src/HOL/List.thy
author hoelzl
Thu, 26 May 2011 20:49:56 +0200
changeset 42990 3706951a6421
parent 42871 1c0b99f950d9
child 43324 2b47822868e4
permissions -rw-r--r--
composition of convex and measurable function is measurable
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
     1
(*  Title:      HOL/List.thy
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
     2
    Author:     Tobias Nipkow
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     3
*)
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     4
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
     5
header {* The datatype of finite lists *}
13122
wenzelm
parents: 13114
diff changeset
     6
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15113
diff changeset
     7
theory List
40195
430fff4a9167 include ATP in theory List -- avoid theory edge by-passing the prominent list theory
haftmann
parents: 40122
diff changeset
     8
imports Plain Presburger Recdef Code_Numeral Quotient ATP
41463
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
     9
uses
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
    10
  ("Tools/list_code.ML")
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
    11
  ("Tools/list_to_set_comprehension.ML")
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15113
diff changeset
    12
begin
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    13
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    14
datatype 'a list =
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    15
    Nil    ("[]")
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    16
  | Cons 'a  "'a list"    (infixr "#" 65)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    17
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    18
syntax
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    19
  -- {* list Enumeration *}
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
    20
  "_list" :: "args => 'a list"    ("[(_)]")
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    21
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    22
translations
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    23
  "[x, xs]" == "x#[xs]"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    24
  "[x]" == "x#[]"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    25
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
    26
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
    27
subsection {* Basic list processing functions *}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
    28
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    29
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    30
  hd :: "'a list \<Rightarrow> 'a" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    31
  "hd (x # xs) = x"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    32
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    33
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    34
  tl :: "'a list \<Rightarrow> 'a list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    35
    "tl [] = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    36
  | "tl (x # xs) = xs"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    37
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    38
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    39
  last :: "'a list \<Rightarrow> 'a" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    40
  "last (x # xs) = (if xs = [] then x else last xs)"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    41
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    42
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    43
  butlast :: "'a list \<Rightarrow> 'a list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    44
    "butlast []= []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    45
  | "butlast (x # xs) = (if xs = [] then [] else x # butlast xs)"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    46
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    47
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    48
  set :: "'a list \<Rightarrow> 'a set" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    49
    "set [] = {}"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    50
  | "set (x # xs) = insert x (set xs)"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    51
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    52
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    53
  map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    54
    "map f [] = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    55
  | "map f (x # xs) = f x # map f xs"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    56
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    57
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    58
  append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    59
    append_Nil:"[] @ ys = ys"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    60
  | append_Cons: "(x#xs) @ ys = x # xs @ ys"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    61
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    62
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    63
  rev :: "'a list \<Rightarrow> 'a list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    64
    "rev [] = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    65
  | "rev (x # xs) = rev xs @ [x]"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    66
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    67
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    68
  filter:: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    69
    "filter P [] = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    70
  | "filter P (x # xs) = (if P x then x # filter P xs else filter P xs)"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    71
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    72
syntax
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    73
  -- {* Special syntax for filter *}
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
    74
  "_filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_<-_./ _])")
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    75
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    76
translations
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    77
  "[x<-xs . P]"== "CONST filter (%x. P) xs"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    78
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    79
syntax (xsymbols)
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
    80
  "_filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    81
syntax (HTML output)
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
    82
  "_filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    83
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    84
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    85
  foldl :: "('b \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    86
    foldl_Nil: "foldl f a [] = a"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    87
  | foldl_Cons: "foldl f a (x # xs) = foldl f (f a x) xs"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    88
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    89
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    90
  foldr :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    91
    "foldr f [] a = a"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    92
  | "foldr f (x # xs) a = f x (foldr f xs a)"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    93
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    94
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    95
  concat:: "'a list list \<Rightarrow> 'a list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    96
    "concat [] = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    97
  | "concat (x # xs) = x @ concat xs"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    98
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
    99
definition (in monoid_add)
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   100
  listsum :: "'a list \<Rightarrow> 'a" where
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
   101
  "listsum xs = foldr plus xs 0"
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   102
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   103
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   104
  drop:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   105
    drop_Nil: "drop n [] = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   106
  | drop_Cons: "drop n (x # xs) = (case n of 0 \<Rightarrow> x # xs | Suc m \<Rightarrow> drop m xs)"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   107
  -- {*Warning: simpset does not contain this definition, but separate
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   108
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   109
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   110
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   111
  take:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   112
    take_Nil:"take n [] = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   113
  | take_Cons: "take n (x # xs) = (case n of 0 \<Rightarrow> [] | Suc m \<Rightarrow> x # take m xs)"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   114
  -- {*Warning: simpset does not contain this definition, but separate
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   115
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   116
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   117
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   118
  nth :: "'a list => nat => 'a" (infixl "!" 100) where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   119
  nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   120
  -- {*Warning: simpset does not contain this definition, but separate
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   121
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   122
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   123
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   124
  list_update :: "'a list \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   125
    "list_update [] i v = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   126
  | "list_update (x # xs) i v = (case i of 0 \<Rightarrow> v # xs | Suc j \<Rightarrow> x # list_update xs j v)"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   127
41229
d797baa3d57c replaced command 'nonterminals' by slightly modernized version 'nonterminal';
wenzelm
parents: 41075
diff changeset
   128
nonterminal lupdbinds and lupdbind
5077
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
   129
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   130
syntax
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   131
  "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   132
  "" :: "lupdbind => lupdbinds"    ("_")
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   133
  "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   134
  "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
5077
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
   135
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   136
translations
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   137
  "_LUpdate xs (_lupdbinds b bs)" == "_LUpdate (_LUpdate xs b) bs"
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   138
  "xs[i:=x]" == "CONST list_update xs i x"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   139
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   140
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   141
  takeWhile :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   142
    "takeWhile P [] = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   143
  | "takeWhile P (x # xs) = (if P x then x # takeWhile P xs else [])"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   144
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   145
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   146
  dropWhile :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   147
    "dropWhile P [] = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   148
  | "dropWhile P (x # xs) = (if P x then dropWhile P xs else x # xs)"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   149
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   150
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   151
  zip :: "'a list \<Rightarrow> 'b list \<Rightarrow> ('a \<times> 'b) list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   152
    "zip xs [] = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   153
  | zip_Cons: "zip xs (y # ys) = (case xs of [] => [] | z # zs => (z, y) # zip zs ys)"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   154
  -- {*Warning: simpset does not contain this definition, but separate
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   155
       theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   156
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   157
primrec 
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   158
  upt :: "nat \<Rightarrow> nat \<Rightarrow> nat list" ("(1[_..</_'])") where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   159
    upt_0: "[i..<0] = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   160
  | upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   161
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
   162
definition
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
   163
  insert :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
   164
  "insert x xs = (if x \<in> set xs then xs else x # xs)"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
   165
36176
3fe7e97ccca8 replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
wenzelm
parents: 36154
diff changeset
   166
hide_const (open) insert
3fe7e97ccca8 replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
wenzelm
parents: 36154
diff changeset
   167
hide_fact (open) insert_def
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
   168
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   169
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   170
  remove1 :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   171
    "remove1 x [] = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   172
  | "remove1 x (y # xs) = (if x = y then xs else y # remove1 x xs)"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   173
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   174
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   175
  removeAll :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   176
    "removeAll x [] = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   177
  | "removeAll x (y # xs) = (if x = y then removeAll x xs else y # removeAll x xs)"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   178
40122
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
   179
primrec
39915
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   180
  distinct :: "'a list \<Rightarrow> bool" where
40122
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
   181
    "distinct [] \<longleftrightarrow> True"
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
   182
  | "distinct (x # xs) \<longleftrightarrow> x \<notin> set xs \<and> distinct xs"
39915
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   183
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   184
primrec
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   185
  remdups :: "'a list \<Rightarrow> 'a list" where
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   186
    "remdups [] = []"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   187
  | "remdups (x # xs) = (if x \<in> set xs then remdups xs else x # remdups xs)"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   188
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   189
primrec
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   190
  replicate :: "nat \<Rightarrow> 'a \<Rightarrow> 'a list" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   191
    replicate_0: "replicate 0 x = []"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   192
  | replicate_Suc: "replicate (Suc n) x = x # replicate n x"
3342
ec3b55fcb165 New operator "lists" for formalizing sets of lists
paulson
parents: 3320
diff changeset
   193
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   194
text {*
14589
feae7b5fd425 tuned document;
wenzelm
parents: 14565
diff changeset
   195
  Function @{text size} is overloaded for all datatypes. Users may
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   196
  refer to the list version as @{text length}. *}
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   197
19363
667b5ea637dd refined 'abbreviation';
wenzelm
parents: 19302
diff changeset
   198
abbreviation
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   199
  length :: "'a list \<Rightarrow> nat" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   200
  "length \<equiv> size"
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   201
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   202
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   203
  rotate1 :: "'a list \<Rightarrow> 'a list" where
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   204
  "rotate1 xs = (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])"
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   205
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   206
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   207
  rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
30971
7fbebf75b3ef funpow and relpow with shared "^^" syntax
haftmann
parents: 30952
diff changeset
   208
  "rotate n = rotate1 ^^ n"
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   209
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   210
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   211
  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" where
37767
a2b7a20d6ea3 dropped superfluous [code del]s
haftmann
parents: 37605
diff changeset
   212
  "list_all2 P xs ys =
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   213
    (length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y))"
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   214
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   215
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   216
  sublist :: "'a list => nat set => 'a list" where
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   217
  "sublist xs A = map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))"
17086
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
   218
40593
1e57b18d27b1 code eqn for slice was missing; redefined splice with fun
nipkow
parents: 40365
diff changeset
   219
fun splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
1e57b18d27b1 code eqn for slice was missing; redefined splice with fun
nipkow
parents: 40365
diff changeset
   220
"splice [] ys = ys" |
1e57b18d27b1 code eqn for slice was missing; redefined splice with fun
nipkow
parents: 40365
diff changeset
   221
"splice xs [] = xs" |
1e57b18d27b1 code eqn for slice was missing; redefined splice with fun
nipkow
parents: 40365
diff changeset
   222
"splice (x#xs) (y#ys) = x # y # splice xs ys"
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   223
26771
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   224
text{*
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   225
\begin{figure}[htbp]
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   226
\fbox{
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   227
\begin{tabular}{l}
27381
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   228
@{lemma "[a,b]@[c,d] = [a,b,c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   229
@{lemma "length [a,b,c] = 3" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   230
@{lemma "set [a,b,c] = {a,b,c}" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   231
@{lemma "map f [a,b,c] = [f a, f b, f c]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   232
@{lemma "rev [a,b,c] = [c,b,a]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   233
@{lemma "hd [a,b,c,d] = a" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   234
@{lemma "tl [a,b,c,d] = [b,c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   235
@{lemma "last [a,b,c,d] = d" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   236
@{lemma "butlast [a,b,c,d] = [a,b,c]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   237
@{lemma[source] "filter (\<lambda>n::nat. n<2) [0,2,1] = [0,1]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   238
@{lemma "concat [[a,b],[c,d,e],[],[f]] = [a,b,c,d,e,f]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   239
@{lemma "foldl f x [a,b,c] = f (f (f x a) b) c" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   240
@{lemma "foldr f [a,b,c] x = f a (f b (f c x))" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   241
@{lemma "zip [a,b,c] [x,y,z] = [(a,x),(b,y),(c,z)]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   242
@{lemma "zip [a,b] [x,y,z] = [(a,x),(b,y)]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   243
@{lemma "splice [a,b,c] [x,y,z] = [a,x,b,y,c,z]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   244
@{lemma "splice [a,b,c,d] [x,y] = [a,x,b,y,c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   245
@{lemma "take 2 [a,b,c,d] = [a,b]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   246
@{lemma "take 6 [a,b,c,d] = [a,b,c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   247
@{lemma "drop 2 [a,b,c,d] = [c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   248
@{lemma "drop 6 [a,b,c,d] = []" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   249
@{lemma "takeWhile (%n::nat. n<3) [1,2,3,0] = [1,2]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   250
@{lemma "dropWhile (%n::nat. n<3) [1,2,3,0] = [3,0]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   251
@{lemma "distinct [2,0,1::nat]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   252
@{lemma "remdups [2,0,2,1::nat,2] = [0,1,2]" by simp}\\
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
   253
@{lemma "List.insert 2 [0::nat,1,2] = [0,1,2]" by (simp add: List.insert_def)}\\
35295
397295fa8387 lemma distinct_insert
haftmann
parents: 35248
diff changeset
   254
@{lemma "List.insert 3 [0::nat,1,2] = [3,0,1,2]" by (simp add: List.insert_def)}\\
27381
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   255
@{lemma "remove1 2 [2,0,2,1::nat,2] = [0,2,1,2]" by simp}\\
27693
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
   256
@{lemma "removeAll 2 [2,0,2,1::nat,2] = [0,1]" by simp}\\
27381
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   257
@{lemma "nth [a,b,c,d] 2 = c" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   258
@{lemma "[a,b,c,d][2 := x] = [a,b,x,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   259
@{lemma "sublist [a,b,c,d,e] {0,2,3} = [a,c,d]" by (simp add:sublist_def)}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   260
@{lemma "rotate1 [a,b,c,d] = [b,c,d,a]" by (simp add:rotate1_def)}\\
40077
c8a9eaaa2f59 nat_number -> eval_nat_numeral
nipkow
parents: 39963
diff changeset
   261
@{lemma "rotate 3 [a,b,c,d] = [d,a,b,c]" by (simp add:rotate1_def rotate_def eval_nat_numeral)}\\
c8a9eaaa2f59 nat_number -> eval_nat_numeral
nipkow
parents: 39963
diff changeset
   262
@{lemma "replicate 4 a = [a,a,a,a]" by (simp add:eval_nat_numeral)}\\
c8a9eaaa2f59 nat_number -> eval_nat_numeral
nipkow
parents: 39963
diff changeset
   263
@{lemma "[2..<5] = [2,3,4]" by (simp add:eval_nat_numeral)}\\
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
   264
@{lemma "listsum [1,2,3::nat] = 6" by (simp add: listsum_def)}
26771
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   265
\end{tabular}}
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   266
\caption{Characteristic examples}
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   267
\label{fig:Characteristic}
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   268
\end{figure}
29927
ae8f42c245b2 Added nitpick attribute, and fixed typo.
blanchet
parents: 29856
diff changeset
   269
Figure~\ref{fig:Characteristic} shows characteristic examples
26771
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   270
that should give an intuitive understanding of the above functions.
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   271
*}
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   272
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
   273
text{* The following simple sort functions are intended for proofs,
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
   274
not for efficient implementations. *}
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
   275
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   276
context linorder
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   277
begin
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   278
39915
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   279
inductive sorted :: "'a list \<Rightarrow> bool" where
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   280
  Nil [iff]: "sorted []"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   281
| Cons: "\<forall>y\<in>set xs. x \<le> y \<Longrightarrow> sorted xs \<Longrightarrow> sorted (x # xs)"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   282
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   283
lemma sorted_single [iff]:
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   284
  "sorted [x]"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   285
  by (rule sorted.Cons) auto
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   286
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   287
lemma sorted_many:
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   288
  "x \<le> y \<Longrightarrow> sorted (y # zs) \<Longrightarrow> sorted (x # y # zs)"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   289
  by (rule sorted.Cons) (cases "y # zs" rule: sorted.cases, auto)
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   290
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   291
lemma sorted_many_eq [simp, code]:
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   292
  "sorted (x # y # zs) \<longleftrightarrow> x \<le> y \<and> sorted (y # zs)"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   293
  by (auto intro: sorted_many elim: sorted.cases)
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   294
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   295
lemma [code]:
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   296
  "sorted [] \<longleftrightarrow> True"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   297
  "sorted [x] \<longleftrightarrow> True"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   298
  by simp_all
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
   299
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   300
primrec insort_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b \<Rightarrow> 'b list \<Rightarrow> 'b list" where
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   301
"insort_key f x [] = [x]" |
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   302
"insort_key f x (y#ys) = (if f x \<le> f y then (x#y#ys) else y#(insort_key f x ys))"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   303
35195
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
   304
definition sort_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b list \<Rightarrow> 'b list" where
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
   305
"sort_key f xs = foldr (insort_key f) xs []"
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   306
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   307
definition insort_insert_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b \<Rightarrow> 'b list \<Rightarrow> 'b list" where
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   308
  "insort_insert_key f x xs = (if f x \<in> f ` set xs then xs else insort_key f x xs)"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   309
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   310
abbreviation "sort \<equiv> sort_key (\<lambda>x. x)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   311
abbreviation "insort \<equiv> insort_key (\<lambda>x. x)"
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   312
abbreviation "insort_insert \<equiv> insort_insert_key (\<lambda>x. x)"
35608
db4045d1406e added insort_insert
haftmann
parents: 35603
diff changeset
   313
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   314
end
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   315
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
   316
23388
77645da0db85 tuned proofs: avoid implicit prems;
wenzelm
parents: 23279
diff changeset
   317
subsubsection {* List comprehension *}
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   318
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   319
text{* Input syntax for Haskell-like list comprehension notation.
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   320
Typical example: @{text"[(x,y). x \<leftarrow> xs, y \<leftarrow> ys, x \<noteq> y]"},
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   321
the list of all pairs of distinct elements from @{text xs} and @{text ys}.
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   322
The syntax is as in Haskell, except that @{text"|"} becomes a dot
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   323
(like in Isabelle's set comprehension): @{text"[e. x \<leftarrow> xs, \<dots>]"} rather than
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   324
\verb![e| x <- xs, ...]!.
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   325
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   326
The qualifiers after the dot are
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   327
\begin{description}
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   328
\item[generators] @{text"p \<leftarrow> xs"},
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   329
 where @{text p} is a pattern and @{text xs} an expression of list type, or
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   330
\item[guards] @{text"b"}, where @{text b} is a boolean expression.
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   331
%\item[local bindings] @ {text"let x = e"}.
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   332
\end{description}
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   333
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   334
Just like in Haskell, list comprehension is just a shorthand. To avoid
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   335
misunderstandings, the translation into desugared form is not reversed
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   336
upon output. Note that the translation of @{text"[e. x \<leftarrow> xs]"} is
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   337
optmized to @{term"map (%x. e) xs"}.
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   338
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   339
It is easy to write short list comprehensions which stand for complex
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   340
expressions. During proofs, they may become unreadable (and
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   341
mangled). In such cases it can be advisable to introduce separate
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   342
definitions for the list comprehensions in question.  *}
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   343
42144
15218eb98fd7 list comprehension: strip positions where the translation cannot handle them right now;
wenzelm
parents: 42057
diff changeset
   344
nonterminal lc_gen and lc_qual and lc_quals
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   345
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   346
syntax
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   347
"_listcompr" :: "'a \<Rightarrow> lc_qual \<Rightarrow> lc_quals \<Rightarrow> 'a list"  ("[_ . __")
42144
15218eb98fd7 list comprehension: strip positions where the translation cannot handle them right now;
wenzelm
parents: 42057
diff changeset
   348
"_lc_gen" :: "lc_gen \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ <- _")
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   349
"_lc_test" :: "bool \<Rightarrow> lc_qual" ("_")
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   350
(*"_lc_let" :: "letbinds => lc_qual"  ("let _")*)
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   351
"_lc_end" :: "lc_quals" ("]")
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   352
"_lc_quals" :: "lc_qual \<Rightarrow> lc_quals \<Rightarrow> lc_quals" (", __")
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   353
"_lc_abs" :: "'a => 'b list => 'b list"
42144
15218eb98fd7 list comprehension: strip positions where the translation cannot handle them right now;
wenzelm
parents: 42057
diff changeset
   354
"_strip_positions" :: "'a \<Rightarrow> lc_gen"  ("_")
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   355
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   356
(* These are easier than ML code but cannot express the optimized
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   357
   translation of [e. p<-xs]
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   358
translations
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   359
"[e. p<-xs]" => "concat(map (_lc_abs p [e]) xs)"
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   360
"_listcompr e (_lc_gen p xs) (_lc_quals Q Qs)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   361
 => "concat (map (_lc_abs p (_listcompr e Q Qs)) xs)"
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   362
"[e. P]" => "if P then [e] else []"
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   363
"_listcompr e (_lc_test P) (_lc_quals Q Qs)"
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   364
 => "if P then (_listcompr e Q Qs) else []"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   365
"_listcompr e (_lc_let b) (_lc_quals Q Qs)"
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   366
 => "_Let b (_listcompr e Q Qs)"
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   367
*)
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   368
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
   369
syntax (xsymbols)
42144
15218eb98fd7 list comprehension: strip positions where the translation cannot handle them right now;
wenzelm
parents: 42057
diff changeset
   370
"_lc_gen" :: "lc_gen \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
   371
syntax (HTML output)
42144
15218eb98fd7 list comprehension: strip positions where the translation cannot handle them right now;
wenzelm
parents: 42057
diff changeset
   372
"_lc_gen" :: "lc_gen \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   373
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   374
parse_translation (advanced) {*
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   375
let
35256
b73ae1a8fe7e adapted to authentic syntax;
wenzelm
parents: 35248
diff changeset
   376
  val NilC = Syntax.const @{const_syntax Nil};
b73ae1a8fe7e adapted to authentic syntax;
wenzelm
parents: 35248
diff changeset
   377
  val ConsC = Syntax.const @{const_syntax Cons};
b73ae1a8fe7e adapted to authentic syntax;
wenzelm
parents: 35248
diff changeset
   378
  val mapC = Syntax.const @{const_syntax map};
b73ae1a8fe7e adapted to authentic syntax;
wenzelm
parents: 35248
diff changeset
   379
  val concatC = Syntax.const @{const_syntax concat};
b73ae1a8fe7e adapted to authentic syntax;
wenzelm
parents: 35248
diff changeset
   380
  val IfC = Syntax.const @{const_syntax If};
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   381
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   382
  fun singl x = ConsC $ x $ NilC;
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   383
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   384
  fun pat_tr ctxt p e opti = (* %x. case x of p => e | _ => [] *)
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   385
    let
29281
b22ccb3998db eliminated OldTerm.add_term_free_names;
wenzelm
parents: 29270
diff changeset
   386
      val x = Free (Name.variant (fold Term.add_free_names [p, e] []) "x", dummyT);
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   387
      val e = if opti then singl e else e;
42264
b6c1b0c4c511 separate structure Term_Position;
wenzelm
parents: 42167
diff changeset
   388
      val case1 = Syntax.const @{syntax_const "_case1"} $ Term_Position.strip_positions p $ e;
35256
b73ae1a8fe7e adapted to authentic syntax;
wenzelm
parents: 35248
diff changeset
   389
      val case2 =
b73ae1a8fe7e adapted to authentic syntax;
wenzelm
parents: 35248
diff changeset
   390
        Syntax.const @{syntax_const "_case1"} $
b73ae1a8fe7e adapted to authentic syntax;
wenzelm
parents: 35248
diff changeset
   391
          Syntax.const @{const_syntax dummy_pattern} $ NilC;
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   392
      val cs = Syntax.const @{syntax_const "_case2"} $ case1 $ case2;
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   393
      val ft = Datatype_Case.case_tr false Datatype.info_of_constr ctxt [x, cs];
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   394
    in lambda x ft end;
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   395
35256
b73ae1a8fe7e adapted to authentic syntax;
wenzelm
parents: 35248
diff changeset
   396
  fun abs_tr ctxt (p as Free (s, T)) e opti =
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   397
        let
42361
23f352990944 modernized structure Proof_Context;
wenzelm
parents: 42359
diff changeset
   398
          val thy = Proof_Context.theory_of ctxt;
23f352990944 modernized structure Proof_Context;
wenzelm
parents: 42359
diff changeset
   399
          val s' = Proof_Context.intern_const ctxt s;
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   400
        in
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   401
          if Sign.declared_const thy s'
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   402
          then (pat_tr ctxt p e opti, false)
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   403
          else (lambda p e, true)
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   404
        end
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   405
    | abs_tr ctxt p e opti = (pat_tr ctxt p e opti, false);
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   406
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   407
  fun lc_tr ctxt [e, Const (@{syntax_const "_lc_test"}, _) $ b, qs] =
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   408
        let
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   409
          val res =
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   410
            (case qs of
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   411
              Const (@{syntax_const "_lc_end"}, _) => singl e
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   412
            | Const (@{syntax_const "_lc_quals"}, _) $ q $ qs => lc_tr ctxt [e, q, qs]);
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   413
        in IfC $ b $ res $ NilC end
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   414
    | lc_tr ctxt
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   415
          [e, Const (@{syntax_const "_lc_gen"}, _) $ p $ es,
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   416
            Const(@{syntax_const "_lc_end"}, _)] =
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   417
        (case abs_tr ctxt p e true of
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   418
          (f, true) => mapC $ f $ es
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   419
        | (f, false) => concatC $ (mapC $ f $ es))
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   420
    | lc_tr ctxt
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   421
          [e, Const (@{syntax_const "_lc_gen"}, _) $ p $ es,
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   422
            Const (@{syntax_const "_lc_quals"}, _) $ q $ qs] =
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   423
        let val e' = lc_tr ctxt [e, q, qs];
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   424
        in concatC $ (mapC $ (fst (abs_tr ctxt p e' false)) $ es) end;
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   425
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   426
in [(@{syntax_const "_listcompr"}, lc_tr)] end
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   427
*}
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
   428
42167
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   429
ML {*
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   430
  let
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   431
    val read = Syntax.read_term @{context};
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   432
    fun check s1 s2 = read s1 aconv read s2 orelse error ("Check failed: " ^ quote s1);
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   433
  in
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   434
    check "[(x,y,z). b]" "if b then [(x, y, z)] else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   435
    check "[(x,y,z). x\<leftarrow>xs]" "map (\<lambda>x. (x, y, z)) xs";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   436
    check "[e x y. x\<leftarrow>xs, y\<leftarrow>ys]" "concat (map (\<lambda>x. map (\<lambda>y. e x y) ys) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   437
    check "[(x,y,z). x<a, x>b]" "if x < a then if b < x then [(x, y, z)] else [] else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   438
    check "[(x,y,z). x\<leftarrow>xs, x>b]" "concat (map (\<lambda>x. if b < x then [(x, y, z)] else []) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   439
    check "[(x,y,z). x<a, x\<leftarrow>xs]" "if x < a then map (\<lambda>x. (x, y, z)) xs else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   440
    check "[(x,y). Cons True x \<leftarrow> xs]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   441
      "concat (map (\<lambda>xa. case xa of [] \<Rightarrow> [] | True # x \<Rightarrow> [(x, y)] | False # x \<Rightarrow> []) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   442
    check "[(x,y,z). Cons x [] \<leftarrow> xs]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   443
      "concat (map (\<lambda>xa. case xa of [] \<Rightarrow> [] | [x] \<Rightarrow> [(x, y, z)] | x # aa # lista \<Rightarrow> []) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   444
    check "[(x,y,z). x<a, x>b, x=d]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   445
      "if x < a then if b < x then if x = d then [(x, y, z)] else [] else [] else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   446
    check "[(x,y,z). x<a, x>b, y\<leftarrow>ys]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   447
      "if x < a then if b < x then map (\<lambda>y. (x, y, z)) ys else [] else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   448
    check "[(x,y,z). x<a, x\<leftarrow>xs,y>b]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   449
      "if x < a then concat (map (\<lambda>x. if b < y then [(x, y, z)] else []) xs) else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   450
    check "[(x,y,z). x<a, x\<leftarrow>xs, y\<leftarrow>ys]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   451
      "if x < a then concat (map (\<lambda>x. map (\<lambda>y. (x, y, z)) ys) xs) else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   452
    check "[(x,y,z). x\<leftarrow>xs, x>b, y<a]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   453
      "concat (map (\<lambda>x. if b < x then if y < a then [(x, y, z)] else [] else []) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   454
    check "[(x,y,z). x\<leftarrow>xs, x>b, y\<leftarrow>ys]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   455
      "concat (map (\<lambda>x. if b < x then map (\<lambda>y. (x, y, z)) ys else []) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   456
    check "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,y>x]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   457
      "concat (map (\<lambda>x. concat (map (\<lambda>y. if x < y then [(x, y, z)] else []) ys)) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   458
    check "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,z\<leftarrow>zs]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   459
      "concat (map (\<lambda>x. concat (map (\<lambda>y. map (\<lambda>z. (x, y, z)) zs) ys)) xs)"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   460
  end;
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   461
*}
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   462
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   463
(*
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   464
term "[(x,y). x\<leftarrow>xs, let xx = x+x, y\<leftarrow>ys, y \<noteq> xx]"
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   465
*)
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   466
42167
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   467
41463
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
   468
use "Tools/list_to_set_comprehension.ML"
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
   469
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
   470
simproc_setup list_to_set_comprehension ("set xs") = {* K List_to_Set_Comprehension.simproc *}
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
   471
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   472
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   473
subsubsection {* @{const Nil} and @{const Cons} *}
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   474
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   475
lemma not_Cons_self [simp]:
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   476
  "xs \<noteq> x # xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   477
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   478
41697
19890332febc explicit is better than implicit;
wenzelm
parents: 41505
diff changeset
   479
lemma not_Cons_self2 [simp]:
19890332febc explicit is better than implicit;
wenzelm
parents: 41505
diff changeset
   480
  "x # xs \<noteq> xs"
19890332febc explicit is better than implicit;
wenzelm
parents: 41505
diff changeset
   481
by (rule not_Cons_self [symmetric])
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   482
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   483
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   484
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   485
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   486
lemma length_induct:
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   487
  "(\<And>xs. \<forall>ys. length ys < length xs \<longrightarrow> P ys \<Longrightarrow> P xs) \<Longrightarrow> P xs"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17501
diff changeset
   488
by (rule measure_induct [of length]) iprover
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   489
37289
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   490
lemma list_nonempty_induct [consumes 1, case_names single cons]:
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   491
  assumes "xs \<noteq> []"
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   492
  assumes single: "\<And>x. P [x]"
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   493
  assumes cons: "\<And>x xs. xs \<noteq> [] \<Longrightarrow> P xs \<Longrightarrow> P (x # xs)"
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   494
  shows "P xs"
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   495
using `xs \<noteq> []` proof (induct xs)
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   496
  case Nil then show ?case by simp
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   497
next
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   498
  case (Cons x xs) show ?case proof (cases xs)
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   499
    case Nil with single show ?thesis by simp
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   500
  next
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   501
    case Cons then have "xs \<noteq> []" by simp
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   502
    moreover with Cons.hyps have "P xs" .
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   503
    ultimately show ?thesis by (rule cons)
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   504
  qed
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   505
qed
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   506
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   507
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   508
subsubsection {* @{const length} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   509
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   510
text {*
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   511
  Needs to come before @{text "@"} because of theorem @{text
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   512
  append_eq_append_conv}.
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   513
*}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   514
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   515
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   516
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   517
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   518
lemma length_map [simp]: "length (map f xs) = length xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   519
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   520
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   521
lemma length_rev [simp]: "length (rev xs) = length xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   522
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   523
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   524
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   525
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   526
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   527
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   528
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   529
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   530
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   531
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   532
23479
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
   533
lemma length_pos_if_in_set: "x : set xs \<Longrightarrow> length xs > 0"
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
   534
by auto
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
   535
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   536
lemma length_Suc_conv:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   537
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   538
by (induct xs) auto
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   539
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   540
lemma Suc_length_conv:
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   541
"(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   542
apply (induct xs, simp, simp)
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   543
apply blast
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   544
done
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   545
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   546
lemma impossible_Cons: "length xs <= length ys ==> xs = x # ys = False"
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   547
  by (induct xs) auto
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   548
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   549
lemma list_induct2 [consumes 1, case_names Nil Cons]:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   550
  "length xs = length ys \<Longrightarrow> P [] [] \<Longrightarrow>
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   551
   (\<And>x xs y ys. length xs = length ys \<Longrightarrow> P xs ys \<Longrightarrow> P (x#xs) (y#ys))
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   552
   \<Longrightarrow> P xs ys"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   553
proof (induct xs arbitrary: ys)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   554
  case Nil then show ?case by simp
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   555
next
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   556
  case (Cons x xs ys) then show ?case by (cases ys) simp_all
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   557
qed
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   558
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   559
lemma list_induct3 [consumes 2, case_names Nil Cons]:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   560
  "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P [] [] [] \<Longrightarrow>
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   561
   (\<And>x xs y ys z zs. length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P xs ys zs \<Longrightarrow> P (x#xs) (y#ys) (z#zs))
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   562
   \<Longrightarrow> P xs ys zs"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   563
proof (induct xs arbitrary: ys zs)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   564
  case Nil then show ?case by simp
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   565
next
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   566
  case (Cons x xs ys zs) then show ?case by (cases ys, simp_all)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   567
    (cases zs, simp_all)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   568
qed
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   569
36154
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   570
lemma list_induct4 [consumes 3, case_names Nil Cons]:
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   571
  "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> length zs = length ws \<Longrightarrow>
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   572
   P [] [] [] [] \<Longrightarrow> (\<And>x xs y ys z zs w ws. length xs = length ys \<Longrightarrow>
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   573
   length ys = length zs \<Longrightarrow> length zs = length ws \<Longrightarrow> P xs ys zs ws \<Longrightarrow>
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   574
   P (x#xs) (y#ys) (z#zs) (w#ws)) \<Longrightarrow> P xs ys zs ws"
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   575
proof (induct xs arbitrary: ys zs ws)
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   576
  case Nil then show ?case by simp
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   577
next
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   578
  case (Cons x xs ys zs ws) then show ?case by ((cases ys, simp_all), (cases zs,simp_all)) (cases ws, simp_all)
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   579
qed
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   580
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   581
lemma list_induct2': 
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   582
  "\<lbrakk> P [] [];
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   583
  \<And>x xs. P (x#xs) [];
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   584
  \<And>y ys. P [] (y#ys);
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   585
   \<And>x xs y ys. P xs ys  \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   586
 \<Longrightarrow> P xs ys"
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   587
by (induct xs arbitrary: ys) (case_tac x, auto)+
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   588
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   589
lemma neq_if_length_neq: "length xs \<noteq> length ys \<Longrightarrow> (xs = ys) == False"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   590
by (rule Eq_FalseI) auto
24037
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   591
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   592
simproc_setup list_neq ("(xs::'a list) = ys") = {*
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   593
(*
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   594
Reduces xs=ys to False if xs and ys cannot be of the same length.
