author | nipkow |
Thu, 21 Dec 2017 21:01:47 +0100 | |
changeset 67240 | 2c9694a8c000 |
parent 65447 | fae6051ec192 |
child 67399 | eab6ce8368fa |
permissions | -rw-r--r-- |
17441 | 1 |
(* Title: CTT/CTT.thy |
0 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1993 University of Cambridge |
|
4 |
*) |
|
5 |
||
17441 | 6 |
theory CTT |
7 |
imports Pure |
|
8 |
begin |
|
9 |
||
65447
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
10 |
section \<open>Constructive Type Theory: axiomatic basis\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
11 |
|
48891 | 12 |
ML_file "~~/src/Provers/typedsimp.ML" |
39557
fe5722fce758
renamed structure PureThy to Pure_Thy and moved most content to Global_Theory, to emphasize that this is global-only;
wenzelm
parents:
35762
diff
changeset
|
13 |
setup Pure_Thy.old_appl_syntax_setup |
26956
1309a6a0a29f
setup PureThy.old_appl_syntax_setup -- theory Pure provides regular application syntax by default;
wenzelm
parents:
26391
diff
changeset
|
14 |
|
17441 | 15 |
typedecl i |
16 |
typedecl t |
|
17 |
typedecl o |
|
0 | 18 |
|
19 |
consts |
|
63505 | 20 |
\<comment> \<open>Types\<close> |
17441 | 21 |
F :: "t" |
63505 | 22 |
T :: "t" \<comment> \<open>\<open>F\<close> is empty, \<open>T\<close> contains one element\<close> |
58977 | 23 |
contr :: "i\<Rightarrow>i" |
0 | 24 |
tt :: "i" |
63505 | 25 |
\<comment> \<open>Natural numbers\<close> |
0 | 26 |
N :: "t" |
58977 | 27 |
succ :: "i\<Rightarrow>i" |
28 |
rec :: "[i, i, [i,i]\<Rightarrow>i] \<Rightarrow> i" |
|
63505 | 29 |
\<comment> \<open>Unions\<close> |
58977 | 30 |
inl :: "i\<Rightarrow>i" |
31 |
inr :: "i\<Rightarrow>i" |
|
60555
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
59780
diff
changeset
|
32 |
"when" :: "[i, i\<Rightarrow>i, i\<Rightarrow>i]\<Rightarrow>i" |
63505 | 33 |
\<comment> \<open>General Sum and Binary Product\<close> |
58977 | 34 |
Sum :: "[t, i\<Rightarrow>t]\<Rightarrow>t" |
35 |
fst :: "i\<Rightarrow>i" |
|
36 |
snd :: "i\<Rightarrow>i" |
|
37 |
split :: "[i, [i,i]\<Rightarrow>i] \<Rightarrow>i" |
|
63505 | 38 |
\<comment> \<open>General Product and Function Space\<close> |
58977 | 39 |
Prod :: "[t, i\<Rightarrow>t]\<Rightarrow>t" |
63505 | 40 |
\<comment> \<open>Types\<close> |
58977 | 41 |
Plus :: "[t,t]\<Rightarrow>t" (infixr "+" 40) |
63505 | 42 |
\<comment> \<open>Equality type\<close> |
58977 | 43 |
Eq :: "[t,i,i]\<Rightarrow>t" |
0 | 44 |
eq :: "i" |
63505 | 45 |
\<comment> \<open>Judgements\<close> |
58977 | 46 |
Type :: "t \<Rightarrow> prop" ("(_ type)" [10] 5) |
47 |
Eqtype :: "[t,t]\<Rightarrow>prop" ("(_ =/ _)" [10,10] 5) |
|
48 |
Elem :: "[i, t]\<Rightarrow>prop" ("(_ /: _)" [10,10] 5) |
|
49 |
Eqelem :: "[i,i,t]\<Rightarrow>prop" ("(_ =/ _ :/ _)" [10,10,10] 5) |
|
50 |
Reduce :: "[i,i]\<Rightarrow>prop" ("Reduce[_,_]") |
|
14765 | 51 |
|
63505 | 52 |
\<comment> \<open>Types\<close> |
53 |
||
54 |
\<comment> \<open>Functions\<close> |
|
61391 | 55 |
lambda :: "(i \<Rightarrow> i) \<Rightarrow> i" (binder "\<^bold>\<lambda>" 10) |
58977 | 56 |
app :: "[i,i]\<Rightarrow>i" (infixl "`" 60) |
63505 | 57 |
\<comment> \<open>Natural numbers\<close> |
41310 | 58 |
Zero :: "i" ("0") |
63505 | 59 |
\<comment> \<open>Pairing\<close> |
58977 | 60 |
pair :: "[i,i]\<Rightarrow>i" ("(1<_,/_>)") |
0 | 61 |
|
14765 | 62 |
syntax |
61391 | 63 |
"_PROD" :: "[idt,t,t]\<Rightarrow>t" ("(3\<Prod>_:_./ _)" 10) |
64 |
"_SUM" :: "[idt,t,t]\<Rightarrow>t" ("(3\<Sum>_:_./ _)" 10) |
|
0 | 65 |
translations |
61391 | 66 |
"\<Prod>x:A. B" \<rightleftharpoons> "CONST Prod(A, \<lambda>x. B)" |
67 |
"\<Sum>x:A. B" \<rightleftharpoons> "CONST Sum(A, \<lambda>x. B)" |
|
19761 | 68 |
|
63505 | 69 |
abbreviation Arrow :: "[t,t]\<Rightarrow>t" (infixr "\<longrightarrow>" 30) |
70 |
where "A \<longrightarrow> B \<equiv> \<Prod>_:A. B" |
|
71 |
||
72 |
abbreviation Times :: "[t,t]\<Rightarrow>t" (infixr "\<times>" 50) |
|
73 |
where "A \<times> B \<equiv> \<Sum>_:A. B" |
|
10467
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
74 |
|
63505 | 75 |
text \<open> |
76 |
Reduction: a weaker notion than equality; a hack for simplification. |
|
77 |
\<open>Reduce[a,b]\<close> means either that \<open>a = b : A\<close> for some \<open>A\<close> or else |
|
78 |
that \<open>a\<close> and \<open>b\<close> are textually identical. |
|
0 | 79 |
|
63505 | 80 |
Does not verify \<open>a:A\<close>! Sound because only \<open>trans_red\<close> uses a \<open>Reduce\<close> |
81 |
premise. No new theorems can be proved about the standard judgements. |
|
82 |
\<close> |
|
83 |
axiomatization |
|
84 |
where |
|
51308 | 85 |
refl_red: "\<And>a. Reduce[a,a]" and |
58977 | 86 |
red_if_equal: "\<And>a b A. a = b : A \<Longrightarrow> Reduce[a,b]" and |
87 |
trans_red: "\<And>a b c A. \<lbrakk>a = b : A; Reduce[b,c]\<rbrakk> \<Longrightarrow> a = c : A" and |
|
0 | 88 |
|
63505 | 89 |
\<comment> \<open>Reflexivity\<close> |
0 | 90 |
|
58977 | 91 |
refl_type: "\<And>A. A type \<Longrightarrow> A = A" and |
92 |
refl_elem: "\<And>a A. a : A \<Longrightarrow> a = a : A" and |
|
0 | 93 |
|
63505 | 94 |
\<comment> \<open>Symmetry\<close> |
0 | 95 |
|
58977 | 96 |
sym_type: "\<And>A B. A = B \<Longrightarrow> B = A" and |
97 |
sym_elem: "\<And>a b A. a = b : A \<Longrightarrow> b = a : A" and |
|
0 | 98 |
|
63505 | 99 |
\<comment> \<open>Transitivity\<close> |
0 | 100 |
|
58977 | 101 |
trans_type: "\<And>A B C. \<lbrakk>A = B; B = C\<rbrakk> \<Longrightarrow> A = C" and |
102 |
trans_elem: "\<And>a b c A. \<lbrakk>a = b : A; b = c : A\<rbrakk> \<Longrightarrow> a = c : A" and |
|
0 | 103 |
|
58977 | 104 |
equal_types: "\<And>a A B. \<lbrakk>a : A; A = B\<rbrakk> \<Longrightarrow> a : B" and |
105 |
equal_typesL: "\<And>a b A B. \<lbrakk>a = b : A; A = B\<rbrakk> \<Longrightarrow> a = b : B" and |
|
0 | 106 |
|
63505 | 107 |
\<comment> \<open>Substitution\<close> |
0 | 108 |
|
58977 | 109 |
subst_type: "\<And>a A B. \<lbrakk>a : A; \<And>z. z:A \<Longrightarrow> B(z) type\<rbrakk> \<Longrightarrow> B(a) type" and |
110 |
subst_typeL: "\<And>a c A B D. \<lbrakk>a = c : A; \<And>z. z:A \<Longrightarrow> B(z) = D(z)\<rbrakk> \<Longrightarrow> B(a) = D(c)" and |
|
0 | 111 |
|
58977 | 112 |
subst_elem: "\<And>a b A B. \<lbrakk>a : A; \<And>z. z:A \<Longrightarrow> b(z):B(z)\<rbrakk> \<Longrightarrow> b(a):B(a)" and |
17441 | 113 |
subst_elemL: |
58977 | 114 |
"\<And>a b c d A B. \<lbrakk>a = c : A; \<And>z. z:A \<Longrightarrow> b(z)=d(z) : B(z)\<rbrakk> \<Longrightarrow> b(a)=d(c) : B(a)" and |
0 | 115 |
|
116 |
||
63505 | 117 |
\<comment> \<open>The type \<open>N\<close> -- natural numbers\<close> |
0 | 118 |
|
51308 | 119 |
NF: "N type" and |
120 |
NI0: "0 : N" and |
|
58977 | 121 |
NI_succ: "\<And>a. a : N \<Longrightarrow> succ(a) : N" and |
122 |
NI_succL: "\<And>a b. a = b : N \<Longrightarrow> succ(a) = succ(b) : N" and |
|
0 | 123 |
|
17441 | 124 |
NE: |
58977 | 125 |
"\<And>p a b C. \<lbrakk>p: N; a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> |
126 |
\<Longrightarrow> rec(p, a, \<lambda>u v. b(u,v)) : C(p)" and |
|
0 | 127 |
|
17441 | 128 |
NEL: |
58977 | 129 |
"\<And>p q a b c d C. \<lbrakk>p = q : N; a = c : C(0); |
130 |
\<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v) = d(u,v): C(succ(u))\<rbrakk> |
|
131 |
\<Longrightarrow> rec(p, a, \<lambda>u v. b(u,v)) = rec(q,c,d) : C(p)" and |
|
0 | 132 |
|
17441 | 133 |
NC0: |
58977 | 134 |
"\<And>a b C. \<lbrakk>a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> |
135 |
\<Longrightarrow> rec(0, a, \<lambda>u v. b(u,v)) = a : C(0)" and |
|
0 | 136 |
|
17441 | 137 |
NC_succ: |
58977 | 138 |
"\<And>p a b C. \<lbrakk>p: N; a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> \<Longrightarrow> |
139 |
rec(succ(p), a, \<lambda>u v. b(u,v)) = b(p, rec(p, a, \<lambda>u v. b(u,v))) : C(succ(p))" and |
|
0 | 140 |
|
63505 | 141 |
\<comment> \<open>The fourth Peano axiom. See page 91 of Martin-Löf's book.\<close> |
58977 | 142 |
zero_ne_succ: "\<And>a. \<lbrakk>a: N; 0 = succ(a) : N\<rbrakk> \<Longrightarrow> 0: F" and |
0 | 143 |
|
144 |
||
63505 | 145 |
\<comment> \<open>The Product of a family of types\<close> |
0 | 146 |
|
61391 | 147 |
ProdF: "\<And>A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> B(x) type\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x) type" and |
0 | 148 |
|
17441 | 149 |
ProdFL: |
61391 | 150 |
"\<And>A B C D. \<lbrakk>A = C; \<And>x. x:A \<Longrightarrow> B(x) = D(x)\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x) = \<Prod>x:C. D(x)" and |
0 | 151 |
|
17441 | 152 |
ProdI: |
61391 | 153 |
"\<And>b A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> b(x):B(x)\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b(x) : \<Prod>x:A. B(x)" and |
0 | 154 |
|
58977 | 155 |
