldr (\<lambda>(k, v) m. update k v m) xs empty"  | 
| 51379 | 221  | 
|
| 
51161
 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 
haftmann 
parents: 
49975 
diff
changeset
 | 
222  | 
instantiation mapping :: (type, type) equal  | 
| 
 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 
haftmann 
parents: 
49975 
diff
changeset
 | 
223  | 
begin  | 
| 
 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 
haftmann 
parents: 
49975 
diff
changeset
 | 
224  | 
|
| 63462 | 225  | 
definition "HOL.equal m1 m2 \<longleftrightarrow> (\<forall>k. lookup m1 k = lookup m2 k)"  | 
| 
51161
 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 
haftmann 
parents: 
49975 
diff
changeset
 | 
226  | 
|
| 60679 | 227  | 
instance  | 
| 63462 | 228  | 
apply standard  | 
229  | 
unfolding equal_mapping_def  | 
|
230  | 
apply transfer  | 
|
231  | 
apply auto  | 
|
232  | 
done  | 
|
| 
51161
 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 
haftmann 
parents: 
49975 
diff
changeset
 | 
233  | 
|
| 
 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 
haftmann 
parents: 
49975 
diff
changeset
 | 
234  | 
end  | 
| 
 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 
haftmann 
parents: 
49975 
diff
changeset
 | 
235  | 
|
| 63343 | 236  | 
context includes lifting_syntax  | 
| 
53013
 
3fbcfa911863
remove unnecessary dependencies on Library/Quotient_*
 
kuncar 
parents: 
51379 
diff
changeset
 | 
237  | 
begin  | 
| 56528 | 238  | 
|
| 
51161
 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 
haftmann 
parents: 
49975 
diff
changeset
 | 
239  | 
lemma [transfer_rule]:  | 
| 51379 | 240  | 
assumes [transfer_rule]: "bi_total A"  | 
| 63462 | 241  | 
and [transfer_rule]: "bi_unique B"  | 
| 67399 | 242  | 
shows "(pcr_mapping A B ===> pcr_mapping A B ===> (=)) HOL.eq HOL.equal"  | 
| 63462 | 243  | 
unfolding equal by transfer_prover  | 
| 
51161
 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 
haftmann 
parents: 
49975 
diff
changeset
 | 
244  | 
|
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
245  | 
lemma of_alist_transfer [transfer_rule]:  | 
| 
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
246  | 
assumes [transfer_rule]: "bi_unique R1"  | 
| 
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
247  | 
shows "(list_all2 (rel_prod R1 R2) ===> pcr_mapping R1 R2) map_of of_alist"  | 
| 
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
248  | 
unfolding of_alist_def [abs_def] map_of_foldr [abs_def] by transfer_prover  | 
| 
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
249  | 
|
| 
53013
 
3fbcfa911863
remove unnecessary dependencies on Library/Quotient_*
 
kuncar 
parents: 
51379 
diff
changeset
 | 
250  | 
end  | 
| 
51161
 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 
haftmann 
parents: 
49975 
diff
changeset
 | 
251  | 
|
| 56528 | 252  | 
|
| 60500 | 253  | 
subsection \<open>Properties\<close>  | 
| 29708 | 254  | 
|
| 63462 | 255  | 
lemma mapping_eqI: "(\<And>x. lookup m x = lookup m' x) \<Longrightarrow> m = m'"  | 
| 63195 | 256  | 
by transfer (simp add: fun_eq_iff)  | 
257  | 
||
| 63462 | 258  | 
lemma mapping_eqI':  | 
259  | 
assumes "\<And>x. x \<in> Mapping.keys m \<Longrightarrow> Mapping.lookup_default d m x = Mapping.lookup_default d m' x"  | 
|
260  | 
and "Mapping.keys m = Mapping.keys m'"  | 
|
261  | 
shows "m = m'"  | 
|
| 63195 | 262  | 
proof (intro mapping_eqI)  | 
| 63462 | 263  | 
show "Mapping.lookup m x = Mapping.lookup m' x" for x  | 
| 63195 | 264  | 
proof (cases "Mapping.lookup m x")  | 
265  | 
case None  | 
|
| 63462 | 266  | 
then have "x \<notin> Mapping.keys m"  | 
267  | 
by transfer (simp add: dom_def)  | 
|
268  | 
then have "x \<notin> Mapping.keys m'"  | 
|
269  | 
by (simp add: assms)  | 
|
270  | 
then have "Mapping.lookup m' x = None"  | 
|
271  | 
by transfer (simp add: dom_def)  | 
|
272  | 
with None show ?thesis  | 
|
273  | 
by simp  | 
|
| 63195 | 274  | 
next  | 
275  | 
case (Some y)  | 
|
| 63462 | 276  | 
then have A: "x \<in> Mapping.keys m"  | 
277  | 
by transfer (simp add: dom_def)  | 
|
278  | 
then have "x \<in> Mapping.keys m'"  | 
|
279  | 
by (simp add: assms)  | 
|
280  | 
then have "\<exists>y'. Mapping.lookup m' x = Some y'"  | 
|
281  | 
by transfer (simp add: dom_def)  | 
|
282  | 
with Some assms(1)[OF A] show ?thesis  | 
|
283  | 
by (auto simp add: lookup_default_def)  | 
|
| 63195 | 284  | 
qed  | 
285  | 
qed  | 
|
286  | 
||
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
287  | 
lemma lookup_update[simp]: "lookup (update k v m) k = Some v"  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
288  | 
by transfer simp  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
289  | 
|
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
290  | 
lemma lookup_update_neq[simp]: "k \<noteq> k' \<Longrightarrow> lookup (update k v m) k' = lookup m k'"  | 
| 49973 | 291  | 
by transfer simp  | 
292  | 
||
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
293  | 
lemma lookup_update': "lookup (update k v m) k' = (if k = k' then Some v else lookup m k')"  | 
| 49973 | 294  | 
by transfer simp  | 
295  | 
||
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
296  | 
lemma lookup_empty[simp]: "lookup empty k = None"  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
297  | 
by transfer simp  | 
| 63194 | 298  | 
|
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
299  | 
lemma lookup_delete[simp]: "lookup (delete k m) k = None"  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
300  | 
by transfer simp  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
301  | 
|
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
302  | 
lemma lookup_delete_neq[simp]: "k \<noteq> k' \<Longrightarrow> lookup (delete k m) k' = lookup m k'"  | 
| 49973 | 303  | 
by transfer simp  | 
304  | 
||
| 63194 | 305  | 
lemma lookup_filter:  | 
