| author | haftmann | 
| Sat, 19 Sep 2009 07:35:27 +0200 | |
| changeset 32611 | 210fa627d767 | 
| parent 30235 | 58d147683393 | 
| child 33633 | 9f7280e0c231 | 
| permissions | -rw-r--r-- | 
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 1 | (* Title: HOL/Datatype.thy | 
| 20819 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 11954 | 3 | Author: Stefan Berghofer and Markus Wenzel, TU Muenchen | 
| 20819 | 4 | |
| 5 | Could <*> be generalized to a general summation (Sigma)? | |
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 6 | *) | 
| 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 7 | |
| 21669 | 8 | header {* Analogues of the Cartesian Product and Disjoint Sum for Datatypes *}
 | 
| 11954 | 9 | |
| 15131 | 10 | theory Datatype | 
| 29609 | 11 | imports Nat Product_Type | 
| 15131 | 12 | begin | 
| 11954 | 13 | |
| 20819 | 14 | typedef (Node) | 
| 15 |   ('a,'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}"
 | |
| 16 |     --{*it is a subtype of @{text "(nat=>'b+nat) * ('a+nat)"}*}
 | |
| 17 | by auto | |
| 18 | ||
| 19 | text{*Datatypes will be represented by sets of type @{text node}*}
 | |
| 20 | ||
| 21 | types 'a item        = "('a, unit) node set"
 | |
| 22 |       ('a, 'b) dtree = "('a, 'b) node set"
 | |
| 23 | ||
| 24 | consts | |
| 25 |   Push      :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))"
 | |
| 26 | ||
| 27 |   Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node"
 | |
| 28 |   ndepth    :: "('a, 'b) node => nat"
 | |
| 29 | ||
| 30 |   Atom      :: "('a + nat) => ('a, 'b) dtree"
 | |
| 31 |   Leaf      :: "'a => ('a, 'b) dtree"
 | |
| 32 |   Numb      :: "nat => ('a, 'b) dtree"
 | |
| 33 |   Scons     :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree"
 | |
| 34 |   In0       :: "('a, 'b) dtree => ('a, 'b) dtree"
 | |
| 35 |   In1       :: "('a, 'b) dtree => ('a, 'b) dtree"
 | |
| 36 |   Lim       :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree"
 | |
| 37 | ||
| 38 |   ntrunc    :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree"
 | |
| 39 | ||
| 40 |   uprod     :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
 | |
| 41 |   usum      :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
 | |
| 42 | ||
| 43 |   Split     :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
 | |
| 44 |   Case      :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
 | |
| 45 | ||
| 46 |   dprod     :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
 | |
| 47 |                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
 | |
| 48 |   dsum      :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
 | |
| 49 |                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
 | |
| 50 | ||
| 51 | ||
| 52 | defs | |
| 53 | ||
| 54 | Push_Node_def: "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))" | |
| 55 | ||
| 56 | (*crude "lists" of nats -- needed for the constructions*) | |
| 57 | Push_def: "Push == (%b h. nat_case b h)" | |
| 58 | ||
| 59 | (** operations on S-expressions -- sets of nodes **) | |
| 60 | ||
| 61 | (*S-expression constructors*) | |
| 62 |   Atom_def:   "Atom == (%x. {Abs_Node((%k. Inr 0, x))})"
 | |
| 63 | Scons_def: "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)" | |
| 64 | ||
| 65 | (*Leaf nodes, with arbitrary or nat labels*) | |
| 66 | Leaf_def: "Leaf == Atom o Inl" | |
| 67 | Numb_def: "Numb == Atom o Inr" | |
| 68 | ||
| 69 | (*Injections of the "disjoint sum"*) | |
| 70 | In0_def: "In0(M) == Scons (Numb 0) M" | |