ProdIL: "\<And>b c A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> b(x) = c(x) : B(x)\<rbrakk> \<Longrightarrow> |
61391 | 156 |
\<^bold>\<lambda>x. b(x) = \<^bold>\<lambda>x. c(x) : \<Prod>x:A. B(x)" and |
0 | 157 |
|
61391 | 158 |
ProdE: "\<And>p a A B. \<lbrakk>p : \<Prod>x:A. B(x); a : A\<rbrakk> \<Longrightarrow> p`a : B(a)" and |
159 |
ProdEL: "\<And>p q a b A B. \<lbrakk>p = q: \<Prod>x:A. B(x); a = b : A\<rbrakk> \<Longrightarrow> p`a = q`b : B(a)" and |
|
0 | 160 |
|
61391 | 161 |
ProdC: "\<And>a b A B. \<lbrakk>a : A; \<And>x. x:A \<Longrightarrow> b(x) : B(x)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. b(x)) ` a = b(a) : B(a)" and |
0 | 162 |
|
61391 | 163 |
ProdC2: "\<And>p A B. p : \<Prod>x:A. B(x) \<Longrightarrow> (\<^bold>\<lambda>x. p`x) = p : \<Prod>x:A. B(x)" and |
0 | 164 |
|
165 |
||
63505 | 166 |
\<comment> \<open>The Sum of a family of types\<close> |
0 | 167 |
|
61391 | 168 |
SumF: "\<And>A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> B(x) type\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x) type" and |
169 |
SumFL: "\<And>A B C D. \<lbrakk>A = C; \<And>x. x:A \<Longrightarrow> B(x) = D(x)\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x) = \<Sum>x:C. D(x)" and |
|
0 | 170 |
|
61391 | 171 |
SumI: "\<And>a b A B. \<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> <a,b> : \<Sum>x:A. B(x)" and |
172 |
SumIL: "\<And>a b c d A B. \<lbrakk> a = c : A; b = d : B(a)\<rbrakk> \<Longrightarrow> <a,b> = <c,d> : \<Sum>x:A. B(x)" and |
|
0 | 173 |
|
61391 | 174 |
SumE: "\<And>p c A B C. \<lbrakk>p: \<Sum>x:A. B(x); \<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y): C(<x,y>)\<rbrakk> |
58977 | 175 |
\<Longrightarrow> split(p, \<lambda>x y. c(x,y)) : C(p)" and |
0 | 176 |
|
61391 | 177 |
SumEL: "\<And>p q c d A B C. \<lbrakk>p = q : \<Sum>x:A. B(x); |
58977 | 178 |
\<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y)=d(x,y): C(<x,y>)\<rbrakk> |
179 |
\<Longrightarrow> split(p, \<lambda>x y. c(x,y)) = split(q, \<lambda>x y. d(x,y)) : C(p)" and |
|
0 | 180 |
|
58977 | 181 |
SumC: "\<And>a b c A B C. \<lbrakk>a: A; b: B(a); \<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y): C(<x,y>)\<rbrakk> |
182 |
\<Longrightarrow> split(<a,b>, \<lambda>x y. c(x,y)) = c(a,b) : C(<a,b>)" and |
|
0 | 183 |
|
61391 | 184 |
fst_def: "\<And>a. fst(a) \<equiv> split(a, \<lambda>x y. x)" and |
185 |
snd_def: "\<And>a. snd(a) \<equiv> split(a, \<lambda>x y. y)" and |
|
0 | 186 |
|
187 |
||
63505 | 188 |
\<comment> \<open>The sum of two types\<close> |
0 | 189 |
|
58977 | 190 |
PlusF: "\<And>A B. \<lbrakk>A type; B type\<rbrakk> \<Longrightarrow> A+B type" and |
191 |
PlusFL: "\<And>A B C D. \<lbrakk>A = C; B = D\<rbrakk> \<Longrightarrow> A+B = C+D" and |
|
0 | 192 |
|
58977 | 193 |
PlusI_inl: "\<And>a A B. \<lbrakk>a : A; B type\<rbrakk> \<Longrightarrow> inl(a) : A+B" and |
194 |
PlusI_inlL: "\<And>a c A B. \<lbrakk>a = c : A; B type\<rbrakk> \<Longrightarrow> inl(a) = inl(c) : A+B" and |
|
0 | 195 |
|
58977 | 196 |
PlusI_inr: "\<And>b A B. \<lbrakk>A type; b : B\<rbrakk> \<Longrightarrow> inr(b) : A+B" and |
197 |
PlusI_inrL: "\<And>b d A B. \<lbrakk>A type; b = d : B\<rbrakk> \<Longrightarrow> inr(b) = inr(d) : A+B" and |
|
0 | 198 |
|
17441 | 199 |
PlusE: |
58977 | 200 |
"\<And>p c d A B C. \<lbrakk>p: A+B; |
201 |
\<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); |
|
202 |
\<And>y. y:B \<Longrightarrow> d(y): C(inr(y)) \<rbrakk> \<Longrightarrow> when(p, \<lambda>x. c(x), \<lambda>y. d(y)) : C(p)" and |
|
0 | 203 |
|
17441 | 204 |
PlusEL: |
58977 | 205 |
"\<And>p q c d e f A B C. \<lbrakk>p = q : A+B; |
206 |
\<And>x. x: A \<Longrightarrow> c(x) = e(x) : C(inl(x)); |
|
207 |
\<And>y. y: B \<Longrightarrow> d(y) = f(y) : C(inr(y))\<rbrakk> |
|
208 |
\<Longrightarrow> when(p, \<lambda>x. c(x), \<lambda>y. d(y)) = when(q, \<lambda>x. e(x), \<lambda>y. f(y)) : C(p)" and |
|
0 | 209 |
|
17441 | 210 |
PlusC_inl: |
64980 | 211 |
"\<And>a c d A B C. \<lbrakk>a: A; |
58977 | 212 |
\<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); |
213 |
\<And>y. y:B \<Longrightarrow> d(y): C(inr(y)) \<rbrakk> |
|
214 |
\<Longrightarrow> when(inl(a), \<lambda>x. c(x), \<lambda>y. d(y)) = c(a) : C(inl(a))" and |
|
0 | 215 |
|
17441 | 216 |
PlusC_inr: |
58977 | 217 |
"\<And>b c d A B C. \<lbrakk>b: B; |
218 |
\<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); |
|
219 |
\<And>y. y:B \<Longrightarrow> d(y): C(inr(y))\<rbrakk> |
|
220 |
\<Longrightarrow> when(inr(b), \<lambda>x. c(x), \<lambda>y. d(y)) = d(b) : C(inr(b))" and |
|
0 | 221 |
|
222 |
||
63505 | 223 |
\<comment> \<open>The type \<open>Eq\<close>\<close> |
0 | 224 |
|
58977 | 225 |
EqF: "\<And>a b A. \<lbrakk>A type; a : A; b : A\<rbrakk> \<Longrightarrow> Eq(A,a,b) type" and |
226 |
EqFL: "\<And>a b c d A B. \<lbrakk>A = B; a = c : A; b = d : A\<rbrakk> \<Longrightarrow> Eq(A,a,b) = Eq(B,c,d)" and |
|
227 |
EqI: "\<And>a b A. a = b : A \<Longrightarrow> eq : Eq(A,a,b)" and |
|
228 |
EqE: "\<And>p a b A. p : Eq(A,a,b) \<Longrightarrow> a = b : A" and |
|
0 | 229 |
|
63505 | 230 |
\<comment> \<open>By equality of types, can prove \<open>C(p)\<close> from \<open>C(eq)\<close>, an elimination rule\<close> |
58977 | 231 |
EqC: "\<And>p a b A. p : Eq(A,a,b) \<Longrightarrow> p = eq : Eq(A,a,b)" and |
0 | 232 |
|
63505 | 233 |
|
234 |
\<comment> \<open>The type \<open>F\<close>\<close> |
|
0 | 235 |
|
51308 | 236 |
FF: "F type" and |
58977 | 237 |
FE: "\<And>p C. \<lbrakk>p: F; C type\<rbrakk> \<Longrightarrow> contr(p) : C" and |
238 |
FEL: "\<And>p q C. \<lbrakk>p = q : F; C type\<rbrakk> \<Longrightarrow> contr(p) = contr(q) : C" and |
|
0 | 239 |
|
63505 | 240 |
|
241 |
\<comment> \<open>The type T\<close> |
|
242 |
\<comment> \<open> |
|
243 |
Martin-Löf's book (page 68) discusses elimination and computation. |
|
244 |
Elimination can be derived by computation and equality of types, |
|
245 |
but with an extra premise \<open>C(x)\<close> type \<open>x:T\<close>. |
|
246 |
Also computation can be derived from elimination. |
|
247 |
\<close> |
|
0 | 248 |
|
51308 | 249 |
TF: "T type" and |
250 |
TI: "tt : T" and |
|
58977 | 251 |
TE: "\<And>p c C. \<lbrakk>p : T; c : C(tt)\<rbrakk> \<Longrightarrow> c : C(p)" and |
252 |
TEL: "\<And>p q c d C. \<lbrakk>p = q : T; c = d : C(tt)\<rbrakk> \<Longrightarrow> c = d : C(p)" and |
|
253 |
TC: "\<And>p. p : T \<Longrightarrow> p = tt : T" |
|
0 | 254 |
|
19761 | 255 |
|
256 |
subsection "Tactics and derived rules for Constructive Type Theory" |
|
257 |
||
63505 | 258 |
text \<open>Formation rules.\<close> |
19761 | 259 |
lemmas form_rls = NF ProdF SumF PlusF EqF FF TF |
260 |
and formL_rls = ProdFL SumFL PlusFL EqFL |
|
261 |
||
63505 | 262 |
text \<open> |
263 |
Introduction rules. OMITTED: |
|
264 |
\<^item> \<open>EqI\<close>, because its premise is an \<open>eqelem\<close>, not an \<open>elem\<close>. |
|
265 |
\<close> |
|
19761 | 266 |
lemmas intr_rls = NI0 NI_succ ProdI SumI PlusI_inl PlusI_inr TI |
267 |
and intrL_rls = NI_succL ProdIL SumIL PlusI_inlL PlusI_inrL |
|
268 |
||
63505 | 269 |
text \<open> |
270 |
Elimination rules. OMITTED: |
|
271 |
\<^item> \<open>EqE\<close>, because its conclusion is an \<open>eqelem\<close>, not an \<open>elem\<close> |
|
272 |
\<^item> \<open>TE\<close>, because it does not involve a constructor. |
|
273 |
\<close> |
|
19761 | 274 |
lemmas elim_rls = NE ProdE SumE PlusE FE |
275 |
and elimL_rls = NEL ProdEL SumEL PlusEL FEL |
|
276 |
||
63505 | 277 |
text \<open>OMITTED: \<open>eqC\<close> are \<open>TC\<close> because they make rewriting loop: \<open>p = un = un = \<dots>\<close>\<close> |
19761 | 278 |
lemmas comp_rls = NC0 NC_succ ProdC SumC PlusC_inl PlusC_inr |
279 |
||
63505 | 280 |
text \<open>Rules with conclusion \<open>a:A\<close>, an elem judgement.\<close> |
19761 | 281 |
lemmas element_rls = intr_rls elim_rls |
282 |
||
63505 | 283 |
text \<open>Definitions are (meta)equality axioms.\<close> |
19761 | 284 |
lemmas basic_defs = fst_def snd_def |
285 |
||
63505 | 286 |
text \<open>Compare with standard version: \<open>B\<close> is applied to UNSIMPLIFIED expression!\<close> |
58977 | 287 |
lemma SumIL2: "\<lbrakk>c = a : A; d = b : B(a)\<rbrakk> \<Longrightarrow> <c,d> = <a,b> : Sum(A,B)" |
65338 | 288 |
by (rule sym_elem) (rule SumIL; rule sym_elem) |
19761 | 289 |
|
290 |
lemmas intrL2_rls = NI_succL ProdIL SumIL2 PlusI_inlL PlusI_inrL |
|
291 |
||
63505 | 292 |
text \<open> |
293 |
Exploit \<open>p:Prod(A,B)\<close> to create the assumption \<open>z:B(a)\<close>. |
|
294 |
A more natural form of product elimination. |
|
295 |
\<close> |
|
19761 | 296 |
lemma subst_prodE: |
297 |
assumes "p: Prod(A,B)" |
|
298 |
and "a: A" |
|
58977 | 299 |
and "\<And>z. z: B(a) \<Longrightarrow> c(z): C(z)" |
19761 | 300 |
shows "c(p`a): C(p`a)" |
