author | wenzelm |
Sun, 01 Mar 2009 14:45:23 +0100 | |
changeset 30186 | 1f836e949ac2 |
parent 29859 | 33bff35f1335 |
child 30198 | 922f944f03b2 |
permissions | -rw-r--r-- |
10358 | 1 |
(* Title: HOL/Relation.thy |
1983 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1996 University of Cambridge |
|
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
4 |
*) |
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
5 |
|
12905 | 6 |
header {* Relations *} |
7 |
||
15131 | 8 |
theory Relation |
29609 | 9 |
imports Datatype Finite_Set |
15131 | 10 |
begin |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
11 |
|
12913 | 12 |
subsection {* Definitions *} |
13 |
||
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset
|
14 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
15 |
converse :: "('a * 'b) set => ('b * 'a) set" |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
16 |
("(_^-1)" [1000] 999) where |
10358 | 17 |
"r^-1 == {(y, x). (x, y) : r}" |
7912 | 18 |
|
21210 | 19 |
notation (xsymbols) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset
|
20 |
converse ("(_\<inverse>)" [1000] 999) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset
|
21 |
|
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset
|
22 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
23 |
rel_comp :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set" |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
24 |
(infixr "O" 75) where |
12913 | 25 |
"r O s == {(x,z). EX y. (x, y) : s & (y, z) : r}" |
26 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
27 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
28 |
Image :: "[('a * 'b) set, 'a set] => 'b set" |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
29 |
(infixl "``" 90) where |
12913 | 30 |
"r `` s == {y. EX x:s. (x,y):r}" |
7912 | 31 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
32 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
33 |
Id :: "('a * 'a) set" where -- {* the identity relation *} |
12913 | 34 |
"Id == {p. EX x. p = (x,x)}" |
7912 | 35 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
36 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
37 |
diag :: "'a set => ('a * 'a) set" where -- {* diagonal: identity over a set *} |
13830 | 38 |
"diag A == \<Union>x\<in>A. {(x,x)}" |
12913 | 39 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
40 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
41 |
Domain :: "('a * 'b) set => 'a set" where |
12913 | 42 |
"Domain r == {x. EX y. (x,y):r}" |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
43 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
44 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
45 |
Range :: "('a * 'b) set => 'b set" where |
12913 | 46 |
"Range r == Domain(r^-1)" |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
47 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
48 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
49 |
Field :: "('a * 'a) set => 'a set" where |
13830 | 50 |
"Field r == Domain r \<union> Range r" |
10786 | 51 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
52 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
53 |
refl :: "['a set, ('a * 'a) set] => bool" where -- {* reflexivity over a set *} |
12913 | 54 |
"refl A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
55 |
|
26297 | 56 |
abbreviation |
57 |
reflexive :: "('a * 'a) set => bool" where -- {* reflexivity over a type *} |
|
58 |
"reflexive == refl UNIV" |
|
59 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
60 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
61 |
sym :: "('a * 'a) set => bool" where -- {* symmetry predicate *} |
12913 | 62 |
"sym r == ALL x y. (x,y): r --> (y,x): r" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
63 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
64 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
65 |
antisym :: "('a * 'a) set => bool" where -- {* antisymmetry predicate *} |
12913 | 66 |
"antisym r == ALL x y. (x,y):r --> (y,x):r --> x=y" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
