| author | haftmann | 
| Fri, 27 Mar 2009 10:05:13 +0100 | |
| changeset 30740 | 2d3ae5a7edb2 | 
| parent 30649 | 57753e0ec1d4 | 
| child 31017 | 2c227493ea56 | 
| permissions | -rw-r--r-- | 
| 10751 | 1 | (* Title : Series.thy | 
| 2 | Author : Jacques D. Fleuriot | |
| 3 | Copyright : 1998 University of Cambridge | |
| 14416 | 4 | |
| 5 | Converted to Isar and polished by lcp | |
| 15539 | 6 | Converted to setsum and polished yet more by TNN | 
| 16819 | 7 | Additional contributions by Jeremy Avigad | 
| 10751 | 8 | *) | 
| 9 | ||
| 14416 | 10 | header{*Finite Summation and Infinite Series*}
 | 
| 10751 | 11 | |
| 15131 | 12 | theory Series | 
| 29197 
6d4cb27ed19c
adapted HOL source structure to distribution layout
 haftmann parents: 
28952diff
changeset | 13 | imports SEQ | 
| 15131 | 14 | begin | 
| 15561 | 15 | |
| 19765 | 16 | definition | 
| 20692 | 17 | sums :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> 'a \<Rightarrow> bool" | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21141diff
changeset | 18 | (infixr "sums" 80) where | 
| 19765 | 19 |    "f sums s = (%n. setsum f {0..<n}) ----> s"
 | 
| 10751 | 20 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21141diff
changeset | 21 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21141diff
changeset | 22 | summable :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> bool" where | 
| 19765 | 23 | "summable f = (\<exists>s. f sums s)" | 
| 14416 | 24 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21141diff
changeset | 25 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21141diff
changeset | 26 | suminf :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> 'a" where | 
| 20688 | 27 | "suminf f = (THE s. f sums s)" | 
| 14416 | 28 | |
| 15546 | 29 | syntax | 
| 20692 | 30 |   "_suminf" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a" ("\<Sum>_. _" [0, 10] 10)
 | 
| 15546 | 31 | translations | 
| 20770 | 32 | "\<Sum>i. b" == "CONST suminf (%i. b)" | 
| 15546 | 33 | |
| 14416 | 34 | |
| 15539 | 35 | lemma sumr_diff_mult_const: | 
| 36 |  "setsum f {0..<n} - (real n*r) = setsum (%i. f i - r) {0..<n::nat}"
 | |
| 15536 | 37 | by (simp add: diff_minus setsum_addf real_of_nat_def) | 
| 38 | ||
| 15542 | 39 | lemma real_setsum_nat_ivl_bounded: | 
| 40 | "(!!p. p < n \<Longrightarrow> f(p) \<le> K) | |
| 41 |       \<Longrightarrow> setsum f {0..<n::nat} \<le> real n * K"
 | |
| 42 | using setsum_bounded[where A = "{0..<n}"]
 | |
| 43 | by (auto simp:real_of_nat_def) | |
| 14416 | 44 | |
| 15539 | 45 | (* Generalize from real to some algebraic structure? *) | 
| 46 | lemma sumr_minus_one_realpow_zero [simp]: | |
| 15543 | 47 | "(\<Sum>i=0..<2*n. (-1) ^ Suc i) = (0::real)" | 
| 15251 | 48 | by (induct "n", auto) | 
| 14416 | 49 | |
| 15539 | 50 | (* FIXME this is an awful lemma! *) | 
| 51 | lemma sumr_one_lb_realpow_zero [simp]: | |
| 52 | "(\<Sum>n=Suc 0..<n. f(n) * (0::real) ^ n) = 0" | |
| 20692 | 53 | by (rule setsum_0', simp) | 
| 14416 | 54 | |
| 15543 | 55 | lemma sumr_group: | 
| 15539 | 56 |      "(\<Sum>m=0..<n::nat. setsum f {m * k ..< m*k + k}) = setsum f {0 ..< n * k}"
 | 
| 15543 | 57 | apply (subgoal_tac "k = 0 | 0 < k", auto) | 
| 15251 | 58 | apply (induct "n") | 
| 15539 | 59 | apply (simp_all add: setsum_add_nat_ivl add_commute) | 
| 14416 | 60 | done | 
| 15539 | 61 | |
| 20692 | 62 | lemma sumr_offset3: | 
| 63 |   "setsum f {0::nat..<n+k} = (\<Sum>m=0..<n. f (m+k)) + setsum f {0..<k}"
 | |
| 64 | apply (subst setsum_shift_bounds_nat_ivl [symmetric]) | |
| 65 | apply (simp add: setsum_add_nat_ivl add_commute) | |
| 66 | done | |
| 67 | ||
| 16819 | 68 | lemma sumr_offset: | 
| 20692 | 69 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | 
| 70 |   shows "(\<Sum>m=0..<n. f(m+k)) = setsum f {0..<n+k} - setsum f {0..<k}"
 | |
| 71 | by (simp add: sumr_offset3) | |
| 16819 | 72 | |
| 73 | lemma sumr_offset2: | |
| 74 |  "\<forall>f. (\<Sum>m=0..<n::nat. f(m+k)::real) = setsum f {0..<n+k} - setsum f {0..<k}"
 | |
| 20692 | 75 | by (simp add: sumr_offset) | 
| 16819 | 76 | |
| 77 | lemma sumr_offset4: | |
| 20692 | 78 |   "\<forall>n f. setsum f {0::nat..<n+k} = (\<Sum>m=0..<n. f (m+k)::real) + setsum f {0..<k}"
 | 
| 79 | by (clarify, rule sumr_offset3) | |
| 16819 | 80 | |
| 81 | (* | |
| 82 | lemma sumr_from_1_from_0: "0 < n ==> | |
| 83 | (\<Sum>n=Suc 0 ..< Suc n. if even(n) then 0 else | |
| 84 | ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n = | |
| 85 | (\<Sum>n=0..<Suc n. if even(n) then 0 else | |
| 86 | ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n" | |
| 87 | by (rule_tac n1 = 1 in sumr_split_add [THEN subst], auto) | |
| 88 | *) | |
| 14416 | 89 | |
| 90 | subsection{* Infinite Sums, by the Properties of Limits*}
 | |
| 91 | ||