63505 | 301 |
by (rule assms ProdE)+ |
19761 | 302 |
|
303 |
||
60770 | 304 |
subsection \<open>Tactics for type checking\<close> |
19761 | 305 |
|
60770 | 306 |
ML \<open> |
19761 | 307 |
local |
308 |
||
56250 | 309 |
fun is_rigid_elem (Const(@{const_name Elem},_) $ a $ _) = not(is_Var (head_of a)) |
310 |
| is_rigid_elem (Const(@{const_name Eqelem},_) $ a $ _ $ _) = not(is_Var (head_of a)) |
|
311 |
| is_rigid_elem (Const(@{const_name Type},_) $ a) = not(is_Var (head_of a)) |
|
19761 | 312 |
| is_rigid_elem _ = false |
313 |
||
314 |
in |
|
315 |
||
316 |
(*Try solving a:A or a=b:A by assumption provided a is rigid!*) |
|
63505 | 317 |
fun test_assume_tac ctxt = SUBGOAL (fn (prem, i) => |
318 |
if is_rigid_elem (Logic.strip_assums_concl prem) |
|
319 |
then assume_tac ctxt i else no_tac) |
|
19761 | 320 |
|
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
321 |
fun ASSUME ctxt tf i = test_assume_tac ctxt i ORELSE tf i |
19761 | 322 |
|
63505 | 323 |
end |
60770 | 324 |
\<close> |
19761 | 325 |
|
63505 | 326 |
text \<open> |
327 |
For simplification: type formation and checking, |
|
328 |
but no equalities between terms. |
|
329 |
\<close> |
|
19761 | 330 |
lemmas routine_rls = form_rls formL_rls refl_type element_rls |
331 |
||
60770 | 332 |
ML \<open> |
59164 | 333 |
fun routine_tac rls ctxt prems = |
334 |
ASSUME ctxt (filt_resolve_from_net_tac ctxt 4 (Tactic.build_net (prems @ rls))); |
|
19761 | 335 |
|
336 |
(*Solve all subgoals "A type" using formation rules. *) |
|
59164 | 337 |
val form_net = Tactic.build_net @{thms form_rls}; |
338 |
fun form_tac ctxt = |
|
339 |
REPEAT_FIRST (ASSUME ctxt (filt_resolve_from_net_tac ctxt 1 form_net)); |
|
19761 | 340 |
|
341 |
(*Type checking: solve a:A (a rigid, A flexible) by intro and elim rules. *) |
|
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
342 |
fun typechk_tac ctxt thms = |
59164 | 343 |
let val tac = |
344 |
filt_resolve_from_net_tac ctxt 3 |
|
345 |
(Tactic.build_net (thms @ @{thms form_rls} @ @{thms element_rls})) |
|
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
346 |
in REPEAT_FIRST (ASSUME ctxt tac) end |
19761 | 347 |
|
348 |
(*Solve a:A (a flexible, A rigid) by introduction rules. |
|
349 |
Cannot use stringtrees (filt_resolve_tac) since |
|
350 |
goals like ?a:SUM(A,B) have a trivial head-string *) |
|
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
351 |
fun intr_tac ctxt thms = |
59164 | 352 |
let val tac = |
353 |
filt_resolve_from_net_tac ctxt 1 |
|
354 |
(Tactic.build_net (thms @ @{thms form_rls} @ @{thms intr_rls})) |
|
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
355 |
in REPEAT_FIRST (ASSUME ctxt tac) end |
19761 | 356 |
|
357 |
(*Equality proving: solve a=b:A (where a is rigid) by long rules. *) |
|
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
358 |
fun equal_tac ctxt thms = |
59164 | 359 |
REPEAT_FIRST |
63505 | 360 |
(ASSUME ctxt |
361 |
(filt_resolve_from_net_tac ctxt 3 |
|
362 |
(Tactic.build_net (thms @ @{thms form_rls element_rls intrL_rls elimL_rls refl_elem})))) |
|
60770 | 363 |
\<close> |
19761 | 364 |
|
60770 | 365 |
method_setup form = \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD (form_tac ctxt))\<close> |
366 |
method_setup typechk = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (typechk_tac ctxt ths))\<close> |
|
367 |
method_setup intr = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (intr_tac ctxt ths))\<close> |
|
368 |
method_setup equal = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (equal_tac ctxt ths))\<close> |
|
19761 | 369 |
|
370 |
||
60770 | 371 |
subsection \<open>Simplification\<close> |
19761 | 372 |
|
63505 | 373 |
text \<open>To simplify the type in a goal.\<close> |
58977 | 374 |
lemma replace_type: "\<lbrakk>B = A; a : A\<rbrakk> \<Longrightarrow> a : B" |
63505 | 375 |
apply (rule equal_types) |
376 |
apply (rule_tac [2] sym_type) |
|
377 |
apply assumption+ |
|
378 |
done |
|
19761 | 379 |
|
63505 | 380 |
text \<open>Simplify the parameter of a unary type operator.\<close> |
19761 | 381 |
lemma subst_eqtyparg: |
23467 | 382 |
assumes 1: "a=c : A" |
58977 | 383 |
and 2: "\<And>z. z:A \<Longrightarrow> B(z) type" |
63505 | 384 |
shows "B(a) = B(c)" |
385 |
apply (rule subst_typeL) |
|
386 |
apply (rule_tac [2] refl_type) |
|
387 |
apply (rule 1) |
|
388 |
apply (erule 2) |
|
389 |
done |
|
19761 | 390 |
|
63505 | 391 |
text \<open>Simplification rules for Constructive Type Theory.\<close> |
19761 | 392 |
lemmas reduction_rls = comp_rls [THEN trans_elem] |
393 |
||
60770 | 394 |
ML \<open> |
19761 | 395 |
(*Converts each goal "e : Eq(A,a,b)" into "a=b:A" for simplification. |
396 |
Uses other intro rules to avoid changing flexible goals.*) |
|
59164 | 397 |
val eqintr_net = Tactic.build_net @{thms EqI intr_rls} |
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
398 |
fun eqintr_tac ctxt = |
59164 | 399 |
REPEAT_FIRST (ASSUME ctxt (filt_resolve_from_net_tac ctxt 1 eqintr_net)) |
19761 | 400 |
|
401 |
(** Tactics that instantiate CTT-rules. |
|
402 |
Vars in the given terms will be incremented! |
|
403 |
The (rtac EqE i) lets them apply to equality judgements. **) |
|
404 |
||
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset
|
405 |
fun NE_tac ctxt sp i = |
60754 | 406 |
TRY (resolve_tac ctxt @{thms EqE} i) THEN |
59780 | 407 |
Rule_Insts.res_inst_tac ctxt [((("p", 0), Position.none), sp)] [] @{thm NE} i |
19761 | 408 |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset
|
409 |
fun SumE_tac ctxt sp i = |
60754 | 410 |
TRY (resolve_tac ctxt @{thms EqE} i) THEN |
59780 | 411 |
Rule_Insts.res_inst_tac ctxt [((("p", 0), Position.none), sp)] [] @{thm SumE} i |
19761 | 412 |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset
|
413 |
fun PlusE_tac ctxt sp i = |
60754 | 414 |
TRY (resolve_tac ctxt @{thms EqE} i) THEN |
59780 | 415 |
Rule_Insts.res_inst_tac ctxt [((("p", 0), Position.none), sp)] [] @{thm PlusE} i |
19761 | 416 |
|
417 |
(** Predicate logic reasoning, WITH THINNING!! Procedures adapted from NJ. **) |
|
418 |
||
419 |
(*Finds f:Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) *) |
|
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
420 |
fun add_mp_tac ctxt i = |
60754 | 421 |
resolve_tac ctxt @{thms subst_prodE} i THEN assume_tac ctxt i THEN assume_tac ctxt i |
19761 | 422 |
|
61391 | 423 |
(*Finds P\<longrightarrow>Q and P in the assumptions, replaces implication by Q *) |
60754 | 424 |
fun mp_tac ctxt i = eresolve_tac ctxt @{thms subst_prodE} i THEN assume_tac ctxt i |
19761 | 425 |
|
426 |
(*"safe" when regarded as predicate calculus rules*) |
|
427 |
val safe_brls = sort (make_ord lessb) |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset
|
428 |
[ (true, @{thm FE}), (true,asm_rl), |
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset
|
429 |
(false, @{thm ProdI}), (true, @{thm SumE}), (true, @{thm PlusE}) ] |
19761 | 430 |
|
431 |
val unsafe_brls = |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset
|
432 |
[ (false, @{thm PlusI_inl}), (false, @{thm PlusI_inr}), (false, @{thm SumI}), |
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset
|
433 |
(true, @{thm subst_prodE}) ] |
19761 | 434 |
|
435 |
(*0 subgoals vs 1 or more*) |
|
436 |
val (safe0_brls, safep_brls) = |
|
437 |
List.partition (curry (op =) 0 o subgoals_of_brl) safe_brls |
|
438 |
||
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
439 |
fun safestep_tac ctxt thms i = |
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
440 |
form_tac ctxt ORELSE |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
59164
diff
changeset
|
441 |
resolve_tac ctxt thms i ORELSE |
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
59164
diff
changeset
|
442 |
biresolve_tac ctxt safe0_brls i ORELSE mp_tac ctxt i ORELSE |
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
59164
diff
changeset
|
443 |
DETERM (biresolve_tac ctxt safep_brls i) |
19761 | 444 |
|
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
445 |
fun safe_tac ctxt thms i = DEPTH_SOLVE_1 (safestep_tac ctxt thms i) |
19761 | 446 |
|
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
59164
diff
changeset
|
447 |
fun step_tac ctxt thms = safestep_tac ctxt thms ORELSE' biresolve_tac ctxt unsafe_brls |
19761 | 448 |
|
449 |
(*Fails unless it solves the goal!*) |
|
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
450 |
fun pc_tac ctxt thms = DEPTH_SOLVE_1 o (step_tac ctxt thms) |
60770 | 451 |
\<close> |
19761 | 452 |
|
60770 | 453 |
method_setup eqintr = \<open>Scan.succeed (SIMPLE_METHOD o eqintr_tac)\<close> |
454 |
method_setup NE = \<open> |
|
63120
629a4c5e953e
embedded content may be delimited via cartouches;
wenzelm
parents:
61391
diff
changeset
|
455 |
Scan.lift Args.embedded_inner_syntax >> (fn s => fn ctxt => SIMPLE_METHOD' (NE_tac ctxt s)) |