| 71 | In1_def: "In1(M) == Scons (Numb 1) M" | |
| 72 | ||
| 73 | (*Function spaces*) | |
| 74 |   Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}"
 | |
| 75 | ||
| 76 | (*the set of nodes with depth less than k*) | |
| 77 | ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)" | |
| 78 |   ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n)<k}"
 | |
| 79 | ||
| 80 | (*products and sums for the "universe"*) | |
| 81 |   uprod_def:  "uprod A B == UN x:A. UN y:B. { Scons x y }"
 | |
| 82 | usum_def: "usum A B == In0`A Un In1`B" | |
| 83 | ||
| 84 | (*the corresponding eliminators*) | |
| 85 | Split_def: "Split c M == THE u. EX x y. M = Scons x y & u = c x y" | |
| 86 | ||
| 87 | Case_def: "Case c d M == THE u. (EX x . M = In0(x) & u = c(x)) | |
| 88 | | (EX y . M = In1(y) & u = d(y))" | |
| 89 | ||
| 90 | ||
| 91 | (** equality for the "universe" **) | |
| 92 | ||
| 93 |   dprod_def:  "dprod r s == UN (x,x'):r. UN (y,y'):s. {(Scons x y, Scons x' y')}"
 | |
| 94 | ||
| 95 |   dsum_def:   "dsum r s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un
 | |
| 96 |                           (UN (y,y'):s. {(In1(y),In1(y'))})"
 | |
| 97 | ||
| 98 | ||
| 99 | ||
| 100 | lemma apfst_convE: | |
| 101 | "[| q = apfst f p; !!x y. [| p = (x,y); q = (f(x),y) |] ==> R | |
| 102 | |] ==> R" | |
| 103 | by (force simp add: apfst_def) | |
| 104 | ||
| 105 | (** Push -- an injection, analogous to Cons on lists **) | |
| 106 | ||
| 107 | lemma Push_inject1: "Push i f = Push j g ==> i=j" | |
| 108 | apply (simp add: Push_def expand_fun_eq) | |
| 109 | apply (drule_tac x=0 in spec, simp) | |
| 110 | done | |
| 111 | ||
| 112 | lemma Push_inject2: "Push i f = Push j g ==> f=g" | |
| 113 | apply (auto simp add: Push_def expand_fun_eq) | |
| 114 | apply (drule_tac x="Suc x" in spec, simp) | |
| 115 | done | |
| 116 | ||
| 117 | lemma Push_inject: | |
| 118 | "[| Push i f =Push j g; [| i=j; f=g |] ==> P |] ==> P" | |
| 119 | by (blast dest: Push_inject1 Push_inject2) | |
| 120 | ||
| 121 | lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P" | |
| 122 | by (auto simp add: Push_def expand_fun_eq split: nat.split_asm) | |
| 123 | ||
| 124 | lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard] | |
| 125 | ||
| 126 | ||
| 127 | (*** Introduction rules for Node ***) | |
| 128 | ||
| 129 | lemma Node_K0_I: "(%k. Inr 0, a) : Node" | |
| 130 | by (simp add: Node_def) | |
| 131 | ||
| 132 | lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node" | |
| 133 | apply (simp add: Node_def Push_def) | |
| 134 | apply (fast intro!: apfst_conv nat_case_Suc [THEN trans]) | |
| 135 | done | |
| 136 | ||
| 137 | ||
| 138 | subsection{*Freeness: Distinctness of Constructors*}
 | |
| 139 | ||
| 140 | (** Scons vs Atom **) | |
| 141 | ||
| 142 | lemma Scons_not_Atom [iff]: "Scons M N \<noteq> Atom(a)" | |
| 143 | apply (simp add: Atom_def Scons_def Push_Node_def One_nat_def) | |
| 144 | apply (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I] | |
| 145 | dest!: Abs_Node_inj | |
| 146 | elim!: apfst_convE sym [THEN Push_neq_K0]) | |
| 147 | done | |
| 148 | ||
| 21407 | 149 | lemmas Atom_not_Scons [iff] = Scons_not_Atom [THEN not_sym, standard] | 
| 150 | ||
| 20819 | 151 | |
| 152 | (*** Injectiveness ***) | |
| 153 | ||
| 154 | (** Atomic nodes **) | |
| 155 | ||
| 156 | lemma inj_Atom: "inj(Atom)" | |
| 157 | apply (simp add: Atom_def) | |
| 158 | apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj) | |
| 159 | done | |
| 160 | lemmas Atom_inject = inj_Atom [THEN injD, standard] | |
