author | haftmann |
Wed, 21 Jan 2009 23:40:23 +0100 | |
changeset 29609 | a010aab5bed0 |
parent 28008 | f945f8d9ad4d |
child 29859 | 33bff35f1335 |
permissions | -rw-r--r-- |
10358 | 1 |
(* Title: HOL/Relation.thy |
1983 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1996 University of Cambridge |
|
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
4 |
*) |
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
5 |
|
12905 | 6 |
header {* Relations *} |
7 |
||
15131 | 8 |
theory Relation |
29609 | 9 |
imports Datatype Finite_Set |
15131 | 10 |
begin |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
11 |
|
12913 | 12 |
subsection {* Definitions *} |
13 |
||
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset
|
14 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
15 |
converse :: "('a * 'b) set => ('b * 'a) set" |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
16 |
("(_^-1)" [1000] 999) where |
10358 | 17 |
"r^-1 == {(y, x). (x, y) : r}" |
7912 | 18 |
|
21210 | 19 |
notation (xsymbols) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset
|
20 |
converse ("(_\<inverse>)" [1000] 999) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset
|
21 |
|
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19363
diff
changeset
|
22 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
23 |
rel_comp :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set" |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
24 |
(infixr "O" 75) where |
12913 | 25 |
"r O s == {(x,z). EX y. (x, y) : s & (y, z) : r}" |
26 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
27 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
28 |
Image :: "[('a * 'b) set, 'a set] => 'b set" |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
29 |
(infixl "``" 90) where |
12913 | 30 |
"r `` s == {y. EX x:s. (x,y):r}" |
7912 | 31 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
32 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
33 |
Id :: "('a * 'a) set" where -- {* the identity relation *} |
12913 | 34 |
"Id == {p. EX x. p = (x,x)}" |
7912 | 35 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
36 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
37 |
diag :: "'a set => ('a * 'a) set" where -- {* diagonal: identity over a set *} |
13830 | 38 |
"diag A == \<Union>x\<in>A. {(x,x)}" |
12913 | 39 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
40 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
41 |
Domain :: "('a * 'b) set => 'a set" where |
12913 | 42 |
"Domain r == {x. EX y. (x,y):r}" |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
43 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
44 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
45 |
Range :: "('a * 'b) set => 'b set" where |
12913 | 46 |
"Range r == Domain(r^-1)" |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
47 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
48 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
49 |
Field :: "('a * 'a) set => 'a set" where |
13830 | 50 |
"Field r == Domain r \<union> Range r" |
10786 | 51 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
52 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
53 |
refl :: "['a set, ('a * 'a) set] => bool" where -- {* reflexivity over a set *} |
12913 | 54 |
"refl A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
55 |
|
26297 | 56 |
abbreviation |
57 |
reflexive :: "('a * 'a) set => bool" where -- {* reflexivity over a type *} |
|
58 |
"reflexive == refl UNIV" |
|
59 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
60 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
61 |
sym :: "('a * 'a) set => bool" where -- {* symmetry predicate *} |
12913 | 62 |