60770 | 456 |
\<close> |
457 |
method_setup pc = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (pc_tac ctxt ths))\<close> |
|
458 |
method_setup add_mp = \<open>Scan.succeed (SIMPLE_METHOD' o add_mp_tac)\<close> |
|
58972 | 459 |
|
48891 | 460 |
ML_file "rew.ML" |
60770 | 461 |
method_setup rew = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (rew_tac ctxt ths))\<close> |
462 |
method_setup hyp_rew = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (hyp_rew_tac ctxt ths))\<close> |
|
58972 | 463 |
|
19761 | 464 |
|
60770 | 465 |
subsection \<open>The elimination rules for fst/snd\<close> |
19761 | 466 |
|
58977 | 467 |
lemma SumE_fst: "p : Sum(A,B) \<Longrightarrow> fst(p) : A" |
63505 | 468 |
apply (unfold basic_defs) |
469 |
apply (erule SumE) |
|
470 |
apply assumption |
|
471 |
done |
|
19761 | 472 |
|
63505 | 473 |
text \<open>The first premise must be \<open>p:Sum(A,B)\<close>!!.\<close> |
19761 | 474 |
lemma SumE_snd: |
475 |
assumes major: "p: Sum(A,B)" |
|
476 |
and "A type" |
|
58977 | 477 |
and "\<And>x. x:A \<Longrightarrow> B(x) type" |
19761 | 478 |
shows "snd(p) : B(fst(p))" |
479 |
apply (unfold basic_defs) |
|
480 |
apply (rule major [THEN SumE]) |
|
481 |
apply (rule SumC [THEN subst_eqtyparg, THEN replace_type]) |
|
63505 | 482 |
apply (typechk assms) |
19761 | 483 |
done |
484 |
||
65447
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
485 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
486 |
section \<open>The two-element type (booleans and conditionals)\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
487 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
488 |
definition Bool :: "t" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
489 |
where "Bool \<equiv> T+T" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
490 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
491 |
definition true :: "i" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
492 |
where "true \<equiv> inl(tt)" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
493 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
494 |
definition false :: "i" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
495 |
where "false \<equiv> inr(tt)" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
496 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
497 |
definition cond :: "[i,i,i]\<Rightarrow>i" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
498 |
where "cond(a,b,c) \<equiv> when(a, \<lambda>_. b, \<lambda>_. c)" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
499 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
500 |
lemmas bool_defs = Bool_def true_def false_def cond_def |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
501 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
502 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
503 |
subsection \<open>Derivation of rules for the type \<open>Bool\<close>\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
504 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
505 |
text \<open>Formation rule.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
506 |
lemma boolF: "Bool type" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
507 |
unfolding bool_defs by typechk |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
508 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
509 |
text \<open>Introduction rules for \<open>true\<close>, \<open>false\<close>.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
510 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
511 |
lemma boolI_true: "true : Bool" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
512 |
unfolding bool_defs by typechk |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
513 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
514 |
lemma boolI_false: "false : Bool" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
515 |
unfolding bool_defs by typechk |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
516 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
517 |
text \<open>Elimination rule: typing of \<open>cond\<close>.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
518 |
lemma boolE: "\<lbrakk>p:Bool; a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(p,a,b) : C(p)" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
519 |
unfolding bool_defs |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
520 |
apply (typechk; erule TE) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
521 |
apply typechk |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
522 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
523 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
524 |
lemma boolEL: "\<lbrakk>p = q : Bool; a = c : C(true); b = d : C(false)\<rbrakk> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
525 |
\<Longrightarrow> cond(p,a,b) = cond(q,c,d) : C(p)" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
526 |
unfolding bool_defs |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
527 |
apply (rule PlusEL) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
528 |
apply (erule asm_rl refl_elem [THEN TEL])+ |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
529 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
530 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
531 |
text \<open>Computation rules for \<open>true\<close>, \<open>false\<close>.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
532 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
533 |
lemma boolC_true: "\<lbrakk>a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(true,a,b) = a : C(true)" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
534 |
unfolding bool_defs |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
535 |
apply (rule comp_rls) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
536 |
apply typechk |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
537 |
apply (erule_tac [!] TE) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
538 |
apply typechk |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
539 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
540 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
541 |
lemma boolC_false: "\<lbrakk>a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(false,a,b) = b : C(false)" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
542 |
unfolding bool_defs |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
543 |
apply (rule comp_rls) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
544 |
apply typechk |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
545 |
apply (erule_tac [!] TE) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
546 |
apply typechk |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
547 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
548 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
549 |
section \<open>Elementary arithmetic\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
550 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
551 |
subsection \<open>Arithmetic operators and their definitions\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
552 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
553 |
definition add :: "[i,i]\<Rightarrow>i" (infixr "#+" 65) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
554 |
where "a#+b \<equiv> rec(a, b, \<lambda>u v. succ(v))" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
555 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
556 |
definition diff :: "[i,i]\<Rightarrow>i" (infixr "-" 65) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
557 |
where "a-b \<equiv> rec(b, a, \<lambda>u v. rec(v, 0, \<lambda>x y. x))" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
558 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
559 |
definition absdiff :: "[i,i]\<Rightarrow>i" (infixr "|-|" 65) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
560 |
where "a|-|b \<equiv> (a-b) #+ (b-a)" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
561 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
562 |
definition mult :: "[i,i]\<Rightarrow>i" (infixr "#*" 70) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
563 |
where "a#*b \<equiv> rec(a, 0, \<lambda>u v. b #+ v)" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
564 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
565 |
definition mod :: "[i,i]\<Rightarrow>i" (infixr "mod" 70) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
566 |
where "a mod b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(v) |-| b, 0, \<lambda>x y. succ(v)))" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
567 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
568 |