67 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
68 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
69 |
trans :: "('a * 'a) set => bool" where -- {* transitivity predicate *} |
12913 | 70 |
"trans r == (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)" |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
71 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
72 |
definition |
29859
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
73 |
irrefl :: "('a * 'a) set => bool" where |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
74 |
"irrefl r \<equiv> \<forall>x. (x,x) \<notin> r" |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
75 |
|
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
76 |
definition |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
77 |
total_on :: "'a set => ('a * 'a) set => bool" where |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
78 |
"total_on A r \<equiv> \<forall>x\<in>A.\<forall>y\<in>A. x\<noteq>y \<longrightarrow> (x,y)\<in>r \<or> (y,x)\<in>r" |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
79 |
|
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
80 |
abbreviation "total \<equiv> total_on UNIV" |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
81 |
|
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
82 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
83 |
single_valued :: "('a * 'b) set => bool" where |
12913 | 84 |
"single_valued r == ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z)" |
7014
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6806
diff
changeset
|
85 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
86 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
87 |
inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" where |
12913 | 88 |
"inv_image r f == {(x, y). (f x, f y) : r}" |
11136 | 89 |
|
12905 | 90 |
|
12913 | 91 |
subsection {* The identity relation *} |
12905 | 92 |
|
93 |
lemma IdI [intro]: "(a, a) : Id" |
|
26271 | 94 |
by (simp add: Id_def) |
12905 | 95 |
|
96 |
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P" |
|
26271 | 97 |
by (unfold Id_def) (iprover elim: CollectE) |
12905 | 98 |
|
99 |
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)" |
|
26271 | 100 |
by (unfold Id_def) blast |
12905 | 101 |
|
102 |
lemma reflexive_Id: "reflexive Id" |
|
26271 | 103 |
by (simp add: refl_def) |
12905 | 104 |
|
105 |
lemma antisym_Id: "antisym Id" |
|
106 |
-- {* A strange result, since @{text Id} is also symmetric. *} |
|
26271 | 107 |
by (simp add: antisym_def) |
12905 | 108 |
|
19228 | 109 |
lemma sym_Id: "sym Id" |
26271 | 110 |
by (simp add: sym_def) |
19228 | 111 |
|
12905 | 112 |
lemma trans_Id: "trans Id" |
26271 | 113 |
by (simp add: trans_def) |
12905 | 114 |
|
115 |
||
12913 | 116 |
subsection {* Diagonal: identity over a set *} |
12905 | 117 |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
118 |
lemma diag_empty [simp]: "diag {} = {}" |
26271 | 119 |
by (simp add: diag_def) |
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
120 |
|
12905 | 121 |
lemma diag_eqI: "a = b ==> a : A ==> (a, b) : diag A" |
26271 | 122 |
by (simp add: diag_def) |
12905 | 123 |
|
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
124 |
lemma diagI [intro!,noatp]: "a : A ==> (a, a) : diag A" |
26271 | 125 |
by (rule diag_eqI) (rule refl) |
12905 | 126 |
|
127 |
lemma diagE [elim!]: |
|
128 |
"c : diag A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P" |
|
12913 | 129 |
-- {* The general elimination rule. *} |
26271 | 130 |
by (unfold diag_def) (iprover elim!: UN_E singletonE) |
12905 | 131 |
|
132 |
lemma diag_iff: "((x, y) : diag A) = (x = y & x : A)" |
|
26271 | 133 |
by blast |
12905 | 134 |
|
12913 | 135 |
lemma diag_subset_Times: "diag A \<subseteq> A \<times> A" |
26271 | 136 |
by blast |
12905 | 137 |
|
138 |
||
139 |
subsection {* Composition of two relations *} |
|
140 |
||
12913 | 141 |
lemma rel_compI [intro]: |
12905 | 142 |
"(a, b) : s ==> (b, c) : r ==> (a, c) : r O s" |
26271 | 143 |
by (unfold rel_comp_def) blast |
12905 | 144 |
|