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   595
This is the case if the atomic sublists of one are a submultiset
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   596
of those of the other list and there are fewer Cons's in one than the other.
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   597
*)
24037
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   598
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   599
let
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   600
29856
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   601
fun len (Const(@{const_name Nil},_)) acc = acc
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   602
  | len (Const(@{const_name Cons},_) $ _ $ xs) (ts,n) = len xs (ts,n+1)
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   603
  | len (Const(@{const_name append},_) $ xs $ ys) acc = len xs (len ys acc)
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   604
  | len (Const(@{const_name rev},_) $ xs) acc = len xs acc
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   605
  | len (Const(@{const_name map},_) $ _ $ xs) acc = len xs acc
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   606
  | len t (ts,n) = (t::ts,n);
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   607
24037
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   608
fun list_neq _ ss ct =
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   609
  let
24037
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   610
    val (Const(_,eqT) $ lhs $ rhs) = Thm.term_of ct;
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   611
    val (ls,m) = len lhs ([],0) and (rs,n) = len rhs ([],0);
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   612
    fun prove_neq() =
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   613
      let
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   614
        val Type(_,listT::_) = eqT;
22994
02440636214f abstract size function in hologic.ML
haftmann
parents: 22940
diff changeset
   615
        val size = HOLogic.size_const listT;
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   616
        val eq_len = HOLogic.mk_eq (size $ lhs, size $ rhs);
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   617
        val neq_len = HOLogic.mk_Trueprop (HOLogic.Not $ eq_len);
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   618
        val thm = Goal.prove (Simplifier.the_context ss) [] [] neq_len
22633
haftmann
parents: 22551
diff changeset
   619
          (K (simp_tac (Simplifier.inherit_context ss @{simpset}) 1));
haftmann
parents: 22551
diff changeset
   620
      in SOME (thm RS @{thm neq_if_length_neq}) end
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   621
  in
23214
dc23c062b58c renamed gen_submultiset to submultiset;
wenzelm
parents: 23212
diff changeset
   622
    if m < n andalso submultiset (op aconv) (ls,rs) orelse
dc23c062b58c renamed gen_submultiset to submultiset;
wenzelm
parents: 23212
diff changeset
   623
       n < m andalso submultiset (op aconv) (rs,ls)
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   624
    then prove_neq() else NONE
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   625
  end;
24037
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   626
in list_neq end;
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   627
*}
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   628
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   629
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
   630
subsubsection {* @{text "@"} -- append *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   631
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   632
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   633
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   634
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   635
lemma append_Nil2 [simp]: "xs @ [] = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   636
by (induct xs) auto
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   637
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   638
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   639
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   640
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   641
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   642
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   643
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   644
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   645
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   646
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   647
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   648
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   649
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35827
diff changeset
   650
lemma append_eq_append_conv [simp, no_atp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   651
 "length xs = length ys \<or> length us = length vs
13883
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
   652
 ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   653
apply (induct xs arbitrary: ys)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   654
 apply (case_tac ys, simp, force)
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   655
apply (case_tac ys, force, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   656
done
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   657
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   658
lemma append_eq_append_conv2: "(xs @ ys = zs @ ts) =
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   659
  (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   660
apply (induct xs arbitrary: ys zs ts)
14495
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   661
 apply fastsimp
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   662
apply(case_tac zs)
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   663
 apply simp
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   664
apply fastsimp
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   665
done
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   666
34910
b23bd3ee4813 same_append_eq / append_same_eq are now used for simplifying induction rules.
berghofe
parents: 34064
diff changeset
   667
lemma same_append_eq [iff, induct_simp]: "(xs @ ys = xs @ zs) = (ys = zs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   668
by simp
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   669
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   670
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   671
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   672
34910
b23bd3ee4813 same_append_eq / append_same_eq are now used for simplifying induction rules.
berghofe
parents: 34064
diff changeset
   673
lemma append_same_eq [iff, induct_simp]: "(ys @ xs = zs @ xs) = (ys = zs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   674
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   675
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   676
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   677
using append_same_eq [of _ _ "[]"] by auto
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   678
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   679
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   680
using append_same_eq [of "[]"] by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   681
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35827
diff changeset
   682
lemma hd_Cons_tl [simp,no_atp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   683
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   684
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   685
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   686
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   687
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   688
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   689
by (simp add: hd_append split: list.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   690
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   691
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   692
by (simp split: list.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   693
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   694
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   695
by (simp add: tl_append split: list.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   696
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   697
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   698
lemma Cons_eq_append_conv: "x#xs = ys@zs =
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   699
 (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   700
by(cases ys) auto
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   701
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
   702
lemma append_eq_Cons_conv: "(ys@zs = x#xs) =
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
   703
 (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
   704
by(cases ys) auto
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
   705
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   706
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   707
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   708
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   709
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   710
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   711
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   712
lemma Cons_eq_appendI:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   713
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   714
by (drule sym) simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   715
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   716
lemma append_eq_appendI:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   717
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   718
by (drule sym) simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   719
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   720
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   721
text {*
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   722
Simplification procedure for all list equalities.
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   723
Currently only tries to rearrange @{text "@"} to see if
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   724
- both lists end in a singleton list,
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   725
- or both lists end in the same list.
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   726
*}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   727
26480
544cef16045b replaced 'ML_setup' by 'ML';
wenzelm
parents: 26442
diff changeset
   728
ML {*
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   729
local
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   730
29856
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   731
fun last (cons as Const(@{const_name Cons},_) $ _ $ xs) =
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   732
  (case xs of Const(@{const_name Nil},_) => cons | _ => last xs)
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   733
  | last (Const(@{const_name append},_) $ _ $ ys) = last ys
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   734
  | last t = t;
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   735
29856
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   736
fun list1 (Const(@{const_name Cons},_) $ _ $ Const(@{const_name Nil},_)) = true
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   737
  | list1 _ = false;
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   738
29856
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   739
fun butlast ((cons as Const(@{const_name Cons},_) $ x) $ xs) =
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   740
  (case xs of Const(@{const_name Nil},_) => xs | _ => cons $ butlast xs)
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   741
  | butlast ((app as Const(@{const_name append},_) $ xs) $ ys) = app $ butlast ys
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   742
  | butlast xs = Const(@{const_name Nil},fastype_of xs);
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   743
22633
haftmann
parents: 22551
diff changeset
   744
val rearr_ss = HOL_basic_ss addsimps [@{thm append_assoc},
haftmann
parents: 22551
diff changeset
   745
  @{thm append_Nil}, @{thm append_Cons}];
16973
b2a894562b8f simprocs: Simplifier.inherit_bounds;
wenzelm
parents: 16965
diff changeset
   746
20044
92cc2f4c7335 simprocs: no theory argument -- use simpset context instead;
wenzelm
parents: 19890
diff changeset
   747
fun list_eq ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   748
  let
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   749
    val lastl = last lhs and lastr = last rhs;
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   750
    fun rearr conv =
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   751
      let
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   752
        val lhs1 = butlast lhs and rhs1 = butlast rhs;
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   753
        val Type(_,listT::_) = eqT
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   754
        val appT = [listT,listT] ---> listT
29856
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   755
        val app = Const(@{const_name append},appT)
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   756
        val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
13480
bb72bd43c6c3 use Tactic.prove instead of prove_goalw_cterm in internal proofs!
wenzelm
parents: 13462
diff changeset
   757
        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
20044
92cc2f4c7335 simprocs: no theory argument -- use simpset context instead;
wenzelm
parents: 19890
diff changeset
   758
        val thm = Goal.prove (Simplifier.the_context ss) [] [] eq
17877
67d5ab1cb0d8 Simplifier.inherit_context instead of Simplifier.inherit_bounds;
wenzelm
parents: 17830
diff changeset
   759
          (K (simp_tac (Simplifier.inherit_context ss rearr_ss) 1));
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15489
diff changeset
   760
      in SOME ((conv RS (thm RS trans)) RS eq_reflection) end;
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   761
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   762
  in
22633
haftmann
parents: 22551
diff changeset
   763
    if list1 lastl andalso list1 lastr then rearr @{thm append1_eq_conv}
haftmann
parents: 22551
diff changeset
   764
    else if lastl aconv lastr then rearr @{thm append_same_eq}
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15489
diff changeset
   765
    else NONE
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   766
  end;
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   767
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   768
in
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   769
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   770
val list_eq_simproc =
38715
6513ea67d95d renamed Simplifier.simproc(_i) to Simplifier.simproc_global(_i) to emphasize that this is not the real thing;
wenzelm
parents: 37880
diff changeset
   771
  Simplifier.simproc_global @{theory} "list_eq" ["(xs::'a list) = ys"] (K list_eq);
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   772
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   773
end;
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   774
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   775
Addsimprocs [list_eq_simproc];
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   776
*}
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   777
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   778
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
   779
subsubsection {* @{text map} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   780
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   781
lemma hd_map:
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   782
  "xs \<noteq> [] \<Longrightarrow> hd (map f xs) = f (hd xs)"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   783
  by (cases xs) simp_all
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   784
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   785
lemma map_tl:
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   786
  "map f (tl xs) = tl (map f xs)"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   787
  by (cases xs) simp_all
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   788
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   789
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   790
by (induct xs) simp_all
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   791
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   792
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   793
by (rule ext, induct_tac xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   794
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   795
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   796
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   797
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   798
lemma map_map [simp]: "map f (map g xs) = map (f \<circ> g) xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   799
by (induct xs) auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   800
35208
2b9bce05e84b added lemma
nipkow
parents: 35195
diff changeset
   801
lemma map_comp_map[simp]: "((map f) o (map g)) = map(f o g)"
2b9bce05e84b added lemma
nipkow
parents: 35195
diff changeset
   802
apply(rule ext)
2b9bce05e84b added lemma
nipkow
parents: 35195
diff changeset
   803
apply(simp)
2b9bce05e84b added lemma
nipkow
parents: 35195
diff changeset
   804
done
2b9bce05e84b added lemma
nipkow
parents: 35195
diff changeset
   805
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   806
lemma rev_map: "rev (map f xs) = map f (rev xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   807
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   808
13737
e564c3d2d174 added a few lemmas
nipkow
parents: 13601
diff changeset
   809
lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
e564c3d2d174 added a few lemmas
nipkow
parents: 13601
diff changeset
   810
by (induct xs) auto
e564c3d2d174 added a few lemmas
nipkow
parents: 13601
diff changeset
   811
19770
be5c23ebe1eb HOL/Tools/function_package: Added support for mutual recursive definitions.
krauss
parents: 19623
diff changeset
   812
lemma map_cong [fundef_cong, recdef_cong]:
40122
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
   813
  "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> f x = g x) \<Longrightarrow> map f xs = map g ys"
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
   814
  by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   815
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   816
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   817
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   818
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   819
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   820
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   821
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   822
lemma map_eq_Cons_conv:
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   823
 "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   824
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   825
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   826
lemma Cons_eq_map_conv:
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   827
 "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   828
by (cases ys) auto
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   829
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   830
lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1]
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   831
lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1]
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   832
declare map_eq_Cons_D [dest!]  Cons_eq_map_D [dest!]
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   833
14111
993471c762b8 Some new thm (ex_map_conv?)
nipkow
parents: 14099
diff changeset
   834
lemma ex_map_conv:
993471c762b8 Some new thm (ex_map_conv?)
nipkow
parents: 14099
diff changeset
   835
  "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   836
by(induct ys, auto simp add: Cons_eq_map_conv)
14111
993471c762b8 Some new thm (ex_map_conv?)
nipkow
parents: 14099
diff changeset
   837
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   838
lemma map_eq_imp_length_eq:
35510
64d2d54cbf03 Slightly generalised a theorem
paulson
parents: 35296
diff changeset
   839
  assumes "map f xs = map g ys"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   840
  shows "length xs = length ys"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   841
using assms proof (induct ys arbitrary: xs)
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   842
  case Nil then show ?case by simp
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   843
next
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   844
  case (Cons y ys) then obtain z zs where xs: "xs = z # zs" by auto
35510
64d2d54cbf03 Slightly generalised a theorem
paulson
parents: 35296
diff changeset
   845
  from Cons xs have "map f zs = map g ys" by simp
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   846
  moreover with Cons have "length zs = length ys" by blast
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   847
  with xs show ?case by simp
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   848
qed
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   849
  
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   850
lemma map_inj_on:
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   851
 "[| map f xs = map f ys; inj_on f (set xs Un set ys) |]
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   852
  ==> xs = ys"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   853
apply(frule map_eq_imp_length_eq)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   854
apply(rotate_tac -1)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   855
apply(induct rule:list_induct2)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   856
 apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   857
apply(simp)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   858
apply (blast intro:sym)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   859
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   860
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   861
lemma inj_on_map_eq_map:
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   862
 "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   863
by(blast dest:map_inj_on)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   864
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   865
lemma map_injective:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   866
 "map f xs = map f ys ==> inj f ==> xs = ys"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   867
by (induct ys arbitrary: xs) (auto dest!:injD)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   868
14339
ec575b7bde7a *** empty log message ***
nipkow
parents: 14338
diff changeset
   869
lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
ec575b7bde7a *** empty log message ***
nipkow
parents: 14338
diff changeset
   870
by(blast dest:map_injective)
ec575b7bde7a *** empty log message ***
nipkow
parents: 14338
diff changeset
   871
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   872
lemma inj_mapI: "inj f ==> inj (map f)"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17501
diff changeset
   873
by (iprover dest: map_injective injD intro: inj_onI)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   874
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   875
lemma inj_mapD: "inj (map f) ==> inj f"
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   876
apply (unfold inj_on_def, clarify)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   877
apply (erule_tac x = "[x]" in ballE)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   878
 apply (erule_tac x = "[y]" in ballE, simp, blast)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   879
apply blast
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   880
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   881
14339
ec575b7bde7a *** empty log message ***
nipkow
parents: 14338
diff changeset
   882
lemma inj_map[iff]: "inj (map f) = inj f"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   883
by (blast dest: inj_mapD intro: inj_mapI)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   884
15303
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
   885
lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A"
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
   886
apply(rule inj_onI)
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
   887
apply(erule map_inj_on)
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
   888
apply(blast intro:inj_onI dest:inj_onD)
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
   889
done
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
   890
14343
6bc647f472b9 map_idI
kleing
parents: 14339
diff changeset
   891
lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
6bc647f472b9 map_idI
kleing
parents: 14339
diff changeset
   892
by (induct xs, auto)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   893
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
   894
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
   895
by (induct xs) auto
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
   896
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   897
lemma map_fst_zip[simp]:
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   898
  "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   899
by (induct rule:list_induct2, simp_all)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   900
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   901
lemma map_snd_zip[simp]:
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   902
  "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   903
by (induct rule:list_induct2, simp_all)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   904
41505
6d19301074cf "enriched_type" replaces less specific "type_lifting"
haftmann
parents: 41463
diff changeset
   905
enriched_type map: map
41372
551eb49a6e91 tuned type_lifting declarations
haftmann
parents: 41229
diff changeset
   906
  by (simp_all add: fun_eq_iff id_def)
40608
6c28ab8b8166 mapper for list type; map_pair replaces prod_fun
haftmann
parents: 40593
diff changeset
   907
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   908
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
   909
subsubsection {* @{text rev} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   910
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   911
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   912
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   913
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   914
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   915
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   916
15870
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   917
lemma rev_swap: "(rev xs = ys) = (xs = rev ys)"
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   918
by auto
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   919
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   920
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   921
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   922
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   923
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   924
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   925
15870
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   926
lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])"
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   927
by (cases xs) auto
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   928
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   929
lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])"
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   930
by (cases xs) auto
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   931
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   932
lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)"
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   933
apply (induct xs arbitrary: ys, force)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   934
apply (case_tac ys, simp, force)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   935
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   936
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
   937
lemma inj_on_rev[iff]: "inj_on rev A"
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
   938
by(simp add:inj_on_def)
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
   939
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   940
lemma rev_induct [case_names Nil snoc]:
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   941
  "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
15489
d136af442665 Replaced application of subst by simplesubst in proof of rev_induct
berghofe
parents: 15439
diff changeset
   942
apply(simplesubst rev_rev_ident[symmetric])
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   943
apply(rule_tac list = "rev xs" in list.induct, simp_all)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   944
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   945
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   946
lemma rev_exhaust [case_names Nil snoc]:
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   947
  "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   948
by (induct xs rule: rev_induct) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   949
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   950
lemmas rev_cases = rev_exhaust
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   951
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
   952
lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])"
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
   953
by(rule rev_cases[of xs]) auto
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
   954
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   955
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
   956
subsubsection {* @{text set} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   957
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   958
lemma finite_set [iff]: "finite (set xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   959
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   960
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   961
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   962
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   963
17830
695a2365d32f added hd lemma
nipkow
parents: 17765
diff changeset
   964
lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs"
695a2365d32f added hd lemma
nipkow
parents: 17765
diff changeset
   965
by(cases xs) auto
14099
55d244f3c86d added fold_red, o2l, postfix, some thms
oheimb
parents: 14050
diff changeset
   966
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   967
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   968
by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   969
14099
55d244f3c86d added fold_red, o2l, postfix, some thms
oheimb
parents: 14050
diff changeset
   970
lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
55d244f3c86d added fold_red, o2l, postfix, some thms
oheimb
parents: 14050
diff changeset
   971
by auto
55d244f3c86d added fold_red, o2l, postfix, some thms
oheimb
parents: 14050
diff changeset
   972
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   973
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   974
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   975
15245
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
   976
lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
   977
by(induct xs) auto
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
   978
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   979
lemma set_rev [simp]: "set (rev xs) = set xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   980
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   981
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   982
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   983
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   984
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   985
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   986
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   987
32417
e87d9c78910c tuned code generation for lists
nipkow
parents: 32415
diff changeset
   988
lemma set_upt [simp]: "set[i..<j] = {i..<j}"
41463
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
   989
by (induct j) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   990
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   991
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   992
lemma split_list: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs"
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
   993
proof (induct xs)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   994
  case Nil thus ?case by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   995
next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   996
  case Cons thus ?case by (auto intro: Cons_eq_appendI)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   997
qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   998
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   999
lemma in_set_conv_decomp: "x \<in> set xs \<longleftrightarrow> (\<exists>ys zs. xs = ys @ x # zs)"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1000
  by (auto elim: split_list)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1001
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1002
lemma split_list_first: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys"
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1003
proof (induct xs)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1004
  case Nil thus ?case by simp
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1005
next
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1006
  case (Cons a xs)
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1007
  show ?case
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1008
  proof cases
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1009
    assume "x = a" thus ?case using Cons by fastsimp
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1010
  next
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1011
    assume "x \<noteq> a" thus ?case using Cons by(fastsimp intro!: Cons_eq_appendI)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1012
  qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1013
qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1014
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1015
lemma in_set_conv_decomp_first:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1016
  "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1017
  by (auto dest!: split_list_first)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1018
40122
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
  1019
lemma split_list_last: "x \<in> set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs"
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
  1020
proof (induct xs rule: rev_induct)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1021
  case Nil thus ?case by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1022
next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1023
  case (snoc a xs)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1024
  show ?case
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1025
  proof cases
40122
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
  1026
    assume "x = a" thus ?case using snoc by (metis List.set.simps(1) emptyE)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1027
  next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1028
    assume "x \<noteq> a" thus ?case using snoc by fastsimp
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1029
  qed
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1030
qed
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1031
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1032
lemma in_set_conv_decomp_last:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1033
  "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs)"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1034
  by (auto dest!: split_list_last)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1035
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1036
lemma split_list_prop: "\<exists>x \<in> set xs. P x \<Longrightarrow> \<exists>ys x zs. xs = ys @ x # zs & P x"
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1037
proof (induct xs)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1038
  case Nil thus ?case by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1039
next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1040
  case Cons thus ?case
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1041
    by(simp add:Bex_def)(metis append_Cons append.simps(1))
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1042
qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1043
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1044
lemma split_list_propE:
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1045
  assumes "\<exists>x \<in> set xs. P x"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1046
  obtains ys x zs where "xs = ys @ x # zs" and "P x"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1047
using split_list_prop [OF assms] by blast
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1048
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1049
lemma split_list_first_prop:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1050
  "\<exists>x \<in> set xs. P x \<Longrightarrow>
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1051
   \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y)"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1052
proof (induct xs)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1053
  case Nil thus ?case by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1054
next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1055
  case (Cons x xs)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1056
  show ?case
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1057
  proof cases
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1058
    assume "P x"
40122
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
  1059
    thus ?thesis by simp (metis Un_upper1 contra_subsetD in_set_conv_decomp_first self_append_conv2 set_append)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1060
  next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1061
    assume "\<not> P x"
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1062
    hence "\<exists>x\<in>set xs. P x" using Cons(2) by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1063
    thus ?thesis using `\<not> P x` Cons(1) by (metis append_Cons set_ConsD)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1064
  qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1065
qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1066
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1067
lemma split_list_first_propE:
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1068
  assumes "\<exists>x \<in> set xs. P x"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1069
  obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>y \<in> set ys. \<not> P y"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1070
using split_list_first_prop [OF assms] by blast
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1071
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1072
lemma split_list_first_prop_iff:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1073
  "(\<exists>x \<in> set xs. P x) \<longleftrightarrow>
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1074
   (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y))"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1075
by (rule, erule split_list_first_prop) auto
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1076
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1077
lemma split_list_last_prop:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1078
  "\<exists>x \<in> set xs. P x \<Longrightarrow>
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1079
   \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z)"
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1080
proof(induct xs rule:rev_induct)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1081
  case Nil thus ?case by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1082
next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1083
  case (snoc x xs)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1084
  show ?case
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1085
  proof cases
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1086
    assume "P x" thus ?thesis by (metis emptyE set_empty)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1087
  next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1088
    assume "\<not> P x"
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1089
    hence "\<exists>x\<in>set xs. P x" using snoc(2) by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1090
    thus ?thesis using `\<not> P x` snoc(1) by fastsimp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1091
  qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1092
qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1093
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1094
lemma split_list_last_propE:
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1095
  assumes "\<exists>x \<in> set xs. P x"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1096
  obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>z \<in> set zs. \<not> P z"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1097
using split_list_last_prop [OF assms] by blast
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1098
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1099
lemma split_list_last_prop_iff:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1100
  "(\<exists>x \<in> set xs. P x) \<longleftrightarrow>
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1101
   (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z))"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1102
by (metis split_list_last_prop [where P=P] in_set_conv_decomp)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1103
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1104
lemma finite_list: "finite A ==> EX xs. set xs = A"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1105
  by (erule finite_induct)
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1106
    (auto simp add: set.simps(2) [symmetric] simp del: set.simps(2))
13508
890d736b93a5 Frederic Blanqui's new "guard" examples
paulson
parents: 13480
diff changeset
  1107
14388
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  1108
lemma card_length: "card (set xs) \<le> length xs"
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  1109
by (induct xs) (auto simp add: card_insert_if)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1110
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1111
lemma set_minus_filter_out:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1112
  "set xs - {y} = set (filter (\<lambda>x. \<not> (x = y)) xs)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1113
  by (induct xs) auto
15168
33a08cfc3ae5 new functions for sets of lists
paulson
parents: 15140
diff changeset
  1114
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  1115
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1116
subsubsection {* @{text filter} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1117
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1118
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1119
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1120
15305
0bd9eedaa301 added lemmas
nipkow
parents: 15304
diff changeset
  1121
lemma rev_filter: "rev (filter P xs) = filter P (rev xs)"
0bd9eedaa301 added lemmas
nipkow
parents: 15304
diff changeset
  1122
by (induct xs) simp_all
0bd9eedaa301 added lemmas
nipkow
parents: 15304
diff changeset
  1123
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1124
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1125
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1126
16998
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1127
lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs"
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1128
by (induct xs) (auto simp add: le_SucI)
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1129
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1130
lemma sum_length_filter_compl:
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1131
  "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs"
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1132
by(induct xs) simp_all
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1133
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1134
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1135
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1136
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1137
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1138
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1139
16998
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1140
lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" 
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  1141
by (induct xs) simp_all
16998
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1142
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1143
lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)"
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1144
apply (induct xs)
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1145
 apply auto
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1146
apply(cut_tac P=P and xs=xs in length_filter_le)
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1147
apply simp
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1148
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1149
16965
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1150
lemma filter_map:
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1151
  "filter P (map f xs) = map f (filter (P o f) xs)"
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1152
by (induct xs) simp_all
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1153
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1154
lemma length_filter_map[simp]:
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1155
  "length (filter P (map f xs)) = length(filter (P o f) xs)"
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1156
by (simp add:filter_map)
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1157
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1158
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1159
by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1160
15246
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1161
lemma length_filter_less:
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1162
  "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs"
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1163
proof (induct xs)
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1164
  case Nil thus ?case by simp
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1165
next
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1166
  case (Cons x xs) thus ?case
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1167
    apply (auto split:split_if_asm)
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1168
    using length_filter_le[of P xs] apply arith
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1169
  done
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1170
qed
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1171
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1172
lemma length_filter_conv_card:
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1173
 "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1174
proof (induct xs)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1175
  case Nil thus ?case by simp
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1176
next
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1177
  case (Cons x xs)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1178
  let ?S = "{i. i < length xs & p(xs!i)}"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1179
  have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1180
  show ?case (is "?l = card ?S'")
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1181
  proof (cases)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1182
    assume "p x"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1183
    hence eq: "?S' = insert 0 (Suc ` ?S)"
25162
ad4d5365d9d8 went back to >0
nipkow
parents: 25157
diff changeset
  1184
      by(auto simp: image_def split:nat.split dest:gr0_implies_Suc)
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1185
    have "length (filter p (x # xs)) = Suc(card ?S)"
23388
77645da0db85 tuned proofs: avoid implicit prems;
wenzelm
parents: 23279
diff changeset
  1186
      using Cons `p x` by simp
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1187
    also have "\<dots> = Suc(card(Suc ` ?S))" using fin
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1188
      by (simp add: card_image inj_Suc)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1189
    also have "\<dots> = card ?S'" using eq fin
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1190
      by (simp add:card_insert_if) (simp add:image_def)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1191
    finally show ?thesis .
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1192
  next
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1193
    assume "\<not> p x"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1194
    hence eq: "?S' = Suc ` ?S"
25162
ad4d5365d9d8 went back to >0
nipkow
parents: 25157
diff changeset
  1195
      by(auto simp add: image_def split:nat.split elim:lessE)
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1196
    have "length (filter p (x # xs)) = card ?S"
23388
77645da0db85 tuned proofs: avoid implicit prems;
wenzelm
parents: 23279
diff changeset
  1197
      using Cons `\<not> p x` by simp
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1198
    also have "\<dots> = card(Suc ` ?S)" using fin
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1199
      by (simp add: card_image inj_Suc)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1200
    also have "\<dots> = card ?S'" using eq fin
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1201
      by (simp add:card_insert_if)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1202
    finally show ?thesis .
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1203
  qed
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1204
qed
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1205
17629
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1206
lemma Cons_eq_filterD:
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1207
 "x#xs = filter P ys \<Longrightarrow>
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1208
  \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
19585
70a1ce3b23ae removed 'concl is' patterns;
wenzelm
parents: 19487
diff changeset
  1209
  (is "_ \<Longrightarrow> \<exists>us vs. ?P ys us vs")
17629
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1210
proof(induct ys)
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1211
  case Nil thus ?case by simp
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1212
next
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1213
  case (Cons y ys)
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1214
  show ?case (is "\<exists>x. ?Q x")
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1215
  proof cases
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1216
    assume Py: "P y"
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1217
    show ?thesis
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1218
    proof cases
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1219
      assume "x = y"
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1220
      with Py Cons.prems have "?Q []" by simp
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1221
      then show ?thesis ..
17629
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1222
    next
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1223
      assume "x \<noteq> y"
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1224
      with Py Cons.prems show ?thesis by simp
17629
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1225
    qed
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1226
  next
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1227
    assume "\<not> P y"
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1228
    with Cons obtain us vs where "?P (y#ys) (y#us) vs" by fastsimp
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1229
    then have "?Q (y#us)" by simp
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1230
    then show ?thesis ..
17629
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1231
  qed
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1232
qed
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1233
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1234
lemma filter_eq_ConsD:
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1235
 "filter P ys = x#xs \<Longrightarrow>
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1236
  \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1237
by(rule Cons_eq_filterD) simp
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1238
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1239
lemma filter_eq_Cons_iff:
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1240
 "(filter P ys = x#xs) =
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1241
  (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1242
by(auto dest:filter_eq_ConsD)
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1243
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1244
lemma Cons_eq_filter_iff:
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1245
 "(x#xs = filter P ys) =
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1246
  (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1247
by(auto dest:Cons_eq_filterD)
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1248
19770
be5c23ebe1eb HOL/Tools/function_package: Added support for mutual recursive definitions.
krauss
parents: 19623
diff changeset
  1249
lemma filter_cong[fundef_cong, recdef_cong]:
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1250
 "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1251
apply simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1252
apply(erule thin_rl)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1253
by (induct ys) simp_all
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1254
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1255
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1256
subsubsection {* List partitioning *}
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1257
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1258
primrec partition :: "('a \<Rightarrow> bool) \<Rightarrow>'a list \<Rightarrow> 'a list \<times> 'a list" where
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1259
  "partition P [] = ([], [])"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1260
  | "partition P (x # xs) = 
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1261
      (let (yes, no) = partition P xs
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1262
      in if P x then (x # yes, no) else (yes, x # no))"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1263
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1264
lemma partition_filter1:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1265
    "fst (partition P xs) = filter P xs"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1266
by (induct xs) (auto simp add: Let_def split_def)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1267
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1268
lemma partition_filter2:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1269
    "snd (partition P xs) = filter (Not o P) xs"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1270
by (induct xs) (auto simp add: Let_def split_def)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1271
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1272
lemma partition_P:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1273
  assumes "partition P xs = (yes, no)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1274
  shows "(\<forall>p \<in> set yes.  P p) \<and> (\<forall>p  \<in> set no. \<not> P p)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1275
proof -
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1276
  from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1277
    by simp_all
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1278
  then show ?thesis by (simp_all add: partition_filter1 partition_filter2)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1279
qed
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1280
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1281
lemma partition_set:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1282
  assumes "partition P xs = (yes, no)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1283
  shows "set yes \<union> set no = set xs"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1284
proof -
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1285
  from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1286
    by simp_all
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1287
  then show ?thesis by (auto simp add: partition_filter1 partition_filter2) 
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1288
qed
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1289
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1290
lemma partition_filter_conv[simp]:
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1291
  "partition f xs = (filter f xs,filter (Not o f) xs)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1292
unfolding partition_filter2[symmetric]
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1293
unfolding partition_filter1[symmetric] by simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1294
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1295
declare partition.simps[simp del]
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1296
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  1297
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1298
subsubsection {* @{text concat} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1299
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1300
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1301
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1302
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
  1303
lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1304
by (induct xss) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1305
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
  1306
lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1307
by (induct xss) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1308
24308
700e745994c1 removed set_concat_map and improved set_concat
nipkow
parents: 24286
diff changeset
  1309
lemma set_concat [simp]: "set (concat xs) = (UN x:set xs. set x)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1310
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1311
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
  1312
lemma concat_map_singleton[simp]: "concat(map (%x. [f x]) xs) = map f xs"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  1313
by (induct xs) auto
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  1314
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1315
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1316
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1317
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1318
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1319
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1320
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1321
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1322
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1323
40365
a1456f2e1c9d added two lemmas about injectivity of concat to the list theory
bulwahn
parents: 40304
diff changeset
  1324
lemma concat_eq_concat_iff: "\<forall>(x, y) \<in> set (zip xs ys). length x = length y ==> length xs = length ys ==> (concat xs = concat ys) = (xs = ys)"
a1456f2e1c9d added two lemmas about injectivity of concat to the list theory
bulwahn
parents: 40304
diff changeset
  1325
proof (induct xs arbitrary: ys)
a1456f2e1c9d added two lemmas about injectivity of concat to the list theory
bulwahn
parents: 40304
diff changeset
  1326
  case (Cons x xs ys)
a1456f2e1c9d added two lemmas about injectivity of concat to the list theory
bulwahn
parents: 40304
diff changeset
  1327
  thus ?case by (cases ys) auto
a1456f2e1c9d added two lemmas about injectivity of concat to the list theory
bulwahn
parents: 40304
diff changeset
  1328
qed (auto)
a1456f2e1c9d added two lemmas about injectivity of concat to the list theory
bulwahn
parents: 40304
diff changeset
  1329
a1456f2e1c9d added two lemmas about injectivity of concat to the list theory
bulwahn
parents: 40304
diff changeset
  1330
lemma concat_injective: "concat xs = concat ys ==> length xs = length ys ==> \<forall>(x, y) \<in> set (zip xs ys). length x = length y ==> xs = ys"
a1456f2e1c9d added two lemmas about injectivity of concat to the list theory
bulwahn
parents: 40304
diff changeset
  1331
by (simp add: concat_eq_concat_iff)
a1456f2e1c9d added two lemmas about injectivity of concat to the list theory
bulwahn
parents: 40304
diff changeset
  1332
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1333
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1334
subsubsection {* @{text nth} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1335
29827
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1336
lemma nth_Cons_0 [simp, code]: "(x # xs)!0 = x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1337
by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1338
29827
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1339
lemma nth_Cons_Suc [simp, code]: "(x # xs)!(Suc n) = xs!n"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1340
by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1341
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1342
declare nth.simps [simp del]
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1343
41842
d8f76db6a207 added simp lemma nth_Cons_pos to List
nipkow
parents: 41697
diff changeset
  1344
lemma nth_Cons_pos[simp]: "0 < n \<Longrightarrow> (x#xs) ! n = xs ! (n - 1)"
d8f76db6a207 added simp lemma nth_Cons_pos to List
nipkow
parents: 41697
diff changeset
  1345
by(auto simp: Nat.gr0_conv_Suc)
d8f76db6a207 added simp lemma nth_Cons_pos to List
nipkow
parents: 41697
diff changeset
  1346
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1347
lemma nth_append:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1348
  "(xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1349
apply (induct xs arbitrary: n, simp)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1350
apply (case_tac n, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1351
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1352
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1353
lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1354
by (induct xs) auto
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1355
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1356
lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1357
by (induct xs) auto
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1358
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1359
lemma nth_map [simp]: "n < length xs ==> (map f xs)!n = f(xs!n)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1360
apply (induct xs arbitrary: n, simp)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1361
apply (case_tac n, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1362
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1363
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1364
lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0"
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1365
by(cases xs) simp_all
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1366
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1367
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1368
lemma list_eq_iff_nth_eq:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1369
 "(xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1370
apply(induct xs arbitrary: ys)
24632
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  1371
 apply force
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1372
apply(case_tac ys)
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1373
 apply simp
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1374
apply(simp add:nth_Cons split:nat.split)apply blast
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1375
done
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1376
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1377
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15246
diff changeset
  1378
apply (induct xs, simp, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1379
apply safe
24632
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  1380
apply (metis nat_case_0 nth.simps zero_less_Suc)
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  1381
apply (metis less_Suc_eq_0_disj nth_Cons_Suc)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1382
apply (case_tac i, simp)
24632
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  1383
apply (metis diff_Suc_Suc nat_case_Suc nth.simps zero_less_diff)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1384
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1385
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1386
lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1387
by(auto simp:set_conv_nth)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1388
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1389
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1390
by (auto simp add: set_conv_nth)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1391
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1392
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1393
by (auto simp add: set_conv_nth)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1394
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1395
lemma all_nth_imp_all_set:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1396
"[| !i < length xs. P(xs!i); x : set xs|] ==> P x"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1397
by (auto simp add: set_conv_nth)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1398
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1399
lemma all_set_conv_all_nth:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1400
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1401
by (auto simp add: set_conv_nth)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1402
25296
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1403
lemma rev_nth:
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1404
  "n < size xs \<Longrightarrow> rev xs ! n = xs ! (length xs - Suc n)"
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1405
proof (induct xs arbitrary: n)
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1406
  case Nil thus ?case by simp
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1407
next
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1408
  case (Cons x xs)
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1409
  hence n: "n < Suc (length xs)" by simp
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1410
  moreover
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1411
  { assume "n < length xs"
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1412
    with n obtain n' where "length xs - n = Suc n'"
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1413
      by (cases "length xs - n", auto)
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1414
    moreover
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1415
    then have "length xs - Suc n = n'" by simp
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1416
    ultimately
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1417
    have "xs ! (length xs - Suc n) = (x # xs) ! (length xs - n)" by simp
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1418
  }
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1419
  ultimately
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1420
  show ?case by (clarsimp simp add: Cons nth_append)
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1421
qed
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1422
31159
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1423
lemma Skolem_list_nth:
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1424
  "(ALL i<k. EX x. P i x) = (EX xs. size xs = k & (ALL i<k. P i (xs!i)))"
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1425
  (is "_ = (EX xs. ?P k xs)")
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1426
proof(induct k)
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1427
  case 0 show ?case by simp
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1428
next
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1429
  case (Suc k)
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1430
  show ?case (is "?L = ?R" is "_ = (EX xs. ?P' xs)")
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1431
  proof
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1432
    assume "?R" thus "?L" using Suc by auto
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1433
  next
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1434
    assume "?L"
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1435
    with Suc obtain x xs where "?P k xs & P k x" by (metis less_Suc_eq)
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1436
    hence "?P'(xs@[x])" by(simp add:nth_append less_Suc_eq)
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1437
    thus "?R" ..