| 92 | (*---------------------- | |
| 93 | suminf is the sum | |
| 94 | ---------------------*) | |
| 95 | lemma sums_summable: "f sums l ==> summable f" | |
| 96 | by (simp add: sums_def summable_def, blast) | |
| 97 | ||
| 98 | lemma summable_sums: "summable f ==> f sums (suminf f)" | |
| 20688 | 99 | apply (simp add: summable_def suminf_def sums_def) | 
| 100 | apply (blast intro: theI LIMSEQ_unique) | |
| 14416 | 101 | done | 
| 102 | ||
| 103 | lemma summable_sumr_LIMSEQ_suminf: | |
| 15539 | 104 |      "summable f ==> (%n. setsum f {0..<n}) ----> (suminf f)"
 | 
| 20688 | 105 | by (rule summable_sums [unfolded sums_def]) | 
| 14416 | 106 | |
| 107 | (*------------------- | |
| 108 | sum is unique | |
| 109 | ------------------*) | |
| 110 | lemma sums_unique: "f sums s ==> (s = suminf f)" | |
| 111 | apply (frule sums_summable [THEN summable_sums]) | |
| 112 | apply (auto intro!: LIMSEQ_unique simp add: sums_def) | |
| 113 | done | |
| 114 | ||
| 16819 | 115 | lemma sums_split_initial_segment: "f sums s ==> | 
| 116 | (%n. f(n + k)) sums (s - (SUM i = 0..< k. f i))" | |
| 117 | apply (unfold sums_def); | |
| 118 | apply (simp add: sumr_offset); | |
| 119 | apply (rule LIMSEQ_diff_const) | |
| 120 | apply (rule LIMSEQ_ignore_initial_segment) | |
| 121 | apply assumption | |
| 122 | done | |
| 123 | ||
| 124 | lemma summable_ignore_initial_segment: "summable f ==> | |
| 125 | summable (%n. f(n + k))" | |
| 126 | apply (unfold summable_def) | |
| 127 | apply (auto intro: sums_split_initial_segment) | |
| 128 | done | |
| 129 | ||
| 130 | lemma suminf_minus_initial_segment: "summable f ==> | |
| 131 | suminf f = s ==> suminf (%n. f(n + k)) = s - (SUM i = 0..< k. f i)" | |
| 132 | apply (frule summable_ignore_initial_segment) | |
| 133 | apply (rule sums_unique [THEN sym]) | |
| 134 | apply (frule summable_sums) | |
| 135 | apply (rule sums_split_initial_segment) | |
| 136 | apply auto | |
| 137 | done | |
| 138 | ||
| 139 | lemma suminf_split_initial_segment: "summable f ==> | |
| 140 | suminf f = (SUM i = 0..< k. f i) + suminf (%n. f(n + k))" | |
| 141 | by (auto simp add: suminf_minus_initial_segment) | |
| 142 | ||
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 143 | lemma suminf_exist_split: fixes r :: real assumes "0 < r" and "summable a" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 144 | shows "\<exists> N. \<forall> n \<ge> N. \<bar> \<Sum> i. a (i + n) \<bar> < r" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 145 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 146 | from LIMSEQ_D[OF summable_sumr_LIMSEQ_suminf[OF `summable a`] `0 < r`] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 147 |   obtain N :: nat where "\<forall> n \<ge> N. norm (setsum a {0..<n} - suminf a) < r" by auto
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 148 | thus ?thesis unfolding suminf_minus_initial_segment[OF `summable a` refl] abs_minus_commute real_norm_def | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 149 | by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 150 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 151 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 152 | lemma sums_Suc: assumes sumSuc: "(\<lambda> n. f (Suc n)) sums l" shows "f sums (l + f 0)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 153 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 154 | from sumSuc[unfolded sums_def] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 155 | have "(\<lambda>i. \<Sum>n = Suc 0..<Suc i. f n) ----> l" unfolding setsum_reindex[OF inj_Suc] image_Suc_atLeastLessThan[symmetric] comp_def . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 156 | from LIMSEQ_add_const[OF this, where b="f 0"] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 157 | have "(\<lambda>i. \<Sum>n = 0..<Suc i. f n) ----> l + f 0" unfolding add_commute setsum_head_upt_Suc[OF zero_less_Suc] . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 158 | thus ?thesis unfolding sums_def by (rule LIMSEQ_imp_Suc) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 159 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29197diff
changeset | 160 | |
| 14416 | 161 | lemma series_zero: | 
| 15539 | 162 |      "(\<forall>m. n \<le> m --> f(m) = 0) ==> f sums (setsum f {0..<n})"
 | 
| 15537 | 163 | apply (simp add: sums_def LIMSEQ_def diff_minus[symmetric], safe) | 
| 14416 | 164 | apply (rule_tac x = n in exI) | 
| 15542 | 165 | apply (clarsimp simp add:setsum_diff[symmetric] cong:setsum_ivl_cong) | 
| 14416 | 166 | done | 
| 167 | ||
| 23121 | 168 | lemma sums_zero: "(\<lambda>n. 0) sums 0" | 
| 169 | unfolding sums_def by (simp add: LIMSEQ_const) | |
| 15539 | 170 | |
| 23121 | 171 | lemma summable_zero: "summable (\<lambda>n. 0)" | 
