| author | blanchet | 
| Sun, 12 Oct 2014 21:52:45 +0200 | |
| changeset 58654 | 3e1cad27fc2f | 
| parent 57862 | 8f074e6e22fc | 
| child 58881 | b9556a055632 | 
| permissions | -rw-r--r-- | 
| 29197 
6d4cb27ed19c
adapted HOL source structure to distribution layout
 haftmann parents: 
28952diff
changeset | 1 | (* Author: Amine Chaieb, TU Muenchen *) | 
| 26123 | 2 | |
| 3 | header{*Fundamental Theorem of Algebra*}
 | |
| 4 | ||
| 5 | theory Fundamental_Theorem_Algebra | |
| 51537 | 6 | imports Polynomial Complex_Main | 
| 26123 | 7 | begin | 
| 8 | ||
| 56778 | 9 | subsection {* More lemmas about module of complex numbers *}
 | 
| 26123 | 10 | |
| 11 | text{* The triangle inequality for cmod *}
 | |
| 12 | lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z" | |
| 13 | using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto | |
| 14 | ||
| 56778 | 15 | subsection {* Basic lemmas about polynomials *}
 | 
| 26123 | 16 | |
| 17 | lemma poly_bound_exists: | |
| 56778 | 18 |   fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
 | 
| 19 | shows "\<exists>m. m > 0 \<and> (\<forall>z. norm z \<le> r \<longrightarrow> norm (poly p z) \<le> m)" | |
| 20 | proof (induct p) | |
| 21 | case 0 | |
| 22 | then show ?case by (rule exI[where x=1]) simp | |
| 26123 | 23 | next | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 24 | case (pCons c cs) | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 25 | from pCons.hyps obtain m where m: "\<forall>z. norm z \<le> r \<longrightarrow> norm (poly cs z) \<le> m" | 
| 26123 | 26 | by blast | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 27 | let ?k = " 1 + norm c + \<bar>r * m\<bar>" | 
| 56795 | 28 | have kp: "?k > 0" | 
| 29 | using abs_ge_zero[of "r*m"] norm_ge_zero[of c] by arith | |
| 56778 | 30 |   {
 | 
| 31 | fix z :: 'a | |
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 32 | assume H: "norm z \<le> r" | 
| 56778 | 33 | from m H have th: "norm (poly cs z) \<le> m" | 
| 34 | by blast | |
| 56795 | 35 | from H have rp: "r \<ge> 0" | 
| 36 | using norm_ge_zero[of z] by arith | |
| 37 | have "norm (poly (pCons c cs) z) \<le> norm c + norm (z * poly cs z)" | |
| 27514 | 38 | using norm_triangle_ineq[of c "z* poly cs z"] by simp | 
| 56778 | 39 | also have "\<dots> \<le> norm c + r * m" | 
| 40 | using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]] | |
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 41 | by (simp add: norm_mult) | 
| 56778 | 42 | also have "\<dots> \<le> ?k" | 
| 43 | by simp | |
| 44 | finally have "norm (poly (pCons c cs) z) \<le> ?k" . | |
| 45 | } | |
| 26123 | 46 | with kp show ?case by blast | 
| 47 | qed | |
| 48 | ||
| 49 | ||
| 50 | text{* Offsetting the variable in a polynomial gives another of same degree *}
 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 51 | |
| 52380 | 52 | definition offset_poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly" | 
| 56778 | 53 | where "offset_poly p h = fold_coeffs (\<lambda>a q. smult h q + pCons a q) p 0" | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 54 | |
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 55 | lemma offset_poly_0: "offset_poly 0 h = 0" | 
| 52380 | 56 | by (simp add: offset_poly_def) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 57 | |
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 58 | lemma offset_poly_pCons: | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 59 | "offset_poly (pCons a p) h = | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 60 | smult h (offset_poly p h) + pCons a (offset_poly p h)" | 
| 52380 | 61 | by (cases "p = 0 \<and> a = 0") (auto simp add: offset_poly_def) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 62 | |
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 63 | lemma offset_poly_single: "offset_poly [:a:] h = [:a:]" | 
| 56778 | 64 | by (simp add: offset_poly_pCons offset_poly_0) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 65 | |
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 66 | lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)" | 
| 56778 | 67 | apply (induct p) | 
| 68 | apply (simp add: offset_poly_0) | |
| 69 | apply (simp add: offset_poly_pCons algebra_simps) | |
| 70 | done | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 71 | |
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 72 | lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0" | 
| 56778 | 73 | by (induct p arbitrary: a) (simp, force) | 
| 26123 | 74 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 75 | lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0" | 
| 56778 | 76 | apply (safe intro!: offset_poly_0) | 
| 56795 | 77 | apply (induct p) | 
| 78 | apply simp | |
| 56778 | 79 | apply (simp add: offset_poly_pCons) | 
| 80 | apply (frule offset_poly_eq_0_lemma, simp) | |
| 81 | done | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 82 | |
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 83 | lemma degree_offset_poly: "degree (offset_poly p h) = degree p" | 
| 56778 | 84 | apply (induct p) | 
| 85 | apply (simp add: offset_poly_0) | |
| 86 | apply (case_tac "p = 0") | |
| 87 | apply (simp add: offset_poly_0 offset_poly_pCons) | |
| 88 | apply (simp add: offset_poly_pCons) | |
| 89 | apply (subst degree_add_eq_right) | |
| 90 | apply (rule le_less_trans [OF degree_smult_le]) | |
| 91 | apply (simp add: offset_poly_eq_0_iff) | |
| 92 | apply (simp add: offset_poly_eq_0_iff) | |
| 93 | done | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 94 | |
| 56778 | 95 | definition "psize p = (if p = 0 then 0 else Suc (degree p))" | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 96 | |
| 29538 | 97 | lemma psize_eq_0_iff [simp]: "psize p = 0 \<longleftrightarrow> p = 0" | 
| 98 | unfolding psize_def by simp | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 99 | |
| 56778 | 100 | lemma poly_offset: | 
| 101 | fixes p :: "'a::comm_ring_1 poly" | |
| 102 | shows "\<exists>q. psize q = psize p \<and> (\<forall>x. poly q x = poly p (a + x))" | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 103 | proof (intro exI conjI) | 
| 29538 | 104 | show "psize (offset_poly p a) = psize p" | 
| 105 | unfolding psize_def | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 106 | by (simp add: offset_poly_eq_0_iff degree_offset_poly) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 107 | show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 108 | by (simp add: poly_offset_poly) | 
| 26123 | 109 | qed | 
| 110 | ||
| 111 | text{* An alternative useful formulation of completeness of the reals *}
 | |
| 56778 | 112 | lemma real_sup_exists: | 
| 113 | assumes ex: "\<exists>x. P x" | |
| 114 | and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z" | |
| 115 | shows "\<exists>s::real. \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s" | |
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 116 | proof | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 117 | from bz have "bdd_above (Collect P)" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 118 | by (force intro: less_imp_le) | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 119 | then show "\<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < Sup (Collect P)" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 120 | using ex bz by (subst less_cSup_iff) auto | 
| 26123 | 121 | qed | 
| 122 | ||
| 27445 | 123 | subsection {* Fundamental theorem of algebra *}
 | 
| 26123 | 124 | lemma unimodular_reduce_norm: | 
| 125 | assumes md: "cmod z = 1" | |
| 126 | shows "cmod (z + 1) < 1 \<or> cmod (z - 1) < 1 \<or> cmod (z + ii) < 1 \<or> cmod (z - ii) < 1" | |
| 56778 | 127 | proof - | 
| 128 | obtain x y where z: "z = Complex x y " | |
| 129 | by (cases z) auto | |
| 130 | from md z have xy: "x\<^sup>2 + y\<^sup>2 = 1" | |
| 131 | by (simp add: cmod_def) | |
| 132 |   {
 | |
| 133 | assume C: "cmod (z + 1) \<ge> 1" "cmod (z - 1) \<ge> 1" "cmod (z + ii) \<ge> 1" "cmod (z - ii) \<ge> 1" | |
| 134 | from C z xy have "2 * x \<le> 1" "2 * x \<ge> -1" "2 * y \<le> 1" "2 * y \<ge> -1" | |