12913 | 145 |
lemma rel_compE [elim!]: "xz : r O s ==> |
12905 | 146 |
(!!x y z. xz = (x, z) ==> (x, y) : s ==> (y, z) : r ==> P) ==> P" |
26271 | 147 |
by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE) |
12905 | 148 |
|
149 |
lemma rel_compEpair: |
|
150 |
"(a, c) : r O s ==> (!!y. (a, y) : s ==> (y, c) : r ==> P) ==> P" |
|
26271 | 151 |
by (iprover elim: rel_compE Pair_inject ssubst) |
12905 | 152 |
|
153 |
lemma R_O_Id [simp]: "R O Id = R" |
|
26271 | 154 |
by fast |
12905 | 155 |
|
156 |
lemma Id_O_R [simp]: "Id O R = R" |
|
26271 | 157 |
by fast |
12905 | 158 |
|
23185 | 159 |
lemma rel_comp_empty1[simp]: "{} O R = {}" |
26271 | 160 |
by blast |
23185 | 161 |
|
162 |
lemma rel_comp_empty2[simp]: "R O {} = {}" |
|
26271 | 163 |
by blast |
23185 | 164 |
|
12905 | 165 |
lemma O_assoc: "(R O S) O T = R O (S O T)" |
26271 | 166 |
by blast |
12905 | 167 |
|
12913 | 168 |
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r" |
26271 | 169 |
by (unfold trans_def) blast |
12905 | 170 |
|
12913 | 171 |
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)" |
26271 | 172 |
by blast |
12905 | 173 |
|
174 |
lemma rel_comp_subset_Sigma: |
|
12913 | 175 |
"s \<subseteq> A \<times> B ==> r \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C" |
26271 | 176 |
by blast |
12905 | 177 |
|
28008
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
178 |
lemma rel_comp_distrib[simp]: "R O (S \<union> T) = (R O S) \<union> (R O T)" |
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
179 |
by auto |
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
180 |
|
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
181 |
lemma rel_comp_distrib2[simp]: "(S \<union> T) O R = (S O R) \<union> (T O R)" |
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
182 |
by auto |
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
183 |
|
12913 | 184 |
|
185 |
subsection {* Reflexivity *} |
|
186 |
||
187 |
lemma reflI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl A r" |
|
26271 | 188 |
by (unfold refl_def) (iprover intro!: ballI) |
12905 | 189 |
|
190 |
lemma reflD: "refl A r ==> a : A ==> (a, a) : r" |
|
26271 | 191 |
by (unfold refl_def) blast |
12905 | 192 |
|
19228 | 193 |
lemma reflD1: "refl A r ==> (x, y) : r ==> x : A" |
26271 | 194 |
by (unfold refl_def) blast |
19228 | 195 |
|
196 |
lemma reflD2: "refl A r ==> (x, y) : r ==> y : A" |
|
26271 | 197 |
by (unfold refl_def) blast |
19228 | 198 |
|
199 |
lemma refl_Int: "refl A r ==> refl B s ==> refl (A \<inter> B) (r \<inter> s)" |
|
26271 | 200 |
by (unfold refl_def) blast |
19228 | 201 |
|
202 |
lemma refl_Un: "refl A r ==> refl B s ==> refl (A \<union> B) (r \<union> s)" |
|
26271 | 203 |
by (unfold refl_def) blast |
19228 | 204 |
|
205 |
lemma refl_INTER: |
|
206 |
"ALL x:S. refl (A x) (r x) ==> refl (INTER S A) (INTER S r)" |
|
26271 | 207 |
by (unfold refl_def) fast |
19228 | 208 |
|
209 |
lemma refl_UNION: |
|
210 |
"ALL x:S. refl (A x) (r x) \<Longrightarrow> refl (UNION S A) (UNION S r)" |
|
26271 | 211 |
by (unfold refl_def) blast |
19228 | 212 |
|
26297 | 213 |
lemma refl_empty[simp]: "refl {} {}" |
214 |
by(simp add:refl_def) |
|
215 |
||
19228 | 216 |
lemma refl_diag: "refl A (diag A)" |
26271 | 217 |
by (rule reflI [OF diag_subset_Times diagI]) |
19228 | 218 |
|
12913 | 219 |
|
220 |
subsection {* Antisymmetry *} |
|
12905 | 221 |
|
222 |
lemma antisymI: |
|
223 |
"(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r" |
|
26271 | 224 |
by (unfold antisym_def) iprover |
12905 | 225 |
|
226 |
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b" |
|
26271 | 227 |
by (unfold antisym_def) iprover |
12905 | 228 |
|
19228 | 229 |
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r" |
26271 | 230 |
by (unfold antisym_def) blast |
12913 | 231 |
|
19228 | 232 |
lemma antisym_empty [simp]: "antisym {}" |
26271 | 233 |
by (unfold antisym_def) blast |
19228 | 234 |
|
235 |
lemma antisym_diag [simp]: "antisym (diag A)" |
|
26271 | 236 |
by (unfold antisym_def) blast |
19228 | 237 |
|
238 |
||
239 |
subsection {* Symmetry *} |
|
240 |
||
241 |