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1438
  qed
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1439
qed
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1440
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1441
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1442
subsubsection {* @{text list_update} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1443
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1444
lemma length_list_update [simp]: "length(xs[i:=x]) = length xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1445
by (induct xs arbitrary: i) (auto split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1446
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1447
lemma nth_list_update:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1448
"i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1449
by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1450
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1451
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1452
by (simp add: nth_list_update)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1453
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1454
lemma nth_list_update_neq [simp]: "i \<noteq> j ==> xs[i:=x]!j = xs!j"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1455
by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1456
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1457
lemma list_update_id[simp]: "xs[i := xs!i] = xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1458
by (induct xs arbitrary: i) (simp_all split:nat.splits)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1459
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1460
lemma list_update_beyond[simp]: "length xs \<le> i \<Longrightarrow> xs[i:=x] = xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1461
apply (induct xs arbitrary: i)
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1462
 apply simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1463
apply (case_tac i)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1464
apply simp_all
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1465
done
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1466
31077
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1467
lemma list_update_nonempty[simp]: "xs[k:=x] = [] \<longleftrightarrow> xs=[]"
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1468
by(metis length_0_conv length_list_update)
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1469
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1470
lemma list_update_same_conv:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1471
"i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1472
by (induct xs arbitrary: i) (auto split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1473
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1474
lemma list_update_append1:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1475
 "i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1476
apply (induct xs arbitrary: i, simp)
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1477
apply(simp split:nat.split)
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1478
done
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1479
15868
9634b3f9d910 more about list_update
kleing
parents: 15693
diff changeset
  1480
lemma list_update_append:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1481
  "(xs @ ys) [n:= x] = 
15868
9634b3f9d910 more about list_update
kleing
parents: 15693
diff changeset
  1482
  (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1483
by (induct xs arbitrary: n) (auto split:nat.splits)
15868
9634b3f9d910 more about list_update
kleing
parents: 15693
diff changeset
  1484
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1485
lemma list_update_length [simp]:
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1486
 "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1487
by (induct xs, auto)
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1488
31264
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1489
lemma map_update: "map f (xs[k:= y]) = (map f xs)[k := f y]"
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1490
by(induct xs arbitrary: k)(auto split:nat.splits)
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1491
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1492
lemma rev_update:
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1493
  "k < length xs \<Longrightarrow> rev (xs[k:= y]) = (rev xs)[length xs - k - 1 := y]"
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1494
by (induct xs arbitrary: k) (auto simp: list_update_append split:nat.splits)
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1495
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1496
lemma update_zip:
31080
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  1497
  "(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1498
by (induct ys arbitrary: i xy xs) (auto, case_tac xs, auto split: nat.split)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1499
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1500
lemma set_update_subset_insert: "set(xs[i:=x]) <= insert x (set xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1501
by (induct xs arbitrary: i) (auto split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1502
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1503
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1504
by (blast dest!: set_update_subset_insert [THEN subsetD])
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1505
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1506
lemma set_update_memI: "n < length xs \<Longrightarrow> x \<in> set (xs[n := x])"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1507
by (induct xs arbitrary: n) (auto split:nat.splits)
15868
9634b3f9d910 more about list_update
kleing
parents: 15693
diff changeset
  1508
31077
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1509
lemma list_update_overwrite[simp]:
24796
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1510
  "xs [i := x, i := y] = xs [i := y]"
31077
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1511
apply (induct xs arbitrary: i) apply simp
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1512
apply (case_tac i, simp_all)
24796
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1513
done
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1514
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1515
lemma list_update_swap:
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1516
  "i \<noteq> i' \<Longrightarrow> xs [i := x, i' := x'] = xs [i' := x', i := x]"
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1517
apply (induct xs arbitrary: i i')
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1518
apply simp
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1519
apply (case_tac i, case_tac i')
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1520
apply auto
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1521
apply (case_tac i')
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1522
apply auto
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1523
done
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1524
29827
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1525
lemma list_update_code [code]:
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1526
  "[][i := y] = []"
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1527
  "(x # xs)[0 := y] = y # xs"
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1528
  "(x # xs)[Suc i := y] = x # xs[i := y]"
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1529
  by simp_all
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1530
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1531
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1532
subsubsection {* @{text last} and @{text butlast} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1533
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1534
lemma last_snoc [simp]: "last (xs @ [x]) = x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1535
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1536
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1537
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1538
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1539
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1540
lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1541
by(simp add:last.simps)
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1542
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1543
lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1544
by(simp add:last.simps)
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1545
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1546
lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1547
by (induct xs) (auto)
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1548
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1549
lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1550
by(simp add:last_append)
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1551
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1552
lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1553
by(simp add:last_append)
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1554
17762
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1555
lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs"
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1556
by(rule rev_exhaust[of xs]) simp_all
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1557
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1558
lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs"
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1559
by(cases xs) simp_all
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1560
17765
e3cd31bc2e40 added last in set lemma
nipkow
parents: 17762
diff changeset
  1561
lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as"
e3cd31bc2e40 added last in set lemma
nipkow
parents: 17762
diff changeset
  1562
by (induct as) auto
17762
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1563
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1564
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1565
by (induct xs rule: rev_induct) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1566
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1567
lemma butlast_append:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1568
  "butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1569
by (induct xs arbitrary: ys) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1570
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1571
lemma append_butlast_last_id [simp]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1572
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1573
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1574
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1575
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1576
by (induct xs) (auto split: split_if_asm)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1577
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1578
lemma in_set_butlast_appendI:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1579
"x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1580
by (auto dest: in_set_butlastD simp add: butlast_append)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1581
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1582
lemma last_drop[simp]: "n < length xs \<Longrightarrow> last (drop n xs) = last xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1583
apply (induct xs arbitrary: n)
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1584
 apply simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1585
apply (auto split:nat.split)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1586
done
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1587
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1588
lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17501
diff changeset
  1589
by(induct xs)(auto simp:neq_Nil_conv)
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17501
diff changeset
  1590
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1591
lemma butlast_conv_take: "butlast xs = take (length xs - 1) xs"
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1592
by (induct xs, simp, case_tac xs, simp_all)
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1593
31077
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1594
lemma last_list_update:
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1595
  "xs \<noteq> [] \<Longrightarrow> last(xs[k:=x]) = (if k = size xs - 1 then x else last xs)"
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1596
by (auto simp: last_conv_nth)
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1597
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1598
lemma butlast_list_update:
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1599
  "butlast(xs[k:=x]) =
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1600
 (if k = size xs - 1 then butlast xs else (butlast xs)[k:=x])"
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1601
apply(cases xs rule:rev_cases)
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1602
apply simp
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1603
apply(simp add:list_update_append split:nat.splits)
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1604
done
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1605
36851
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  1606
lemma last_map:
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  1607
  "xs \<noteq> [] \<Longrightarrow> last (map f xs) = f (last xs)"
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  1608
  by (cases xs rule: rev_cases) simp_all
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  1609
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  1610
lemma map_butlast:
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  1611
  "map f (butlast xs) = butlast (map f xs)"
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  1612
  by (induct xs) simp_all
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  1613
40230
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  1614
lemma snoc_eq_iff_butlast:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  1615
  "xs @ [x] = ys \<longleftrightarrow> (ys \<noteq> [] & butlast ys = xs & last ys = x)"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  1616
by (metis append_butlast_last_id append_is_Nil_conv butlast_snoc last_snoc not_Cons_self)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  1617
24796
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1618
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1619
subsubsection {* @{text take} and @{text drop} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1620
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1621
lemma take_0 [simp]: "take 0 xs = []"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1622
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1623
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1624
lemma drop_0 [simp]: "drop 0 xs = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1625
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1626
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1627
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1628
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1629
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1630
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1631
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1632
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1633
declare take_Cons [simp del] and drop_Cons [simp del]
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1634
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1635
lemma take_1_Cons [simp]: "take 1 (x # xs) = [x]"
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1636
  unfolding One_nat_def by simp
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1637
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1638
lemma drop_1_Cons [simp]: "drop 1 (x # xs) = xs"
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1639
  unfolding One_nat_def by simp
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1640
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1641
lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1642
by(clarsimp simp add:neq_Nil_conv)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1643
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1644
lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1645
by(cases xs, simp_all)
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1646
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1647
lemma take_tl: "take n (tl xs) = tl (take (Suc n) xs)"
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1648
by (induct xs arbitrary: n) simp_all
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1649
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1650
lemma drop_tl: "drop n (tl xs) = tl(drop n xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1651
by(induct xs arbitrary: n, simp_all add:drop_Cons drop_Suc split:nat.split)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1652
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1653
lemma tl_take: "tl (take n xs) = take (n - 1) (tl xs)"
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1654
by (cases n, simp, cases xs, auto)
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1655
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1656
lemma tl_drop: "tl (drop n xs) = drop n (tl xs)"
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1657
by (simp only: drop_tl)
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1658
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1659
lemma nth_via_drop: "drop n xs = y#ys \<Longrightarrow> xs!n = y"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1660
apply (induct xs arbitrary: n, simp)
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1661
apply(simp add:drop_Cons nth_Cons split:nat.splits)
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1662
done
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1663
13913
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1664
lemma take_Suc_conv_app_nth:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1665
  "i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1666
apply (induct xs arbitrary: i, simp)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1667
apply (case_tac i, auto)
13913
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1668
done
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1669
14591
7be4d5dadf15 lemma drop_Suc_conv_tl added.
mehta
parents: 14589
diff changeset
  1670
lemma drop_Suc_conv_tl:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1671
  "i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1672
apply (induct xs arbitrary: i, simp)
14591
7be4d5dadf15 lemma drop_Suc_conv_tl added.
mehta
parents: 14589
diff changeset
  1673
apply (case_tac i, auto)
7be4d5dadf15 lemma drop_Suc_conv_tl added.
mehta
parents: 14589
diff changeset
  1674
done
7be4d5dadf15 lemma drop_Suc_conv_tl added.
mehta
parents: 14589
diff changeset
  1675
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1676
lemma length_take [simp]: "length (take n xs) = min (length xs) n"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1677
by (induct n arbitrary: xs) (auto, case_tac xs, auto)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1678
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1679
lemma length_drop [simp]: "length (drop n xs) = (length xs - n)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1680
by (induct n arbitrary: xs) (auto, case_tac xs, auto)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1681
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1682
lemma take_all [simp]: "length xs <= n ==> take n xs = xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1683
by (induct n arbitrary: xs) (auto, case_tac xs, auto)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1684
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1685
lemma drop_all [simp]: "length xs <= n ==> drop n xs = []"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1686
by (induct n arbitrary: xs) (auto, case_tac xs, auto)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1687
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1688
lemma take_append [simp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1689
  "take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1690
by (induct n arbitrary: xs) (auto, case_tac xs, auto)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1691
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1692
lemma drop_append [simp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1693
  "drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1694
by (induct n arbitrary: xs) (auto, case_tac xs, auto)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1695
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1696
lemma take_take [simp]: "take n (take m xs) = take (min n m) xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1697
apply (induct m arbitrary: xs n, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1698
apply (case_tac xs, auto)
15236
f289e8ba2bb3 Proofs needed to be updated because induction now preserves name of
nipkow
parents: 15176
diff changeset
  1699
apply (case_tac n, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1700
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1701
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1702
lemma drop_drop [simp]: "drop n (drop m xs) = drop (n + m) xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1703
apply (induct m arbitrary: xs, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1704
apply (case_tac xs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1705
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1706
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1707
lemma take_drop: "take n (drop m xs) = drop m (take (n + m) xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1708
apply (induct m arbitrary: xs n, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1709
apply (case_tac xs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1710
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1711
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1712
lemma drop_take: "drop n (take m xs) = take (m-n) (drop n xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1713
apply(induct xs arbitrary: m n)
14802
e05116289ff9 added drop_take:thm
nipkow
parents: 14770
diff changeset
  1714
 apply simp
e05116289ff9 added drop_take:thm
nipkow
parents: 14770
diff changeset
  1715
apply(simp add: take_Cons drop_Cons split:nat.split)
e05116289ff9 added drop_take:thm
nipkow
parents: 14770
diff changeset
  1716
done
e05116289ff9 added drop_take:thm
nipkow
parents: 14770
diff changeset
  1717
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1718
lemma append_take_drop_id [simp]: "take n xs @ drop n xs = xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1719
apply (induct n arbitrary: xs, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1720
apply (case_tac xs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1721
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1722
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1723
lemma take_eq_Nil[simp]: "(take n xs = []) = (n = 0 \<or> xs = [])"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1724
apply(induct xs arbitrary: n)
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1725
 apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1726
apply(simp add:take_Cons split:nat.split)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1727
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1728
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1729
lemma drop_eq_Nil[simp]: "(drop n xs = []) = (length xs <= n)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1730
apply(induct xs arbitrary: n)
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1731
apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1732
apply(simp add:drop_Cons split:nat.split)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1733
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1734
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1735
lemma take_map: "take n (map f xs) = map f (take n xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1736
apply (induct n arbitrary: xs, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1737
apply (case_tac xs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1738
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1739
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1740
lemma drop_map: "drop n (map f xs) = map f (drop n xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1741
apply (induct n arbitrary: xs, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1742
apply (case_tac xs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1743
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1744
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1745
lemma rev_take: "rev (take i xs) = drop (length xs - i) (rev xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1746
apply (induct xs arbitrary: i, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1747
apply (case_tac i, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1748
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1749
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1750
lemma rev_drop: "rev (drop i xs) = take (length xs - i) (rev xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1751
apply (induct xs arbitrary: i, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1752
apply (case_tac i, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1753
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1754
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1755
lemma nth_take [simp]: "i < n ==> (take n xs)!i = xs!i"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1756
apply (induct xs arbitrary: i n, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1757
apply (case_tac n, blast)
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1758
apply (case_tac i, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1759
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1760
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1761
lemma nth_drop [simp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1762
  "n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1763
apply (induct n arbitrary: xs i, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1764
apply (case_tac xs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1765
done
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
  1766
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1767
lemma butlast_take:
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1768
  "n <= length xs ==> butlast (take n xs) = take (n - 1) xs"
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1769
by (simp add: butlast_conv_take min_max.inf_absorb1 min_max.inf_absorb2)
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1770
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1771
lemma butlast_drop: "butlast (drop n xs) = drop n (butlast xs)"
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1772
by (simp add: butlast_conv_take drop_take add_ac)
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1773
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1774
lemma take_butlast: "n < length xs ==> take n (butlast xs) = take n xs"
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1775
by (simp add: butlast_conv_take min_max.inf_absorb1)
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1776
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1777
lemma drop_butlast: "drop n (butlast xs) = butlast (drop n xs)"
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1778
by (simp add: butlast_conv_take drop_take add_ac)
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1779
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1780
lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n"
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1781
by(simp add: hd_conv_nth)
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1782
35248
e64950874224 added lemma
nipkow
parents: 35217
diff changeset
  1783
lemma set_take_subset_set_take:
e64950874224 added lemma
nipkow
parents: 35217
diff changeset
  1784
  "m <= n \<Longrightarrow> set(take m xs) <= set(take n xs)"
41463
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
  1785
apply (induct xs arbitrary: m n)
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
  1786
apply simp
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
  1787
apply (case_tac n)
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
  1788
apply (auto simp: take_Cons)
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
  1789
done
35248
e64950874224 added lemma
nipkow
parents: 35217
diff changeset
  1790
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1791
lemma set_take_subset: "set(take n xs) \<subseteq> set xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1792
by(induct xs arbitrary: n)(auto simp:take_Cons split:nat.split)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1793
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1794
lemma set_drop_subset: "set(drop n xs) \<subseteq> set xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1795
by(induct xs arbitrary: n)(auto simp:drop_Cons split:nat.split)
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
  1796
35248
e64950874224 added lemma
nipkow
parents: 35217
diff changeset
  1797
lemma set_drop_subset_set_drop:
e64950874224 added lemma
nipkow
parents: 35217
diff changeset
  1798
  "m >= n \<Longrightarrow> set(drop m xs) <= set(drop n xs)"
e64950874224 added lemma
nipkow
parents: 35217
diff changeset
  1799
apply(induct xs arbitrary: m n)
e64950874224 added lemma
nipkow
parents: 35217
diff changeset
  1800
apply(auto simp:drop_Cons split:nat.split)
e64950874224 added lemma
nipkow
parents: 35217
diff changeset
  1801
apply (metis set_drop_subset subset_iff)
e64950874224 added lemma
nipkow
parents: 35217
diff changeset
  1802
done
e64950874224 added lemma
nipkow
parents: 35217
diff changeset
  1803
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1804
lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs"
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1805
using set_take_subset by fast
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1806
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1807
lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs"
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1808
using set_drop_subset by fast
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1809
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1810
lemma append_eq_conv_conj:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1811
  "(xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1812
apply (induct xs arbitrary: zs, simp, clarsimp)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1813
apply (case_tac zs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1814
done
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1815
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1816
lemma take_add: 
42713
276c8cbeb5d2 removed assumption from lemma List.take_add
noschinl
parents: 42411
diff changeset
  1817
  "take (i+j) xs = take i xs @ take j (drop i xs)"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1818
apply (induct xs arbitrary: i, auto) 
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1819
apply (case_tac i, simp_all)
14050
826037db30cd new theorem
paulson
parents: 14025
diff changeset
  1820
done
826037db30cd new theorem
paulson
parents: 14025
diff changeset
  1821
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1822
lemma append_eq_append_conv_if:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1823
 "(xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) =
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1824
  (if size xs\<^isub>1 \<le> size ys\<^isub>1
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1825
   then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1826
   else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1827
apply(induct xs\<^isub>1 arbitrary: ys\<^isub>1)
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1828
 apply simp
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1829
apply(case_tac ys\<^isub>1)
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1830
apply simp_all
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1831
done
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1832
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1833
lemma take_hd_drop:
30079
293b896b9c25 make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
huffman
parents: 30008
diff changeset
  1834
  "n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (Suc n) xs"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1835
apply(induct xs arbitrary: n)
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1836
apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1837
apply(simp add:drop_Cons split:nat.split)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1838
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1839
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1840
lemma id_take_nth_drop:
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1841
 "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" 
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1842
proof -
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1843
  assume si: "i < length xs"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1844
  hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1845
  moreover
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1846
  from si have "take (Suc i) xs = take i xs @ [xs!i]"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1847
    apply (rule_tac take_Suc_conv_app_nth) by arith
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1848
  ultimately show ?thesis by auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1849
qed
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1850
  
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1851
lemma upd_conv_take_nth_drop:
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1852
 "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1853
proof -
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1854
  assume i: "i < length xs"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1855
  have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1856
    by(rule arg_cong[OF id_take_nth_drop[OF i]])
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1857
  also have "\<dots> = take i xs @ a # drop (Suc i) xs"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1858
    using i by (simp add: list_update_append)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1859
  finally show ?thesis .
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1860
qed
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1861
24796
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1862
lemma nth_drop':
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1863
  "i < length xs \<Longrightarrow> xs ! i # drop (Suc i) xs = drop i xs"
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1864
apply (induct i arbitrary: xs)
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1865
apply (simp add: neq_Nil_conv)
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1866
apply (erule exE)+
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1867
apply simp
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1868
apply (case_tac xs)
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1869
apply simp_all
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1870
done
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1871
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1872
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1873
subsubsection {* @{text takeWhile} and @{text dropWhile} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1874
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1875
lemma length_takeWhile_le: "length (takeWhile P xs) \<le> length xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1876
  by (induct xs) auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1877
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1878
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1879
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1880
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1881
lemma takeWhile_append1 [simp]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1882
"[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1883
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1884
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1885
lemma takeWhile_append2 [simp]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1886
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1887
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1888
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1889
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1890
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1891
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1892
lemma takeWhile_nth: "j < length (takeWhile P xs) \<Longrightarrow> takeWhile P xs ! j = xs ! j"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1893
apply (subst (3) takeWhile_dropWhile_id[symmetric]) unfolding nth_append by auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1894
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1895
lemma dropWhile_nth: "j < length (dropWhile P xs) \<Longrightarrow> dropWhile P xs ! j = xs ! (j + length (takeWhile P xs))"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1896
apply (subst (3) takeWhile_dropWhile_id[symmetric]) unfolding nth_append by auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1897
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1898
lemma length_dropWhile_le: "length (dropWhile P xs) \<le> length xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1899
by (induct xs) auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1900
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1901
lemma dropWhile_append1 [simp]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1902
"[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1903
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1904
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1905
lemma dropWhile_append2 [simp]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1906
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1907
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1908
23971
e6d505d5b03d renamed lemma "set_take_whileD" to "set_takeWhileD"
krauss
parents: 23740
diff changeset
  1909
lemma set_takeWhileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1910
by (induct xs) (auto split: split_if_asm)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1911
13913
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1912
lemma takeWhile_eq_all_conv[simp]:
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1913
 "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1914
by(induct xs, auto)
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1915
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1916
lemma dropWhile_eq_Nil_conv[simp]:
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1917
 "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1918
by(induct xs, auto)
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1919
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1920
lemma dropWhile_eq_Cons_conv:
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1921
 "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)"
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1922
by(induct xs, auto)
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1923
31077
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1924
lemma distinct_takeWhile[simp]: "distinct xs ==> distinct (takeWhile P xs)"
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1925
by (induct xs) (auto dest: set_takeWhileD)
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1926
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1927
lemma distinct_dropWhile[simp]: "distinct xs ==> distinct (dropWhile P xs)"
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1928
by (induct xs) auto
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1929
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1930
lemma takeWhile_map: "takeWhile P (map f xs) = map f (takeWhile (P \<circ> f) xs)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1931
by (induct xs) auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1932
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1933
lemma dropWhile_map: "dropWhile P (map f xs) = map f (dropWhile (P \<circ> f) xs)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1934
by (induct xs) auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1935
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1936
lemma takeWhile_eq_take: "takeWhile P xs = take (length (takeWhile P xs)) xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1937
by (induct xs) auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1938
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1939
lemma dropWhile_eq_drop: "dropWhile P xs = drop (length (takeWhile P xs)) xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1940
by (induct xs) auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1941
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1942
lemma hd_dropWhile:
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1943
  "dropWhile P xs \<noteq> [] \<Longrightarrow> \<not> P (hd (dropWhile P xs))"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1944
using assms by (induct xs) auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1945
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1946
lemma takeWhile_eq_filter:
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1947
  assumes "\<And> x. x \<in> set (dropWhile P xs) \<Longrightarrow> \<not> P x"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1948
  shows "takeWhile P xs = filter P xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1949
proof -
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1950
  have A: "filter P xs = filter P (takeWhile P xs @ dropWhile P xs)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1951
    by simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1952
  have B: "filter P (dropWhile P xs) = []"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1953
    unfolding filter_empty_conv using assms by blast
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1954
  have "filter P xs = takeWhile P xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1955
    unfolding A filter_append B
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1956
    by (auto simp add: filter_id_conv dest: set_takeWhileD)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1957
  thus ?thesis ..
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1958
qed
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1959
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1960
lemma takeWhile_eq_take_P_nth:
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1961
  "\<lbrakk> \<And> i. \<lbrakk> i < n ; i < length xs \<rbrakk> \<Longrightarrow> P (xs ! i) ; n < length xs \<Longrightarrow> \<not> P (xs ! n) \<rbrakk> \<Longrightarrow>
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1962
  takeWhile P xs = take n xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1963
proof (induct xs arbitrary: n)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1964
  case (Cons x xs)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1965
  thus ?case
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1966
  proof (cases n)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1967
    case (Suc n') note this[simp]
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1968
    have "P x" using Cons.prems(1)[of 0] by simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1969
    moreover have "takeWhile P xs = take n' xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1970
    proof (rule Cons.hyps)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1971
      case goal1 thus "P (xs ! i)" using Cons.prems(1)[of "Suc i"] by simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1972
    next case goal2 thus ?case using Cons by auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1973
    qed
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1974
    ultimately show ?thesis by simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1975
   qed simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1976
qed simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1977
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1978
lemma nth_length_takeWhile:
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1979
  "length (takeWhile P xs) < length xs \<Longrightarrow> \<not> P (xs ! length (takeWhile P xs))"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1980
by (induct xs) auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1981
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1982
lemma length_takeWhile_less_P_nth:
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1983
  assumes all: "\<And> i. i < j \<Longrightarrow> P (xs ! i)" and "j \<le> length xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1984
  shows "j \<le> length (takeWhile P xs)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1985
proof (rule classical)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1986
  assume "\<not> ?thesis"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1987
  hence "length (takeWhile P xs) < length xs" using assms by simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1988
  thus ?thesis using all `\<not> ?thesis` nth_length_takeWhile[of P xs] by auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1989
qed
31077
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1990
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1991
text{* The following two lemmmas could be generalized to an arbitrary
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1992
property. *}
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1993
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1994
lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1995
 takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1996
by(induct xs) (auto simp: takeWhile_tail[where l="[]"])
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1997
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1998
lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1999
  dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2000
apply(induct xs)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2001
 apply simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2002
apply auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2003
apply(subst dropWhile_append2)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2004
apply auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2005
done
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2006
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2007
lemma takeWhile_not_last:
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2008
 "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs"
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2009
apply(induct xs)
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2010
 apply simp
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2011
apply(case_tac xs)
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2012
apply(auto)
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2013
done
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2014
19770
be5c23ebe1eb HOL/Tools/function_package: Added support for mutual recursive definitions.
krauss
parents: 19623
diff changeset
  2015
lemma takeWhile_cong [fundef_cong, recdef_cong]:
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2016
  "[| l = k; !!x. x : set l ==> P x = Q x |] 
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2017
  ==> takeWhile P l = takeWhile Q k"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2018
by (induct k arbitrary: l) (simp_all)
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2019
19770
be5c23ebe1eb HOL/Tools/function_package: Added support for mutual recursive definitions.