| 29667 | 135 | by (simp_all add: cmod_def power2_eq_square algebra_simps) | 
| 56778 | 136 | then have "abs (2 * x) \<le> 1" "abs (2 * y) \<le> 1" | 
| 137 | by simp_all | |
| 138 | then have "(abs (2 * x))\<^sup>2 \<le> 1\<^sup>2" "(abs (2 * y))\<^sup>2 \<le> 1\<^sup>2" | |
| 26123 | 139 | by - (rule power_mono, simp, simp)+ | 
| 56778 | 140 | then have th0: "4 * x\<^sup>2 \<le> 1" "4 * y\<^sup>2 \<le> 1" | 
| 51541 | 141 | by (simp_all add: power_mult_distrib) | 
| 56778 | 142 | from add_mono[OF th0] xy have False by simp | 
| 143 | } | |
| 144 | then show ?thesis | |
| 145 | unfolding linorder_not_le[symmetric] by blast | |
| 26123 | 146 | qed | 
| 147 | ||
| 26135 | 148 | text{* Hence we can always reduce modulus of @{text "1 + b z^n"} if nonzero *}
 | 
| 26123 | 149 | lemma reduce_poly_simple: | 
| 56778 | 150 | assumes b: "b \<noteq> 0" | 
| 151 | and n: "n \<noteq> 0" | |
| 26123 | 152 | shows "\<exists>z. cmod (1 + b * z^n) < 1" | 
| 56778 | 153 | using n | 
| 154 | proof (induct n rule: nat_less_induct) | |
| 26123 | 155 | fix n | 
| 56778 | 156 | assume IH: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>z. cmod (1 + b * z ^ m) < 1)" | 
| 157 | assume n: "n \<noteq> 0" | |
| 26123 | 158 | let ?P = "\<lambda>z n. cmod (1 + b * z ^ n) < 1" | 
| 56778 | 159 |   {
 | 
| 160 | assume e: "even n" | |
| 161 | then have "\<exists>m. n = 2 * m" | |
| 162 | by presburger | |
| 163 | then obtain m where m: "n = 2 * m" | |
| 164 | by blast | |
| 165 | from n m have "m \<noteq> 0" "m < n" | |
| 166 | by presburger+ | |
| 167 | with IH[rule_format, of m] obtain z where z: "?P z m" | |
| 168 | by blast | |
| 56795 | 169 | from z have "?P (csqrt z) n" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56795diff
changeset | 170 | by (simp add: m power_mult power2_csqrt) | 
| 56778 | 171 | then have "\<exists>z. ?P z n" .. | 
| 172 | } | |
| 26123 | 173 | moreover | 
| 56778 | 174 |   {
 | 
| 175 | assume o: "odd n" | |
| 26123 | 176 | have th0: "cmod (complex_of_real (cmod b) / b) = 1" | 
| 36975 | 177 | using b by (simp add: norm_divide) | 
| 56778 | 178 | from o have "\<exists>m. n = Suc (2 * m)" | 
| 179 | by presburger+ | |
| 56795 | 180 | then obtain m where m: "n = Suc (2 * m)" | 
| 56778 | 181 | by blast | 
| 26123 | 182 | from unimodular_reduce_norm[OF th0] o | 
| 183 | have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1" | |
| 56795 | 184 | apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1") | 
| 185 | apply (rule_tac x="1" in exI) | |
| 186 | apply simp | |
| 187 | apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1") | |
| 188 | apply (rule_tac x="-1" in exI) | |
| 189 | apply simp | |
| 26123 | 190 | apply (cases "cmod (complex_of_real (cmod b) / b + ii) < 1") | 
| 56795 | 191 | apply (cases "even m") | 
| 192 | apply (rule_tac x="ii" in exI) | |
| 193 | apply (simp add: m power_mult) | |
| 194 | apply (rule_tac x="- ii" in exI) | |
| 195 | apply (simp add: m power_mult) | |
| 196 | apply (cases "even m") | |
| 197 | apply (rule_tac x="- ii" in exI) | |
| 198 | apply (simp add: m power_mult) | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 199 | apply (auto simp add: m power_mult) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 200 | apply (rule_tac x="ii" in exI) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 201 | apply (auto simp add: m power_mult) | 
| 26123 | 202 | done | 
| 56778 | 203 | then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1" | 
| 204 | by blast | |
| 26123 | 205 | let ?w = "v / complex_of_real (root n (cmod b))" | 
| 206 | from odd_real_root_pow[OF o, of "cmod b"] | |
| 30488 | 207 | have th1: "?w ^ n = v^n / complex_of_real (cmod b)" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56795diff
changeset | 208 | by (simp add: power_divide of_real_power[symmetric]) | 
| 56778 | 209 | have th2:"cmod (complex_of_real (cmod b) / b) = 1" | 
| 210 | using b by (simp add: norm_divide) | |
| 211 | then have th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0" | |
| 212 | by simp | |
| 26123 | 213 | have th4: "cmod (complex_of_real (cmod b) / b) * | 
| 56778 | 214 | cmod (1 + b * (v ^ n / complex_of_real (cmod b))) < | 
| 215 | cmod (complex_of_real (cmod b) / b) * 1" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
46240diff
changeset | 216 | apply (simp only: norm_mult[symmetric] distrib_left) | 
| 56778 | 217 | using b v | 
| 218 | apply (simp add: th2) | |
| 219 | done | |
| 26123 | 220 | from mult_less_imp_less_left[OF th4 th3] | 
| 30488 | 221 | have "?P ?w n" unfolding th1 . | 
| 56778 | 222 | then have "\<exists>z. ?P z n" .. | 
| 223 | } | |
| 26123 | 224 | ultimately show "\<exists>z. ?P z n" by blast | 
| 225 | qed | |
| 226 | ||
| 227 | text{* Bolzano-Weierstrass type property for closed disc in complex plane. *}
 | |
| 228 | ||
| 56778 | 229 | lemma metric_bound_lemma: "cmod (x - y) \<le> \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>" | 
| 56795 | 230 | using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y"] | 
| 26123 | 231 | unfolding cmod_def by simp | 
| 232 | ||
| 233 | lemma bolzano_weierstrass_complex_disc: | |
| 234 | assumes r: "\<forall>n. cmod (s n) \<le> r" | |
| 235 | shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)" | |
| 236 | proof- | |
| 56778 | 237 | from seq_monosub[of "Re \<circ> s"] | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 238 | obtain f where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))" | 
| 26123 | 239 | unfolding o_def by blast | 
| 56778 | 240 | from seq_monosub[of "Im \<circ> s \<circ> f"] | 
| 241 | obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s (f (g n))))" | |
| 242 | unfolding o_def by blast | |
| 243 | let ?h = "f \<circ> g" | |
| 244 | from r[rule_format, of 0] have rp: "r \<ge> 0" | |
| 245 | using norm_ge_zero[of "s 0"] by arith | |
| 246 | have th: "\<forall>n. r + 1 \<ge> \<bar>Re (s n)\<bar>" | |
| 26123 | 247 | proof | 
| 248 | fix n | |
| 56778 | 249 | from abs_Re_le_cmod[of "s n"] r[rule_format, of n] | 
| 250 | show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith | |
| 26123 | 251 | qed | 
| 56778 | 252 | have conv1: "convergent (\<lambda>n. Re (s (f n)))" | 
| 26123 | 253 | apply (rule Bseq_monoseq_convergent) | 
| 254 | apply (simp add: Bseq_def) | |
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 255 | apply (metis gt_ex le_less_linear less_trans order.trans th) | 
| 56778 | 256 | apply (rule f(2)) | 
| 257 | done | |
| 258 | have th: "\<forall>n. r + 1 \<ge> \<bar>Im (s n)\<bar>" | |
| 26123 | 259 | proof | 
| 260 | fix n | |
| 56778 | 261 | from abs_Im_le_cmod[of "s n"] r[rule_format, of n] | 
| 262 | show "\<bar>Im (s n)\<bar> \<le> r + 1" | |
| 263 | by arith | |
| 26123 | 264 | qed | 
| 265 | ||
| 266 | have conv2: "convergent (\<lambda>n. Im (s (f (g n))))" | |
| 267 | apply (rule Bseq_monoseq_convergent) | |
| 268 | apply (simp add: Bseq_def) | |
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 269 | apply (metis gt_ex le_less_linear less_trans order.trans th) | 
| 56778 | 270 | apply (rule g(2)) | 
| 271 | done | |
| 26123 | 272 | |
| 30488 | 273 | from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x" | 
| 274 | by blast | |
| 56795 | 275 | then have x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Re (s (f n)) - x\<bar> < r" | 
| 31337 | 276 | unfolding LIMSEQ_iff real_norm_def . | 
| 26123 | 277 | |
| 30488 | 278 | from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y" | 
| 279 | by blast | |
| 56795 | 280 | then have y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Im (s (f (g n))) - y\<bar> < r" | 
| 31337 | 281 | unfolding LIMSEQ_iff real_norm_def . | 
| 26123 | 282 | let ?w = "Complex x y" | 
| 56778 | 283 | from f(1) g(1) have hs: "subseq ?h" | 
| 284 | unfolding subseq_def by auto | |
| 285 |   {
 | |
| 286 | fix e :: real | |
| 287 | assume ep: "e > 0" | |
| 56795 | 288 | then have e2: "e/2 > 0" | 
| 289 | by simp | |
| 26123 | 290 | from x[rule_format, OF e2] y[rule_format, OF e2] | 
| 56778 | 291 | obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2" | 