| 63462 | 306  | 
"lookup (filter P m) k =  | 
307  | 
(case lookup m k of  | 
|
308  | 
None \<Rightarrow> None  | 
|
309  | 
| Some v \<Rightarrow> if P k v then Some v else None)"  | 
|
| 63194 | 310  | 
by transfer simp_all  | 
311  | 
||
| 63462 | 312  | 
lemma lookup_map_values: "lookup (map_values f m) k = map_option (f k) (lookup m k)"  | 
| 63194 | 313  | 
by transfer simp_all  | 
314  | 
||
315  | 
lemma lookup_default_empty: "lookup_default d empty k = d"  | 
|
316  | 
by (simp add: lookup_default_def lookup_empty)  | 
|
317  | 
||
| 63462 | 318  | 
lemma lookup_default_update: "lookup_default d (update k v m) k = v"  | 
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
319  | 
by (simp add: lookup_default_def)  | 
| 63194 | 320  | 
|
321  | 
lemma lookup_default_update_neq:  | 
|
| 63462 | 322  | 
"k \<noteq> k' \<Longrightarrow> lookup_default d (update k v m) k' = lookup_default d m k'"  | 
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
323  | 
by (simp add: lookup_default_def)  | 
| 63194 | 324  | 
|
| 63462 | 325  | 
lemma lookup_default_update':  | 
| 63194 | 326  | 
"lookup_default d (update k v m) k' = (if k = k' then v else lookup_default d m k')"  | 
327  | 
by (auto simp: lookup_default_update lookup_default_update_neq)  | 
|
328  | 
||
329  | 
lemma lookup_default_filter:  | 
|
| 63462 | 330  | 
"lookup_default d (filter P m) k =  | 
| 63194 | 331  | 
(if P k (lookup_default d m k) then lookup_default d m k else d)"  | 
332  | 
by (simp add: lookup_default_def lookup_filter split: option.splits)  | 
|
333  | 
||
334  | 
lemma lookup_default_map_values:  | 
|
335  | 
"lookup_default (f k d) (map_values f m) k = f k (lookup_default d m k)"  | 
|
| 63462 | 336  | 
by (simp add: lookup_default_def lookup_map_values split: option.splits)  | 
| 63194 | 337  | 
|
338  | 
lemma lookup_combine_with_key:  | 
|
| 63462 | 339  | 
"Mapping.lookup (combine_with_key f m1 m2) x =  | 
340  | 
combine_options (f x) (Mapping.lookup m1 x) (Mapping.lookup m2 x)"  | 
|
| 63194 | 341  | 
by transfer (auto split: option.splits)  | 
| 63462 | 342  | 
|
| 63194 | 343  | 
lemma combine_altdef: "combine f m1 m2 = combine_with_key (\<lambda>_. f) m1 m2"  | 
344  | 
by transfer' (rule refl)  | 
|
345  | 
||
346  | 
lemma lookup_combine:  | 
|
| 63462 | 347  | 
"Mapping.lookup (combine f m1 m2) x =  | 
| 63194 | 348  | 
combine_options f (Mapping.lookup m1 x) (Mapping.lookup m2 x)"  | 
349  | 
by transfer (auto split: option.splits)  | 
|
| 63462 | 350  | 
|
351  | 
lemma lookup_default_neutral_combine_with_key:  | 
|
| 63194 | 352  | 
assumes "\<And>x. f k d x = x" "\<And>x. f k x d = x"  | 
| 63462 | 353  | 
shows "Mapping.lookup_default d (combine_with_key f m1 m2) k =  | 
354  | 
f k (Mapping.lookup_default d m1 k) (Mapping.lookup_default d m2 k)"  | 
|
| 63194 | 355  | 
by (auto simp: lookup_default_def lookup_combine_with_key assms split: option.splits)  | 
| 63462 | 356  | 
|
357  | 
lemma lookup_default_neutral_combine:  | 
|
| 63194 | 358  | 
assumes "\<And>x. f d x = x" "\<And>x. f x d = x"  | 
| 63462 | 359  | 
shows "Mapping.lookup_default d (combine f m1 m2) x =  | 
360  | 
f (Mapping.lookup_default d m1 x) (Mapping.lookup_default d m2 x)"  | 
|
| 63194 | 361  | 
by (auto simp: lookup_default_def lookup_combine assms split: option.splits)  | 
362  | 
||
| 63462 | 363  | 
lemma lookup_map_entry: "lookup (map_entry x f m) x = map_option f (lookup m x)"  | 
| 63195 | 364  | 
by transfer (auto split: option.splits)  | 
365  | 
||
| 63462 | 366  | 
lemma lookup_map_entry_neq: "x \<noteq> y \<Longrightarrow> lookup (map_entry x f m) y = lookup m y"  | 
| 63195 | 367  | 
by transfer (auto split: option.splits)  | 
368  | 
||
369  | 
lemma lookup_map_entry':  | 
|
| 63462 | 370  | 
"lookup (map_entry x f m) y =  | 
| 63195 | 371  | 
(if x = y then map_option f (lookup m y) else lookup m y)"  | 
372  | 
by transfer (auto split: option.splits)  | 
|
373  | 
||
| 63462 | 374  | 
lemma lookup_default: "lookup (default x d m) x = Some (lookup_default d m x)"  | 
375  | 
unfolding lookup_default_def default_def  | 
|
376  | 
by transfer (auto split: option.splits)  | 
|
377  | 
||
378  | 
lemma lookup_default_neq: "x \<noteq> y \<Longrightarrow> lookup (default x d m) y = lookup m y"  | 
|
379  | 
unfolding lookup_default_def default_def  | 
|
380  | 
by transfer (auto split: option.splits)  | 
|
| 63195 | 381  | 
|
382  | 
lemma lookup_default':  | 
|
| 63462 | 383  | 
"lookup (default x d m) y =  | 
384  | 
(if x = y then Some (lookup_default d m x) else lookup m y)"  | 
|
| 63195 | 385  | 
unfolding lookup_default_def default_def  | 
386  | 
by transfer (auto split: option.splits)  | 
|
387  | 
||
| 63462 | 388  | 
lemma lookup_map_default: "lookup (map_default x d f m) x = Some (f (lookup_default d m x))"  | 
389  | 
unfolding lookup_default_def default_def  | 
|
390  | 
by (simp add: map_default_def lookup_map_entry lookup_default lookup_default_def)  | 
|
391  | 
||
392  | 
lemma lookup_map_default_neq: "x \<noteq> y \<Longrightarrow> lookup (map_default x d f m) y = lookup m y"  | 
|
393  | 
unfolding lookup_default_def default_def  | 
|
394  | 
by (simp add: map_default_def lookup_map_entry_neq lookup_default_neq)  | 
|
| 63195 | 395  | 
|
396  | 
lemma lookup_map_default':  | 
|
| 63462 | 397  | 
"lookup (map_default x d f m) y =  | 
398  | 
(if x = y then Some (f (lookup_default d m x)) else lookup m y)"  | 
|
399  | 
unfolding lookup_default_def default_def  | 
|
400  | 
by (simp add: map_default_def lookup_map_entry' lookup_default' lookup_default_def)  | 
|
| 63195 | 401  | 
|
| 63462 | 402  | 
lemma lookup_tabulate:  | 
| 63194 | 403  | 
assumes "distinct xs"  | 
| 63462 | 404  | 
shows "Mapping.lookup (Mapping.tabulate xs f) x = (if x \<in> set xs then Some (f x) else None)"  | 
| 63194 | 405  | 
using assms by transfer (auto simp: map_of_eq_None_iff o_def dest!: map_of_SomeD)  | 