"sym r == ALL x y. (x,y): r --> (y,x): r" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
63 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
64 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
65 |
antisym :: "('a * 'a) set => bool" where -- {* antisymmetry predicate *} |
12913 | 66 |
"antisym r == ALL x y. (x,y):r --> (y,x):r --> x=y" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
67 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
68 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
69 |
trans :: "('a * 'a) set => bool" where -- {* transitivity predicate *} |
12913 | 70 |
"trans r == (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)" |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
71 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
72 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
73 |
single_valued :: "('a * 'b) set => bool" where |
12913 | 74 |
"single_valued r == ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z)" |
7014
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6806
diff
changeset
|
75 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
76 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
77 |
inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" where |
12913 | 78 |
"inv_image r f == {(x, y). (f x, f y) : r}" |
11136 | 79 |
|
12905 | 80 |
|
12913 | 81 |
subsection {* The identity relation *} |
12905 | 82 |
|
83 |
lemma IdI [intro]: "(a, a) : Id" |
|
26271 | 84 |
by (simp add: Id_def) |
12905 | 85 |
|
86 |
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P" |
|
26271 | 87 |
by (unfold Id_def) (iprover elim: CollectE) |
12905 | 88 |
|
89 |
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)" |
|
26271 | 90 |
by (unfold Id_def) blast |
12905 | 91 |
|
92 |
lemma reflexive_Id: "reflexive Id" |
|
26271 | 93 |
by (simp add: refl_def) |
12905 | 94 |
|
95 |
lemma antisym_Id: "antisym Id" |
|
96 |
-- {* A strange result, since @{text Id} is also symmetric. *} |
|
26271 | 97 |
by (simp add: antisym_def) |
12905 | 98 |
|
19228 | 99 |
lemma sym_Id: "sym Id" |
26271 | 100 |
by (simp add: sym_def) |
19228 | 101 |
|
12905 | 102 |
lemma trans_Id: "trans Id" |
26271 | 103 |
by (simp add: trans_def) |
12905 | 104 |
|
105 |
||
12913 | 106 |
subsection {* Diagonal: identity over a set *} |
12905 | 107 |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
108 |
lemma diag_empty [simp]: "diag {} = {}" |
26271 | 109 |
by (simp add: diag_def) |
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
110 |
|
12905 | 111 |
lemma diag_eqI: "a = b ==> a : A ==> (a, b) : diag A" |
26271 | 112 |
by (simp add: diag_def) |
12905 | 113 |
|
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
114 |
lemma diagI [intro!,noatp]: "a : A ==> (a, a) : diag A" |
26271 | 115 |
by (rule diag_eqI) (rule refl) |
12905 | 116 |
|
117 |
lemma diagE [elim!]: |
|
118 |
"c : diag A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P" |
|
12913 | 119 |
-- {* The general elimination rule. *} |
26271 | 120 |
by (unfold diag_def) (iprover elim!: UN_E singletonE) |
12905 | 121 |
|
122 |
lemma diag_iff: "((x, y) : diag A) = (x = y & x : A)" |
|
26271 | 123 |
by blast |
12905 | 124 |
|
12913 | 125 |
lemma diag_subset_Times: "diag A \<subseteq> A \<times> A" |
26271 | 126 |
by blast |
12905 | 127 |
|
128 |
||
129 |
subsection {* Composition of two relations *} |
|
130 |
||
12913 | 131 |
lemma rel_compI [intro]: |
12905 | 132 |
"(a, b) : s ==> (b, c) : r ==> (a, c) : r O s" |
26271 | 133 |
by (unfold rel_comp_def) blast |
12905 | 134 |
|
12913 | 135 |
lemma rel_compE [elim!]: "xz : r O s ==> |
12905 | 136 |
(!!x y z. xz = (x, z) ==> (x, y) : s ==> (y, z) : r ==> P) ==> P" |
26271 | 137 |
by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE) |