| 56795 | 292 | and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2" | 
| 293 | by blast | |
| 56778 | 294 |     {
 | 
| 295 | fix n | |
| 296 | assume nN12: "n \<ge> N1 + N2" | |
| 297 | then have nN1: "g n \<ge> N1" and nN2: "n \<ge> N2" | |
| 298 | using seq_suble[OF g(1), of n] by arith+ | |
| 26123 | 299 | from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]] | 
| 30488 | 300 | have "cmod (s (?h n) - ?w) < e" | 
| 56778 | 301 | using metric_bound_lemma[of "s (f (g n))" ?w] by simp | 
| 302 | } | |
| 56795 | 303 | then have "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e" | 
| 304 | by blast | |
| 56778 | 305 | } | 
| 306 | with hs show ?thesis by blast | |
| 26123 | 307 | qed | 
| 308 | ||
| 309 | text{* Polynomial is continuous. *}
 | |
| 310 | ||
| 311 | lemma poly_cont: | |
| 56778 | 312 |   fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
 | 
| 30488 | 313 | assumes ep: "e > 0" | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 314 | shows "\<exists>d >0. \<forall>w. 0 < norm (w - z) \<and> norm (w - z) < d \<longrightarrow> norm (poly p w - poly p z) < e" | 
| 56778 | 315 | proof - | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 316 | obtain q where q: "degree q = degree p" "\<And>x. poly q x = poly p (z + x)" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 317 | proof | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 318 | show "degree (offset_poly p z) = degree p" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 319 | by (rule degree_offset_poly) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 320 | show "\<And>x. poly (offset_poly p z) x = poly p (z + x)" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 321 | by (rule poly_offset_poly) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 322 | qed | 
| 56778 | 323 | have th: "\<And>w. poly q (w - z) = poly p w" | 
| 324 | using q(2)[of "w - z" for w] by simp | |
| 26123 | 325 | show ?thesis unfolding th[symmetric] | 
| 56778 | 326 | proof (induct q) | 
| 327 | case 0 | |
| 328 | then show ?case | |
| 329 | using ep by auto | |
| 26123 | 330 | next | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 331 | case (pCons c cs) | 
| 30488 | 332 | from poly_bound_exists[of 1 "cs"] | 
| 56778 | 333 | obtain m where m: "m > 0" "\<And>z. norm z \<le> 1 \<Longrightarrow> norm (poly cs z) \<le> m" | 
| 334 | by blast | |
| 335 | from ep m(1) have em0: "e/m > 0" | |
| 336 | by (simp add: field_simps) | |
| 337 | have one0: "1 > (0::real)" | |
| 338 | by arith | |
| 30488 | 339 | from real_lbound_gt_zero[OF one0 em0] | 
| 56778 | 340 | obtain d where d: "d > 0" "d < 1" "d < e / m" | 
| 341 | by blast | |
| 342 | from d(1,3) m(1) have dm: "d * m > 0" "d * m < e" | |
| 56544 | 343 | by (simp_all add: field_simps) | 
| 30488 | 344 | show ?case | 
| 56778 | 345 | proof (rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult) | 
| 346 | fix d w | |
| 347 | assume H: "d > 0" "d < 1" "d < e/m" "w \<noteq> z" "norm (w - z) < d" | |
| 348 | then have d1: "norm (w-z) \<le> 1" "d \<ge> 0" | |
| 349 | by simp_all | |
| 350 | from H(3) m(1) have dme: "d*m < e" | |
| 351 | by (simp add: field_simps) | |
| 352 | from H have th: "norm (w - z) \<le> d" | |
| 353 | by simp | |
| 354 | from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme | |
| 355 | show "norm (w - z) * norm (poly cs (w - z)) < e" | |
| 356 | by simp | |
| 26123 | 357 | qed | 
| 56778 | 358 | qed | 
| 26123 | 359 | qed | 
| 360 | ||
| 30488 | 361 | text{* Hence a polynomial attains minimum on a closed disc
 | 
| 26123 | 362 | in the complex plane. *} | 
| 56778 | 363 | lemma poly_minimum_modulus_disc: "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)" | 
| 364 | proof - | |
| 365 |   {
 | |
| 366 | assume "\<not> r \<ge> 0" | |
| 367 | then have ?thesis | |
| 368 | by (metis norm_ge_zero order.trans) | |
| 369 | } | |
| 26123 | 370 | moreover | 
| 56778 | 371 |   {
 | 
| 372 | assume rp: "r \<ge> 0" | |
| 373 | from rp have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))" | |
| 374 | by simp | |
| 375 | then have mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x" | |
| 376 | by blast | |
| 377 |     {
 | |
| 378 | fix x z | |
| 379 | assume H: "cmod z \<le> r" "cmod (poly p z) = - x" "\<not> x < 1" | |
| 380 | then have "- x < 0 " | |
| 381 | by arith | |
| 382 | with H(2) norm_ge_zero[of "poly p z"] have False | |
| 383 | by simp | |
| 384 | } | |
| 385 | then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z" | |
| 386 | by blast | |
| 30488 | 387 | from real_sup_exists[OF mth1 mth2] obtain s where | 
| 56778 | 388 | s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow> y < s" by blast | 
| 389 | let ?m = "- s" | |
| 390 |     {
 | |
| 391 | fix y | |
| 392 | from s[rule_format, of "-y"] | |
| 393 | have "(\<exists>z x. cmod z \<le> r \<and> - (- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y" | |
| 394 | unfolding minus_less_iff[of y ] equation_minus_iff by blast | |
| 395 | } | |
| 26123 | 396 | note s1 = this[unfolded minus_minus] | 
| 30488 | 397 | from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m" | 
| 26123 | 398 | by auto | 
| 56778 | 399 |     {
 | 
| 400 | fix n :: nat | |
| 30488 | 401 | from s1[rule_format, of "?m + 1/real (Suc n)"] | 
| 26123 | 402 | have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" | 
| 56778 | 403 | by simp | 
| 404 | } | |
| 405 | then have th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" .. | |
| 30488 | 406 | from choice[OF th] obtain g where | 
| 56778 | 407 | g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m + 1 /real(Suc n)" | 
| 26123 | 408 | by blast | 
| 30488 | 409 | from bolzano_weierstrass_complex_disc[OF g(1)] | 
| 26123 | 410 | obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e" | 
| 30488 | 411 | by blast | 
| 56778 | 412 |     {
 | 
| 413 | fix w | |
| 26123 | 414 | assume wr: "cmod w \<le> r" | 
| 415 | let ?e = "\<bar>cmod (poly p z) - ?m\<bar>" | |
| 56778 | 416 |       {
 | 
| 417 | assume e: "?e > 0" | |
| 56795 | 418 | then have e2: "?e/2 > 0" | 
| 419 | by simp | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 420 | from poly_cont[OF e2, of z p] obtain d where | 
| 56778 | 421 | d: "d > 0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2" | 
| 422 | by blast | |
| 423 |         {
 | |
| 424 | fix w | |
| 425 | assume w: "cmod (w - z) < d" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 426 | have "cmod(poly p w - poly p z) < ?e / 2" | 
| 56778 | 427 | using d(2)[rule_format, of w] w e by (cases "w = z") simp_all | 
| 428 | } | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 429 | note th1 = this | 
| 30488 | 430 | |
| 56778 | 431 | from fz(2) d(1) obtain N1 where N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d" | 
| 432 | by blast | |
| 433 | from reals_Archimedean2[of "2/?e"] obtain N2 :: nat where N2: "2/?e < real N2" | |
| 434 | by blast | |
| 435 | have th2: "cmod (poly p (g (f (N1 + N2))) - poly p z) < ?e/2" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 436 | using N1[rule_format, of "N1 + N2"] th1 by simp | 
| 56778 | 437 |         {
 | 
| 438 | fix a b e2 m :: real | |
| 439 | have "a < e2 \<Longrightarrow> \<bar>b - m\<bar> < e2 \<Longrightarrow> 2 * e2 \<le> \<bar>b - m\<bar> + a \<Longrightarrow> False" | |
| 440 | by arith | |
| 441 | } | |
| 442 | note th0 = this | |
| 443 | have ath: "\<And>m x e::real. m \<le> x \<Longrightarrow> x < m + e \<Longrightarrow> \<bar>x - m\<bar> < e" | |
| 444 | by arith | |
| 445 | from s1m[OF g(1)[rule_format]] have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" . | |
| 56795 | 446 | from seq_suble[OF fz(1), of "N1 + N2"] | 
| 56778 | 447 | have th00: "real (Suc (N1 + N2)) \<le> real (Suc (f (N1 + N2)))" | 
| 448 | by simp | |
| 449 | have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1 + N2)) > 0" | |
| 450 | using N2 by auto | |
| 451 | from frac_le[OF th000 th00] | |
| 56795 | 452 | have th00: "?m + 1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))" | 
| 56778 | 453 | by simp | 
