src/HOL/Limits.thy
author wenzelm
Thu, 07 Nov 2019 11:00:11 +0100
changeset 71074 324c40205fc8
parent 70999 5b753486c075
child 71167 b4d409c65a76
permissions -rw-r--r--
clarified errors: include stdout;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
52265
bb907eba5902 tuned headers;
wenzelm
parents: 51642
diff changeset
     1
(*  Title:      HOL/Limits.thy
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     2
    Author:     Brian Huffman
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     3
    Author:     Jacques D. Fleuriot, University of Cambridge
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     4
    Author:     Lawrence C Paulson
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     5
    Author:     Jeremy Avigad
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     6
*)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     7
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
     8
section \<open>Limits on Real Vector Spaces\<close>
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     9
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    10
theory Limits
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    11
  imports Real_Vector_Spaces
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    12
begin
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    13
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    14
subsection \<open>Filter going to infinity norm\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
    15
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    16
definition at_infinity :: "'a::real_normed_vector filter"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    17
  where "at_infinity = (INF r. principal {x. r \<le> norm x})"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    18
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    19
lemma eventually_at_infinity: "eventually P at_infinity \<longleftrightarrow> (\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> P x)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    20
  unfolding at_infinity_def
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    21
  by (subst eventually_INF_base)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    22
     (auto simp: subset_eq eventually_principal intro!: exI[of _ "max a b" for a b])
31392
69570155ddf8 replace filters with filter bases
huffman
parents: 31357
diff changeset
    23
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    24
corollary eventually_at_infinity_pos:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    25
  "eventually p at_infinity \<longleftrightarrow> (\<exists>b. 0 < b \<and> (\<forall>x. norm x \<ge> b \<longrightarrow> p x))"
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    26
  unfolding eventually_at_infinity
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    27
  by (meson le_less_trans norm_ge_zero not_le zero_less_one)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    28
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    29
lemma at_infinity_eq_at_top_bot: "(at_infinity :: real filter) = sup at_top at_bot"
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    30
proof -
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    31
  have 1: "\<lbrakk>\<forall>n\<ge>u. A n; \<forall>n\<le>v. A n\<rbrakk>
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    32
       \<Longrightarrow> \<exists>b. \<forall>x. b \<le> \<bar>x\<bar> \<longrightarrow> A x" for A and u v::real
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    33
    by (rule_tac x="max (- v) u" in exI) (auto simp: abs_real_def)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    34
  have 2: "\<forall>x. u \<le> \<bar>x\<bar> \<longrightarrow> A x \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. A n" for A and u::real
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    35
    by (meson abs_less_iff le_cases less_le_not_le)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    36
  have 3: "\<forall>x. u \<le> \<bar>x\<bar> \<longrightarrow> A x \<Longrightarrow> \<exists>N. \<forall>n\<le>N. A n" for A and u::real
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    37
    by (metis (full_types) abs_ge_self abs_minus_cancel le_minus_iff order_trans)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    38
  show ?thesis
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
    39
    by (auto simp: filter_eq_iff eventually_sup eventually_at_infinity
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    40
      eventually_at_top_linorder eventually_at_bot_linorder intro: 1 2 3)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    41
qed
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    42
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    43
lemma at_top_le_at_infinity: "at_top \<le> (at_infinity :: real filter)"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    44
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    45
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    46
lemma at_bot_le_at_infinity: "at_bot \<le> (at_infinity :: real filter)"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    47
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    48
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    49
lemma filterlim_at_top_imp_at_infinity: "filterlim f at_top F \<Longrightarrow> filterlim f at_infinity F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    50
  for f :: "_ \<Rightarrow> real"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    51
  by (rule filterlim_mono[OF _ at_top_le_at_infinity order_refl])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    52
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
    53
lemma filterlim_real_at_infinity_sequentially: "filterlim real at_infinity sequentially"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
    54
  by (simp add: filterlim_at_top_imp_at_infinity filterlim_real_sequentially)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
    55
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    56
lemma lim_infinity_imp_sequentially: "(f \<longlongrightarrow> l) at_infinity \<Longrightarrow> ((\<lambda>n. f(n)) \<longlongrightarrow> l) sequentially"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    57
  by (simp add: filterlim_at_top_imp_at_infinity filterlim_compose filterlim_real_sequentially)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    58
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    59
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    60
subsubsection \<open>Boundedness\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    61
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    62
definition Bfun :: "('a \<Rightarrow> 'b::metric_space) \<Rightarrow> 'a filter \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    63
  where Bfun_metric_def: "Bfun f F = (\<exists>y. \<exists>K>0. eventually (\<lambda>x. dist (f x) y \<le> K) F)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    64
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    65
abbreviation Bseq :: "(nat \<Rightarrow> 'a::metric_space) \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    66
  where "Bseq X \<equiv> Bfun X sequentially"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    67
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    68
lemma Bseq_conv_Bfun: "Bseq X \<longleftrightarrow> Bfun X sequentially" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    69
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    70
lemma Bseq_ignore_initial_segment: "Bseq X \<Longrightarrow> Bseq (\<lambda>n. X (n + k))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    71
  unfolding Bfun_metric_def by (subst eventually_sequentially_seg)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    72
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    73
lemma Bseq_offset: "Bseq (\<lambda>n. X (n + k)) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    74
  unfolding Bfun_metric_def by (subst (asm) eventually_sequentially_seg)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    75
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    76
lemma Bfun_def: "Bfun f F \<longleftrightarrow> (\<exists>K>0. eventually (\<lambda>x. norm (f x) \<le> K) F)"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    77
  unfolding Bfun_metric_def norm_conv_dist
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    78
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    79
  fix y K
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    80
  assume K: "0 < K" and *: "eventually (\<lambda>x. dist (f x) y \<le> K) F"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    81
  moreover have "eventually (\<lambda>x. dist (f x) 0 \<le> dist (f x) y + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    82
    by (intro always_eventually) (metis dist_commute dist_triangle)
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    83
  with * have "eventually (\<lambda>x. dist (f x) 0 \<le> K + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    84
    by eventually_elim auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    85
  with \<open>0 < K\<close> show "\<exists>K>0. eventually (\<lambda>x. dist (f x) 0 \<le> K) F"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    86
    by (intro exI[of _ "K + dist 0 y"] add_pos_nonneg conjI zero_le_dist) auto
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    87
qed (force simp del: norm_conv_dist [symmetric])
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    88
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
    89
lemma BfunI:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    90
  assumes K: "eventually (\<lambda>x. norm (f x) \<le> K) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    91
  shows "Bfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    92
  unfolding Bfun_def
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    93
proof (intro exI conjI allI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    94
  show "0 < max K 1" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    95
  show "eventually (\<lambda>x. norm (f x) \<le> max K 1) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    96
    using K by (rule eventually_mono) simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    97
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    98
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    99
lemma BfunE:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   100
  assumes "Bfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   101
  obtains B where "0 < B" and "eventually (\<lambda>x. norm (f x) \<le> B) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   102
  using assms unfolding Bfun_def by blast
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   103
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   104
lemma Cauchy_Bseq:
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   105
  assumes "Cauchy X" shows "Bseq X"
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   106
proof -
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   107
  have "\<exists>y K. 0 < K \<and> (\<exists>N. \<forall>n\<ge>N. dist (X n) y \<le> K)"
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   108
    if "\<And>m n. \<lbrakk>m \<ge> M; n \<ge> M\<rbrakk> \<Longrightarrow> dist (X m) (X n) < 1" for M
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   109
    by (meson order.order_iff_strict that zero_less_one)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   110
  with assms show ?thesis
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   111
    by (force simp: Cauchy_def Bfun_metric_def eventually_sequentially)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   112
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   113
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   114
subsubsection \<open>Bounded Sequences\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   115
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   116
lemma BseqI': "(\<And>n. norm (X n) \<le> K) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   117
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   118
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   119
lemma BseqI2': "\<forall>n\<ge>N. norm (X n) \<le> K \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   120
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   121
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   122
lemma Bseq_def: "Bseq X \<longleftrightarrow> (\<exists>K>0. \<forall>n. norm (X n) \<le> K)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   123
  unfolding Bfun_def eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   124
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   125
  fix N K
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   126
  assume "0 < K" "\<forall>n\<ge>N. norm (X n) \<le> K"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   127
  then show "\<exists>K>0. \<forall>n. norm (X n) \<le> K"
54863
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 54263
diff changeset
   128
    by (intro exI[of _ "max (Max (norm ` X ` {..N})) K"] max.strict_coboundedI2)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   129
       (auto intro!: imageI not_less[where 'a=nat, THEN iffD1] Max_ge simp: le_max_iff_disj)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   130
qed auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   131
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   132
lemma BseqE: "Bseq X \<Longrightarrow> (\<And>K. 0 < K \<Longrightarrow> \<forall>n. norm (X n) \<le> K \<Longrightarrow> Q) \<Longrightarrow> Q"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   133
  unfolding Bseq_def by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   134
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   135
lemma BseqD: "Bseq X \<Longrightarrow> \<exists>K. 0 < K \<and> (\<forall>n. norm (X n) \<le> K)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   136
  by (simp add: Bseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   137
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   138
lemma BseqI: "0 < K \<Longrightarrow> \<forall>n. norm (X n) \<le> K \<Longrightarrow> Bseq X"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
   139
  by (auto simp: Bseq_def)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   140
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   141
lemma Bseq_bdd_above: "Bseq X \<Longrightarrow> bdd_above (range X)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   142
  for X :: "nat \<Rightarrow> real"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   143
proof (elim BseqE, intro bdd_aboveI2)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   144
  fix K n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   145
  assume "0 < K" "\<forall>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   146
  then show "X n \<le> K"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   147
    by (auto elim!: allE[of _ n])
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   148
qed
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   149
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   150
lemma Bseq_bdd_above': "Bseq X \<Longrightarrow> bdd_above (range (\<lambda>n. norm (X n)))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   151
  for X :: "nat \<Rightarrow> 'a :: real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   152
proof (elim BseqE, intro bdd_aboveI2)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   153
  fix K n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   154
  assume "0 < K" "\<forall>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   155
  then show "norm (X n) \<le> K"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   156
    by (auto elim!: allE[of _ n])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   157
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   158
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   159
lemma Bseq_bdd_below: "Bseq X \<Longrightarrow> bdd_below (range X)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   160
  for X :: "nat \<Rightarrow> real"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   161
proof (elim BseqE, intro bdd_belowI2)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   162
  fix K n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   163
  assume "0 < K" "\<forall>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   164
  then show "- K \<le> X n"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   165
    by (auto elim!: allE[of _ n])
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   166
qed
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   167
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   168
lemma Bseq_eventually_mono:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   169
  assumes "eventually (\<lambda>n. norm (f n) \<le> norm (g n)) sequentially" "Bseq g"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   170
  shows "Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   171
proof -
67958
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   172
  from assms(2) obtain K where "0 < K" and "eventually (\<lambda>n. norm (g n) \<le> K) sequentially"
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   173
    unfolding Bfun_def by fast
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   174
  with assms(1) have "eventually (\<lambda>n. norm (f n) \<le> K) sequentially"
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   175
    by (fast elim: eventually_elim2 order_trans)
69272
15e9ed5b28fb isabelle update_cartouches -t;
wenzelm
parents: 69064
diff changeset
   176
  with \<open>0 < K\<close> show "Bseq f"
67958
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   177
    unfolding Bfun_def by fast
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   178
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   179
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   180
lemma lemma_NBseq_def: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   181
proof safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   182
  fix K :: real
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   183
  from reals_Archimedean2 obtain n :: nat where "K < real n" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   184
  then have "K \<le> real (Suc n)" by auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   185
  moreover assume "\<forall>m. norm (X m) \<le> K"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   186
  ultimately have "\<forall>m. norm (X m) \<le> real (Suc n)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   187
    by (blast intro: order_trans)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   188
  then show "\<exists>N. \<forall>n. norm (X n) \<le> real (Suc N)" ..
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   189
next
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   190
  show "\<And>N. \<forall>n. norm (X n) \<le> real (Suc N) \<Longrightarrow> \<exists>K>0. \<forall>n. norm (X n) \<le> K"
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   191
    using of_nat_0_less_iff by blast
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   192
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   193
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   194
text \<open>Alternative definition for \<open>Bseq\<close>.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   195
lemma Bseq_iff: "Bseq X \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   196
  by (simp add: Bseq_def) (simp add: lemma_NBseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   197
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   198
lemma lemma_NBseq_def2: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   199
proof -
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   200
  have *: "\<And>N. \<forall>n. norm (X n) \<le> 1 + real N \<Longrightarrow>
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   201
         \<exists>N. \<forall>n. norm (X n) < 1 + real N"
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   202
    by (metis add.commute le_less_trans less_add_one of_nat_Suc)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   203
  then show ?thesis
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   204
    unfolding lemma_NBseq_def
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   205
    by (metis less_le_not_le not_less_iff_gr_or_eq of_nat_Suc)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   206
qed
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   207
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   208
text \<open>Yet another definition for Bseq.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   209
lemma Bseq_iff1a: "Bseq X \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) < real (Suc N))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   210
  by (simp add: Bseq_def lemma_NBseq_def2)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   211
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   212
subsubsection \<open>A Few More Equivalence Theorems for Boundedness\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   213
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   214
text \<open>Alternative formulation for boundedness.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   215
lemma Bseq_iff2: "Bseq X \<longleftrightarrow> (\<exists>k > 0. \<exists>x. \<forall>n. norm (X n + - x) \<le> k)"
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   216
  by (metis BseqE BseqI' add.commute add_cancel_right_left add_uminus_conv_diff norm_add_leD
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   217
            norm_minus_cancel norm_minus_commute)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   218
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   219
text \<open>Alternative formulation for boundedness.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   220
lemma Bseq_iff3: "Bseq X \<longleftrightarrow> (\<exists>k>0. \<exists>N. \<forall>n. norm (X n + - X N) \<le> k)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   221
  (is "?P \<longleftrightarrow> ?Q")
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   222
proof
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   223
  assume ?P
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   224
  then obtain K where *: "0 < K" and **: "\<And>n. norm (X n) \<le> K"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
   225
    by (auto simp: Bseq_def)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   226
  from * have "0 < K + norm (X 0)" by (rule order_less_le_trans) simp
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   227
  from ** have "\<forall>n. norm (X n - X 0) \<le> K + norm (X 0)"
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   228
    by (auto intro: order_trans norm_triangle_ineq4)
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   229
  then have "\<forall>n. norm (X n + - X 0) \<le> K + norm (X 0)"
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   230
    by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   231
  with \<open>0 < K + norm (X 0)\<close> show ?Q by blast
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   232
next
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   233
  assume ?Q
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
   234
  then show ?P by (auto simp: Bseq_iff2)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   235
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   236
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   237
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   238
subsubsection \<open>Upper Bounds and Lubs of Bounded Sequences\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   239
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   240
lemma Bseq_minus_iff: "Bseq (\<lambda>n. - (X n) :: 'a::real_normed_vector) \<longleftrightarrow> Bseq X"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   241
  by (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   242
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   243
lemma Bseq_add:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   244
  fixes f :: "nat \<Rightarrow> 'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   245
  assumes "Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   246
  shows "Bseq (\<lambda>x. f x + c)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   247
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   248
  from assms obtain K where K: "\<And>x. norm (f x) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   249
    unfolding Bseq_def by blast
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   250
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   251
    fix x :: nat
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   252
    have "norm (f x + c) \<le> norm (f x) + norm c" by (rule norm_triangle_ineq)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   253
    also have "norm (f x) \<le> K" by (rule K)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   254
    finally have "norm (f x + c) \<le> K + norm c" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   255
  }
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   256
  then show ?thesis by (rule BseqI')
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   257
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   258
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   259
lemma Bseq_add_iff: "Bseq (\<lambda>x. f x + c) \<longleftrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   260
  for f :: "nat \<Rightarrow> 'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   261
  using Bseq_add[of f c] Bseq_add[of "\<lambda>x. f x + c" "-c"] by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   262
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   263
lemma Bseq_mult:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   264
  fixes f g :: "nat \<Rightarrow> 'a::real_normed_field"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   265
  assumes "Bseq f" and "Bseq g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   266
  shows "Bseq (\<lambda>x. f x * g x)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   267
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   268
  from assms obtain K1 K2 where K: "norm (f x) \<le> K1" "K1 > 0" "norm (g x) \<le> K2" "K2 > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   269
    for x
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   270
    unfolding Bseq_def by blast
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   271
  then have "norm (f x * g x) \<le> K1 * K2" for x
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   272
    by (auto simp: norm_mult intro!: mult_mono)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   273
  then show ?thesis by (rule BseqI')
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   274
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   275
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   276
lemma Bfun_const [simp]: "Bfun (\<lambda>_. c) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   277
  unfolding Bfun_metric_def by (auto intro!: exI[of _ c] exI[of _ "1::real"])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   278
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   279
lemma Bseq_cmult_iff:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   280
  fixes c :: "'a::real_normed_field"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   281
  assumes "c \<noteq> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   282
  shows "Bseq (\<lambda>x. c * f x) \<longleftrightarrow> Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   283
proof
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   284
  assume "Bseq (\<lambda>x. c * f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   285
  with Bfun_const have "Bseq (\<lambda>x. inverse c * (c * f x))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   286
    by (rule Bseq_mult)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   287
  with \<open>c \<noteq> 0\<close> show "Bseq f"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70804
diff changeset
   288
    by (simp add: field_split_simps)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   289
qed (intro Bseq_mult Bfun_const)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   290
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   291
lemma Bseq_subseq: "Bseq f \<Longrightarrow> Bseq (\<lambda>x. f (g x))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   292
  for f :: "nat \<Rightarrow> 'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   293
  unfolding Bseq_def by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   294
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   295
lemma Bseq_Suc_iff: "Bseq (\<lambda>n. f (Suc n)) \<longleftrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   296
  for f :: "nat \<Rightarrow> 'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   297
  using Bseq_offset[of f 1] by (auto intro: Bseq_subseq)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   298
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   299
lemma increasing_Bseq_subseq_iff:
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
   300
  assumes "\<And>x y. x \<le> y \<Longrightarrow> norm (f x :: 'a::real_normed_vector) \<le> norm (f y)" "strict_mono g"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   301
  shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   302
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   303
  assume "Bseq (\<lambda>x. f (g x))"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   304
  then obtain K where K: "\<And>x. norm (f (g x)) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   305
    unfolding Bseq_def by auto
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   306
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   307
    fix x :: nat
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   308
    from filterlim_subseq[OF assms(2)] obtain y where "g y \<ge> x"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   309
      by (auto simp: filterlim_at_top eventually_at_top_linorder)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   310
    then have "norm (f x) \<le> norm (f (g y))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   311
      using assms(1) by blast
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   312
    also have "norm (f (g y)) \<le> K" by (rule K)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   313
    finally have "norm (f x) \<le> K" .