406  | 
||
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
407  | 
lemma lookup_of_alist: "lookup (of_alist xs) k = map_of xs k"  | 
| 63194 | 408  | 
by transfer simp_all  | 
409  | 
||
| 63462 | 410  | 
lemma keys_is_none_rep [code_unfold]: "k \<in> keys m \<longleftrightarrow> \<not> (Option.is_none (lookup m k))"  | 
| 61068 | 411  | 
by transfer (auto simp add: Option.is_none_def)  | 
| 29708 | 412  | 
|
413  | 
lemma update_update:  | 
|
414  | 
"update k v (update k w m) = update k v m"  | 
|
415  | 
"k \<noteq> l \<Longrightarrow> update k v (update l w m) = update l w (update k v m)"  | 
|
| 63462 | 416  | 
by (transfer; simp add: fun_upd_twist)+  | 
| 29708 | 417  | 
|
| 63462 | 418  | 
lemma update_delete [simp]: "update k v (delete k m) = update k v m"  | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
419  | 
by transfer simp  | 
| 29708 | 420  | 
|
421  | 
lemma delete_update:  | 
|
422  | 
"delete k (update k v m) = delete k m"  | 
|
423  | 
"k \<noteq> l \<Longrightarrow> delete k (update l v m) = update l v (delete k m)"  | 
|
| 63462 | 424  | 
by (transfer; simp add: fun_upd_twist)+  | 
| 29708 | 425  | 
|
| 63462 | 426  | 
lemma delete_empty [simp]: "delete k empty = empty"  | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
427  | 
by transfer simp  | 
| 29708 | 428  | 
|
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
429  | 
lemma Mapping_delete_if_notin_keys[simp]:  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
430  | 
"k \<notin> keys m \<Longrightarrow> delete k m = m"  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
431  | 
by transfer simp  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
432  | 
|
| 35157 | 433  | 
lemma replace_update:  | 
| 37052 | 434  | 
"k \<notin> keys m \<Longrightarrow> replace k v m = m"  | 
435  | 
"k \<in> keys m \<Longrightarrow> replace k v m = update k v m"  | 
|
| 63462 | 436  | 
by (transfer; auto simp add: replace_def fun_upd_twist)+  | 
437  | 
||
| 63194 | 438  | 
lemma map_values_update: "map_values f (update k v m) = update k (f k v) (map_values f m)"  | 
439  | 
by transfer (simp_all add: fun_eq_iff)  | 
|
| 63462 | 440  | 
|
441  | 
lemma size_mono: "finite (keys m') \<Longrightarrow> keys m \<subseteq> keys m' \<Longrightarrow> size m \<le> size m'"  | 
|
| 63194 | 442  | 
unfolding size_def by (auto intro: card_mono)  | 
| 29708 | 443  | 
|
| 63462 | 444  | 
lemma size_empty [simp]: "size empty = 0"  | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
445  | 
unfolding size_def by transfer simp  | 
| 29708 | 446  | 
|
447  | 
lemma size_update:  | 
|
| 37052 | 448  | 
"finite (keys m) \<Longrightarrow> size (update k v m) =  | 
449  | 
(if k \<in> keys m then size m else Suc (size m))"  | 
|
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
450  | 
unfolding size_def by transfer (auto simp add: insert_dom)  | 
| 29708 | 451  | 
|
| 63462 | 452  | 
lemma size_delete: "size (delete k m) = (if k \<in> keys m then size m - 1 else size m)"  | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
453  | 
unfolding size_def by transfer simp  | 
| 29708 | 454  | 
|
| 63462 | 455  | 
lemma size_tabulate [simp]: "size (tabulate ks f) = length (remdups ks)"  | 
456  | 
unfolding size_def by transfer (auto simp add: map_of_map_restrict card_set comp_def)  | 
|
| 29708 | 457  | 
|
| 63194 | 458  | 
lemma keys_filter: "keys (filter P m) \<subseteq> keys m"  | 
459  | 
by transfer (auto split: option.splits)  | 
|
460  | 
||
461  | 
lemma size_filter: "finite (keys m) \<Longrightarrow> size (filter P m) \<le> size m"  | 
|
462  | 
by (intro size_mono keys_filter)  | 
|
463  | 
||
| 63462 | 464  | 
lemma bulkload_tabulate: "bulkload xs = tabulate [0..<length xs] (nth xs)"  | 
| 56528 | 465  | 
by transfer (auto simp add: map_of_map_restrict)  | 
| 29826 | 466  | 
|
| 63462 | 467  | 
lemma is_empty_empty [simp]: "is_empty empty"  | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
468  | 
unfolding is_empty_def by transfer simp  | 
| 37052 | 469  | 
|
| 63462 | 470  | 
lemma is_empty_update [simp]: "\<not> is_empty (update k v m)"  | 
471  | 
unfolding is_empty_def by transfer simp  | 
|
472  | 
||
473  | 
lemma is_empty_delete: "is_empty (delete k m) \<longleftrightarrow> is_empty m \<or> keys m = {k}"
 | 
|
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
474  | 
unfolding is_empty_def by transfer (auto simp del: dom_eq_empty_conv)  | 
| 37052 | 475  | 
|
| 63462 | 476  | 
lemma is_empty_replace [simp]: "is_empty (replace k v m) \<longleftrightarrow> is_empty m"  | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
477  | 
unfolding is_empty_def replace_def by transfer auto  | 
| 37052 | 478  | 
|
| 63462 | 479  | 
lemma is_empty_default [simp]: "\<not> is_empty (default k v m)"  | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
480  | 
unfolding is_empty_def default_def by transfer auto  | 
| 37052 | 481  | 
|
| 63462 | 482  | 
lemma is_empty_map_entry [simp]: "is_empty (map_entry k f m) \<longleftrightarrow> is_empty m"  | 
| 56528 | 483  | 
unfolding is_empty_def by transfer (auto split: option.split)  | 
| 37052 | 484  | 
|
| 63462 | 485  | 
lemma is_empty_map_values [simp]: "is_empty (map_values f m) \<longleftrightarrow> is_empty m"  | 
| 63194 | 486  | 
unfolding is_empty_def by transfer (auto simp: fun_eq_iff)  | 
487  | 
||
| 63462 | 488  | 
lemma is_empty_map_default [simp]: "\<not> is_empty (map_default k v f m)"  | 
| 37052 | 489  | 
by (simp add: map_default_def)  | 
490  | 
||
| 63462 | 491  | 
lemma keys_dom_lookup: "keys m = dom (Mapping.lookup m)"  | 
| 56545 | 492  | 
by transfer rule  | 
493  | 
||
| 63462 | 494  | 
lemma keys_empty [simp]: "keys empty = {}"
 | 
| 73832 | 495  | 
by transfer (fact dom_empty)  | 
496  | 
||
497  | 
lemma in_keysD: "k \<in> keys m \<Longrightarrow> \<exists>v. lookup m k = Some v"  | 
|