| 161 | ||
| 162 | lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)" | |
| 163 | by (blast dest!: Atom_inject) | |
| 164 | ||
| 165 | lemma inj_Leaf: "inj(Leaf)" | |
| 166 | apply (simp add: Leaf_def o_def) | |
| 167 | apply (rule inj_onI) | |
| 168 | apply (erule Atom_inject [THEN Inl_inject]) | |
| 169 | done | |
| 170 | ||
| 21407 | 171 | lemmas Leaf_inject [dest!] = inj_Leaf [THEN injD, standard] | 
| 20819 | 172 | |
| 173 | lemma inj_Numb: "inj(Numb)" | |
| 174 | apply (simp add: Numb_def o_def) | |
| 175 | apply (rule inj_onI) | |
| 176 | apply (erule Atom_inject [THEN Inr_inject]) | |
| 177 | done | |
| 178 | ||
| 21407 | 179 | lemmas Numb_inject [dest!] = inj_Numb [THEN injD, standard] | 
| 20819 | 180 | |
| 181 | ||
| 182 | (** Injectiveness of Push_Node **) | |
| 183 | ||
| 184 | lemma Push_Node_inject: | |
| 185 | "[| Push_Node i m =Push_Node j n; [| i=j; m=n |] ==> P | |
| 186 | |] ==> P" | |
| 187 | apply (simp add: Push_Node_def) | |
| 188 | apply (erule Abs_Node_inj [THEN apfst_convE]) | |
| 189 | apply (rule Rep_Node [THEN Node_Push_I])+ | |
| 190 | apply (erule sym [THEN apfst_convE]) | |
| 191 | apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject) | |
| 192 | done | |
| 193 | ||
| 194 | ||
| 195 | (** Injectiveness of Scons **) | |
| 196 | ||
| 197 | lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'" | |
| 198 | apply (simp add: Scons_def One_nat_def) | |
| 199 | apply (blast dest!: Push_Node_inject) | |
| 200 | done | |
| 201 | ||
| 202 | lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'" | |
| 203 | apply (simp add: Scons_def One_nat_def) | |
| 204 | apply (blast dest!: Push_Node_inject) | |
| 205 | done | |
| 206 | ||
| 207 | lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'" | |
| 208 | apply (erule equalityE) | |
| 209 | apply (iprover intro: equalityI Scons_inject_lemma1) | |
| 210 | done | |
| 211 | ||
| 212 | lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'" | |
| 213 | apply (erule equalityE) | |
| 214 | apply (iprover intro: equalityI Scons_inject_lemma2) | |
| 215 | done | |
| 216 | ||
| 217 | lemma Scons_inject: | |
| 218 | "[| Scons M N = Scons M' N'; [| M=M'; N=N' |] ==> P |] ==> P" | |
| 219 | by (iprover dest: Scons_inject1 Scons_inject2) | |
| 220 | ||
| 221 | lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')" | |
| 222 | by (blast elim!: Scons_inject) | |
| 223 | ||
| 224 | (*** Distinctness involving Leaf and Numb ***) | |
| 225 | ||
| 226 | (** Scons vs Leaf **) | |
| 227 | ||
| 228 | lemma Scons_not_Leaf [iff]: "Scons M N \<noteq> Leaf(a)" | |
| 229 | by (simp add: Leaf_def o_def Scons_not_Atom) | |
| 230 | ||
| 21407 | 231 | lemmas Leaf_not_Scons [iff] = Scons_not_Leaf [THEN not_sym, standard] | 
| 20819 | 232 | |
| 233 | (** Scons vs Numb **) | |
| 234 | ||
| 235 | lemma Scons_not_Numb [iff]: "Scons M N \<noteq> Numb(k)" | |
| 236 | by (simp add: Numb_def o_def Scons_not_Atom) | |
| 237 | ||
| 21407 | 238 | lemmas Numb_not_Scons [iff] = Scons_not_Numb [THEN not_sym, standard] | 
| 20819 | 239 | |
| 240 | ||
| 241 | (** Leaf vs Numb **) | |
| 242 | ||
| 243 | lemma Leaf_not_Numb [iff]: "Leaf(a) \<noteq> Numb(k)" | |
| 244 | by (simp add: Leaf_def Numb_def) | |
| 245 | ||
| 21407 | 246 | lemmas Numb_not_Leaf [iff] = Leaf_not_Numb [THEN not_sym, standard] | 
| 20819 | 247 | |
| 248 | ||
| 249 | (*** ndepth -- the depth of a node ***) | |
| 250 | ||
| 251 | lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0" | |
| 252 | by (simp add: ndepth_def Node_K0_I [THEN Abs_Node_inverse] Least_equality) | |