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   314
  }
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   315
  then show "Bseq f" by (rule BseqI')
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   316
qed (use Bseq_subseq[of f g] in simp_all)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   317
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   318
lemma nonneg_incseq_Bseq_subseq_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   319
  fixes f :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   320
    and g :: "nat \<Rightarrow> nat"
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
   321
  assumes "\<And>x. f x \<ge> 0" "incseq f" "strict_mono g"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   322
  shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   323
  using assms by (intro increasing_Bseq_subseq_iff) (auto simp: incseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   324
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   325
lemma Bseq_eq_bounded: "range f \<subseteq> {a..b} \<Longrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   326
  for a b :: real
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   327
proof (rule BseqI'[where K="max (norm a) (norm b)"])
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   328
  fix n assume "range f \<subseteq> {a..b}"
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   329
  then have "f n \<in> {a..b}"
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   330
    by blast
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   331
  then show "norm (f n) \<le> max (norm a) (norm b)"
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   332
    by auto
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   333
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   334
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   335
lemma incseq_bounded: "incseq X \<Longrightarrow> \<forall>i. X i \<le> B \<Longrightarrow> Bseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   336
  for B :: real
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   337
  by (intro Bseq_eq_bounded[of X "X 0" B]) (auto simp: incseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   338
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   339
lemma decseq_bounded: "decseq X \<Longrightarrow> \<forall>i. B \<le> X i \<Longrightarrow> Bseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   340
  for B :: real
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   341
  by (intro Bseq_eq_bounded[of X B "X 0"]) (auto simp: decseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   342
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   343
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   344
subsection \<open>Convergence to Zero\<close>
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   345
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   346
definition Zfun :: "('a \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   347
  where "Zfun f F = (\<forall>r>0. eventually (\<lambda>x. norm (f x) < r) F)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   348
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   349
lemma ZfunI: "(\<And>r. 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F) \<Longrightarrow> Zfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   350
  by (simp add: Zfun_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   351
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   352
lemma ZfunD: "Zfun f F \<Longrightarrow> 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   353
  by (simp add: Zfun_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   354
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   355
lemma Zfun_ssubst: "eventually (\<lambda>x. f x = g x) F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun f F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   356
  unfolding Zfun_def by (auto elim!: eventually_rev_mp)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   357
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   358
lemma Zfun_zero: "Zfun (\<lambda>x. 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   359
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   360
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   361
lemma Zfun_norm_iff: "Zfun (\<lambda>x. norm (f x)) F = Zfun (\<lambda>x. f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   362
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   363
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   364
lemma Zfun_imp_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   365
  assumes f: "Zfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   366
    and g: "eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   367
  shows "Zfun (\<lambda>x. g x) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   368
proof (cases "0 < K")
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   369
  case K: True
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   370
  show ?thesis
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   371
  proof (rule ZfunI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   372
    fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   373
    assume "0 < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   374
    then have "0 < r / K" using K by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   375
    then have "eventually (\<lambda>x. norm (f x) < r / K) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   376
      using ZfunD [OF f] by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   377
    with g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   378
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   379
      case (elim x)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   380
      then have "norm (f x) * K < r"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   381
        by (simp add: pos_less_divide_eq K)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   382
      then show ?case
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   383
        by (simp add: order_le_less_trans [OF elim(1)])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   384
    qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   385
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   386
next
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   387
  case False
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   388
  then have K: "K \<le> 0" by (simp only: not_less)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   389
  show ?thesis
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   390
  proof (rule ZfunI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   391
    fix r :: real
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   392
    assume "0 < r"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   393
    from g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   394
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   395
      case (elim x)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   396
      also have "norm (f x) * K \<le> norm (f x) * 0"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   397
        using K norm_ge_zero by (rule mult_left_mono)
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   398
      finally show ?case
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   399
        using \<open>0 < r\<close> by simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   400
    qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   401
  qed
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   402
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   403
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   404
lemma Zfun_le: "Zfun g F \<Longrightarrow> \<forall>x. norm (f x) \<le> norm (g x) \<Longrightarrow> Zfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   405
  by (erule Zfun_imp_Zfun [where K = 1]) simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   406
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   407
lemma Zfun_add:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   408
  assumes f: "Zfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   409
    and g: "Zfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   410
  shows "Zfun (\<lambda>x. f x + g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   411
proof (rule ZfunI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   412
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   413
  assume "0 < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   414
  then have r: "0 < r / 2" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   415
  have "eventually (\<lambda>x. norm (f x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   416
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   417
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   418
  have "eventually (\<lambda>x. norm (g x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   419
    using g r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   420
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   421
  show "eventually (\<lambda>x. norm (f x + g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   422
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   423
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   424
    have "norm (f x + g x) \<le> norm (f x) + norm (g x)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   425
      by (rule norm_triangle_ineq)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   426
    also have "\<dots> < r/2 + r/2"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   427
      using elim by (rule add_strict_mono)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   428
    finally show ?case
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   429
      by simp
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   430
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   431
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   432
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   433
lemma Zfun_minus: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. - f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   434
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   435
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   436
lemma Zfun_diff: "Zfun f F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun (\<lambda>x. f x - g x) F"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   437
  using Zfun_add [of f F "\<lambda>x. - g x"] by (simp add: Zfun_minus)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   438
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   439
lemma (in bounded_linear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   440
  assumes g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   441
  shows "Zfun (\<lambda>x. f (g x)) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   442
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   443
  obtain K where "norm (f x) \<le> norm x * K" for x
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   444
    using bounded by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   445
  then have "eventually (\<lambda>x. norm (f (g x)) \<le> norm (g x) * K) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   446
    by simp
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   447
  with g show ?thesis
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   448
    by (rule Zfun_imp_Zfun)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   449
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   450
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   451
lemma (in bounded_bilinear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   452
  assumes f: "Zfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   453
    and g: "Zfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   454
  shows "Zfun (\<lambda>x. f x ** g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   455
proof (rule ZfunI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   456
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   457
  assume r: "0 < r"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   458
  obtain K where K: "0 < K"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   459
    and norm_le: "norm (x ** y) \<le> norm x * norm y * K" for x y
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   460
    using pos_bounded by blast
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   461
  from K have K': "0 < inverse K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   462
    by (rule positive_imp_inverse_positive)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   463
  have "eventually (\<lambda>x. norm (f x) < r) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   464
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   465
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   466
  have "eventually (\<lambda>x. norm (g x) < inverse K) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   467
    using g K' by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   468
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   469
  show "eventually (\<lambda>x. norm (f x ** g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   470
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   471
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   472
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   473
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   474
    also have "norm (f x) * norm (g x) * K < r * inverse K * K"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   475
      by (intro mult_strict_right_mono mult_strict_mono' norm_ge_zero elim K)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   476
    also from K have "r * inverse K * K = r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   477
      by simp
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   478
    finally show ?case .
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   479
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   480
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   481
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   482
lemma (in bounded_bilinear) Zfun_left: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. f x ** a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   483
  by (rule bounded_linear_left [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   484
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   485
lemma (in bounded_bilinear) Zfun_right: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. a ** f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   486
  by (rule bounded_linear_right [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   487
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   488
lemmas Zfun_mult = bounded_bilinear.Zfun [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   489
lemmas Zfun_mult_right = bounded_bilinear.Zfun_right [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   490
lemmas Zfun_mult_left = bounded_bilinear.Zfun_left [OF bounded_bilinear_mult]
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   491
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   492
lemma tendsto_Zfun_iff: "(f \<longlongrightarrow> a) F = Zfun (\<lambda>x. f x - a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   493
  by (simp only: tendsto_iff Zfun_def dist_norm)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   494
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   495
lemma tendsto_0_le:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   496
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F \<Longrightarrow> (g \<longlongrightarrow> 0) F"
56366
0362c3bb4d02 new theorem about zero limits
paulson <lp15@cam.ac.uk>
parents: 56330
diff changeset
   497
  by (simp add: Zfun_imp_Zfun tendsto_Zfun_iff)
0362c3bb4d02 new theorem about zero limits
paulson <lp15@cam.ac.uk>
parents: 56330
diff changeset
   498
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   499
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   500
subsubsection \<open>Distance and norms\<close>
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   501
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   502
lemma tendsto_dist [tendsto_intros]:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   503
  fixes l m :: "'a::metric_space"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   504
  assumes f: "(f \<longlongrightarrow> l) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   505
    and g: "(g \<longlongrightarrow> m) F"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   506
  shows "((\<lambda>x. dist (f x) (g x)) \<longlongrightarrow> dist l m) F"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   507
proof (rule tendstoI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   508
  fix e :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   509
  assume "0 < e"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   510
  then have e2: "0 < e/2" by simp
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   511
  from tendstoD [OF f e2] tendstoD [OF g e2]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   512
  show "eventually (\<lambda>x. dist (dist (f x) (g x)) (dist l m) < e) F"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   513
  proof (eventually_elim)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   514
    case (elim x)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   515
    then show "dist (dist (f x) (g x)) (dist l m) < e"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   516
      unfolding dist_real_def
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   517
      using dist_triangle2 [of "f x" "g x" "l"]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   518
        and dist_triangle2 [of "g x" "l" "m"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   519
        and dist_triangle3 [of "l" "m" "f x"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   520
        and dist_triangle [of "f x" "m" "g x"]
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   521
      by arith
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   522
  qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   523
qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   524
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   525
lemma continuous_dist[continuous_intros]:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   526
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   527
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   528
  unfolding continuous_def by (rule tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   529
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   530
lemma continuous_on_dist[continuous_intros]:
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   531
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   532
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   533
  unfolding continuous_on_def by (auto intro: tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   534
69918
eddcc7c726f3 new material;' strengthened material; moved proofs out of Function_Topology in order to lessen its dependencies
paulson <lp15@cam.ac.uk>
parents: 69593
diff changeset
   535
lemma continuous_at_dist: "isCont (dist a) b"
eddcc7c726f3 new material;' strengthened material; moved proofs out of Function_Topology in order to lessen its dependencies
paulson <lp15@cam.ac.uk>
parents: 69593
diff changeset
   536
  using continuous_on_dist [OF continuous_on_const continuous_on_id] continuous_on_eq_continuous_within by blast
eddcc7c726f3 new material;' strengthened material; moved proofs out of Function_Topology in order to lessen its dependencies
paulson <lp15@cam.ac.uk>
parents: 69593
diff changeset
   537
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   538
lemma tendsto_norm [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> norm a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   539
  unfolding norm_conv_dist by (intro tendsto_intros)
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   540
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   541
lemma continuous_norm [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. norm (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   542
  unfolding continuous_def by (rule tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   543
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   544
lemma continuous_on_norm [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   545
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. norm (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   546
  unfolding continuous_on_def by (auto intro: tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   547
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   548
lemma tendsto_norm_zero: "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   549
  by (drule tendsto_norm) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   550
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   551
lemma tendsto_norm_zero_cancel: "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   552
  unfolding tendsto_iff dist_norm by simp
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   553
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   554
lemma tendsto_norm_zero_iff: "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   555
  unfolding tendsto_iff dist_norm by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   556
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   557
lemma tendsto_rabs [tendsto_intros]: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> \<bar>l\<bar>) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   558
  for l :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   559
  by (fold real_norm_def) (rule tendsto_norm)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   560
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   561
lemma continuous_rabs [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   562
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   563
  unfolding real_norm_def[symmetric] by (rule continuous_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   564
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   565
lemma continuous_on_rabs [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   566
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   567
  unfolding real_norm_def[symmetric] by (rule continuous_on_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   568
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   569
lemma tendsto_rabs_zero: "(f \<longlongrightarrow> (0::real)) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   570
  by (fold real_norm_def) (rule tendsto_norm_zero)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   571
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   572
lemma tendsto_rabs_zero_cancel: "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<Longrightarrow> (f \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   573
  by (fold real_norm_def) (rule tendsto_norm_zero_cancel)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   574
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   575
lemma tendsto_rabs_zero_iff: "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   576
  by (fold real_norm_def) (rule tendsto_norm_zero_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   577
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   578
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   579
subsection \<open>Topological Monoid\<close>
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   580
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   581
class topological_monoid_add = topological_space + monoid_add +
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   582
  assumes tendsto_add_Pair: "LIM x (nhds a \<times>\<^sub>F nhds b). fst x + snd x :> nhds (a + b)"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   583
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   584
class topological_comm_monoid_add = topological_monoid_add + comm_monoid_add
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   585
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   586
lemma tendsto_add [tendsto_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   587
  fixes a b :: "'a::topological_monoid_add"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   588
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> a + b) F"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   589
  using filterlim_compose[OF tendsto_add_Pair, of "\<lambda>x. (f x, g x)" a b F]
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   590
  by (simp add: nhds_prod[symmetric] tendsto_Pair)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   591
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   592
lemma continuous_add [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   593
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   594
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   595
  unfolding continuous_def by (rule tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   596
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   597
lemma continuous_on_add [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   598
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   599
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   600
  unfolding continuous_on_def by (auto intro: tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   601
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   602
lemma tendsto_add_zero:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   603
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   604
  shows "(f \<longlongrightarrow> 0) F \<Longrightarrow> (g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   605
  by (drule (1) tendsto_add) simp
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   606
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   607
lemma tendsto_sum [tendsto_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   608
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   609
  shows "(\<And>i. i \<in> I \<Longrightarrow> (f i \<longlongrightarrow> a i) F) \<Longrightarrow> ((\<lambda>x. \<Sum>i\<in>I. f i x) \<longlongrightarrow> (\<Sum>i\<in>I. a i)) F"
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   610
  by (induct I rule: infinite_finite_induct) (simp_all add: tendsto_add)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   611
67673
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   612
lemma tendsto_null_sum:
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   613
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add"
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   614
  assumes "\<And>i. i \<in> I \<Longrightarrow> ((\<lambda>x. f x i) \<longlongrightarrow> 0) F"
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   615
  shows "((\<lambda>i. sum (f i) I) \<longlongrightarrow> 0) F"
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   616
  using tendsto_sum [of I "\<lambda>x y. f y x" "\<lambda>x. 0"] assms by simp
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   617
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   618
lemma continuous_sum [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   619
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add"
63301
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   620
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Sum>i\<in>I. f i x)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   621
  unfolding continuous_def by (rule tendsto_sum)
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   622
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   623
lemma continuous_on_sum [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   624
  fixes f :: "'a \<Rightarrow> 'b::topological_space \<Rightarrow> 'c::topological_comm_monoid_add"
63301
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   625
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous_on S (f i)) \<Longrightarrow> continuous_on S (\<lambda>x. \<Sum>i\<in>I. f i x)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   626
  unfolding continuous_on_def by (auto intro: tendsto_sum)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   627
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   628
instance nat :: topological_comm_monoid_add
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   629
  by standard
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   630
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   631
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   632
instance int :: topological_comm_monoid_add
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   633
  by standard
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   634
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   635
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   636
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   637
subsubsection \<open>Topological group\<close>
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   638
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   639
class topological_group_add = topological_monoid_add + group_add +
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   640
  assumes tendsto_uminus_nhds: "(uminus \<longlongrightarrow> - a) (nhds a)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   641
begin
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   642
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   643
lemma tendsto_minus [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> - a) F"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   644
  by (rule filterlim_compose[OF tendsto_uminus_nhds])
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   645
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   646
end
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   647
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   648
class topological_ab_group_add = topological_group_add + ab_group_add
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   649
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   650
instance topological_ab_group_add < topological_comm_monoid_add ..