krauss
parents: 19623
diff changeset
  2020
lemma dropWhile_cong [fundef_cong, recdef_cong]:
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2021
  "[| l = k; !!x. x : set l ==> P x = Q x |] 
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2022
  ==> dropWhile P l = dropWhile Q k"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2023
by (induct k arbitrary: l, simp_all)
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2024
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2025
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  2026
subsubsection {* @{text zip} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2027
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2028
lemma zip_Nil [simp]: "zip [] ys = []"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2029
by (induct ys) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2030
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2031
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2032
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2033
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2034
declare zip_Cons [simp del]
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2035
36198
ead2db2be11a more convenient equations for zip
haftmann
parents: 35828
diff changeset
  2036
lemma [code]:
ead2db2be11a more convenient equations for zip
haftmann
parents: 35828
diff changeset
  2037
  "zip [] ys = []"
ead2db2be11a more convenient equations for zip
haftmann
parents: 35828
diff changeset
  2038
  "zip xs [] = []"
ead2db2be11a more convenient equations for zip
haftmann
parents: 35828
diff changeset
  2039
  "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
ead2db2be11a more convenient equations for zip
haftmann
parents: 35828
diff changeset
  2040
  by (fact zip_Nil zip.simps(1) zip_Cons_Cons)+
ead2db2be11a more convenient equations for zip
haftmann
parents: 35828
diff changeset
  2041
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2042
lemma zip_Cons1:
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2043
 "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2044
by(auto split:list.split)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2045
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2046
lemma length_zip [simp]:
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  2047
"length (zip xs ys) = min (length xs) (length ys)"
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  2048
by (induct xs ys rule:list_induct2') auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2049
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2050
lemma zip_obtain_same_length:
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2051
  assumes "\<And>zs ws n. length zs = length ws \<Longrightarrow> n = min (length xs) (length ys)
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2052
    \<Longrightarrow> zs = take n xs \<Longrightarrow> ws = take n ys \<Longrightarrow> P (zip zs ws)"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2053
  shows "P (zip xs ys)"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2054
proof -
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2055
  let ?n = "min (length xs) (length ys)"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2056
  have "P (zip (take ?n xs) (take ?n ys))"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2057
    by (rule assms) simp_all
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2058
  moreover have "zip xs ys = zip (take ?n xs) (take ?n ys)"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2059
  proof (induct xs arbitrary: ys)
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2060
    case Nil then show ?case by simp
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2061
  next
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2062
    case (Cons x xs) then show ?case by (cases ys) simp_all
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2063
  qed
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2064
  ultimately show ?thesis by simp
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2065
qed
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2066
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2067
lemma zip_append1:
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  2068
"zip (xs @ ys) zs =
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2069
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  2070
by (induct xs zs rule:list_induct2') auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2071
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2072
lemma zip_append2:
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  2073
"zip xs (ys @ zs) =
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2074
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  2075
by (induct xs ys rule:list_induct2') auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2076
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2077
lemma zip_append [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2078
 "[| length xs = length us; length ys = length vs |] ==>
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2079
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2080
by (simp add: zip_append1)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2081
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2082
lemma zip_rev:
14247
cb32eb89bddd *** empty log message ***
nipkow
parents: 14208
diff changeset
  2083
"length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
cb32eb89bddd *** empty log message ***
nipkow
parents: 14208
diff changeset
  2084
by (induct rule:list_induct2, simp_all)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2085
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2086
lemma zip_map_map:
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2087
  "zip (map f xs) (map g ys) = map (\<lambda> (x, y). (f x, g y)) (zip xs ys)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2088
proof (induct xs arbitrary: ys)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2089
  case (Cons x xs) note Cons_x_xs = Cons.hyps
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2090
  show ?case
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2091
  proof (cases ys)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2092
    case (Cons y ys')
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2093
    show ?thesis unfolding Cons using Cons_x_xs by simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2094
  qed simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2095
qed simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2096
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2097
lemma zip_map1:
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2098
  "zip (map f xs) ys = map (\<lambda>(x, y). (f x, y)) (zip xs ys)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2099
using zip_map_map[of f xs "\<lambda>x. x" ys] by simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2100
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2101
lemma zip_map2:
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2102
  "zip xs (map f ys) = map (\<lambda>(x, y). (x, f y)) (zip xs ys)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2103
using zip_map_map[of "\<lambda>x. x" xs f ys] by simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2104
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2105
lemma map_zip_map:
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2106
  "map f (zip (map g xs) ys) = map (%(x,y). f(g x, y)) (zip xs ys)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2107
unfolding zip_map1 by auto
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2108
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2109
lemma map_zip_map2:
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2110
  "map f (zip xs (map g ys)) = map (%(x,y). f(x, g y)) (zip xs ys)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2111
unfolding zip_map2 by auto
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2112
31080
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  2113
text{* Courtesy of Andreas Lochbihler: *}
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  2114
lemma zip_same_conv_map: "zip xs xs = map (\<lambda>x. (x, x)) xs"
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  2115
by(induct xs) auto
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  2116
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2117
lemma nth_zip [simp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2118
"[| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2119
apply (induct ys arbitrary: i xs, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2120
apply (case_tac xs)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2121
 apply (simp_all add: nth.simps split: nat.split)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2122
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2123
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2124
lemma set_zip:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2125
"set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
31080
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  2126
by(simp add: set_conv_nth cong: rev_conj_cong)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2127
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2128
lemma zip_same: "((a,b) \<in> set (zip xs xs)) = (a \<in> set xs \<and> a = b)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2129
by(induct xs) auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2130
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2131
lemma zip_update:
31080
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  2132
  "zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  2133
by(rule sym, simp add: update_zip)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2134
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2135
lemma zip_replicate [simp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2136
  "zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2137
apply (induct i arbitrary: j, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2138
apply (case_tac j, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2139
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2140
19487
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  2141
lemma take_zip:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2142
  "take n (zip xs ys) = zip (take n xs) (take n ys)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2143
apply (induct n arbitrary: xs ys)
19487
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  2144
 apply simp
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  2145
apply (case_tac xs, simp)
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  2146
apply (case_tac ys, simp_all)
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  2147
done
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  2148
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  2149
lemma drop_zip:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2150
  "drop n (zip xs ys) = zip (drop n xs) (drop n ys)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2151
apply (induct n arbitrary: xs ys)
19487
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  2152
 apply simp
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  2153
apply (case_tac xs, simp)
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  2154
apply (case_tac ys, simp_all)
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  2155
done
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  2156
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2157
lemma zip_takeWhile_fst: "zip (takeWhile P xs) ys = takeWhile (P \<circ> fst) (zip xs ys)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2158
proof (induct xs arbitrary: ys)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2159
  case (Cons x xs) thus ?case by (cases ys) auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2160
qed simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2161
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2162
lemma zip_takeWhile_snd: "zip xs (takeWhile P ys) = takeWhile (P \<circ> snd) (zip xs ys)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2163
proof (induct xs arbitrary: ys)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2164
  case (Cons x xs) thus ?case by (cases ys) auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2165
qed simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2166
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  2167
lemma set_zip_leftD:
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  2168
  "(x,y)\<in> set (zip xs ys) \<Longrightarrow> x \<in> set xs"
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  2169
by (induct xs ys rule:list_induct2') auto
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  2170
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  2171
lemma set_zip_rightD:
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  2172
  "(x,y)\<in> set (zip xs ys) \<Longrightarrow> y \<in> set ys"
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  2173
by (induct xs ys rule:list_induct2') auto
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2174
23983
79dc793bec43 Added lemmas
nipkow
parents: 23971
diff changeset
  2175
lemma in_set_zipE:
79dc793bec43 Added lemmas
nipkow
parents: 23971
diff changeset
  2176
  "(x,y) : set(zip xs ys) \<Longrightarrow> (\<lbrakk> x : set xs; y : set ys \<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R"
79dc793bec43 Added lemmas
nipkow
parents: 23971
diff changeset
  2177
by(blast dest: set_zip_leftD set_zip_rightD)
79dc793bec43 Added lemmas
nipkow
parents: 23971
diff changeset
  2178
29829
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  2179
lemma zip_map_fst_snd:
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  2180
  "zip (map fst zs) (map snd zs) = zs"
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  2181
  by (induct zs) simp_all
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  2182
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  2183
lemma zip_eq_conv:
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  2184
  "length xs = length ys \<Longrightarrow> zip xs ys = zs \<longleftrightarrow> map fst zs = xs \<and> map snd zs = ys"
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  2185
  by (auto simp add: zip_map_fst_snd)
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  2186
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  2187
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  2188
subsubsection {* @{text list_all2} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2189
14316
91b897b9a2dc added some [intro?] and [trans] for list_all2 lemmas
kleing
parents: 14302
diff changeset
  2190
lemma list_all2_lengthD [intro?]: 
91b897b9a2dc added some [intro?] and [trans] for list_all2 lemmas
kleing
parents: 14302
diff changeset
  2191
  "list_all2 P xs ys ==> length xs = length ys"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2192
by (simp add: list_all2_def)
19607
07eeb832f28d introduced characters for code generator; some improved code lemmas for some list functions
haftmann
parents: 19585
diff changeset
  2193
19787
b949911ecff5 improved code lemmas
haftmann
parents: 19770
diff changeset
  2194
lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2195
by (simp add: list_all2_def)
19607
07eeb832f28d introduced characters for code generator; some improved code lemmas for some list functions
haftmann
parents: 19585
diff changeset
  2196
19787
b949911ecff5 improved code lemmas
haftmann
parents: 19770
diff changeset
  2197
lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2198
by (simp add: list_all2_def)
19607
07eeb832f28d introduced characters for code generator; some improved code lemmas for some list functions
haftmann
parents: 19585
diff changeset
  2199
07eeb832f28d introduced characters for code generator; some improved code lemmas for some list functions
haftmann
parents: 19585
diff changeset
  2200
lemma list_all2_Cons [iff, code]:
07eeb832f28d introduced characters for code generator; some improved code lemmas for some list functions
haftmann
parents: 19585
diff changeset
  2201
  "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2202
by (auto simp add: list_all2_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2203
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2204
lemma list_all2_Cons1:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2205
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2206
by (cases ys) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2207
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2208
lemma list_all2_Cons2:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2209
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2210
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2211
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2212
lemma list_all2_rev [iff]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2213
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2214
by (simp add: list_all2_def zip_rev cong: conj_cong)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2215
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2216
lemma list_all2_rev1:
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2217
"list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2218
by (subst list_all2_rev [symmetric]) simp
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2219
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2220
lemma list_all2_append1:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2221
"list_all2 P (xs @ ys) zs =
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2222
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2223
list_all2 P xs us \<and> list_all2 P ys vs)"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2224
apply (simp add: list_all2_def zip_append1)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2225
apply (rule iffI)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2226
 apply (rule_tac x = "take (length xs) zs" in exI)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2227
 apply (rule_tac x = "drop (length xs) zs" in exI)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2228
 apply (force split: nat_diff_split simp add: min_def, clarify)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2229
apply (simp add: ball_Un)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2230
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2231
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2232
lemma list_all2_append2:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2233
"list_all2 P xs (ys @ zs) =
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2234
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2235
list_all2 P us ys \<and> list_all2 P vs zs)"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2236
apply (simp add: list_all2_def zip_append2)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2237
apply (rule iffI)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2238
 apply (rule_tac x = "take (length ys) xs" in exI)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2239
 apply (rule_tac x = "drop (length ys) xs" in exI)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2240
 apply (force split: nat_diff_split simp add: min_def, clarify)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2241
apply (simp add: ball_Un)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2242
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2243
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2244
lemma list_all2_append:
14247
cb32eb89bddd *** empty log message ***
nipkow
parents: 14208
diff changeset
  2245
  "length xs = length ys \<Longrightarrow>
cb32eb89bddd *** empty log message ***
nipkow
parents: 14208
diff changeset
  2246
  list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
cb32eb89bddd *** empty log message ***
nipkow
parents: 14208
diff changeset
  2247
by (induct rule:list_induct2, simp_all)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2248
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2249
lemma list_all2_appendI [intro?, trans]:
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2250
  "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2251
by (simp add: list_all2_append list_all2_lengthD)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2252
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2253
lemma list_all2_conv_all_nth:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2254
"list_all2 P xs ys =
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2255
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2256
by (force simp add: list_all2_def set_zip)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2257
13883
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2258
lemma list_all2_trans:
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2259
  assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2260
  shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2261
        (is "!!bs cs. PROP ?Q as bs cs")
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2262
proof (induct as)
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2263
  fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2264
  show "!!cs. PROP ?Q (x # xs) bs cs"
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2265
  proof (induct bs)
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2266
    fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs"
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2267
    show "PROP ?Q (x # xs) (y # ys) cs"
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2268
      by (induct cs) (auto intro: tr I1 I2)
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2269
  qed simp
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2270
qed simp
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2271
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2272
lemma list_all2_all_nthI [intro?]:
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2273
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2274
by (simp add: list_all2_conv_all_nth)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2275
14395
cc96cc06abf9 new theorem
paulson
parents: 14388
diff changeset
  2276
lemma list_all2I:
cc96cc06abf9 new theorem
paulson
parents: 14388
diff changeset
  2277
  "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2278
by (simp add: list_all2_def)
14395
cc96cc06abf9 new theorem
paulson
parents: 14388
diff changeset
  2279
14328
fd063037fdf5 list_all2_nthD no good as [intro?]
kleing
parents: 14327
diff changeset
  2280
lemma list_all2_nthD:
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2281
  "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2282
by (simp add: list_all2_conv_all_nth)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2283
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  2284
lemma list_all2_nthD2:
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  2285
  "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2286
by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  2287
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2288
lemma list_all2_map1: 
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2289
  "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2290
by (simp add: list_all2_conv_all_nth)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2291
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2292
lemma list_all2_map2: 
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2293
  "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2294
by (auto simp add: list_all2_conv_all_nth)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2295
14316
91b897b9a2dc added some [intro?] and [trans] for list_all2 lemmas
kleing
parents: 14302
diff changeset
  2296
lemma list_all2_refl [intro?]:
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2297
  "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2298
by (simp add: list_all2_conv_all_nth)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2299
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2300
lemma list_all2_update_cong:
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2301
  "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2302
by (simp add: list_all2_conv_all_nth nth_list_update)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2303
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2304
lemma list_all2_update_cong2:
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2305
  "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2306
by (simp add: list_all2_lengthD list_all2_update_cong)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2307
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  2308
lemma list_all2_takeI [simp,intro?]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2309
  "list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2310
apply (induct xs arbitrary: n ys)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2311
 apply simp
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2312
apply (clarsimp simp add: list_all2_Cons1)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2313
apply (case_tac n)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2314
apply auto
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2315
done
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  2316
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  2317
lemma list_all2_dropI [simp,intro?]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2318
  "list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2319
apply (induct as arbitrary: n bs, simp)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2320
apply (clarsimp simp add: list_all2_Cons1)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2321
apply (case_tac n, simp, simp)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2322
done
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2323
14327
9cd4dea593e3 list_all2_mono should not be [trans]
kleing
parents: 14316
diff changeset
  2324
lemma list_all2_mono [intro?]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2325
  "list_all2 P xs ys \<Longrightarrow> (\<And>xs ys. P xs ys \<Longrightarrow> Q xs ys) \<Longrightarrow> list_all2 Q xs ys"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2326
apply (induct xs arbitrary: ys, simp)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2327
apply (case_tac ys, auto)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2328
done
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2329
22551
e52f5400e331 paraphrasing equality
haftmann
parents: 22539
diff changeset
  2330
lemma list_all2_eq:
e52f5400e331 paraphrasing equality
haftmann
parents: 22539
diff changeset
  2331
  "xs = ys \<longleftrightarrow> list_all2 (op =) xs ys"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2332
by (induct xs ys rule: list_induct2') auto
22551
e52f5400e331 paraphrasing equality
haftmann
parents: 22539
diff changeset
  2333
40230
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  2334
lemma list_eq_iff_zip_eq:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  2335
  "xs = ys \<longleftrightarrow> length xs = length ys \<and> (\<forall>(x,y) \<in> set (zip xs ys). x = y)"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  2336
by(auto simp add: set_zip list_all2_eq list_all2_conv_all_nth cong: conj_cong)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  2337
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2338
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  2339
subsubsection {* @{text foldl} and @{text foldr} *}
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2340
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2341
lemma foldl_append [simp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2342
  "foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2343
by (induct xs arbitrary: a) auto
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2344
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  2345
lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  2346
by (induct xs) auto
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  2347
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2348
lemma foldr_map: "foldr g (map f xs) a = foldr (g o f) xs a"
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2349
by(induct xs) simp_all
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2350
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2351
text{* For efficient code generation: avoid intermediate list. *}
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  2352
lemma foldl_map[code_unfold]:
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2353
  "foldl g a (map f xs) = foldl (%a x. g a (f x)) a xs"
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2354
by(induct xs arbitrary:a) simp_all
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2355
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2356
lemma foldl_apply:
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2357
  assumes "\<And>x. x \<in> set xs \<Longrightarrow> f x \<circ> h = h \<circ> g x"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2358
  shows "foldl (\<lambda>s x. f x s) (h s) xs = h (foldl (\<lambda>s x. g x s) s xs)"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39272
diff changeset
  2359
  by (rule sym, insert assms, induct xs arbitrary: s) (simp_all add: fun_eq_iff)
31930
3107b9af1fb3 lemma foldl_apply_inv
haftmann
parents: 31784
diff changeset
  2360
19770
be5c23ebe1eb HOL/Tools/function_package: Added support for mutual recursive definitions.
krauss
parents: 19623
diff changeset
  2361
lemma foldl_cong [fundef_cong, recdef_cong]:
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2362
  "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] 
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2363
  ==> foldl f a l = foldl g b k"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2364
by (induct k arbitrary: a b l) simp_all
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2365
19770
be5c23ebe1eb HOL/Tools/function_package: Added support for mutual recursive definitions.
krauss
parents: 19623
diff changeset
  2366
lemma foldr_cong [fundef_cong, recdef_cong]:
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2367
  "[| a = b; l = k; !!a x. x : set l ==> f x a = g x a |] 
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2368
  ==> foldr f l a = foldr g k b"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2369
by (induct k arbitrary: a b l) simp_all
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2370
35195
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2371
lemma foldl_fun_comm:
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2372
  assumes "\<And>x y s. f (f s x) y = f (f s y) x"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2373
  shows "f (foldl f s xs) x = foldl f (f s x) xs"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2374
  by (induct xs arbitrary: s)
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2375
    (simp_all add: assms)
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2376
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2377
lemma (in semigroup_add) foldl_assoc:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  2378
shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)"
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2379
by (induct zs arbitrary: y) (simp_all add:add_assoc)
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2380
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2381
lemma (in monoid_add) foldl_absorb0:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  2382
shows "x + (foldl op+ 0 zs) = foldl op+ x zs"
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2383
by (induct zs) (simp_all add:foldl_assoc)
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2384
35195
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2385
lemma foldl_rev:
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2386
  assumes "\<And>x y s. f (f s x) y = f (f s y) x"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2387
  shows "foldl f s (rev xs) = foldl f s xs"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2388
proof (induct xs arbitrary: s)
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2389
  case Nil then show ?case by simp
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2390
next
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2391
  case (Cons x xs) with assms show ?case by (simp add: foldl_fun_comm)
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2392
qed
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2393
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2394
lemma rev_foldl_cons [code]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2395
  "rev xs = foldl (\<lambda>xs x. x # xs) [] xs"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2396
proof (induct xs)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2397
  case Nil then show ?case by simp
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2398
next
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2399
  case Cons
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2400
  {
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2401
    fix x xs ys
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2402
    have "foldl (\<lambda>xs x. x # xs) ys xs @ [x]
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2403
      = foldl (\<lambda>xs x. x # xs) (ys @ [x]) xs"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2404
    by (induct xs arbitrary: ys) auto
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2405
  }
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2406
  note aux = this
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2407
  show ?case by (induct xs) (auto simp add: Cons aux)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2408
qed
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2409
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2410
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2411
text{* The ``Third Duality Theorem'' in Bird \& Wadler: *}
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2412
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2413
lemma foldr_foldl:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2414
  "foldr f xs a = foldl (%x y. f y x) a (rev xs)"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2415
  by (induct xs) auto
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2416
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2417
lemma foldl_foldr:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2418
  "foldl f a xs = foldr (%x y. f y x) (rev xs) a"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2419
  by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"])
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2420
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2421
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2422
text{* The ``First Duality Theorem'' in Bird \& Wadler: *}
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2423
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2424
lemma (in monoid_add) foldl_foldr1_lemma:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2425
  "foldl op + a xs = a + foldr op + xs 0"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2426
  by (induct xs arbitrary: a) (auto simp: add_assoc)
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2427
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2428
corollary (in monoid_add) foldl_foldr1:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2429
  "foldl op + 0 xs = foldr op + xs 0"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2430
  by (simp add: foldl_foldr1_lemma)
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2431
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2432
lemma (in ab_semigroup_add) foldr_conv_foldl:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2433
  "foldr op + xs a = foldl op + a xs"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2434
  by (induct xs) (simp_all add: foldl_assoc add.commute)
24471
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2435
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2436
text {*
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2437
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2438
difficult to use because it requires an additional transitivity step.
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2439
*}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2440
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2441
lemma start_le_sum: "(m::nat) <= n ==> m <= foldl (op +) n ns"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2442
by (induct ns arbitrary: n) auto
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2443
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2444
lemma elem_le_sum: "(n::nat) : set ns ==> n <= foldl (op +) 0 ns"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2445
by (force intro: start_le_sum simp add: in_set_conv_decomp)
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2446
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2447
lemma sum_eq_0_conv [iff]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2448
  "(foldl (op +) (m::nat) ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2449
by (induct ns arbitrary: m) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2450
24471
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2451
lemma foldr_invariant: 
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2452
  "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f x y) \<rbrakk> \<Longrightarrow> Q (foldr f xs x)"
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2453
  by (induct xs, simp_all)
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2454
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2455
lemma foldl_invariant: 
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2456
  "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f y x) \<rbrakk> \<Longrightarrow> Q (foldl f x xs)"
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2457
  by (induct xs arbitrary: x, simp_all)
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2458
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2459
lemma foldl_weak_invariant:
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2460
  assumes "P s"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2461
    and "\<And>s x. x \<in> set xs \<Longrightarrow> P s \<Longrightarrow> P (f s x)"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2462
  shows "P (foldl f s xs)"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2463
  using assms by (induct xs arbitrary: s) simp_all
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  2464
31455
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2465
text {* @{const foldl} and @{const concat} *}
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2466
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2467
lemma foldl_conv_concat:
29782
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2468
  "foldl (op @) xs xss = xs @ concat xss"
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2469
proof (induct xss arbitrary: xs)
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2470
  case Nil show ?case by simp
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2471
next
35267
8dfd816713c6 moved remaning class operations from Algebras.thy to Groups.thy
haftmann
parents: 35217
diff changeset
  2472
  interpret monoid_add "op @" "[]" proof qed simp_all
29782
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2473
  case Cons then show ?case by (simp add: foldl_absorb0)
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2474
qed
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2475
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2476
lemma concat_conv_foldl: "concat xss = foldl (op @) [] xss"
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2477
  by (simp add: foldl_conv_concat)
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2478
31455
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2479
text {* @{const Finite_Set.fold} and @{const foldl} *}
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2480
42871
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42809
diff changeset
  2481
lemma (in comp_fun_commute) fold_set_remdups:
35195
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2482
  "fold f y (set xs) = foldl (\<lambda>y x. f x y) y (remdups xs)"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2483
  by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm insert_absorb)
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  2484
42871
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42809
diff changeset
  2485
lemma (in comp_fun_idem) fold_set:
31455
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2486
  "fold f y (set xs) = foldl (\<lambda>y x. f x y) y xs"
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2487
  by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm)
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2488
32681
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2489
lemma (in ab_semigroup_idem_mult) fold1_set:
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2490
  assumes "xs \<noteq> []"
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2491
  shows "fold1 times (set xs) = foldl times (hd xs) (tl xs)"
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2492
proof -
42871
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42809
diff changeset
  2493
  interpret comp_fun_idem times by (fact comp_fun_idem)
32681
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2494
  from assms obtain y ys where xs: "xs = y # ys"
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2495
    by (cases xs) auto
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2496
  show ?thesis
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2497
  proof (cases "set ys = {}")
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2498
    case True with xs show ?thesis by simp
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2499
  next
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2500
    case False
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2501
    then have "fold1 times (insert y (set ys)) = fold times y (set ys)"
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2502
      by (simp only: finite_set fold1_eq_fold_idem)
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2503
    with xs show ?thesis by (simp add: fold_set mult_commute)
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2504
  qed
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2505
qed
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2506
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2507
lemma (in lattice) Inf_fin_set_fold [code_unfold]:
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2508
  "Inf_fin (set (x # xs)) = foldl inf x xs"
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2509
proof -
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2510
  interpret ab_semigroup_idem_mult "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2511
    by (fact ab_semigroup_idem_mult_inf)
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2512
  show ?thesis
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2513
    by (simp add: Inf_fin_def fold1_set del: set.simps)
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2514
qed
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2515
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2516
lemma (in lattice) Sup_fin_set_fold [code_unfold]:
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2517
  "Sup_fin (set (x # xs)) = foldl sup x xs"
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2518
proof -
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2519
  interpret ab_semigroup_idem_mult "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2520
    by (fact ab_semigroup_idem_mult_sup)
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2521
  show ?thesis
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2522
    by (simp add: Sup_fin_def fold1_set del: set.simps)
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2523
qed
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2524
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2525
lemma (in linorder) Min_fin_set_fold [code_unfold]:
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2526
  "Min (set (x # xs)) = foldl min x xs"
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2527
proof -
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2528
  interpret ab_semigroup_idem_mult "min :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2529
    by (fact ab_semigroup_idem_mult_min)
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2530
  show ?thesis
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2531
    by (simp add: Min_def fold1_set del: set.simps)
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2532
qed
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2533
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2534
lemma (in linorder) Max_fin_set_fold [code_unfold]:
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2535
  "Max (set (x # xs)) = foldl max x xs"
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2536
proof -
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2537
  interpret ab_semigroup_idem_mult "max :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2538
    by (fact ab_semigroup_idem_mult_max)
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2539
  show ?thesis
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2540
    by (simp add: Max_def fold1_set del: set.simps)
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2541
qed
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2542
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2543
lemma (in complete_lattice) Inf_set_fold [code_unfold]:
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2544
  "Inf (set xs) = foldl inf top xs"
34007
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2545
proof -
42871
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42809
diff changeset
  2546
  interpret comp_fun_idem "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42809
diff changeset
  2547
    by (fact comp_fun_idem_inf)
34007
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2548
  show ?thesis by (simp add: Inf_fold_inf fold_set inf_commute)
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2549
qed
32681
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2550
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2551
lemma (in complete_lattice) Sup_set_fold [code_unfold]:
adeac3cbb659 lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
haftmann
parents: 32422
diff changeset
  2552
  "Sup (set xs) = foldl sup bot xs"
34007
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2553
proof -
42871
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42809
diff changeset
  2554
  interpret comp_fun_idem "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42809
diff changeset
  2555
    by (fact comp_fun_idem_sup)
34007
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2556
  show ?thesis by (simp add: Sup_fold_sup fold_set sup_commute)
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2557
qed
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2558
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2559
lemma (in complete_lattice) INFI_set_fold:
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2560
  "INFI (set xs) f = foldl (\<lambda>y x. inf (f x) y) top xs"
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2561
  unfolding INFI_def set_map [symmetric] Inf_set_fold foldl_map
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2562
    by (simp add: inf_commute)
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2563
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2564
lemma (in complete_lattice) SUPR_set_fold:
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2565
  "SUPR (set xs) f = foldl (\<lambda>y x. sup (f x) y) bot xs"
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2566
  unfolding SUPR_def set_map [symmetric] Sup_set_fold foldl_map
aea892559fc5 tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents: 33972
diff changeset
  2567
    by (simp add: sup_commute)
31455
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2568
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  2569
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  2570
subsubsection {* @{text upt} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2571
17090
603f23d71ada small mods to code lemmas
nipkow
parents: 17086
diff changeset
  2572
lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])"
603f23d71ada small mods to code lemmas
nipkow
parents: 17086
diff changeset
  2573
-- {* simp does not terminate! *}
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2574
by (induct j) auto
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2575
32005
c369417be055 made upt/upto executable on nat/int by simp
nipkow
parents: 31998
diff changeset
  2576
lemmas upt_rec_number_of[simp] = upt_rec[of "number_of m" "number_of n", standard]
c369417be055 made upt/upto executable on nat/int by simp
nipkow
parents: 31998
diff changeset
  2577
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2578
lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2579
by (subst upt_rec) simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2580
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2581
lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)"
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2582
by(induct j)simp_all
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2583
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2584
lemma upt_eq_Cons_conv:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2585
 "([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2586
apply(induct j arbitrary: x xs)
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2587
 apply simp
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2588
apply(clarsimp simp add: append_eq_Cons_conv)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2589
apply arith
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2590
done
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2591
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2592
lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2593
-- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2594
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2595
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2596
lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  2597
  by (simp add: upt_rec)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2598
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2599
lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2600
-- {* LOOPS as a simprule, since @{text "j <= j"}. *}
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2601
by (induct k) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2602
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2603
lemma length_upt [simp]: "length [i..<j] = j - i"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2604
by (induct j) (auto simp add: Suc_diff_le)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2605
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2606
lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2607
apply (induct j)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2608
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2609
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2610
17906
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2611
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2612
lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i"
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2613
by(simp add:upt_conv_Cons)
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2614
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2615
lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1"
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2616
apply(cases j)
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2617
 apply simp
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2618
by(simp add:upt_Suc_append)
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2619
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2620
lemma take_upt [simp]: "i+m <= n ==> take m [i..<n] = [i..<i+m]"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2621
apply (induct m arbitrary: i, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2622
apply (subst upt_rec)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2623
apply (rule sym)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2624
apply (subst upt_rec)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2625
apply (simp del: upt.simps)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2626
done
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
  2627
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2628
lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2629
apply(induct j)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2630
apply auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2631
done
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2632
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  2633
lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..<Suc n]"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2634
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2635
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2636
lemma nth_map_upt: "i < n-m ==> (map f [m..<n]) ! i = f(m+i)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2637
apply (induct n m  arbitrary: i rule: diff_induct)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2638
prefer 3 apply (subst map_Suc_upt[symmetric])
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2639
apply (auto simp add: less_diff_conv nth_upt)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2640
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2641
13883
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2642
lemma nth_take_lemma:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2643
  "k <= length xs ==> k <= length ys ==>
13883
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2644
     (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2645
apply (atomize, induct k arbitrary: xs ys)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2646
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2647
txt {* Both lists must be non-empty *}
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2648
apply (case_tac xs, simp)
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2649
apply (case_tac ys, clarify)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2650
 apply (simp (no_asm_use))
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2651
apply clarify
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2652
txt {* prenexing's needed, not miniscoping *}
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2653
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2654
apply blast
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2655
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2656
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2657
lemma nth_equalityI:
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2658
 "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2659
apply (frule nth_take_lemma [OF le_refl eq_imp_le])
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2660
apply (simp_all add: take_all)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2661
done
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2662
24796
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2663
lemma map_nth:
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2664
  "map (\<lambda>i. xs ! i) [0..<length xs] = xs"
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2665
  by (rule nth_equalityI, auto)
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2666
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2667
(* needs nth_equalityI *)
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2668
lemma list_all2_antisym:
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2669
  "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> 
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2670
  \<Longrightarrow> xs = ys"
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2671
  apply (simp add: list_all2_conv_all_nth) 
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2672
  apply (rule nth_equalityI, blast, simp)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2673
  done
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2674
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2675
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2676
-- {* The famous take-lemma. *}
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2677
apply (drule_tac x = "max (length xs) (length ys)" in spec)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2678
apply (simp add: le_max_iff_disj take_all)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2679
done
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2680
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2681
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2682
lemma take_Cons':
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2683
     "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2684
by (cases n) simp_all
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2685
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2686
lemma drop_Cons':
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2687
     "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2688
by (cases n) simp_all
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2689
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2690
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2691
by (cases n) simp_all
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2692
18622
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2693
lemmas take_Cons_number_of = take_Cons'[of "number_of v",standard]
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2694
lemmas drop_Cons_number_of = drop_Cons'[of "number_of v",standard]
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2695
lemmas nth_Cons_number_of = nth_Cons'[of _ _ "number_of v",standard]
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2696
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2697
declare take_Cons_number_of [simp] 
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2698
        drop_Cons_number_of [simp] 
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2699
        nth_Cons_number_of [simp] 
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2700
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2701
32415
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2702
subsubsection {* @{text upto}: interval-list on @{typ int} *}
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2703
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2704
(* FIXME make upto tail recursive? *)
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2705
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2706
function upto :: "int \<Rightarrow> int \<Rightarrow> int list" ("(1[_../_])") where
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2707
"upto i j = (if i \<le> j then i # [i+1..j] else [])"
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2708
by auto
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2709
termination
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2710
by(relation "measure(%(i::int,j). nat(j - i + 1))") auto
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2711
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2712
declare upto.simps[code, simp del]
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2713
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2714
lemmas upto_rec_number_of[simp] =
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2715
  upto.simps[of "number_of m" "number_of n", standard]
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2716
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2717
lemma upto_empty[simp]: "j < i \<Longrightarrow> [i..j] = []"
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2718
by(simp add: upto.simps)
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2719
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2720
lemma set_upto[simp]: "set[i..j] = {i..j}"
41463
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
  2721
proof(induct i j rule:upto.induct)
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
  2722
  case (1 i j)
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
  2723
  from this show ?case
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
  2724
    unfolding upto.simps[of i j] simp_from_to[of i j] by auto
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
  2725
qed
32415
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2726
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2727
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  2728
subsubsection {* @{text "distinct"} and @{text remdups} *}
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2729
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  2730
lemma distinct_tl:
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  2731
  "distinct xs \<Longrightarrow> distinct (tl xs)"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  2732
  by (cases xs) simp_all
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  2733
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2734
lemma distinct_append [simp]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2735
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2736
by (induct xs) auto
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2737
15305
0bd9eedaa301 added lemmas
nipkow
parents: 15304
diff changeset
  2738
lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs"
0bd9eedaa301 added lemmas
nipkow
parents: 15304
diff changeset
  2739
by(induct xs) auto
0bd9eedaa301 added lemmas
nipkow
parents: 15304
diff changeset
  2740
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2741
lemma set_remdups [simp]: "set (remdups xs) = set xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2742
by (induct xs) (auto simp add: insert_absorb)
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2743
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2744
lemma distinct_remdups [iff]: "distinct (remdups xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2745
by (induct xs) auto
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2746
25287
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2747
lemma distinct_remdups_id: "distinct xs ==> remdups xs = xs"
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2748
by (induct xs, auto)
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2749
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  2750
lemma remdups_id_iff_distinct [simp]: "remdups xs = xs \<longleftrightarrow> distinct xs"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  2751
by (metis distinct_remdups distinct_remdups_id)
25287
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2752
24566
2bfa0215904c added lemma
nipkow
parents: 24526
diff changeset
  2753
lemma finite_distinct_list: "finite A \<Longrightarrow> EX xs. set xs = A & distinct xs"
24632
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  2754
by (metis distinct_remdups finite_list set_remdups)
24566
2bfa0215904c added lemma
nipkow
parents: 24526
diff changeset
  2755
15072
4861bf6af0b4 new material courtesy of Norbert Voelker
paulson
parents: 15064
diff changeset
  2756
lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2757
by (induct x, auto) 
15072
4861bf6af0b4 new material courtesy of Norbert Voelker
paulson
parents: 15064
diff changeset
  2758
4861bf6af0b4 new material courtesy of Norbert Voelker
paulson
parents: 15064
diff changeset
  2759
lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2760
by (induct x, auto)
15072
4861bf6af0b4 new material courtesy of Norbert Voelker
paulson
parents: 15064
diff changeset
  2761
15245
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2762
lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs"
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2763
by (induct xs) auto
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2764
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2765
lemma length_remdups_eq[iff]:
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2766
  "(length (remdups xs) = length xs) = (remdups xs = xs)"
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2767
apply(induct xs)
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2768
 apply auto
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2769
apply(subgoal_tac "length (remdups xs) <= length xs")
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2770
 apply arith
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2771
apply(rule length_remdups_leq)
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2772
done
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2773
33945
8493ed132fed added remdups_filter lemma
nipkow
parents: 33640
diff changeset
  2774
lemma remdups_filter: "remdups(filter P xs) = filter P (remdups xs)"
8493ed132fed added remdups_filter lemma
nipkow
parents: 33640
diff changeset
  2775
apply(induct xs)
8493ed132fed added remdups_filter lemma
nipkow
parents: 33640
diff changeset
  2776
apply auto
8493ed132fed added remdups_filter lemma
nipkow
parents: 33640
diff changeset
  2777
done
18490
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2778
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2779
lemma distinct_map:
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2780
  "distinct(map f xs) = (distinct xs & inj_on f (set xs))"
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2781
by (induct xs) auto
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2782
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2783
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2784
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2785
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2786
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2787
lemma distinct_upt[simp]: "distinct[i..<j]"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2788
by (induct j) auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2789
32415
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2790
lemma distinct_upto[simp]: "distinct[i..j]"
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2791
apply(induct i j rule:upto.induct)
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2792
apply(subst upto.simps)
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2793
apply(simp)
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2794
done
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  2795
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2796
lemma distinct_take[simp]: "distinct xs \<Longrightarrow> distinct (take i xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2797
apply(induct xs arbitrary: i)
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2798
 apply simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2799
apply (case_tac i)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2800
 apply simp_all
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2801
apply(blast dest:in_set_takeD)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2802
done
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2803
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2804
lemma distinct_drop[simp]: "distinct xs \<Longrightarrow> distinct (drop i xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2805
apply(induct xs arbitrary: i)
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2806
 apply simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2807
apply (case_tac i)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2808
 apply simp_all
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2809
done
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2810
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2811
lemma distinct_list_update:
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2812
assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2813
shows "distinct (xs[i:=a])"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2814
proof (cases "i < length xs")
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2815
  case True
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2816
  with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2817
    apply (drule_tac id_take_nth_drop) by simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2818
  with d True show ?thesis
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2819
    apply (simp add: upd_conv_take_nth_drop)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2820
    apply (drule subst [OF id_take_nth_drop]) apply assumption
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2821
    apply simp apply (cases "a = xs!i") apply simp by blast
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2822
next
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2823
  case False with d show ?thesis by auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2824
qed
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2825
31363
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2826
lemma distinct_concat:
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2827
  assumes "distinct xs"
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2828
  and "\<And> ys. ys \<in> set xs \<Longrightarrow> distinct ys"
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2829
  and "\<And> ys zs. \<lbrakk> ys \<in> set xs ; zs \<in> set xs ; ys \<noteq> zs \<rbrakk> \<Longrightarrow> set ys \<inter> set zs = {}"
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2830
  shows "distinct (concat xs)"
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2831
  using assms by (induct xs) auto
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2832
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2833
text {* It is best to avoid this indexed version of distinct, but
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2834
sometimes it is useful. *}
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2835
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2836
lemma distinct_conv_nth:
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2837
"distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15246
diff changeset
  2838
apply (induct xs, simp, simp)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2839
apply (rule iffI, clarsimp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2840
 apply (case_tac i)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2841
apply (case_tac j, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2842
apply (simp add: set_conv_nth)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2843
 apply (case_tac j)
24648
1e8053a6d725 metis too slow
paulson
parents: 24645
diff changeset
  2844
apply (clarsimp simp add: set_conv_nth, simp) 
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2845
apply (rule conjI)
24648
1e8053a6d725 metis too slow
paulson
parents: 24645
diff changeset
  2846
(*TOO SLOW
24632
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  2847
apply (metis Zero_neq_Suc gr0_conv_Suc in_set_conv_nth lessI less_trans_Suc nth_Cons' nth_Cons_Suc)
24648
1e8053a6d725 metis too slow
paulson
parents: 24645
diff changeset
  2848
*)
1e8053a6d725 metis too slow
paulson
parents: 24645
diff changeset
  2849
 apply (clarsimp simp add: set_conv_nth)
1e8053a6d725 metis too slow
paulson
parents: 24645
diff changeset
  2850
 apply (erule_tac x = 0 in allE, simp)
1e8053a6d725 metis too slow
paulson
parents: 24645
diff changeset
  2851
 apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
25130
d91391a8705b avoid very slow metis invocation;
wenzelm
parents: 25112
diff changeset
  2852
(*TOO SLOW
24632
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  2853
apply (metis Suc_Suc_eq lessI less_trans_Suc nth_Cons_Suc)
25130
d91391a8705b avoid very slow metis invocation;
wenzelm
parents: 25112
diff changeset
  2854
*)
d91391a8705b avoid very slow metis invocation;
wenzelm
parents: 25112
diff changeset
  2855
apply (erule_tac x = "Suc i" in allE, simp)
d91391a8705b avoid very slow metis invocation;
wenzelm
parents: 25112
diff changeset
  2856
apply (erule_tac x = "Suc j" in allE, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2857
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2858
18490
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2859
lemma nth_eq_iff_index_eq:
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2860
 "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)"
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2861
by(auto simp: distinct_conv_nth)
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2862
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2863
lemma distinct_card: "distinct xs ==> card (set xs) = size xs"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2864
by (induct xs) auto
14388
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2865
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2866
lemma card_distinct: "card (set xs) = size xs ==> distinct xs"
14388
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2867
proof (induct xs)
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2868
  case Nil thus ?case by simp
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2869
next
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2870
  case (Cons x xs)
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2871
  show ?case
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2872
  proof (cases "x \<in> set xs")
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2873
    case False with Cons show ?thesis by simp
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2874
  next
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2875
    case True with Cons.prems
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2876
    have "card (set xs) = Suc (length xs)" 
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2877
      by (simp add: card_insert_if split: split_if_asm)
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2878
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2879
    ultimately have False by simp
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2880
    thus ?thesis ..