| 454 | from g(2)[rule_format, of "f (N1 + N2)"] | |
| 455 | have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" . | |
| 456 | from order_less_le_trans[OF th01 th00] | |
| 56795 | 457 | have th32: "cmod (poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" . | 
| 56778 | 458 | from N2 have "2/?e < real (Suc (N1 + N2))" | 
| 459 | by arith | |
| 460 | with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"] | |
| 461 | have "?e/2 > 1/ real (Suc (N1 + N2))" | |
| 462 | by (simp add: inverse_eq_divide) | |
| 463 | with ath[OF th31 th32] | |
| 56795 | 464 | have thc1: "\<bar>cmod (poly p (g (f (N1 + N2)))) - ?m\<bar> < ?e/2" | 
| 56778 | 465 | by arith | 
| 466 | have ath2: "\<And>a b c m::real. \<bar>a - b\<bar> \<le> c \<Longrightarrow> \<bar>b - m\<bar> \<le> \<bar>a - m\<bar> + c" | |
| 467 | by arith | |
| 468 | have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar> \<le> | |
| 469 | cmod (poly p (g (f (N1 + N2))) - poly p z)" | |
| 470 | by (simp add: norm_triangle_ineq3) | |
| 471 | from ath2[OF th22, of ?m] | |
| 472 | have thc2: "2 * (?e/2) \<le> | |
| 473 | \<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)" | |
| 474 | by simp | |
| 475 | from th0[OF th2 thc1 thc2] have False . | |
| 476 | } | |
| 477 | then have "?e = 0" | |
| 478 | by auto | |
| 479 | then have "cmod (poly p z) = ?m" | |
| 480 | by simp | |
| 481 | with s1m[OF wr] have "cmod (poly p z) \<le> cmod (poly p w)" | |
| 482 | by simp | |
| 483 | } | |
| 484 | then have ?thesis by blast | |
| 485 | } | |
| 26123 | 486 | ultimately show ?thesis by blast | 
| 487 | qed | |
| 488 | ||
| 489 | text {* Nonzero polynomial in z goes to infinity as z does. *}
 | |
| 490 | ||
| 491 | lemma poly_infinity: | |
| 56778 | 492 |   fixes p:: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
 | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 493 | assumes ex: "p \<noteq> 0" | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 494 | shows "\<exists>r. \<forall>z. r \<le> norm z \<longrightarrow> d \<le> norm (poly (pCons a p) z)" | 
| 56778 | 495 | using ex | 
| 496 | proof (induct p arbitrary: a d) | |
| 56795 | 497 | case 0 | 
| 498 | then show ?case by simp | |
| 499 | next | |
| 30488 | 500 | case (pCons c cs a d) | 
| 56795 | 501 | show ?case | 
| 502 | proof (cases "cs = 0") | |
| 503 | case False | |
| 56778 | 504 | with pCons.hyps obtain r where r: "\<forall>z. r \<le> norm z \<longrightarrow> d + norm a \<le> norm (poly (pCons c cs) z)" | 
| 505 | by blast | |
| 26123 | 506 | let ?r = "1 + \<bar>r\<bar>" | 
| 56778 | 507 |     {
 | 
| 56795 | 508 | fix z :: 'a | 
| 56778 | 509 | assume h: "1 + \<bar>r\<bar> \<le> norm z" | 
| 56795 | 510 | have r0: "r \<le> norm z" | 
| 511 | using h by arith | |
| 56778 | 512 | from r[rule_format, OF r0] have th0: "d + norm a \<le> 1 * norm(poly (pCons c cs) z)" | 
| 513 | by arith | |
| 514 | from h have z1: "norm z \<ge> 1" | |
| 515 | by arith | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 516 | from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]] | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 517 | have th1: "d \<le> norm(z * poly (pCons c cs) z) - norm a" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 518 | unfolding norm_mult by (simp add: algebra_simps) | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 519 | from norm_diff_ineq[of "z * poly (pCons c cs) z" a] | 
| 56795 | 520 | have th2: "norm (z * poly (pCons c cs) z) - norm a \<le> norm (poly (pCons a (pCons c cs)) z)" | 
| 51541 | 521 | by (simp add: algebra_simps) | 
| 56795 | 522 | from th1 th2 have "d \<le> norm (poly (pCons a (pCons c cs)) z)" | 
| 523 | by arith | |
| 56778 | 524 | } | 
| 56795 | 525 | then show ?thesis by blast | 
| 526 | next | |
| 527 | case True | |
| 56778 | 528 | with pCons.prems have c0: "c \<noteq> 0" | 
| 529 | by simp | |
| 530 |     {
 | |
| 56795 | 531 | fix z :: 'a | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 532 | assume h: "(\<bar>d\<bar> + norm a) / norm c \<le> norm z" | 
| 56778 | 533 | from c0 have "norm c > 0" | 
| 534 | by simp | |
| 56403 | 535 | from h c0 have th0: "\<bar>d\<bar> + norm a \<le> norm (z * c)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 536 | by (simp add: field_simps norm_mult) | 
| 56778 | 537 | have ath: "\<And>mzh mazh ma. mzh \<le> mazh + ma \<Longrightarrow> \<bar>d\<bar> + ma \<le> mzh \<Longrightarrow> d \<le> mazh" | 
| 538 | by arith | |
| 539 | from norm_diff_ineq[of "z * c" a] have th1: "norm (z * c) \<le> norm (a + z * c) + norm a" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 540 | by (simp add: algebra_simps) | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 541 | from ath[OF th1 th0] have "d \<le> norm (poly (pCons a (pCons c cs)) z)" | 
| 56795 | 542 | using True by simp | 
| 56778 | 543 | } | 
| 56795 | 544 | then show ?thesis by blast | 
| 545 | qed | |
| 546 | qed | |
| 26123 | 547 | |
| 548 | text {* Hence polynomial's modulus attains its minimum somewhere. *}
 | |
| 56778 | 549 | lemma poly_minimum_modulus: "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)" | 
| 550 | proof (induct p) | |
| 551 | case 0 | |
| 552 | then show ?case by simp | |
| 553 | next | |
| 30488 | 554 | case (pCons c cs) | 
| 56778 | 555 | show ?case | 
| 556 | proof (cases "cs = 0") | |
| 557 | case False | |
| 558 | from poly_infinity[OF False, of "cmod (poly (pCons c cs) 0)" c] | |
| 559 | obtain r where r: "\<And>z. r \<le> cmod z \<Longrightarrow> cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)" | |
| 560 | by blast | |
| 561 | have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>" | |
| 562 | by arith | |
| 30488 | 563 | from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"] | 
| 56778 | 564 | obtain v where v: "\<And>w. cmod w \<le> \<bar>r\<bar> \<Longrightarrow> cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)" | 
| 565 | by blast | |
| 566 |     {
 | |
| 567 | fix z | |
| 568 | assume z: "r \<le> cmod z" | |
| 569 | from v[of 0] r[OF z] have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)" | |
| 570 | by simp | |
| 571 | } | |
| 26123 | 572 | note v0 = this | 
| 56778 | 573 | from v0 v ath[of r] show ?thesis | 
| 574 | by blast | |
| 575 | next | |
| 576 | case True | |
| 577 | with pCons.hyps show ?thesis by simp | |
| 578 | qed | |
| 579 | qed | |
| 26123 | 580 | |
| 581 | text{* Constant function (non-syntactic characterization). *}
 | |
| 56795 | 582 | definition "constant f \<longleftrightarrow> (\<forall>x y. f x = f y)" | 
| 26123 | 583 | |
| 56778 | 584 | lemma nonconstant_length: "\<not> constant (poly p) \<Longrightarrow> psize p \<ge> 2" | 
| 585 | by (induct p) (auto simp: constant_def psize_def) | |
| 30488 | 586 | |
| 56795 | 587 | lemma poly_replicate_append: "poly (monom 1 n * p) (x::'a::comm_ring_1) = x^n * poly p x" | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 588 | by (simp add: poly_monom) | 
| 26123 | 589 | |
| 30488 | 590 | text {* Decomposition of polynomial, skipping zero coefficients
 | 
| 26123 | 591 | after the first. *} | 
| 592 | ||
| 593 | lemma poly_decompose_lemma: | |
| 56778 | 594 | assumes nz: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly p z = (0::'a::idom))" | 
| 56795 | 595 | shows "\<exists>k a q. a \<noteq> 0 \<and> Suc (psize q + k) = psize p \<and> (\<forall>z. poly p z = z^k * poly (pCons a q) z)" | 
| 56778 | 596 | unfolding psize_def | 
| 597 | using nz | |
| 598 | proof (induct p) | |
| 599 | case 0 | |
| 600 | then show ?case by simp | |
| 26123 | 601 | next | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 602 | case (pCons c cs) | 
| 56778 | 603 | show ?case | 
| 604 | proof (cases "c = 0") | |
| 605 | case True | |
| 606 | from pCons.hyps pCons.prems True show ?thesis | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
31337diff
changeset | 607 | apply (auto) | 
| 26123 | 608 | apply (rule_tac x="k+1" in exI) | 
| 609 | apply (rule_tac x="a" in exI, clarsimp) | |
| 610 | apply (rule_tac x="q" in exI) | |
| 56778 | 611 | apply auto | 
| 612 | done | |