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   651
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   652
lemma continuous_minus [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. - f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   653
  for f :: "'a::t2_space \<Rightarrow> 'b::topological_group_add"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   654
  unfolding continuous_def by (rule tendsto_minus)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   655
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   656
lemma continuous_on_minus [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. - f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   657
  for f :: "_ \<Rightarrow> 'b::topological_group_add"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   658
  unfolding continuous_on_def by (auto intro: tendsto_minus)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   659
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   660
lemma tendsto_minus_cancel: "((\<lambda>x. - f x) \<longlongrightarrow> - a) F \<Longrightarrow> (f \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   661
  for a :: "'a::topological_group_add"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   662
  by (drule tendsto_minus) simp
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   663
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   664
lemma tendsto_minus_cancel_left:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   665
  "(f \<longlongrightarrow> - (y::_::topological_group_add)) F \<longleftrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> y) F"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   666
  using tendsto_minus_cancel[of f "- y" F]  tendsto_minus[of f "- y" F]
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   667
  by auto
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   668
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   669
lemma tendsto_diff [tendsto_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   670
  fixes a b :: "'a::topological_group_add"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   671
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> a - b) F"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   672
  using tendsto_add [of f a F "\<lambda>x. - g x" "- b"] by (simp add: tendsto_minus)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   673
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   674
lemma continuous_diff [continuous_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   675
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   676
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x - g x)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   677
  unfolding continuous_def by (rule tendsto_diff)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   678
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   679
lemma continuous_on_diff [continuous_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   680
  fixes f g :: "_ \<Rightarrow> 'b::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   681
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x - g x)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   682
  unfolding continuous_on_def by (auto intro: tendsto_diff)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   683
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67371
diff changeset
   684
lemma continuous_on_op_minus: "continuous_on (s::'a::topological_group_add set) ((-) x)"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   685
  by (rule continuous_intros | simp)+
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   686
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   687
instance real_normed_vector < topological_ab_group_add
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   688
proof
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   689
  fix a b :: 'a
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   690
  show "((\<lambda>x. fst x + snd x) \<longlongrightarrow> a + b) (nhds a \<times>\<^sub>F nhds b)"
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   691
    unfolding tendsto_Zfun_iff add_diff_add
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   692
    using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"]
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   693
    by (intro Zfun_add)
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
   694
       (auto simp: tendsto_Zfun_iff[symmetric] nhds_prod[symmetric] intro!: tendsto_fst)
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   695
  show "(uminus \<longlongrightarrow> - a) (nhds a)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   696
    unfolding tendsto_Zfun_iff minus_diff_minus
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   697
    using filterlim_ident[of "nhds a"]
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   698
    by (intro Zfun_minus) (simp add: tendsto_Zfun_iff)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   699
qed
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   700
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65036
diff changeset
   701
lemmas real_tendsto_sandwich = tendsto_sandwich[where 'a=real]
50999
3de230ed0547 introduce order topology
hoelzl
parents: 50880
diff changeset
   702
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   703
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   704
subsubsection \<open>Linear operators and multiplication\<close>
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   705
70999
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   706
lemma linear_times [simp]: "linear (\<lambda>x. c * x)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   707
  for c :: "'a::real_algebra"
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   708
  by (auto simp: linearI distrib_left)
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   709
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   710
lemma (in bounded_linear) tendsto: "(g \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> f a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   711
  by (simp only: tendsto_Zfun_iff diff [symmetric] Zfun)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   712
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   713
lemma (in bounded_linear) continuous: "continuous F g \<Longrightarrow> continuous F (\<lambda>x. f (g x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   714
  using tendsto[of g _ F] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   715
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   716
lemma (in bounded_linear) continuous_on: "continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f (g x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   717
  using tendsto[of g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   718
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   719
lemma (in bounded_linear) tendsto_zero: "(g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   720
  by (drule tendsto) (simp only: zero)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   721
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   722
lemma (in bounded_bilinear) tendsto:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   723
  "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x ** g x) \<longlongrightarrow> a ** b) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   724
  by (simp only: tendsto_Zfun_iff prod_diff_prod Zfun_add Zfun Zfun_left Zfun_right)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   725
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   726
lemma (in bounded_bilinear) continuous:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   727
  "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   728
  using tendsto[of f _ F g] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   729
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   730
lemma (in bounded_bilinear) continuous_on:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   731
  "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   732
  using tendsto[of f _ _ g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   733
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   734
lemma (in bounded_bilinear) tendsto_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   735
  assumes f: "(f \<longlongrightarrow> 0) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   736
    and g: "(g \<longlongrightarrow> 0) F"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   737
  shows "((\<lambda>x. f x ** g x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   738
  using tendsto [OF f g] by (simp add: zero_left)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   739
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   740
lemma (in bounded_bilinear) tendsto_left_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   741
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x ** c) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   742
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_left])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   743
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   744
lemma (in bounded_bilinear) tendsto_right_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   745
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. c ** f x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   746
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_right])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   747
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   748
lemmas tendsto_of_real [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   749
  bounded_linear.tendsto [OF bounded_linear_of_real]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   750
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   751
lemmas tendsto_scaleR [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   752
  bounded_bilinear.tendsto [OF bounded_bilinear_scaleR]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   753
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   754
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   755
text\<open>Analogous type class for multiplication\<close>
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   756
class topological_semigroup_mult = topological_space + semigroup_mult +
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   757
  assumes tendsto_mult_Pair: "LIM x (nhds a \<times>\<^sub>F nhds b). fst x * snd x :> nhds (a * b)"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   758
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   759
instance real_normed_algebra < topological_semigroup_mult
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   760
proof
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   761
  fix a b :: 'a
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   762
  show "((\<lambda>x. fst x * snd x) \<longlongrightarrow> a * b) (nhds a \<times>\<^sub>F nhds b)"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   763
    unfolding nhds_prod[symmetric]
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   764
    using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"]
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   765
    by (simp add: bounded_bilinear.tendsto [OF bounded_bilinear_mult])
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   766
qed
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   767
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   768
lemma tendsto_mult [tendsto_intros]:
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   769
  fixes a b :: "'a::topological_semigroup_mult"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   770
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x * g x) \<longlongrightarrow> a * b) F"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   771
  using filterlim_compose[OF tendsto_mult_Pair, of "\<lambda>x. (f x, g x)" a b F]
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   772
  by (simp add: nhds_prod[symmetric] tendsto_Pair)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   773
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   774
lemma tendsto_mult_left: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. c * (f x)) \<longlongrightarrow> c * l) F"
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   775
  for c :: "'a::topological_semigroup_mult"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   776
  by (rule tendsto_mult [OF tendsto_const])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   777
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   778
lemma tendsto_mult_right: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. (f x) * c) \<longlongrightarrow> l * c) F"
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   779
  for c :: "'a::topological_semigroup_mult"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   780
  by (rule tendsto_mult [OF _ tendsto_const])
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   781
70804
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   782
lemma tendsto_mult_left_iff [simp]:
70803
2d658afa1fc0 Generalised two results concerning limits from the real numbers to type classes
paulson <lp15@cam.ac.uk>
parents: 70723
diff changeset
   783
   "c \<noteq> 0 \<Longrightarrow> tendsto(\<lambda>x. c * f x) (c * l) F \<longleftrightarrow> tendsto f l F" for c :: "'a::{topological_semigroup_mult,field}"
70688
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
   784
  by (auto simp: tendsto_mult_left dest: tendsto_mult_left [where c = "1/c"])
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
   785
70804
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   786
lemma tendsto_mult_right_iff [simp]:
70803
2d658afa1fc0 Generalised two results concerning limits from the real numbers to type classes
paulson <lp15@cam.ac.uk>
parents: 70723
diff changeset
   787
   "c \<noteq> 0 \<Longrightarrow> tendsto(\<lambda>x. f x * c) (l * c) F \<longleftrightarrow> tendsto f l F" for c :: "'a::{topological_semigroup_mult,field}"
2d658afa1fc0 Generalised two results concerning limits from the real numbers to type classes
paulson <lp15@cam.ac.uk>
parents: 70723
diff changeset
   788
  by (auto simp: tendsto_mult_right dest: tendsto_mult_left [where c = "1/c"])
70688
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
   789
70804
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   790
lemma tendsto_zero_mult_left_iff [simp]:
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   791
  fixes c::"'a::{topological_semigroup_mult,field}" assumes "c \<noteq> 0" shows "(\<lambda>n. c * a n)\<longlonglongrightarrow> 0 \<longleftrightarrow> a \<longlonglongrightarrow> 0"
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   792
  using assms tendsto_mult_left tendsto_mult_left_iff by fastforce
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   793
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   794
lemma tendsto_zero_mult_right_iff [simp]:
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   795
  fixes c::"'a::{topological_semigroup_mult,field}" assumes "c \<noteq> 0" shows "(\<lambda>n. a n * c)\<longlonglongrightarrow> 0 \<longleftrightarrow> a \<longlonglongrightarrow> 0"
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   796
  using assms tendsto_mult_right tendsto_mult_right_iff by fastforce
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   797
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   798
lemma tendsto_zero_divide_iff [simp]:
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   799
  fixes c::"'a::{topological_semigroup_mult,field}" assumes "c \<noteq> 0" shows "(\<lambda>n. a n / c)\<longlonglongrightarrow> 0 \<longleftrightarrow> a \<longlonglongrightarrow> 0"
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   800
  using tendsto_zero_mult_right_iff [of "1/c" a] assms by (simp add: field_simps)
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   801
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 69918
diff changeset
   802
lemma lim_const_over_n [tendsto_intros]:
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 69918
diff changeset
   803
  fixes a :: "'a::real_normed_field"
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 69918
diff changeset
   804
  shows "(\<lambda>n. a / of_nat n) \<longlonglongrightarrow> 0"
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 69918
diff changeset
   805
  using tendsto_mult [OF tendsto_const [of a] lim_1_over_n] by simp
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 69918
diff changeset
   806
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   807
lemmas continuous_of_real [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   808
  bounded_linear.continuous [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   809
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   810
lemmas continuous_scaleR [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   811
  bounded_bilinear.continuous [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   812
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   813
lemmas continuous_mult [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   814
  bounded_bilinear.continuous [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   815
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   816
lemmas continuous_on_of_real [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   817
  bounded_linear.continuous_on [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   818
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   819
lemmas continuous_on_scaleR [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   820
  bounded_bilinear.continuous_on [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   821
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   822
lemmas continuous_on_mult [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   823
  bounded_bilinear.continuous_on [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   824
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   825
lemmas tendsto_mult_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   826
  bounded_bilinear.tendsto_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   827
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   828
lemmas tendsto_mult_left_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   829
  bounded_bilinear.tendsto_left_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   830
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   831
lemmas tendsto_mult_right_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   832
  bounded_bilinear.tendsto_right_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   833
68296
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   834
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   835
lemma continuous_mult_left:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   836
  fixes c::"'a::real_normed_algebra"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   837
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   838
by (rule continuous_mult [OF continuous_const])
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   839
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   840
lemma continuous_mult_right:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   841
  fixes c::"'a::real_normed_algebra"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   842
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   843
by (rule continuous_mult [OF _ continuous_const])
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   844
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   845
lemma continuous_on_mult_left:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   846
  fixes c::"'a::real_normed_algebra"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   847
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   848
by (rule continuous_on_mult [OF continuous_on_const])
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   849
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   850
lemma continuous_on_mult_right:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   851
  fixes c::"'a::real_normed_algebra"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   852
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   853
by (rule continuous_on_mult [OF _ continuous_on_const])
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   854
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   855
lemma continuous_on_mult_const [simp]:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   856
  fixes c::"'a::real_normed_algebra"
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 68860
diff changeset
   857
  shows "continuous_on s ((*) c)"
68296
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   858
  by (intro continuous_on_mult_left continuous_on_id)
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   859
66793
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   860
lemma tendsto_divide_zero:
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   861
  fixes c :: "'a::real_normed_field"
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   862
  shows "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x / c) \<longlongrightarrow> 0) F"
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   863
  by (cases "c=0") (simp_all add: divide_inverse tendsto_mult_left_zero)
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   864
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   865
lemma tendsto_power [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> a ^ n) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   866
  for f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra}"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57512
diff changeset
   867
  by (induct n) (simp_all add: tendsto_mult)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   868
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   869
lemma tendsto_null_power: "\<lbrakk>(f \<longlongrightarrow> 0) F; 0 < n\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> 0) F"
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   870
    for f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra_1}"
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   871
  using tendsto_power [of f 0 F n] by (simp add: power_0_left)
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   872
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   873
lemma continuous_power [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. (f x)^n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   874
  for f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   875
  unfolding continuous_def by (rule tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   876
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   877
lemma continuous_on_power [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   878
  fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   879
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. (f x)^n)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   880
  unfolding continuous_on_def by (auto intro: tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   881
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   882
lemma tendsto_prod [tendsto_intros]:
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   883
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   884
  shows "(\<And>i. i \<in> S \<Longrightarrow> (f i \<longlongrightarrow> L i) F) \<Longrightarrow> ((\<lambda>x. \<Prod>i\<in>S. f i x) \<longlongrightarrow> (\<Prod>i\<in>S. L i)) F"
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   885
  by (induct S rule: infinite_finite_induct) (simp_all add: tendsto_mult)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   886
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   887
lemma continuous_prod [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   888
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   889
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Prod>i\<in>S. f i x)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   890
  unfolding continuous_def by (rule tendsto_prod)
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   891
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   892
lemma continuous_on_prod [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   893
  fixes f :: "'a \<Rightarrow> _ \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   894
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous_on s (f i)) \<Longrightarrow> continuous_on s (\<lambda>x. \<Prod>i\<in>S. f i x)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   895
  unfolding continuous_on_def by (auto intro: tendsto_prod)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   896
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   897
lemma tendsto_of_real_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   898
  "((\<lambda>x. of_real (f x) :: 'a::real_normed_div_algebra) \<longlongrightarrow> of_real c) F \<longleftrightarrow> (f \<longlongrightarrow> c) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   899
  unfolding tendsto_iff by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   900
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   901
lemma tendsto_add_const_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   902
  "((\<lambda>x. c + f x :: 'a::real_normed_vector) \<longlongrightarrow> c + d) F \<longleftrightarrow> (f \<longlongrightarrow> d) F"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   903
  using tendsto_add[OF tendsto_const[of c], of f d]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   904
    and tendsto_add[OF tendsto_const[of "-c"], of "\<lambda>x. c + f x" "c + d"] by auto
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   905
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   906
68860
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   907
class topological_monoid_mult = topological_semigroup_mult + monoid_mult
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   908
class topological_comm_monoid_mult = topological_monoid_mult + comm_monoid_mult
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   909
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   910
lemma tendsto_power_strong [tendsto_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   911
  fixes f :: "_ \<Rightarrow> 'b :: topological_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   912
  assumes "(f \<longlongrightarrow> a) F" "(g \<longlongrightarrow> b) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   913
  shows   "((\<lambda>x. f x ^ g x) \<longlongrightarrow> a ^ b) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   914
proof -
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   915
  have "((\<lambda>x. f x ^ b) \<longlongrightarrow> a ^ b) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   916
    by (induction b) (auto intro: tendsto_intros assms)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   917
  also from assms(2) have "eventually (\<lambda>x. g x = b) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   918
    by (simp add: nhds_discrete filterlim_principal)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   919
  hence "eventually (\<lambda>x. f x ^ b = f x ^ g x) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   920
    by eventually_elim simp
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   921
  hence "((\<lambda>x. f x ^ b) \<longlongrightarrow> a ^ b) F \<longleftrightarrow> ((\<lambda>x. f x ^ g x) \<longlongrightarrow> a ^ b) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   922
    by (intro filterlim_cong refl)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   923
  finally show ?thesis .
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   924
qed
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   925
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   926
lemma continuous_mult' [continuous_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   927
  fixes f g :: "_ \<Rightarrow> 'b::topological_semigroup_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   928
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x * g x)"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   929
  unfolding continuous_def by (rule tendsto_mult)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   930
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   931
lemma continuous_power' [continuous_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   932
  fixes f :: "_ \<Rightarrow> 'b::topological_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   933
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x ^ g x)"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   934
  unfolding continuous_def by (rule tendsto_power_strong) auto
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   935
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   936
lemma continuous_on_mult' [continuous_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   937
  fixes f g :: "_ \<Rightarrow> 'b::topological_semigroup_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   938
  shows "continuous_on A f \<Longrightarrow> continuous_on A g \<Longrightarrow> continuous_on A (\<lambda>x. f x * g x)"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   939
  unfolding continuous_on_def by (auto intro: tendsto_mult)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   940
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   941
lemma continuous_on_power' [continuous_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   942
  fixes f :: "_ \<Rightarrow> 'b::topological_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   943
  shows "continuous_on A f \<Longrightarrow> continuous_on A g \<Longrightarrow> continuous_on A (\<lambda>x. f x ^ g x)"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   944
  unfolding continuous_on_def by (auto intro: tendsto_power_strong)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   945
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   946
lemma tendsto_mult_one:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   947
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   948
  shows "(f \<longlongrightarrow> 1) F \<Longrightarrow> (g \<longlongrightarrow> 1) F \<Longrightarrow> ((\<lambda>x. f x * g x) \<longlongrightarrow> 1) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   949
  by (drule (1) tendsto_mult) simp
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   950
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   951
lemma tendsto_prod' [tendsto_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   952
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   953
  shows "(\<And>i. i \<in> I \<Longrightarrow> (f i \<longlongrightarrow> a i) F) \<Longrightarrow> ((\<lambda>x. \<Prod>i\<in>I. f i x) \<longlongrightarrow> (\<Prod>i\<in>I. a i)) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   954
  by (induct I rule: infinite_finite_induct) (simp_all add: tendsto_mult)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   955
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   956
lemma tendsto_one_prod':
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   957
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   958
  assumes "\<And>i. i \<in> I \<Longrightarrow> ((\<lambda>x. f x i) \<longlongrightarrow> 1) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   959
  shows "((\<lambda>i. prod (f i) I) \<longlongrightarrow> 1) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   960
  using tendsto_prod' [of I "\<lambda>x y. f y x" "\<lambda>x. 1"] assms by simp
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   961
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   962
lemma continuous_prod' [continuous_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   963
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   964
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Prod>i\<in>I. f i x)"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   965
  unfolding continuous_def by (rule tendsto_prod')
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   966
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   967
lemma continuous_on_prod' [continuous_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   968
  fixes f :: "'a \<Rightarrow> 'b::topological_space \<Rightarrow> 'c::topological_comm_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   969
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous_on S (f i)) \<Longrightarrow> continuous_on S (\<lambda>x. \<Prod>i\<in>I. f i x)"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   970
  unfolding continuous_on_def by (auto intro: tendsto_prod')
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   971
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   972
instance nat :: topological_comm_monoid_mult
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   973
  by standard
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   974
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   975
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   976
instance int :: topological_comm_monoid_mult
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   977
  by standard
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   978
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   979
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   980
class comm_real_normed_algebra_1 = real_normed_algebra_1 + comm_monoid_mult
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   981
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   982
context real_normed_field
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   983
begin
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   984
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   985
subclass comm_real_normed_algebra_1
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   986
proof
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   987
  from norm_mult[of "1 :: 'a" 1] show "norm 1 = 1" by simp 
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   988
qed (simp_all add: norm_mult)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   989
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   990
end
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   991
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   992
subsubsection \<open>Inverse and division\<close>
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   993
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   994
lemma (in bounded_bilinear) Zfun_prod_Bfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   995
  assumes f: "Zfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   996
    and g: "Bfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   997
  shows "Zfun (\<lambda>x. f x ** g x) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   998
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   999
  obtain K where K: "0 \<le> K"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1000
    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1001
    using nonneg_bounded by blast
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1002
  obtain B where B: "0 < B"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1003
    and norm_g: "eventually (\<lambda>x. norm (g x) \<le> B) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1004
    using g by (rule BfunE)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1005
  have "eventually (\<lambda>x. norm (f x ** g x) \<le> norm (f x) * (B * K)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
  1006
  using norm_g proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
  1007
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1008
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1009
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1010
    also have "\<dots> \<le> norm (f x) * B * K"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1011
      by (intro mult_mono' order_refl norm_g norm_ge_zero mult_nonneg_nonneg K elim)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1012
    also have "\<dots> = norm (f x) * (B * K)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
  1013
      by (rule mult.assoc)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1014
    finally show "norm (f x ** g x) \<le> norm (f x) * (B * K)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1015
  qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1016
  with f show ?thesis
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1017
    by (rule Zfun_imp_Zfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1018
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1019
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1020
lemma (in bounded_bilinear) Bfun_prod_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1021
  assumes f: "Bfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1022
    and g: "Zfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1023
  shows "Zfun (\<lambda>x. f x ** g x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
  1024
  using flip g f by (rule bounded_bilinear.Zfun_prod_Bfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1025
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1026
lemma Bfun_inverse:
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1027
  fixes a :: "'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1028
  assumes f: "(f \<longlongrightarrow> a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1029
  assumes a: "a \<noteq> 0"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1030
  shows "Bfun (\<lambda>x. inverse (f x)) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1031
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1032
  from a have "0 < norm a" by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1033
  then have "\<exists>r>0. r < norm a" by (rule dense)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1034
  then obtain r where r1: "0 < r" and r2: "r < norm a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1035
    by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1036
  have "eventually (\<lambda>x. dist (f x) a < r) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1037
    using tendstoD [OF f r1] by blast
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1038
  then have "eventually (\<lambda>x. norm (inverse (f x)) \<le> inverse (norm a - r)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
  1039
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
  1040
    case (elim x)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1041
    then have 1: "norm (f x - a) < r"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1042
      by (simp add: dist_norm)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1043
    then have 2: "f x \<noteq> 0" using r2 by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1044
    then have "norm (inverse (f x)) = inverse (norm (f x))"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1045
      by (rule nonzero_norm_inverse)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1046
    also have "\<dots> \<le> inverse (norm a - r)"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1047
    proof (rule le_imp_inverse_le)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1048
      show "0 < norm a - r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1049
        using r2 by simp
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1050
      have "norm a - norm (f x) \<le> norm (a - f x)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1051
        by (rule norm_triangle_ineq2)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1052
      also have "\<dots> = norm (f x - a)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1053
        by (rule norm_minus_commute)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1054
      also have "\<dots> < r" using 1 .