definition div :: "[i,i]\<Rightarrow>i" (infixr "div" 70) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
569 |
where "a div b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(u) mod b, succ(v), \<lambda>x y. v))" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
570 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
571 |
lemmas arith_defs = add_def diff_def absdiff_def mult_def mod_def div_def |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
572 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
573 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
574 |
subsection \<open>Proofs about elementary arithmetic: addition, multiplication, etc.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
575 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
576 |
subsubsection \<open>Addition\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
577 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
578 |
text \<open>Typing of \<open>add\<close>: short and long versions.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
579 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
580 |
lemma add_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
581 |
unfolding arith_defs by typechk |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
582 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
583 |
lemma add_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #+ b = c #+ d : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
584 |
unfolding arith_defs by equal |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
585 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
586 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
587 |
text \<open>Computation for \<open>add\<close>: 0 and successor cases.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
588 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
589 |
lemma addC0: "b:N \<Longrightarrow> 0 #+ b = b : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
590 |
unfolding arith_defs by rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
591 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
592 |
lemma addC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #+ b = succ(a #+ b) : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
593 |
unfolding arith_defs by rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
594 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
595 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
596 |
subsubsection \<open>Multiplication\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
597 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
598 |
text \<open>Typing of \<open>mult\<close>: short and long versions.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
599 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
600 |
lemma mult_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
601 |
unfolding arith_defs by (typechk add_typing) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
602 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
603 |
lemma mult_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #* b = c #* d : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
604 |
unfolding arith_defs by (equal add_typingL) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
605 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
606 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
607 |
text \<open>Computation for \<open>mult\<close>: 0 and successor cases.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
608 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
609 |
lemma multC0: "b:N \<Longrightarrow> 0 #* b = 0 : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
610 |
unfolding arith_defs by rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
611 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
612 |
lemma multC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #* b = b #+ (a #* b) : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
613 |
unfolding arith_defs by rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
614 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
615 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
616 |
subsubsection \<open>Difference\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
617 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
618 |
text \<open>Typing of difference.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
619 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
620 |
lemma diff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a - b : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
621 |
unfolding arith_defs by typechk |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
622 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
623 |
lemma diff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a - b = c - d : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
624 |
unfolding arith_defs by equal |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
625 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
626 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
627 |
text \<open>Computation for difference: 0 and successor cases.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
628 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
629 |
lemma diffC0: "a:N \<Longrightarrow> a - 0 = a : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
630 |
unfolding arith_defs by rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
631 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
632 |
text \<open>Note: \<open>rec(a, 0, \<lambda>z w.z)\<close> is \<open>pred(a).\<close>\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
633 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
634 |
lemma diff_0_eq_0: "b:N \<Longrightarrow> 0 - b = 0 : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
635 |
unfolding arith_defs |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
636 |
apply (NE b) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
637 |
apply hyp_rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
638 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
639 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
640 |
text \<open> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
641 |
Essential to simplify FIRST!! (Else we get a critical pair) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
642 |
\<open>succ(a) - succ(b)\<close> rewrites to \<open>pred(succ(a) - b)\<close>. |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
643 |
\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
644 |
lemma diff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) - succ(b) = a - b : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
645 |
unfolding arith_defs |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
646 |
apply hyp_rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
647 |
apply (NE b) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
648 |
apply hyp_rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
649 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
650 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
651 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
652 |
subsection \<open>Simplification\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
653 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
654 |
lemmas arith_typing_rls = add_typing mult_typing diff_typing |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
655 |
and arith_congr_rls = add_typingL mult_typingL diff_typingL |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
656 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
657 |
lemmas congr_rls = arith_congr_rls intrL2_rls elimL_rls |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
658 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
659 |
lemmas arithC_rls = |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
660 |
addC0 addC_succ |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
661 |
multC0 multC_succ |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
662 |
diffC0 diff_0_eq_0 diff_succ_succ |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
663 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
664 |
ML \<open> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
665 |
structure Arith_simp = TSimpFun( |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
666 |
val refl = @{thm refl_elem} |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
667 |
val sym = @{thm sym_elem} |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
668 |
val trans = @{thm trans_elem} |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
669 |
val refl_red = @{thm refl_red} |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
670 |
val trans_red = @{thm trans_red} |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