| 172 | by (rule sums_zero [THEN sums_summable]) | |
| 16819 | 173 | |
| 23121 | 174 | lemma suminf_zero: "suminf (\<lambda>n. 0) = 0" | 
| 175 | by (rule sums_zero [THEN sums_unique, symmetric]) | |
| 16819 | 176 | |
| 23119 | 177 | lemma (in bounded_linear) sums: | 
| 178 | "(\<lambda>n. X n) sums a \<Longrightarrow> (\<lambda>n. f (X n)) sums (f a)" | |
| 179 | unfolding sums_def by (drule LIMSEQ, simp only: setsum) | |
| 180 | ||
| 181 | lemma (in bounded_linear) summable: | |
| 182 | "summable (\<lambda>n. X n) \<Longrightarrow> summable (\<lambda>n. f (X n))" | |
| 183 | unfolding summable_def by (auto intro: sums) | |
| 184 | ||
| 185 | lemma (in bounded_linear) suminf: | |
| 186 | "summable (\<lambda>n. X n) \<Longrightarrow> f (\<Sum>n. X n) = (\<Sum>n. f (X n))" | |
| 23121 | 187 | by (intro sums_unique sums summable_sums) | 
| 23119 | 188 | |
| 20692 | 189 | lemma sums_mult: | 
| 190 | fixes c :: "'a::real_normed_algebra" | |
| 191 | shows "f sums a \<Longrightarrow> (\<lambda>n. c * f n) sums (c * a)" | |
| 23127 | 192 | by (rule mult_right.sums) | 
| 14416 | 193 | |
| 20692 | 194 | lemma summable_mult: | 
| 195 | fixes c :: "'a::real_normed_algebra" | |
| 23121 | 196 | shows "summable f \<Longrightarrow> summable (%n. c * f n)" | 
| 23127 | 197 | by (rule mult_right.summable) | 
| 16819 | 198 | |
| 20692 | 199 | lemma suminf_mult: | 
| 200 | fixes c :: "'a::real_normed_algebra" | |
| 201 | shows "summable f \<Longrightarrow> suminf (\<lambda>n. c * f n) = c * suminf f"; | |
| 23127 | 202 | by (rule mult_right.suminf [symmetric]) | 
| 16819 | 203 | |
| 20692 | 204 | lemma sums_mult2: | 
| 205 | fixes c :: "'a::real_normed_algebra" | |
| 206 | shows "f sums a \<Longrightarrow> (\<lambda>n. f n * c) sums (a * c)" | |
| 23127 | 207 | by (rule mult_left.sums) | 
| 16819 | 208 | |
| 20692 | 209 | lemma summable_mult2: | 
| 210 | fixes c :: "'a::real_normed_algebra" | |
| 211 | shows "summable f \<Longrightarrow> summable (\<lambda>n. f n * c)" | |
| 23127 | 212 | by (rule mult_left.summable) | 
| 16819 | 213 | |
| 20692 | 214 | lemma suminf_mult2: | 
| 215 | fixes c :: "'a::real_normed_algebra" | |
| 216 | shows "summable f \<Longrightarrow> suminf f * c = (\<Sum>n. f n * c)" | |
| 23127 | 217 | by (rule mult_left.suminf) | 
| 16819 | 218 | |
| 20692 | 219 | lemma sums_divide: | 
| 220 | fixes c :: "'a::real_normed_field" | |
| 221 | shows "f sums a \<Longrightarrow> (\<lambda>n. f n / c) sums (a / c)" | |
| 23127 | 222 | by (rule divide.sums) | 
| 14416 | 223 | |
| 20692 | 224 | lemma summable_divide: | 
| 225 | fixes c :: "'a::real_normed_field" | |
| 226 | shows "summable f \<Longrightarrow> summable (\<lambda>n. f n / c)" | |
| 23127 | 227 | by (rule divide.summable) | 
| 16819 | 228 | |
| 20692 | 229 | lemma suminf_divide: | 
| 230 | fixes c :: "'a::real_normed_field" | |
| 231 | shows "summable f \<Longrightarrow> suminf (\<lambda>n. f n / c) = suminf f / c" | |
| 23127 | 232 | by (rule divide.suminf [symmetric]) | 
| 16819 | 233 | |
| 23121 | 234 | lemma sums_add: "\<lbrakk>X sums a; Y sums b\<rbrakk> \<Longrightarrow> (\<lambda>n. X n + Y n) sums (a + b)" | 
| 235 | unfolding sums_def by (simp add: setsum_addf LIMSEQ_add) | |
| 16819 | 236 | |
| 23121 | 237 | lemma summable_add: "\<lbrakk>summable X; summable Y\<rbrakk> \<Longrightarrow> summable (\<lambda>n. X n + Y n)" | 
| 238 | unfolding summable_def by (auto intro: sums_add) | |
| 16819 | 239 | |
| 240 | lemma suminf_add: | |
| 23121 | 241 | "\<lbrakk>summable X; summable Y\<rbrakk> \<Longrightarrow> suminf X + suminf Y = (\<Sum>n. X n + Y n)" | 
| 242 | by (intro sums_unique sums_add summable_sums) | |
| 14416 | 243 | |
| 23121 | 244 | lemma sums_diff: "\<lbrakk>X sums a; Y sums b\<rbrakk> \<Longrightarrow> (\<lambda>n. X n - Y n) sums (a - b)" | 
| 245 | unfolding sums_def by (simp add: setsum_subtractf LIMSEQ_diff) | |
| 246 | ||
| 247 | lemma summable_diff: "\<lbrakk>summable X; summable Y\<rbrakk> \<Longrightarrow> summable (\<lambda>n. X n - Y n)" | |
| 248 | unfolding summable_def by (auto intro: sums_diff) | |
| 14416 | 249 | |
| 250 | lemma suminf_diff: | |
| 23121 | 251 | "\<lbrakk>summable X; summable Y\<rbrakk> \<Longrightarrow> suminf X - suminf Y = (\<Sum>n. X n - Y n)" | 
| 252 | by (intro sums_unique sums_diff summable_sums) | |
| 14416 | 253 | |
| 23121 | 254 | lemma sums_minus: "X sums a ==> (\<lambda>n. - X n) sums (- a)" | 
| 255 | unfolding sums_def by (simp add: setsum_negf LIMSEQ_minus) | |
| 16819 | 256 | |
| 23121 | 257 | lemma summable_minus: "summable X \<Longrightarrow> summable (\<lambda>n. - X n)" | 
| 258 | unfolding summable_def by (auto intro: sums_minus) | |
| 16819 | 259 | |
| 23121 | 260 | lemma suminf_minus: "summable X \<Longrightarrow> (\<Sum>n. - X n) = - (\<Sum>n. X n)" | 