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1055
      finally show "norm a - r \<le> norm (f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1056
        by simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1057
    qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1058
    finally show "norm (inverse (f x)) \<le> inverse (norm a - r)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1059
  qed
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1060
  then show ?thesis by (rule BfunI)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1061
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1062
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
  1063
lemma tendsto_inverse [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1064
  fixes a :: "'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1065
  assumes f: "(f \<longlongrightarrow> a) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1066
    and a: "a \<noteq> 0"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1067
  shows "((\<lambda>x. inverse (f x)) \<longlongrightarrow> inverse a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1068
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1069
  from a have "0 < norm a" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1070
  with f have "eventually (\<lambda>x. dist (f x) a < norm a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1071
    by (rule tendstoD)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1072
  then have "eventually (\<lambda>x. f x \<noteq> 0) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1073
    unfolding dist_norm by (auto elim!: eventually_mono)
44627
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1074
  with a have "eventually (\<lambda>x. inverse (f x) - inverse a =
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1075
    - (inverse (f x) * (f x - a) * inverse a)) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1076
    by (auto elim!: eventually_mono simp: inverse_diff_inverse)
44627
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1077
  moreover have "Zfun (\<lambda>x. - (inverse (f x) * (f x - a) * inverse a)) F"
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1078
    by (intro Zfun_minus Zfun_mult_left
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1079
      bounded_bilinear.Bfun_prod_Zfun [OF bounded_bilinear_mult]
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1080
      Bfun_inverse [OF f a] f [unfolded tendsto_Zfun_iff])
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1081
  ultimately show ?thesis
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1082
    unfolding tendsto_Zfun_iff by (rule Zfun_ssubst)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1083
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1084
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1085
lemma continuous_inverse:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1086
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1087
  assumes "continuous F f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1088
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1089
  shows "continuous F (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1090
  using assms unfolding continuous_def by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1091
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1092
lemma continuous_at_within_inverse[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1093
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1094
  assumes "continuous (at a within s) f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1095
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1096
  shows "continuous (at a within s) (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1097
  using assms unfolding continuous_within by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1098
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1099
lemma continuous_on_inverse[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1100
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1101
  assumes "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1102
    and "\<forall>x\<in>s. f x \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1103
  shows "continuous_on s (\<lambda>x. inverse (f x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1104
  using assms unfolding continuous_on_def by (blast intro: tendsto_inverse)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1105
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
  1106
lemma tendsto_divide [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1107
  fixes a b :: "'a::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1108
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> ((\<lambda>x. f x / g x) \<longlongrightarrow> a / b) F"
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
  1109
  by (simp add: tendsto_mult tendsto_inverse divide_inverse)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1110
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1111
lemma continuous_divide:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1112
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1113
  assumes "continuous F f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1114
    and "continuous F g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1115
    and "g (Lim F (\<lambda>x. x)) \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1116
  shows "continuous F (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1117
  using assms unfolding continuous_def by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1118
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1119
lemma continuous_at_within_divide[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1120
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1121
  assumes "continuous (at a within s) f" "continuous (at a within s) g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1122
    and "g a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1123
  shows "continuous (at a within s) (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1124
  using assms unfolding continuous_within by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1125
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1126
lemma isCont_divide[continuous_intros, simp]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1127
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1128
  assumes "isCont f a" "isCont g a" "g a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1129
  shows "isCont (\<lambda>x. (f x) / g x) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1130
  using assms unfolding continuous_at by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1131
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1132
lemma continuous_on_divide[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1133
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1134
  assumes "continuous_on s f" "continuous_on s g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1135
    and "\<forall>x\<in>s. g x \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1136
  shows "continuous_on s (\<lambda>x. (f x) / (g x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1137
  using assms unfolding continuous_on_def by (blast intro: tendsto_divide)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1138
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1139
lemma tendsto_sgn [tendsto_intros]: "(f \<longlongrightarrow> l) F \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> ((\<lambda>x. sgn (f x)) \<longlongrightarrow> sgn l) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1140
  for l :: "'a::real_normed_vector"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
  1141
  unfolding sgn_div_norm by (simp add: tendsto_intros)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
  1142
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1143
lemma continuous_sgn:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1144
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1145
  assumes "continuous F f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1146
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1147
  shows "continuous F (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1148
  using assms unfolding continuous_def by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1149
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1150
lemma continuous_at_within_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1151
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1152
  assumes "continuous (at a within s) f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1153
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1154
  shows "continuous (at a within s) (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1155
  using assms unfolding continuous_within by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1156
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1157
lemma isCont_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1158
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1159
  assumes "isCont f a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1160
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1161
  shows "isCont (\<lambda>x. sgn (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1162
  using assms unfolding continuous_at by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1163
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1164
lemma continuous_on_sgn[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1165
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1166
  assumes "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1167
    and "\<forall>x\<in>s. f x \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1168
  shows "continuous_on s (\<lambda>x. sgn (f x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1169
  using assms unfolding continuous_on_def by (blast intro: tendsto_sgn)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1170
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1171
lemma filterlim_at_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1172
  fixes f :: "_ \<Rightarrow> 'a::real_normed_vector"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1173
  assumes "0 \<le> c"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1174
  shows "(LIM x F. f x :> at_infinity) \<longleftrightarrow> (\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1175
  unfolding filterlim_iff eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1176
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1177
  fix P :: "'a \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1178
  fix b
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1179
  assume *: "\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1180
  assume P: "\<forall>x. b \<le> norm x \<longrightarrow> P x"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1181
  have "max b (c + 1) > c" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1182
  with * have "eventually (\<lambda>x. max b (c + 1) \<le> norm (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1183
    by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1184
  then show "eventually (\<lambda>x. P (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1185
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1186
    case (elim x)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1187
    with P show "P (f x)" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1188
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1189
qed force
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1190
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1191
lemma filterlim_at_infinity_imp_norm_at_top:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1192
  fixes F
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1193
  assumes "filterlim f at_infinity F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1194
  shows   "filterlim (\<lambda>x. norm (f x)) at_top F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1195
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1196
  {
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1197
    fix r :: real
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1198
    have "\<forall>\<^sub>F x in F. r \<le> norm (f x)" using filterlim_at_infinity[of 0 f F] assms
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1199
      by (cases "r > 0")
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1200
         (auto simp: not_less intro: always_eventually order.trans[OF _ norm_ge_zero])
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1201
  }
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1202
  thus ?thesis by (auto simp: filterlim_at_top)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1203
qed
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1204
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1205
lemma filterlim_norm_at_top_imp_at_infinity:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1206
  fixes F
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1207
  assumes "filterlim (\<lambda>x. norm (f x)) at_top F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1208
  shows   "filterlim f at_infinity F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1209
  using filterlim_at_infinity[of 0 f F] assms by (auto simp: filterlim_at_top)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1210
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1211
lemma filterlim_norm_at_top: "filterlim norm at_top at_infinity"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1212
  by (rule filterlim_at_infinity_imp_norm_at_top) (rule filterlim_ident)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1213
67950
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1214
lemma filterlim_at_infinity_conv_norm_at_top:
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1215
  "filterlim f at_infinity G \<longleftrightarrow> filterlim (\<lambda>x. norm (f x)) at_top G"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1216
  by (auto simp: filterlim_at_infinity[OF order.refl] filterlim_at_top_gt[of _ _ 0])
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1217
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1218
lemma eventually_not_equal_at_infinity:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1219
  "eventually (\<lambda>x. x \<noteq> (a :: 'a :: {real_normed_vector})) at_infinity"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1220
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1221
  from filterlim_norm_at_top[where 'a = 'a]
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1222
    have "\<forall>\<^sub>F x in at_infinity. norm a < norm (x::'a)" by (auto simp: filterlim_at_top_dense)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1223
  thus ?thesis by eventually_elim auto
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1224
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1225
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1226
lemma filterlim_int_of_nat_at_topD:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1227
  fixes F
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1228
  assumes "filterlim (\<lambda>x. f (int x)) F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1229
  shows   "filterlim f F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1230
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1231
  have "filterlim (\<lambda>x. f (int (nat x))) F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1232
    by (rule filterlim_compose[OF assms filterlim_nat_sequentially])
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1233
  also have "?this \<longleftrightarrow> filterlim f F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1234
    by (intro filterlim_cong refl eventually_mono [OF eventually_ge_at_top[of "0::int"]]) auto
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1235
  finally show ?thesis .
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1236
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1237
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1238
lemma filterlim_int_sequentially [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1239
  "filterlim int at_top sequentially"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1240
  unfolding filterlim_at_top
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1241
proof
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1242
  fix C :: int
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1243
  show "eventually (\<lambda>n. int n \<ge> C) at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1244
    using eventually_ge_at_top[of "nat \<lceil>C\<rceil>"] by eventually_elim linarith
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1245
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1246
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1247
lemma filterlim_real_of_int_at_top [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1248
  "filterlim real_of_int at_top at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1249
  unfolding filterlim_at_top
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1250
proof
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1251
  fix C :: real
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1252
  show "eventually (\<lambda>n. real_of_int n \<ge> C) at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1253
    using eventually_ge_at_top[of "\<lceil>C\<rceil>"] by eventually_elim linarith
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1254
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1255
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1256
lemma filterlim_abs_real: "filterlim (abs::real \<Rightarrow> real) at_top at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1257
proof (subst filterlim_cong[OF refl refl])
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1258
  from eventually_ge_at_top[of "0::real"] show "eventually (\<lambda>x::real. \<bar>x\<bar> = x) at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1259
    by eventually_elim simp
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1260
qed (simp_all add: filterlim_ident)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1261
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1262
lemma filterlim_of_real_at_infinity [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1263
  "filterlim (of_real :: real \<Rightarrow> 'a :: real_normed_algebra_1) at_infinity at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1264
  by (intro filterlim_norm_at_top_imp_at_infinity) (auto simp: filterlim_abs_real)
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1265
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1266
lemma not_tendsto_and_filterlim_at_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1267
  fixes c :: "'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1268
  assumes "F \<noteq> bot"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1269
    and "(f \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1270
    and "filterlim f at_infinity F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1271
  shows False
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1272
proof -
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1273
  from tendstoD[OF assms(2), of "1/2"]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1274
  have "eventually (\<lambda>x. dist (f x) c < 1/2) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1275
    by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1276
  moreover
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1277
  from filterlim_at_infinity[of "norm c" f F] assms(3)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1278
  have "eventually (\<lambda>x. norm (f x) \<ge> norm c + 1) F" by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1279
  ultimately have "eventually (\<lambda>x. False) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1280
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1281
    fix x
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1282
    assume A: "dist (f x) c < 1/2"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1283
    assume "norm (f x) \<ge> norm c + 1"
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1284
    also have "norm (f x) = dist (f x) 0" by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1285
    also have "\<dots> \<le> dist (f x) c + dist c 0" by (rule dist_triangle)
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1286
    finally show False using A by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1287
  qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1288
  with assms show False by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1289
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1290
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1291
lemma filterlim_at_infinity_imp_not_convergent:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1292
  assumes "filterlim f at_infinity sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1293
  shows "\<not> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1294
  by (rule notI, rule not_tendsto_and_filterlim_at_infinity[OF _ _ assms])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1295
     (simp_all add: convergent_LIMSEQ_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1296
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1297
lemma filterlim_at_infinity_imp_eventually_ne:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1298
  assumes "filterlim f at_infinity F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1299
  shows "eventually (\<lambda>z. f z \<noteq> c) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1300
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1301
  have "norm c + 1 > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1302
    by (intro add_nonneg_pos) simp_all
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1303
  with filterlim_at_infinity[OF order.refl, of f F] assms
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1304
  have "eventually (\<lambda>z. norm (f z) \<ge> norm c + 1) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1305
    by blast
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1306
  then show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1307
    by eventually_elim auto
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1308
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1309
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1310
lemma tendsto_of_nat [tendsto_intros]:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1311
  "filterlim (of_nat :: nat \<Rightarrow> 'a::real_normed_algebra_1) at_infinity sequentially"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1312
proof (subst filterlim_at_infinity[OF order.refl], intro allI impI)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1313
  fix r :: real
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1314
  assume r: "r > 0"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1315
  define n where "n = nat \<lceil>r\<rceil>"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1316
  from r have n: "\<forall>m\<ge>n. of_nat m \<ge> r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1317
    unfolding n_def by linarith
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1318
  from eventually_ge_at_top[of n] show "eventually (\<lambda>m. norm (of_nat m :: 'a) \<ge> r) sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1319
    by eventually_elim (use n in simp_all)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1320
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1321
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1322
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  1323
subsection \<open>Relate \<^const>\<open>at\<close>, \<^const>\<open>at_left\<close> and \<^const>\<open>at_right\<close>\<close>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1324
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1325
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  1326
  This lemmas are useful for conversion between \<^term>\<open>at x\<close> to \<^term>\<open>at_left x\<close> and
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  1327
  \<^term>\<open>at_right x\<close> and also \<^term>\<open>at_right 0\<close>.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1328
\<close>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1329
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1330
lemmas filterlim_split_at_real = filterlim_split_at[where 'a=real]
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1331
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1332
lemma filtermap_nhds_shift: "filtermap (\<lambda>x. x - d) (nhds a) = nhds (a - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1333
  for a d :: "'a::real_normed_vector"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1334
  by (rule filtermap_fun_inverse[where g="\<lambda>x. x + d"])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1335
    (auto intro!: tendsto_eq_intros filterlim_ident)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1336
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1337
lemma filtermap_nhds_minus: "filtermap (\<lambda>x. - x) (nhds a) = nhds (- a)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1338
  for a :: "'a::real_normed_vector"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1339
  by (rule filtermap_fun_inverse[where g=uminus])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1340
    (auto intro!: tendsto_eq_intros filterlim_ident)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1341
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1342
lemma filtermap_at_shift: "filtermap (\<lambda>x. x - d) (at a) = at (a - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1343
  for a d :: "'a::real_normed_vector"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1344
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1345
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1346
lemma filtermap_at_right_shift: "filtermap (\<lambda>x. x - d) (at_right a) = at_right (a - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1347
  for a d :: "real"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1348
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1349
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1350
lemma at_right_to_0: "at_right a = filtermap (\<lambda>x. x + a) (at_right 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1351
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1352
  using filtermap_at_right_shift[of "-a" 0] by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1353
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1354
lemma filterlim_at_right_to_0:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1355
  "filterlim f F (at_right a) \<longleftrightarrow> filterlim (\<lambda>x. f (x + a)) F (at_right 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1356
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1357
  unfolding filterlim_def filtermap_filtermap at_right_to_0[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1358
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1359
lemma eventually_at_right_to_0:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1360
  "eventually P (at_right a) \<longleftrightarrow> eventually (\<lambda>x. P (x + a)) (at_right 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1361
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1362
  unfolding at_right_to_0[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1363
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1364
lemma at_to_0: "at a = filtermap (\<lambda>x. x + a) (at 0)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1365
  for a :: "'a::real_normed_vector"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1366
  using filtermap_at_shift[of "-a" 0] by simp
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1367
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1368
lemma filterlim_at_to_0:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1369
  "filterlim f F (at a) \<longleftrightarrow> filterlim (\<lambda>x. f (x + a)) F (at 0)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1370
  for a :: "'a::real_normed_vector"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1371
  unfolding filterlim_def filtermap_filtermap at_to_0[of a] ..