12905 | 138 |
|
139 |
lemma rel_compEpair: |
|
140 |
"(a, c) : r O s ==> (!!y. (a, y) : s ==> (y, c) : r ==> P) ==> P" |
|
26271 | 141 |
by (iprover elim: rel_compE Pair_inject ssubst) |
12905 | 142 |
|
143 |
lemma R_O_Id [simp]: "R O Id = R" |
|
26271 | 144 |
by fast |
12905 | 145 |
|
146 |
lemma Id_O_R [simp]: "Id O R = R" |
|
26271 | 147 |
by fast |
12905 | 148 |
|
23185 | 149 |
lemma rel_comp_empty1[simp]: "{} O R = {}" |
26271 | 150 |
by blast |
23185 | 151 |
|
152 |
lemma rel_comp_empty2[simp]: "R O {} = {}" |
|
26271 | 153 |
by blast |
23185 | 154 |
|
12905 | 155 |
lemma O_assoc: "(R O S) O T = R O (S O T)" |
26271 | 156 |
by blast |
12905 | 157 |
|
12913 | 158 |
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r" |
26271 | 159 |
by (unfold trans_def) blast |
12905 | 160 |
|
12913 | 161 |
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)" |
26271 | 162 |
by blast |
12905 | 163 |
|
164 |
lemma rel_comp_subset_Sigma: |
|
12913 | 165 |
"s \<subseteq> A \<times> B ==> r \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C" |
26271 | 166 |
by blast |
12905 | 167 |
|
28008
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
168 |
lemma rel_comp_distrib[simp]: "R O (S \<union> T) = (R O S) \<union> (R O T)" |
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
169 |
by auto |
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
170 |
|
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
171 |
lemma rel_comp_distrib2[simp]: "(S \<union> T) O R = (S O R) \<union> (T O R)" |
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
172 |
by auto |
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
173 |
|
12913 | 174 |
|
175 |
subsection {* Reflexivity *} |
|
176 |
||
177 |
lemma reflI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl A r" |
|
26271 | 178 |
by (unfold refl_def) (iprover intro!: ballI) |
12905 | 179 |
|
180 |
lemma reflD: "refl A r ==> a : A ==> (a, a) : r" |
|
26271 | 181 |
by (unfold refl_def) blast |
12905 | 182 |
|
19228 | 183 |
lemma reflD1: "refl A r ==> (x, y) : r ==> x : A" |
26271 | 184 |
by (unfold refl_def) blast |
19228 | 185 |
|
186 |
lemma reflD2: "refl A r ==> (x, y) : r ==> y : A" |
|
26271 | 187 |
by (unfold refl_def) blast |
19228 | 188 |
|
189 |
lemma refl_Int: "refl A r ==> refl B s ==> refl (A \<inter> B) (r \<inter> s)" |
|
26271 | 190 |
by (unfold refl_def) blast |
19228 | 191 |
|
192 |
lemma refl_Un: "refl A r ==> refl B s ==> refl (A \<union> B) (r \<union> s)" |
|
26271 | 193 |
by (unfold refl_def) blast |
19228 | 194 |
|
195 |
lemma refl_INTER: |
|
196 |
"ALL x:S. refl (A x) (r x) ==> refl (INTER S A) (INTER S r)" |
|
26271 | 197 |
by (unfold refl_def) fast |
19228 | 198 |
|
199 |
lemma refl_UNION: |
|
200 |
"ALL x:S. refl (A x) (r x) \<Longrightarrow> refl (UNION S A) (UNION S r)" |
|
26271 | 201 |
by (unfold refl_def) blast |
19228 | 202 |
|
26297 | 203 |
lemma refl_empty[simp]: "refl {} {}" |
204 |
by(simp add:refl_def) |
|
205 |
||
19228 | 206 |
lemma refl_diag: "refl A (diag A)" |
26271 | 207 |
by (rule reflI [OF diag_subset_Times diagI]) |
19228 | 208 |
|
12913 | 209 |
|
210 |
subsection {* Antisymmetry *} |
|
12905 | 211 |
|
212 |
lemma antisymI: |
|
213 |
"(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r" |
|
26271 | 214 |
by (unfold antisym_def) iprover |
12905 | 215 |
|
216 |
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b" |
|
26271 | 217 |
by (unfold antisym_def) iprover |
12905 | 218 |
|
19228 | 219 |
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r" |
26271 | 220 |
by (unfold antisym_def) blast |
12913 | 221 |
|
19228 | 222 |
lemma antisym_empty [simp]: "antisym {}" |
26271 | 223 |
by (unfold antisym_def) blast |
19228 | 224 |
|
225 |