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r" |
|
26271 | 242 |
by (unfold sym_def) iprover |
15177 | 243 |
|
244 |
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r" |
|
26271 | 245 |
by (unfold sym_def, blast) |
12905 | 246 |
|
19228 | 247 |
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)" |
26271 | 248 |
by (fast intro: symI dest: symD) |
19228 | 249 |
|
250 |
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)" |
|
26271 | 251 |
by (fast intro: symI dest: symD) |
19228 | 252 |
|
253 |
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)" |
|
26271 | 254 |
by (fast intro: symI dest: symD) |
19228 | 255 |
|
256 |
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)" |
|
26271 | 257 |
by (fast intro: symI dest: symD) |
19228 | 258 |
|
259 |
lemma sym_diag [simp]: "sym (diag A)" |
|
26271 | 260 |
by (rule symI) clarify |
19228 | 261 |
|
262 |
||
263 |
subsection {* Transitivity *} |
|
264 |
||
12905 | 265 |
lemma transI: |
266 |
"(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r" |
|
26271 | 267 |
by (unfold trans_def) iprover |
12905 | 268 |
|
269 |
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r" |
|
26271 | 270 |
by (unfold trans_def) iprover |
12905 | 271 |
|
19228 | 272 |
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)" |
26271 | 273 |
by (fast intro: transI elim: transD) |
19228 | 274 |
|
275 |
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)" |
|
26271 | 276 |
by (fast intro: transI elim: transD) |
19228 | 277 |
|
278 |
lemma trans_diag [simp]: "trans (diag A)" |
|
26271 | 279 |
by (fast intro: transI elim: transD) |
19228 | 280 |
|
29859
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
281 |
lemma trans_diff_Id: " trans r \<Longrightarrow> antisym r \<Longrightarrow> trans (r-Id)" |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
282 |
unfolding antisym_def trans_def by blast |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
283 |
|
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
284 |
subsection {* Irreflexivity *} |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
285 |
|
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
286 |
lemma irrefl_diff_Id[simp]: "irrefl(r-Id)" |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
287 |
by(simp add:irrefl_def) |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
288 |
|
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
289 |
subsection {* Totality *} |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
290 |
|
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
291 |
lemma total_on_empty[simp]: "total_on {} r" |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
292 |
by(simp add:total_on_def) |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
293 |
|
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
294 |
lemma total_on_diff_Id[simp]: "total_on A (r-Id) = total_on A r" |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
295 |
by(simp add: total_on_def) |
12905 | 296 |
|
12913 | 297 |
subsection {* Converse *} |
298 |
||
299 |
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)" |
|
26271 | 300 |
by (simp add: converse_def) |
12905 | 301 |
|
13343 | 302 |
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1" |
26271 | 303 |
by (simp add: converse_def) |
12905 | 304 |
|
13343 | 305 |
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r" |
26271 | 306 |
by (simp add: converse_def) |
12905 | 307 |
|
308 |
lemma converseE [elim!]: |
|
309 |
"yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P" |
|
12913 | 310 |
-- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *} |
26271 | 311 |
by (unfold converse_def) (iprover elim!: CollectE splitE bexE) |
12905 | 312 |
|
313 |
lemma converse_converse [simp]: "(r^-1)^-1 = r" |
|
26271 | 314 |
by (unfold converse_def) blast |
12905 | 315 |
|
316 |
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1" |
|
26271 | 317 |
by blast |
12905 | 318 |
|
19228 | 319 |
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1" |
26271 | 320 |
by blast |
19228 | 321 |
|
322 |
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1" |
|