671 |
val red_if_equal = @{thm red_if_equal} |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
672 |
val default_rls = @{thms arithC_rls comp_rls} |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
673 |
val routine_tac = routine_tac @{thms arith_typing_rls routine_rls} |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
674 |
) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
675 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
676 |
fun arith_rew_tac ctxt prems = |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
677 |
make_rew_tac ctxt (Arith_simp.norm_tac ctxt (@{thms congr_rls}, prems)) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
678 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
679 |
fun hyp_arith_rew_tac ctxt prems = |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
680 |
make_rew_tac ctxt |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
681 |
(Arith_simp.cond_norm_tac ctxt (prove_cond_tac ctxt, @{thms congr_rls}, prems)) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
682 |
\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
683 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
684 |
method_setup arith_rew = \<open> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
685 |
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (arith_rew_tac ctxt ths)) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
686 |
\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
687 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
688 |
method_setup hyp_arith_rew = \<open> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
689 |
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (hyp_arith_rew_tac ctxt ths)) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
690 |
\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
691 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
692 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
693 |
subsection \<open>Addition\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
694 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
695 |
text \<open>Associative law for addition.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
696 |
lemma add_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #+ c = a #+ (b #+ c) : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
697 |
apply (NE a) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
698 |
apply hyp_arith_rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
699 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
700 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
701 |
text \<open>Commutative law for addition. Can be proved using three inductions. |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
702 |
Must simplify after first induction! Orientation of rewrites is delicate.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
703 |
lemma add_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b = b #+ a : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
704 |
apply (NE a) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
705 |
apply hyp_arith_rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
706 |
apply (rule sym_elem) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
707 |
prefer 2 |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
708 |
apply (NE b) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
709 |
prefer 4 |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
710 |
apply (NE b) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
711 |
apply hyp_arith_rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
712 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
713 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
714 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
715 |
subsection \<open>Multiplication\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
716 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
717 |
text \<open>Right annihilation in product.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
718 |
lemma mult_0_right: "a:N \<Longrightarrow> a #* 0 = 0 : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
719 |
apply (NE a) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
720 |
apply hyp_arith_rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
721 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
722 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
723 |
text \<open>Right successor law for multiplication.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
724 |
lemma mult_succ_right: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* succ(b) = a #+ (a #* b) : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
725 |
apply (NE a) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
726 |
apply (hyp_arith_rew add_assoc [THEN sym_elem]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
727 |
apply (assumption | rule add_commute mult_typingL add_typingL intrL_rls refl_elem)+ |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
728 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
729 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
730 |
text \<open>Commutative law for multiplication.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
731 |
lemma mult_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b = b #* a : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
732 |
apply (NE a) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
733 |
apply (hyp_arith_rew mult_0_right mult_succ_right) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
734 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
735 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
736 |
text \<open>Addition distributes over multiplication.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
737 |
lemma add_mult_distrib: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #* c = (a #* c) #+ (b #* c) : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
738 |
apply (NE a) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
739 |
apply (hyp_arith_rew add_assoc [THEN sym_elem]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
740 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
741 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
742 |
text \<open>Associative law for multiplication.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
743 |
lemma mult_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #* b) #* c = a #* (b #* c) : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
744 |
apply (NE a) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
745 |
apply (hyp_arith_rew add_mult_distrib) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
746 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
747 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
748 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
749 |
subsection \<open>Difference\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
750 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
751 |
text \<open> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
752 |
Difference on natural numbers, without negative numbers |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
753 |
\<^item> \<open>a - b = 0\<close> iff \<open>a \<le> b\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
754 |
\<^item> \<open>a - b = succ(c)\<close> iff \<open>a > b\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
755 |
\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
756 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
757 |
lemma diff_self_eq_0: "a:N \<Longrightarrow> a - a = 0 : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
758 |
apply (NE a) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
759 |
apply hyp_arith_rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
760 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
761 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
762 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
763 |
lemma add_0_right: "\<lbrakk>c : N; 0 : N; c : N\<rbrakk> \<Longrightarrow> c #+ 0 = c : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
764 |
by (rule addC0 [THEN [3] add_commute [THEN trans_elem]]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
765 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
766 |
text \<open> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
767 |
Addition is the inverse of subtraction: if \<open>b \<le> x\<close> then \<open>b #+ (x - b) = x\<close>. |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
768 |
An example of induction over a quantified formula (a product). |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
769 |
Uses rewriting with a quantified, implicative inductive hypothesis. |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