lemma antisym_diag [simp]: "antisym (diag A)" |
|
26271 | 226 |
by (unfold antisym_def) blast |
19228 | 227 |
|
228 |
||
229 |
subsection {* Symmetry *} |
|
230 |
||
231 |
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r" |
|
26271 | 232 |
by (unfold sym_def) iprover |
15177 | 233 |
|
234 |
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r" |
|
26271 | 235 |
by (unfold sym_def, blast) |
12905 | 236 |
|
19228 | 237 |
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)" |
26271 | 238 |
by (fast intro: symI dest: symD) |
19228 | 239 |
|
240 |
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)" |
|
26271 | 241 |
by (fast intro: symI dest: symD) |
19228 | 242 |
|
243 |
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)" |
|
26271 | 244 |
by (fast intro: symI dest: symD) |
19228 | 245 |
|
246 |
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)" |
|
26271 | 247 |
by (fast intro: symI dest: symD) |
19228 | 248 |
|
249 |
lemma sym_diag [simp]: "sym (diag A)" |
|
26271 | 250 |
by (rule symI) clarify |
19228 | 251 |
|
252 |
||
253 |
subsection {* Transitivity *} |
|
254 |
||
12905 | 255 |
lemma transI: |
256 |
"(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r" |
|
26271 | 257 |
by (unfold trans_def) iprover |
12905 | 258 |
|
259 |
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r" |
|
26271 | 260 |
by (unfold trans_def) iprover |
12905 | 261 |
|
19228 | 262 |
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)" |
26271 | 263 |
by (fast intro: transI elim: transD) |
19228 | 264 |
|
265 |
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)" |
|
26271 | 266 |
by (fast intro: transI elim: transD) |
19228 | 267 |
|
268 |
lemma trans_diag [simp]: "trans (diag A)" |
|
26271 | 269 |
by (fast intro: transI elim: transD) |
19228 | 270 |
|
12905 | 271 |
|
12913 | 272 |
subsection {* Converse *} |
273 |
||
274 |
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)" |
|
26271 | 275 |
by (simp add: converse_def) |
12905 | 276 |
|
13343 | 277 |
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1" |
26271 | 278 |
by (simp add: converse_def) |
12905 | 279 |
|
13343 | 280 |
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r" |
26271 | 281 |
by (simp add: converse_def) |
12905 | 282 |
|
283 |
lemma converseE [elim!]: |
|
284 |
"yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P" |
|
12913 | 285 |
-- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *} |
26271 | 286 |
by (unfold converse_def) (iprover elim!: CollectE splitE bexE) |
12905 | 287 |
|
288 |
lemma converse_converse [simp]: "(r^-1)^-1 = r" |
|
26271 | 289 |
by (unfold converse_def) blast |
12905 | 290 |
|
291 |
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1" |
|
26271 | 292 |
by blast |
12905 | 293 |
|
19228 | 294 |
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1" |
26271 | 295 |
by blast |
19228 | 296 |
|
297 |
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1" |
|
26271 | 298 |
by blast |
19228 | 299 |
|
300 |
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)" |
|
26271 | 301 |
by fast |
19228 | 302 |
|
303 |
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)" |
|
26271 | 304 |
by blast |
19228 | 305 |
|
12905 | 306 |
lemma converse_Id [simp]: "Id^-1 = Id" |
26271 | 307 |
by blast |
12905 | 308 |
|
12913 | 309 |
lemma converse_diag [simp]: "(diag A)^-1 = diag A" |
26271 | 310 |
by blast |
12905 | 311 |
|
19228 | 312 |
lemma refl_converse [simp]: "refl A (converse r) = refl A r" |
26271 | 313 |
by (unfold refl_def) auto |
12905 | 314 |
|
19228 | 315 |
lemma sym_converse [simp]: "sym (converse r) = sym r" |
26271 | 316 |
by (unfold sym_def) blast |
19228 | 317 |
|
318 |
lemma antisym_converse [simp]: "antisym (converse r) = antisym r" |
|
26271 | 319 |