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1372
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1373
lemma eventually_at_to_0:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1374
  "eventually P (at a) \<longleftrightarrow> eventually (\<lambda>x. P (x + a)) (at 0)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1375
  for a ::  "'a::real_normed_vector"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1376
  unfolding at_to_0[of a] by (simp add: eventually_filtermap)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1377
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1378
lemma filtermap_at_minus: "filtermap (\<lambda>x. - x) (at a) = at (- a)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1379
  for a :: "'a::real_normed_vector"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1380
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1381
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1382
lemma at_left_minus: "at_left a = filtermap (\<lambda>x. - x) (at_right (- a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1383
  for a :: real
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1384
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1385
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1386
lemma at_right_minus: "at_right a = filtermap (\<lambda>x. - x) (at_left (- a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1387
  for a :: real
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1388
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1389
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1390
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1391
lemma filterlim_at_left_to_right:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1392
  "filterlim f F (at_left a) \<longleftrightarrow> filterlim (\<lambda>x. f (- x)) F (at_right (-a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1393
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1394
  unfolding filterlim_def filtermap_filtermap at_left_minus[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1395
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1396
lemma eventually_at_left_to_right:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1397
  "eventually P (at_left a) \<longleftrightarrow> eventually (\<lambda>x. P (- x)) (at_right (-a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1398
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1399
  unfolding at_left_minus[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1400
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1401
lemma filterlim_uminus_at_top_at_bot: "LIM x at_bot. - x :: real :> at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1402
  unfolding filterlim_at_top eventually_at_bot_dense
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1403
  by (metis leI minus_less_iff order_less_asym)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1404
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1405
lemma filterlim_uminus_at_bot_at_top: "LIM x at_top. - x :: real :> at_bot"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1406
  unfolding filterlim_at_bot eventually_at_top_dense
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1407
  by (metis leI less_minus_iff order_less_asym)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1408
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1409
lemma at_bot_mirror :
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1410
  shows "(at_bot::('a::{ordered_ab_group_add,linorder} filter)) = filtermap uminus at_top"
68532
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68296
diff changeset
  1411
  apply (rule filtermap_fun_inverse[of uminus, symmetric])
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  1412
  subgoal unfolding filterlim_at_top filterlim_at_bot eventually_at_bot_linorder using le_minus_iff by auto
68532
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68296
diff changeset
  1413
  subgoal unfolding filterlim_at_bot eventually_at_top_linorder using minus_le_iff by auto
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68296
diff changeset
  1414
  by auto
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68296
diff changeset
  1415
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1416
lemma at_top_mirror :
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1417
  shows "(at_top::('a::{ordered_ab_group_add,linorder} filter)) = filtermap uminus at_bot"
68532
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68296
diff changeset
  1418
  apply (subst at_bot_mirror)
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  1419
  by (auto simp: filtermap_filtermap)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1420
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1421
lemma filterlim_at_top_mirror: "(LIM x at_top. f x :> F) \<longleftrightarrow> (LIM x at_bot. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1422
  unfolding filterlim_def at_top_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1423
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1424
lemma filterlim_at_bot_mirror: "(LIM x at_bot. f x :> F) \<longleftrightarrow> (LIM x at_top. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1425
  unfolding filterlim_def at_bot_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1426
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1427
lemma filterlim_uminus_at_top: "(LIM x F. f x :> at_top) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_bot)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1428
  using filterlim_compose[OF filterlim_uminus_at_bot_at_top, of f F]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1429
    and filterlim_compose[OF filterlim_uminus_at_top_at_bot, of "\<lambda>x. - f x" F]
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1430
  by auto
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1431
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1432
lemma tendsto_at_botI_sequentially:
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1433
  fixes f :: "real \<Rightarrow> 'b::first_countable_topology"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1434
  assumes *: "\<And>X. filterlim X at_bot sequentially \<Longrightarrow> (\<lambda>n. f (X n)) \<longlonglongrightarrow> y"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1435
  shows "(f \<longlongrightarrow> y) at_bot"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1436
  unfolding filterlim_at_bot_mirror
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1437
proof (rule tendsto_at_topI_sequentially)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1438
  fix X :: "nat \<Rightarrow> real" assume "filterlim X at_top sequentially"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1439
  thus "(\<lambda>n. f (-X n)) \<longlonglongrightarrow> y" by (intro *) (auto simp: filterlim_uminus_at_top)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1440
qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1441
67950
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1442
lemma filterlim_at_infinity_imp_filterlim_at_top:
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1443
  assumes "filterlim (f :: 'a \<Rightarrow> real) at_infinity F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1444
  assumes "eventually (\<lambda>x. f x > 0) F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1445
  shows   "filterlim f at_top F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1446
proof -
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1447
  from assms(2) have *: "eventually (\<lambda>x. norm (f x) = f x) F" by eventually_elim simp
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1448
  from assms(1) show ?thesis unfolding filterlim_at_infinity_conv_norm_at_top
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1449
    by (subst (asm) filterlim_cong[OF refl refl *])
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1450
qed
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1451
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1452
lemma filterlim_at_infinity_imp_filterlim_at_bot:
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1453
  assumes "filterlim (f :: 'a \<Rightarrow> real) at_infinity F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1454
  assumes "eventually (\<lambda>x. f x < 0) F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1455
  shows   "filterlim f at_bot F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1456
proof -
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1457
  from assms(2) have *: "eventually (\<lambda>x. norm (f x) = -f x) F" by eventually_elim simp
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1458
  from assms(1) have "filterlim (\<lambda>x. - f x) at_top F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1459
    unfolding filterlim_at_infinity_conv_norm_at_top
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1460
    by (subst (asm) filterlim_cong[OF refl refl *])
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1461
  thus ?thesis by (simp add: filterlim_uminus_at_top)
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1462
qed
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1463
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1464
lemma filterlim_uminus_at_bot: "(LIM x F. f x :> at_bot) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_top)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1465
  unfolding filterlim_uminus_at_top by simp
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1466
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1467
lemma filterlim_inverse_at_top_right: "LIM x at_right (0::real). inverse x :> at_top"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1468
  unfolding filterlim_at_top_gt[where c=0] eventually_at_filter
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1469
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1470
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1471
  assume [arith]: "0 < Z"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1472
  then have "eventually (\<lambda>x. x < inverse Z) (nhds 0)"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  1473
    by (auto simp: eventually_nhds_metric dist_real_def intro!: exI[of _ "\<bar>inverse Z\<bar>"])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1474
  then show "eventually (\<lambda>x. x \<noteq> 0 \<longrightarrow> x \<in> {0<..} \<longrightarrow> Z \<le> inverse x) (nhds 0)"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1475
    by (auto elim!: eventually_mono simp: inverse_eq_divide field_simps)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1476
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1477
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1478
lemma tendsto_inverse_0:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1479
  fixes x :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1480
  shows "(inverse \<longlongrightarrow> (0::'a)) at_infinity"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1481
  unfolding tendsto_Zfun_iff diff_0_right Zfun_def eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1482
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1483
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1484
  assume "0 < r"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1485
  show "\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> norm (inverse x :: 'a) < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1486
  proof (intro exI[of _ "inverse (r / 2)"] allI impI)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1487
    fix x :: 'a
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1488
    from \<open>0 < r\<close> have "0 < inverse (r / 2)" by simp
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1489
    also assume *: "inverse (r / 2) \<le> norm x"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1490
    finally show "norm (inverse x) < r"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1491
      using * \<open>0 < r\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1492
      by (subst nonzero_norm_inverse) (simp_all add: inverse_eq_divide field_simps)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1493
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1494
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1495
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1496
lemma tendsto_add_filterlim_at_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1497
  fixes c :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1498
    and F :: "'a filter"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1499
  assumes "(f \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1500
    and "filterlim g at_infinity F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1501
  shows "filterlim (\<lambda>x. f x + g x) at_infinity F"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1502
proof (subst filterlim_at_infinity[OF order_refl], safe)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1503
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1504
  assume r: "r > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1505
  from assms(1) have "((\<lambda>x. norm (f x)) \<longlongrightarrow> norm c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1506
    by (rule tendsto_norm)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1507
  then have "eventually (\<lambda>x. norm (f x) < norm c + 1) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1508
    by (rule order_tendstoD) simp_all
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1509
  moreover from r have "r + norm c + 1 > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1510
    by (intro add_pos_nonneg) simp_all
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1511
  with assms(2) have "eventually (\<lambda>x. norm (g x) \<ge> r + norm c + 1) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1512
    unfolding filterlim_at_infinity[OF order_refl]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1513
    by (elim allE[of _ "r + norm c + 1"]) simp_all
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1514
  ultimately show "eventually (\<lambda>x. norm (f x + g x) \<ge> r) F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1515
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1516
    fix x :: 'a
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1517
    assume A: "norm (f x) < norm c + 1" and B: "r + norm c + 1 \<le> norm (g x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1518
    from A B have "r \<le> norm (g x) - norm (f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1519
      by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1520
    also have "norm (g x) - norm (f x) \<le> norm (g x + f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1521
      by (rule norm_diff_ineq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1522
    finally show "r \<le> norm (f x + g x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1523
      by (simp add: add_ac)
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1524
  qed
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1525
qed
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1526
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1527
lemma tendsto_add_filterlim_at_infinity':
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1528
  fixes c :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1529
    and F :: "'a filter"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1530
  assumes "filterlim f at_infinity F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1531
    and "(g \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1532
  shows "filterlim (\<lambda>x. f x + g x) at_infinity F"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1533
  by (subst add.commute) (rule tendsto_add_filterlim_at_infinity assms)+
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1534
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1535
lemma filterlim_inverse_at_right_top: "LIM x at_top. inverse x :> at_right (0::real)"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1536
  unfolding filterlim_at
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1537
  by (auto simp: eventually_at_top_dense)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1538
     (metis tendsto_inverse_0 filterlim_mono at_top_le_at_infinity order_refl)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1539
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1540
lemma filterlim_inverse_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1541
  "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. 0 < f x) F \<Longrightarrow> LIM x F. inverse (f x) :> at_top"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1542
  by (intro filterlim_compose[OF filterlim_inverse_at_top_right])
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1543
     (simp add: filterlim_def eventually_filtermap eventually_mono at_within_def le_principal)
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1544
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1545
lemma filterlim_inverse_at_bot_neg:
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1546
  "LIM x (at_left (0::real)). inverse x :> at_bot"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1547
  by (simp add: filterlim_inverse_at_top_right filterlim_uminus_at_bot filterlim_at_left_to_right)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1548
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1549
lemma filterlim_inverse_at_bot:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1550
  "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. f x < 0) F \<Longrightarrow> LIM x F. inverse (f x) :> at_bot"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1551
  unfolding filterlim_uminus_at_bot inverse_minus_eq[symmetric]
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1552
  by (rule filterlim_inverse_at_top) (simp_all add: tendsto_minus_cancel_left[symmetric])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1553
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1554
lemma at_right_to_top: "(at_right (0::real)) = filtermap inverse at_top"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1555
  by (intro filtermap_fun_inverse[symmetric, where g=inverse])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1556
     (auto intro: filterlim_inverse_at_top_right filterlim_inverse_at_right_top)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1557
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1558
lemma eventually_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1559
  "eventually P (at_right (0::real)) \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1560
  unfolding at_right_to_top eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1561
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1562
lemma filterlim_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1563
  "filterlim f F (at_right (0::real)) \<longleftrightarrow> (LIM x at_top. f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1564
  unfolding filterlim_def at_right_to_top filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1565
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1566
lemma at_top_to_right: "at_top = filtermap inverse (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1567
  unfolding at_right_to_top filtermap_filtermap inverse_inverse_eq filtermap_ident ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1568
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1569
lemma eventually_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1570
  "eventually P at_top \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1571
  unfolding at_top_to_right eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1572
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1573
lemma filterlim_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1574
  "filterlim f F at_top \<longleftrightarrow> (LIM x (at_right (0::real)). f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1575
  unfolding filterlim_def at_top_to_right filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1576
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1577
lemma filterlim_inverse_at_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1578
  fixes x :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1579
  shows "filterlim inverse at_infinity (at (0::'a))"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1580
  unfolding filterlim_at_infinity[OF order_refl]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1581
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1582
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1583
  assume "0 < r"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1584
  then show "eventually (\<lambda>x::'a. r \<le> norm (inverse x)) (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1585
    unfolding eventually_at norm_inverse
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1586
    by (intro exI[of _ "inverse r"])
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1587
       (auto simp: norm_conv_dist[symmetric] field_simps inverse_eq_divide)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1588
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1589
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1590
lemma filterlim_inverse_at_iff:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1591
  fixes g :: "'a \<Rightarrow> 'b::{real_normed_div_algebra, division_ring}"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1592
  shows "(LIM x F. inverse (g x) :> at 0) \<longleftrightarrow> (LIM x F. g x :> at_infinity)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1593
  unfolding filterlim_def filtermap_filtermap[symmetric]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1594
proof
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1595
  assume "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1596
  then have "filtermap inverse (filtermap g F) \<le> filtermap inverse at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1597
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1598
  also have "\<dots> \<le> at 0"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1599
    using tendsto_inverse_0[where 'a='b]
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1600
    by (auto intro!: exI[of _ 1]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1601
        simp: le_principal eventually_filtermap filterlim_def at_within_def eventually_at_infinity)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1602
  finally show "filtermap inverse (filtermap g F) \<le> at 0" .
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1603
next
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1604
  assume "filtermap inverse (filtermap g F) \<le> at 0"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1605
  then have "filtermap inverse (filtermap inverse (filtermap g F)) \<le> filtermap inverse (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1606
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1607
  with filterlim_inverse_at_infinity show "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1608
    by (auto intro: order_trans simp: filterlim_def filtermap_filtermap)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1609
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1610
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1611
lemma tendsto_mult_filterlim_at_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1612
  fixes c :: "'a::real_normed_field"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  1613
  assumes  "(f \<longlongrightarrow> c) F" "c \<noteq> 0"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1614
  assumes "filterlim g at_infinity F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1615
  shows "filterlim (\<lambda>x. f x * g x) at_infinity F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1616
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1617
  have "((\<lambda>x. inverse (f x) * inverse (g x)) \<longlongrightarrow> inverse c * 0) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1618
    by (intro tendsto_mult tendsto_inverse assms filterlim_compose[OF tendsto_inverse_0])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1619
  then have "filterlim (\<lambda>x. inverse (f x) * inverse (g x)) (at (inverse c * 0)) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1620
    unfolding filterlim_at
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1621
    using assms
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1622
    by (auto intro: filterlim_at_infinity_imp_eventually_ne tendsto_imp_eventually_ne eventually_conj)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1623
  then show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1624
    by (subst filterlim_inverse_at_iff[symmetric]) simp_all
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1625
qed
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1626
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1627
lemma tendsto_inverse_0_at_top: "LIM x F. f x :> at_top \<Longrightarrow> ((\<lambda>x. inverse (f x) :: real) \<longlongrightarrow> 0) F"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1628
 by (metis filterlim_at filterlim_mono[OF _ at_top_le_at_infinity order_refl] filterlim_inverse_at_iff)
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1629
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1630
lemma real_tendsto_divide_at_top:
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1631
  fixes c::"real"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1632
  assumes "(f \<longlongrightarrow> c) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1633
  assumes "filterlim g at_top F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1634
  shows "((\<lambda>x. f x / g x) \<longlongrightarrow> 0) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1635
  by (auto simp: divide_inverse_commute
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1636
      intro!: tendsto_mult[THEN tendsto_eq_rhs] tendsto_inverse_0_at_top assms)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1637
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1638
lemma mult_nat_left_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. c * x) at_top sequentially"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1639
  for c :: nat
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  1640
  by (rule filterlim_subseq) (auto simp: strict_mono_def)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1641
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1642
lemma mult_nat_right_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. x * c) at_top sequentially"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1643
  for c :: nat
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  1644
  by (rule filterlim_subseq) (auto simp: strict_mono_def)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1645
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1646
lemma filterlim_times_pos:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1647
  "LIM x F1. c * f x :> at_right l"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1648
  if "filterlim f (at_right p) F1" "0 < c" "l = c * p"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1649
  for c::"'a::{linordered_field, linorder_topology}"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1650
  unfolding filterlim_iff
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1651
proof safe
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1652
  fix P
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1653
  assume "\<forall>\<^sub>F x in at_right l. P x"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1654
  then obtain d where "c * p < d" "\<And>y. y > c * p \<Longrightarrow> y < d \<Longrightarrow> P y"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1655
    unfolding \<open>l = _ \<close> eventually_at_right_field
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1656
    by auto
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1657
  then have "\<forall>\<^sub>F a in at_right p. P (c * a)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1658
    by (auto simp: eventually_at_right_field \<open>0 < c\<close> field_simps intro!: exI[where x="d/c"])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1659
  from that(1)[unfolded filterlim_iff, rule_format, OF this]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1660
  show "\<forall>\<^sub>F x in F1. P (c * f x)" .
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1661
qed
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1662
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1663
lemma filtermap_nhds_times: "c \<noteq> 0 \<Longrightarrow> filtermap (times c) (nhds a) = nhds (c * a)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1664
  for a c :: "'a::real_normed_field"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1665
  by (rule filtermap_fun_inverse[where g="\<lambda>x. inverse c * x"])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1666
    (auto intro!: tendsto_eq_intros filterlim_ident)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1667
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1668
lemma filtermap_times_pos_at_right:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1669
  fixes c::"'a::{linordered_field, linorder_topology}"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1670
  assumes "c > 0"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1671
  shows "filtermap (times c) (at_right p) = at_right (c * p)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1672
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1673
  by (intro filtermap_fun_inverse[where g="\<lambda>x. inverse c * x"])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1674
    (auto intro!: filterlim_ident filterlim_times_pos)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1675
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1676
lemma at_to_infinity: "(at (0::'a::{real_normed_field,field})) = filtermap inverse at_infinity"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1677
proof (rule antisym)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1678
  have "(inverse \<longlongrightarrow> (0::'a)) at_infinity"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1679
    by (fact tendsto_inverse_0)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1680
  then show "filtermap inverse at_infinity \<le> at (0::'a)"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  1681
    using filterlim_def filterlim_ident filterlim_inverse_at_iff by fastforce
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1682
next
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1683
  have "filtermap inverse (filtermap inverse (at (0::'a))) \<le> filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1684
    using filterlim_inverse_at_infinity unfolding filterlim_def
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1685
    by (rule filtermap_mono)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1686
  then show "at (0::'a) \<le> filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1687
    by (simp add: filtermap_ident filtermap_filtermap)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1688
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1689
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1690
lemma lim_at_infinity_0:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1691
  fixes l :: "'a::{real_normed_field,field}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1692
  shows "(f \<longlongrightarrow> l) at_infinity \<longleftrightarrow> ((f \<circ> inverse) \<longlongrightarrow> l) (at (0::'a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1693
  by (simp add: tendsto_compose_filtermap at_to_infinity filtermap_filtermap)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1694
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1695
lemma lim_zero_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1696
  fixes l :: "'a::{real_normed_field,field}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1697
  shows "((\<lambda>x. f(1 / x)) \<longlongrightarrow> l) (at (0::'a)) \<Longrightarrow> (f \<longlongrightarrow> l) at_infinity"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1698
  by (simp add: inverse_eq_divide lim_at_infinity_0 comp_def)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1699
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1700
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1701
text \<open>
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1702
  We only show rules for multiplication and addition when the functions are either against a real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1703
  value or against infinity. Further rules are easy to derive by using @{thm
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1704
  filterlim_uminus_at_top}.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1705
\<close>
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1706
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1707
lemma filterlim_tendsto_pos_mult_at_top:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1708
  assumes f: "(f \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1709
    and c: "0 < c"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1710
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1711
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1712
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1713
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1714
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1715
  assume "0 < Z"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1716
  from f \<open>0 < c\<close> have "eventually (\<lambda>x. c / 2 < f x) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1717
    by (auto dest!: tendstoD[where e="c / 2"] elim!: eventually_mono
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1718
        simp: dist_real_def abs_real_def split: if_split_asm)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1719
  moreover from g have "eventually (\<lambda>x. (Z / c * 2) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1720
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1721
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1722
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1723
    case (elim x)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1724
    with \<open>0 < Z\<close> \<open>0 < c\<close> have "c / 2 * (Z / c * 2) \<le> f x * g x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1725
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1726
    with \<open>0 < c\<close> show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1727
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1728
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1729
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1730
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1731
lemma filterlim_at_top_mult_at_top:
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1732
  assumes f: "LIM x F. f x :> at_top"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1733
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1734
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1735
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1736
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1737
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1738
  assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1739
  from f have "eventually (\<lambda>x. 1 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1740
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1741
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1742
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1743
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1744
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1745
    case (elim x)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1746
    with \<open>0 < Z\<close> have "1 * Z \<le> f x * g x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1747
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1748
    then show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1749
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1750
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1751
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1752
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1753
lemma filterlim_at_top_mult_tendsto_pos:
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1754
  assumes f: "(f \<longlongrightarrow> c) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1755
    and c: "0 < c"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1756
    and g: "LIM x F. g x :> at_top"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1757
  shows "LIM x F. (g x * f x:: real) :> at_top"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1758
  by (auto simp: mult.commute intro!: filterlim_tendsto_pos_mult_at_top f c g)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1759
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1760
lemma filterlim_tendsto_pos_mult_at_bot:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1761
  fixes c :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1762
  assumes "(f \<longlongrightarrow> c) F" "0 < c" "filterlim g at_bot F"
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1763
  shows "LIM x F. f x * g x :> at_bot"
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1764
  using filterlim_tendsto_pos_mult_at_top[OF assms(1,2), of "\<lambda>x. - g x"] assms(3)
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1765
  unfolding filterlim_uminus_at_bot by simp
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1766
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1767
lemma filterlim_tendsto_neg_mult_at_bot:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1768
  fixes c :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1769
  assumes c: "(f \<longlongrightarrow> c) F" "c < 0" and g: "filterlim g at_top F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1770
  shows "LIM x F. f x * g x :> at_bot"
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1771
  using c filterlim_tendsto_pos_mult_at_top[of "\<lambda>x. - f x" "- c" F, OF _ _ g]
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1772
  unfolding filterlim_uminus_at_bot tendsto_minus_cancel_left by simp
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1773
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1774
lemma filterlim_pow_at_top:
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63556
diff changeset
  1775
  fixes f :: "'a \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1776
  assumes "0 < n"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1777
    and f: "LIM x F. f x :> at_top"
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1778
  shows "LIM x F. (f x)^n :: real :> at_top"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1779
  using \<open>0 < n\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1780
proof (induct n)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1781
  case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1782
  then show ?case by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1783
next
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1784
  case (Suc n) with f show ?case
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1785
    by (cases "n = 0") (auto intro!: filterlim_at_top_mult_at_top)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1786
qed
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1787
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1788
lemma filterlim_pow_at_bot_even:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1789
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1790
  shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> even n \<Longrightarrow> LIM x F. (f x)^n :> at_top"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1791
  using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_top)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1792
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1793
lemma filterlim_pow_at_bot_odd:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1794
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1795
  shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> odd n \<Longrightarrow> LIM x F. (f x)^n :> at_bot"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1796
  using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_bot)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1797
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1798
lemma filterlim_power_at_infinity [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1799
  fixes F and f :: "'a \<Rightarrow> 'b :: real_normed_div_algebra"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1800
  assumes "filterlim f at_infinity F" "n > 0"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1801
  shows   "filterlim (\<lambda>x. f x ^ n) at_infinity F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1802
  by (rule filterlim_norm_at_top_imp_at_infinity)
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1803
     (auto simp: norm_power intro!: filterlim_pow_at_top assms
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1804
           intro: filterlim_at_infinity_imp_norm_at_top)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1805
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1806
lemma filterlim_tendsto_add_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1807
  assumes f: "(f \<longlongrightarrow> c) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1808
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1809
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1810
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1811
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1812
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1813
  assume "0 < Z"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1814
  from f have "eventually (\<lambda>x. c - 1 < f x) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1815
    by (auto dest!: tendstoD[where e=1] elim!: eventually_mono simp: dist_real_def)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1816
  moreover from g have "eventually (\<lambda>x. Z - (c - 1) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1817
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1818
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1819
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1820
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1821
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1822
lemma LIM_at_top_divide:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1823
  fixes f g :: "'a \<Rightarrow> real"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1824
  assumes f: "(f \<longlongrightarrow> a) F" "0 < a"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1825
    and g: "(g \<longlongrightarrow> 0) F" "eventually (\<lambda>x. 0 < g x) F"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1826
  shows "LIM x F. f x / g x :> at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1827
  unfolding divide_inverse
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1828
  by (rule filterlim_tendsto_pos_mult_at_top[OF f]) (rule filterlim_inverse_at_top[OF g])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1829
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1830
lemma filterlim_at_top_add_at_top:
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1831
  assumes f: "LIM x F. f x :> at_top"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1832
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1833
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1834
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1835
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1836
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1837
  assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1838
  from f have "eventually (\<lambda>x. 0 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1839
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1840
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1841
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1842
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1843
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1844
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1845
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1846
lemma tendsto_divide_0:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1847
  fixes f :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1848
  assumes f: "(f \<longlongrightarrow> c) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1849
    and g: "LIM x F. g x :> at_infinity"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1850
  shows "((\<lambda>x. f x / g x) \<longlongrightarrow> 0) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1851
  using tendsto_mult[OF f filterlim_compose[OF tendsto_inverse_0 g]]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1852
  by (simp add: divide_inverse)
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1853
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1854
lemma linear_plus_1_le_power:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1855
  fixes x :: real
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1856
  assumes x: "0 \<le> x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1857
  shows "real n * x + 1 \<le> (x + 1) ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1858
proof (induct n)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1859
  case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1860
  then show ?case by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1861
next
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1862
  case (Suc n)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1863
  from x have "real (Suc n) * x + 1 \<le> (x + 1) * (real n * x + 1)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1864
    by (simp add: field_simps)
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1865
  also have "\<dots> \<le> (x + 1)^Suc n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1866
    using Suc x by (simp add: mult_left_mono)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1867
  finally show ?case .