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2881
  qed
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2882
qed
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2883
25287
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2884
lemma not_distinct_decomp: "~ distinct ws ==> EX xs ys zs y. ws = xs@[y]@ys@[y]@zs"
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2885
apply (induct n == "length ws" arbitrary:ws) apply simp
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2886
apply(case_tac ws) apply simp
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2887
apply (simp split:split_if_asm)
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2888
apply (metis Cons_eq_appendI eq_Nil_appendI split_list)
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2889
done
18490
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2890
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2891
lemma length_remdups_concat:
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2892
 "length(remdups(concat xss)) = card(\<Union>xs \<in> set xss. set xs)"
24308
700e745994c1 removed set_concat_map and improved set_concat
nipkow
parents: 24286
diff changeset
  2893
by(simp add: set_concat distinct_card[symmetric])
17906
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2894
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2895
lemma length_remdups_card_conv: "length(remdups xs) = card(set xs)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2896
proof -
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2897
  have xs: "concat[xs] = xs" by simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2898
  from length_remdups_concat[of "[xs]"] show ?thesis unfolding xs by simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  2899
qed
17906
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2900
36275
c6ca9e258269 lemmas concerning remdups
haftmann
parents: 36199
diff changeset
  2901
lemma remdups_remdups:
c6ca9e258269 lemmas concerning remdups
haftmann
parents: 36199
diff changeset
  2902
  "remdups (remdups xs) = remdups xs"
c6ca9e258269 lemmas concerning remdups
haftmann
parents: 36199
diff changeset
  2903
  by (induct xs) simp_all
c6ca9e258269 lemmas concerning remdups
haftmann
parents: 36199
diff changeset
  2904
36851
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  2905
lemma distinct_butlast:
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  2906
  assumes "xs \<noteq> []" and "distinct xs"
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  2907
  shows "distinct (butlast xs)"
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  2908
proof -
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  2909
  from `xs \<noteq> []` obtain ys y where "xs = ys @ [y]" by (cases xs rule: rev_cases) auto
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  2910
  with `distinct xs` show ?thesis by simp
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  2911
qed
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  2912
39728
832c42be723e lemma remdups_map_remdups
haftmann
parents: 39613
diff changeset
  2913
lemma remdups_map_remdups:
832c42be723e lemma remdups_map_remdups
haftmann
parents: 39613
diff changeset
  2914
  "remdups (map f (remdups xs)) = remdups (map f xs)"
832c42be723e lemma remdups_map_remdups
haftmann
parents: 39613
diff changeset
  2915
  by (induct xs) simp_all
832c42be723e lemma remdups_map_remdups
haftmann
parents: 39613
diff changeset
  2916
39915
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2917
lemma distinct_zipI1:
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2918
  assumes "distinct xs"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2919
  shows "distinct (zip xs ys)"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2920
proof (rule zip_obtain_same_length)
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2921
  fix xs' :: "'a list" and ys' :: "'b list" and n
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2922
  assume "length xs' = length ys'"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2923
  assume "xs' = take n xs"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2924
  with assms have "distinct xs'" by simp
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2925
  with `length xs' = length ys'` show "distinct (zip xs' ys')"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2926
    by (induct xs' ys' rule: list_induct2) (auto elim: in_set_zipE)
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2927
qed
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2928
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2929
lemma distinct_zipI2:
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2930
  assumes "distinct ys"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2931
  shows "distinct (zip xs ys)"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2932
proof (rule zip_obtain_same_length)
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2933
  fix xs' :: "'b list" and ys' :: "'a list" and n
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2934
  assume "length xs' = length ys'"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2935
  assume "ys' = take n ys"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2936
  with assms have "distinct ys'" by simp
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2937
  with `length xs' = length ys'` show "distinct (zip xs' ys')"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2938
    by (induct xs' ys' rule: list_induct2) (auto elim: in_set_zipE)
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2939
qed
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  2940
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  2941
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2942
subsubsection {* List summation: @{const listsum} and @{text"\<Sum>"}*}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2943
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2944
lemma (in monoid_add) listsum_foldl [code]:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2945
  "listsum = foldl (op +) 0"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2946
  by (simp add: listsum_def foldl_foldr1 fun_eq_iff)
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2947
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2948
lemma (in monoid_add) listsum_simps [simp]:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2949
  "listsum [] = 0"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2950
  "listsum (x#xs) = x + listsum xs"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2951
  by (simp_all add: listsum_def)
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2952
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2953
lemma (in monoid_add) listsum_append [simp]:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2954
  "listsum (xs @ ys) = listsum xs + listsum ys"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2955
  by (induct xs) (simp_all add: add.assoc)
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2956
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2957
lemma (in comm_monoid_add) listsum_rev [simp]:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2958
  "listsum (rev xs) = listsum xs"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2959
  by (simp add: listsum_def [of "rev xs"]) (simp add: listsum_foldl foldr_foldl add.commute)
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2960
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2961
lemma (in comm_monoid_add) listsum_map_remove1:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2962
  "x \<in> set xs \<Longrightarrow> listsum (map f xs) = f x + listsum (map f (remove1 x xs))"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2963
  by (induct xs) (auto simp add: ac_simps)
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2964
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2965
lemma (in monoid_add) list_size_conv_listsum:
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2966
  "list_size f xs = listsum (map f xs) + size xs"
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2967
  by (induct xs) auto
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2968
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2969
lemma (in monoid_add) length_concat:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2970
  "length (concat xss) = listsum (map length xss)"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2971
  by (induct xss) simp_all
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2972
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2973
lemma (in monoid_add) listsum_map_filter:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2974
  assumes "\<And>x. x \<in> set xs \<Longrightarrow> \<not> P x \<Longrightarrow> f x = 0"
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2975
  shows "listsum (map f (filter P xs)) = listsum (map f xs)"
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2976
  using assms by (induct xs) auto
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2977
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2978
lemma (in monoid_add) distinct_listsum_conv_Setsum:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2979
  "distinct xs \<Longrightarrow> listsum xs = Setsum (set xs)"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2980
  by (induct xs) simp_all
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2981
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2982
lemma listsum_eq_0_nat_iff_nat [simp]:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2983
  "listsum ns = (0::nat) \<longleftrightarrow> (\<forall>n \<in> set ns. n = 0)"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2984
  by (simp add: listsum_foldl)
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2985
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2986
lemma elem_le_listsum_nat:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2987
  "k < size ns \<Longrightarrow> ns ! k \<le> listsum (ns::nat list)"
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2988
apply(induct ns arbitrary: k)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2989
 apply simp
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2990
apply(fastsimp simp add:nth_Cons split: nat.split)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2991
done
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2992
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2993
lemma listsum_update_nat:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  2994
  "k<size ns \<Longrightarrow> listsum (ns[k := (n::nat)]) = listsum ns + n - ns ! k"
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2995
apply(induct ns arbitrary:k)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2996
 apply (auto split:nat.split)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2997
apply(drule elem_le_listsum_nat)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2998
apply arith
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  2999
done
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3000
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3001
text{* Some syntactic sugar for summing a function over a list: *}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3002
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3003
syntax
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3004
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3005
syntax (xsymbols)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3006
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3007
syntax (HTML output)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3008
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3009
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3010
translations -- {* Beware of argument permutation! *}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3011
  "SUM x<-xs. b" == "CONST listsum (CONST map (%x. b) xs)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3012
  "\<Sum>x\<leftarrow>xs. b" == "CONST listsum (CONST map (%x. b) xs)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3013
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3014
lemma (in monoid_add) listsum_triv:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3015
  "(\<Sum>x\<leftarrow>xs. r) = of_nat (length xs) * r"
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3016
  by (induct xs) (simp_all add: left_distrib)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3017
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3018
lemma (in monoid_add) listsum_0 [simp]:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3019
  "(\<Sum>x\<leftarrow>xs. 0) = 0"
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3020
  by (induct xs) (simp_all add: left_distrib)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3021
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3022
text{* For non-Abelian groups @{text xs} needs to be reversed on one side: *}
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3023
lemma (in ab_group_add) uminus_listsum_map:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3024
  "- listsum (map f xs) = listsum (map (uminus \<circ> f) xs)"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3025
  by (induct xs) simp_all
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3026
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3027
lemma (in comm_monoid_add) listsum_addf:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3028
  "(\<Sum>x\<leftarrow>xs. f x + g x) = listsum (map f xs) + listsum (map g xs)"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3029
  by (induct xs) (simp_all add: algebra_simps)
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3030
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3031
lemma (in ab_group_add) listsum_subtractf:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3032
  "(\<Sum>x\<leftarrow>xs. f x - g x) = listsum (map f xs) - listsum (map g xs)"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3033
  by (induct xs) (simp_all add: algebra_simps)
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3034
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3035
lemma (in semiring_0) listsum_const_mult:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3036
  "(\<Sum>x\<leftarrow>xs. c * f x) = c * (\<Sum>x\<leftarrow>xs. f x)"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3037
  by (induct xs) (simp_all add: algebra_simps)
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3038
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3039
lemma (in semiring_0) listsum_mult_const:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3040
  "(\<Sum>x\<leftarrow>xs. f x * c) = (\<Sum>x\<leftarrow>xs. f x) * c"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3041
  by (induct xs) (simp_all add: algebra_simps)
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3042
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3043
lemma (in ordered_ab_group_add_abs) listsum_abs:
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3044
  "\<bar>listsum xs\<bar> \<le> listsum (map abs xs)"
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3045
  by (induct xs) (simp_all add: order_trans [OF abs_triangle_ineq])
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3046
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3047
lemma listsum_mono:
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3048
  fixes f g :: "'a \<Rightarrow> 'b::{monoid_add, ordered_ab_semigroup_add}"
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3049
  shows "(\<And>x. x \<in> set xs \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sum>x\<leftarrow>xs. f x) \<le> (\<Sum>x\<leftarrow>xs. g x)"
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3050
  by (induct xs) (simp, simp add: add_mono)
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3051
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3052
lemma (in monoid_add) listsum_distinct_conv_setsum_set:
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3053
  "distinct xs \<Longrightarrow> listsum (map f xs) = setsum f (set xs)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3054
  by (induct xs) simp_all
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3055
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3056
lemma (in monoid_add) interv_listsum_conv_setsum_set_nat:
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3057
  "listsum (map f [m..<n]) = setsum f (set [m..<n])"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3058
  by (simp add: listsum_distinct_conv_setsum_set)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3059
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3060
lemma (in monoid_add) interv_listsum_conv_setsum_set_int:
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3061
  "listsum (map f [k..l]) = setsum f (set [k..l])"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3062
  by (simp add: listsum_distinct_conv_setsum_set)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3063
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3064
text {* General equivalence between @{const listsum} and @{const setsum} *}
39774
30cf9d80939e localized listsum
haftmann
parents: 39728
diff changeset
  3065
lemma (in monoid_add) listsum_setsum_nth:
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3066
  "listsum xs = (\<Sum> i = 0 ..< length xs. xs ! i)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3067
  using interv_listsum_conv_setsum_set_nat [of "op ! xs" 0 "length xs"] by (simp add: map_nth)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3068
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  3069
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3070
subsubsection {* @{const insert} *}
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3071
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3072
lemma in_set_insert [simp]:
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3073
  "x \<in> set xs \<Longrightarrow> List.insert x xs = xs"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3074
  by (simp add: List.insert_def)
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3075
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3076
lemma not_in_set_insert [simp]:
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3077
  "x \<notin> set xs \<Longrightarrow> List.insert x xs = x # xs"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3078
  by (simp add: List.insert_def)
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3079
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3080
lemma insert_Nil [simp]:
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3081
  "List.insert x [] = [x]"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3082
  by simp
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3083
35295
397295fa8387 lemma distinct_insert
haftmann
parents: 35248
diff changeset
  3084
lemma set_insert [simp]:
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3085
  "set (List.insert x xs) = insert x (set xs)"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3086
  by (auto simp add: List.insert_def)
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3087
35295
397295fa8387 lemma distinct_insert
haftmann
parents: 35248
diff changeset
  3088
lemma distinct_insert [simp]:
397295fa8387 lemma distinct_insert
haftmann
parents: 35248
diff changeset
  3089
  "distinct xs \<Longrightarrow> distinct (List.insert x xs)"
397295fa8387 lemma distinct_insert
haftmann
parents: 35248
diff changeset
  3090
  by (simp add: List.insert_def)
397295fa8387 lemma distinct_insert
haftmann
parents: 35248
diff changeset
  3091
36275
c6ca9e258269 lemmas concerning remdups
haftmann
parents: 36199
diff changeset
  3092
lemma insert_remdups:
c6ca9e258269 lemmas concerning remdups
haftmann
parents: 36199
diff changeset
  3093
  "List.insert x (remdups xs) = remdups (List.insert x xs)"
c6ca9e258269 lemmas concerning remdups
haftmann
parents: 36199
diff changeset
  3094
  by (simp add: List.insert_def)
c6ca9e258269 lemmas concerning remdups
haftmann
parents: 36199
diff changeset
  3095
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3096
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  3097
subsubsection {* @{text remove1} *}
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3098
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  3099
lemma remove1_append:
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  3100
  "remove1 x (xs @ ys) =
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  3101
  (if x \<in> set xs then remove1 x xs @ ys else xs @ remove1 x ys)"
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  3102
by (induct xs) auto
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  3103
36903
489c1fbbb028 Multiset: renamed, added and tuned lemmas;
nipkow
parents: 36851
diff changeset
  3104
lemma remove1_commute: "remove1 x (remove1 y zs) = remove1 y (remove1 x zs)"
489c1fbbb028 Multiset: renamed, added and tuned lemmas;
nipkow
parents: 36851
diff changeset
  3105
by (induct zs) auto
489c1fbbb028 Multiset: renamed, added and tuned lemmas;
nipkow
parents: 36851
diff changeset
  3106
23479
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  3107
lemma in_set_remove1[simp]:
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  3108
  "a \<noteq> b \<Longrightarrow> a : set(remove1 b xs) = (a : set xs)"
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  3109
apply (induct xs)
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  3110
apply auto
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  3111
done
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  3112
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3113
lemma set_remove1_subset: "set(remove1 x xs) <= set xs"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3114
apply(induct xs)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3115
 apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3116
apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3117
apply blast
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3118
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3119
17724
e969fc0a4925 simprules need names
paulson
parents: 17629
diff changeset
  3120
lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3121
apply(induct xs)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3122
 apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3123
apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3124
apply blast
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3125
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3126
23479
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  3127
lemma length_remove1:
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  3128
  "length(remove1 x xs) = (if x : set xs then length xs - 1 else length xs)"
23479
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  3129
apply (induct xs)
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  3130
 apply (auto dest!:length_pos_if_in_set)
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  3131
done
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  3132
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  3133
lemma remove1_filter_not[simp]:
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  3134
  "\<not> P x \<Longrightarrow> remove1 x (filter P xs) = filter P xs"
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  3135
by(induct xs) auto
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  3136
39073
8520a1f89db1 Add filter_remove1
hoelzl
parents: 38857
diff changeset
  3137
lemma filter_remove1:
8520a1f89db1 Add filter_remove1
hoelzl
parents: 38857
diff changeset
  3138
  "filter Q (remove1 x xs) = remove1 x (filter Q xs)"
8520a1f89db1 Add filter_remove1
hoelzl
parents: 38857
diff changeset
  3139
by (induct xs) auto
8520a1f89db1 Add filter_remove1
hoelzl
parents: 38857
diff changeset
  3140
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3141
lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3142
apply(insert set_remove1_subset)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3143
apply fast
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3144
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3145
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3146
lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3147
by (induct xs) simp_all
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  3148
36275
c6ca9e258269 lemmas concerning remdups
haftmann
parents: 36199
diff changeset
  3149
lemma remove1_remdups:
c6ca9e258269 lemmas concerning remdups
haftmann
parents: 36199
diff changeset
  3150
  "distinct xs \<Longrightarrow> remove1 x (remdups xs) = remdups (remove1 x xs)"
c6ca9e258269 lemmas concerning remdups
haftmann
parents: 36199
diff changeset
  3151
  by (induct xs) simp_all
c6ca9e258269 lemmas concerning remdups
haftmann
parents: 36199
diff changeset
  3152
37107
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  3153
lemma remove1_idem:
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  3154
  assumes "x \<notin> set xs"
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  3155
  shows "remove1 x xs = xs"
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  3156
  using assms by (induct xs) simp_all
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  3157
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3158
27693
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3159
subsubsection {* @{text removeAll} *}
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3160
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3161
lemma removeAll_filter_not_eq:
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3162
  "removeAll x = filter (\<lambda>y. x \<noteq> y)"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3163
proof
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3164
  fix xs
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3165
  show "removeAll x xs = filter (\<lambda>y. x \<noteq> y) xs"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3166
    by (induct xs) auto
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3167
qed
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3168
27693
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3169
lemma removeAll_append[simp]:
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3170
  "removeAll x (xs @ ys) = removeAll x xs @ removeAll x ys"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3171
by (induct xs) auto
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3172
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3173
lemma set_removeAll[simp]: "set(removeAll x xs) = set xs - {x}"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3174
by (induct xs) auto
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3175
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3176
lemma removeAll_id[simp]: "x \<notin> set xs \<Longrightarrow> removeAll x xs = xs"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3177
by (induct xs) auto
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3178
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3179
(* Needs count:: 'a \<Rightarrow> a' list \<Rightarrow> nat
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3180
lemma length_removeAll:
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3181
  "length(removeAll x xs) = length xs - count x xs"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3182
*)
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3183
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3184
lemma removeAll_filter_not[simp]:
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3185
  "\<not> P x \<Longrightarrow> removeAll x (filter P xs) = filter P xs"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3186
by(induct xs) auto
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3187
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3188
lemma distinct_removeAll:
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3189
  "distinct xs \<Longrightarrow> distinct (removeAll x xs)"
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
  3190
  by (simp add: removeAll_filter_not_eq)
27693
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3191
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3192
lemma distinct_remove1_removeAll:
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3193
  "distinct xs ==> remove1 x xs = removeAll x xs"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3194
by (induct xs) simp_all
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3195
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3196
lemma map_removeAll_inj_on: "inj_on f (insert x (set xs)) \<Longrightarrow>
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3197
  map f (removeAll x xs) = removeAll (f x) (map f xs)"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3198
by (induct xs) (simp_all add:inj_on_def)
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3199
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3200
lemma map_removeAll_inj: "inj f \<Longrightarrow>
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3201
  map f (removeAll x xs) = removeAll (f x) (map f xs)"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3202
by(metis map_removeAll_inj_on subset_inj_on subset_UNIV)
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3203
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  3204
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  3205
subsubsection {* @{text replicate} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3206
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  3207
lemma length_replicate [simp]: "length (replicate n x) = n"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3208
by (induct n) auto
13124
6e1decd8a7a9 new thm distinct_conv_nth
nipkow
parents: 13122
diff changeset
  3209
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36275
diff changeset
  3210
lemma Ex_list_of_length: "\<exists>xs. length xs = n"
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36275
diff changeset
  3211
by (rule exI[of _ "replicate n undefined"]) simp
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36275
diff changeset
  3212
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  3213
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3214
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3215
31363
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  3216
lemma map_replicate_const:
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  3217
  "map (\<lambda> x. k) lst = replicate (length lst) k"
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  3218
  by (induct lst) auto
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  3219
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3220
lemma replicate_app_Cons_same:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3221
"(replicate n x) @ (x # xs) = x # replicate n x @ xs"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3222
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3223
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  3224
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  3225
apply (induct n, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3226
apply (simp add: replicate_app_Cons_same)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3227
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3228
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  3229
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3230
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3231
16397
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3232
text{* Courtesy of Matthias Daum: *}
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3233
lemma append_replicate_commute:
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3234
  "replicate n x @ replicate k x = replicate k x @ replicate n x"
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3235
apply (simp add: replicate_add [THEN sym])
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3236
apply (simp add: add_commute)
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3237
done
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3238
31080
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  3239
text{* Courtesy of Andreas Lochbihler: *}
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  3240
lemma filter_replicate:
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  3241
  "filter P (replicate n x) = (if P x then replicate n x else [])"
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  3242
by(induct n) auto
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  3243
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  3244
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3245
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3246
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  3247
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3248
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3249
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  3250
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3251
by (atomize (full), induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3252
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3253
lemma nth_replicate[simp]: "i < n ==> (replicate n x)!i = x"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3254
apply (induct n arbitrary: i, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3255
apply (simp add: nth_Cons split: nat.split)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3256
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3257
16397
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3258
text{* Courtesy of Matthias Daum (2 lemmas): *}
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3259
lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x"
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3260
apply (case_tac "k \<le> i")
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3261
 apply  (simp add: min_def)
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3262
apply (drule not_leE)
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3263
apply (simp add: min_def)
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3264
apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x")
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3265
 apply  simp
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3266
apply (simp add: replicate_add [symmetric])
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3267
done
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3268
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3269
lemma drop_replicate[simp]: "drop i (replicate k x) = replicate (k-i) x"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3270
apply (induct k arbitrary: i)
16397
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3271
 apply simp
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3272
apply clarsimp
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3273
apply (case_tac i)
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3274
 apply simp
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3275
apply clarsimp
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3276
done
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3277
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  3278
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  3279
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3280
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3281
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  3282
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3283
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3284
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  3285
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3286
by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3287
37456
0a1cc2675958 tuned set_replicate lemmas
nipkow
parents: 37455
diff changeset
  3288
lemma in_set_replicate[simp]: "(x : set (replicate n y)) = (x = y & n \<noteq> 0)"
0a1cc2675958 tuned set_replicate lemmas
nipkow
parents: 37455
diff changeset
  3289
by (simp add: set_replicate_conv_if)
0a1cc2675958 tuned set_replicate lemmas
nipkow
parents: 37455
diff changeset
  3290
37454
9132a5955127 added lemmas
nipkow
parents: 37424
diff changeset
  3291
lemma Ball_set_replicate[simp]:
9132a5955127 added lemmas
nipkow
parents: 37424
diff changeset
  3292
  "(ALL x : set(replicate n a). P x) = (P a | n=0)"
9132a5955127 added lemmas
nipkow
parents: 37424
diff changeset
  3293
by(simp add: set_replicate_conv_if)
9132a5955127 added lemmas
nipkow
parents: 37424
diff changeset
  3294
9132a5955127 added lemmas
nipkow
parents: 37424
diff changeset
  3295
lemma Bex_set_replicate[simp]:
9132a5955127 added lemmas
nipkow
parents: 37424
diff changeset
  3296
  "(EX x : set(replicate n a). P x) = (P a & n\<noteq>0)"
9132a5955127 added lemmas
nipkow
parents: 37424
diff changeset
  3297
by(simp add: set_replicate_conv_if)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3298
24796
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  3299
lemma replicate_append_same:
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  3300
  "replicate i x @ [x] = x # replicate i x"
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  3301
  by (induct i) simp_all
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  3302
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  3303
lemma map_replicate_trivial:
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  3304
  "map (\<lambda>i. x) [0..<i] = replicate i x"
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  3305
  by (induct i) (simp_all add: replicate_append_same)
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  3306
31363
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  3307
lemma concat_replicate_trivial[simp]:
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  3308
  "concat (replicate i []) = []"
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  3309
  by (induct i) (auto simp add: map_replicate_const)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3310
28642
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3311
lemma replicate_empty[simp]: "(replicate n x = []) \<longleftrightarrow> n=0"
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3312
by (induct n) auto
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3313
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3314
lemma empty_replicate[simp]: "([] = replicate n x) \<longleftrightarrow> n=0"
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3315
by (induct n) auto
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3316
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3317
lemma replicate_eq_replicate[simp]:
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3318
  "(replicate m x = replicate n y) \<longleftrightarrow> (m=n & (m\<noteq>0 \<longrightarrow> x=y))"
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3319
apply(induct m arbitrary: n)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3320
 apply simp
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3321
apply(induct_tac n)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3322
apply auto
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3323
done
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3324
39534
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3325
lemma replicate_length_filter:
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3326
  "replicate (length (filter (\<lambda>y. x = y) xs)) x = filter (\<lambda>y. x = y) xs"
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3327
  by (induct xs) auto
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3328
42714
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3329
lemma comm_append_are_replicate:
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3330
  fixes xs ys :: "'a list"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3331
  assumes "xs \<noteq> []" "ys \<noteq> []"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3332
  assumes "xs @ ys = ys @ xs"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3333
  shows "\<exists>m n zs. concat (replicate m zs) = xs \<and> concat (replicate n zs) = ys"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3334
  using assms
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3335
proof (induct "length (xs @ ys)" arbitrary: xs ys rule: less_induct)
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3336
  case less
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3337
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3338
  def xs' \<equiv> "if (length xs \<le> length ys) then xs else ys"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3339
    and ys' \<equiv> "if (length xs \<le> length ys) then ys else xs"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3340
  then have
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3341
    prems': "length xs' \<le> length ys'"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3342
            "xs' @ ys' = ys' @ xs'"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3343
      and "xs' \<noteq> []"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3344
      and len: "length (xs @ ys) = length (xs' @ ys')"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3345
    using less by (auto intro: less.hyps)
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3346
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3347
  from prems'
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3348
  obtain ws where "ys' = xs' @ ws"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3349
    by (auto simp: append_eq_append_conv2)
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3350
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3351
  have "\<exists>m n zs. concat (replicate m zs) = xs' \<and> concat (replicate n zs) = ys'"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3352
  proof (cases "ws = []")
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3353
    case True
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3354
    then have "concat (replicate 1 xs') = xs'"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3355
      and "concat (replicate 1 xs') = ys'"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3356
      using `ys' = xs' @ ws` by auto
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3357
    then show ?thesis by blast
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3358
  next
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3359
    case False
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3360
    from `ys' = xs' @ ws` and `xs' @ ys' = ys' @ xs'`
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3361
    have "xs' @ ws = ws @ xs'" by simp
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3362
    then have "\<exists>m n zs. concat (replicate m zs) = xs' \<and> concat (replicate n zs) = ws"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3363
      using False and `xs' \<noteq> []` and `ys' = xs' @ ws` and len
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3364
      by (intro less.hyps) auto
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3365
    then obtain m n zs where "concat (replicate m zs) = xs'"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3366
      and "concat (replicate n zs) = ws" by blast
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3367
    moreover
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3368
    then have "concat (replicate (m + n) zs) = ys'"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3369
      using `ys' = xs' @ ws`
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3370
      by (simp add: replicate_add)
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3371
    ultimately
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3372
    show ?thesis by blast
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3373
  qed
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3374
  then show ?case
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3375
    using xs'_def ys'_def by metis
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3376
qed
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3377
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3378
lemma comm_append_is_replicate:
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3379
  fixes xs ys :: "'a list"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3380
  assumes "xs \<noteq> []" "ys \<noteq> []"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3381
  assumes "xs @ ys = ys @ xs"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3382
  shows "\<exists>n zs. n > 1 \<and> concat (replicate n zs) = xs @ ys"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3383
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3384
proof -
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3385
  obtain m n zs where "concat (replicate m zs) = xs"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3386
    and "concat (replicate n zs) = ys"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3387
    using assms by (metis comm_append_are_replicate)
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3388
  then have "m + n > 1" and "concat (replicate (m+n) zs) = xs @ ys"
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3389
    using `xs \<noteq> []` and `ys \<noteq> []`
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3390
    by (auto simp: replicate_add)
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3391
  then show ?thesis by blast
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3392
qed
fcba668b0839 add a lemma about commutative append to List.thy
noschinl
parents: 42713
diff changeset
  3393
28642
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3394
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  3395
subsubsection{*@{text rotate1} and @{text rotate}*}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3396
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3397
lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3398
by(simp add:rotate1_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3399
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3400
lemma rotate0[simp]: "rotate 0 = id"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3401
by(simp add:rotate_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3402
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3403
lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3404
by(simp add:rotate_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3405
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3406
lemma rotate_add:
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3407
  "rotate (m+n) = rotate m o rotate n"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3408
by(simp add:rotate_def funpow_add)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3409
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3410
lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3411
by(simp add:rotate_add)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3412
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  3413
lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)"
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  3414
by(simp add:rotate_def funpow_swap1)
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  3415
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3416
lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3417
by(cases xs) simp_all
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3418
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3419
lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3420
apply(induct n)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3421
 apply simp
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3422
apply (simp add:rotate_def)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3423
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3424
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3425
lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3426
by(simp add:rotate1_def split:list.split)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3427
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3428
lemma rotate_drop_take:
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3429
  "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3430
apply(induct n)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3431
 apply simp
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3432
apply(simp add:rotate_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3433
apply(cases "xs = []")
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3434
 apply (simp)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3435
apply(case_tac "n mod length xs = 0")
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3436
 apply(simp add:mod_Suc)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3437
 apply(simp add: rotate1_hd_tl drop_Suc take_Suc)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3438
apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric]
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3439
                take_hd_drop linorder_not_le)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3440
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3441
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3442
lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3443
by(simp add:rotate_drop_take)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3444
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3445
lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3446
by(simp add:rotate_drop_take)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3447
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3448
lemma length_rotate1[simp]: "length(rotate1 xs) = length xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3449
by(simp add:rotate1_def split:list.split)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3450
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3451
lemma length_rotate[simp]: "length(rotate n xs) = length xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3452
by (induct n arbitrary: xs) (simp_all add:rotate_def)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3453
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3454
lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3455
by(simp add:rotate1_def split:list.split) blast
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3456
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3457
lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3458
by (induct n) (simp_all add:rotate_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3459
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3460
lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3461
by(simp add:rotate_drop_take take_map drop_map)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3462
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3463
lemma set_rotate1[simp]: "set(rotate1 xs) = set xs"
41463
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
  3464
by (cases xs) (auto simp add:rotate1_def)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3465
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3466
lemma set_rotate[simp]: "set(rotate n xs) = set xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3467
by (induct n) (simp_all add:rotate_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3468
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3469
lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3470
by(simp add:rotate1_def split:list.split)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3471
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3472
lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3473
by (induct n) (simp_all add:rotate_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3474
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  3475
lemma rotate_rev:
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  3476
  "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)"
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  3477
apply(simp add:rotate_drop_take rev_drop rev_take)
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  3478
apply(cases "length xs = 0")
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  3479
 apply simp
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  3480
apply(cases "n mod length xs = 0")
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  3481
 apply simp
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  3482
apply(simp add:rotate_drop_take rev_drop rev_take)
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  3483
done
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  3484
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  3485
lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)"
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  3486
apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth)
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  3487
apply(subgoal_tac "length xs \<noteq> 0")
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  3488
 prefer 2 apply simp
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  3489
using mod_less_divisor[of "length xs" n] by arith
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  3490
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3491
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  3492
subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3493
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  3494
lemma sublist_empty [simp]: "sublist xs {} = []"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3495
by (auto simp add: sublist_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3496
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  3497
lemma sublist_nil [simp]: "sublist [] A = []"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3498
by (auto simp add: sublist_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3499
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3500
lemma length_sublist:
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3501
  "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3502
by(simp add: sublist_def length_filter_conv_card cong:conj_cong)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3503
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3504
lemma sublist_shift_lemma_Suc:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3505
  "map fst (filter (%p. P(Suc(snd p))) (zip xs is)) =
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3506
   map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3507
apply(induct xs arbitrary: "is")
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3508
 apply simp
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3509
apply (case_tac "is")
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3510
 apply simp
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3511
apply simp
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3512
done
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3513
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3514
lemma sublist_shift_lemma:
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
  3515
     "map fst [p<-zip xs [i..<i + length xs] . snd p : A] =
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
  3516
      map fst [p<-zip xs [0..<length xs] . snd p + i : A]"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3517
by (induct xs rule: rev_induct) (simp_all add: add_commute)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3518
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3519
lemma sublist_append:
15168
33a08cfc3ae5 new functions for sets of lists
paulson
parents: 15140
diff changeset
  3520
     "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3521
apply (unfold sublist_def)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  3522
apply (induct l' rule: rev_induct, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3523
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3524
apply (simp add: add_commute)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3525
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3526
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3527
lemma sublist_Cons:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3528
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3529
apply (induct l rule: rev_induct)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3530
 apply (simp add: sublist_def)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3531
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3532
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3533
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3534
lemma set_sublist: "set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3535
apply(induct xs arbitrary: I)
25162
ad4d5365d9d8 went back to >0
nipkow
parents: 25157
diff changeset
  3536
apply(auto simp: sublist_Cons nth_Cons split:nat.split dest!: gr0_implies_Suc)
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3537
done
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3538
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3539
lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3540
by(auto simp add:set_sublist)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3541
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3542
lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3543
by(auto simp add:set_sublist)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3544
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3545
lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3546
by(auto simp add:set_sublist)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3547
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  3548
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3549
by (simp add: sublist_Cons)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3550
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3551
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3552
lemma distinct_sublistI[simp]: "distinct xs \<Longrightarrow> distinct(sublist xs I)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3553
apply(induct xs arbitrary: I)
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3554
 apply simp
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3555
apply(auto simp add:sublist_Cons)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3556
done
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3557
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  3558
15045
d59f7e2e18d3 Moved to new m<..<n syntax for set intervals.