| 613 | next | |
| 614 | case False | |
| 615 | show ?thesis | |
| 26123 | 616 | apply (rule exI[where x=0]) | 
| 56778 | 617 | apply (rule exI[where x=c], auto simp add: False) | 
| 618 | done | |
| 619 | qed | |
| 26123 | 620 | qed | 
| 621 | ||
| 622 | lemma poly_decompose: | |
| 56776 | 623 | assumes nc: "\<not> constant (poly p)" | 
| 56778 | 624 | shows "\<exists>k a q. a \<noteq> (0::'a::idom) \<and> k \<noteq> 0 \<and> | 
| 30488 | 625 | psize q + k + 1 = psize p \<and> | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 626 | (\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)" | 
| 56776 | 627 | using nc | 
| 628 | proof (induct p) | |
| 629 | case 0 | |
| 630 | then show ?case | |
| 631 | by (simp add: constant_def) | |
| 26123 | 632 | next | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 633 | case (pCons c cs) | 
| 56776 | 634 |   {
 | 
| 56795 | 635 | assume C: "\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0" | 
| 56776 | 636 |     {
 | 
| 637 | fix x y | |
| 638 | from C have "poly (pCons c cs) x = poly (pCons c cs) y" | |
| 639 | by (cases "x = 0") auto | |
| 640 | } | |
| 56778 | 641 | with pCons.prems have False | 
| 642 | by (auto simp add: constant_def) | |
| 56776 | 643 | } | 
| 644 | then have th: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0)" .. | |
| 30488 | 645 | from poly_decompose_lemma[OF th] | 
| 646 | show ?case | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 647 | apply clarsimp | 
| 26123 | 648 | apply (rule_tac x="k+1" in exI) | 
| 649 | apply (rule_tac x="a" in exI) | |
| 650 | apply simp | |
| 651 | apply (rule_tac x="q" in exI) | |
| 29538 | 652 | apply (auto simp add: psize_def split: if_splits) | 
| 26123 | 653 | done | 
| 654 | qed | |
| 655 | ||
| 34915 | 656 | text{* Fundamental theorem of algebra *}
 | 
| 26123 | 657 | |
| 658 | lemma fundamental_theorem_of_algebra: | |
| 56776 | 659 | assumes nc: "\<not> constant (poly p)" | 
| 26123 | 660 | shows "\<exists>z::complex. poly p z = 0" | 
| 56776 | 661 | using nc | 
| 662 | proof (induct "psize p" arbitrary: p rule: less_induct) | |
| 34915 | 663 | case less | 
| 26123 | 664 | let ?p = "poly p" | 
| 665 | let ?ths = "\<exists>z. ?p z = 0" | |
| 666 | ||
| 34915 | 667 | from nonconstant_length[OF less(2)] have n2: "psize p \<ge> 2" . | 
| 56776 | 668 | from poly_minimum_modulus obtain c where c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)" | 
| 669 | by blast | |
| 56778 | 670 | |
| 671 | show ?ths | |
| 672 | proof (cases "?p c = 0") | |
| 673 | case True | |
| 674 | then show ?thesis by blast | |
| 675 | next | |
| 676 | case False | |
| 677 | note pc0 = this | |
| 678 | from poly_offset[of p c] obtain q where q: "psize q = psize p" "\<forall>x. poly q x = ?p (c + x)" | |
| 679 | by blast | |
| 680 |     {
 | |
| 681 | assume h: "constant (poly q)" | |
| 56795 | 682 | from q(2) have th: "\<forall>x. poly q (x - c) = ?p x" | 
| 683 | by auto | |
| 56778 | 684 |       {
 | 
| 685 | fix x y | |
| 56795 | 686 | from th have "?p x = poly q (x - c)" | 
| 687 | by auto | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 688 | also have "\<dots> = poly q (y - c)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 689 | using h unfolding constant_def by blast | 
| 56795 | 690 | also have "\<dots> = ?p y" | 
| 691 | using th by auto | |
| 56778 | 692 | finally have "?p x = ?p y" . | 
| 693 | } | |
| 694 | with less(2) have False | |
| 695 | unfolding constant_def by blast | |
| 696 | } | |
| 697 | then have qnc: "\<not> constant (poly q)" | |
| 698 | by blast | |
| 699 | from q(2) have pqc0: "?p c = poly q 0" | |
| 700 | by simp | |
| 701 | from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)" | |
| 702 | by simp | |
| 26123 | 703 | let ?a0 = "poly q 0" | 
| 56778 | 704 | from pc0 pqc0 have a00: "?a0 \<noteq> 0" | 
| 705 | by simp | |
| 706 | from a00 have qr: "\<forall>z. poly q z = poly (smult (inverse ?a0) q) z * ?a0" | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 707 | by simp | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 708 | let ?r = "smult (inverse ?a0) q" | 
| 29538 | 709 | have lgqr: "psize q = psize ?r" | 
| 56778 | 710 | using a00 | 
| 711 | unfolding psize_def degree_def | |
| 52380 | 712 | by (simp add: poly_eq_iff) | 
| 56778 | 713 |     {
 | 
| 714 | assume h: "\<And>x y. poly ?r x = poly ?r y" | |
| 715 |       {
 | |
| 716 | fix x y | |
| 717 | from qr[rule_format, of x] have "poly q x = poly ?r x * ?a0" | |
| 718 | by auto | |
| 719 | also have "\<dots> = poly ?r y * ?a0" | |
| 720 | using h by simp | |
| 721 | also have "\<dots> = poly q y" | |
| 722 | using qr[rule_format, of y] by simp | |
| 723 | finally have "poly q x = poly q y" . | |
| 724 | } | |
| 56795 | 725 | with qnc have False | 
| 726 | unfolding constant_def by blast | |
| 56778 | 727 | } | 
| 728 | then have rnc: "\<not> constant (poly ?r)" | |
| 729 | unfolding constant_def by blast | |
| 730 | from qr[rule_format, of 0] a00 have r01: "poly ?r 0 = 1" | |
| 731 | by auto | |
| 732 |     {
 | |
| 733 | fix w | |
| 26123 | 734 | have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 735 | using qr[rule_format, of w] a00 by (simp add: divide_inverse ac_simps) | 
| 26123 | 736 | also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 737 | using a00 unfolding norm_divide by (simp add: field_simps) | 
| 56778 | 738 | finally have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" . | 
| 739 | } | |
| 26123 | 740 | note mrmq_eq = this | 
| 30488 | 741 | from poly_decompose[OF rnc] obtain k a s where | 
| 56778 | 742 | kas: "a \<noteq> 0" "k \<noteq> 0" "psize s + k + 1 = psize ?r" | 
| 743 | "\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast | |
| 744 |     {
 | |
| 745 | assume "psize p = k + 1" | |
| 746 | with kas(3) lgqr[symmetric] q(1) have s0: "s = 0" | |
| 747 | by auto | |
| 748 |       {
 | |
| 749 | fix w | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 750 | have "cmod (poly ?r w) = cmod (1 + a * w ^ k)" | 
| 56778 | 751 | using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps) | 
| 752 | } | |
| 26123 | 753 | note hth = this [symmetric] | 
| 56778 | 754 | from reduce_poly_simple[OF kas(1,2)] have "\<exists>w. cmod (poly ?r w) < 1" | 
| 755 | unfolding hth by blast | |
| 756 | } | |
| 26123 | 757 | moreover | 
| 56778 | 758 |     {
 | 
| 759 | assume kn: "psize p \<noteq> k + 1" | |
| 760 | from kn kas(3) q(1) lgqr have k1n: "k + 1 < psize p" | |
| 761 | by simp | |
| 30488 | 762 | have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 763 | unfolding constant_def poly_pCons poly_monom | 
| 56795 | 764 | using kas(1) | 
| 765 | apply simp | |
| 56778 | 766 | apply (rule exI[where x=0]) | 
| 767 | apply (rule exI[where x=1]) | |
| 768 | apply simp | |
| 769 | done | |
| 770 | from kas(1) kas(2) have th02: "k + 1 = psize (pCons 1 (monom a (k - 1)))" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 771 | by (simp add: psize_def degree_monom_eq) | 
| 34915 | 772 | from less(1) [OF k1n [simplified th02] th01] | 
| 26123 | 773 | obtain w where w: "1 + w^k * a = 0" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 774 | unfolding poly_pCons poly_monom | 
| 56778 | 775 | using kas(2) by (cases k) (auto simp add: algebra_simps) | 
| 30488 | 776 | from poly_bound_exists[of "cmod w" s] obtain m where | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 777 | m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast | 
| 56795 | 778 | have w0: "w \<noteq> 0" | 
| 779 | using kas(2) w by (auto simp add: power_0_left) | |
| 56778 | 780 | from w have "(1 + w ^ k * a) - 1 = 0 - 1" | 
| 781 | by simp | |
| 782 | then have wm1: "w^k * a = - 1" | |
| 783 | by simp | |
| 30488 | 784 | have inv0: "0 < inverse (cmod w ^ (k + 1) * m)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 785 | using norm_ge_zero[of w] w0 m(1) | 
| 56778 | 786 | by (simp add: inverse_eq_divide zero_less_mult_iff) | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 787 | with real_lbound_gt_zero[OF zero_less_one] obtain t where | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 788 | t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast | 