by (unfold antisym_def) blast |
12905 | 320 |
|
19228 | 321 |
lemma trans_converse [simp]: "trans (converse r) = trans r" |
26271 | 322 |
by (unfold trans_def) blast |
12905 | 323 |
|
19228 | 324 |
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)" |
26271 | 325 |
by (unfold sym_def) fast |
19228 | 326 |
|
327 |
lemma sym_Un_converse: "sym (r \<union> r^-1)" |
|
26271 | 328 |
by (unfold sym_def) blast |
19228 | 329 |
|
330 |
lemma sym_Int_converse: "sym (r \<inter> r^-1)" |
|
26271 | 331 |
by (unfold sym_def) blast |
19228 | 332 |
|
12913 | 333 |
|
12905 | 334 |
subsection {* Domain *} |
335 |
||
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
336 |
declare Domain_def [noatp] |
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
337 |
|
12905 | 338 |
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)" |
26271 | 339 |
by (unfold Domain_def) blast |
12905 | 340 |
|
341 |
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r" |
|
26271 | 342 |
by (iprover intro!: iffD2 [OF Domain_iff]) |
12905 | 343 |
|
344 |
lemma DomainE [elim!]: |
|
345 |
"a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P" |
|
26271 | 346 |
by (iprover dest!: iffD1 [OF Domain_iff]) |
12905 | 347 |
|
348 |
lemma Domain_empty [simp]: "Domain {} = {}" |
|
26271 | 349 |
by blast |
12905 | 350 |
|
351 |
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)" |
|
26271 | 352 |
by blast |
12905 | 353 |
|
354 |
lemma Domain_Id [simp]: "Domain Id = UNIV" |
|
26271 | 355 |
by blast |
12905 | 356 |
|
357 |
lemma Domain_diag [simp]: "Domain (diag A) = A" |
|
26271 | 358 |
by blast |
12905 | 359 |
|
13830 | 360 |
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)" |
26271 | 361 |
by blast |
12905 | 362 |
|
13830 | 363 |
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)" |
26271 | 364 |
by blast |
12905 | 365 |
|
12913 | 366 |
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)" |
26271 | 367 |
by blast |
12905 | 368 |
|
13830 | 369 |
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)" |
26271 | 370 |
by blast |
371 |
||
372 |
lemma Domain_converse[simp]: "Domain(r^-1) = Range r" |
|
373 |
by(auto simp:Range_def) |
|
12905 | 374 |
|
12913 | 375 |
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s" |
26271 | 376 |
by blast |
12905 | 377 |
|
22172 | 378 |
lemma fst_eq_Domain: "fst ` R = Domain R"; |
26271 | 379 |
by (auto intro!:image_eqI) |
22172 | 380 |
|
29609 | 381 |
lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)" |
382 |
by auto |
|
383 |
||
384 |
lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)" |
|
385 |
by auto |
|
386 |
||
12905 | 387 |
|
388 |
subsection {* Range *} |
|
389 |
||
390 |
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)" |
|
26271 | 391 |
by (simp add: Domain_def Range_def) |
12905 | 392 |
|
393 |
lemma RangeI [intro]: "(a, b) : r ==> b : Range r" |
|
26271 | 394 |
by (unfold Range_def) (iprover intro!: converseI DomainI) |
12905 | 395 |
|
396 |
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P" |
|
26271 | 397 |
by (unfold Range_def) (iprover elim!: DomainE dest!: converseD) |
12905 | 398 |
|
399 |
lemma Range_empty [simp]: "Range {} = {}" |
|
26271 | 400 |
by blast |
12905 | 401 |
|
402 |
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)" |
|
26271 | 403 |
by blast |
12905 | 404 |
|
405 |
lemma Range_Id [simp]: "Range Id = UNIV" |
|
26271 | 406 |
by blast |
12905 | 407 |
|
408 |
lemma Range_diag [simp]: "Range (diag A) = A" |
|
26271 | 409 |
by auto |
12905 | 410 |
|
13830 | 411 |
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)" |
26271 | 412 |
by blast |
12905 | 413 |
|
13830 | 414 |
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)" |
26271 | 415 |
by blast |
12905 | 416 |
|
12913 | 417 |