770 |
\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
771 |
schematic_goal add_diff_inverse_lemma: |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
772 |
"b:N \<Longrightarrow> ?a : \<Prod>x:N. Eq(N, b-x, 0) \<longrightarrow> Eq(N, b #+ (x-b), x)" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
773 |
apply (NE b) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
774 |
\<comment> \<open>strip one "universal quantifier" but not the "implication"\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
775 |
apply (rule_tac [3] intr_rls) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
776 |
\<comment> \<open>case analysis on \<open>x\<close> in \<open>succ(u) \<le> x \<longrightarrow> succ(u) #+ (x - succ(u)) = x\<close>\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
777 |
prefer 4 |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
778 |
apply (NE x) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
779 |
apply assumption |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
780 |
\<comment> \<open>Prepare for simplification of types -- the antecedent \<open>succ(u) \<le> x\<close>\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
781 |
apply (rule_tac [2] replace_type) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
782 |
apply (rule_tac [1] replace_type) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
783 |
apply arith_rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
784 |
\<comment> \<open>Solves first 0 goal, simplifies others. Two sugbgoals remain. |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
785 |
Both follow by rewriting, (2) using quantified induction hyp.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
786 |
apply intr \<comment> \<open>strips remaining \<open>\<Prod>\<close>s\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
787 |
apply (hyp_arith_rew add_0_right) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
788 |
apply assumption |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
789 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
790 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
791 |
text \<open> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
792 |
Version of above with premise \<open>b - a = 0\<close> i.e. \<open>a \<ge> b\<close>. |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
793 |
Using @{thm ProdE} does not work -- for \<open>?B(?a)\<close> is ambiguous. |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
794 |
Instead, @{thm add_diff_inverse_lemma} states the desired induction scheme; |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
795 |
the use of \<open>THEN\<close> below instantiates Vars in @{thm ProdE} automatically. |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
796 |
\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
797 |
lemma add_diff_inverse: "\<lbrakk>a:N; b:N; b - a = 0 : N\<rbrakk> \<Longrightarrow> b #+ (a-b) = a : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
798 |
apply (rule EqE) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
799 |
apply (rule add_diff_inverse_lemma [THEN ProdE, THEN ProdE]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
800 |
apply (assumption | rule EqI)+ |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
801 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
802 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
803 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
804 |
subsection \<open>Absolute difference\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
805 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
806 |
text \<open>Typing of absolute difference: short and long versions.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
807 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
808 |
lemma absdiff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a |-| b : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
809 |
unfolding arith_defs by typechk |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
810 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
811 |
lemma absdiff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a |-| b = c |-| d : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
812 |
unfolding arith_defs by equal |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
813 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
814 |
lemma absdiff_self_eq_0: "a:N \<Longrightarrow> a |-| a = 0 : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
815 |
unfolding absdiff_def by (arith_rew diff_self_eq_0) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
816 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
817 |
lemma absdiffC0: "a:N \<Longrightarrow> 0 |-| a = a : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
818 |
unfolding absdiff_def by hyp_arith_rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
819 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
820 |
lemma absdiff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) |-| succ(b) = a |-| b : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
821 |
unfolding absdiff_def by hyp_arith_rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
822 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
823 |
text \<open>Note how easy using commutative laws can be? ...not always...\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
824 |
lemma absdiff_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a |-| b = b |-| a : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
825 |
unfolding absdiff_def |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
826 |
apply (rule add_commute) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
827 |
apply (typechk diff_typing) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
828 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
829 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
830 |
text \<open>If \<open>a + b = 0\<close> then \<open>a = 0\<close>. Surprisingly tedious.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
831 |
schematic_goal add_eq0_lemma: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> ?c : Eq(N,a#+b,0) \<longrightarrow> Eq(N,a,0)" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
832 |
apply (NE a) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
833 |
apply (rule_tac [3] replace_type) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
834 |
apply arith_rew |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
835 |
apply intr \<comment> \<open>strips remaining \<open>\<Prod>\<close>s\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
836 |
apply (rule_tac [2] zero_ne_succ [THEN FE]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
837 |
apply (erule_tac [3] EqE [THEN sym_elem]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
838 |
apply (typechk add_typing) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
839 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
840 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
841 |
text \<open> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
842 |
Version of above with the premise \<open>a + b = 0\<close>. |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
843 |
Again, resolution instantiates variables in @{thm ProdE}. |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
844 |
\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
845 |
lemma add_eq0: "\<lbrakk>a:N; b:N; a #+ b = 0 : N\<rbrakk> \<Longrightarrow> a = 0 : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
846 |
apply (rule EqE) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
847 |
apply (rule add_eq0_lemma [THEN ProdE]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
848 |
apply (rule_tac [3] EqI) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
849 |
apply typechk |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
850 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
851 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
852 |
text \<open>Here is a lemma to infer \<open>a - b = 0\<close> and \<open>b - a = 0\<close> from \<open>a |-| b = 0\<close>, below.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
853 |
schematic_goal absdiff_eq0_lem: |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
854 |
"\<lbrakk>a:N; b:N; a |-| b = 0 : N\<rbrakk> \<Longrightarrow> ?a : Eq(N, a-b, 0) \<times> Eq(N, b-a, 0)" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
855 |
apply (unfold absdiff_def) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
856 |
apply intr |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
857 |
apply eqintr |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
858 |
apply (rule_tac [2] add_eq0) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