| 261 | by (intro sums_unique [symmetric] sums_minus summable_sums) | |
| 14416 | 262 | |
| 263 | lemma sums_group: | |
| 15539 | 264 |      "[|summable f; 0 < k |] ==> (%n. setsum f {n*k..<n*k+k}) sums (suminf f)"
 | 
| 14416 | 265 | apply (drule summable_sums) | 
| 20692 | 266 | apply (simp only: sums_def sumr_group) | 
| 267 | apply (unfold LIMSEQ_def, safe) | |
| 268 | apply (drule_tac x="r" in spec, safe) | |
| 269 | apply (rule_tac x="no" in exI, safe) | |
| 270 | apply (drule_tac x="n*k" in spec) | |
| 271 | apply (erule mp) | |
| 272 | apply (erule order_trans) | |
| 273 | apply simp | |
| 14416 | 274 | done | 
| 275 | ||
| 15085 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15053diff
changeset | 276 | text{*A summable series of positive terms has limit that is at least as
 | 
| 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15053diff
changeset | 277 | great as any partial sum.*} | 
| 14416 | 278 | |
| 20692 | 279 | lemma series_pos_le: | 
| 280 | fixes f :: "nat \<Rightarrow> real" | |
| 281 |   shows "\<lbrakk>summable f; \<forall>m\<ge>n. 0 \<le> f m\<rbrakk> \<Longrightarrow> setsum f {0..<n} \<le> suminf f"
 | |
| 14416 | 282 | apply (drule summable_sums) | 
| 283 | apply (simp add: sums_def) | |
| 15539 | 284 | apply (cut_tac k = "setsum f {0..<n}" in LIMSEQ_const)
 | 
| 285 | apply (erule LIMSEQ_le, blast) | |
| 20692 | 286 | apply (rule_tac x="n" in exI, clarify) | 
| 15539 | 287 | apply (rule setsum_mono2) | 
| 288 | apply auto | |
| 14416 | 289 | done | 
| 290 | ||
| 291 | lemma series_pos_less: | |
| 20692 | 292 | fixes f :: "nat \<Rightarrow> real" | 
| 293 |   shows "\<lbrakk>summable f; \<forall>m\<ge>n. 0 < f m\<rbrakk> \<Longrightarrow> setsum f {0..<n} < suminf f"
 | |
| 294 | apply (rule_tac y="setsum f {0..<Suc n}" in order_less_le_trans)
 | |
| 295 | apply simp | |
| 296 | apply (erule series_pos_le) | |
| 297 | apply (simp add: order_less_imp_le) | |
| 298 | done | |
| 299 | ||
| 300 | lemma suminf_gt_zero: | |
| 301 | fixes f :: "nat \<Rightarrow> real" | |
| 302 | shows "\<lbrakk>summable f; \<forall>n. 0 < f n\<rbrakk> \<Longrightarrow> 0 < suminf f" | |
| 303 | by (drule_tac n="0" in series_pos_less, simp_all) | |
| 304 | ||
| 305 | lemma suminf_ge_zero: | |
| 306 | fixes f :: "nat \<Rightarrow> real" | |
| 307 | shows "\<lbrakk>summable f; \<forall>n. 0 \<le> f n\<rbrakk> \<Longrightarrow> 0 \<le> suminf f" | |
| 308 | by (drule_tac n="0" in series_pos_le, simp_all) | |
| 309 | ||
| 310 | lemma sumr_pos_lt_pair: | |
| 311 | fixes f :: "nat \<Rightarrow> real" | |
| 312 | shows "\<lbrakk>summable f; | |
| 313 | \<forall>d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc(Suc 0) * d) + 1))\<rbrakk> | |
| 314 |       \<Longrightarrow> setsum f {0..<k} < suminf f"
 | |
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 315 | unfolding One_nat_def | 
| 20692 | 316 | apply (subst suminf_split_initial_segment [where k="k"]) | 
| 317 | apply assumption | |
| 318 | apply simp | |
| 319 | apply (drule_tac k="k" in summable_ignore_initial_segment) | |
| 320 | apply (drule_tac k="Suc (Suc 0)" in sums_group, simp) | |
| 321 | apply simp | |
| 322 | apply (frule sums_unique) | |
| 323 | apply (drule sums_summable) | |
| 324 | apply simp | |
| 325 | apply (erule suminf_gt_zero) | |
| 326 | apply (simp add: add_ac) | |
| 14416 | 327 | done | 
| 328 | ||
| 15085 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15053diff
changeset | 329 | text{*Sum of a geometric progression.*}
 | 
| 14416 | 330 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16819diff
changeset | 331 | lemmas sumr_geometric = geometric_sum [where 'a = real] | 
| 14416 | 332 | |
| 20692 | 333 | lemma geometric_sums: | 
| 22719 
c51667189bd3
lemma geometric_sum no longer needs class division_by_zero
 huffman parents: 
21404diff
changeset | 334 |   fixes x :: "'a::{real_normed_field,recpower}"
 | 
| 20692 | 335 | shows "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) sums (1 / (1 - x))" | 
| 336 | proof - | |
| 337 | assume less_1: "norm x < 1" | |
| 338 | hence neq_1: "x \<noteq> 1" by auto | |
| 339 | hence neq_0: "x - 1 \<noteq> 0" by simp | |
| 340 | from less_1 have lim_0: "(\<lambda>n. x ^ n) ----> 0" | |
| 341 | by (rule LIMSEQ_power_zero) | |
| 22719 
c51667189bd3
lemma geometric_sum no longer needs class division_by_zero
 huffman parents: 
21404diff
changeset | 342 | hence "(\<lambda>n. x ^ n / (x - 1) - 1 / (x - 1)) ----> 0 / (x - 1) - 1 / (x - 1)" | 
| 20692 | 343 | using neq_0 by (intro LIMSEQ_divide LIMSEQ_diff LIMSEQ_const) | 
| 344 | hence "(\<lambda>n. (x ^ n - 1) / (x - 1)) ----> 1 / (1 - x)" | |
| 345 | by (simp add: nonzero_minus_divide_right [OF neq_0] diff_divide_distrib) | |