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)" |
26271 | 418 |
by blast |
12905 | 419 |
|
13830 | 420 |
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)" |
26271 | 421 |
by blast |
422 |
||
423 |
lemma Range_converse[simp]: "Range(r^-1) = Domain r" |
|
424 |
by blast |
|
12905 | 425 |
|
22172 | 426 |
lemma snd_eq_Range: "snd ` R = Range R"; |
26271 | 427 |
by (auto intro!:image_eqI) |
428 |
||
429 |
||
430 |
subsection {* Field *} |
|
431 |
||
432 |
lemma mono_Field: "r \<subseteq> s \<Longrightarrow> Field r \<subseteq> Field s" |
|
433 |
by(auto simp:Field_def Domain_def Range_def) |
|
434 |
||
435 |
lemma Field_empty[simp]: "Field {} = {}" |
|
436 |
by(auto simp:Field_def) |
|
437 |
||
438 |
lemma Field_insert[simp]: "Field (insert (a,b) r) = {a,b} \<union> Field r" |
|
439 |
by(auto simp:Field_def) |
|
440 |
||
441 |
lemma Field_Un[simp]: "Field (r \<union> s) = Field r \<union> Field s" |
|
442 |
by(auto simp:Field_def) |
|
443 |
||
444 |
lemma Field_Union[simp]: "Field (\<Union>R) = \<Union>(Field ` R)" |
|
445 |
by(auto simp:Field_def) |
|
446 |
||
447 |
lemma Field_converse[simp]: "Field(r^-1) = Field r" |
|
448 |
by(auto simp:Field_def) |
|
22172 | 449 |
|
12905 | 450 |
|
451 |
subsection {* Image of a set under a relation *} |
|
452 |
||
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
453 |
declare Image_def [noatp] |
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
454 |
|
12913 | 455 |
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)" |
26271 | 456 |
by (simp add: Image_def) |
12905 | 457 |
|
12913 | 458 |
lemma Image_singleton: "r``{a} = {b. (a, b) : r}" |
26271 | 459 |
by (simp add: Image_def) |
12905 | 460 |
|
12913 | 461 |
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)" |
26271 | 462 |
by (rule Image_iff [THEN trans]) simp |
12905 | 463 |
|
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
464 |
lemma ImageI [intro,noatp]: "(a, b) : r ==> a : A ==> b : r``A" |
26271 | 465 |
by (unfold Image_def) blast |
12905 | 466 |
|
467 |
lemma ImageE [elim!]: |
|
12913 | 468 |
"b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P" |
26271 | 469 |
by (unfold Image_def) (iprover elim!: CollectE bexE) |
12905 | 470 |
|
471 |
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A" |
|
472 |
-- {* This version's more effective when we already have the required @{text a} *} |
|
26271 | 473 |
by blast |
12905 | 474 |
|
475 |
lemma Image_empty [simp]: "R``{} = {}" |
|
26271 | 476 |
by blast |
12905 | 477 |
|
478 |
lemma Image_Id [simp]: "Id `` A = A" |
|
26271 | 479 |
by blast |
12905 | 480 |
|
13830 | 481 |
lemma Image_diag [simp]: "diag A `` B = A \<inter> B" |
26271 | 482 |
by blast |
13830 | 483 |
|
484 |
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B" |
|
26271 | 485 |
by blast |
12905 | 486 |
|
13830 | 487 |
lemma Image_Int_eq: |
488 |
"single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B" |
|
26271 | 489 |
by (simp add: single_valued_def, blast) |
12905 | 490 |
|
13830 | 491 |
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B" |
26271 | 492 |
by blast |
12905 | 493 |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
494 |
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A" |
26271 | 495 |
by blast |
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
496 |
|
12913 | 497 |
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B" |
26271 | 498 |
by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2) |
12905 | 499 |
|
13830 | 500 |
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})" |
12905 | 501 |
-- {* NOT suitable for rewriting *} |
26271 | 502 |
by blast |
12905 | 503 |
|
12913 | 504 |
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)" |
26271 | 505 |
by blast |
12905 | 506 |