nipkow
parents: 14981
diff changeset
  3559
lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  3560
apply (induct l rule: rev_induct, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3561
apply (simp split: nat_diff_split add: sublist_append)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  3562
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3563
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3564
lemma filter_in_sublist:
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3565
 "distinct xs \<Longrightarrow> filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3566
proof (induct xs arbitrary: s)
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  3567
  case Nil thus ?case by simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  3568
next
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  3569
  case (Cons a xs)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  3570
  moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  3571
  ultimately show ?case by(simp add: sublist_Cons cong:filter_cong)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  3572
qed
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  3573
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  3574
19390
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  3575
subsubsection {* @{const splice} *}
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  3576
40593
1e57b18d27b1 code eqn for slice was missing; redefined splice with fun
nipkow
parents: 40365
diff changeset
  3577
lemma splice_Nil2 [simp, code]: "splice xs [] = xs"
19390
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  3578
by (cases xs) simp_all
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  3579
40593
1e57b18d27b1 code eqn for slice was missing; redefined splice with fun
nipkow
parents: 40365
diff changeset
  3580
declare splice.simps(1,3)[code]
1e57b18d27b1 code eqn for slice was missing; redefined splice with fun
nipkow
parents: 40365
diff changeset
  3581
declare splice.simps(2)[simp del]
19390
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  3582
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3583
lemma length_splice[simp]: "length(splice xs ys) = length xs + length ys"
40593
1e57b18d27b1 code eqn for slice was missing; redefined splice with fun
nipkow
parents: 40365
diff changeset
  3584
by (induct xs ys rule: splice.induct) auto
22793
dc13dfd588b2 new lemma splice_length
nipkow
parents: 22633
diff changeset
  3585
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  3586
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  3587
subsubsection {* Transpose *}
34933
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3588
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3589
function transpose where
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3590
"transpose []             = []" |
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3591
"transpose ([]     # xss) = transpose xss" |
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3592
"transpose ((x#xs) # xss) =
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3593
  (x # [h. (h#t) \<leftarrow> xss]) # transpose (xs # [t. (h#t) \<leftarrow> xss])"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3594
by pat_completeness auto
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3595
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3596
lemma transpose_aux_filter_head:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3597
  "concat (map (list_case [] (\<lambda>h t. [h])) xss) =
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3598
  map (\<lambda>xs. hd xs) [ys\<leftarrow>xss . ys \<noteq> []]"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3599
  by (induct xss) (auto split: list.split)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3600
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3601
lemma transpose_aux_filter_tail:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3602
  "concat (map (list_case [] (\<lambda>h t. [t])) xss) =
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3603
  map (\<lambda>xs. tl xs) [ys\<leftarrow>xss . ys \<noteq> []]"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3604
  by (induct xss) (auto split: list.split)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3605
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3606
lemma transpose_aux_max:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3607
  "max (Suc (length xs)) (foldr (\<lambda>xs. max (length xs)) xss 0) =
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3608
  Suc (max (length xs) (foldr (\<lambda>x. max (length x - Suc 0)) [ys\<leftarrow>xss . ys\<noteq>[]] 0))"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3609
  (is "max _ ?foldB = Suc (max _ ?foldA)")
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3610
proof (cases "[ys\<leftarrow>xss . ys\<noteq>[]] = []")
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3611
  case True
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3612
  hence "foldr (\<lambda>xs. max (length xs)) xss 0 = 0"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3613
  proof (induct xss)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3614
    case (Cons x xs)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3615
    moreover hence "x = []" by (cases x) auto
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3616
    ultimately show ?case by auto
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3617
  qed simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3618
  thus ?thesis using True by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3619
next
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3620
  case False
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3621
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3622
  have foldA: "?foldA = foldr (\<lambda>x. max (length x)) [ys\<leftarrow>xss . ys \<noteq> []] 0 - 1"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3623
    by (induct xss) auto
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3624
  have foldB: "?foldB = foldr (\<lambda>x. max (length x)) [ys\<leftarrow>xss . ys \<noteq> []] 0"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3625
    by (induct xss) auto
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3626
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3627
  have "0 < ?foldB"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3628
  proof -
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3629
    from False
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3630
    obtain z zs where zs: "[ys\<leftarrow>xss . ys \<noteq> []] = z#zs" by (auto simp: neq_Nil_conv)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3631
    hence "z \<in> set ([ys\<leftarrow>xss . ys \<noteq> []])" by auto
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3632
    hence "z \<noteq> []" by auto
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3633
    thus ?thesis
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3634
      unfolding foldB zs
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3635
      by (auto simp: max_def intro: less_le_trans)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3636
  qed
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3637
  thus ?thesis
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3638
    unfolding foldA foldB max_Suc_Suc[symmetric]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3639
    by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3640
qed
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3641
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3642
termination transpose
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3643
  by (relation "measure (\<lambda>xs. foldr (\<lambda>xs. max (length xs)) xs 0 + length xs)")
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3644
     (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max less_Suc_eq_le)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3645
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3646
lemma transpose_empty: "(transpose xs = []) \<longleftrightarrow> (\<forall>x \<in> set xs. x = [])"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3647
  by (induct rule: transpose.induct) simp_all
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3648
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3649
lemma length_transpose:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3650
  fixes xs :: "'a list list"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3651
  shows "length (transpose xs) = foldr (\<lambda>xs. max (length xs)) xs 0"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3652
  by (induct rule: transpose.induct)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3653
    (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3654
                max_Suc_Suc[symmetric] simp del: max_Suc_Suc)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3655
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3656
lemma nth_transpose:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3657
  fixes xs :: "'a list list"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3658
  assumes "i < length (transpose xs)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3659
  shows "transpose xs ! i = map (\<lambda>xs. xs ! i) [ys \<leftarrow> xs. i < length ys]"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3660
using assms proof (induct arbitrary: i rule: transpose.induct)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3661
  case (3 x xs xss)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3662
  def XS == "(x # xs) # xss"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3663
  hence [simp]: "XS \<noteq> []" by auto
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3664
  thus ?case
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3665
  proof (cases i)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3666
    case 0
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3667
    thus ?thesis by (simp add: transpose_aux_filter_head hd_conv_nth)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3668
  next
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3669
    case (Suc j)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3670
    have *: "\<And>xss. xs # map tl xss = map tl ((x#xs)#xss)" by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3671
    have **: "\<And>xss. (x#xs) # filter (\<lambda>ys. ys \<noteq> []) xss = filter (\<lambda>ys. ys \<noteq> []) ((x#xs)#xss)" by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3672
    { fix x have "Suc j < length x \<longleftrightarrow> x \<noteq> [] \<and> j < length x - Suc 0"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3673
      by (cases x) simp_all
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3674
    } note *** = this
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3675
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3676
    have j_less: "j < length (transpose (xs # concat (map (list_case [] (\<lambda>h t. [t])) xss)))"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3677
      using "3.prems" by (simp add: transpose_aux_filter_tail length_transpose Suc)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3678
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3679
    show ?thesis
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3680
      unfolding transpose.simps `i = Suc j` nth_Cons_Suc "3.hyps"[OF j_less]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3681
      apply (auto simp: transpose_aux_filter_tail filter_map comp_def length_transpose * ** *** XS_def[symmetric])
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3682
      apply (rule_tac y=x in list.exhaust)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3683
      by auto
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3684
  qed
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3685
qed simp_all
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3686
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3687
lemma transpose_map_map:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3688
  "transpose (map (map f) xs) = map (map f) (transpose xs)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3689
proof (rule nth_equalityI, safe)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3690
  have [simp]: "length (transpose (map (map f) xs)) = length (transpose xs)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3691
    by (simp add: length_transpose foldr_map comp_def)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3692
  show "length (transpose (map (map f) xs)) = length (map (map f) (transpose xs))" by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3693
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3694
  fix i assume "i < length (transpose (map (map f) xs))"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3695
  thus "transpose (map (map f) xs) ! i = map (map f) (transpose xs) ! i"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3696
    by (simp add: nth_transpose filter_map comp_def)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3697
qed
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3698
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  3699
31557
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3700
subsubsection {* (In)finiteness *}
28642
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3701
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3702
lemma finite_maxlen:
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3703
  "finite (M::'a list set) ==> EX n. ALL s:M. size s < n"
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3704
proof (induct rule: finite.induct)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3705
  case emptyI show ?case by simp
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3706
next
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3707
  case (insertI M xs)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3708
  then obtain n where "\<forall>s\<in>M. length s < n" by blast
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3709
  hence "ALL s:insert xs M. size s < max n (size xs) + 1" by auto
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3710
  thus ?case ..
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3711
qed
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3712
31557
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3713
lemma finite_lists_length_eq:
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3714
assumes "finite A"
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3715
shows "finite {xs. set xs \<subseteq> A \<and> length xs = n}" (is "finite (?S n)")
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3716
proof(induct n)
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3717
  case 0 show ?case by simp
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3718
next
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3719
  case (Suc n)
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3720
  have "?S (Suc n) = (\<Union>x\<in>A. (\<lambda>xs. x#xs) ` ?S n)"
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3721
    by (auto simp:length_Suc_conv)
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3722
  then show ?case using `finite A`
40786
0a54cfc9add3 gave more standard finite set rules simp and intro attribute
nipkow
parents: 40652
diff changeset
  3723
    by (auto intro: Suc) (* FIXME metis? *)
31557
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3724
qed
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3725
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3726
lemma finite_lists_length_le:
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3727
  assumes "finite A" shows "finite {xs. set xs \<subseteq> A \<and> length xs \<le> n}"
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3728
 (is "finite ?S")
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3729
proof-
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3730
  have "?S = (\<Union>n\<in>{0..n}. {xs. set xs \<subseteq> A \<and> length xs = n})" by auto
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3731
  thus ?thesis by (auto intro: finite_lists_length_eq[OF `finite A`])
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3732
qed
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  3733
28642
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3734
lemma infinite_UNIV_listI: "~ finite(UNIV::'a list set)"
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3735
apply(rule notI)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3736
apply(drule finite_maxlen)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3737
apply (metis UNIV_I length_replicate less_not_refl)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3738
done
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3739
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  3740
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  3741
subsection {* Sorting *}
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3742
24617
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  3743
text{* Currently it is not shown that @{const sort} returns a
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  3744
permutation of its input because the nicest proof is via multisets,
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  3745
which are not yet available. Alternatively one could define a function
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  3746
that counts the number of occurrences of an element in a list and use
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  3747
that instead of multisets to state the correctness property. *}
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  3748
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3749
context linorder
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3750
begin
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3751
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3752
lemma length_insort [simp]:
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3753
  "length (insort_key f x xs) = Suc (length xs)"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3754
  by (induct xs) simp_all
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3755
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3756
lemma insort_key_left_comm:
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3757
  assumes "f x \<noteq> f y"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3758
  shows "insort_key f y (insort_key f x xs) = insort_key f x (insort_key f y xs)"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3759
  by (induct xs) (auto simp add: assms dest: antisym)
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3760
35195
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3761
lemma insort_left_comm:
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3762
  "insort x (insort y xs) = insort y (insort x xs)"
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3763
  by (cases "x = y") (auto intro: insort_key_left_comm)
35195
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3764
42871
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42809
diff changeset
  3765
lemma comp_fun_commute_insort:
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42809
diff changeset
  3766
  "comp_fun_commute insort"
35195
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3767
proof
42809
5b45125b15ba use pointfree characterisation for fold_set locale
haftmann
parents: 42714
diff changeset
  3768
qed (simp add: insort_left_comm fun_eq_iff)
35195
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3769
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3770
lemma sort_key_simps [simp]:
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3771
  "sort_key f [] = []"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3772
  "sort_key f (x#xs) = insort_key f x (sort_key f xs)"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3773
  by (simp_all add: sort_key_def)
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3774
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3775
lemma sort_foldl_insort:
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3776
  "sort xs = foldl (\<lambda>ys x. insort x ys) [] xs"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3777
  by (simp add: sort_key_def foldr_foldl foldl_rev insort_left_comm)
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  3778
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3779
lemma length_sort[simp]: "length (sort_key f xs) = length xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3780
by (induct xs, auto)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3781
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  3782
lemma sorted_Cons: "sorted (x#xs) = (sorted xs & (ALL y:set xs. x <= y))"
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3783
apply(induct xs arbitrary: x) apply simp
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3784
by simp (blast intro: order_trans)
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3785
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3786
lemma sorted_tl:
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3787
  "sorted xs \<Longrightarrow> sorted (tl xs)"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3788
  by (cases xs) (simp_all add: sorted_Cons)
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3789
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3790
lemma sorted_append:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  3791
  "sorted (xs@ys) = (sorted xs & sorted ys & (\<forall>x \<in> set xs. \<forall>y \<in> set ys. x\<le>y))"
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3792
by (induct xs) (auto simp add:sorted_Cons)
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3793
31201
3dde56615750 new lemma
nipkow
parents: 31159
diff changeset
  3794
lemma sorted_nth_mono:
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3795
  "sorted xs \<Longrightarrow> i \<le> j \<Longrightarrow> j < length xs \<Longrightarrow> xs!i \<le> xs!j"
31201
3dde56615750 new lemma
nipkow
parents: 31159
diff changeset
  3796
by (induct xs arbitrary: i j) (auto simp:nth_Cons' sorted_Cons)
3dde56615750 new lemma
nipkow
parents: 31159
diff changeset
  3797
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3798
lemma sorted_rev_nth_mono:
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3799
  "sorted (rev xs) \<Longrightarrow> i \<le> j \<Longrightarrow> j < length xs \<Longrightarrow> xs!j \<le> xs!i"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3800
using sorted_nth_mono[ of "rev xs" "length xs - j - 1" "length xs - i - 1"]
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3801
      rev_nth[of "length xs - i - 1" "xs"] rev_nth[of "length xs - j - 1" "xs"]
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3802
by auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3803
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3804
lemma sorted_nth_monoI:
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3805
  "(\<And> i j. \<lbrakk> i \<le> j ; j < length xs \<rbrakk> \<Longrightarrow> xs ! i \<le> xs ! j) \<Longrightarrow> sorted xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3806
proof (induct xs)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3807
  case (Cons x xs)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3808
  have "sorted xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3809
  proof (rule Cons.hyps)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3810
    fix i j assume "i \<le> j" and "j < length xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3811
    with Cons.prems[of "Suc i" "Suc j"]
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3812
    show "xs ! i \<le> xs ! j" by auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3813
  qed
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3814
  moreover
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3815
  {
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3816
    fix y assume "y \<in> set xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3817
    then obtain j where "j < length xs" and "xs ! j = y"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3818
      unfolding in_set_conv_nth by blast
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3819
    with Cons.prems[of 0 "Suc j"]
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3820
    have "x \<le> y"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3821
      by auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3822
  }
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3823
  ultimately
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3824
  show ?case
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3825
    unfolding sorted_Cons by auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3826
qed simp
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3827
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3828
lemma sorted_equals_nth_mono:
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3829
  "sorted xs = (\<forall>j < length xs. \<forall>i \<le> j. xs ! i \<le> xs ! j)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3830
by (auto intro: sorted_nth_monoI sorted_nth_mono)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3831
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3832
lemma set_insort: "set(insort_key f x xs) = insert x (set xs)"
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3833
by (induct xs) auto
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3834
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3835
lemma set_sort[simp]: "set(sort_key f xs) = set xs"
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3836
by (induct xs) (simp_all add:set_insort)
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3837
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3838
lemma distinct_insort: "distinct (insort_key f x xs) = (x \<notin> set xs \<and> distinct xs)"
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3839
by(induct xs)(auto simp:set_insort)
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3840
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3841
lemma distinct_sort[simp]: "distinct (sort_key f xs) = distinct xs"
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3842
by(induct xs)(simp_all add:distinct_insort set_sort)
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3843
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3844
lemma sorted_insort_key: "sorted (map f (insort_key f x xs)) = sorted (map f xs)"
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3845
  by (induct xs) (auto simp:sorted_Cons set_insort)
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3846
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3847
lemma sorted_insort: "sorted (insort x xs) = sorted xs"
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3848
  using sorted_insort_key [where f="\<lambda>x. x"] by simp
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3849
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3850
theorem sorted_sort_key [simp]: "sorted (map f (sort_key f xs))"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3851
  by (induct xs) (auto simp:sorted_insort_key)
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3852
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3853
theorem sorted_sort [simp]: "sorted (sort xs)"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  3854
  using sorted_sort_key [where f="\<lambda>x. x"] by simp
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3855
36851
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  3856
lemma sorted_butlast:
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  3857
  assumes "xs \<noteq> []" and "sorted xs"
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  3858
  shows "sorted (butlast xs)"
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  3859
proof -
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  3860
  from `xs \<noteq> []` obtain ys y where "xs = ys @ [y]" by (cases xs rule: rev_cases) auto
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  3861
  with `sorted xs` show ?thesis by (simp add: sorted_append)
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  3862
qed
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  3863
  
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  3864
lemma insort_not_Nil [simp]:
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  3865
  "insort_key f a xs \<noteq> []"
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  3866
  by (induct xs) simp_all
5135adb33157 added lemmas concerning last, butlast, insort
haftmann
parents: 36622
diff changeset
  3867
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3868
lemma insort_is_Cons: "\<forall>x\<in>set xs. f a \<le> f x \<Longrightarrow> insort_key f a xs = a # xs"
26143
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3869
by (cases xs) auto
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3870
39534
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3871
lemma sorted_map_remove1:
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3872
  "sorted (map f xs) \<Longrightarrow> sorted (map f (remove1 x xs))"
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3873
  by (induct xs) (auto simp add: sorted_Cons)
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3874
26143
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3875
lemma sorted_remove1: "sorted xs \<Longrightarrow> sorted (remove1 a xs)"
39534
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3876
  using sorted_map_remove1 [of "\<lambda>x. x"] by simp
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3877
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3878
lemma insort_key_remove1:
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3879
  assumes "a \<in> set xs" and "sorted (map f xs)" and "hd (filter (\<lambda>x. f a = f x) xs) = a"
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3880
  shows "insort_key f a (remove1 a xs) = xs"
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3881
using assms proof (induct xs)
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3882
  case (Cons x xs)
39534
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3883
  then show ?case
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3884
  proof (cases "x = a")
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3885
    case False
39534
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3886
    then have "f x \<noteq> f a" using Cons.prems by auto
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3887
    then have "f x < f a" using Cons.prems by (auto simp: sorted_Cons)
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3888
    with `f x \<noteq> f a` show ?thesis using Cons by (auto simp: sorted_Cons insort_is_Cons)
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3889
  qed (auto simp: sorted_Cons insort_is_Cons)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3890
qed simp
26143
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3891
39534
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3892
lemma insort_remove1:
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3893
  assumes "a \<in> set xs" and "sorted xs"
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3894
  shows "insort a (remove1 a xs) = xs"
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3895
proof (rule insort_key_remove1)
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3896
  from `a \<in> set xs` show "a \<in> set xs" .
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3897
  from `sorted xs` show "sorted (map (\<lambda>x. x) xs)" by simp
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3898
  from `a \<in> set xs` have "a \<in> set (filter (op = a) xs)" by auto
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3899
  then have "set (filter (op = a) xs) \<noteq> {}" by auto
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3900
  then have "filter (op = a) xs \<noteq> []" by (auto simp only: set_empty)
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3901
  then have "length (filter (op = a) xs) > 0" by simp
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3902
  then obtain n where n: "Suc n = length (filter (op = a) xs)"
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3903
    by (cases "length (filter (op = a) xs)") simp_all
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3904
  moreover have "replicate (Suc n) a = a # replicate n a"
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3905
    by simp
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3906
  ultimately show "hd (filter (op = a) xs) = a" by (simp add: replicate_length_filter)
c798d4f1b682 generalized lemma insort_remove1 to insort_key_remove1
haftmann
parents: 39302
diff changeset
  3907
qed
26143
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3908
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3909
lemma sorted_remdups[simp]:
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3910
  "sorted l \<Longrightarrow> sorted (remdups l)"
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3911
by (induct l) (auto simp: sorted_Cons)
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3912
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3913
lemma sorted_distinct_set_unique:
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3914
assumes "sorted xs" "distinct xs" "sorted ys" "distinct ys" "set xs = set ys"
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3915
shows "xs = ys"
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3916
proof -
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  3917
  from assms have 1: "length xs = length ys" by (auto dest!: distinct_card)
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3918
  from assms show ?thesis
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3919
  proof(induct rule:list_induct2[OF 1])
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3920
    case 1 show ?case by simp
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3921
  next
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3922
    case 2 thus ?case by (simp add:sorted_Cons)
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3923
       (metis Diff_insert_absorb antisym insertE insert_iff)
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3924
  qed
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3925
qed
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3926
35603
c0db094d0d80 moved lemma map_sorted_distinct_set_unique
haftmann
parents: 35510
diff changeset
  3927
lemma map_sorted_distinct_set_unique:
c0db094d0d80 moved lemma map_sorted_distinct_set_unique
haftmann
parents: 35510
diff changeset
  3928
  assumes "inj_on f (set xs \<union> set ys)"
c0db094d0d80 moved lemma map_sorted_distinct_set_unique
haftmann
parents: 35510
diff changeset
  3929
  assumes "sorted (map f xs)" "distinct (map f xs)"
c0db094d0d80 moved lemma map_sorted_distinct_set_unique
haftmann
parents: 35510
diff changeset
  3930
    "sorted (map f ys)" "distinct (map f ys)"
c0db094d0d80 moved lemma map_sorted_distinct_set_unique
haftmann
parents: 35510
diff changeset
  3931
  assumes "set xs = set ys"
c0db094d0d80 moved lemma map_sorted_distinct_set_unique
haftmann
parents: 35510
diff changeset
  3932
  shows "xs = ys"
c0db094d0d80 moved lemma map_sorted_distinct_set_unique
haftmann
parents: 35510
diff changeset
  3933
proof -
c0db094d0d80 moved lemma map_sorted_distinct_set_unique
haftmann
parents: 35510
diff changeset
  3934
  from assms have "map f xs = map f ys"
c0db094d0d80 moved lemma map_sorted_distinct_set_unique
haftmann
parents: 35510
diff changeset
  3935
    by (simp add: sorted_distinct_set_unique)
c0db094d0d80 moved lemma map_sorted_distinct_set_unique
haftmann
parents: 35510
diff changeset
  3936
  moreover with `inj_on f (set xs \<union> set ys)` show "xs = ys"
c0db094d0d80 moved lemma map_sorted_distinct_set_unique
haftmann
parents: 35510
diff changeset
  3937
    by (blast intro: map_inj_on)
c0db094d0d80 moved lemma map_sorted_distinct_set_unique
haftmann
parents: 35510
diff changeset
  3938
qed
c0db094d0d80 moved lemma map_sorted_distinct_set_unique
haftmann
parents: 35510
diff changeset
  3939
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3940
lemma finite_sorted_distinct_unique:
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3941
shows "finite A \<Longrightarrow> EX! xs. set xs = A & sorted xs & distinct xs"
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3942
apply(drule finite_distinct_list)
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3943
apply clarify
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3944
apply(rule_tac a="sort xs" in ex1I)
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3945
apply (auto simp: sorted_distinct_set_unique)
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3946
done
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3947
39915
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  3948
lemma
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  3949
  assumes "sorted xs"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  3950
  shows sorted_take: "sorted (take n xs)"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  3951
  and sorted_drop: "sorted (drop n xs)"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  3952
proof -
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  3953
  from assms have "sorted (take n xs @ drop n xs)" by simp
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  3954
  then show "sorted (take n xs)" and "sorted (drop n xs)"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  3955
    unfolding sorted_append by simp_all
29626
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3956
qed
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3957
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3958
lemma sorted_dropWhile: "sorted xs \<Longrightarrow> sorted (dropWhile P xs)"
39915
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  3959
  by (auto dest: sorted_drop simp add: dropWhile_eq_drop)
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3960
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  3961
lemma sorted_takeWhile: "sorted xs \<Longrightarrow> sorted (takeWhile P xs)"
39915
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
  3962
  by (subst takeWhile_eq_take) (auto dest: sorted_take)
29626
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3963
34933
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3964
lemma sorted_filter:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3965
  "sorted (map f xs) \<Longrightarrow> sorted (map f (filter P xs))"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3966
  by (induct xs) (simp_all add: sorted_Cons)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3967
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3968
lemma foldr_max_sorted:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3969
  assumes "sorted (rev xs)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3970
  shows "foldr max xs y = (if xs = [] then y else max (xs ! 0) y)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3971
using assms proof (induct xs)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3972
  case (Cons x xs)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3973
  moreover hence "sorted (rev xs)" using sorted_append by auto
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3974
  ultimately show ?case
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3975
    by (cases xs, auto simp add: sorted_append max_def)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3976
qed simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3977
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3978
lemma filter_equals_takeWhile_sorted_rev:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3979
  assumes sorted: "sorted (rev (map f xs))"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3980
  shows "[x \<leftarrow> xs. t < f x] = takeWhile (\<lambda> x. t < f x) xs"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3981
    (is "filter ?P xs = ?tW")
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3982
proof (rule takeWhile_eq_filter[symmetric])
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3983
  let "?dW" = "dropWhile ?P xs"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3984
  fix x assume "x \<in> set ?dW"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3985
  then obtain i where i: "i < length ?dW" and nth_i: "x = ?dW ! i"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3986
    unfolding in_set_conv_nth by auto
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3987
  hence "length ?tW + i < length (?tW @ ?dW)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3988
    unfolding length_append by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3989
  hence i': "length (map f ?tW) + i < length (map f xs)" by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3990
  have "(map f ?tW @ map f ?dW) ! (length (map f ?tW) + i) \<le>
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3991
        (map f ?tW @ map f ?dW) ! (length (map f ?tW) + 0)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3992
    using sorted_rev_nth_mono[OF sorted _ i', of "length ?tW"]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3993
    unfolding map_append[symmetric] by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3994
  hence "f x \<le> f (?dW ! 0)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3995
    unfolding nth_append_length_plus nth_i
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3996
    using i preorder_class.le_less_trans[OF le0 i] by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3997
  also have "... \<le> t"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3998
    using hd_dropWhile[of "?P" xs] le0[THEN preorder_class.le_less_trans, OF i]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  3999
    using hd_conv_nth[of "?dW"] by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4000
  finally show "\<not> t < f x" by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4001
qed
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4002
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4003
lemma insort_insert_key_triv:
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4004
  "f x \<in> f ` set xs \<Longrightarrow> insort_insert_key f x xs = xs"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4005
  by (simp add: insort_insert_key_def)
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4006
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4007
lemma insort_insert_triv:
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4008
  "x \<in> set xs \<Longrightarrow> insort_insert x xs = xs"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4009
  using insort_insert_key_triv [of "\<lambda>x. x"] by simp
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4010
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4011
lemma insort_insert_insort_key:
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4012
  "f x \<notin> f ` set xs \<Longrightarrow> insort_insert_key f x xs = insort_key f x xs"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4013
  by (simp add: insort_insert_key_def)
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4014
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4015
lemma insort_insert_insort:
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4016
  "x \<notin> set xs \<Longrightarrow> insort_insert x xs = insort x xs"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4017
  using insort_insert_insort_key [of "\<lambda>x. x"] by simp
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4018
35608
db4045d1406e added insort_insert
haftmann
parents: 35603
diff changeset
  4019
lemma set_insort_insert:
db4045d1406e added insort_insert
haftmann
parents: 35603
diff changeset
  4020
  "set (insort_insert x xs) = insert x (set xs)"
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4021
  by (auto simp add: insort_insert_key_def set_insort)
35608
db4045d1406e added insort_insert
haftmann
parents: 35603
diff changeset
  4022
db4045d1406e added insort_insert
haftmann
parents: 35603
diff changeset
  4023
lemma distinct_insort_insert:
db4045d1406e added insort_insert
haftmann
parents: 35603
diff changeset
  4024
  assumes "distinct xs"
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4025
  shows "distinct (insort_insert_key f x xs)"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4026
  using assms by (induct xs) (auto simp add: insort_insert_key_def set_insort)
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4027
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4028
lemma sorted_insort_insert_key:
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4029
  assumes "sorted (map f xs)"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4030
  shows "sorted (map f (insort_insert_key f x xs))"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4031
  using assms by (simp add: insort_insert_key_def sorted_insort_key)
35608
db4045d1406e added insort_insert
haftmann
parents: 35603
diff changeset
  4032
db4045d1406e added insort_insert
haftmann
parents: 35603
diff changeset
  4033
lemma sorted_insort_insert:
db4045d1406e added insort_insert
haftmann
parents: 35603
diff changeset
  4034
  assumes "sorted xs"
db4045d1406e added insort_insert
haftmann
parents: 35603
diff changeset
  4035
  shows "sorted (insort_insert x xs)"
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4036
  using assms sorted_insort_insert_key [of "\<lambda>x. x"] by simp
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4037
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4038
lemma filter_insort_triv:
37107
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4039
  "\<not> P x \<Longrightarrow> filter P (insort_key f x xs) = filter P xs"
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4040
  by (induct xs) simp_all
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4041
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4042
lemma filter_insort:
37107
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4043
  "sorted (map f xs) \<Longrightarrow> P x \<Longrightarrow> filter P (insort_key f x xs) = insort_key f x (filter P xs)"
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4044
  using assms by (induct xs)
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4045
    (auto simp add: sorted_Cons, subst insort_is_Cons, auto)
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4046
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4047
lemma filter_sort:
37107
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4048
  "filter P (sort_key f xs) = sort_key f (filter P xs)"
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  4049
  by (induct xs) (simp_all add: filter_insort_triv filter_insort)
37107
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4050
40304
62bdd1bfcd90 lemmas sorted_map_same, sorted_same
haftmann
parents: 40230
diff changeset
  4051
lemma sorted_map_same:
62bdd1bfcd90 lemmas sorted_map_same, sorted_same
haftmann
parents: 40230
diff changeset
  4052
  "sorted (map f [x\<leftarrow>xs. f x = g xs])"
62bdd1bfcd90 lemmas sorted_map_same, sorted_same
haftmann
parents: 40230
diff changeset
  4053
proof (induct xs arbitrary: g)
37107
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4054
  case Nil then show ?case by simp
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4055
next
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4056
  case (Cons x xs)
40304
62bdd1bfcd90 lemmas sorted_map_same, sorted_same
haftmann
parents: 40230
diff changeset
  4057
  then have "sorted (map f [y\<leftarrow>xs . f y = (\<lambda>xs. f x) xs])" .
62bdd1bfcd90 lemmas sorted_map_same, sorted_same
haftmann
parents: 40230
diff changeset
  4058
  moreover from Cons have "sorted (map f [y\<leftarrow>xs . f y = (g \<circ> Cons x) xs])" .