498  | 
by transfer (fact domD)  | 
|
499  | 
||
| 63462 | 500  | 
lemma keys_update [simp]: "keys (update k v m) = insert k (keys m)"  | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
501  | 
by transfer simp  | 
| 37052 | 502  | 
|
| 63462 | 503  | 
lemma keys_delete [simp]: "keys (delete k m) = keys m - {k}"
 | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
504  | 
by transfer simp  | 
| 37052 | 505  | 
|
| 63462 | 506  | 
lemma keys_replace [simp]: "keys (replace k v m) = keys m"  | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
507  | 
unfolding replace_def by transfer (simp add: insert_absorb)  | 
| 37052 | 508  | 
|
| 63462 | 509  | 
lemma keys_default [simp]: "keys (default k v m) = insert k (keys m)"  | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
510  | 
unfolding default_def by transfer (simp add: insert_absorb)  | 
| 37052 | 511  | 
|
| 63462 | 512  | 
lemma keys_map_entry [simp]: "keys (map_entry k f m) = keys m"  | 
| 56528 | 513  | 
by transfer (auto split: option.split)  | 
| 37052 | 514  | 
|
| 63462 | 515  | 
lemma keys_map_default [simp]: "keys (map_default k v f m) = insert k (keys m)"  | 
| 37052 | 516  | 
by (simp add: map_default_def)  | 
517  | 
||
| 63462 | 518  | 
lemma keys_map_values [simp]: "keys (map_values f m) = keys m"  | 
| 63194 | 519  | 
by transfer (simp_all add: dom_def)  | 
520  | 
||
| 63462 | 521  | 
lemma keys_combine_with_key [simp]:  | 
| 63194 | 522  | 
"Mapping.keys (combine_with_key f m1 m2) = Mapping.keys m1 \<union> Mapping.keys m2"  | 
| 63462 | 523  | 
by transfer (auto simp: dom_def combine_options_def split: option.splits)  | 
| 63194 | 524  | 
|
525  | 
lemma keys_combine [simp]: "Mapping.keys (combine f m1 m2) = Mapping.keys m1 \<union> Mapping.keys m2"  | 
|
526  | 
by (simp add: combine_altdef)  | 
|
527  | 
||
| 63462 | 528  | 
lemma keys_tabulate [simp]: "keys (tabulate ks f) = set ks"  | 
| 
49929
 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 
kuncar 
parents: 
49834 
diff
changeset
 | 
529  | 
by transfer (simp add: map_of_map_restrict o_def)  | 
| 
37026
 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 
haftmann 
parents: 
36176 
diff
changeset
 | 
530  | 
|
| 63194 | 531  | 
lemma keys_of_alist [simp]: "keys (of_alist xs) = set (List.map fst xs)"  | 
532  | 
by transfer (simp_all add: dom_map_of_conv_image_fst)  | 
|
533  | 
||
| 63462 | 534  | 
lemma keys_bulkload [simp]: "keys (bulkload xs) = {0..<length xs}"
 | 
| 56528 | 535  | 
by (simp add: bulkload_tabulate)  | 
| 
37026
 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 
haftmann 
parents: 
36176 
diff
changeset
 | 
536  | 
|
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
537  | 
lemma finite_keys_update[simp]:  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
538  | 
"finite (keys (update k v m)) = finite (keys m)"  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
539  | 
by transfer simp  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
540  | 
|
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
541  | 
lemma set_ordered_keys[simp]:  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
542  | 
"finite (Mapping.keys m) \<Longrightarrow> set (Mapping.ordered_keys m) = Mapping.keys m"  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
543  | 
unfolding ordered_keys_def by transfer auto  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
544  | 
|
| 63462 | 545  | 
lemma distinct_ordered_keys [simp]: "distinct (ordered_keys m)"  | 
| 37052 | 546  | 
by (simp add: ordered_keys_def)  | 
547  | 
||
| 63462 | 548  | 
lemma ordered_keys_infinite [simp]: "\<not> finite (keys m) \<Longrightarrow> ordered_keys m = []"  | 
| 37052 | 549  | 
by (simp add: ordered_keys_def)  | 
550  | 
||
| 63462 | 551  | 
lemma ordered_keys_empty [simp]: "ordered_keys empty = []"  | 
| 37052 | 552  | 
by (simp add: ordered_keys_def)  | 
553  | 
||
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
554  | 
lemma sorted_ordered_keys[simp]: "sorted (ordered_keys m)"  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
555  | 
unfolding ordered_keys_def by simp  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
556  | 
|
| 37052 | 557  | 
lemma ordered_keys_update [simp]:  | 
558  | 
"k \<in> keys m \<Longrightarrow> ordered_keys (update k v m) = ordered_keys m"  | 
|
| 63462 | 559  | 
"finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow>  | 
560  | 
ordered_keys (update k v m) = insort k (ordered_keys m)"  | 
|
561  | 
by (simp_all add: ordered_keys_def)  | 
|
| 73832 | 562  | 
(auto simp only: sorted_list_of_set_insert_remove[symmetric] insert_absorb)  | 
| 37052 | 563  | 
|
| 63462 | 564  | 
lemma ordered_keys_delete [simp]: "ordered_keys (delete k m) = remove1 k (ordered_keys m)"  | 
| 37052 | 565  | 
proof (cases "finite (keys m)")  | 
| 63462 | 566  | 
case False  | 
567  | 
then show ?thesis by simp  | 
|
| 37052 | 568  | 
next  | 
| 63462 | 569  | 
case fin: True  | 
| 37052 | 570  | 
show ?thesis  | 
571  | 
proof (cases "k \<in> keys m")  | 
|
| 63462 | 572  | 
case False  | 
573  | 
with fin have "k \<notin> set (sorted_list_of_set (keys m))"  | 
|
574  | 
by simp  | 
|
575  | 
with False show ?thesis  | 
|
576  | 
by (simp add: ordered_keys_def remove1_idem)  | 
|
| 37052 | 577  | 
next  | 
| 63462 | 578  | 
case True  | 
579  | 
with fin show ?thesis  | 
|
580  | 
by (simp add: ordered_keys_def sorted_list_of_set_remove)  | 
|
| 37052 | 581  | 
qed  | 
582  | 
qed  | 
|
583  | 
||
| 63462 | 584  | 
lemma ordered_keys_replace [simp]: "ordered_keys (replace k v m) = ordered_keys m"  | 
| 37052 | 585  | 
by (simp add: replace_def)  | 
586  | 
||
587  | 
lemma ordered_keys_default [simp]:  | 
|
588  | 
"k \<in> keys m \<Longrightarrow> ordered_keys (default k v m) = ordered_keys m"  | 
|
589  | 
"finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (default k v m) = insort k (ordered_keys m)"  | 