| 26123 | 789 | let ?ct = "complex_of_real t" | 
| 790 | let ?w = "?ct * w" | |
| 56778 | 791 | have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w" | 
| 792 | using kas(1) by (simp add: algebra_simps power_mult_distrib) | |
| 26123 | 793 | also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w" | 
| 56778 | 794 | unfolding wm1 by simp | 
| 795 | finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) = | |
| 796 | cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)" | |
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 797 | by metis | 
| 30488 | 798 | with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"] | 
| 56778 | 799 | have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)" | 
| 800 | unfolding norm_of_real by simp | |
| 801 | have ath: "\<And>x t::real. 0 \<le> x \<Longrightarrow> x < t \<Longrightarrow> t \<le> 1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1" | |
| 802 | by arith | |
| 803 | have "t * cmod w \<le> 1 * cmod w" | |
| 804 | apply (rule mult_mono) | |
| 805 | using t(1,2) | |
| 806 | apply auto | |
| 807 | done | |
| 808 | then have tw: "cmod ?w \<le> cmod w" | |
| 809 | using t(1) by (simp add: norm_mult) | |
| 810 | from t inv0 have "t * (cmod w ^ (k + 1) * m) < 1" | |
| 57862 | 811 | by (simp add: field_simps) | 
| 56778 | 812 | with zero_less_power[OF t(1), of k] have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1" | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 813 | by (metis comm_mult_strict_left_mono) | 
| 56778 | 814 | have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k + 1) * cmod (poly s ?w)))" | 
| 815 | using w0 t(1) | |
| 51541 | 816 | by (simp add: algebra_simps power_mult_distrib norm_power norm_mult) | 
| 26123 | 817 | then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 818 | using t(1,2) m(2)[rule_format, OF tw] w0 | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 819 | by auto | 
| 56778 | 820 | with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k" | 
| 821 | by simp | |
| 30488 | 822 | from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 823 | by auto | 
| 27514 | 824 | from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121] | 
| 30488 | 825 | have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" . | 
| 56778 | 826 | from th11 th12 have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1" | 
| 827 | by arith | |
| 30488 | 828 | then have "cmod (poly ?r ?w) < 1" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 829 | unfolding kas(4)[rule_format, of ?w] r01 by simp | 
| 56778 | 830 | then have "\<exists>w. cmod (poly ?r w) < 1" | 
| 831 | by blast | |
| 832 | } | |
| 833 | ultimately have cr0_contr: "\<exists>w. cmod (poly ?r w) < 1" | |
| 834 | by blast | |
| 835 | from cr0_contr cq0 q(2) show ?thesis | |
| 836 | unfolding mrmq_eq not_less[symmetric] by auto | |
| 837 | qed | |
| 26123 | 838 | qed | 
| 839 | ||
| 840 | text {* Alternative version with a syntactic notion of constant polynomial. *}
 | |
| 841 | ||
| 842 | lemma fundamental_theorem_of_algebra_alt: | |
| 56778 | 843 | assumes nc: "\<not> (\<exists>a l. a \<noteq> 0 \<and> l = 0 \<and> p = pCons a l)" | 
| 26123 | 844 | shows "\<exists>z. poly p z = (0::complex)" | 
| 56778 | 845 | using nc | 
| 846 | proof (induct p) | |
| 847 | case 0 | |
| 848 | then show ?case by simp | |
| 849 | next | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 850 | case (pCons c cs) | 
| 56778 | 851 | show ?case | 
| 852 | proof (cases "c = 0") | |
| 853 | case True | |
| 854 | then show ?thesis by auto | |
| 855 | next | |
| 856 | case False | |
| 857 |     {
 | |
| 858 | assume nc: "constant (poly (pCons c cs))" | |
| 30488 | 859 | from nc[unfolded constant_def, rule_format, of 0] | 
| 860 | have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto | |
| 56778 | 861 | then have "cs = 0" | 
| 862 | proof (induct cs) | |
| 863 | case 0 | |
| 864 | then show ?case by simp | |
| 865 | next | |
| 866 | case (pCons d ds) | |
| 867 | show ?case | |
| 868 | proof (cases "d = 0") | |
| 869 | case True | |
| 870 | then show ?thesis using pCons.prems pCons.hyps by simp | |
| 871 | next | |
| 872 | case False | |
| 873 | from poly_bound_exists[of 1 ds] obtain m where | |
| 874 | m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast | |
| 56795 | 875 | have dm: "cmod d / m > 0" | 
| 876 | using False m(1) by (simp add: field_simps) | |
| 56778 | 877 | from real_lbound_gt_zero[OF dm zero_less_one] obtain x where | 
| 878 | x: "x > 0" "x < cmod d / m" "x < 1" by blast | |
| 879 | let ?x = "complex_of_real x" | |
| 56795 | 880 | from x have cx: "?x \<noteq> 0" "cmod ?x \<le> 1" | 
| 881 | by simp_all | |
| 56778 | 882 | from pCons.prems[rule_format, OF cx(1)] | 
| 56795 | 883 | have cth: "cmod (?x*poly ds ?x) = cmod d" | 
| 884 | by (simp add: eq_diff_eq[symmetric]) | |
| 56778 | 885 | from m(2)[rule_format, OF cx(2)] x(1) | 
| 886 | have th0: "cmod (?x*poly ds ?x) \<le> x*m" | |
| 887 | by (simp add: norm_mult) | |
| 56795 | 888 | from x(2) m(1) have "x * m < cmod d" | 
| 889 | by (simp add: field_simps) | |
| 890 | with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d" | |
| 891 | by auto | |
| 892 | with cth show ?thesis | |
| 893 | by blast | |
| 56778 | 894 | qed | 
| 895 | qed | |
| 896 | } | |
| 56795 | 897 | then have nc: "\<not> constant (poly (pCons c cs))" | 
| 898 | using pCons.prems False by blast | |
| 56778 | 899 | from fundamental_theorem_of_algebra[OF nc] show ?thesis . | 
| 900 | qed | |
| 901 | qed | |
| 26123 | 902 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 903 | |
| 37093 | 904 | subsection{* Nullstellensatz, degrees and divisibility of polynomials *}
 | 
| 26123 | 905 | |
| 906 | lemma nullstellensatz_lemma: | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 907 | fixes p :: "complex poly" | 
| 26123 | 908 | assumes "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0" | 
| 56776 | 909 | and "degree p = n" | 
| 910 | and "n \<noteq> 0" | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 911 | shows "p dvd (q ^ n)" | 
| 56776 | 912 | using assms | 
| 913 | proof (induct n arbitrary: p q rule: nat_less_induct) | |
| 914 | fix n :: nat | |
| 915 | fix p q :: "complex poly" | |
| 26123 | 916 | assume IH: "\<forall>m<n. \<forall>p q. | 
| 917 | (\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow> | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 918 | degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p dvd (q ^ m)" | 
| 30488 | 919 | and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0" | 
| 56778 | 920 | and dpn: "degree p = n" | 
| 921 | and n0: "n \<noteq> 0" | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 922 | from dpn n0 have pne: "p \<noteq> 0" by auto | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 923 | let ?ths = "p dvd (q ^ n)" | 
| 56778 | 924 |   {
 | 
| 925 | fix a | |
| 926 | assume a: "poly p a = 0" | |
| 927 |     {
 | |
| 928 | assume oa: "order a p \<noteq> 0" | |
| 26123 | 929 | let ?op = "order a p" | 
| 56778 | 930 | from pne have ap: "([:- a, 1:] ^ ?op) dvd p" "\<not> [:- a, 1:] ^ (Suc ?op) dvd p" | 
| 931 | using order by blast+ | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 932 | note oop = order_degree[OF pne, unfolded dpn] | 
| 56778 | 933 |       {
 | 
| 934 | assume q0: "q = 0" | |
| 935 | then have ?ths using n0 | |
| 936 | by (simp add: power_0_left) | |
| 937 | } | |
| 26123 | 938 | moreover | 
| 56778 | 939 |       {
 | 
| 940 | assume q0: "q \<noteq> 0" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 941 | from pq0[rule_format, OF a, unfolded poly_eq_0_iff_dvd] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 942 | obtain r where r: "q = [:- a, 1:] * r" by (rule dvdE) | 
| 56778 | 943 | from ap(1) obtain s where s: "p = [:- a, 1:] ^ ?op * s" | 
| 944 | by (rule dvdE) | |
| 945 | have sne: "s \<noteq> 0" using s pne by auto | |
| 946 |         {
 | |
| 947 | assume ds0: "degree s = 0" | |