26271 | 323 |
by blast |
19228 | 324 |
|
325 |
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)" |
|
26271 | 326 |
by fast |
19228 | 327 |
|
328 |
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)" |
|
26271 | 329 |
by blast |
19228 | 330 |
|
12905 | 331 |
lemma converse_Id [simp]: "Id^-1 = Id" |
26271 | 332 |
by blast |
12905 | 333 |
|
12913 | 334 |
lemma converse_diag [simp]: "(diag A)^-1 = diag A" |
26271 | 335 |
by blast |
12905 | 336 |
|
19228 | 337 |
lemma refl_converse [simp]: "refl A (converse r) = refl A r" |
26271 | 338 |
by (unfold refl_def) auto |
12905 | 339 |
|
19228 | 340 |
lemma sym_converse [simp]: "sym (converse r) = sym r" |
26271 | 341 |
by (unfold sym_def) blast |
19228 | 342 |
|
343 |
lemma antisym_converse [simp]: "antisym (converse r) = antisym r" |
|
26271 | 344 |
by (unfold antisym_def) blast |
12905 | 345 |
|
19228 | 346 |
lemma trans_converse [simp]: "trans (converse r) = trans r" |
26271 | 347 |
by (unfold trans_def) blast |
12905 | 348 |
|
19228 | 349 |
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)" |
26271 | 350 |
by (unfold sym_def) fast |
19228 | 351 |
|
352 |
lemma sym_Un_converse: "sym (r \<union> r^-1)" |
|
26271 | 353 |
by (unfold sym_def) blast |
19228 | 354 |
|
355 |
lemma sym_Int_converse: "sym (r \<inter> r^-1)" |
|
26271 | 356 |
by (unfold sym_def) blast |
19228 | 357 |
|
29859
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
358 |
lemma total_on_converse[simp]: "total_on A (r^-1) = total_on A r" |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
359 |
by (auto simp: total_on_def) |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
360 |
|
12913 | 361 |
|
12905 | 362 |
subsection {* Domain *} |
363 |
||
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
364 |
declare Domain_def [noatp] |
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
365 |
|
12905 | 366 |
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)" |
26271 | 367 |
by (unfold Domain_def) blast |
12905 | 368 |
|
369 |
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r" |
|
26271 | 370 |
by (iprover intro!: iffD2 [OF Domain_iff]) |
12905 | 371 |
|
372 |
lemma DomainE [elim!]: |
|
373 |
"a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P" |
|
26271 | 374 |
by (iprover dest!: iffD1 [OF Domain_iff]) |
12905 | 375 |
|
376 |
lemma Domain_empty [simp]: "Domain {} = {}" |
|
26271 | 377 |
by blast |
12905 | 378 |
|
379 |
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)" |
|
26271 | 380 |
by blast |
12905 | 381 |
|
382 |
lemma Domain_Id [simp]: "Domain Id = UNIV" |
|
26271 | 383 |
by blast |
12905 | 384 |
|
385 |
lemma Domain_diag [simp]: "Domain (diag A) = A" |
|
26271 | 386 |
by blast |
12905 | 387 |
|
13830 | 388 |
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)" |
26271 | 389 |
by blast |
12905 | 390 |
|
13830 | 391 |
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)" |
26271 | 392 |
by blast |
12905 | 393 |
|
12913 | 394 |
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)" |
26271 | 395 |
by blast |
12905 | 396 |
|
13830 | 397 |
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)" |
26271 | 398 |
by blast |
399 |
||
400 |
lemma Domain_converse[simp]: "Domain(r^-1) = Range r" |
|
401 |
by(auto simp:Range_def) |
|
12905 | 402 |
|
12913 | 403 |
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s" |
26271 | 404 |
by blast |
12905 | 405 |
|
22172 | 406 |
lemma fst_eq_Domain: "fst ` R = Domain R"; |
26271 | 407 |
by (auto intro!:image_eqI) |
22172 | 408 |
|
29609 | 409 |
lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)" |
410 |
by auto |
|
411 |
||
412 |
lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)" |
|
413 |
by auto |
|
414 |
||
12905 | 415 |
|
416 |
subsection {* Range *} |
|
417 |
||
418 |
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)" |
|
26271 | 419 |
by (simp add: Domain_def Range_def) |
12905 | 420 |
|
421 |
lemma RangeI [intro]: "(a, b) : r ==> b : Range r" |
|
26271 | 422 |
by (unfold Range_def) (iprover intro!: converseI DomainI) |
12905 | 423 |
|
424 |
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P" |
|