|
590  | 
by (simp_all add: default_def)  | 
|
591  | 
||
| 63462 | 592  | 
lemma ordered_keys_map_entry [simp]: "ordered_keys (map_entry k f m) = ordered_keys m"  | 
| 37052 | 593  | 
by (simp add: ordered_keys_def)  | 
594  | 
||
595  | 
lemma ordered_keys_map_default [simp]:  | 
|
596  | 
"k \<in> keys m \<Longrightarrow> ordered_keys (map_default k v f m) = ordered_keys m"  | 
|
597  | 
"finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (map_default k v f m) = insort k (ordered_keys m)"  | 
|
598  | 
by (simp_all add: map_default_def)  | 
|
599  | 
||
| 63462 | 600  | 
lemma ordered_keys_tabulate [simp]: "ordered_keys (tabulate ks f) = sort (remdups ks)"  | 
| 37052 | 601  | 
by (simp add: ordered_keys_def sorted_list_of_set_sort_remdups)  | 
602  | 
||
| 63462 | 603  | 
lemma ordered_keys_bulkload [simp]: "ordered_keys (bulkload ks) = [0..<length ks]"  | 
| 37052 | 604  | 
by (simp add: ordered_keys_def)  | 
| 36110 | 605  | 
|
| 73832 | 606  | 
lemma tabulate_fold: "tabulate xs f = List.fold (\<lambda>k m. update k (f k) m) xs empty"  | 
| 56528 | 607  | 
proof transfer  | 
608  | 
fix f :: "'a \<Rightarrow> 'b" and xs  | 
|
| 
56529
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
609  | 
have "map_of (List.map (\<lambda>k. (k, f k)) xs) = foldr (\<lambda>k m. m(k \<mapsto> f k)) xs Map.empty"  | 
| 
 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 
haftmann 
parents: 
56528 
diff
changeset
 | 
610  | 
by (simp add: foldr_map comp_def map_of_foldr)  | 
| 73832 | 611  | 
also have "foldr (\<lambda>k m. m(k \<mapsto> f k)) xs = List.fold (\<lambda>k m. m(k \<mapsto> f k)) xs"  | 
| 56528 | 612  | 
by (rule foldr_fold) (simp add: fun_eq_iff)  | 
| 73832 | 613  | 
ultimately show "map_of (List.map (\<lambda>k. (k, f k)) xs) = List.fold (\<lambda>k m. m(k \<mapsto> f k)) xs Map.empty"  | 
| 56528 | 614  | 
by simp  | 
615  | 
qed  | 
|
616  | 
||
| 63194 | 617  | 
lemma All_mapping_mono:  | 
618  | 
"(\<And>k v. k \<in> keys m \<Longrightarrow> P k v \<Longrightarrow> Q k v) \<Longrightarrow> All_mapping m P \<Longrightarrow> All_mapping m Q"  | 
|
619  | 
unfolding All_mapping_def by transfer (auto simp: All_mapping_def dom_def split: option.splits)  | 
|
| 31459 | 620  | 
|
| 63194 | 621  | 
lemma All_mapping_empty [simp]: "All_mapping Mapping.empty P"  | 
622  | 
by (auto simp: All_mapping_def lookup_empty)  | 
|
| 63462 | 623  | 
|
624  | 
lemma All_mapping_update_iff:  | 
|
| 63194 | 625  | 
"All_mapping (Mapping.update k v m) P \<longleftrightarrow> P k v \<and> All_mapping m (\<lambda>k' v'. k = k' \<or> P k' v')"  | 
| 63462 | 626  | 
unfolding All_mapping_def  | 
| 63194 | 627  | 
proof safe  | 
628  | 
assume "\<forall>x. case Mapping.lookup (Mapping.update k v m) x of None \<Rightarrow> True | Some y \<Rightarrow> P x y"  | 
|
| 63462 | 629  | 
then have *: "case Mapping.lookup (Mapping.update k v m) x of None \<Rightarrow> True | Some y \<Rightarrow> P x y" for x  | 
| 63194 | 630  | 
by blast  | 
| 63462 | 631  | 
from *[of k] show "P k v"  | 
632  | 
by (simp add: lookup_update)  | 
|
| 63194 | 633  | 
show "case Mapping.lookup m x of None \<Rightarrow> True | Some v' \<Rightarrow> k = x \<or> P x v'" for x  | 
| 63462 | 634  | 
using *[of x] by (auto simp add: lookup_update' split: if_splits option.splits)  | 
| 63194 | 635  | 
next  | 
636  | 
assume "P k v"  | 
|
637  | 
assume "\<forall>x. case Mapping.lookup m x of None \<Rightarrow> True | Some v' \<Rightarrow> k = x \<or> P x v'"  | 
|
| 63462 | 638  | 
then have A: "case Mapping.lookup m x of None \<Rightarrow> True | Some v' \<Rightarrow> k = x \<or> P x v'" for x  | 
639  | 
by blast  | 
|
| 63194 | 640  | 
show "case Mapping.lookup (Mapping.update k v m) x of None \<Rightarrow> True | Some xa \<Rightarrow> P x xa" for x  | 
641  | 
using \<open>P k v\<close> A[of x] by (auto simp: lookup_update' split: option.splits)  | 
|
642  | 
qed  | 
|
643  | 
||
644  | 
lemma All_mapping_update:  | 
|
645  | 
"P k v \<Longrightarrow> All_mapping m (\<lambda>k' v'. k = k' \<or> P k' v') \<Longrightarrow> All_mapping (Mapping.update k v m) P"  | 
|
646  | 
by (simp add: All_mapping_update_iff)  | 
|
647  | 
||
| 63462 | 648  | 
lemma All_mapping_filter_iff: "All_mapping (filter P m) Q \<longleftrightarrow> All_mapping m (\<lambda>k v. P k v \<longrightarrow> Q k v)"  | 
| 63194 | 649  | 
by (auto simp: All_mapping_def lookup_filter split: option.splits)  | 
650  | 
||
| 63462 | 651  | 
lemma All_mapping_filter: "All_mapping m Q \<Longrightarrow> All_mapping (filter P m) Q"  | 
| 63194 | 652  | 
by (auto simp: All_mapping_filter_iff intro: All_mapping_mono)  | 
| 31459 | 653  | 
|
| 63462 | 654  | 
lemma All_mapping_map_values: "All_mapping (map_values f m) P \<longleftrightarrow> All_mapping m (\<lambda>k v. P k (f k v))"  | 
| 63194 | 655  | 
by (auto simp: All_mapping_def lookup_map_values split: option.splits)  | 
656  | 
||
| 63462 | 657  | 
lemma All_mapping_tabulate: "(\<forall>x\<in>set xs. P x (f x)) \<Longrightarrow> All_mapping (Mapping.tabulate xs f) P"  | 
658  | 
unfolding All_mapping_def  | 
|
659  | 
apply (intro allI)  | 
|
660  | 
apply transfer  | 
|
661  | 
apply (auto split: option.split dest!: map_of_SomeD)  | 
|
662  | 
done  | 
|
| 63194 | 663  | 
|
664  | 
lemma All_mapping_alist:  | 
|
665  | 
"(\<And>k v. (k, v) \<in> set xs \<Longrightarrow> P k v) \<Longrightarrow> All_mapping (Mapping.of_alist xs) P"  | 
|
666  | 
by (auto simp: All_mapping_def lookup_of_alist dest!: map_of_SomeD split: option.splits)  | 
|
667  | 
||
| 63462 | 668  | 
lemma combine_empty [simp]: "combine f Mapping.empty y = y" "combine f y Mapping.empty = y"  | 
669  | 
by (transfer; force)+  | 
|
| 63194 | 670  | 
|
671  | 
lemma (in abel_semigroup) comm_monoid_set_combine: "comm_monoid_set (combine f) Mapping.empty"  | 
|
672  | 
by standard (transfer fixing: f, simp add: combine_options_ac[of f] ac_simps)+  | 