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1868
qed
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1869
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1870
lemma filterlim_realpow_sequentially_gt1:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1871
  fixes x :: "'a :: real_normed_div_algebra"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1872
  assumes x[arith]: "1 < norm x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1873
  shows "LIM n sequentially. x ^ n :> at_infinity"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1874
proof (intro filterlim_at_infinity[THEN iffD2] allI impI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1875
  fix y :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1876
  assume "0 < y"
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1877
  have "0 < norm x - 1" by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1878
  then obtain N :: nat where "y < real N * (norm x - 1)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1879
    by (blast dest: reals_Archimedean3)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1880
  also have "\<dots> \<le> real N * (norm x - 1) + 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1881
    by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1882
  also have "\<dots> \<le> (norm x - 1 + 1) ^ N"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1883
    by (rule linear_plus_1_le_power) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1884
  also have "\<dots> = norm x ^ N"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1885
    by simp
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1886
  finally have "\<forall>n\<ge>N. y \<le> norm x ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1887
    by (metis order_less_le_trans power_increasing order_less_imp_le x)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1888
  then show "eventually (\<lambda>n. y \<le> norm (x ^ n)) sequentially"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1889
    unfolding eventually_sequentially
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1890
    by (auto simp: norm_power)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1891
qed simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1892
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1893
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1894
lemma filterlim_divide_at_infinity:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1895
  fixes f g :: "'a \<Rightarrow> 'a :: real_normed_field"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1896
  assumes "filterlim f (nhds c) F" "filterlim g (at 0) F" "c \<noteq> 0"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1897
  shows   "filterlim (\<lambda>x. f x / g x) at_infinity F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1898
proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1899
  have "filterlim (\<lambda>x. f x * inverse (g x)) at_infinity F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1900
    by (intro tendsto_mult_filterlim_at_infinity[OF assms(1,3)]
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1901
          filterlim_compose [OF filterlim_inverse_at_infinity assms(2)])
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1902
  thus ?thesis by (simp add: field_simps)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1903
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1904
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1905
subsection \<open>Floor and Ceiling\<close>
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1906
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1907
lemma eventually_floor_less:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1908
  fixes f :: "'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1909
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1910
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1911
  shows "\<forall>\<^sub>F x in F. of_int (floor l) < f x"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1912
  by (intro order_tendstoD[OF f]) (metis Ints_of_int antisym_conv2 floor_correct l)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1913
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1914
lemma eventually_less_ceiling:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1915
  fixes f :: "'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1916
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1917
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1918
  shows "\<forall>\<^sub>F x in F. f x < of_int (ceiling l)"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1919
  by (intro order_tendstoD[OF f]) (metis Ints_of_int l le_of_int_ceiling less_le)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1920
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1921
lemma eventually_floor_eq:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1922
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1923
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1924
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1925
  shows "\<forall>\<^sub>F x in F. floor (f x) = floor l"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1926
  using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1927
  by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1928
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1929
lemma eventually_ceiling_eq:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1930
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1931
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1932
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1933
  shows "\<forall>\<^sub>F x in F. ceiling (f x) = ceiling l"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1934
  using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1935
  by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1936
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1937
lemma tendsto_of_int_floor:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1938
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1939
  assumes "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1940
    and "l \<notin> \<int>"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1941
  shows "((\<lambda>x. of_int (floor (f x)) :: 'c::{ring_1,topological_space}) \<longlongrightarrow> of_int (floor l)) F"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1942
  using eventually_floor_eq[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1943
  by (simp add: eventually_mono topological_tendstoI)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1944
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1945
lemma tendsto_of_int_ceiling:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1946
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1947
  assumes "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1948
    and "l \<notin> \<int>"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1949
  shows "((\<lambda>x. of_int (ceiling (f x)):: 'c::{ring_1,topological_space}) \<longlongrightarrow> of_int (ceiling l)) F"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1950
  using eventually_ceiling_eq[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1951
  by (simp add: eventually_mono topological_tendstoI)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1952
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1953
lemma continuous_on_of_int_floor:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1954
  "continuous_on (UNIV - \<int>::'a::{order_topology, floor_ceiling} set)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1955
    (\<lambda>x. of_int (floor x)::'b::{ring_1, topological_space})"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1956
  unfolding continuous_on_def
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1957
  by (auto intro!: tendsto_of_int_floor)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1958
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1959
lemma continuous_on_of_int_ceiling:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1960
  "continuous_on (UNIV - \<int>::'a::{order_topology, floor_ceiling} set)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1961
    (\<lambda>x. of_int (ceiling x)::'b::{ring_1, topological_space})"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1962
  unfolding continuous_on_def
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1963
  by (auto intro!: tendsto_of_int_ceiling)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1964
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1965
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1966
subsection \<open>Limits of Sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1967
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
  1968
lemma [trans]: "X = Y \<Longrightarrow> Y \<longlonglongrightarrow> z \<Longrightarrow> X \<longlonglongrightarrow> z"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1969
  by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1970
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1971
lemma LIMSEQ_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1972
  fixes L :: "'a::real_normed_vector"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1973
  shows "(X \<longlonglongrightarrow> L) = (\<forall>r>0. \<exists>no. \<forall>n \<ge> no. norm (X n - L) < r)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  1974
unfolding lim_sequentially dist_norm ..
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1975
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1976
lemma LIMSEQ_I: "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r) \<Longrightarrow> X \<longlonglongrightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1977
  for L :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1978
  by (simp add: LIMSEQ_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1979
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1980
lemma LIMSEQ_D: "X \<longlonglongrightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1981
  for L :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1982
  by (simp add: LIMSEQ_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1983
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1984
lemma LIMSEQ_linear: "X \<longlonglongrightarrow> x \<Longrightarrow> l > 0 \<Longrightarrow> (\<lambda> n. X (n * l)) \<longlonglongrightarrow> x"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1985
  unfolding tendsto_def eventually_sequentially
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
  1986
  by (metis div_le_dividend div_mult_self1_is_m le_trans mult.commute)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1987
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1988
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1989
text \<open>Transformation of limit.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1990
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1991
lemma Lim_transform: "(g \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1992
  for a b :: "'a::real_normed_vector"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1993
  using tendsto_add [of g a F "\<lambda>x. f x - g x" 0] by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1994
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1995
lemma Lim_transform2: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (g \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1996
  for a b :: "'a::real_normed_vector"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1997
  by (erule Lim_transform) (simp add: tendsto_minus_cancel)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1998
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1999
proposition Lim_transform_eq: "((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> a) F \<longleftrightarrow> (g \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2000
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2001
  using Lim_transform Lim_transform2 by blast
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  2002
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2003
lemma Lim_transform_eventually:
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  2004
  "\<lbrakk>(f \<longlongrightarrow> l) F; eventually (\<lambda>x. f x = g x) F\<rbrakk> \<Longrightarrow> (g \<longlongrightarrow> l) F"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2005
  using eventually_elim2 by (fastforce simp add: tendsto_def)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2006
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2007
lemma Lim_transform_within:
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2008
  assumes "(f \<longlongrightarrow> l) (at x within S)"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2009
    and "0 < d"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2010
    and "\<And>x'. x'\<in>S \<Longrightarrow> 0 < dist x' x \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x'"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2011
  shows "(g \<longlongrightarrow> l) (at x within S)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2012
proof (rule Lim_transform_eventually)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2013
  show "eventually (\<lambda>x. f x = g x) (at x within S)"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2014
    using assms by (auto simp: eventually_at)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2015
  show "(f \<longlongrightarrow> l) (at x within S)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2016
    by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2017
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2018
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2019
lemma filterlim_transform_within:
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2020
  assumes "filterlim g G (at x within S)"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2021
  assumes "G \<le> F" "0<d" "(\<And>x'. x' \<in> S \<Longrightarrow> 0 < dist x' x \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') "
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2022
  shows "filterlim f F (at x within S)"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2023
  using assms
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2024
  apply (elim filterlim_mono_eventually)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2025
  unfolding eventually_at by auto
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2026
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2027
text \<open>Common case assuming being away from some crucial point like 0.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2028
lemma Lim_transform_away_within:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2029
  fixes a b :: "'a::t1_space"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2030
  assumes "a \<noteq> b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2031
    and "\<forall>x\<in>S. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2032
    and "(f \<longlongrightarrow> l) (at a within S)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2033
  shows "(g \<longlongrightarrow> l) (at a within S)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2034
proof (rule Lim_transform_eventually)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2035
  show "(f \<longlongrightarrow> l) (at a within S)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2036
    by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2037
  show "eventually (\<lambda>x. f x = g x) (at a within S)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2038
    unfolding eventually_at_topological
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2039
    by (rule exI [where x="- {b}"]) (simp add: open_Compl assms)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2040
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2041
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2042
lemma Lim_transform_away_at:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2043
  fixes a b :: "'a::t1_space"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2044
  assumes ab: "a \<noteq> b"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2045
    and fg: "\<forall>x. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2046
    and fl: "(f \<longlongrightarrow> l) (at a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2047
  shows "(g \<longlongrightarrow> l) (at a)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2048
  using Lim_transform_away_within[OF ab, of UNIV f g l] fg fl by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2049
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2050
text \<open>Alternatively, within an open set.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2051
lemma Lim_transform_within_open:
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2052
  assumes "(f \<longlongrightarrow> l) (at a within T)"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2053
    and "open s" and "a \<in> s"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2054
    and "\<And>x. x\<in>s \<Longrightarrow> x \<noteq> a \<Longrightarrow> f x = g x"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2055
  shows "(g \<longlongrightarrow> l) (at a within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2056
proof (rule Lim_transform_eventually)
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2057
  show "eventually (\<lambda>x. f x = g x) (at a within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2058
    unfolding eventually_at_topological
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2059
    using assms by auto
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2060
  show "(f \<longlongrightarrow> l) (at a within T)" by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2061
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2062
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2063
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2064
text \<open>A congruence rule allowing us to transform limits assuming not at point.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2065
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2066
(* FIXME: Only one congruence rule for tendsto can be used at a time! *)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2067
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2068
lemma Lim_cong_within(*[cong add]*):
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2069
  assumes "a = b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2070
    and "x = y"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2071
    and "S = T"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2072
    and "\<And>x. x \<noteq> b \<Longrightarrow> x \<in> T \<Longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2073
  shows "(f \<longlongrightarrow> x) (at a within S) \<longleftrightarrow> (g \<longlongrightarrow> y) (at b within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2074
  unfolding tendsto_def eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2075
  using assms by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2076
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2077
lemma Lim_cong_at(*[cong add]*):
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2078
  assumes "a = b" "x = y"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2079
    and "\<And>x. x \<noteq> a \<Longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2080
  shows "((\<lambda>x. f x) \<longlongrightarrow> x) (at a) \<longleftrightarrow> ((g \<longlongrightarrow> y) (at a))"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2081
  unfolding tendsto_def eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2082
  using assms by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2083
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2084
text \<open>An unbounded sequence's inverse tends to 0.\<close>
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2085
lemma LIMSEQ_inverse_zero:
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2086
  assumes "\<And>r::real. \<exists>N. \<forall>n\<ge>N. r < X n"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2087
  shows "(\<lambda>n. inverse (X n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2088
  apply (rule filterlim_compose[OF tendsto_inverse_0])
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2089
  by (metis assms eventually_at_top_linorderI filterlim_at_top_dense filterlim_at_top_imp_at_infinity)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2090
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  2091
text \<open>The sequence \<^term>\<open>1/n\<close> tends to 0 as \<^term>\<open>n\<close> tends to infinity.\<close>
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2092
lemma LIMSEQ_inverse_real_of_nat: "(\<lambda>n. inverse (real (Suc n))) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2093
  by (metis filterlim_compose tendsto_inverse_0 filterlim_mono order_refl filterlim_Suc
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2094
      filterlim_compose[OF filterlim_real_sequentially] at_top_le_at_infinity)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2095
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2096
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  2097
  The sequence \<^term>\<open>r + 1/n\<close> tends to \<^term>\<open>r\<close> as \<^term>\<open>n\<close> tends to
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2098
  infinity is now easily proved.
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2099
\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2100
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2101
lemma LIMSEQ_inverse_real_of_nat_add: "(\<lambda>n. r + inverse (real (Suc n))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2102
  using tendsto_add [OF tendsto_const LIMSEQ_inverse_real_of_nat] by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2103
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2104
lemma LIMSEQ_inverse_real_of_nat_add_minus: "(\<lambda>n. r + -inverse (real (Suc n))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2105
  using tendsto_add [OF tendsto_const tendsto_minus [OF LIMSEQ_inverse_real_of_nat]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2106
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2107
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2108
lemma LIMSEQ_inverse_real_of_nat_add_minus_mult: "(\<lambda>n. r * (1 + - inverse (real (Suc n)))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2109
  using tendsto_mult [OF tendsto_const LIMSEQ_inverse_real_of_nat_add_minus [of 1]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2110
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2111
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2112
lemma lim_inverse_n: "((\<lambda>n. inverse(of_nat n)) \<longlongrightarrow> (0::'a::real_normed_field)) sequentially"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2113
  using lim_1_over_n by (simp add: inverse_eq_divide)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2114
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  2115
lemma lim_inverse_n': "((\<lambda>n. 1 / n) \<longlongrightarrow> 0) sequentially"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  2116
  using lim_inverse_n
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  2117
  by (simp add: inverse_eq_divide)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  2118
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2119
lemma LIMSEQ_Suc_n_over_n: "(\<lambda>n. of_nat (Suc n) / of_nat n :: 'a :: real_normed_field) \<longlonglongrightarrow> 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2120
proof (rule Lim_transform_eventually)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2121
  show "eventually (\<lambda>n. 1 + inverse (of_nat n :: 'a) = of_nat (Suc n) / of_nat n) sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2122
    using eventually_gt_at_top[of "0::nat"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2123
    by eventually_elim (simp add: field_simps)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2124
  have "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1 + 0"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2125
    by (intro tendsto_add tendsto_const lim_inverse_n)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2126
  then show "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2127
    by simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2128
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2129
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2130
lemma LIMSEQ_n_over_Suc_n: "(\<lambda>n. of_nat n / of_nat (Suc n) :: 'a :: real_normed_field) \<longlonglongrightarrow> 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2131
proof (rule Lim_transform_eventually)
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2132
  show "eventually (\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a) =
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2133
      of_nat n / of_nat (Suc n)) sequentially"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2134
    using eventually_gt_at_top[of "0::nat"]
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2135
    by eventually_elim (simp add: field_simps del: of_nat_Suc)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2136
  have "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> inverse 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2137
    by (intro tendsto_inverse LIMSEQ_Suc_n_over_n) simp_all
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2138
  then show "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2139
    by simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2140
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2141
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2142
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2143
subsection \<open>Convergence on sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2144
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2145
lemma convergent_cong:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2146
  assumes "eventually (\<lambda>x. f x = g x) sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2147
  shows "convergent f \<longleftrightarrow> convergent g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2148
  unfolding convergent_def
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2149
  by (subst filterlim_cong[OF refl refl assms]) (rule refl)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2150
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2151
lemma convergent_Suc_iff: "convergent (\<lambda>n. f (Suc n)) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2152
  by (auto simp: convergent_def LIMSEQ_Suc_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2153
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2154
lemma convergent_ignore_initial_segment: "convergent (\<lambda>n. f (n + m)) = convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2155
proof (induct m arbitrary: f)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2156
  case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2157
  then show ?case by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2158
next
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2159
  case (Suc m)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2160
  have "convergent (\<lambda>n. f (n + Suc m)) \<longleftrightarrow> convergent (\<lambda>n. f (Suc n + m))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2161
    by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2162
  also have "\<dots> \<longleftrightarrow> convergent (\<lambda>n. f (n + m))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2163
    by (rule convergent_Suc_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2164
  also have "\<dots> \<longleftrightarrow> convergent f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2165
    by (rule Suc)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2166
  finally show ?case .