26271 | 425 |
by (unfold Range_def) (iprover elim!: DomainE dest!: converseD) |
12905 | 426 |
|
427 |
lemma Range_empty [simp]: "Range {} = {}" |
|
26271 | 428 |
by blast |
12905 | 429 |
|
430 |
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)" |
|
26271 | 431 |
by blast |
12905 | 432 |
|
433 |
lemma Range_Id [simp]: "Range Id = UNIV" |
|
26271 | 434 |
by blast |
12905 | 435 |
|
436 |
lemma Range_diag [simp]: "Range (diag A) = A" |
|
26271 | 437 |
by auto |
12905 | 438 |
|
13830 | 439 |
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)" |
26271 | 440 |
by blast |
12905 | 441 |
|
13830 | 442 |
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)" |
26271 | 443 |
by blast |
12905 | 444 |
|
12913 | 445 |
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)" |
26271 | 446 |
by blast |
12905 | 447 |
|
13830 | 448 |
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)" |
26271 | 449 |
by blast |
450 |
||
451 |
lemma Range_converse[simp]: "Range(r^-1) = Domain r" |
|
452 |
by blast |
|
12905 | 453 |
|
22172 | 454 |
lemma snd_eq_Range: "snd ` R = Range R"; |
26271 | 455 |
by (auto intro!:image_eqI) |
456 |
||
457 |
||
458 |
subsection {* Field *} |
|
459 |
||
460 |
lemma mono_Field: "r \<subseteq> s \<Longrightarrow> Field r \<subseteq> Field s" |
|
461 |
by(auto simp:Field_def Domain_def Range_def) |
|
462 |
||
463 |
lemma Field_empty[simp]: "Field {} = {}" |
|
464 |
by(auto simp:Field_def) |
|
465 |
||
466 |
lemma Field_insert[simp]: "Field (insert (a,b) r) = {a,b} \<union> Field r" |
|
467 |
by(auto simp:Field_def) |
|
468 |
||
469 |
lemma Field_Un[simp]: "Field (r \<union> s) = Field r \<union> Field s" |
|
470 |
by(auto simp:Field_def) |
|
471 |
||
472 |
lemma Field_Union[simp]: "Field (\<Union>R) = \<Union>(Field ` R)" |
|
473 |
by(auto simp:Field_def) |
|
474 |
||
475 |
lemma Field_converse[simp]: "Field(r^-1) = Field r" |
|
476 |
by(auto simp:Field_def) |
|
22172 | 477 |
|
12905 | 478 |
|
479 |
subsection {* Image of a set under a relation *} |
|
480 |
||
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
481 |
declare Image_def [noatp] |
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
482 |
|
12913 | 483 |
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)" |
26271 | 484 |
by (simp add: Image_def) |
12905 | 485 |
|
12913 | 486 |
lemma Image_singleton: "r``{a} = {b. (a, b) : r}" |
26271 | 487 |
by (simp add: Image_def) |
12905 | 488 |
|
12913 | 489 |
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)" |
26271 | 490 |
by (rule Image_iff [THEN trans]) simp |
12905 | 491 |
|
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
492 |
lemma ImageI [intro,noatp]: "(a, b) : r ==> a : A ==> b : r``A" |
26271 | 493 |
by (unfold Image_def) blast |
12905 | 494 |
|
495 |
lemma ImageE [elim!]: |
|
12913 | 496 |
"b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P" |
26271 | 497 |
by (unfold Image_def) (iprover elim!: CollectE bexE) |
12905 | 498 |
|
499 |
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A" |
|
500 |
-- {* This version's more effective when we already have the required @{text a} *} |
|
26271 | 501 |
by blast |
12905 | 502 |
|
503 |
lemma Image_empty [simp]: "R``{} = {}" |
|
26271 | 504 |
by blast |
12905 | 505 |
|
506 |
lemma Image_Id [simp]: "Id `` A = A" |
|
26271 | 507 |
by blast |
12905 | 508 |
|
13830 | 509 |
lemma Image_diag [simp]: "diag A `` B = A \<inter> B" |
26271 | 510 |
by blast |
13830 | 511 |
|
512 |
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B" |
|
26271 | 513 |
by blast |
12905 | 514 |
|
13830 | 515 |
lemma Image_Int_eq: |
516 |
"single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B" |
|
26271 | 517 |
by (simp add: single_valued_def, blast) |
12905 | 518 |
|
13830 | 519 |
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B" |
26271 | 520 |
by blast |
12905 | 521 |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
522 |
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A" |
26271 | 523 |
by blast |
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
524 |
|
12913 | 525 |
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B" |