|
673  | 
||
674  | 
locale combine_mapping_abel_semigroup = abel_semigroup  | 
|
675  | 
begin  | 
|
676  | 
||
677  | 
sublocale combine: comm_monoid_set "combine f" Mapping.empty  | 
|
678  | 
by (rule comm_monoid_set_combine)  | 
|
679  | 
||
680  | 
lemma fold_combine_code:  | 
|
681  | 
"combine.F g (set xs) = foldr (\<lambda>x. combine f (g x)) (remdups xs) Mapping.empty"  | 
|
682  | 
proof -  | 
|
683  | 
have "combine.F g (set xs) = foldr (\<lambda>x. combine f (g x)) xs Mapping.empty"  | 
|
684  | 
if "distinct xs" for xs  | 
|
685  | 
using that by (induction xs) simp_all  | 
|
686  | 
from this[of "remdups xs"] show ?thesis by simp  | 
|
687  | 
qed  | 
|
| 63462 | 688  | 
|
689  | 
lemma keys_fold_combine: "finite A \<Longrightarrow> Mapping.keys (combine.F g A) = (\<Union>x\<in>A. Mapping.keys (g x))"  | 
|
690  | 
by (induct A rule: finite_induct) simp_all  | 
|
| 35157 | 691  | 
|
| 
49975
 
faf4afed009f
transfer package: more flexible handling of equality relations using is_equality predicate
 
huffman 
parents: 
49973 
diff
changeset
 | 
692  | 
end  | 
| 59485 | 693  | 
|
| 73832 | 694  | 
subsubsection \<open>@{term [source] entries}, @{term [source] ordered_entries},
 | 
695  | 
               and @{term [source] fold}\<close>
 | 
|
696  | 
||
697  | 
context linorder  | 
|
698  | 
begin  | 
|
699  | 
||
700  | 
sublocale folding_Map_graph: folding_insort_key "(\<le>)" "(<)" "Map.graph m" fst for m  | 
|
701  | 
by unfold_locales (fact inj_on_fst_graph)  | 
|
702  | 
||
703  | 
end  | 
|
704  | 
||
705  | 
lemma sorted_fst_list_of_set_insort_Map_graph[simp]:  | 
|
706  | 
assumes "finite (dom m)" "fst x \<notin> dom m"  | 
|
707  | 
shows "sorted_key_list_of_set fst (insert x (Map.graph m))  | 
|
708  | 
= insort_key fst x (sorted_key_list_of_set fst (Map.graph m))"  | 
|
709  | 
proof(cases x)  | 
|
710  | 
case (Pair k v)  | 
|
711  | 
with \<open>fst x \<notin> dom m\<close> have "Map.graph m \<subseteq> Map.graph (m(k \<mapsto> v))"  | 
|
712  | 
by(auto simp: graph_def)  | 
|
713  | 
moreover from Pair \<open>fst x \<notin> dom m\<close> have "(k, v) \<notin> Map.graph m"  | 
|
714  | 
using graph_domD by fastforce  | 
|
715  | 
ultimately show ?thesis  | 
|
716  | 
using Pair assms folding_Map_graph.sorted_key_list_of_set_insert[where ?m="m(k \<mapsto> v)"]  | 
|
717  | 
by auto  | 
|
718  | 
qed  | 
|
719  | 
||
720  | 
lemma sorted_fst_list_of_set_insort_insert_Map_graph[simp]:  | 
|
721  | 
assumes "finite (dom m)" "fst x \<notin> dom m"  | 
|
722  | 
shows "sorted_key_list_of_set fst (insert x (Map.graph m))  | 
|
723  | 
= insort_insert_key fst x (sorted_key_list_of_set fst (Map.graph m))"  | 
|
724  | 
proof(cases x)  | 
|
725  | 
case (Pair k v)  | 
|
726  | 
with \<open>fst x \<notin> dom m\<close> have "Map.graph m \<subseteq> Map.graph (m(k \<mapsto> v))"  | 
|
727  | 
by(auto simp: graph_def)  | 
|
728  | 
with assms Pair show ?thesis  | 
|
729  | 
unfolding sorted_fst_list_of_set_insort_Map_graph[OF assms] insort_insert_key_def  | 
|
730  | 
using folding_Map_graph.set_sorted_key_list_of_set in_graphD by (fastforce split: if_splits)  | 
|
731  | 
qed  | 
|
732  | 
||
733  | 
lemma linorder_finite_Map_induct[consumes 1, case_names empty update]:  | 
|
734  | 
fixes m :: "'a::linorder \<rightharpoonup> 'b"  | 
|
735  | 
assumes "finite (dom m)"  | 
|
736  | 
assumes "P Map.empty"  | 
|
737  | 
assumes "\<And>k v m. \<lbrakk> finite (dom m); k \<notin> dom m; (\<And>k'. k' \<in> dom m \<Longrightarrow> k' \<le> k); P m \<rbrakk>  | 
|
738  | 
\<Longrightarrow> P (m(k \<mapsto> v))"  | 
|
739  | 
shows "P m"  | 
|
740  | 
proof -  | 
|
741  | 
let ?key_list = "\<lambda>m. sorted_list_of_set (dom m)"  | 
|
742  | 
from assms(1,2) show ?thesis  | 
|
743  | 
proof(induction "length (?key_list m)" arbitrary: m)  | 
|
744  | 
case 0  | 
|
745  | 
then have "sorted_list_of_set (dom m) = []"  | 
|
746  | 
by auto  | 
|
747  | 
with \<open>finite (dom m)\<close> have "m = Map.empty"  | 
|
748  | 
by auto  | 
|
749  | 
with \<open>P Map.empty\<close> show ?case by simp  | 
|
750  | 
next  | 
|
751  | 
case (Suc n)  | 
|
752  | 
then obtain x xs where x_xs: "sorted_list_of_set (dom m) = xs @ [x]"  | 
|
753  | 
by (metis append_butlast_last_id length_greater_0_conv zero_less_Suc)  | 
|
754  | 
have "sorted_list_of_set (dom (m(x := None))) = xs"  | 
|
755  | 
proof -  | 
|
756  | 
have "distinct (xs @ [x])"  | 
|
757  | 
by (metis sorted_list_of_set.distinct_sorted_key_list_of_set x_xs)  | 
|
758  | 
then have "remove1 x (xs @ [x]) = xs"  | 
|
759  | 
by (simp add: remove1_append)  | 
|
760  | 
with \<open>finite (dom m)\<close> x_xs show ?thesis  | 
|
761  | 
by (simp add: sorted_list_of_set_remove)  | 
|
762  | 
qed  | 
|
763  | 
moreover have "k \<le> x" if "k \<in> dom (m(x := None))" for k  | 
|
764  | 
proof -  | 
|
765  | 
from x_xs have "sorted (xs @ [x])"  | 
|
766  | 
by (metis sorted_list_of_set.sorted_sorted_key_list_of_set)  | 
|
767  | 
moreover from \<open>k \<in> dom (m(x := None))\<close> have "k \<in> set xs"  | 
|
768  | 
using \<open>finite (dom m)\<close> \<open>sorted_list_of_set (dom (m(x := None))) = xs\<close>  | 
|
769  | 
by auto  | 
|
770  | 
ultimately show "k \<le> x"  | 
|
771  | 
by (simp add: sorted_append)  | 
|
772  | 
qed  | 
|
773  | 
moreover from \<open>finite (dom m)\<close> have "finite (dom (m(x := None)))" "x \<notin> dom (m(x := None))"  | 
|
774  | 
by simp_all  | 
|
775  | 
moreover have "P (m(x := None))"  | 
|
776  | 
using Suc \<open>sorted_list_of_set (dom (m(x := None))) = xs\<close> x_xs by auto  | 
|
777  | 
ultimately show ?case  | 
|
778  | 
using assms(3)[where ?m="m(x := None)"] by (metis fun_upd_triv fun_upd_upd not_Some_eq)  | 
|
779  | 
qed  | 
|
780  | 
qed  | 
|
781  | 
||
782  | 
lemma delete_insort_fst[simp]: "AList.delete k (insort_key fst (k, v) xs) = AList.delete k xs"  | 