| 51541 | 948 | from ds0 obtain k where kpn: "s = [:k:]" | 
| 949 | by (cases s) (auto split: if_splits) | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 950 | from sne kpn have k: "k \<noteq> 0" by simp | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 951 | let ?w = "([:1/k:] * ([:-a,1:] ^ (n - ?op))) * (r ^ n)" | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 952 | have "q ^ n = p * ?w" | 
| 56795 | 953 | apply (subst r) | 
| 954 | apply (subst s) | |
| 955 | apply (subst kpn) | |
| 56778 | 956 | using k oop [of a] | 
| 56795 | 957 | apply (subst power_mult_distrib) | 
| 958 | apply simp | |
| 959 | apply (subst power_add [symmetric]) | |
| 960 | apply simp | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 961 | done | 
| 56795 | 962 | then have ?ths | 
| 963 | unfolding dvd_def by blast | |
| 56778 | 964 | } | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 965 | moreover | 
| 56778 | 966 |         {
 | 
| 967 | assume ds0: "degree s \<noteq> 0" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 968 | from ds0 sne dpn s oa | 
| 56778 | 969 | have dsn: "degree s < n" | 
| 970 | apply auto | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 971 | apply (erule ssubst) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 972 | apply (simp add: degree_mult_eq degree_linear_power) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 973 | done | 
| 56778 | 974 |             {
 | 
| 975 | fix x assume h: "poly s x = 0" | |
| 976 |               {
 | |
| 977 | assume xa: "x = a" | |
| 978 | from h[unfolded xa poly_eq_0_iff_dvd] obtain u where u: "s = [:- a, 1:] * u" | |
| 979 | by (rule dvdE) | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 980 | have "p = [:- a, 1:] ^ (Suc ?op) * u" | 
| 56795 | 981 | apply (subst s) | 
| 982 | apply (subst u) | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 983 | apply (simp only: power_Suc ac_simps) | 
| 56795 | 984 | done | 
| 985 | with ap(2)[unfolded dvd_def] have False | |
| 986 | by blast | |
| 56778 | 987 | } | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 988 | note xa = this | 
| 56795 | 989 | from h have "poly p x = 0" | 
| 990 | by (subst s) simp | |
| 991 | with pq0 have "poly q x = 0" | |
| 992 | by blast | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 993 | with r xa have "poly r x = 0" | 
| 56778 | 994 | by auto | 
| 995 | } | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 996 | note impth = this | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 997 | from IH[rule_format, OF dsn, of s r] impth ds0 | 
| 56795 | 998 | have "s dvd (r ^ (degree s))" | 
| 999 | by blast | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 1000 | then obtain u where u: "r ^ (degree s) = s * u" .. | 
| 56778 | 1001 | then have u': "\<And>x. poly s x * poly u x = poly r x ^ degree s" | 
| 29470 
1851088a1f87
convert Deriv.thy to use new Polynomial library (incomplete)
 huffman parents: 
29464diff
changeset | 1002 | by (simp only: poly_mult[symmetric] poly_power[symmetric]) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 1003 | let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 1004 | from oop[of a] dsn have "q ^ n = p * ?w" | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1005 | apply - | 
| 56795 | 1006 | apply (subst s) | 
| 1007 | apply (subst r) | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1008 | apply (simp only: power_mult_distrib) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56889diff
changeset | 1009 | apply (subst mult.assoc [where b=s]) | 
| 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56889diff
changeset | 1010 | apply (subst mult.assoc [where a=u]) | 
| 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56889diff
changeset | 1011 | apply (subst mult.assoc [where b=u, symmetric]) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1012 | apply (subst u [symmetric]) | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1013 | apply (simp add: ac_simps power_add [symmetric]) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1014 | done | 
| 56795 | 1015 | then have ?ths | 
| 1016 | unfolding dvd_def by blast | |
| 56778 | 1017 | } | 
| 1018 | ultimately have ?ths by blast | |
| 1019 | } | |
| 1020 | ultimately have ?ths by blast | |
| 1021 | } | |
| 1022 | then have ?ths using a order_root pne by blast | |
| 1023 | } | |
| 26123 | 1024 | moreover | 
| 56778 | 1025 |   {
 | 
| 1026 | assume exa: "\<not> (\<exists>a. poly p a = 0)" | |
| 1027 | from fundamental_theorem_of_algebra_alt[of p] exa | |
| 1028 | obtain c where ccs: "c \<noteq> 0" "p = pCons c 0" | |
| 1029 | by blast | |
| 1030 | then have pp: "\<And>x. poly p x = c" | |
| 1031 | by simp | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1032 | let ?w = "[:1/c:] * (q ^ n)" | 
| 56778 | 1033 | from ccs have "(q ^ n) = (p * ?w)" | 
| 1034 | by simp | |
| 1035 | then have ?ths | |
| 1036 | unfolding dvd_def by blast | |
| 1037 | } | |
| 26123 | 1038 | ultimately show ?ths by blast | 
| 1039 | qed | |
| 1040 | ||
| 1041 | lemma nullstellensatz_univariate: | |
| 30488 | 1042 | "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1043 | p dvd (q ^ (degree p)) \<or> (p = 0 \<and> q = 0)" | 
| 56776 | 1044 | proof - | 
| 56778 | 1045 |   {
 | 
| 1046 | assume pe: "p = 0" | |
| 1047 | then have eq: "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> q = 0" | |
| 52380 | 1048 | by (auto simp add: poly_all_0_iff_0) | 
| 56778 | 1049 |     {
 | 
| 1050 | assume "p dvd (q ^ (degree p))" | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1051 | then obtain r where r: "q ^ (degree p) = p * r" .. | 
| 56778 | 1052 | from r pe have False by simp | 
| 1053 | } | |
| 1054 | with eq pe have ?thesis by blast | |
| 1055 | } | |
| 26123 | 1056 | moreover | 
| 56778 | 1057 |   {
 | 
| 1058 | assume pe: "p \<noteq> 0" | |
| 1059 |     {
 | |
| 1060 | assume dp: "degree p = 0" | |
| 1061 | then obtain k where k: "p = [:k:]" "k \<noteq> 0" using pe | |
| 51541 | 1062 | by (cases p) (simp split: if_splits) | 
| 56778 | 1063 | then have th1: "\<forall>x. poly p x \<noteq> 0" | 
| 1064 | by simp | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1065 | from k dp have "q ^ (degree p) = p * [:1/k:]" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1066 | by (simp add: one_poly_def) | 
| 56778 | 1067 | then have th2: "p dvd (q ^ (degree p))" .. | 
| 56795 | 1068 | from th1 th2 pe have ?thesis | 
| 1069 | by blast | |
| 56778 | 1070 | } | 
| 26123 | 1071 | moreover | 
| 56778 | 1072 |     {
 | 
| 1073 | assume dp: "degree p \<noteq> 0" | |
| 1074 | then obtain n where n: "degree p = Suc n " | |
| 1075 | by (cases "degree p") auto | |
| 1076 |       {
 | |
| 1077 | assume "p dvd (q ^ (Suc n))" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 1078 | then obtain u where u: "q ^ (Suc n) = p * u" .. | 
| 56778 | 1079 |         {
 | 
| 1080 | fix x | |
| 1081 | assume h: "poly p x = 0" "poly q x \<noteq> 0" | |
| 1082 | then have "poly (q ^ (Suc n)) x \<noteq> 0" | |
| 1083 | by simp | |
| 1084 | then have False using u h(1) | |
| 1085 | by (simp only: poly_mult) simp | |
| 1086 | } | |
| 1087 | } | |
| 1088 | with n nullstellensatz_lemma[of p q "degree p"] dp | |
| 1089 | have ?thesis by auto | |
| 1090 | } | |
| 1091 | ultimately have ?thesis by blast | |
| 1092 | } | |
| 26123 | 1093 | ultimately show ?thesis by blast | 
| 1094 | qed | |
| 1095 | ||
| 56795 | 1096 | text {* Useful lemma *}
 | 
| 26123 | 1097 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1098 | lemma constant_degree: | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1099 |   fixes p :: "'a::{idom,ring_char_0} poly"
 | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1100 | shows "constant (poly p) \<longleftrightarrow> degree p = 0" (is "?lhs = ?rhs") | 
| 26123 | 1101 | proof | 
| 1102 | assume l: ?lhs | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1103 | from l[unfolded constant_def, rule_format, of _ "0"] | 
| 56776 | 1104 | have th: "poly p = poly [:poly p 0:]" | 
| 1105 | by auto | |
| 1106 | then have "p = [:poly p 0:]" | |