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2167
qed
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2168
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2169
lemma convergent_add:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2170
  fixes X Y :: "nat \<Rightarrow> 'a::topological_monoid_add"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2171
  assumes "convergent (\<lambda>n. X n)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2172
    and "convergent (\<lambda>n. Y n)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2173
  shows "convergent (\<lambda>n. X n + Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2174
  using assms unfolding convergent_def by (blast intro: tendsto_add)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2175
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  2176
lemma convergent_sum:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2177
  fixes X :: "'a \<Rightarrow> nat \<Rightarrow> 'b::topological_comm_monoid_add"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
  2178
  shows "(\<And>i. i \<in> A \<Longrightarrow> convergent (\<lambda>n. X i n)) \<Longrightarrow> convergent (\<lambda>n. \<Sum>i\<in>A. X i n)"
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
  2179
  by (induct A rule: infinite_finite_induct) (simp_all add: convergent_const convergent_add)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2180
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2181
lemma (in bounded_linear) convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2182
  assumes "convergent (\<lambda>n. X n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2183
  shows "convergent (\<lambda>n. f (X n))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2184
  using assms unfolding convergent_def by (blast intro: tendsto)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2185
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2186
lemma (in bounded_bilinear) convergent:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2187
  assumes "convergent (\<lambda>n. X n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2188
    and "convergent (\<lambda>n. Y n)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2189
  shows "convergent (\<lambda>n. X n ** Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2190
  using assms unfolding convergent_def by (blast intro: tendsto)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2191
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2192
lemma convergent_minus_iff:
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2193
  fixes X :: "nat \<Rightarrow> 'a::topological_group_add"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2194
  shows "convergent X \<longleftrightarrow> convergent (\<lambda>n. - X n)"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2195
  unfolding convergent_def by (force dest: tendsto_minus)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2196
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2197
lemma convergent_diff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2198
  fixes X Y :: "nat \<Rightarrow> 'a::topological_group_add"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2199
  assumes "convergent (\<lambda>n. X n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2200
  assumes "convergent (\<lambda>n. Y n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2201
  shows "convergent (\<lambda>n. X n - Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2202
  using assms unfolding convergent_def by (blast intro: tendsto_diff)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2203
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2204
lemma convergent_norm:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2205
  assumes "convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2206
  shows "convergent (\<lambda>n. norm (f n))"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2207
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2208
  from assms have "f \<longlonglongrightarrow> lim f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2209
    by (simp add: convergent_LIMSEQ_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2210
  then have "(\<lambda>n. norm (f n)) \<longlonglongrightarrow> norm (lim f)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2211
    by (rule tendsto_norm)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2212
  then show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2213
    by (auto simp: convergent_def)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2214
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2215
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2216
lemma convergent_of_real:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2217
  "convergent f \<Longrightarrow> convergent (\<lambda>n. of_real (f n) :: 'a::real_normed_algebra_1)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2218
  unfolding convergent_def by (blast intro!: tendsto_of_real)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2219
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2220
lemma convergent_add_const_iff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2221
  "convergent (\<lambda>n. c + f n :: 'a::topological_ab_group_add) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2222
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2223
  assume "convergent (\<lambda>n. c + f n)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2224
  from convergent_diff[OF this convergent_const[of c]] show "convergent f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2225
    by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2226
next
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2227
  assume "convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2228
  from convergent_add[OF convergent_const[of c] this] show "convergent (\<lambda>n. c + f n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2229
    by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2230
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2231
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2232
lemma convergent_add_const_right_iff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2233
  "convergent (\<lambda>n. f n + c :: 'a::topological_ab_group_add) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2234
  using convergent_add_const_iff[of c f] by (simp add: add_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2235
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2236
lemma convergent_diff_const_right_iff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2237
  "convergent (\<lambda>n. f n - c :: 'a::topological_ab_group_add) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2238
  using convergent_add_const_right_iff[of f "-c"] by (simp add: add_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2239
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2240
lemma convergent_mult:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2241
  fixes X Y :: "nat \<Rightarrow> 'a::topological_semigroup_mult"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2242
  assumes "convergent (\<lambda>n. X n)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2243
    and "convergent (\<lambda>n. Y n)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2244
  shows "convergent (\<lambda>n. X n * Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2245
  using assms unfolding convergent_def by (blast intro: tendsto_mult)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2246
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2247
lemma convergent_mult_const_iff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2248
  assumes "c \<noteq> 0"
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2249
  shows "convergent (\<lambda>n. c * f n :: 'a::{field,topological_semigroup_mult}) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2250
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2251
  assume "convergent (\<lambda>n. c * f n)"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2252
  from assms convergent_mult[OF this convergent_const[of "inverse c"]]
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2253
    show "convergent f" by (simp add: field_simps)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2254
next
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2255
  assume "convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2256
  from convergent_mult[OF convergent_const[of c] this] show "convergent (\<lambda>n. c * f n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2257
    by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2258
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2259
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2260
lemma convergent_mult_const_right_iff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2261
  fixes c :: "'a::{field,topological_semigroup_mult}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2262
  assumes "c \<noteq> 0"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2263
  shows "convergent (\<lambda>n. f n * c) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2264
  using convergent_mult_const_iff[OF assms, of f] by (simp add: mult_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2265
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2266
lemma convergent_imp_Bseq: "convergent f \<Longrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2267
  by (simp add: Cauchy_Bseq convergent_Cauchy)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2268
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2269
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2270
text \<open>A monotone sequence converges to its least upper bound.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2271
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2272
lemma LIMSEQ_incseq_SUP:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2273
  fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder,linorder_topology}"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2274
  assumes u: "bdd_above (range X)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2275
    and X: "incseq X"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2276
  shows "X \<longlonglongrightarrow> (SUP i. X i)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2277
  by (rule order_tendstoI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2278
    (auto simp: eventually_sequentially u less_cSUP_iff
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2279
      intro: X[THEN incseqD] less_le_trans cSUP_lessD[OF u])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2280
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2281
lemma LIMSEQ_decseq_INF:
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2282
  fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder, linorder_topology}"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2283
  assumes u: "bdd_below (range X)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2284
    and X: "decseq X"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2285
  shows "X \<longlonglongrightarrow> (INF i. X i)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2286
  by (rule order_tendstoI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2287
     (auto simp: eventually_sequentially u cINF_less_iff
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2288
       intro: X[THEN decseqD] le_less_trans less_cINF_D[OF u])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2289
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2290
text \<open>Main monotonicity theorem.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2291
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2292
lemma Bseq_monoseq_convergent: "Bseq X \<Longrightarrow> monoseq X \<Longrightarrow> convergent X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2293
  for X :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2294
  by (auto simp: monoseq_iff convergent_def intro: LIMSEQ_decseq_INF LIMSEQ_incseq_SUP
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2295
      dest: Bseq_bdd_above Bseq_bdd_below)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2296
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2297
lemma Bseq_mono_convergent: "Bseq X \<Longrightarrow> (\<forall>m n. m \<le> n \<longrightarrow> X m \<le> X n) \<Longrightarrow> convergent X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2298
  for X :: "nat \<Rightarrow> real"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2299
  by (auto intro!: Bseq_monoseq_convergent incseq_imp_monoseq simp: incseq_def)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2300
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2301
lemma monoseq_imp_convergent_iff_Bseq: "monoseq f \<Longrightarrow> convergent f \<longleftrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2302
  for f :: "nat \<Rightarrow> real"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2303
  using Bseq_monoseq_convergent[of f] convergent_imp_Bseq[of f] by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2304
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2305
lemma Bseq_monoseq_convergent'_inc:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2306
  fixes f :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2307
  shows "Bseq (\<lambda>n. f (n + M)) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<le> f n) \<Longrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2308
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2309
     (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2310
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2311
lemma Bseq_monoseq_convergent'_dec:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2312
  fixes f :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2313
  shows "Bseq (\<lambda>n. f (n + M)) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<ge> f n) \<Longrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2314
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2315
    (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2316
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2317
lemma Cauchy_iff: "Cauchy X \<longleftrightarrow> (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2318
  for X :: "nat \<Rightarrow> 'a::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2319
  unfolding Cauchy_def dist_norm ..
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2320
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2321
lemma CauchyI: "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e) \<Longrightarrow> Cauchy X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2322
  for X :: "nat \<Rightarrow> 'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2323
  by (simp add: Cauchy_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2324
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2325
lemma CauchyD: "Cauchy X \<Longrightarrow> 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2326
  for X :: "nat \<Rightarrow> 'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2327
  by (simp add: Cauchy_iff)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2328
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2329
lemma incseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2330
  fixes X :: "nat \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2331
  assumes "incseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2332
    and "\<forall>i. X i \<le> B"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2333
  obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. X i \<le> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2334
proof atomize_elim
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2335
  from incseq_bounded[OF assms] \<open>incseq X\<close> Bseq_monoseq_convergent[of X]
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2336
  obtain L where "X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2337
    by (auto simp: convergent_def monoseq_def incseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2338
  with \<open>incseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. X i \<le> L)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2339
    by (auto intro!: exI[of _ L] incseq_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2340
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2341
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2342
lemma decseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2343
  fixes X :: "nat \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2344
  assumes "decseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2345
    and "\<forall>i. B \<le> X i"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2346
  obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. L \<le> X i"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2347
proof atomize_elim
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2348
  from decseq_bounded[OF assms] \<open>decseq X\<close> Bseq_monoseq_convergent[of X]
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2349
  obtain L where "X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2350
    by (auto simp: convergent_def monoseq_def decseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2351
  with \<open>decseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. L \<le> X i)"
68532
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68296
diff changeset
  2352
    by (auto intro!: exI[of _ L] decseq_ge)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2353
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2354
70694
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2355
lemma monoseq_convergent:
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2356
  fixes X :: "nat \<Rightarrow> real"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2357
  assumes X: "monoseq X" and B: "\<And>i. \<bar>X i\<bar> \<le> B"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2358
  obtains L where "X \<longlonglongrightarrow> L"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2359
  using X unfolding monoseq_iff
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2360
proof
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2361
  assume "incseq X"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2362
  show thesis
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2363
    using abs_le_D1 [OF B] incseq_convergent [OF \<open>incseq X\<close>] that by meson
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2364
next
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2365
  assume "decseq X"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2366
  show thesis
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2367
    using decseq_convergent [OF \<open>decseq X\<close>] that
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2368
    by (metis B abs_le_iff add.inverse_inverse neg_le_iff_le)
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2369
qed
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2370
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2371
subsection \<open>Power Sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2372
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2373
lemma Bseq_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> Bseq (\<lambda>n. x ^ n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2374
  for x :: real
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2375
  by (metis decseq_bounded decseq_def power_decreasing zero_le_power)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2376
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2377
lemma monoseq_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> monoseq (\<lambda>n. x ^ n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2378
  for x :: real
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2379
  using monoseq_def power_decreasing by blast
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2380
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2381
lemma convergent_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> convergent (\<lambda>n. x ^ n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2382
  for x :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2383
  by (blast intro!: Bseq_monoseq_convergent Bseq_realpow monoseq_realpow)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2384
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2385
lemma LIMSEQ_inverse_realpow_zero: "1 < x \<Longrightarrow> (\<lambda>n. inverse (x ^ n)) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2386
  for x :: real
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2387
  by (rule filterlim_compose[OF tendsto_inverse_0 filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2388
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2389
lemma LIMSEQ_realpow_zero:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2390
  fixes x :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2391
  assumes "0 \<le> x" "x < 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2392
  shows "(\<lambda>n. x ^ n) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2393
proof (cases "x = 0")
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2394
  case False
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2395
  with \<open>0 \<le> x\<close> have x0: "0 < x" by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2396
  then have "1 < inverse x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2397
    using \<open>x < 1\<close> by (rule one_less_inverse)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2398
  then have "(\<lambda>n. inverse (inverse x ^ n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2399
    by (rule LIMSEQ_inverse_realpow_zero)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2400
  then show ?thesis by (simp add: power_inverse)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2401
next
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2402
  case True
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2403
  show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2404
    by (rule LIMSEQ_imp_Suc) (simp add: True)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2405
qed
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2406
70723
4e39d87c9737 imported new material mostly due to Sébastien Gouëzel
paulson <lp15@cam.ac.uk>
parents: 70694
diff changeset
  2407
lemma LIMSEQ_power_zero [tendsto_intros]: "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) \<longlonglongrightarrow> 0"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2408
  for x :: "'a::real_normed_algebra_1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2409
  apply (drule LIMSEQ_realpow_zero [OF norm_ge_zero])
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2410
  by (simp add: Zfun_le norm_power_ineq tendsto_Zfun_iff)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2411
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2412
lemma LIMSEQ_divide_realpow_zero: "1 < x \<Longrightarrow> (\<lambda>n. a / (x ^ n) :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2413
  by (rule tendsto_divide_0 [OF tendsto_const filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2414
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2415
lemma
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2416
  tendsto_power_zero:
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2417
  fixes x::"'a::real_normed_algebra_1"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2418
  assumes "filterlim f at_top F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2419
  assumes "norm x < 1"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2420
  shows "((\<lambda>y. x ^ (f y)) \<longlongrightarrow> 0) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2421
proof (rule tendstoI)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2422
  fix e::real assume "0 < e"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2423
  from tendstoD[OF LIMSEQ_power_zero[OF \<open>norm x < 1\<close>] \<open>0 < e\<close>]
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2424
  have "\<forall>\<^sub>F xa in sequentially. norm (x ^ xa) < e"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2425
    by simp
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2426
  then obtain N where N: "norm (x ^ n) < e" if "n \<ge> N" for n
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2427
    by (auto simp: eventually_sequentially)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2428
  have "\<forall>\<^sub>F i in F. f i \<ge> N"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2429
    using \<open>filterlim f sequentially F\<close>
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2430
    by (simp add: filterlim_at_top)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2431
  then show "\<forall>\<^sub>F i in F. dist (x ^ f i) 0 < e"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2432
    by eventually_elim (auto simp: N)
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2433
qed
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2434
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  2435
text \<open>Limit of \<^term>\<open>c^n\<close> for \<^term>\<open>\<bar>c\<bar> < 1\<close>.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2436
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  2437
lemma LIMSEQ_abs_realpow_zero: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. \<bar>c\<bar> ^ n :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2438
  by (rule LIMSEQ_realpow_zero [OF abs_ge_zero])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2439
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  2440
lemma LIMSEQ_abs_realpow_zero2: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. c ^ n :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2441
  by (rule LIMSEQ_power_zero) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2442
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2443
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2444
subsection \<open>Limits of Functions\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2445
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2446
lemma LIM_eq: "f \<midarrow>a\<rightarrow> L = (\<forall>r>0. \<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2447
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2448
  by (simp add: LIM_def dist_norm)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2449
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2450
lemma LIM_I:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2451
  "(\<And>r. 0 < r \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r) \<Longrightarrow> f \<midarrow>a\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2452
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2453
  by (simp add: LIM_eq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2454
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2455
lemma LIM_D: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>s>0.\<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2456
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2457
  by (simp add: LIM_eq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2458
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2459
lemma LIM_offset: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>x. f (x + k)) \<midarrow>(a - k)\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2460
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2461
  by (simp add: filtermap_at_shift[symmetric, of a k] filterlim_def filtermap_filtermap)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2462
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2463
lemma LIM_offset_zero: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2464
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2465
  by (drule LIM_offset [where k = a]) (simp add: add.commute)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2466
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2467
lemma LIM_offset_zero_cancel: "(\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L \<Longrightarrow> f \<midarrow>a\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2468
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2469
  by (drule LIM_offset [where k = "- a"]) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2470
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2471
lemma LIM_offset_zero_iff: "f \<midarrow>a\<rightarrow> L \<longleftrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2472
  for f :: "'a :: real_normed_vector \<Rightarrow> _"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  2473
  using LIM_offset_zero_cancel[of f a L] LIM_offset_zero[of f L a] by auto
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  2474
70999
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2475
lemma tendsto_offset_zero_iff:
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2476
  fixes f :: "'a :: real_normed_vector \<Rightarrow> _"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2477
  assumes "a \<in> S" "open S"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2478
  shows "(f \<longlongrightarrow> L) (at a within S) \<longleftrightarrow> ((\<lambda>h. f (a + h)) \<longlongrightarrow> L) (at 0)"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2479
  by (metis LIM_offset_zero_iff assms tendsto_within_open)
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2480
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2481
lemma LIM_zero: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. f x - l) \<longlongrightarrow> 0) F"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2482
  for f :: "'a \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2483
  unfolding tendsto_iff dist_norm by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2484
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2485
lemma LIM_zero_cancel:
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2486
  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2487
  shows "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> l) F"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2488
unfolding tendsto_iff dist_norm by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2489
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2490
lemma LIM_zero_iff: "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F = (f \<longlongrightarrow> l) F"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2491
  for f :: "'a \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2492
  unfolding tendsto_iff dist_norm by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2493
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2494
lemma LIM_imp_LIM:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2495
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2496
  fixes g :: "'a::topological_space \<Rightarrow> 'c::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2497
  assumes f: "f \<midarrow>a\<rightarrow> l"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2498
    and le: "\<And>x. x \<noteq> a \<Longrightarrow> norm (g x - m) \<le> norm (f x - l)"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2499
  shows "g \<midarrow>a\<rightarrow> m"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2500
  by (rule metric_LIM_imp_LIM [OF f]) (simp add: dist_norm le)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2501
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2502
lemma LIM_equal2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2503
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2504
  assumes "0 < R"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2505
    and "\<And>x. x \<noteq> a \<Longrightarrow> norm (x - a) < R \<Longrightarrow> f x = g x"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2506
  shows "g \<midarrow>a\<rightarrow> l \<Longrightarrow> f \<midarrow>a\<rightarrow> l"
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68532
diff changeset
  2507
  by (rule metric_LIM_equal2 [OF _ assms]) (simp_all add: dist_norm)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2508
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2509
lemma LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2510
  fixes a :: "'a::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2511
  assumes f: "f \<midarrow>a\<rightarrow> b"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2512
    and g: "g \<midarrow>b\<rightarrow> c"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2513
    and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> b"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2514
  shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> c"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2515
  by (rule metric_LIM_compose2 [OF f g inj [folded dist_norm]])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2516
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2517
lemma real_LIM_sandwich_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2518
  fixes f g :: "'a::topological_space \<Rightarrow> real"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2519
  assumes f: "f \<midarrow>a\<rightarrow> 0"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2520
    and 1: "\<And>x. x \<noteq> a \<Longrightarrow> 0 \<le> g x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2521
    and 2: "\<And>x. x \<noteq> a \<Longrightarrow> g x \<le> f x"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2522
  shows "g \<midarrow>a\<rightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2523
proof (rule LIM_imp_LIM [OF f]) (* FIXME: use tendsto_sandwich *)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2524
  fix x
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2525
  assume x: "x \<noteq> a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2526
  with 1 have "norm (g x - 0) = g x" by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2527
  also have "g x \<le> f x" by (rule 2 [OF x])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2528
  also have "f x \<le> \<bar>f x\<bar>" by (rule abs_ge_self)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2529
  also have "\<bar>f x\<bar> = norm (f x - 0)" by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2530
  finally show "norm (g x - 0) \<le> norm (f x - 0)" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2531
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2532
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2533
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2534
subsection \<open>Continuity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2535
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2536
lemma LIM_isCont_iff: "(f \<midarrow>a\<rightarrow> f a) = ((\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> f a)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2537
  for f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2538
  by (rule iffI [OF LIM_offset_zero LIM_offset_zero_cancel])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2539
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2540
lemma isCont_iff: "isCont f x = (\<lambda>h. f (x + h)) \<midarrow>0\<rightarrow> f x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2541
  for f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2542
  by (simp add: isCont_def LIM_isCont_iff)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2543
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2544
lemma isCont_LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2545
  fixes a :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2546
  assumes f [unfolded isCont_def]: "isCont f a"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2547
    and g: "g \<midarrow>f a\<rightarrow> l"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2548
    and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> f a"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2549
  shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> l"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2550
  by (rule LIM_compose2 [OF f g inj])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2551
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2552
lemma isCont_norm [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. norm (f x)) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2553
  for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2554
  by (fact continuous_norm)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2555
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2556
lemma isCont_rabs [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. \<bar>f x\<bar>) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2557