|
783  | 
by (induction xs) simp_all  | 
|
784  | 
||
785  | 
lemma insort_fst_delete: "\<lbrakk> fst x \<noteq> k2; sorted (List.map fst xs) \<rbrakk>  | 
|
786  | 
\<Longrightarrow> insort_key fst x (AList.delete k2 xs) = AList.delete k2 (insort_key fst x xs)"  | 
|
787  | 
by (induction xs) (fastforce simp add: insort_is_Cons order_trans)+  | 
|
788  | 
||
789  | 
lemma sorted_fst_list_of_set_Map_graph_fun_upd_None[simp]:  | 
|
790  | 
"sorted_key_list_of_set fst (Map.graph (m(k := None)))  | 
|
791  | 
= AList.delete k (sorted_key_list_of_set fst (Map.graph m))"  | 
|
792  | 
proof(cases "finite (Map.graph m)")  | 
|
793  | 
assume "finite (Map.graph m)"  | 
|
794  | 
from this[unfolded finite_graph_iff_finite_dom] show ?thesis  | 
|
795  | 
proof(induction rule: finite_Map_induct)  | 
|
796  | 
let ?list_of="sorted_key_list_of_set fst"  | 
|
797  | 
case (update k2 v2 m)  | 
|
798  | 
note [simp] = \<open>k2 \<notin> dom m\<close> \<open>finite (dom m)\<close>  | 
|
799  | 
||
800  | 
have right_eq: "AList.delete k (?list_of (Map.graph (m(k2 \<mapsto> v2))))  | 
|
801  | 
= AList.delete k (insort_key fst (k2, v2) (?list_of (Map.graph m)))"  | 
|
802  | 
by simp  | 
|
803  | 
||
804  | 
show ?case  | 
|
805  | 
proof(cases "k = k2")  | 
|
806  | 
case True  | 
|
807  | 
then have "?list_of (Map.graph ((m(k2 \<mapsto> v2))(k := None)))  | 
|
808  | 
= AList.delete k (insort_key fst (k2, v2) (?list_of (Map.graph m)))"  | 
|
809  | 
using fst_graph_eq_dom update.IH by auto  | 
|
810  | 
then show ?thesis  | 
|
811  | 
using right_eq by metis  | 
|
812  | 
next  | 
|
813  | 
case False  | 
|
814  | 
then have "AList.delete k (insort_key fst (k2, v2) (?list_of (Map.graph m)))  | 
|
815  | 
= insort_key fst (k2, v2) (?list_of (Map.graph (m(k := None))))"  | 
|
816  | 
by (auto simp add: insort_fst_delete update.IH  | 
|
817  | 
folding_Map_graph.sorted_sorted_key_list_of_set[OF subset_refl])  | 
|
818  | 
also have "\<dots> = ?list_of (insert (k2, v2) (Map.graph (m(k := None))))"  | 
|
819  | 
by auto  | 
|
820  | 
also from False \<open>k2 \<notin> dom m\<close> have "\<dots> = ?list_of (Map.graph ((m(k2 \<mapsto> v2))(k := None)))"  | 
|
821  | 
by (metis graph_map_upd domIff fun_upd_triv fun_upd_twist)  | 
|
822  | 
finally show ?thesis using right_eq by metis  | 
|
823  | 
qed  | 
|
824  | 
qed simp  | 
|
825  | 
qed simp  | 
|
826  | 
||
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
827  | 
lemma entries_empty[simp]: "entries empty = {}"
 | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
828  | 
by transfer (fact graph_empty)  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
829  | 
|
| 73832 | 830  | 
lemma entries_lookup: "entries m = Map.graph (lookup m)"  | 
831  | 
by transfer rule  | 
|
832  | 
||
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
833  | 
lemma in_entriesI: "lookup m k = Some v \<Longrightarrow> (k, v) \<in> entries m"  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
834  | 
by transfer (fact in_graphI)  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
835  | 
|
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
836  | 
lemma in_entriesD: "(k, v) \<in> entries m \<Longrightarrow> lookup m k = Some v"  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
837  | 
by transfer (fact in_graphD)  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
838  | 
|
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
839  | 
lemma fst_image_entries_eq_keys[simp]: "fst ` Mapping.entries m = Mapping.keys m"  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
840  | 
by transfer (fact fst_graph_eq_dom)  | 
| 73832 | 841  | 
|
842  | 
lemma finite_entries_iff_finite_keys[simp]:  | 
|
843  | 
"finite (entries m) = finite (keys m)"  | 
|
844  | 
by transfer (fact finite_graph_iff_finite_dom)  | 
|
845  | 
||
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
846  | 
lemma entries_update:  | 
| 73832 | 847  | 
"entries (update k v m) = insert (k, v) (entries (delete k m))"  | 
848  | 
by transfer (fact graph_map_upd)  | 
|
849  | 
||
850  | 
lemma entries_delete:  | 
|
851  | 
  "entries (delete k m) = {e \<in> entries m. fst e \<noteq> k}"
 | 
|
852  | 
by transfer (fact graph_fun_upd_None)  | 
|
853  | 
||
854  | 
lemma entries_of_alist[simp]:  | 
|
855  | 
"distinct (List.map fst xs) \<Longrightarrow> entries (of_alist xs) = set xs"  | 
|
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
856  | 
by transfer (fact graph_map_of_if_distinct_dom)  | 
| 73832 | 857  | 
|
858  | 
lemma entries_keysD:  | 
|
859  | 
"x \<in> entries m \<Longrightarrow> fst x \<in> keys m"  | 
|
860  | 
by transfer (fact graph_domD)  | 
|
861  | 
||
862  | 
lemma set_ordered_entries[simp]:  | 
|
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
863  | 
"finite (keys m) \<Longrightarrow> set (ordered_entries m) = entries m"  | 
| 73832 | 864  | 
unfolding ordered_entries_def  | 
865  | 
by transfer (auto simp: folding_Map_graph.set_sorted_key_list_of_set[OF subset_refl])  | 
|
866  | 
||
867  | 
lemma distinct_ordered_entries[simp]: "distinct (List.map fst (ordered_entries m))"  | 
|
868  | 
unfolding ordered_entries_def  | 
|
869  | 
by transfer (simp add: folding_Map_graph.distinct_sorted_key_list_of_set[OF subset_refl])  | 
|
870  | 
||
871  | 
lemma sorted_ordered_entries[simp]: "sorted (List.map fst (ordered_entries m))"  | 
|
872  | 
unfolding ordered_entries_def  | 
|
873  | 
by transfer (auto intro: folding_Map_graph.sorted_sorted_key_list_of_set)  | 
|
874  | 
||
875  | 
lemma ordered_entries_infinite[simp]:  | 
|
876  | 
"\<not> finite (Mapping.keys m) \<Longrightarrow> ordered_entries m = []"  | 
|
877  | 
by (simp add: ordered_entries_def)  | 
|
878  | 
||
879  | 
lemma ordered_entries_empty[simp]: "ordered_entries empty = []"  | 
|
880  | 
by (simp add: ordered_entries_def)  | 
|
881  | 
||
882  | 