| 346 | thus "(\<lambda>n. x ^ n) sums (1 / (1 - x))" | |
| 347 | by (simp add: sums_def geometric_sum neq_1) | |
| 348 | qed | |
| 349 | ||
| 350 | lemma summable_geometric: | |
| 22719 
c51667189bd3
lemma geometric_sum no longer needs class division_by_zero
 huffman parents: 
21404diff
changeset | 351 |   fixes x :: "'a::{real_normed_field,recpower}"
 | 
| 20692 | 352 | shows "norm x < 1 \<Longrightarrow> summable (\<lambda>n. x ^ n)" | 
| 353 | by (rule geometric_sums [THEN sums_summable]) | |
| 14416 | 354 | |
| 15085 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15053diff
changeset | 355 | text{*Cauchy-type criterion for convergence of series (c.f. Harrison)*}
 | 
| 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15053diff
changeset | 356 | |
| 15539 | 357 | lemma summable_convergent_sumr_iff: | 
| 358 |  "summable f = convergent (%n. setsum f {0..<n})"
 | |
| 14416 | 359 | by (simp add: summable_def sums_def convergent_def) | 
| 360 | ||
| 20689 | 361 | lemma summable_LIMSEQ_zero: "summable f \<Longrightarrow> f ----> 0" | 
| 362 | apply (drule summable_convergent_sumr_iff [THEN iffD1]) | |
| 20692 | 363 | apply (drule convergent_Cauchy) | 
| 20689 | 364 | apply (simp only: Cauchy_def LIMSEQ_def, safe) | 
| 365 | apply (drule_tac x="r" in spec, safe) | |
| 366 | apply (rule_tac x="M" in exI, safe) | |
| 367 | apply (drule_tac x="Suc n" in spec, simp) | |
| 368 | apply (drule_tac x="n" in spec, simp) | |
| 369 | done | |
| 370 | ||
| 14416 | 371 | lemma summable_Cauchy: | 
| 20848 | 372 | "summable (f::nat \<Rightarrow> 'a::banach) = | 
| 373 |       (\<forall>e > 0. \<exists>N. \<forall>m \<ge> N. \<forall>n. norm (setsum f {m..<n}) < e)"
 | |
| 374 | apply (simp only: summable_convergent_sumr_iff Cauchy_convergent_iff [symmetric] Cauchy_def, safe) | |
| 20410 | 375 | apply (drule spec, drule (1) mp) | 
| 376 | apply (erule exE, rule_tac x="M" in exI, clarify) | |
| 377 | apply (rule_tac x="m" and y="n" in linorder_le_cases) | |
| 378 | apply (frule (1) order_trans) | |
| 379 | apply (drule_tac x="n" in spec, drule (1) mp) | |
| 380 | apply (drule_tac x="m" in spec, drule (1) mp) | |
| 381 | apply (simp add: setsum_diff [symmetric]) | |
| 382 | apply simp | |
| 383 | apply (drule spec, drule (1) mp) | |
| 384 | apply (erule exE, rule_tac x="N" in exI, clarify) | |
| 385 | apply (rule_tac x="m" and y="n" in linorder_le_cases) | |
| 20552 
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
 huffman parents: 
20432diff
changeset | 386 | apply (subst norm_minus_commute) | 
| 20410 | 387 | apply (simp add: setsum_diff [symmetric]) | 
| 388 | apply (simp add: setsum_diff [symmetric]) | |
| 14416 | 389 | done | 
| 390 | ||
| 15085 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15053diff
changeset | 391 | text{*Comparison test*}
 | 
| 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15053diff
changeset | 392 | |
| 20692 | 393 | lemma norm_setsum: | 
| 394 | fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" | |
| 395 | shows "norm (setsum f A) \<le> (\<Sum>i\<in>A. norm (f i))" | |
| 396 | apply (case_tac "finite A") | |
| 397 | apply (erule finite_induct) | |
| 398 | apply simp | |
| 399 | apply simp | |
| 400 | apply (erule order_trans [OF norm_triangle_ineq add_left_mono]) | |
| 401 | apply simp | |
| 402 | done | |
| 403 | ||
| 14416 | 404 | lemma summable_comparison_test: | 
| 20848 | 405 | fixes f :: "nat \<Rightarrow> 'a::banach" | 
| 406 | shows "\<lbrakk>\<exists>N. \<forall>n\<ge>N. norm (f n) \<le> g n; summable g\<rbrakk> \<Longrightarrow> summable f" | |
| 20692 | 407 | apply (simp add: summable_Cauchy, safe) | 
| 408 | apply (drule_tac x="e" in spec, safe) | |
| 409 | apply (rule_tac x = "N + Na" in exI, safe) | |
| 14416 | 410 | apply (rotate_tac 2) | 
| 411 | apply (drule_tac x = m in spec) | |
| 412 | apply (auto, rotate_tac 2, drule_tac x = n in spec) | |
| 20848 | 413 | apply (rule_tac y = "\<Sum>k=m..<n. norm (f k)" in order_le_less_trans) | 
| 414 | apply (rule norm_setsum) | |
| 15539 | 415 | apply (rule_tac y = "setsum g {m..<n}" in order_le_less_trans)
 | 
| 22998 | 416 | apply (auto intro: setsum_mono simp add: abs_less_iff) | 
| 14416 | 417 | done | 
| 418 | ||
| 20848 | 419 | lemma summable_norm_comparison_test: | 
| 420 | fixes f :: "nat \<Rightarrow> 'a::banach" | |
| 421 | shows "\<lbrakk>\<exists>N. \<forall>n\<ge>N. norm (f n) \<le> g n; summable g\<rbrakk> | |
| 422 | \<Longrightarrow> summable (\<lambda>n. norm (f n))" | |
| 423 | apply (rule summable_comparison_test) | |
| 424 | apply (auto) | |
| 425 | done | |
| 426 | ||
| 14416 | 427 | lemma summable_rabs_comparison_test: | 
| 20692 | 428 | fixes f :: "nat \<Rightarrow> real" | 