|
13830 | 507 |
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))" |
26271 | 508 |
by blast |
13830 | 509 |
|
510 |
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))" |
|
26271 | 511 |
by blast |
12905 | 512 |
|
13830 | 513 |
text{*Converse inclusion requires some assumptions*} |
514 |
lemma Image_INT_eq: |
|
515 |
"[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)" |
|
516 |
apply (rule equalityI) |
|
517 |
apply (rule Image_INT_subset) |
|
518 |
apply (simp add: single_valued_def, blast) |
|
519 |
done |
|
12905 | 520 |
|
12913 | 521 |
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))" |
26271 | 522 |
by blast |
12905 | 523 |
|
524 |
||
12913 | 525 |
subsection {* Single valued relations *} |
526 |
||
527 |
lemma single_valuedI: |
|
12905 | 528 |
"ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r" |
26271 | 529 |
by (unfold single_valued_def) |
12905 | 530 |
|
531 |
lemma single_valuedD: |
|
532 |
"single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z" |
|
26271 | 533 |
by (simp add: single_valued_def) |
12905 | 534 |
|
19228 | 535 |
lemma single_valued_rel_comp: |
536 |
"single_valued r ==> single_valued s ==> single_valued (r O s)" |
|
26271 | 537 |
by (unfold single_valued_def) blast |
19228 | 538 |
|
539 |
lemma single_valued_subset: |
|
540 |
"r \<subseteq> s ==> single_valued s ==> single_valued r" |
|
26271 | 541 |
by (unfold single_valued_def) blast |
19228 | 542 |
|
543 |
lemma single_valued_Id [simp]: "single_valued Id" |
|
26271 | 544 |
by (unfold single_valued_def) blast |
19228 | 545 |
|
546 |
lemma single_valued_diag [simp]: "single_valued (diag A)" |
|
26271 | 547 |
by (unfold single_valued_def) blast |
19228 | 548 |
|
12905 | 549 |
|
550 |
subsection {* Graphs given by @{text Collect} *} |
|
551 |
||
552 |
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}" |
|
26271 | 553 |
by auto |
12905 | 554 |
|
555 |
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}" |
|
26271 | 556 |
by auto |
12905 | 557 |
|
558 |
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}" |
|
26271 | 559 |
by auto |
12905 | 560 |
|
561 |
||
12913 | 562 |
subsection {* Inverse image *} |
12905 | 563 |
|
19228 | 564 |
lemma sym_inv_image: "sym r ==> sym (inv_image r f)" |
26271 | 565 |
by (unfold sym_def inv_image_def) blast |
19228 | 566 |
|
12913 | 567 |
lemma trans_inv_image: "trans r ==> trans (inv_image r f)" |
12905 | 568 |
apply (unfold trans_def inv_image_def) |
569 |
apply (simp (no_asm)) |
|
570 |
apply blast |
|
571 |
done |
|
572 |
||
23709 | 573 |
|
29609 | 574 |
subsection {* Finiteness *} |
575 |
||
576 |
lemma finite_converse [iff]: "finite (r^-1) = finite r" |
|
577 |
apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r") |
|
578 |
apply simp |
|
579 |
apply (rule iffI) |
|
580 |
apply (erule finite_imageD [unfolded inj_on_def]) |
|
581 |
apply (simp split add: split_split) |
|
582 |
apply (erule finite_imageI) |
|
583 |
apply (simp add: converse_def image_def, auto) |
|
584 |
apply (rule bexI) |
|
585 |
prefer 2 apply assumption |
|
586 |
apply simp |
|
587 |
done |
|
588 |
||
589 |
text {* \paragraph{Finiteness of transitive closure} (Thanks to Sidi |
|
590 |
Ehmety) *} |
|
591 |
||
592 |
lemma finite_Field: "finite r ==> finite (Field r)" |
|
593 |
-- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *} |
|
594 |
apply (induct set: finite) |
|
595 |
apply (auto simp add: Field_def Domain_insert Range_insert) |
|
596 |
done |
|
597 |
||
598 |
||
23709 | 599 |
subsection {* Version of @{text lfp_induct} for binary relations *} |
600 |
||
601 |
lemmas lfp_induct2 = |
|
602 |
lfp_induct_set [of "(a, b)", split_format (complete)] |
|
603 |
||
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
604 |
end |