37107
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4059
  ultimately show ?case by (simp_all add: sorted_Cons)
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4060
qed
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4061
40304
62bdd1bfcd90 lemmas sorted_map_same, sorted_same
haftmann
parents: 40230
diff changeset
  4062
lemma sorted_same:
62bdd1bfcd90 lemmas sorted_map_same, sorted_same
haftmann
parents: 40230
diff changeset
  4063
  "sorted [x\<leftarrow>xs. x = g xs]"
62bdd1bfcd90 lemmas sorted_map_same, sorted_same
haftmann
parents: 40230
diff changeset
  4064
  using sorted_map_same [of "\<lambda>x. x"] by simp
62bdd1bfcd90 lemmas sorted_map_same, sorted_same
haftmann
parents: 40230
diff changeset
  4065
37107
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4066
lemma remove1_insort [simp]:
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4067
  "remove1 x (insort x xs) = xs"
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4068
  by (induct xs) simp_all
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4069
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  4070
end
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  4071
25277
95128fcdd7e8 added lemmas
nipkow
parents: 25221
diff changeset
  4072
lemma sorted_upt[simp]: "sorted[i..<j]"
95128fcdd7e8 added lemmas
nipkow
parents: 25221
diff changeset
  4073
by (induct j) (simp_all add:sorted_append)
95128fcdd7e8 added lemmas
nipkow
parents: 25221
diff changeset
  4074
32415
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  4075
lemma sorted_upto[simp]: "sorted[i..j]"
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  4076
apply(induct i j rule:upto.induct)
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  4077
apply(subst upto.simps)
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  4078
apply(simp add:sorted_Cons)
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  4079
done
1dddf2f64266 got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
nipkow
parents: 32078
diff changeset
  4080
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  4081
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  4082
subsubsection {* @{const transpose} on sorted lists *}
34933
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4083
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4084
lemma sorted_transpose[simp]:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4085
  shows "sorted (rev (map length (transpose xs)))"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4086
  by (auto simp: sorted_equals_nth_mono rev_nth nth_transpose
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4087
    length_filter_conv_card intro: card_mono)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4088
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4089
lemma transpose_max_length:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4090
  "foldr (\<lambda>xs. max (length xs)) (transpose xs) 0 = length [x \<leftarrow> xs. x \<noteq> []]"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4091
  (is "?L = ?R")
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4092
proof (cases "transpose xs = []")
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4093
  case False
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4094
  have "?L = foldr max (map length (transpose xs)) 0"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4095
    by (simp add: foldr_map comp_def)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4096
  also have "... = length (transpose xs ! 0)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4097
    using False sorted_transpose by (simp add: foldr_max_sorted)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4098
  finally show ?thesis
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4099
    using False by (simp add: nth_transpose)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4100
next
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4101
  case True
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4102
  hence "[x \<leftarrow> xs. x \<noteq> []] = []"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4103
    by (auto intro!: filter_False simp: transpose_empty)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4104
  thus ?thesis by (simp add: transpose_empty True)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4105
qed
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4106
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4107
lemma length_transpose_sorted:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4108
  fixes xs :: "'a list list"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4109
  assumes sorted: "sorted (rev (map length xs))"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4110
  shows "length (transpose xs) = (if xs = [] then 0 else length (xs ! 0))"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4111
proof (cases "xs = []")
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4112
  case False
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4113
  thus ?thesis
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4114
    using foldr_max_sorted[OF sorted] False
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4115
    unfolding length_transpose foldr_map comp_def
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4116
    by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4117
qed simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4118
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4119
lemma nth_nth_transpose_sorted[simp]:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4120
  fixes xs :: "'a list list"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4121
  assumes sorted: "sorted (rev (map length xs))"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4122
  and i: "i < length (transpose xs)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4123
  and j: "j < length [ys \<leftarrow> xs. i < length ys]"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4124
  shows "transpose xs ! i ! j = xs ! j  ! i"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4125
  using j filter_equals_takeWhile_sorted_rev[OF sorted, of i]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4126
    nth_transpose[OF i] nth_map[OF j]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4127
  by (simp add: takeWhile_nth)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4128
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4129
lemma transpose_column_length:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4130
  fixes xs :: "'a list list"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4131
  assumes sorted: "sorted (rev (map length xs))" and "i < length xs"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4132
  shows "length (filter (\<lambda>ys. i < length ys) (transpose xs)) = length (xs ! i)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4133
proof -
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4134
  have "xs \<noteq> []" using `i < length xs` by auto
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4135
  note filter_equals_takeWhile_sorted_rev[OF sorted, simp]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4136
  { fix j assume "j \<le> i"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4137
    note sorted_rev_nth_mono[OF sorted, of j i, simplified, OF this `i < length xs`]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4138
  } note sortedE = this[consumes 1]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4139
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4140
  have "{j. j < length (transpose xs) \<and> i < length (transpose xs ! j)}
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4141
    = {..< length (xs ! i)}"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4142
  proof safe
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4143
    fix j
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4144
    assume "j < length (transpose xs)" and "i < length (transpose xs ! j)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4145
    with this(2) nth_transpose[OF this(1)]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4146
    have "i < length (takeWhile (\<lambda>ys. j < length ys) xs)" by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4147
    from nth_mem[OF this] takeWhile_nth[OF this]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4148
    show "j < length (xs ! i)" by (auto dest: set_takeWhileD)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4149
  next
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4150
    fix j assume "j < length (xs ! i)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4151
    thus "j < length (transpose xs)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4152
      using foldr_max_sorted[OF sorted] `xs \<noteq> []` sortedE[OF le0]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4153
      by (auto simp: length_transpose comp_def foldr_map)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4154
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4155
    have "Suc i \<le> length (takeWhile (\<lambda>ys. j < length ys) xs)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4156
      using `i < length xs` `j < length (xs ! i)` less_Suc_eq_le
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4157
      by (auto intro!: length_takeWhile_less_P_nth dest!: sortedE)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4158
    with nth_transpose[OF `j < length (transpose xs)`]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4159
    show "i < length (transpose xs ! j)" by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4160
  qed
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4161
  thus ?thesis by (simp add: length_filter_conv_card)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4162
qed
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4163
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4164
lemma transpose_column:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4165
  fixes xs :: "'a list list"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4166
  assumes sorted: "sorted (rev (map length xs))" and "i < length xs"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4167
  shows "map (\<lambda>ys. ys ! i) (filter (\<lambda>ys. i < length ys) (transpose xs))
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4168
    = xs ! i" (is "?R = _")
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4169
proof (rule nth_equalityI, safe)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4170
  show length: "length ?R = length (xs ! i)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4171
    using transpose_column_length[OF assms] by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4172
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4173
  fix j assume j: "j < length ?R"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4174
  note * = less_le_trans[OF this, unfolded length_map, OF length_filter_le]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4175
  from j have j_less: "j < length (xs ! i)" using length by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4176
  have i_less_tW: "Suc i \<le> length (takeWhile (\<lambda>ys. Suc j \<le> length ys) xs)"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4177
  proof (rule length_takeWhile_less_P_nth)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4178
    show "Suc i \<le> length xs" using `i < length xs` by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4179
    fix k assume "k < Suc i"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4180
    hence "k \<le> i" by auto
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4181
    with sorted_rev_nth_mono[OF sorted this] `i < length xs`
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4182
    have "length (xs ! i) \<le> length (xs ! k)" by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4183
    thus "Suc j \<le> length (xs ! k)" using j_less by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4184
  qed
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4185
  have i_less_filter: "i < length [ys\<leftarrow>xs . j < length ys]"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4186
    unfolding filter_equals_takeWhile_sorted_rev[OF sorted, of j]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4187
    using i_less_tW by (simp_all add: Suc_le_eq)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4188
  from j show "?R ! j = xs ! i ! j"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4189
    unfolding filter_equals_takeWhile_sorted_rev[OF sorted_transpose, of i]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4190
    by (simp add: takeWhile_nth nth_nth_transpose_sorted[OF sorted * i_less_filter])
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4191
qed
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4192
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4193
lemma transpose_transpose:
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4194
  fixes xs :: "'a list list"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4195
  assumes sorted: "sorted (rev (map length xs))"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4196
  shows "transpose (transpose xs) = takeWhile (\<lambda>x. x \<noteq> []) xs" (is "?L = ?R")
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4197
proof -
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4198
  have len: "length ?L = length ?R"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4199
    unfolding length_transpose transpose_max_length
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4200
    using filter_equals_takeWhile_sorted_rev[OF sorted, of 0]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4201
    by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4202
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4203
  { fix i assume "i < length ?R"
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4204
    with less_le_trans[OF _ length_takeWhile_le[of _ xs]]
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4205
    have "i < length xs" by simp
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4206
  } note * = this
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4207
  show ?thesis
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4208
    by (rule nth_equalityI)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4209
       (simp_all add: len nth_transpose transpose_column[OF sorted] * takeWhile_nth)
0652d00305be Add transpose to the List-theory.
hoelzl
parents: 34917
diff changeset
  4210
qed
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  4211
34934
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4212
theorem transpose_rectangle:
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4213
  assumes "xs = [] \<Longrightarrow> n = 0"
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4214
  assumes rect: "\<And> i. i < length xs \<Longrightarrow> length (xs ! i) = n"
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4215
  shows "transpose xs = map (\<lambda> i. map (\<lambda> j. xs ! j ! i) [0..<length xs]) [0..<n]"
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4216
    (is "?trans = ?map")
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4217
proof (rule nth_equalityI)
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4218
  have "sorted (rev (map length xs))"
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4219
    by (auto simp: rev_nth rect intro!: sorted_nth_monoI)
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4220
  from foldr_max_sorted[OF this] assms
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4221
  show len: "length ?trans = length ?map"
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4222
    by (simp_all add: length_transpose foldr_map comp_def)
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4223
  moreover
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4224
  { fix i assume "i < n" hence "[ys\<leftarrow>xs . i < length ys] = xs"
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4225
      using rect by (auto simp: in_set_conv_nth intro!: filter_True) }
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4226
  ultimately show "\<forall>i < length ?trans. ?trans ! i = ?map ! i"
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4227
    by (auto simp: nth_transpose intro: nth_equalityI)
440605046777 Added transpose_rectangle, when the input list is rectangular.
hoelzl
parents: 34933
diff changeset
  4228
qed
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  4229
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  4230
25069
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  4231
subsubsection {* @{text sorted_list_of_set} *}
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  4232
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  4233
text{* This function maps (finite) linearly ordered sets to sorted
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  4234
lists. Warning: in most cases it is not a good idea to convert from
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  4235
sets to lists but one should convert in the other direction (via
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  4236
@{const set}). *}
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  4237
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  4238
context linorder
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  4239
begin
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  4240
35195
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4241
definition sorted_list_of_set :: "'a set \<Rightarrow> 'a list" where
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4242
  "sorted_list_of_set = Finite_Set.fold insort []"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4243
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4244
lemma sorted_list_of_set_empty [simp]:
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4245
  "sorted_list_of_set {} = []"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4246
  by (simp add: sorted_list_of_set_def)
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4247
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4248
lemma sorted_list_of_set_insert [simp]:
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4249
  assumes "finite A"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4250
  shows "sorted_list_of_set (insert x A) = insort x (sorted_list_of_set (A - {x}))"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4251
proof -
42871
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42809
diff changeset
  4252
  interpret comp_fun_commute insort by (fact comp_fun_commute_insort)
35195
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4253
  with assms show ?thesis by (simp add: sorted_list_of_set_def fold_insert_remove)
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4254
qed
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4255
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4256
lemma sorted_list_of_set [simp]:
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4257
  "finite A \<Longrightarrow> set (sorted_list_of_set A) = A \<and> sorted (sorted_list_of_set A) 
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4258
    \<and> distinct (sorted_list_of_set A)"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4259
  by (induct A rule: finite_induct) (simp_all add: set_insort sorted_insort distinct_insort)
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4260
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4261
lemma sorted_list_of_set_sort_remdups:
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4262
  "sorted_list_of_set (set xs) = sort (remdups xs)"
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4263
proof -
42871
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42809
diff changeset
  4264
  interpret comp_fun_commute insort by (fact comp_fun_commute_insort)
35195
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4265
  show ?thesis by (simp add: sort_foldl_insort sorted_list_of_set_def fold_set_remdups)
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
  4266
qed
25069
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  4267
37107
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4268
lemma sorted_list_of_set_remove:
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4269
  assumes "finite A"
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4270
  shows "sorted_list_of_set (A - {x}) = remove1 x (sorted_list_of_set A)"
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4271
proof (cases "x \<in> A")
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4272
  case False with assms have "x \<notin> set (sorted_list_of_set A)" by simp
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4273
  with False show ?thesis by (simp add: remove1_idem)
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4274
next
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4275
  case True then obtain B where A: "A = insert x B" by (rule Set.set_insert)
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4276
  with assms show ?thesis by simp
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4277
qed
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4278
25069
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  4279
end
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  4280
37107
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4281
lemma sorted_list_of_set_range [simp]:
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4282
  "sorted_list_of_set {m..<n} = [m..<n]"
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4283
  by (rule sorted_distinct_set_unique) simp_all
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4284
1535aa1c943a more lemmas
haftmann
parents: 37020
diff changeset
  4285
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  4286
subsubsection {* @{text lists}: the list-forming operator over sets *}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4287
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4288
inductive_set
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4289
  lists :: "'a set => 'a list set"
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4290
  for A :: "'a set"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4291
where
39613
7723505c746a more lists lemmas
nipkow
parents: 39597
diff changeset
  4292
    Nil [intro!, simp]: "[]: lists A"
7723505c746a more lists lemmas
nipkow
parents: 39597
diff changeset
  4293
  | Cons [intro!, simp, no_atp]: "[| a: A; l: lists A|] ==> a#l : lists A"
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35827
diff changeset
  4294
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35827
diff changeset
  4295
inductive_cases listsE [elim!,no_atp]: "x#l : lists A"
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35827
diff changeset
  4296
inductive_cases listspE [elim!,no_atp]: "listsp A (x # l)"
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4297
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4298
lemma listsp_mono [mono]: "A \<le> B ==> listsp A \<le> listsp B"
34064
eee04bbbae7e avoid dependency on implicit dest rule predicate1D in proofs
haftmann
parents: 34007
diff changeset
  4299
by (rule predicate1I, erule listsp.induct, (blast dest: predicate1D)+)
26795
a27607030a1c - Explicitely applied predicate1I in a few proofs, because it is no longer
berghofe
parents: 26771
diff changeset
  4300
a27607030a1c - Explicitely applied predicate1I in a few proofs, because it is no longer
berghofe
parents: 26771
diff changeset
  4301
lemmas lists_mono = listsp_mono [to_set pred_subset_eq]
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4302
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  4303
lemma listsp_infI:
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  4304
  assumes l: "listsp A l" shows "listsp B l ==> listsp (inf A B) l" using l
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4305
by induct blast+
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4306
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  4307
lemmas lists_IntI = listsp_infI [to_set]
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  4308
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  4309
lemma listsp_inf_eq [simp]: "listsp (inf A B) = inf (listsp A) (listsp B)"
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  4310
proof (rule mono_inf [where f=listsp, THEN order_antisym])
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4311
  show "mono listsp" by (simp add: mono_def listsp_mono)
26795
a27607030a1c - Explicitely applied predicate1I in a few proofs, because it is no longer
berghofe
parents: 26771
diff changeset
  4312
  show "inf (listsp A) (listsp B) \<le> listsp (inf A B)" by (blast intro!: listsp_infI predicate1I)
14388
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  4313
qed
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  4314
41075
4bed56dc95fb primitive definitions of bot/top/inf/sup for bool and fun are named with canonical suffix `_def` rather than `_eq`
haftmann
parents: 40968
diff changeset
  4315
lemmas listsp_conj_eq [simp] = listsp_inf_eq [simplified inf_fun_def inf_bool_def]
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  4316
26795
a27607030a1c - Explicitely applied predicate1I in a few proofs, because it is no longer
berghofe
parents: 26771
diff changeset
  4317
lemmas lists_Int_eq [simp] = listsp_inf_eq [to_set pred_equals_eq]
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4318
39613
7723505c746a more lists lemmas
nipkow
parents: 39597
diff changeset
  4319
lemma Cons_in_lists_iff[simp]: "x#xs : lists A \<longleftrightarrow> x:A \<and> xs : lists A"
7723505c746a more lists lemmas
nipkow
parents: 39597
diff changeset
  4320
by auto
7723505c746a more lists lemmas
nipkow
parents: 39597
diff changeset
  4321
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4322
lemma append_in_listsp_conv [iff]:
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4323
     "(listsp A (xs @ ys)) = (listsp A xs \<and> listsp A ys)"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4324
by (induct xs) auto
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4325
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4326
lemmas append_in_lists_conv [iff] = append_in_listsp_conv [to_set]
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4327
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4328
lemma in_listsp_conv_set: "(listsp A xs) = (\<forall>x \<in> set xs. A x)"
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4329
-- {* eliminate @{text listsp} in favour of @{text set} *}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4330
by (induct xs) auto
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4331
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4332
lemmas in_lists_conv_set = in_listsp_conv_set [to_set]
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4333
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35827
diff changeset
  4334
lemma in_listspD [dest!,no_atp]: "listsp A xs ==> \<forall>x\<in>set xs. A x"
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4335
by (rule in_listsp_conv_set [THEN iffD1])
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4336
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35827
diff changeset
  4337
lemmas in_listsD [dest!,no_atp] = in_listspD [to_set]
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35827
diff changeset
  4338
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35827
diff changeset
  4339
lemma in_listspI [intro!,no_atp]: "\<forall>x\<in>set xs. A x ==> listsp A xs"
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4340
by (rule in_listsp_conv_set [THEN iffD2])
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4341
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35827
diff changeset
  4342
lemmas in_listsI [intro!,no_atp] = in_listspI [to_set]
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4343
39597
48f63a6c7f85 new lemma
nipkow
parents: 39534
diff changeset
  4344
lemma lists_eq_set: "lists A = {xs. set xs <= A}"
48f63a6c7f85 new lemma
nipkow
parents: 39534
diff changeset
  4345
by auto
48f63a6c7f85 new lemma
nipkow
parents: 39534
diff changeset
  4346
39613
7723505c746a more lists lemmas
nipkow
parents: 39597
diff changeset
  4347
lemma lists_empty [simp]: "lists {} = {[]}"
7723505c746a more lists lemmas
nipkow
parents: 39597
diff changeset
  4348
by auto
7723505c746a more lists lemmas
nipkow
parents: 39597
diff changeset
  4349
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4350
lemma lists_UNIV [simp]: "lists UNIV = UNIV"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4351
by auto
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4352
17086
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  4353
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  4354
subsubsection {* Inductive definition for membership *}
17086
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  4355
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4356
inductive ListMem :: "'a \<Rightarrow> 'a list \<Rightarrow> bool"
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4357
where
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4358
    elem:  "ListMem x (x # xs)"
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4359
  | insert:  "ListMem x xs \<Longrightarrow> ListMem x (y # xs)"
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4360
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4361
lemma ListMem_iff: "(ListMem x xs) = (x \<in> set xs)"
17086
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  4362
apply (rule iffI)
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  4363
 apply (induct set: ListMem)
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  4364
  apply auto
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  4365
apply (induct xs)
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  4366
 apply (auto intro: ListMem.intros)
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  4367
done
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  4368
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  4369
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  4370
subsubsection {* Lists as Cartesian products *}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4371
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4372
text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4373
@{term A} and tail drawn from @{term Xs}.*}
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4374
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4375
definition
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4376
  set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set" where
37767
a2b7a20d6ea3 dropped superfluous [code del]s
haftmann
parents: 37605
diff changeset
  4377
  "set_Cons A XS = {z. \<exists>x xs. z = x # xs \<and> x \<in> A \<and> xs \<in> XS}"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4378
17724
e969fc0a4925 simprules need names
paulson
parents: 17629
diff changeset
  4379
lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4380
by (auto simp add: set_Cons_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4381
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4382
text{*Yields the set of lists, all of the same length as the argument and
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4383
with elements drawn from the corresponding element of the argument.*}
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4384
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4385
primrec
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4386
  listset :: "'a set list \<Rightarrow> 'a list set" where
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4387
     "listset [] = {[]}"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4388
  |  "listset (A # As) = set_Cons A (listset As)"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4389
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4390
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
  4391
subsection {* Relations on Lists *}
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4392
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4393
subsubsection {* Length Lexicographic Ordering *}
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4394
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4395
text{*These orderings preserve well-foundedness: shorter lists 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4396
  precede longer lists. These ordering are not used in dictionaries.*}
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4397
        
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4398
primrec -- {*The lexicographic ordering for lists of the specified length*}
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4399
  lexn :: "('a \<times> 'a) set \<Rightarrow> nat \<Rightarrow> ('a list \<times> 'a list) set" where
37767
a2b7a20d6ea3 dropped superfluous [code del]s
haftmann
parents: 37605
diff changeset
  4400
    "lexn r 0 = {}"
40608
6c28ab8b8166 mapper for list type; map_pair replaces prod_fun
haftmann
parents: 40593
diff changeset
  4401
  | "lexn r (Suc n) = (map_pair (%(x, xs). x#xs) (%(x, xs). x#xs) ` (r <*lex*> lexn r n)) Int
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4402
      {(xs, ys). length xs = Suc n \<and> length ys = Suc n}"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4403
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4404
definition
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4405
  lex :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where
37767
a2b7a20d6ea3 dropped superfluous [code del]s
haftmann
parents: 37605
diff changeset
  4406
  "lex r = (\<Union>n. lexn r n)" -- {*Holds only between lists of the same length*}
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4407
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4408
definition
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4409
  lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set" where
37767
a2b7a20d6ea3 dropped superfluous [code del]s
haftmann
parents: 37605
diff changeset
  4410
  "lenlex r = inv_image (less_than <*lex*> lex r) (\<lambda>xs. (length xs, xs))"
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4411
        -- {*Compares lists by their length and then lexicographically*}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4412
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4413
lemma wf_lexn: "wf r ==> wf (lexn r n)"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4414
apply (induct n, simp, simp)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4415
apply(rule wf_subset)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4416
 prefer 2 apply (rule Int_lower1)
40608
6c28ab8b8166 mapper for list type; map_pair replaces prod_fun
haftmann
parents: 40593
diff changeset
  4417
apply(rule wf_map_pair_image)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4418
 prefer 2 apply (rule inj_onI, auto)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4419
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4420
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4421
lemma lexn_length:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  4422
  "(xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  4423
by (induct n arbitrary: xs ys) auto
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4424
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4425
lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4426
apply (unfold lex_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4427
apply (rule wf_UN)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4428
apply (blast intro: wf_lexn, clarify)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4429
apply (rename_tac m n)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4430
apply (subgoal_tac "m \<noteq> n")
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4431
 prefer 2 apply blast
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4432
apply (blast dest: lexn_length not_sym)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4433
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4434
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4435
lemma lexn_conv:
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4436
  "lexn r n =
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4437
    {(xs,ys). length xs = n \<and> length ys = n \<and>
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4438
    (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  4439
apply (induct n, simp)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4440
apply (simp add: image_Collect lex_prod_def, safe, blast)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4441
 apply (rule_tac x = "ab # xys" in exI, simp)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4442
apply (case_tac xys, simp_all, blast)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4443
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4444
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4445
lemma lex_conv:
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4446
  "lex r =
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4447
    {(xs,ys). length xs = length ys \<and>
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4448
    (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4449
by (force simp add: lex_def lexn_conv)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4450
15693
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15656
diff changeset
  4451
lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)"
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15656
diff changeset
  4452
by (unfold lenlex_def) blast
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15656
diff changeset
  4453
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15656
diff changeset
  4454
lemma lenlex_conv:
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15656
diff changeset
  4455
    "lenlex r = {(xs,ys). length xs < length ys |
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4456
                 length xs = length ys \<and> (xs, ys) : lex r}"
30198
922f944f03b2 name changes
nipkow
parents: 30128
diff changeset
  4457
by (simp add: lenlex_def Id_on_def lex_prod_def inv_image_def)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4458
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4459
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4460
by (simp add: lex_conv)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4461
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4462
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4463
by (simp add:lex_conv)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4464
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
  4465
lemma Cons_in_lex [simp]:
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4466
    "((x # xs, y # ys) : lex r) =
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4467
      ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4468
apply (simp add: lex_conv)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4469
apply (rule iffI)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4470
 prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4471
apply (case_tac xys, simp, simp)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4472
apply blast
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4473
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4474
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4475
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4476
subsubsection {* Lexicographic Ordering *}
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4477
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4478
text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4479
    This ordering does \emph{not} preserve well-foundedness.
17090
603f23d71ada small mods to code lemmas
nipkow
parents: 17086
diff changeset
  4480
     Author: N. Voelker, March 2005. *} 
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4481
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4482
definition
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
  4483
  lexord :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where
37767
a2b7a20d6ea3 dropped superfluous [code del]s
haftmann
parents: 37605
diff changeset
  4484
  "lexord r = {(x,y ). \<exists> a v. y = x @ a # v \<or>
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4485
            (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4486
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4487
lemma lexord_Nil_left[simp]:  "([],y) \<in> lexord r = (\<exists> a x. y = a # x)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4488
by (unfold lexord_def, induct_tac y, auto) 
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4489
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4490
lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4491
by (unfold lexord_def, induct_tac x, auto)
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4492
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4493
lemma lexord_cons_cons[simp]:
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4494
     "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4495
  apply (unfold lexord_def, safe, simp_all)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4496
  apply (case_tac u, simp, simp)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4497
  apply (case_tac u, simp, clarsimp, blast, blast, clarsimp)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4498
  apply (erule_tac x="b # u" in allE)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4499
  by force
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4500
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4501
lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4502
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4503
lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4504
by (induct_tac x, auto)  
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4505
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4506
lemma lexord_append_left_rightI:
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4507
     "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4508
by (induct_tac u, auto)
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4509
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4510
lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4511
by (induct x, auto)
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4512
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4513
lemma lexord_append_leftD:
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4514
     "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4515
by (erule rev_mp, induct_tac x, auto)
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4516
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4517
lemma lexord_take_index_conv: 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4518
   "((x,y) : lexord r) = 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4519
    ((length x < length y \<and> take (length x) y = x) \<or> 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4520
     (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4521
  apply (unfold lexord_def Let_def, clarsimp) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4522
  apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4523
  apply auto 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4524
  apply (rule_tac x="hd (drop (length x) y)" in exI)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4525
  apply (rule_tac x="tl (drop (length x) y)" in exI)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4526
  apply (erule subst, simp add: min_def) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4527
  apply (rule_tac x ="length u" in exI, simp) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4528
  apply (rule_tac x ="take i x" in exI) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4529
  apply (rule_tac x ="x ! i" in exI) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4530
  apply (rule_tac x ="y ! i" in exI, safe) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4531
  apply (rule_tac x="drop (Suc i) x" in exI)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4532
  apply (drule sym, simp add: drop_Suc_conv_tl) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4533
  apply (rule_tac x="drop (Suc i) y" in exI)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4534
  by (simp add: drop_Suc_conv_tl) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4535
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4536
-- {* lexord is extension of partial ordering List.lex *} 
41986
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4537
lemma lexord_lex: "(x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)"
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4538
  apply (rule_tac x = y in spec) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4539
  apply (induct_tac x, clarsimp) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4540
  by (clarify, case_tac x, simp, force)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4541
41986
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4542
lemma lexord_irreflexive: "ALL x. (x,x) \<notin> r \<Longrightarrow> (xs,xs) \<notin> lexord r"
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4543
by (induct xs) auto
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4544
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4545
text{* By Ren\'e Thiemann: *}
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4546
lemma lexord_partial_trans: 
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4547
  "(\<And>x y z. x \<in> set xs \<Longrightarrow> (x,y) \<in> r \<Longrightarrow> (y,z) \<in> r \<Longrightarrow> (x,z) \<in> r)
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4548
   \<Longrightarrow>  (xs,ys) \<in> lexord r  \<Longrightarrow>  (ys,zs) \<in> lexord r \<Longrightarrow>  (xs,zs) \<in> lexord r"
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4549
proof (induct xs arbitrary: ys zs)
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4550
  case Nil
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4551
  from Nil(3) show ?case unfolding lexord_def by (cases zs, auto)
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4552
next
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4553
  case (Cons x xs yys zzs)
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4554
  from Cons(3) obtain y ys where yys: "yys = y # ys" unfolding lexord_def
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4555
    by (cases yys, auto)
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4556
  note Cons = Cons[unfolded yys]
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4557
  from Cons(3) have one: "(x,y) \<in> r \<or> x = y \<and> (xs,ys) \<in> lexord r" by auto
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4558
  from Cons(4) obtain z zs where zzs: "zzs = z # zs" unfolding lexord_def
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4559
    by (cases zzs, auto)
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4560
  note Cons = Cons[unfolded zzs]
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4561
  from Cons(4) have two: "(y,z) \<in> r \<or> y = z \<and> (ys,zs) \<in> lexord r" by auto
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4562
  {
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4563
    assume "(xs,ys) \<in> lexord r" and "(ys,zs) \<in> lexord r"
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4564
    from Cons(1)[OF _ this] Cons(2)
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4565
    have "(xs,zs) \<in> lexord r" by auto
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4566
  } note ind1 = this
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4567
  {
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4568
    assume "(x,y) \<in> r" and "(y,z) \<in> r"
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4569
    from Cons(2)[OF _ this] have "(x,z) \<in> r" by auto
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4570
  } note ind2 = this
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4571
  from one two ind1 ind2
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4572
  have "(x,z) \<in> r \<or> x = z \<and> (xs,zs) \<in> lexord r" by blast
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4573
  thus ?case unfolding zzs by auto
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4574
qed
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4575
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4576
lemma lexord_trans: 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4577
    "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r"
41986
95a67e3f29ad added lemma
nipkow
parents: 41842
diff changeset
  4578
by(auto simp: trans_def intro:lexord_partial_trans)
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4579
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4580
lemma lexord_transI:  "trans r \<Longrightarrow> trans (lexord r)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4581
by (rule transI, drule lexord_trans, blast) 
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4582
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4583
lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4584
  apply (rule_tac x = y in spec) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4585
  apply (induct_tac x, rule allI) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4586
  apply (case_tac x, simp, simp) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4587
  apply (rule allI, case_tac x, simp, simp) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4588
  by blast
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4589
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  4590
40230
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4591
subsubsection {* Lexicographic combination of measure functions *}
21103
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4592
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4593
text {* These are useful for termination proofs *}
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4594
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4595
definition
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4596
  "measures fs = inv_image (lex less_than) (%a. map (%f. f a) fs)"
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4597
21106
51599a81b308 Added "recdef_wf" and "simp" attribute to "wf_measures"
krauss
parents: 21103
diff changeset
  4598
lemma wf_measures[recdef_wf, simp]: "wf (measures fs)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4599
unfolding measures_def
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4600
by blast
21103
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4601
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4602
lemma in_measures[simp]: 
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4603
  "(x, y) \<in> measures [] = False"
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4604
  "(x, y) \<in> measures (f # fs)
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4605
         = (f x < f y \<or> (f x = f y \<and> (x, y) \<in> measures fs))"  
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4606
unfolding measures_def
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4607
by auto
21103
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4608
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4609
lemma measures_less: "f x < f y ==> (x, y) \<in> measures (f#fs)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4610
by simp
21103
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4611
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4612
lemma measures_lesseq: "f x <= f y ==> (x, y) \<in> measures fs ==> (x, y) \<in> measures (f#fs)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  4613
by auto
21103
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4614
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  4615
40230
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4616
subsubsection {* Lifting Relations to Lists: one element *}
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4617
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4618
definition listrel1 :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4619
"listrel1 r = {(xs,ys).