| 429 | shows "\<lbrakk>\<exists>N. \<forall>n\<ge>N. \<bar>f n\<bar> \<le> g n; summable g\<rbrakk> \<Longrightarrow> summable (\<lambda>n. \<bar>f n\<bar>)" | |
| 14416 | 430 | apply (rule summable_comparison_test) | 
| 15543 | 431 | apply (auto) | 
| 14416 | 432 | done | 
| 433 | ||
| 23084 | 434 | text{*Summability of geometric series for real algebras*}
 | 
| 435 | ||
| 436 | lemma complete_algebra_summable_geometric: | |
| 437 |   fixes x :: "'a::{real_normed_algebra_1,banach,recpower}"
 | |
| 438 | shows "norm x < 1 \<Longrightarrow> summable (\<lambda>n. x ^ n)" | |
| 439 | proof (rule summable_comparison_test) | |
| 440 | show "\<exists>N. \<forall>n\<ge>N. norm (x ^ n) \<le> norm x ^ n" | |
| 441 | by (simp add: norm_power_ineq) | |
| 442 | show "norm x < 1 \<Longrightarrow> summable (\<lambda>n. norm x ^ n)" | |
| 443 | by (simp add: summable_geometric) | |
| 444 | qed | |
| 445 | ||
| 15085 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15053diff
changeset | 446 | text{*Limit comparison property for series (c.f. jrh)*}
 | 
| 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15053diff
changeset | 447 | |
| 14416 | 448 | lemma summable_le: | 
| 20692 | 449 | fixes f g :: "nat \<Rightarrow> real" | 
| 450 | shows "\<lbrakk>\<forall>n. f n \<le> g n; summable f; summable g\<rbrakk> \<Longrightarrow> suminf f \<le> suminf g" | |
| 14416 | 451 | apply (drule summable_sums)+ | 
| 20692 | 452 | apply (simp only: sums_def, erule (1) LIMSEQ_le) | 
| 14416 | 453 | apply (rule exI) | 
| 15539 | 454 | apply (auto intro!: setsum_mono) | 
| 14416 | 455 | done | 
| 456 | ||
| 457 | lemma summable_le2: | |
| 20692 | 458 | fixes f g :: "nat \<Rightarrow> real" | 
| 459 | shows "\<lbrakk>\<forall>n. \<bar>f n\<bar> \<le> g n; summable g\<rbrakk> \<Longrightarrow> summable f \<and> suminf f \<le> suminf g" | |
| 20848 | 460 | apply (subgoal_tac "summable f") | 
| 461 | apply (auto intro!: summable_le) | |
| 22998 | 462 | apply (simp add: abs_le_iff) | 
| 20848 | 463 | apply (rule_tac g="g" in summable_comparison_test, simp_all) | 
| 14416 | 464 | done | 
| 465 | ||
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 466 | (* specialisation for the common 0 case *) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 467 | lemma suminf_0_le: | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 468 | fixes f::"nat\<Rightarrow>real" | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 469 | assumes gt0: "\<forall>n. 0 \<le> f n" and sm: "summable f" | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 470 | shows "0 \<le> suminf f" | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 471 | proof - | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 472 | let ?g = "(\<lambda>n. (0::real))" | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 473 | from gt0 have "\<forall>n. ?g n \<le> f n" by simp | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 474 | moreover have "summable ?g" by (rule summable_zero) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 475 | moreover from sm have "summable f" . | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 476 | ultimately have "suminf ?g \<le> suminf f" by (rule summable_le) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 477 | then show "0 \<le> suminf f" by (simp add: suminf_zero) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 478 | qed | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 479 | |
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
17149diff
changeset | 480 | |
| 15085 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15053diff
changeset | 481 | text{*Absolute convergence imples normal convergence*}
 | 
| 20848 | 482 | lemma summable_norm_cancel: | 
| 483 | fixes f :: "nat \<Rightarrow> 'a::banach" | |
| 484 | shows "summable (\<lambda>n. norm (f n)) \<Longrightarrow> summable f" | |
| 20692 | 485 | apply (simp only: summable_Cauchy, safe) | 
| 486 | apply (drule_tac x="e" in spec, safe) | |
| 487 | apply (rule_tac x="N" in exI, safe) | |
| 488 | apply (drule_tac x="m" in spec, safe) | |
| 20848 | 489 | apply (rule order_le_less_trans [OF norm_setsum]) | 
| 490 | apply (rule order_le_less_trans [OF abs_ge_self]) | |
| 20692 | 491 | apply simp | 
| 14416 | 492 | done | 
| 493 | ||
| 20848 | 494 | lemma summable_rabs_cancel: | 
| 495 | fixes f :: "nat \<Rightarrow> real" | |
| 496 | shows "summable (\<lambda>n. \<bar>f n\<bar>) \<Longrightarrow> summable f" | |
| 497 | by (rule summable_norm_cancel, simp) | |
| 498 | ||
| 15085 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15053diff
changeset | 499 | text{*Absolute convergence of series*}
 | 
| 20848 | 500 | lemma summable_norm: | 
| 501 | fixes f :: "nat \<Rightarrow> 'a::banach" | |
| 502 | shows "summable (\<lambda>n. norm (f n)) \<Longrightarrow> norm (suminf f) \<le> (\<Sum>n. norm (f n))" | |