| 253 | ||
| 254 | lemma ndepth_Push_Node_aux: | |
| 255 | "nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k" | |
| 256 | apply (induct_tac "k", auto) | |
| 257 | apply (erule Least_le) | |
| 258 | done | |
| 259 | ||
| 260 | lemma ndepth_Push_Node: | |
| 261 | "ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))" | |
| 262 | apply (insert Rep_Node [of n, unfolded Node_def]) | |
| 263 | apply (auto simp add: ndepth_def Push_Node_def | |
| 264 | Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse]) | |
| 265 | apply (rule Least_equality) | |
| 266 | apply (auto simp add: Push_def ndepth_Push_Node_aux) | |
| 267 | apply (erule LeastI) | |
| 268 | done | |
| 269 | ||
| 270 | ||
| 271 | (*** ntrunc applied to the various node sets ***) | |
| 272 | ||
| 273 | lemma ntrunc_0 [simp]: "ntrunc 0 M = {}"
 | |
| 274 | by (simp add: ntrunc_def) | |
| 275 | ||
| 276 | lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)" | |
| 277 | by (auto simp add: Atom_def ntrunc_def ndepth_K0) | |
| 278 | ||
| 279 | lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)" | |
| 280 | by (simp add: Leaf_def o_def ntrunc_Atom) | |
| 281 | ||
| 282 | lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)" | |
| 283 | by (simp add: Numb_def o_def ntrunc_Atom) | |
| 284 | ||
| 285 | lemma ntrunc_Scons [simp]: | |
| 286 | "ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)" | |
| 287 | by (auto simp add: Scons_def ntrunc_def One_nat_def ndepth_Push_Node) | |
| 288 | ||
| 289 | ||
| 290 | ||
| 291 | (** Injection nodes **) | |
| 292 | ||
| 293 | lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}"
 | |
| 294 | apply (simp add: In0_def) | |
| 295 | apply (simp add: Scons_def) | |
| 296 | done | |
| 297 | ||
| 298 | lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)" | |
| 299 | by (simp add: In0_def) | |
| 300 | ||
| 301 | lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}"
 | |
| 302 | apply (simp add: In1_def) | |
| 303 | apply (simp add: Scons_def) | |
| 304 | done | |
| 305 | ||
| 306 | lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)" | |
| 307 | by (simp add: In1_def) | |
| 308 | ||
| 309 | ||
| 310 | subsection{*Set Constructions*}
 | |
| 311 | ||
| 312 | ||
| 313 | (*** Cartesian Product ***) | |
| 314 | ||
| 315 | lemma uprodI [intro!]: "[| M:A; N:B |] ==> Scons M N : uprod A B" | |
| 316 | by (simp add: uprod_def) | |
| 317 | ||
| 318 | (*The general elimination rule*) | |
| 319 | lemma uprodE [elim!]: | |
| 320 | "[| c : uprod A B; | |
| 321 | !!x y. [| x:A; y:B; c = Scons x y |] ==> P | |
| 322 | |] ==> P" | |
| 323 | by (auto simp add: uprod_def) | |
| 324 | ||
| 325 | ||
| 326 | (*Elimination of a pair -- introduces no eigenvariables*) | |
| 327 | lemma uprodE2: "[| Scons M N : uprod A B; [| M:A; N:B |] ==> P |] ==> P" | |
| 328 | by (auto simp add: uprod_def) | |
| 329 | ||
| 330 | ||
| 331 | (*** Disjoint Sum ***) | |
| 332 | ||
| 333 | lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B" | |
| 334 | by (simp add: usum_def) | |
| 335 | ||
| 336 | lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B" | |
| 337 | by (simp add: usum_def) | |
| 338 | ||
| 339 | lemma usumE [elim!]: | |
| 340 | "[| u : usum A B; | |
| 341 | !!x. [| x:A; u=In0(x) |] ==> P; | |
| 342 | !!y. [| y:B; u=In1(y) |] ==> P | |
| 343 | |] ==> P" | |
| 344 | by (auto simp add: usum_def) | |
| 345 | ||
| 346 | ||
| 347 | (** Injection **) | |
| 348 | ||
| 349 | lemma In0_not_In1 [iff]: "In0(M) \<noteq> In1(N)" | |