lemma ordered_entries_update[simp]:  | 
|
883  | 
assumes "finite (keys m)"  | 
|
884  | 
shows "ordered_entries (update k v m)  | 
|
885  | 
= insort_insert_key fst (k, v) (AList.delete k (ordered_entries m))"  | 
|
886  | 
proof -  | 
|
887  | 
let ?list_of="sorted_key_list_of_set fst" and ?insort="insort_insert_key fst"  | 
|
888  | 
||
889  | 
have *: "?list_of (insert (k, v) (Map.graph (m(k := None))))  | 
|
890  | 
= ?insort (k, v) (AList.delete k (?list_of (Map.graph m)))" if "finite (dom m)" for m  | 
|
891  | 
proof -  | 
|
892  | 
from \<open>finite (dom m)\<close> have "?list_of (insert (k, v) (Map.graph (m(k := None))))  | 
|
893  | 
= ?insort (k, v) (?list_of (Map.graph (m(k := None))))"  | 
|
894  | 
by (intro sorted_fst_list_of_set_insort_insert_Map_graph) (simp_all add: subset_insertI)  | 
|
895  | 
then show ?thesis by simp  | 
|
896  | 
qed  | 
|
897  | 
from assms show ?thesis  | 
|
898  | 
unfolding ordered_entries_def  | 
|
899  | 
apply (transfer fixing: k v) using "*" by auto  | 
|
900  | 
qed  | 
|
901  | 
||
902  | 
lemma ordered_entries_delete[simp]:  | 
|
903  | 
"ordered_entries (delete k m) = AList.delete k (ordered_entries m)"  | 
|
904  | 
unfolding ordered_entries_def by transfer auto  | 
|
905  | 
||
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
906  | 
lemma map_fst_ordered_entries[simp]:  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
907  | 
"List.map fst (ordered_entries m) = ordered_keys m"  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
908  | 
proof(cases "finite (Mapping.keys m)")  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
909  | 
case True  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
910  | 
then have "set (List.map fst (Mapping.ordered_entries m)) = set (Mapping.ordered_keys m)"  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
911  | 
unfolding ordered_entries_def ordered_keys_def  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
912  | 
by (transfer) (simp add: folding_Map_graph.set_sorted_key_list_of_set[OF subset_refl] fst_graph_eq_dom)  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
913  | 
with True show "List.map fst (Mapping.ordered_entries m) = Mapping.ordered_keys m"  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
914  | 
by (metis distinct_ordered_entries ordered_keys_def sorted_list_of_set.idem_if_sorted_distinct  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
915  | 
sorted_list_of_set.set_sorted_key_list_of_set sorted_ordered_entries)  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
916  | 
next  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
917  | 
case False  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
918  | 
then show ?thesis  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
919  | 
unfolding ordered_entries_def ordered_keys_def by simp  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
920  | 
qed  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
921  | 
|
| 73832 | 922  | 
lemma fold_empty[simp]: "fold f empty a = a"  | 
923  | 
unfolding fold_def by simp  | 
|
924  | 
||
925  | 
lemma insort_key_is_snoc_if_sorted_and_distinct:  | 
|
926  | 
assumes "sorted (List.map f xs)" "f y \<notin> f ` set xs" "\<forall>x \<in> set xs. f x \<le> f y"  | 
|
927  | 
shows "insort_key f y xs = xs @ [y]"  | 
|
928  | 
using assms by (induction xs) (auto dest!: insort_is_Cons)  | 
|
929  | 
||
930  | 
lemma fold_update:  | 
|
931  | 
assumes "finite (keys m)"  | 
|
932  | 
assumes "k \<notin> keys m" "\<And>k'. k' \<in> keys m \<Longrightarrow> k' \<le> k"  | 
|
933  | 
shows "fold f (update k v m) a = f k v (fold f m a)"  | 
|
934  | 
proof -  | 
|
935  | 
from assms have k_notin_entries: "k \<notin> fst ` set (ordered_entries m)"  | 
|
936  | 
using entries_keysD by fastforce  | 
|
937  | 
with assms have "ordered_entries (update k v m)  | 
|
938  | 
= insort_insert_key fst (k, v) (ordered_entries m)"  | 
|
939  | 
by simp  | 
|
940  | 
also from k_notin_entries have "\<dots> = ordered_entries m @ [(k, v)]"  | 
|
941  | 
proof -  | 
|
942  | 
from assms have "\<forall>x \<in> set (ordered_entries m). fst x \<le> fst (k, v)"  | 
|
943  | 
unfolding ordered_entries_def  | 
|
944  | 
by transfer (fastforce simp: folding_Map_graph.set_sorted_key_list_of_set[OF order_refl]  | 
|
945  | 
dest: graph_domD)  | 
|
| 
74157
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
946  | 
from insort_key_is_snoc_if_sorted_and_distinct[OF _ _ this] k_notin_entries \<open>finite (keys m)\<close>  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
947  | 
show ?thesis  | 
| 
 
8e2355ddce1b
add/rename some theorems about Map(pings)
 
Lukas Stevens <mail@lukas-stevens.de> 
parents: 
73832 
diff
changeset
 | 
948  | 
using sorted_ordered_keys  | 
| 73832 | 949  | 
unfolding insort_insert_key_def by auto  | 
950  | 
qed  | 
|
951  | 
finally show ?thesis unfolding fold_def by simp  | 
|
952  | 
qed  | 
|
953  | 
||
954  | 
lemma linorder_finite_Mapping_induct[consumes 1, case_names empty update]:  | 
|
955  | 
  fixes m :: "('a::linorder, 'b) mapping"
 | 
|
956  | 
assumes "finite (keys m)"  | 
|
957  | 
assumes "P empty"  | 
|
958  | 
assumes "\<And>k v m.  | 
|
959  | 
\<lbrakk> finite (keys m); k \<notin> keys m; (\<And>k'. k' \<in> keys m \<Longrightarrow> k' \<le> k); P m \<rbrakk>  | 
|
960  | 
\<Longrightarrow> P (update k v m)"  | 
|
961  | 
shows "P m"  | 
|
962  | 
using assms by transfer (simp add: linorder_finite_Map_induct)  | 
|
963  | 
||
| 63462 | 964  | 
|
| 63194 | 965  | 
subsection \<open>Code generator setup\<close>  | 
966  | 
||
967  | 
hide_const (open) empty is_empty rep lookup lookup_default filter update delete ordered_keys  | 
|
968  | 
keys size replace default map_entry map_default tabulate bulkload map map_values combine of_alist  | 
|
| 73832 | 969  | 
entries ordered_entries fold  | 
| 63194 | 970  | 
|
971  | 
end  |