859 |
apply (rule add_eq0) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
860 |
apply (rule_tac [6] add_commute [THEN trans_elem]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
861 |
apply (typechk diff_typing) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
862 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
863 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
864 |
text \<open>If \<open>a |-| b = 0\<close> then \<open>a = b\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
865 |
proof: \<open>a - b = 0\<close> and \<open>b - a = 0\<close>, so \<open>b = a + (b - a) = a + 0 = a\<close>. |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
866 |
\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
867 |
lemma absdiff_eq0: "\<lbrakk>a |-| b = 0 : N; a:N; b:N\<rbrakk> \<Longrightarrow> a = b : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
868 |
apply (rule EqE) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
869 |
apply (rule absdiff_eq0_lem [THEN SumE]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
870 |
apply eqintr |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
871 |
apply (rule add_diff_inverse [THEN sym_elem, THEN trans_elem]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
872 |
apply (erule_tac [3] EqE) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
873 |
apply (hyp_arith_rew add_0_right) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
874 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
875 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
876 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
877 |
subsection \<open>Remainder and Quotient\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
878 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
879 |
text \<open>Typing of remainder: short and long versions.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
880 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
881 |
lemma mod_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
882 |
unfolding mod_def by (typechk absdiff_typing) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
883 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
884 |
lemma mod_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a mod b = c mod d : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
885 |
unfolding mod_def by (equal absdiff_typingL) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
886 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
887 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
888 |
text \<open>Computation for \<open>mod\<close>: 0 and successor cases.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
889 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
890 |
lemma modC0: "b:N \<Longrightarrow> 0 mod b = 0 : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
891 |
unfolding mod_def by (rew absdiff_typing) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
892 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
893 |
lemma modC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
894 |
succ(a) mod b = rec(succ(a mod b) |-| b, 0, \<lambda>x y. succ(a mod b)) : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
895 |
unfolding mod_def by (rew absdiff_typing) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
896 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
897 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
898 |
text \<open>Typing of quotient: short and long versions.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
899 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
900 |
lemma div_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a div b : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
901 |
unfolding div_def by (typechk absdiff_typing mod_typing) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
902 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
903 |
lemma div_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a div b = c div d : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
904 |
unfolding div_def by (equal absdiff_typingL mod_typingL) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
905 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
906 |
lemmas div_typing_rls = mod_typing div_typing absdiff_typing |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
907 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
908 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
909 |
text \<open>Computation for quotient: 0 and successor cases.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
910 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
911 |
lemma divC0: "b:N \<Longrightarrow> 0 div b = 0 : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
912 |
unfolding div_def by (rew mod_typing absdiff_typing) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
913 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
914 |
lemma divC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
915 |
succ(a) div b = rec(succ(a) mod b, succ(a div b), \<lambda>x y. a div b) : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
916 |
unfolding div_def by (rew mod_typing) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
917 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
918 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
919 |
text \<open>Version of above with same condition as the \<open>mod\<close> one.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
920 |
lemma divC_succ2: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
921 |
succ(a) div b =rec(succ(a mod b) |-| b, succ(a div b), \<lambda>x y. a div b) : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
922 |
apply (rule divC_succ [THEN trans_elem]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
923 |
apply (rew div_typing_rls modC_succ) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
924 |
apply (NE "succ (a mod b) |-|b") |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
925 |
apply (rew mod_typing div_typing absdiff_typing) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
926 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
927 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
928 |
text \<open>For case analysis on whether a number is 0 or a successor.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
929 |
lemma iszero_decidable: "a:N \<Longrightarrow> rec(a, inl(eq), \<lambda>ka kb. inr(<ka, eq>)) : |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
930 |
Eq(N,a,0) + (\<Sum>x:N. Eq(N,a, succ(x)))" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
931 |
apply (NE a) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
932 |
apply (rule_tac [3] PlusI_inr) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
933 |
apply (rule_tac [2] PlusI_inl) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
934 |
apply eqintr |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
935 |
apply equal |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
936 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
937 |
|
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
938 |
text \<open>Main Result. Holds when \<open>b\<close> is 0 since \<open>a mod 0 = a\<close> and \<open>a div 0 = 0\<close>.\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
939 |
lemma mod_div_equality: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b #+ (a div b) #* b = a : N" |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
940 |
apply (NE a) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
941 |
apply (arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
942 |
apply (rule EqE) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
943 |
\<comment> \<open>case analysis on \<open>succ(u mod b) |-| b\<close>\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
944 |
apply (rule_tac a1 = "succ (u mod b) |-| b" in iszero_decidable [THEN PlusE]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
945 |
apply (erule_tac [3] SumE) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
946 |
apply (hyp_arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
947 |
\<comment> \<open>Replace one occurrence of \<open>b\<close> by \<open>succ(u mod b)\<close>. Clumsy!\<close> |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
948 |
apply (rule add_typingL [THEN trans_elem]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
949 |
apply (erule EqE [THEN absdiff_eq0, THEN sym_elem]) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
950 |
apply (rule_tac [3] refl_elem) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
951 |
apply (hyp_arith_rew div_typing_rls) |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
952 |
done |
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset
|
953 |
|
19761 | 954 |
end |