| 350 | by (auto simp add: In0_def In1_def One_nat_def) | |
| 351 | ||
| 21407 | 352 | lemmas In1_not_In0 [iff] = In0_not_In1 [THEN not_sym, standard] | 
| 20819 | 353 | |
| 354 | lemma In0_inject: "In0(M) = In0(N) ==> M=N" | |
| 355 | by (simp add: In0_def) | |
| 356 | ||
| 357 | lemma In1_inject: "In1(M) = In1(N) ==> M=N" | |
| 358 | by (simp add: In1_def) | |
| 359 | ||
| 360 | lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)" | |
| 361 | by (blast dest!: In0_inject) | |
| 362 | ||
| 363 | lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)" | |
| 364 | by (blast dest!: In1_inject) | |
| 365 | ||
| 366 | lemma inj_In0: "inj In0" | |
| 367 | by (blast intro!: inj_onI) | |
| 368 | ||
| 369 | lemma inj_In1: "inj In1" | |
| 370 | by (blast intro!: inj_onI) | |
| 371 | ||
| 372 | ||
| 373 | (*** Function spaces ***) | |
| 374 | ||
| 375 | lemma Lim_inject: "Lim f = Lim g ==> f = g" | |
| 376 | apply (simp add: Lim_def) | |
| 377 | apply (rule ext) | |
| 378 | apply (blast elim!: Push_Node_inject) | |
| 379 | done | |
| 380 | ||
| 381 | ||
| 382 | (*** proving equality of sets and functions using ntrunc ***) | |
| 383 | ||
| 384 | lemma ntrunc_subsetI: "ntrunc k M <= M" | |
| 385 | by (auto simp add: ntrunc_def) | |
| 386 | ||
| 387 | lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N" | |
| 388 | by (auto simp add: ntrunc_def) | |
| 389 | ||
| 390 | (*A generalized form of the take-lemma*) | |
| 391 | lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N" | |
| 392 | apply (rule equalityI) | |
| 393 | apply (rule_tac [!] ntrunc_subsetD) | |
| 394 | apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto) | |
| 395 | done | |
| 396 | ||
| 397 | lemma ntrunc_o_equality: | |
| 398 | "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2" | |
| 399 | apply (rule ntrunc_equality [THEN ext]) | |
| 400 | apply (simp add: expand_fun_eq) | |
| 401 | done | |
| 402 | ||
| 403 | ||
| 404 | (*** Monotonicity ***) | |
| 405 | ||
| 406 | lemma uprod_mono: "[| A<=A'; B<=B' |] ==> uprod A B <= uprod A' B'" | |
| 407 | by (simp add: uprod_def, blast) | |
| 408 | ||
| 409 | lemma usum_mono: "[| A<=A'; B<=B' |] ==> usum A B <= usum A' B'" | |
| 410 | by (simp add: usum_def, blast) | |
| 411 | ||
| 412 | lemma Scons_mono: "[| M<=M'; N<=N' |] ==> Scons M N <= Scons M' N'" | |
| 413 | by (simp add: Scons_def, blast) | |
| 414 | ||
| 415 | lemma In0_mono: "M<=N ==> In0(M) <= In0(N)" | |
| 416 | by (simp add: In0_def subset_refl Scons_mono) | |
| 417 | ||
| 418 | lemma In1_mono: "M<=N ==> In1(M) <= In1(N)" | |
| 419 | by (simp add: In1_def subset_refl Scons_mono) | |
| 420 | ||
| 421 | ||
| 422 | (*** Split and Case ***) | |
| 423 | ||
| 424 | lemma Split [simp]: "Split c (Scons M N) = c M N" | |
| 425 | by (simp add: Split_def) | |
| 426 | ||
| 427 | lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)" | |
| 428 | by (simp add: Case_def) | |
| 429 | ||
| 430 | lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)" | |
| 431 | by (simp add: Case_def) | |
| 432 | ||
| 433 | ||
| 434 | ||
| 435 | (**** UN x. B(x) rules ****) | |
| 436 | ||
| 437 | lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))" | |
| 438 | by (simp add: ntrunc_def, blast) | |
| 439 | ||
| 440 | lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)" | |
| 441 | by (simp add: Scons_def, blast) | |
| 442 | ||
| 443 | lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))" | |
| 444 | by (simp add: Scons_def, blast) | |
| 445 | ||
| 446 | lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))" | |