  for f :: "'a::t2_space \<Rightarrow> real"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2558
  by (fact continuous_rabs)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2559
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2560
lemma isCont_add [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x + g x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2561
  for f :: "'a::t2_space \<Rightarrow> 'b::topological_monoid_add"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2562
  by (fact continuous_add)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2563
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2564
lemma isCont_minus [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. - f x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2565
  for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2566
  by (fact continuous_minus)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2567
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2568
lemma isCont_diff [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x - g x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2569
  for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2570
  by (fact continuous_diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2571
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2572
lemma isCont_mult [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x * g x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2573
  for f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_algebra"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2574
  by (fact continuous_mult)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2575
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2576
lemma (in bounded_linear) isCont: "isCont g a \<Longrightarrow> isCont (\<lambda>x. f (g x)) a"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2577
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2578
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2579
lemma (in bounded_bilinear) isCont: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x ** g x) a"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2580
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2581
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2582
lemmas isCont_scaleR [simp] =
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2583
  bounded_bilinear.isCont [OF bounded_bilinear_scaleR]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2584
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2585
lemmas isCont_of_real [simp] =
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2586
  bounded_linear.isCont [OF bounded_linear_of_real]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2587
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2588
lemma isCont_power [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. f x ^ n) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2589
  for f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2590
  by (fact continuous_power)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2591
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  2592
lemma isCont_sum [simp]: "\<forall>i\<in>A. isCont (f i) a \<Longrightarrow> isCont (\<lambda>x. \<Sum>i\<in>A. f i x) a"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2593
  for f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  2594
  by (auto intro: continuous_sum)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2595
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2596
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2597
subsection \<open>Uniform Continuity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2598
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2599
lemma uniformly_continuous_on_def:
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2600
  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2601
  shows "uniformly_continuous_on s f \<longleftrightarrow>
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2602
    (\<forall>e>0. \<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2603
  unfolding uniformly_continuous_on_uniformity
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2604
    uniformity_dist filterlim_INF filterlim_principal eventually_inf_principal
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2605
  by (force simp: Ball_def uniformity_dist[symmetric] eventually_uniformity_metric)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2606
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2607
abbreviation isUCont :: "['a::metric_space \<Rightarrow> 'b::metric_space] \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2608
  where "isUCont f \<equiv> uniformly_continuous_on UNIV f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2609
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2610
lemma isUCont_def: "isUCont f \<longleftrightarrow> (\<forall>r>0. \<exists>s>0. \<forall>x y. dist x y < s \<longrightarrow> dist (f x) (f y) < r)"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2611
  by (auto simp: uniformly_continuous_on_def dist_commute)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2612
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2613
lemma isUCont_isCont: "isUCont f \<Longrightarrow> isCont f x"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2614
  by (drule uniformly_continuous_imp_continuous) (simp add: continuous_on_eq_continuous_at)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2615
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2616
lemma uniformly_continuous_on_Cauchy:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2617
  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2618
  assumes "uniformly_continuous_on S f" "Cauchy X" "\<And>n. X n \<in> S"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2619
  shows "Cauchy (\<lambda>n. f (X n))"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2620
  using assms
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68532
diff changeset
  2621
  unfolding uniformly_continuous_on_def  by (meson Cauchy_def)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2622
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2623
lemma isUCont_Cauchy: "isUCont f \<Longrightarrow> Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2624
  by (rule uniformly_continuous_on_Cauchy[where S=UNIV and f=f]) simp_all
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2625
64287
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2626
lemma uniformly_continuous_imp_Cauchy_continuous:
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2627
  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
67091
1393c2340eec more symbols;
wenzelm
parents: 66827
diff changeset
  2628
  shows "\<lbrakk>uniformly_continuous_on S f; Cauchy \<sigma>; \<And>n. (\<sigma> n) \<in> S\<rbrakk> \<Longrightarrow> Cauchy(f \<circ> \<sigma>)"
64287
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2629
  by (simp add: uniformly_continuous_on_def Cauchy_def) meson
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2630
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2631
lemma (in bounded_linear) isUCont: "isUCont f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2632
  unfolding isUCont_def dist_norm
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2633
proof (intro allI impI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2634
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2635
  assume r: "0 < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2636
  obtain K where K: "0 < K" and norm_le: "norm (f x) \<le> norm x * K" for x
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2637
    using pos_bounded by blast
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2638
  show "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2639
  proof (rule exI, safe)
56541
0e3abadbef39 made divide_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
  2640
    from r K show "0 < r / K" by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2641
  next
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2642
    fix x y :: 'a
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2643
    assume xy: "norm (x - y) < r / K"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2644
    have "norm (f x - f y) = norm (f (x - y))" by (simp only: diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2645
    also have "\<dots> \<le> norm (x - y) * K" by (rule norm_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2646
    also from K xy have "\<dots> < r" by (simp only: pos_less_divide_eq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2647
    finally show "norm (f x - f y) < r" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2648
  qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2649
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2650
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2651
lemma (in bounded_linear) Cauchy: "Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2652
  by (rule isUCont [THEN isUCont_Cauchy])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2653
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2654
lemma LIM_less_bound:
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2655
  fixes f :: "real \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2656
  assumes ev: "b < x" "\<forall> x' \<in> { b <..< x}. 0 \<le> f x'" and "isCont f x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2657
  shows "0 \<le> f x"
63952
354808e9f44b new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents: 63915
diff changeset
  2658
proof (rule tendsto_lowerbound)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2659
  show "(f \<longlongrightarrow> f x) (at_left x)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2660
    using \<open>isCont f x\<close> by (simp add: filterlim_at_split isCont_def)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2661
  show "eventually (\<lambda>x. 0 \<le> f x) (at_left x)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  2662
    using ev by (auto simp: eventually_at dist_real_def intro!: exI[of _ "x - b"])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2663
qed simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  2664
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2665
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2666
subsection \<open>Nested Intervals and Bisection -- Needed for Compactness\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2667
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2668
lemma nested_sequence_unique:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2669
  assumes "\<forall>n. f n \<le> f (Suc n)" "\<forall>n. g (Suc n) \<le> g n" "\<forall>n. f n \<le> g n" "(\<lambda>n. f n - g n) \<longlonglongrightarrow> 0"
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2670
  shows "\<exists>l::real. ((\<forall>n. f n \<le> l) \<and> f \<longlonglongrightarrow> l) \<and> ((\<forall>n. l \<le> g n) \<and> g \<longlonglongrightarrow> l)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2671
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2672
  have "incseq f" unfolding incseq_Suc_iff by fact
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2673
  have "decseq g" unfolding decseq_Suc_iff by fact
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2674
  have "f n \<le> g 0" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2675
  proof -
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2676
    from \<open>decseq g\<close> have "g n \<le> g 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2677
      by (rule decseqD) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2678
    with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2679
      by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2680
  qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2681
  then obtain u where "f \<longlonglongrightarrow> u" "\<forall>i. f i \<le> u"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2682
    using incseq_convergent[OF \<open>incseq f\<close>] by auto
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2683
  moreover have "f 0 \<le> g n" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2684
  proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2685
    from \<open>incseq f\<close> have "f 0 \<le> f n" by (rule incseqD) simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2686
    with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2687
      by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2688
  qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2689
  then obtain l where "g \<longlonglongrightarrow> l" "\<forall>i. l \<le> g i"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2690
    using decseq_convergent[OF \<open>decseq g\<close>] by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2691
  moreover note LIMSEQ_unique[OF assms(4) tendsto_diff[OF \<open>f \<longlonglongrightarrow> u\<close> \<open>g \<longlonglongrightarrow> l\<close>]]
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2692
  ultimately show ?thesis by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2693
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2694
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2695
lemma Bolzano[consumes 1, case_names trans local]:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2696
  fixes P :: "real \<Rightarrow> real \<Rightarrow> bool"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2697
  assumes [arith]: "a \<le> b"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2698
    and trans: "\<And>a b c. P a b \<Longrightarrow> P b c \<Longrightarrow> a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> P a c"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2699
    and local: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<exists>d>0. \<forall>a b. a \<le> x \<and> x \<le> b \<and> b - a < d \<longrightarrow> P a b"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2700
  shows "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2701
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2702
  define bisect where "bisect =
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2703
    rec_nat (a, b) (\<lambda>n (x, y). if P x ((x+y) / 2) then ((x+y)/2, y) else (x, (x+y)/2))"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2704
  define l u where "l n = fst (bisect n)" and "u n = snd (bisect n)" for n
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2705
  have l[simp]: "l 0 = a" "\<And>n. l (Suc n) = (if P (l n) ((l n + u n) / 2) then (l n + u n) / 2 else l n)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2706
    and u[simp]: "u 0 = b" "\<And>n. u (Suc n) = (if P (l n) ((l n + u n) / 2) then u n else (l n + u n) / 2)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2707
    by (simp_all add: l_def u_def bisect_def split: prod.split)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2708
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2709
  have [simp]: "l n \<le> u n" for n by (induct n) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2710
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2711
  have "\<exists>x. ((\<forall>n. l n \<le> x) \<and> l \<longlonglongrightarrow> x) \<and> ((\<forall>n. x \<le> u n) \<and> u \<longlonglongrightarrow> x)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2712
  proof (safe intro!: nested_sequence_unique)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2713
    show "l n \<le> l (Suc n)" "u (Suc n) \<le> u n" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2714
      by (induct n) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2715
  next
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2716
    have "l n - u n = (a - b) / 2^n" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2717
      by (induct n) (auto simp: field_simps)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2718
    then show "(\<lambda>n. l n - u n) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2719
      by (simp add: LIMSEQ_divide_realpow_zero)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2720
  qed fact
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2721
  then obtain x where x: "\<And>n. l n \<le> x" "\<And>n. x \<le> u n" and "l \<longlonglongrightarrow> x" "u \<longlonglongrightarrow> x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2722
    by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2723
  obtain d where "0 < d" and d: "a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> b - a < d \<Longrightarrow> P a b" for a b
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2724
    using \<open>l 0 \<le> x\<close> \<open>x \<le> u 0\<close> local[of x] by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2725
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2726
  show "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2727
  proof (rule ccontr)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2728
    assume "\<not> P a b"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2729
    have "\<not> P (l n) (u n)" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2730
    proof (induct n)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2731
      case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2732
      then show ?case
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2733
        by (simp add: \<open>\<not> P a b\<close>)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2734
    next
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2735
      case (Suc n)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2736
      with trans[of "l n" "(l n + u n) / 2" "u n"] show ?case
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2737
        by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2738
    qed
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2739
    moreover
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2740
    {
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2741
      have "eventually (\<lambda>n. x - d / 2 < l n) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2742
        using \<open>0 < d\<close> \<open>l \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2743
      moreover have "eventually (\<lambda>n. u n < x + d / 2) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2744
        using \<open>0 < d\<close> \<open>u \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2745
      ultimately have "eventually (\<lambda>n. P (l n) (u n)) sequentially"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2746
      proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2747
        case (elim n)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2748
        from add_strict_mono[OF this] have "u n - l n < d" by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2749
        with x show "P (l n) (u n)" by (rule d)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2750
      qed
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2751
    }
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2752
    ultimately show False by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2753
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2754
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2755
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2756
lemma compact_Icc[simp, intro]: "compact {a .. b::real}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2757
proof (cases "a \<le> b", rule compactI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2758
  fix C
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2759
  assume C: "a \<le> b" "\<forall>t\<in>C. open t" "{a..b} \<subseteq> \<Union>C"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2760
  define T where "T = {a .. b}"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2761
  from C(1,3) show "\<exists>C'\<subseteq>C. finite C' \<and> {a..b} \<subseteq> \<Union>C'"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2762
  proof (induct rule: Bolzano)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2763
    case (trans a b c)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2764
    then have *: "{a..c} = {a..b} \<union> {b..c}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2765
      by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2766
    with trans obtain C1 C2
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2767
      where "C1\<subseteq>C" "finite C1" "{a..b} \<subseteq> \<Union>C1" "C2\<subseteq>C" "finite C2" "{b..c} \<subseteq> \<Union>C2"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2768
      by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2769
    with trans show ?case
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2770
      unfolding * by (intro exI[of _ "C1 \<union> C2"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2771
  next
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2772
    case (local x)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2773
    with C have "x \<in> \<Union>C" by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2774
    with C(2) obtain c where "x \<in> c" "open c" "c \<in> C"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2775
      by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2776
    then obtain e where "0 < e" "{x - e <..< x + e} \<subseteq> c"
62101
26c0a70f78a3 add uniform spaces
hoelzl
parents: 62087
diff changeset
  2777
      by (auto simp: open_dist dist_real_def subset_eq Ball_def abs_less_iff)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2778
    with \<open>c \<in> C\<close> show ?case
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2779
      by (safe intro!: exI[of _ "e/2"] exI[of _ "{c}"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2780
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2781
qed simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2782
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2783
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2784
lemma continuous_image_closed_interval:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2785
  fixes a b and f :: "real \<Rightarrow> real"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2786
  defines "S \<equiv> {a..b}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2787
  assumes "a \<le> b" and f: "continuous_on S f"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2788
  shows "\<exists>c d. f`S = {c..d} \<and> c \<le> d"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2789
proof -
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2790
  have S: "compact S" "S \<noteq> {}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2791
    using \<open>a \<le> b\<close> by (auto simp: S_def)
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2792
  obtain c where "c \<in> S" "\<forall>d\<in>S. f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2793
    using continuous_attains_sup[OF S f] by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2794
  moreover obtain d where "d \<in> S" "\<forall>c\<in>S. f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2795
    using continuous_attains_inf[OF S f] by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2796
  moreover have "connected (f`S)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2797
    using connected_continuous_image[OF f] connected_Icc by (auto simp: S_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2798
  ultimately have "f ` S = {f d .. f c} \<and> f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2799
    by (auto simp: connected_iff_interval)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2800
  then show ?thesis
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2801
    by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2802
qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2803
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2804
lemma open_Collect_positive:
67958
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
  2805
  fixes f :: "'a::topological_space \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2806
  assumes f: "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2807
  shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. 0 < f x}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2808
  using continuous_on_open_invariant[THEN iffD1, OF f, rule_format, of "{0 <..}"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2809
  by (auto simp: Int_def field_simps)
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2810
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2811
lemma open_Collect_less_Int:
67958
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
  2812
  fixes f g :: "'a::topological_space \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2813
  assumes f: "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2814
    and g: "continuous_on s g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2815
  shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. f x < g x}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2816
  using open_Collect_positive[OF continuous_on_diff[OF g f]] by (simp add: field_simps)
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2817
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2818
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2819
subsection \<open>Boundedness of continuous functions\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2820
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2821
text\<open>By bisection, function continuous on closed interval is bounded above\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2822
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2823
lemma isCont_eq_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2824
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2825
  shows "a \<le> b \<Longrightarrow> \<forall>x::real. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2826
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2827
  using continuous_attains_sup[of "{a..b}" f]
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2828
  by (auto simp: continuous_at_imp_continuous_on Ball_def Bex_def)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2829
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2830
lemma isCont_eq_Lb:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2831
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2832
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2833
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> M \<le> f x) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2834
  using continuous_attains_inf[of "{a..b}" f]
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2835
  by (auto simp: continuous_at_imp_continuous_on Ball_def Bex_def)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2836
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2837
lemma isCont_bounded:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2838
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2839
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> \<exists>M. \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2840
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2841
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2842
lemma isCont_has_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2843
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2844
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2845
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<forall>N. N < M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> N < f x))"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2846
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2847
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2848
(*HOL style here: object-level formulations*)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2849
lemma IVT_objl:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2850
  "(f a \<le> y \<and> y \<le> f b \<and> a \<le> b \<and> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x)) \<longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2851
    (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2852
  for a y :: real
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2853
  by (blast intro: IVT)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2854
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2855
lemma IVT2_objl:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2856
  "(f b \<le> y \<and> y \<le> f a \<and> a \<le> b \<and> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x)) \<longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2857
    (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2858
  for b y :: real
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2859
  by (blast intro: IVT2)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2860
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2861
lemma isCont_Lb_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2862
  fixes f :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2863
  assumes "a \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2864
  shows "\<exists>L M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> L \<le> f x \<and> f x \<le> M) \<and>
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2865
    (\<forall>y. L \<le> y \<and> y \<le> M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> (f x = y)))"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2866
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2867
  obtain M where M: "a \<le> M" "M \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> f M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2868
    using isCont_eq_Ub[OF assms] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2869
  obtain L where L: "a \<le> L" "L \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f L \<le> f x"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2870
    using isCont_eq_Lb[OF assms] by auto
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2871
  have "(\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f L \<le> f x \<and> f x \<le> f M)"
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2872
    using M L by simp
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2873
  moreover
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2874
  have "(\<forall>y. f L \<le> y \<and> y \<le> f M \<longrightarrow> (\<exists>x\<ge>a. x \<le> b \<and> f x = y))"
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2875
  proof (cases "L \<le> M")
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2876
    case True then show ?thesis
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2877
    using IVT[of f L _ M] M L assms by (metis order.trans)
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2878
  next
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2879
    case False then show ?thesis
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2880
    using IVT2[of f L _ M]
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2881
    by (metis L(2) M(1) assms(2) le_cases order.trans)
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2882
qed
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2883
  ultimately show ?thesis
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2884
    by blast
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2885
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2886
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2887
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2888
text \<open>Continuity of inverse function.\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2889
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2890
lemma isCont_inverse_function:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2891
  fixes f g :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2892
  assumes d: "0 < d"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2893
    and inj: "\<And>z. \<bar>z-x\<bar> \<le> d \<Longrightarrow> g (f z) = z"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2894
    and cont: "\<And>z. \<bar>z-x\<bar> \<le> d \<Longrightarrow> isCont f z"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2895
  shows "isCont g (f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2896
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2897
  let ?A = "f (x - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2898
  let ?B = "f (x + d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2899
  let ?D = "{x - d..x + d}"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2900
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2901
  have f: "continuous_on ?D f"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2902
    using cont by (intro continuous_at_imp_continuous_on ballI) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2903
  then have g: "continuous_on (f`?D) g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2904
    using inj by (intro continuous_on_inv) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2905
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2906
  from d f have "{min ?A ?B <..< max ?A ?B} \<subseteq> f ` ?D"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2907
    by (intro connected_contains_Ioo connected_continuous_image) (auto split: split_min split_max)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2908
  with g have "continuous_on {min ?A ?B <..< max ?A ?B} g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2909
    by (rule continuous_on_subset)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2910
  moreover
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2911
  have "(?A < f x \<and> f x < ?B) \<or> (?B < f x \<and> f x < ?A)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2912
    using d inj by (intro continuous_inj_imp_mono[OF _ _ f] inj_on_imageI2[of g, OF inj_onI]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2913
  then have "f x \<in> {min ?A ?B <..< max ?A ?B}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2914
    by auto
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2915
  ultimately show ?thesis
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2916
    by (simp add: continuous_on_eq_continuous_at)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2917
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2918
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2919
lemma isCont_inverse_function2:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2920
  fixes f g :: "real \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2921
  shows
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2922
    "\<lbrakk>a < x; x < b;
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2923
      \<And>z. \<lbrakk>a \<le> z; z \<le> b\<rbrakk> \<Longrightarrow> g (f z) = z;
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2924
      \<And>z. \<lbrakk>a \<le> z; z \<le> b\<rbrakk> \<Longrightarrow> isCont f z\<rbrakk> \<Longrightarrow> isCont g (f x)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2925
  apply (rule isCont_inverse_function [where f=f and d="min (x - a) (b - x)"])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2926
  apply (simp_all add: abs_le_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2927
  done
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2928
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2929
text \<open>Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2930
lemma LIM_fun_gt_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> 0 < f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2931
  for f :: "real \<Rightarrow> real"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2932
  by (force simp: dest: LIM_D)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2933
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2934
lemma LIM_fun_less_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x < 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2935
  for f :: "real \<Rightarrow> real"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2936
  by (drule LIM_D [where r="-l"]) force+
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2937
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2938
lemma LIM_fun_not_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x \<noteq> 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2939
  for f :: "real \<Rightarrow> real"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2940
  using LIM_fun_gt_zero[of f l c] LIM_fun_less_zero[of f l c] by (auto simp: neq_iff)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2941
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
  2942
end