26271 | 526 |
by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2) |
12905 | 527 |
|
13830 | 528 |
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})" |
12905 | 529 |
-- {* NOT suitable for rewriting *} |
26271 | 530 |
by blast |
12905 | 531 |
|
12913 | 532 |
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)" |
26271 | 533 |
by blast |
12905 | 534 |
|
13830 | 535 |
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))" |
26271 | 536 |
by blast |
13830 | 537 |
|
538 |
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))" |
|
26271 | 539 |
by blast |
12905 | 540 |
|
13830 | 541 |
text{*Converse inclusion requires some assumptions*} |
542 |
lemma Image_INT_eq: |
|
543 |
"[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)" |
|
544 |
apply (rule equalityI) |
|
545 |
apply (rule Image_INT_subset) |
|
546 |
apply (simp add: single_valued_def, blast) |
|
547 |
done |
|
12905 | 548 |
|
12913 | 549 |
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))" |
26271 | 550 |
by blast |
12905 | 551 |
|
552 |
||
12913 | 553 |
subsection {* Single valued relations *} |
554 |
||
555 |
lemma single_valuedI: |
|
12905 | 556 |
"ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r" |
26271 | 557 |
by (unfold single_valued_def) |
12905 | 558 |
|
559 |
lemma single_valuedD: |
|
560 |
"single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z" |
|
26271 | 561 |
by (simp add: single_valued_def) |
12905 | 562 |
|
19228 | 563 |
lemma single_valued_rel_comp: |
564 |
"single_valued r ==> single_valued s ==> single_valued (r O s)" |
|
26271 | 565 |
by (unfold single_valued_def) blast |
19228 | 566 |
|
567 |
lemma single_valued_subset: |
|
568 |
"r \<subseteq> s ==> single_valued s ==> single_valued r" |
|
26271 | 569 |
by (unfold single_valued_def) blast |
19228 | 570 |
|
571 |
lemma single_valued_Id [simp]: "single_valued Id" |
|
26271 | 572 |
by (unfold single_valued_def) blast |
19228 | 573 |
|
574 |
lemma single_valued_diag [simp]: "single_valued (diag A)" |
|
26271 | 575 |
by (unfold single_valued_def) blast |
19228 | 576 |
|
12905 | 577 |
|
578 |
subsection {* Graphs given by @{text Collect} *} |
|
579 |
||
580 |
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}" |
|
26271 | 581 |
by auto |
12905 | 582 |
|
583 |
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}" |
|
26271 | 584 |
by auto |
12905 | 585 |
|
586 |
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}" |
|
26271 | 587 |
by auto |
12905 | 588 |
|
589 |
||
12913 | 590 |
subsection {* Inverse image *} |
12905 | 591 |
|
19228 | 592 |
lemma sym_inv_image: "sym r ==> sym (inv_image r f)" |
26271 | 593 |
by (unfold sym_def inv_image_def) blast |
19228 | 594 |
|
12913 | 595 |
lemma trans_inv_image: "trans r ==> trans (inv_image r f)" |
12905 | 596 |
apply (unfold trans_def inv_image_def) |
597 |
apply (simp (no_asm)) |
|
598 |
apply blast |
|
599 |
done |
|
600 |
||
23709 | 601 |
|
29609 | 602 |
subsection {* Finiteness *} |
603 |
||
604 |
lemma finite_converse [iff]: "finite (r^-1) = finite r" |
|
605 |
apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r") |
|
606 |
apply simp |
|
607 |
apply (rule iffI) |
|
608 |
apply (erule finite_imageD [unfolded inj_on_def]) |
|
609 |
apply (simp split add: split_split) |
|
610 |
apply (erule finite_imageI) |
|
611 |
apply (simp add: converse_def image_def, auto) |
|
612 |
apply (rule bexI) |
|
613 |
prefer 2 apply assumption |
|
614 |
apply simp |
|
615 |
done |
|
616 |
||
617 |
text {* \paragraph{Finiteness of transitive closure} (Thanks to Sidi |
|
618 |
Ehmety) *} |
|
619 |
||
620 |
lemma finite_Field: "finite r ==> finite (Field r)" |
|
621 |
-- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *} |
|
622 |
apply (induct set: finite) |
|
623 |
apply (auto simp add: Field_def Domain_insert Range_insert) |
|
624 |
done |
|
625 |
||
626 |
||
23709 | 627 |
subsection {* Version of @{text lfp_induct} for binary relations *} |
628 |
||
629 |
lemmas lfp_induct2 = |
|
630 |
lfp_induct_set [of "(a, b)", split_format (complete)] |
|
631 |
||
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
632 |
end |