| 503 | by (auto intro: LIMSEQ_le LIMSEQ_norm summable_norm_cancel | |
| 504 | summable_sumr_LIMSEQ_suminf norm_setsum) | |
| 505 | ||
| 14416 | 506 | lemma summable_rabs: | 
| 20692 | 507 | fixes f :: "nat \<Rightarrow> real" | 
| 508 | shows "summable (\<lambda>n. \<bar>f n\<bar>) \<Longrightarrow> \<bar>suminf f\<bar> \<le> (\<Sum>n. \<bar>f n\<bar>)" | |
| 20848 | 509 | by (fold real_norm_def, rule summable_norm) | 
| 14416 | 510 | |
| 511 | subsection{* The Ratio Test*}
 | |
| 512 | ||
| 20848 | 513 | lemma norm_ratiotest_lemma: | 
| 22852 | 514 | fixes x y :: "'a::real_normed_vector" | 
| 20848 | 515 | shows "\<lbrakk>c \<le> 0; norm x \<le> c * norm y\<rbrakk> \<Longrightarrow> x = 0" | 
| 516 | apply (subgoal_tac "norm x \<le> 0", simp) | |
| 517 | apply (erule order_trans) | |
| 518 | apply (simp add: mult_le_0_iff) | |
| 519 | done | |
| 520 | ||
| 14416 | 521 | lemma rabs_ratiotest_lemma: "[| c \<le> 0; abs x \<le> c * abs y |] ==> x = (0::real)" | 
| 20848 | 522 | by (erule norm_ratiotest_lemma, simp) | 
| 14416 | 523 | |
| 524 | lemma le_Suc_ex: "(k::nat) \<le> l ==> (\<exists>n. l = k + n)" | |
| 525 | apply (drule le_imp_less_or_eq) | |
| 526 | apply (auto dest: less_imp_Suc_add) | |
| 527 | done | |
| 528 | ||
| 529 | lemma le_Suc_ex_iff: "((k::nat) \<le> l) = (\<exists>n. l = k + n)" | |
| 530 | by (auto simp add: le_Suc_ex) | |
| 531 | ||
| 532 | (*All this trouble just to get 0<c *) | |
| 533 | lemma ratio_test_lemma2: | |
| 20848 | 534 | fixes f :: "nat \<Rightarrow> 'a::banach" | 
| 535 | shows "\<lbrakk>\<forall>n\<ge>N. norm (f (Suc n)) \<le> c * norm (f n)\<rbrakk> \<Longrightarrow> 0 < c \<or> summable f" | |
| 14416 | 536 | apply (simp (no_asm) add: linorder_not_le [symmetric]) | 
| 537 | apply (simp add: summable_Cauchy) | |
| 15543 | 538 | apply (safe, subgoal_tac "\<forall>n. N < n --> f (n) = 0") | 
| 539 | prefer 2 | |
| 540 | apply clarify | |
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 541 | apply(erule_tac x = "n - Suc 0" in allE) | 
| 15543 | 542 | apply (simp add:diff_Suc split:nat.splits) | 
| 20848 | 543 | apply (blast intro: norm_ratiotest_lemma) | 
| 14416 | 544 | apply (rule_tac x = "Suc N" in exI, clarify) | 
| 15543 | 545 | apply(simp cong:setsum_ivl_cong) | 
| 14416 | 546 | done | 
| 547 | ||
| 548 | lemma ratio_test: | |
| 20848 | 549 | fixes f :: "nat \<Rightarrow> 'a::banach" | 
| 550 | shows "\<lbrakk>c < 1; \<forall>n\<ge>N. norm (f (Suc n)) \<le> c * norm (f n)\<rbrakk> \<Longrightarrow> summable f" | |
| 14416 | 551 | apply (frule ratio_test_lemma2, auto) | 
| 20848 | 552 | apply (rule_tac g = "%n. (norm (f N) / (c ^ N))*c ^ n" | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 553 | in summable_comparison_test) | 
| 14416 | 554 | apply (rule_tac x = N in exI, safe) | 
| 555 | apply (drule le_Suc_ex_iff [THEN iffD1]) | |
| 22959 | 556 | apply (auto simp add: power_add field_power_not_zero) | 
| 15539 | 557 | apply (induct_tac "na", auto) | 
| 20848 | 558 | apply (rule_tac y = "c * norm (f (N + n))" in order_trans) | 
| 14416 | 559 | apply (auto intro: mult_right_mono simp add: summable_def) | 
| 20848 | 560 | apply (rule_tac x = "norm (f N) * (1/ (1 - c)) / (c ^ N)" in exI) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 561 | apply (rule sums_divide) | 
| 27108 | 562 | apply (rule sums_mult) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 563 | apply (auto intro!: geometric_sums) | 
| 14416 | 564 | done | 
| 565 | ||
| 23111 | 566 | subsection {* Cauchy Product Formula *}
 | 
| 567 | ||
| 568 | (* Proof based on Analysis WebNotes: Chapter 07, Class 41 | |
| 569 | http://www.math.unl.edu/~webnotes/classes/class41/prp77.htm *) | |
| 570 | ||
| 571 | lemma setsum_triangle_reindex: | |
| 572 | fixes n :: nat | |
| 573 |   shows "(\<Sum>(i,j)\<in>{(i,j). i+j < n}. f i j) = (\<Sum>k=0..<n. \<Sum>i=0..k. f i (k - i))"
 | |
| 574 | proof - | |
| 575 |   have "(\<Sum>(i, j)\<in>{(i, j). i + j < n}. f i j) =
 | |
| 576 |     (\<Sum>(k, i)\<in>(SIGMA k:{0..<n}. {0..k}). f i (k - i))"
 | |
| 577 | proof (rule setsum_reindex_cong) | |
| 578 |     show "inj_on (\<lambda>(k,i). (i, k - i)) (SIGMA k:{0..<n}. {0..k})"
 | |
| 579 | by (rule inj_on_inverseI [where g="\<lambda>(i,j). (i+j, i)"], auto) | |
| 580 |     show "{(i,j). i + j < n} = (\<lambda>(k,i). (i, k - i)) ` (SIGMA k:{0..<n}. {0..k})"
 | |
| 581 | by (safe, rule_tac x="(a+b,a)" in image_eqI, auto) | |
| 582 | show "\<And>a. (\<lambda>(k, i). f i (k - i)) a = split f ((\<lambda>(k, i). (i, k - i)) a)" | |
| 583 | by clarify | |
| 584 | qed | |
| 585 | thus ?thesis by (simp add: setsum_Sigma) | |
| 586 | qed | |
| 587 | ||
| 588 | lemma Cauchy_product_sums: | |
| 589 |   fixes a b :: "nat \<Rightarrow> 'a::{real_normed_algebra,banach}"