| 447 | by (simp add: In0_def Scons_UN1_y) | |
| 448 | ||
| 449 | lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))" | |
| 450 | by (simp add: In1_def Scons_UN1_y) | |
| 451 | ||
| 452 | ||
| 453 | (*** Equality for Cartesian Product ***) | |
| 454 | ||
| 455 | lemma dprodI [intro!]: | |
| 456 | "[| (M,M'):r; (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s" | |
| 457 | by (auto simp add: dprod_def) | |
| 458 | ||
| 459 | (*The general elimination rule*) | |
| 460 | lemma dprodE [elim!]: | |
| 461 | "[| c : dprod r s; | |
| 462 | !!x y x' y'. [| (x,x') : r; (y,y') : s; | |
| 463 | c = (Scons x y, Scons x' y') |] ==> P | |
| 464 | |] ==> P" | |
| 465 | by (auto simp add: dprod_def) | |
| 466 | ||
| 467 | ||
| 468 | (*** Equality for Disjoint Sum ***) | |
| 469 | ||
| 470 | lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s" | |
| 471 | by (auto simp add: dsum_def) | |
| 472 | ||
| 473 | lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s" | |
| 474 | by (auto simp add: dsum_def) | |
| 475 | ||
| 476 | lemma dsumE [elim!]: | |
| 477 | "[| w : dsum r s; | |
| 478 | !!x x'. [| (x,x') : r; w = (In0(x), In0(x')) |] ==> P; | |
| 479 | !!y y'. [| (y,y') : s; w = (In1(y), In1(y')) |] ==> P | |
| 480 | |] ==> P" | |
| 481 | by (auto simp add: dsum_def) | |
| 482 | ||
| 483 | ||
| 484 | (*** Monotonicity ***) | |
| 485 | ||
| 486 | lemma dprod_mono: "[| r<=r'; s<=s' |] ==> dprod r s <= dprod r' s'" | |
| 487 | by blast | |
| 488 | ||
| 489 | lemma dsum_mono: "[| r<=r'; s<=s' |] ==> dsum r s <= dsum r' s'" | |
| 490 | by blast | |
| 491 | ||
| 492 | ||
| 493 | (*** Bounding theorems ***) | |
| 494 | ||
| 495 | lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)" | |
| 496 | by blast | |
| 497 | ||
| 498 | lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma, standard] | |
| 499 | ||
| 500 | (*Dependent version*) | |
| 501 | lemma dprod_subset_Sigma2: | |
| 502 | "(dprod (Sigma A B) (Sigma C D)) <= | |
| 503 | Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))" | |
| 504 | by auto | |
| 505 | ||
| 506 | lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)" | |
| 507 | by blast | |
| 508 | ||
| 509 | lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma, standard] | |
| 510 | ||
| 511 | ||
| 24162 
8dfd5dd65d82
split off theory Option for benefit of code generator
 haftmann parents: 
22886diff
changeset | 512 | text {* hides popular names *}
 | 
| 
8dfd5dd65d82
split off theory Option for benefit of code generator
 haftmann parents: 
22886diff
changeset | 513 | hide (open) type node item | 
| 20819 | 514 | hide (open) const Push Node Atom Leaf Numb Lim Split Case | 
| 515 | ||
| 516 | ||
| 517 | section {* Datatypes *}
 | |
| 518 | ||
| 24699 
c6674504103f
datatype interpretators for size and datatype_realizer
 haftmann parents: 
24286diff
changeset | 519 | subsection {* Representing sums *}
 | 
| 12918 | 520 | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 521 | rep_datatype (sum) Inl Inr | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 522 | proof - | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 523 | fix P | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 524 | fix s :: "'a + 'b" | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 525 | assume x: "\<And>x\<Colon>'a. P (Inl x)" and y: "\<And>y\<Colon>'b. P (Inr y)" | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 526 | then show "P s" by (auto intro: sumE [of s]) | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 527 | qed simp_all | 
| 24194 | 528 | |