| 1107 | by (simp add: poly_eq_poly_eq_iff) | |
| 1108 | then have "degree p = degree [:poly p 0:]" | |
| 1109 | by simp | |
| 1110 | then show ?rhs | |
| 1111 | by simp | |
| 26123 | 1112 | next | 
| 1113 | assume r: ?rhs | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1114 | then obtain k where "p = [:k:]" | 
| 51541 | 1115 | by (cases p) (simp split: if_splits) | 
| 56776 | 1116 | then show ?lhs | 
| 1117 | unfolding constant_def by auto | |
| 26123 | 1118 | qed | 
| 1119 | ||
| 56776 | 1120 | lemma divides_degree: | 
| 1121 | assumes pq: "p dvd (q:: complex poly)" | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1122 | shows "degree p \<le> degree q \<or> q = 0" | 
| 56776 | 1123 | by (metis dvd_imp_degree_le pq) | 
| 26123 | 1124 | |
| 56795 | 1125 | text {* Arithmetic operations on multivariate polynomials. *}
 | 
| 26123 | 1126 | |
| 30488 | 1127 | lemma mpoly_base_conv: | 
| 56778 | 1128 | fixes x :: "'a::comm_ring_1" | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 1129 | shows "0 = poly 0 x" "c = poly [:c:] x" "x = poly [:0,1:] x" | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 1130 | by simp_all | 
| 26123 | 1131 | |
| 30488 | 1132 | lemma mpoly_norm_conv: | 
| 56778 | 1133 | fixes x :: "'a::comm_ring_1" | 
| 56776 | 1134 | shows "poly [:0:] x = poly 0 x" "poly [:poly 0 y:] x = poly 0 x" | 
| 1135 | by simp_all | |
| 26123 | 1136 | |
| 30488 | 1137 | lemma mpoly_sub_conv: | 
| 56778 | 1138 | fixes x :: "'a::comm_ring_1" | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 1139 | shows "poly p x - poly q x = poly p x + -1 * poly q x" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53077diff
changeset | 1140 | by simp | 
| 26123 | 1141 | |
| 56778 | 1142 | lemma poly_pad_rule: "poly p x = 0 \<Longrightarrow> poly (pCons 0 p) x = 0" | 
| 1143 | by simp | |
| 26123 | 1144 | |
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 1145 | lemma poly_cancel_eq_conv: | 
| 56778 | 1146 | fixes x :: "'a::field" | 
| 56795 | 1147 | shows "x = 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> y = 0 \<longleftrightarrow> a * y - b * x = 0" | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 1148 | by auto | 
| 26123 | 1149 | |
| 30488 | 1150 | lemma poly_divides_pad_rule: | 
| 56778 | 1151 |   fixes p:: "('a::comm_ring_1) poly"
 | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1152 | assumes pq: "p dvd q" | 
| 56778 | 1153 | shows "p dvd (pCons 0 q)" | 
| 1154 | proof - | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1155 | have "pCons 0 q = q * [:0,1:]" by simp | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1156 | then have "q dvd (pCons 0 q)" .. | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1157 | with pq show ?thesis by (rule dvd_trans) | 
| 26123 | 1158 | qed | 
| 1159 | ||
| 30488 | 1160 | lemma poly_divides_conv0: | 
| 56778 | 1161 | fixes p:: "'a::field poly" | 
| 56776 | 1162 | assumes lgpq: "degree q < degree p" | 
| 1163 | and lq: "p \<noteq> 0" | |
| 1164 | shows "p dvd q \<longleftrightarrow> q = 0" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 1165 | proof | |
| 1166 | assume r: ?rhs | |
| 1167 | then have "q = p * 0" by simp | |
| 1168 | then show ?lhs .. | |
| 1169 | next | |
| 1170 | assume l: ?lhs | |
| 56778 | 1171 | show ?rhs | 
| 1172 | proof (cases "q = 0") | |
| 1173 | case True | |
| 1174 | then show ?thesis by simp | |
| 1175 | next | |
| 56776 | 1176 | assume q0: "q \<noteq> 0" | 
| 1177 | from l q0 have "degree p \<le> degree q" | |
| 1178 | by (rule dvd_imp_degree_le) | |
| 56778 | 1179 | with lgpq show ?thesis by simp | 
| 1180 | qed | |
| 26123 | 1181 | qed | 
| 1182 | ||
| 30488 | 1183 | lemma poly_divides_conv1: | 
| 56778 | 1184 | fixes p :: "'a::field poly" | 
| 56776 | 1185 | assumes a0: "a \<noteq> 0" | 
| 1186 | and pp': "p dvd p'" | |
| 1187 | and qrp': "smult a q - p' = r" | |
| 1188 | shows "p dvd q \<longleftrightarrow> p dvd r" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 1189 | proof | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1190 | from pp' obtain t where t: "p' = p * t" .. | 
| 56776 | 1191 |   {
 | 
| 1192 | assume l: ?lhs | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1193 | then obtain u where u: "q = p * u" .. | 
| 56776 | 1194 | have "r = p * (smult a u - t)" | 
| 1195 | using u qrp' [symmetric] t by (simp add: algebra_simps) | |
| 1196 | then show ?rhs .. | |
| 1197 | next | |
| 1198 | assume r: ?rhs | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1199 | then obtain u where u: "r = p * u" .. | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1200 | from u [symmetric] t qrp' [symmetric] a0 | 
| 51541 | 1201 | have "q = p * smult (1/a) (u + t)" by (simp add: algebra_simps) | 
| 56776 | 1202 | then show ?lhs .. | 
| 1203 | } | |
| 26123 | 1204 | qed | 
| 1205 | ||
| 1206 | lemma basic_cqe_conv1: | |
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1207 | "(\<exists>x. poly p x = 0 \<and> poly 0 x \<noteq> 0) \<longleftrightarrow> False" | 
| 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1208 | "(\<exists>x. poly 0 x \<noteq> 0) \<longleftrightarrow> False" | 
| 56776 | 1209 | "(\<exists>x. poly [:c:] x \<noteq> 0) \<longleftrightarrow> c \<noteq> 0" | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1210 | "(\<exists>x. poly 0 x = 0) \<longleftrightarrow> True" | 
| 56776 | 1211 | "(\<exists>x. poly [:c:] x = 0) \<longleftrightarrow> c = 0" | 
| 1212 | by simp_all | |
| 26123 | 1213 | |
| 30488 | 1214 | lemma basic_cqe_conv2: | 
| 56795 | 1215 | assumes l: "p \<noteq> 0" | 
| 1216 | shows "\<exists>x. poly (pCons a (pCons b p)) x = (0::complex)" | |
| 56776 | 1217 | proof - | 
| 1218 |   {
 | |
| 1219 | fix h t | |
| 1220 | assume h: "h \<noteq> 0" "t = 0" and "pCons a (pCons b p) = pCons h t" | |
| 1221 | with l have False by simp | |
| 1222 | } | |
| 1223 | then have th: "\<not> (\<exists> h t. h \<noteq> 0 \<and> t = 0 \<and> pCons a (pCons b p) = pCons h t)" | |
| 26123 | 1224 | by blast | 
| 56776 | 1225 | from fundamental_theorem_of_algebra_alt[OF th] show ?thesis | 
| 1226 | by auto | |
| 26123 | 1227 | qed | 
| 1228 | ||
| 56776 | 1229 | lemma basic_cqe_conv_2b: "(\<exists>x. poly p x \<noteq> (0::complex)) \<longleftrightarrow> p \<noteq> 0" | 
| 1230 | by (metis poly_all_0_iff_0) | |
| 26123 | 1231 | |
| 1232 | lemma basic_cqe_conv3: | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1233 | fixes p q :: "complex poly" | 
| 30488 | 1234 | assumes l: "p \<noteq> 0" | 
| 56795 | 1235 | shows "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<longleftrightarrow> \<not> (pCons a p) dvd (q ^ psize p)" | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1236 | proof - | 
| 56776 | 1237 | from l have dp: "degree (pCons a p) = psize p" | 
| 1238 | by (simp add: psize_def) | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1239 | from nullstellensatz_univariate[of "pCons a p" q] l | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1240 | show ?thesis | 
| 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1241 | by (metis dp pCons_eq_0_iff) | 
| 26123 | 1242 | qed | 
| 1243 | ||
| 1244 | lemma basic_cqe_conv4: | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1245 | fixes p q :: "complex poly" | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1246 | assumes h: "\<And>x. poly (q ^ n) x = poly r x" | 
| 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1247 | shows "p dvd (q ^ n) \<longleftrightarrow> p dvd r" | 
| 56776 | 1248 | proof - | 
| 1249 | from h have "poly (q ^ n) = poly r" | |
| 1250 | by auto | |
| 1251 | then have "(q ^ n) = r" | |
| 1252 | by (simp add: poly_eq_poly_eq_iff) | |
| 1253 | then show "p dvd (q ^ n) \<longleftrightarrow> p dvd r" | |
| 1254 | by simp | |
| 26123 | 1255 | qed | 
| 1256 | ||
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 1257 | lemma poly_const_conv: | 
| 56778 | 1258 | fixes x :: "'a::comm_ring_1" | 
| 56776 | 1259 | shows "poly [:c:] x = y \<longleftrightarrow> c = y" | 
| 1260 | by simp | |
| 26123 | 1261 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1262 | end |