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4620
   \<exists>us z z' vs. xs = us @ z # vs \<and> (z,z') \<in> r \<and> ys = us @ z' # vs}"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4621
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4622
lemma listrel1I:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4623
  "\<lbrakk> (x, y) \<in> r;  xs = us @ x # vs;  ys = us @ y # vs \<rbrakk> \<Longrightarrow>
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4624
  (xs, ys) \<in> listrel1 r"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4625
unfolding listrel1_def by auto
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4626
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4627
lemma listrel1E:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4628
  "\<lbrakk> (xs, ys) \<in> listrel1 r;
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4629
     !!x y us vs. \<lbrakk> (x, y) \<in> r;  xs = us @ x # vs;  ys = us @ y # vs \<rbrakk> \<Longrightarrow> P
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4630
   \<rbrakk> \<Longrightarrow> P"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4631
unfolding listrel1_def by auto
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4632
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4633
lemma not_Nil_listrel1 [iff]: "([], xs) \<notin> listrel1 r"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4634
unfolding listrel1_def by blast
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4635
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4636
lemma not_listrel1_Nil [iff]: "(xs, []) \<notin> listrel1 r"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4637
unfolding listrel1_def by blast
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4638
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4639
lemma Cons_listrel1_Cons [iff]:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4640
  "(x # xs, y # ys) \<in> listrel1 r \<longleftrightarrow>
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4641
   (x,y) \<in> r \<and> xs = ys \<or> x = y \<and> (xs, ys) \<in> listrel1 r"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4642
by (simp add: listrel1_def Cons_eq_append_conv) (blast)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4643
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4644
lemma listrel1I1: "(x,y) \<in> r \<Longrightarrow> (x # xs, y # xs) \<in> listrel1 r"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4645
by (metis Cons_listrel1_Cons)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4646
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4647
lemma listrel1I2: "(xs, ys) \<in> listrel1 r \<Longrightarrow> (x # xs, x # ys) \<in> listrel1 r"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4648
by (metis Cons_listrel1_Cons)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4649
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4650
lemma append_listrel1I:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4651
  "(xs, ys) \<in> listrel1 r \<and> us = vs \<or> xs = ys \<and> (us, vs) \<in> listrel1 r
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4652
    \<Longrightarrow> (xs @ us, ys @ vs) \<in> listrel1 r"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4653
unfolding listrel1_def
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4654
by auto (blast intro: append_eq_appendI)+
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4655
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4656
lemma Cons_listrel1E1[elim!]:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4657
  assumes "(x # xs, ys) \<in> listrel1 r"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4658
    and "\<And>y. ys = y # xs \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> R"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4659
    and "\<And>zs. ys = x # zs \<Longrightarrow> (xs, zs) \<in> listrel1 r \<Longrightarrow> R"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4660
  shows R
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4661
using assms by (cases ys) blast+
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4662
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4663
lemma Cons_listrel1E2[elim!]:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4664
  assumes "(xs, y # ys) \<in> listrel1 r"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4665
    and "\<And>x. xs = x # ys \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> R"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4666
    and "\<And>zs. xs = y # zs \<Longrightarrow> (zs, ys) \<in> listrel1 r \<Longrightarrow> R"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4667
  shows R
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4668
using assms by (cases xs) blast+
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4669
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4670
lemma snoc_listrel1_snoc_iff:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4671
  "(xs @ [x], ys @ [y]) \<in> listrel1 r
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4672
    \<longleftrightarrow> (xs, ys) \<in> listrel1 r \<and> x = y \<or> xs = ys \<and> (x,y) \<in> r" (is "?L \<longleftrightarrow> ?R")
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4673
proof
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4674
  assume ?L thus ?R
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4675
    by (fastsimp simp: listrel1_def snoc_eq_iff_butlast butlast_append)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4676
next
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4677
  assume ?R then show ?L unfolding listrel1_def by force
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4678
qed
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4679
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4680
lemma listrel1_eq_len: "(xs,ys) \<in> listrel1 r \<Longrightarrow> length xs = length ys"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4681
unfolding listrel1_def by auto
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4682
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4683
lemma listrel1_mono:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4684
  "r \<subseteq> s \<Longrightarrow> listrel1 r \<subseteq> listrel1 s"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4685
unfolding listrel1_def by blast
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4686
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4687
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4688
lemma listrel1_converse: "listrel1 (r^-1) = (listrel1 r)^-1"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4689
unfolding listrel1_def by blast
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4690
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4691
lemma in_listrel1_converse:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4692
  "(x,y) : listrel1 (r^-1) \<longleftrightarrow> (x,y) : (listrel1 r)^-1"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4693
unfolding listrel1_def by blast
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4694
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4695
lemma listrel1_iff_update:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4696
  "(xs,ys) \<in> (listrel1 r)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4697
   \<longleftrightarrow> (\<exists>y n. (xs ! n, y) \<in> r \<and> n < length xs \<and> ys = xs[n:=y])" (is "?L \<longleftrightarrow> ?R")
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4698
proof
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4699
  assume "?L"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4700
  then obtain x y u v where "xs = u @ x # v"  "ys = u @ y # v"  "(x,y) \<in> r"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4701
    unfolding listrel1_def by auto
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4702
  then have "ys = xs[length u := y]" and "length u < length xs"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4703
    and "(xs ! length u, y) \<in> r" by auto
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4704
  then show "?R" by auto
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4705
next
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4706
  assume "?R"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4707
  then obtain x y n where "(xs!n, y) \<in> r" "n < size xs" "ys = xs[n:=y]" "x = xs!n"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4708
    by auto
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4709
  then obtain u v where "xs = u @ x # v" and "ys = u @ y # v" and "(x, y) \<in> r"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4710
    by (auto intro: upd_conv_take_nth_drop id_take_nth_drop)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4711
  then show "?L" by (auto simp: listrel1_def)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4712
qed
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4713
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4714
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4715
text{* Accessible part of @{term listrel1} relations: *}
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4716
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4717
lemma Cons_acc_listrel1I [intro!]:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4718
  "x \<in> acc r \<Longrightarrow> xs \<in> acc (listrel1 r) \<Longrightarrow> (x # xs) \<in> acc (listrel1 r)"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4719
apply (induct arbitrary: xs set: acc)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4720
apply (erule thin_rl)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4721
apply (erule acc_induct)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4722
apply (rule accI)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4723
apply (blast)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4724
done
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4725
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4726
lemma lists_accD: "xs \<in> lists (acc r) \<Longrightarrow> xs \<in> acc (listrel1 r)"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4727
apply (induct set: lists)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4728
 apply (rule accI)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4729
 apply simp
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4730
apply (rule accI)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4731
apply (fast dest: acc_downward)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4732
done
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4733
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4734
lemma lists_accI: "xs \<in> acc (listrel1 r) \<Longrightarrow> xs \<in> lists (acc r)"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4735
apply (induct set: acc)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4736
apply clarify
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4737
apply (rule accI)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4738
apply (fastsimp dest!: in_set_conv_decomp[THEN iffD1] simp: listrel1_def)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4739
done
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4740
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4741
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4742
subsubsection {* Lifting Relations to Lists: all elements *}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4743
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4744
inductive_set
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4745
  listrel :: "('a * 'a)set => ('a list * 'a list)set"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4746
  for r :: "('a * 'a)set"
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  4747
where
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4748
    Nil:  "([],[]) \<in> listrel r"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4749
  | Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4750
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4751
inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4752
inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4753
inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4754
inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4755
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4756
40230
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4757
lemma listrel_eq_len:  "(xs, ys) \<in> listrel r \<Longrightarrow> length xs = length ys"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4758
by(induct rule: listrel.induct) auto
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4759
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4760
lemma listrel_iff_zip: "(xs,ys) : listrel r \<longleftrightarrow>
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4761
  length xs = length ys & (\<forall>(x,y) \<in> set(zip xs ys). (x,y) \<in> r)" (is "?L \<longleftrightarrow> ?R")
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4762
proof
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4763
  assume ?L thus ?R by induct (auto intro: listrel_eq_len)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4764
next
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4765
  assume ?R thus ?L
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4766
    apply (clarify)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4767
    by (induct rule: list_induct2) (auto intro: listrel.intros)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4768
qed
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4769
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4770
lemma listrel_iff_nth: "(xs,ys) : listrel r \<longleftrightarrow>
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4771
  length xs = length ys & (\<forall>n < length xs. (xs!n, ys!n) \<in> r)" (is "?L \<longleftrightarrow> ?R")
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4772
by (auto simp add: all_set_conv_all_nth listrel_iff_zip)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4773
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4774
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4775
lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4776
apply clarify  
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4777
apply (erule listrel.induct)
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4778
apply (blast intro: listrel.intros)+
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4779
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4780
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4781
lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4782
apply clarify 
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4783
apply (erule listrel.induct, auto) 
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4784
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4785
30198
922f944f03b2 name changes
nipkow
parents: 30128
diff changeset
  4786
lemma listrel_refl_on: "refl_on A r \<Longrightarrow> refl_on (lists A) (listrel r)" 
922f944f03b2 name changes
nipkow
parents: 30128
diff changeset
  4787
apply (simp add: refl_on_def listrel_subset Ball_def)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4788
apply (rule allI) 
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4789
apply (induct_tac x) 
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4790
apply (auto intro: listrel.intros)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4791
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4792
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4793
lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" 
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4794
apply (auto simp add: sym_def)
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4795
apply (erule listrel.induct) 
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4796
apply (blast intro: listrel.intros)+
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4797
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4798
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4799
lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" 
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4800
apply (simp add: trans_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4801
apply (intro allI) 
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4802
apply (rule impI) 
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4803
apply (erule listrel.induct) 
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4804
apply (blast intro: listrel.intros)+
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4805
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4806
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4807
theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)"
30198
922f944f03b2 name changes
nipkow
parents: 30128
diff changeset
  4808
by (simp add: equiv_def listrel_refl_on listrel_sym listrel_trans) 
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4809
40230
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4810
lemma listrel_rtrancl_refl[iff]: "(xs,xs) : listrel(r^*)"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4811
using listrel_refl_on[of UNIV, OF refl_rtrancl]
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4812
by(auto simp: refl_on_def)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4813
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4814
lemma listrel_rtrancl_trans:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4815
  "\<lbrakk> (xs,ys) : listrel(r^*);  (ys,zs) : listrel(r^*) \<rbrakk>
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4816
  \<Longrightarrow> (xs,zs) : listrel(r^*)"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4817
by (metis listrel_trans trans_def trans_rtrancl)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4818
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4819
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4820
lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  4821
by (blast intro: listrel.intros)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4822
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4823
lemma listrel_Cons:
33318
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4824
     "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})"
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4825
by (auto simp add: set_Cons_def intro: listrel.intros)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4826
40230
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4827
text {* Relating @{term listrel1}, @{term listrel} and closures: *}
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4828
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4829
lemma listrel1_rtrancl_subset_rtrancl_listrel1:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4830
  "listrel1 (r^*) \<subseteq> (listrel1 r)^*"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4831
proof (rule subrelI)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4832
  fix xs ys assume 1: "(xs,ys) \<in> listrel1 (r^*)"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4833
  { fix x y us vs
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4834
    have "(x,y) : r^* \<Longrightarrow> (us @ x # vs, us @ y # vs) : (listrel1 r)^*"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4835
    proof(induct rule: rtrancl.induct)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4836
      case rtrancl_refl show ?case by simp
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4837
    next
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4838
      case rtrancl_into_rtrancl thus ?case
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4839
        by (metis listrel1I rtrancl.rtrancl_into_rtrancl)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4840
    qed }
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4841
  thus "(xs,ys) \<in> (listrel1 r)^*" using 1 by(blast elim: listrel1E)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4842
qed
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4843
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4844
lemma rtrancl_listrel1_eq_len: "(x,y) \<in> (listrel1 r)^* \<Longrightarrow> length x = length y"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4845
by (induct rule: rtrancl.induct) (auto intro: listrel1_eq_len)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4846
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4847
lemma rtrancl_listrel1_ConsI1:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4848
  "(xs,ys) : (listrel1 r)^* \<Longrightarrow> (x#xs,x#ys) : (listrel1 r)^*"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4849
apply(induct rule: rtrancl.induct)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4850
 apply simp
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4851
by (metis listrel1I2 rtrancl.rtrancl_into_rtrancl)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4852
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4853
lemma rtrancl_listrel1_ConsI2:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4854
  "(x,y) \<in> r^* \<Longrightarrow> (xs, ys) \<in> (listrel1 r)^*
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4855
  \<Longrightarrow> (x # xs, y # ys) \<in> (listrel1 r)^*"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4856
  by (blast intro: rtrancl_trans rtrancl_listrel1_ConsI1 
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4857
    subsetD[OF listrel1_rtrancl_subset_rtrancl_listrel1 listrel1I1])
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4858
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4859
lemma listrel1_subset_listrel:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4860
  "r \<subseteq> r' \<Longrightarrow> refl r' \<Longrightarrow> listrel1 r \<subseteq> listrel(r')"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4861
by(auto elim!: listrel1E simp add: listrel_iff_zip set_zip refl_on_def)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4862
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4863
lemma listrel_reflcl_if_listrel1:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4864
  "(xs,ys) : listrel1 r \<Longrightarrow> (xs,ys) : listrel(r^*)"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4865
by(erule listrel1E)(auto simp add: listrel_iff_zip set_zip)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4866
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4867
lemma listrel_rtrancl_eq_rtrancl_listrel1: "listrel (r^*) = (listrel1 r)^*"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4868
proof
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4869
  { fix x y assume "(x,y) \<in> listrel (r^*)"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4870
    then have "(x,y) \<in> (listrel1 r)^*"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4871
    by induct (auto intro: rtrancl_listrel1_ConsI2) }
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4872
  then show "listrel (r^*) \<subseteq> (listrel1 r)^*"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4873
    by (rule subrelI)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4874
next
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4875
  show "listrel (r^*) \<supseteq> (listrel1 r)^*"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4876
  proof(rule subrelI)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4877
    fix xs ys assume "(xs,ys) \<in> (listrel1 r)^*"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4878
    then show "(xs,ys) \<in> listrel (r^*)"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4879
    proof induct
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4880
      case base show ?case by(auto simp add: listrel_iff_zip set_zip)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4881
    next
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4882
      case (step ys zs)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4883
      thus ?case  by (metis listrel_reflcl_if_listrel1 listrel_rtrancl_trans)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4884
    qed
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4885
  qed
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4886
qed
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4887
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4888
lemma rtrancl_listrel1_if_listrel:
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4889
  "(xs,ys) : listrel r \<Longrightarrow> (xs,ys) : (listrel1 r)^*"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4890
by(metis listrel_rtrancl_eq_rtrancl_listrel1 subsetD[OF listrel_mono] r_into_rtrancl subsetI)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4891
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4892
lemma listrel_subset_rtrancl_listrel1: "listrel r \<subseteq> (listrel1 r)^*"
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4893
by(fast intro:rtrancl_listrel1_if_listrel)
be5c622e1de2 added lemmas about listrel(1)
nipkow
parents: 40210
diff changeset
  4894
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  4895
26749
397a1aeede7d * New attribute "termination_simp": Simp rules for termination proofs
krauss
parents: 26734
diff changeset
  4896
subsection {* Size function *}
397a1aeede7d * New attribute "termination_simp": Simp rules for termination proofs
krauss
parents: 26734
diff changeset
  4897
26875
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4898
lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (list_size f)"
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4899
by (rule is_measure_trivial)
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4900
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4901
lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (option_size f)"
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4902
by (rule is_measure_trivial)
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4903
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4904
lemma list_size_estimation[termination_simp]: 
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4905
  "x \<in> set xs \<Longrightarrow> y < f x \<Longrightarrow> y < list_size f xs"
26749
397a1aeede7d * New attribute "termination_simp": Simp rules for termination proofs
krauss
parents: 26734
diff changeset
  4906
by (induct xs) auto
397a1aeede7d * New attribute "termination_simp": Simp rules for termination proofs
krauss
parents: 26734
diff changeset
  4907
26875
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4908
lemma list_size_estimation'[termination_simp]: 
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4909
  "x \<in> set xs \<Longrightarrow> y \<le> f x \<Longrightarrow> y \<le> list_size f xs"
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4910
by (induct xs) auto
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4911
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4912
lemma list_size_map[simp]: "list_size f (map g xs) = list_size (f o g) xs"
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4913
by (induct xs) auto
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4914
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4915
lemma list_size_pointwise[termination_simp]: 
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4916
  "(\<And>x. x \<in> set xs \<Longrightarrow> f x < g x) \<Longrightarrow> list_size f xs \<le> list_size g xs"
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  4917
by (induct xs) force+
26749
397a1aeede7d * New attribute "termination_simp": Simp rules for termination proofs
krauss
parents: 26734
diff changeset
  4918
31048
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  4919
33318
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4920
subsection {* Transfer *}
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4921
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4922
definition
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4923
  embed_list :: "nat list \<Rightarrow> int list"
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4924
where
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4925
  "embed_list l = map int l"
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4926
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4927
definition
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4928
  nat_list :: "int list \<Rightarrow> bool"
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4929
where
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4930
  "nat_list l = nat_set (set l)"
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4931
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4932
definition
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4933
  return_list :: "int list \<Rightarrow> nat list"
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4934
where
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4935
  "return_list l = map nat l"
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4936
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4937
lemma transfer_nat_int_list_return_embed: "nat_list l \<longrightarrow>
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4938
    embed_list (return_list l) = l"
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4939
  unfolding embed_list_def return_list_def nat_list_def nat_set_def
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4940
  apply (induct l)
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4941
  apply auto
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4942
done
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4943
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4944
lemma transfer_nat_int_list_functions:
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4945
  "l @ m = return_list (embed_list l @ embed_list m)"
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4946
  "[] = return_list []"
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4947
  unfolding return_list_def embed_list_def
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4948
  apply auto
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4949
  apply (induct l, auto)
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4950
  apply (induct m, auto)
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4951
done
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4952
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4953
(*
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4954
lemma transfer_nat_int_fold1: "fold f l x =
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4955
    fold (%x. f (nat x)) (embed_list l) x";
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4956
*)
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4957
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 32960
diff changeset
  4958
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4959
subsection {* Code generation *}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4960
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4961
subsubsection {* Counterparts for set-related operations *}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4962
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4963
definition member :: "'a list \<Rightarrow> 'a \<Rightarrow> bool" where
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4964
  [code_post]: "member xs x \<longleftrightarrow> x \<in> set xs"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4965
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4966
text {*
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4967
  Only use @{text member} for generating executable code.  Otherwise use
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4968
  @{prop "x \<in> set xs"} instead --- it is much easier to reason about.
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4969
*}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4970
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4971
lemma member_set:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4972
  "member = set"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39272
diff changeset
  4973
  by (simp add: fun_eq_iff member_def mem_def)
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4974
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4975
lemma member_rec [code]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4976
  "member (x # xs) y \<longleftrightarrow> x = y \<or> member xs y"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4977
  "member [] y \<longleftrightarrow> False"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4978
  by (auto simp add: member_def)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4979
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4980
lemma in_set_member [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4981
  "x \<in> set xs \<longleftrightarrow> member xs x"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4982
  by (simp add: member_def)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4983
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4984
declare INFI_def [code_unfold]
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4985
declare SUPR_def [code_unfold]
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4986
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4987
declare set_map [symmetric, code_unfold]
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4988
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4989
definition list_all :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4990
  list_all_iff [code_post]: "list_all P xs \<longleftrightarrow> (\<forall>x \<in> set xs. P x)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4991
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4992
definition list_ex :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4993
  list_ex_iff [code_post]: "list_ex P xs \<longleftrightarrow> (\<exists>x \<in> set xs. P x)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4994
40652
7bdfc1d6b143 adding code equations for EX1 on finite types
bulwahn
parents: 40608
diff changeset
  4995
definition list_ex1
7bdfc1d6b143 adding code equations for EX1 on finite types
bulwahn
parents: 40608
diff changeset
  4996
where
7bdfc1d6b143 adding code equations for EX1 on finite types
bulwahn
parents: 40608
diff changeset
  4997
  list_ex1_iff: "list_ex1 P xs \<longleftrightarrow> (\<exists>! x. x \<in> set xs \<and> P x)"
7bdfc1d6b143 adding code equations for EX1 on finite types
bulwahn
parents: 40608
diff changeset
  4998
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  4999
text {*
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5000
  Usually you should prefer @{text "\<forall>x\<in>set xs"} and @{text "\<exists>x\<in>set xs"}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5001
  over @{const list_all} and @{const list_ex} in specifications.
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5002
*}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5003
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5004
lemma list_all_simps [simp, code]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5005
  "list_all P (x # xs) \<longleftrightarrow> P x \<and> list_all P xs"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5006
  "list_all P [] \<longleftrightarrow> True"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5007
  by (simp_all add: list_all_iff)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5008
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5009
lemma list_ex_simps [simp, code]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5010
  "list_ex P (x # xs) \<longleftrightarrow> P x \<or> list_ex P xs"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5011
  "list_ex P [] \<longleftrightarrow> False"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5012
  by (simp_all add: list_ex_iff)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5013
40652
7bdfc1d6b143 adding code equations for EX1 on finite types
bulwahn
parents: 40608
diff changeset
  5014
lemma list_ex1_simps [simp, code]:
7bdfc1d6b143 adding code equations for EX1 on finite types
bulwahn
parents: 40608
diff changeset
  5015
  "list_ex1 P [] = False"
7bdfc1d6b143 adding code equations for EX1 on finite types
bulwahn
parents: 40608
diff changeset
  5016
  "list_ex1 P (x # xs) = (if P x then list_all (\<lambda>y. \<not> P y \<or> x = y) xs else list_ex1 P xs)"
7bdfc1d6b143 adding code equations for EX1 on finite types
bulwahn
parents: 40608
diff changeset
  5017
unfolding list_ex1_iff list_all_iff by auto
7bdfc1d6b143 adding code equations for EX1 on finite types
bulwahn
parents: 40608
diff changeset
  5018
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5019
lemma Ball_set_list_all [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5020
  "Ball (set xs) P \<longleftrightarrow> list_all P xs"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5021
  by (simp add: list_all_iff)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5022
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5023
lemma Bex_set_list_ex [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5024
  "Bex (set xs) P \<longleftrightarrow> list_ex P xs"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5025
  by (simp add: list_ex_iff)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5026
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5027
lemma list_all_append [simp]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5028
  "list_all P (xs @ ys) \<longleftrightarrow> list_all P xs \<and> list_all P ys"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5029
  by (auto simp add: list_all_iff)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5030
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5031
lemma list_ex_append [simp]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5032
  "list_ex P (xs @ ys) \<longleftrightarrow> list_ex P xs \<or> list_ex P ys"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5033
  by (auto simp add: list_ex_iff)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5034
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5035
lemma list_all_rev [simp]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5036
  "list_all P (rev xs) \<longleftrightarrow> list_all P xs"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5037
  by (simp add: list_all_iff)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5038
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5039
lemma list_ex_rev [simp]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5040
  "list_ex P (rev xs) \<longleftrightarrow> list_ex P xs"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5041
  by (simp add: list_ex_iff)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5042
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5043
lemma list_all_length:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5044
  "list_all P xs \<longleftrightarrow> (\<forall>n < length xs. P (xs ! n))"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5045
  by (auto simp add: list_all_iff set_conv_nth)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5046
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5047
lemma list_ex_length:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5048
  "list_ex P xs \<longleftrightarrow> (\<exists>n < length xs. P (xs ! n))"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5049
  by (auto simp add: list_ex_iff set_conv_nth)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5050
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5051
lemma list_all_cong [fundef_cong]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5052
  "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> f x = g x) \<Longrightarrow> list_all f xs = list_all g ys"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5053
  by (simp add: list_all_iff)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5054
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5055
lemma list_any_cong [fundef_cong]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5056
  "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> f x = g x) \<Longrightarrow> list_ex f xs = list_ex g ys"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5057
  by (simp add: list_ex_iff)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5058
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5059
text {* Bounded quantification and summation over nats. *}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5060
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5061
lemma atMost_upto [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5062
  "{..n} = set [0..<Suc n]"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5063
  by auto
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5064
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5065
lemma atLeast_upt [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5066
  "{..<n} = set [0..<n]"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5067
  by auto
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5068
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5069
lemma greaterThanLessThan_upt [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5070
  "{n<..<m} = set [Suc n..<m]"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5071
  by auto
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5072
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5073
lemmas atLeastLessThan_upt [code_unfold] = set_upt [symmetric]
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5074
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5075
lemma greaterThanAtMost_upt [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5076
  "{n<..m} = set [Suc n..<Suc m]"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5077
  by auto
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5078
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5079
lemma atLeastAtMost_upt [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5080
  "{n..m} = set [n..<Suc m]"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5081
  by auto
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5082
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5083
lemma all_nat_less_eq [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5084
  "(\<forall>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..<n}. P m)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5085
  by auto
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5086
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5087
lemma ex_nat_less_eq [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5088
  "(\<exists>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..<n}. P m)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5089
  by auto
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5090
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5091
lemma all_nat_less [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5092
  "(\<forall>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..n}. P m)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5093
  by auto
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5094
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5095
lemma ex_nat_less [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5096
  "(\<exists>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..n}. P m)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5097
  by auto
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5098
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5099
lemma setsum_set_upt_conv_listsum_nat [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5100
  "setsum f (set [m..<n]) = listsum (map f [m..<n])"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5101
  by (simp add: interv_listsum_conv_setsum_set_nat)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5102
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5103
text {* Summation over ints. *}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5104
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5105
lemma greaterThanLessThan_upto [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5106
  "{i<..<j::int} = set [i+1..j - 1]"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5107
by auto
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5108
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5109
lemma atLeastLessThan_upto [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5110
  "{i..<j::int} = set [i..j - 1]"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5111
by auto
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5112
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5113
lemma greaterThanAtMost_upto [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5114
  "{i<..j::int} = set [i+1..j]"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5115
by auto
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5116
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5117
lemmas atLeastAtMost_upto [code_unfold] = set_upto [symmetric]
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5118
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5119
lemma setsum_set_upto_conv_listsum_int [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5120
  "setsum f (set [i..j::int]) = listsum (map f [i..j])"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5121
  by (simp add: interv_listsum_conv_setsum_set_int)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5122
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5123
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5124
subsubsection {* Optimizing by rewriting *}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5125
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5126
definition null :: "'a list \<Rightarrow> bool" where
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5127
  [code_post]: "null xs \<longleftrightarrow> xs = []"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5128
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5129
text {*
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5130
  Efficient emptyness check is implemented by @{const null}.
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5131
*}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5132
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5133
lemma null_rec [code]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5134
  "null (x # xs) \<longleftrightarrow> False"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5135
  "null [] \<longleftrightarrow> True"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5136
  by (simp_all add: null_def)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5137
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5138
lemma eq_Nil_null [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5139
  "xs = [] \<longleftrightarrow> null xs"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5140
  by (simp add: null_def)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5141
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5142
lemma equal_Nil_null [code_unfold]:
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38715
diff changeset
  5143
  "HOL.equal xs [] \<longleftrightarrow> null xs"
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38715
diff changeset
  5144
  by (simp add: equal eq_Nil_null)
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5145
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5146
definition maps :: "('a \<Rightarrow> 'b list) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5147
  [code_post]: "maps f xs = concat (map f xs)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5148
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5149
definition map_filter :: "('a \<Rightarrow> 'b option) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5150
  [code_post]: "map_filter f xs = map (the \<circ> f) (filter (\<lambda>x. f x \<noteq> None) xs)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5151
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5152
text {*
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5153
  Operations @{const maps} and @{const map_filter} avoid
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5154
  intermediate lists on execution -- do not use for proving.
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5155
*}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5156
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5157
lemma maps_simps [code]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5158
  "maps f (x # xs) = f x @ maps f xs"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5159
  "maps f [] = []"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5160
  by (simp_all add: maps_def)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5161
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5162
lemma map_filter_simps [code]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5163
  "map_filter f (x # xs) = (case f x of None \<Rightarrow> map_filter f xs | Some y \<Rightarrow> y # map_filter f xs)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5164
  "map_filter f [] = []"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5165
  by (simp_all add: map_filter_def split: option.split)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5166
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5167
lemma concat_map_maps [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5168
  "concat (map f xs) = maps f xs"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5169
  by (simp add: maps_def)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5170
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5171
lemma map_filter_map_filter [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5172
  "map f (filter P xs) = map_filter (\<lambda>x. if P x then Some (f x) else None) xs"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5173
  by (simp add: map_filter_def)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5174
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5175
text {* Optimized code for @{text"\<forall>i\<in>{a..b::int}"} and @{text"\<forall>n:{a..<b::nat}"}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5176
and similiarly for @{text"\<exists>"}. *}
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5177
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5178
definition all_interval_nat :: "(nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5179
  "all_interval_nat P i j \<longleftrightarrow> (\<forall>n \<in> {i..<j}. P n)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5180
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5181
lemma [code]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5182
  "all_interval_nat P i j \<longleftrightarrow> i \<ge> j \<or> P i \<and> all_interval_nat P (Suc i) j"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5183
proof -
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5184
  have *: "\<And>n. P i \<Longrightarrow> \<forall>n\<in>{Suc i..<j}. P n \<Longrightarrow> i \<le> n \<Longrightarrow> n < j \<Longrightarrow> P n"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5185
  proof -
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5186
    fix n
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5187
    assume "P i" "\<forall>n\<in>{Suc i..<j}. P n" "i \<le> n" "n < j"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5188
    then show "P n" by (cases "n = i") simp_all
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5189
  qed
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5190
  show ?thesis by (auto simp add: all_interval_nat_def intro: *)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5191
qed
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5192
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5193
lemma list_all_iff_all_interval_nat [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5194
  "list_all P [i..<j] \<longleftrightarrow> all_interval_nat P i j"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5195
  by (simp add: list_all_iff all_interval_nat_def)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5196
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5197
lemma list_ex_iff_not_all_inverval_nat [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5198
  "list_ex P [i..<j] \<longleftrightarrow> \<not> (all_interval_nat (Not \<circ> P) i j)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5199
  by (simp add: list_ex_iff all_interval_nat_def)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5200
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5201
definition all_interval_int :: "(int \<Rightarrow> bool) \<Rightarrow> int \<Rightarrow> int \<Rightarrow> bool" where
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5202
  "all_interval_int P i j \<longleftrightarrow> (\<forall>k \<in> {i..j}. P k)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5203
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5204
lemma [code]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5205
  "all_interval_int P i j \<longleftrightarrow> i > j \<or> P i \<and> all_interval_int P (i + 1) j"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5206
proof -
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5207
  have *: "\<And>k. P i \<Longrightarrow> \<forall>k\<in>{i+1..j}. P k \<Longrightarrow> i \<le> k \<Longrightarrow> k \<le> j \<Longrightarrow> P k"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5208
  proof -
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5209
    fix k
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5210
    assume "P i" "\<forall>k\<in>{i+1..j}. P k" "i \<le> k" "k \<le> j"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5211
    then show "P k" by (cases "k = i") simp_all
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5212
  qed
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5213
  show ?thesis by (auto simp add: all_interval_int_def intro: *)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5214
qed
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5215
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5216
lemma list_all_iff_all_interval_int [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5217
  "list_all P [i..j] \<longleftrightarrow> all_interval_int P i j"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5218
  by (simp add: list_all_iff all_interval_int_def)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5219
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5220
lemma list_ex_iff_not_all_inverval_int [code_unfold]:
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5221
  "list_ex P [i..j] \<longleftrightarrow> \<not> (all_interval_int (Not \<circ> P) i j)"
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5222
  by (simp add: list_ex_iff all_interval_int_def)
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5223
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5224
hide_const (open) member null maps map_filter all_interval_nat all_interval_int
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5225
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5226
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5227
subsubsection {* Pretty lists *}
15064
4f3102b50197 - Moved code generator setup for lists from Main.thy to List.thy
berghofe
parents: 15045
diff changeset
  5228
31055
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  5229
use "Tools/list_code.ML"
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  5230
31048
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5231
code_type list
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5232
  (SML "_ list")
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5233
  (OCaml "_ list")
34886
873c31d9f10d some syntax setup for Scala
haftmann
parents: 34064
diff changeset
  5234
  (Haskell "![(_)]")
873c31d9f10d some syntax setup for Scala
haftmann
parents: 34064
diff changeset
  5235
  (Scala "List[(_)]")
31048
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5236
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5237
code_const Nil
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5238
  (SML "[]")
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5239
  (OCaml "[]")
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5240
  (Haskell "[]")
37880
3b9ca8d2c5fb Scala: subtle difference in printing strings vs. complex mixfix syntax
haftmann
parents: 37767
diff changeset
  5241
  (Scala "!Nil")
31048
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5242
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38715
diff changeset
  5243
code_instance list :: equal
31048
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5244
  (Haskell -)
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5245
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38715
diff changeset
  5246
code_const "HOL.equal \<Colon> 'a list \<Rightarrow> 'a list \<Rightarrow> bool"
39272
0b61951d2682 Haskell == is infix, not infixl
haftmann
parents: 39198
diff changeset
  5247
  (Haskell infix 4 "==")
31048
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5248
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5249
code_reserved SML
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5250
  list
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5251
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5252
code_reserved OCaml
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5253
  list
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5254
16770
1f1b1fae30e4 Auxiliary functions to be used in generated code are now defined using "attach".
berghofe
parents: 16634
diff changeset
  5255
types_code
1f1b1fae30e4 Auxiliary functions to be used in generated code are now defined using "attach".
berghofe
parents: 16634
diff changeset
  5256
  "list" ("_ list")
1f1b1fae30e4 Auxiliary functions to be used in generated code are now defined using "attach".
berghofe
parents: 16634
diff changeset
  5257
attach (term_of) {*
21760
78248dda3a90 fixed term_of_list;
wenzelm
parents: 21754
diff changeset
  5258
fun term_of_list f T = HOLogic.mk_list T o map f;
16770
1f1b1fae30e4 Auxiliary functions to be used in generated code are now defined using "attach".
berghofe
parents: 16634
diff changeset
  5259
*}
1f1b1fae30e4 Auxiliary functions to be used in generated code are now defined using "attach".
berghofe
parents: 16634
diff changeset
  5260
attach (test) {*
25885
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  5261
fun gen_list' aG aT i j = frequency
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  5262
  [(i, fn () =>
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  5263
      let
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  5264
        val (x, t) = aG j;
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  5265
        val (xs, ts) = gen_list' aG aT (i-1) j
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  5266
      in (x :: xs, fn () => HOLogic.cons_const aT $ t () $ ts ()) end),
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  5267
   (1, fn () => ([], fn () => HOLogic.nil_const aT))] ()
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  5268
and gen_list aG aT i = gen_list' aG aT i i;
16770
1f1b1fae30e4 Auxiliary functions to be used in generated code are now defined using "attach".
berghofe
parents: 16634
diff changeset
  5269
*}
31048
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5270
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  5271
consts_code Cons ("(_ ::/ _)")
20588
c847c56edf0c added operational equality
haftmann
parents: 20503
diff changeset
  5272
20453
855f07fabd76 final syntax for some Isar code generator keywords
haftmann
parents: 20439
diff changeset
  5273
setup {*
855f07fabd76 final syntax for some Isar code generator keywords
haftmann
parents: 20439
diff changeset
  5274
let
42411
ff997038e8eb eliminated Codegen.mode in favour of explicit argument;
wenzelm
parents: 42361
diff changeset
  5275
  fun list_codegen thy mode defs dep thyname b t gr =
31055
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  5276
    let
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  5277
      val ts = HOLogic.dest_list t;
42411
ff997038e8eb eliminated Codegen.mode in favour of explicit argument;
wenzelm
parents: 42361
diff changeset
  5278
      val (_, gr') = Codegen.invoke_tycodegen thy mode defs dep thyname false
31055
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  5279
        (fastype_of t) gr;
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  5280
      val (ps, gr'') = fold_map
42411
ff997038e8eb eliminated Codegen.mode in favour of explicit argument;
wenzelm
parents: 42361
diff changeset
  5281
        (Codegen.invoke_codegen thy mode defs dep thyname false) ts gr'
31055
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  5282
    in SOME (Pretty.list "[" "]" ps, gr'') end handle TERM _ => NONE;
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  5283
in
34886
873c31d9f10d some syntax setup for Scala
haftmann
parents: 34064
diff changeset
  5284
  fold (List_Code.add_literal_list) ["SML", "OCaml", "Haskell", "Scala"]
31055
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  5285
  #> Codegen.add_codegen "list_codegen" list_codegen
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  5286
end
20453
855f07fabd76 final syntax for some Isar code generator keywords
haftmann
parents: 20439
diff changeset
  5287
*}
15064
4f3102b50197 - Moved code generator setup for lists from Main.thy to List.thy
berghofe
parents: 15045
diff changeset
  5288
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  5289
37424
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5290
subsubsection {* Use convenient predefined operations *}
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5291
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5292
code_const "op @"
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5293
  (SML infixr 7 "@")
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5294
  (OCaml infixr 6 "@")
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5295
  (Haskell infixr 5 "++")
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5296
  (Scala infixl 7 "++")
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5297
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5298
code_const map
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5299
  (Haskell "map")
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5300
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5301
code_const filter
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5302
  (Haskell "filter")
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5303
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5304
code_const concat
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5305
  (Haskell "concat")
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5306
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5307
code_const List.maps
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5308
  (Haskell "concatMap")
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5309
37424
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5310
code_const rev
37451
3058c918e7a3 rev is reverse in Haskell
haftmann
parents: 37424
diff changeset
  5311
  (Haskell "reverse")
37424
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5312
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5313
code_const zip
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5314
  (Haskell "zip")
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5315
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5316
code_const List.null
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5317
  (Haskell "null")
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5318
37424
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5319
code_const takeWhile
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5320
  (Haskell "takeWhile")
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5321
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5322
code_const dropWhile
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5323
  (Haskell "dropWhile")
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5324
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5325
code_const hd
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5326
  (Haskell "head")
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5327
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5328
code_const last
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5329
  (Haskell "last")
ed431cc99f17 use various predefined Haskell operations when generating code
haftmann
parents: 37408
diff changeset
  5330
37605
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5331
code_const list_all
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5332
  (Haskell "all")
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5333
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5334
code_const list_ex
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5335
  (Haskell "any")
625bc011768a put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
haftmann
parents: 37465
diff changeset
  5336
23388
77645da0db85 tuned proofs: avoid implicit prems;
wenzelm
parents: 23279
diff changeset
  5337
end