 | |
| 590 | assumes a: "summable (\<lambda>k. norm (a k))" | |
| 591 | assumes b: "summable (\<lambda>k. norm (b k))" | |
| 592 | shows "(\<lambda>k. \<Sum>i=0..k. a i * b (k - i)) sums ((\<Sum>k. a k) * (\<Sum>k. b k))" | |
| 593 | proof - | |
| 594 |   let ?S1 = "\<lambda>n::nat. {0..<n} \<times> {0..<n}"
 | |
| 595 |   let ?S2 = "\<lambda>n::nat. {(i,j). i + j < n}"
 | |
| 596 | have S1_mono: "\<And>m n. m \<le> n \<Longrightarrow> ?S1 m \<subseteq> ?S1 n" by auto | |
| 597 | have S2_le_S1: "\<And>n. ?S2 n \<subseteq> ?S1 n" by auto | |
| 598 | have S1_le_S2: "\<And>n. ?S1 (n div 2) \<subseteq> ?S2 n" by auto | |
| 599 | have finite_S1: "\<And>n. finite (?S1 n)" by simp | |
| 600 | with S2_le_S1 have finite_S2: "\<And>n. finite (?S2 n)" by (rule finite_subset) | |
| 601 | ||
| 602 | let ?g = "\<lambda>(i,j). a i * b j" | |
| 603 | let ?f = "\<lambda>(i,j). norm (a i) * norm (b j)" | |
| 604 | have f_nonneg: "\<And>x. 0 \<le> ?f x" | |
| 605 | by (auto simp add: mult_nonneg_nonneg) | |
| 606 | hence norm_setsum_f: "\<And>A. norm (setsum ?f A) = setsum ?f A" | |
| 607 | unfolding real_norm_def | |
| 608 | by (simp only: abs_of_nonneg setsum_nonneg [rule_format]) | |
| 609 | ||
| 610 | have "(\<lambda>n. (\<Sum>k=0..<n. a k) * (\<Sum>k=0..<n. b k)) | |
| 611 | ----> (\<Sum>k. a k) * (\<Sum>k. b k)" | |
| 612 | by (intro LIMSEQ_mult summable_sumr_LIMSEQ_suminf | |
| 613 | summable_norm_cancel [OF a] summable_norm_cancel [OF b]) | |
| 614 | hence 1: "(\<lambda>n. setsum ?g (?S1 n)) ----> (\<Sum>k. a k) * (\<Sum>k. b k)" | |
| 615 | by (simp only: setsum_product setsum_Sigma [rule_format] | |
| 616 | finite_atLeastLessThan) | |
| 617 | ||
| 618 | have "(\<lambda>n. (\<Sum>k=0..<n. norm (a k)) * (\<Sum>k=0..<n. norm (b k))) | |
| 619 | ----> (\<Sum>k. norm (a k)) * (\<Sum>k. norm (b k))" | |
| 620 | using a b by (intro LIMSEQ_mult summable_sumr_LIMSEQ_suminf) | |
| 621 | hence "(\<lambda>n. setsum ?f (?S1 n)) ----> (\<Sum>k. norm (a k)) * (\<Sum>k. norm (b k))" | |
| 622 | by (simp only: setsum_product setsum_Sigma [rule_format] | |
| 623 | finite_atLeastLessThan) | |
| 624 | hence "convergent (\<lambda>n. setsum ?f (?S1 n))" | |
| 625 | by (rule convergentI) | |
| 626 | hence Cauchy: "Cauchy (\<lambda>n. setsum ?f (?S1 n))" | |
| 627 | by (rule convergent_Cauchy) | |
| 628 | have "Zseq (\<lambda>n. setsum ?f (?S1 n - ?S2 n))" | |
| 629 | proof (rule ZseqI, simp only: norm_setsum_f) | |
| 630 | fix r :: real | |
| 631 | assume r: "0 < r" | |
| 632 | from CauchyD [OF Cauchy r] obtain N | |
| 633 | where "\<forall>m\<ge>N. \<forall>n\<ge>N. norm (setsum ?f (?S1 m) - setsum ?f (?S1 n)) < r" .. | |
| 634 | hence "\<And>m n. \<lbrakk>N \<le> n; n \<le> m\<rbrakk> \<Longrightarrow> norm (setsum ?f (?S1 m - ?S1 n)) < r" | |
| 635 | by (simp only: setsum_diff finite_S1 S1_mono) | |
| 636 | hence N: "\<And>m n. \<lbrakk>N \<le> n; n \<le> m\<rbrakk> \<Longrightarrow> setsum ?f (?S1 m - ?S1 n) < r" | |
| 637 | by (simp only: norm_setsum_f) | |
| 638 | show "\<exists>N. \<forall>n\<ge>N. setsum ?f (?S1 n - ?S2 n) < r" | |
| 639 | proof (intro exI allI impI) | |
| 640 | fix n assume "2 * N \<le> n" | |
| 641 | hence n: "N \<le> n div 2" by simp | |
| 642 | have "setsum ?f (?S1 n - ?S2 n) \<le> setsum ?f (?S1 n - ?S1 (n div 2))" | |
| 643 | by (intro setsum_mono2 finite_Diff finite_S1 f_nonneg | |
| 644 | Diff_mono subset_refl S1_le_S2) | |
| 645 | also have "\<dots> < r" | |
| 646 | using n div_le_dividend by (rule N) | |
| 647 | finally show "setsum ?f (?S1 n - ?S2 n) < r" . | |
| 648 | qed | |
| 649 | qed | |
| 650 | hence "Zseq (\<lambda>n. setsum ?g (?S1 n - ?S2 n))" | |
| 651 | apply (rule Zseq_le [rule_format]) | |
| 652 | apply (simp only: norm_setsum_f) | |
| 653 | apply (rule order_trans [OF norm_setsum setsum_mono]) | |
| 654 | apply (auto simp add: norm_mult_ineq) | |
| 655 | done | |
| 656 | hence 2: "(\<lambda>n. setsum ?g (?S1 n) - setsum ?g (?S2 n)) ----> 0" | |
| 657 | by (simp only: LIMSEQ_Zseq_iff setsum_diff finite_S1 S2_le_S1 diff_0_right) | |
| 658 | ||
| 659 | with 1 have "(\<lambda>n. setsum ?g (?S2 n)) ----> (\<Sum>k. a k) * (\<Sum>k. b k)" | |
| 660 | by (rule LIMSEQ_diff_approach_zero2) | |
| 661 | thus ?thesis by (simp only: sums_def setsum_triangle_reindex) | |
| 662 | qed | |
| 663 | ||
| 664 | lemma Cauchy_product: | |
| 665 |   fixes a b :: "nat \<Rightarrow> 'a::{real_normed_algebra,banach}"
 | |
| 666 | assumes a: "summable (\<lambda>k. norm (a k))" | |
| 667 | assumes b: "summable (\<lambda>k. norm (b k))" | |
| 668 | shows "(\<Sum>k. a k) * (\<Sum>k. b k) = (\<Sum>k. \<Sum>i=0..k. a i * b (k - i))" | |
| 23441 | 669 | using a b | 
| 23111 | 670 | by (rule Cauchy_product_sums [THEN sums_unique]) | 
| 671 | ||
| 14416 | 672 | end |