| 22230 | 529 | lemma sum_case_KK[simp]: "sum_case (%x. a) (%x. a) = (%x. a)" | 
| 530 | by (rule ext) (simp split: sum.split) | |
| 531 | ||
| 12918 | 532 | lemma surjective_sum: "sum_case (%x::'a. f (Inl x)) (%y::'b. f (Inr y)) s = f(s)" | 
| 533 | apply (rule_tac s = s in sumE) | |
| 534 | apply (erule ssubst) | |
| 20798 | 535 | apply (rule sum.cases(1)) | 
| 12918 | 536 | apply (erule ssubst) | 
| 20798 | 537 | apply (rule sum.cases(2)) | 
| 12918 | 538 | done | 
| 539 | ||
| 540 | lemma sum_case_weak_cong: "s = t ==> sum_case f g s = sum_case f g t" | |
| 541 |   -- {* Prevents simplification of @{text f} and @{text g}: much faster. *}
 | |
| 20798 | 542 | by simp | 
| 12918 | 543 | |
| 544 | lemma sum_case_inject: | |
| 545 | "sum_case f1 f2 = sum_case g1 g2 ==> (f1 = g1 ==> f2 = g2 ==> P) ==> P" | |
| 546 | proof - | |
| 547 | assume a: "sum_case f1 f2 = sum_case g1 g2" | |
| 548 | assume r: "f1 = g1 ==> f2 = g2 ==> P" | |
| 549 | show P | |
| 550 | apply (rule r) | |
| 551 | apply (rule ext) | |
| 14208 | 552 | apply (cut_tac x = "Inl x" in a [THEN fun_cong], simp) | 
| 12918 | 553 | apply (rule ext) | 
| 14208 | 554 | apply (cut_tac x = "Inr x" in a [THEN fun_cong], simp) | 
| 12918 | 555 | done | 
| 556 | qed | |
| 557 | ||
| 13635 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 558 | constdefs | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 559 |   Suml :: "('a => 'c) => 'a + 'b => 'c"
 | 
| 28524 | 560 | "Suml == (%f. sum_case f undefined)" | 
| 13635 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 561 | |
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 562 |   Sumr :: "('b => 'c) => 'a + 'b => 'c"
 | 
| 28524 | 563 | "Sumr == sum_case undefined" | 
| 13635 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 564 | |
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 565 | lemma Suml_inject: "Suml f = Suml g ==> f = g" | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 566 | by (unfold Suml_def) (erule sum_case_inject) | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 567 | |
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 568 | lemma Sumr_inject: "Sumr f = Sumr g ==> f = g" | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 569 | by (unfold Sumr_def) (erule sum_case_inject) | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 570 | |
| 29183 
f1648e009dc1
removed duplicate sum_case used only by function package;
 krauss parents: 
29025diff
changeset | 571 | primrec Projl :: "'a + 'b => 'a" | 
| 
f1648e009dc1
removed duplicate sum_case used only by function package;
 krauss parents: 
29025diff
changeset | 572 | where Projl_Inl: "Projl (Inl x) = x" | 
| 
f1648e009dc1
removed duplicate sum_case used only by function package;
 krauss parents: 
29025diff
changeset | 573 | |
| 
f1648e009dc1
removed duplicate sum_case used only by function package;
 krauss parents: 
29025diff
changeset | 574 | primrec Projr :: "'a + 'b => 'b" | 
| 
f1648e009dc1
removed duplicate sum_case used only by function package;
 krauss parents: 
29025diff
changeset | 575 | where Projr_Inr: "Projr (Inr x) = x" | 
| 
f1648e009dc1
removed duplicate sum_case used only by function package;
 krauss parents: 
29025diff
changeset | 576 | |
| 
f1648e009dc1
removed duplicate sum_case used only by function package;
 krauss parents: 
29025diff
changeset | 577 | hide (open) const Suml Sumr Projl Projr | 
| 13635 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 578 | |
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 579 | end |