author | haftmann |
Fri, 04 Jul 2014 20:18:47 +0200 | |
changeset 57512 | cc97b347b301 |
parent 56889 | 48a745e1bde7 |
child 57514 | bdc2c6b40bf2 |
permissions | -rw-r--r-- |
29197
6d4cb27ed19c
adapted HOL source structure to distribution layout
haftmann
parents:
28952
diff
changeset
|
1 |
(* Author: Amine Chaieb, TU Muenchen *) |
26123 | 2 |
|
3 |
header{*Fundamental Theorem of Algebra*} |
|
4 |
||
5 |
theory Fundamental_Theorem_Algebra |
|
51537 | 6 |
imports Polynomial Complex_Main |
26123 | 7 |
begin |
8 |
||
56778 | 9 |
subsection {* More lemmas about module of complex numbers *} |
26123 | 10 |
|
11 |
text{* The triangle inequality for cmod *} |
|
12 |
lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z" |
|
13 |
using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto |
|
14 |
||
56778 | 15 |
subsection {* Basic lemmas about polynomials *} |
26123 | 16 |
|
17 |
lemma poly_bound_exists: |
|
56778 | 18 |
fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly" |
19 |
shows "\<exists>m. m > 0 \<and> (\<forall>z. norm z \<le> r \<longrightarrow> norm (poly p z) \<le> m)" |
|
20 |
proof (induct p) |
|
21 |
case 0 |
|
22 |
then show ?case by (rule exI[where x=1]) simp |
|
26123 | 23 |
next |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
24 |
case (pCons c cs) |
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
25 |
from pCons.hyps obtain m where m: "\<forall>z. norm z \<le> r \<longrightarrow> norm (poly cs z) \<le> m" |
26123 | 26 |
by blast |
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
27 |
let ?k = " 1 + norm c + \<bar>r * m\<bar>" |
56795 | 28 |
have kp: "?k > 0" |
29 |
using abs_ge_zero[of "r*m"] norm_ge_zero[of c] by arith |
|
56778 | 30 |
{ |
31 |
fix z :: 'a |
|
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
32 |
assume H: "norm z \<le> r" |
56778 | 33 |
from m H have th: "norm (poly cs z) \<le> m" |
34 |
by blast |
|
56795 | 35 |
from H have rp: "r \<ge> 0" |
36 |
using norm_ge_zero[of z] by arith |
|
37 |
have "norm (poly (pCons c cs) z) \<le> norm c + norm (z * poly cs z)" |
|
27514 | 38 |
using norm_triangle_ineq[of c "z* poly cs z"] by simp |
56778 | 39 |
also have "\<dots> \<le> norm c + r * m" |
40 |
using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]] |
|
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
41 |
by (simp add: norm_mult) |
56778 | 42 |
also have "\<dots> \<le> ?k" |
43 |
by simp |
|
44 |
finally have "norm (poly (pCons c cs) z) \<le> ?k" . |
|
45 |
} |
|
26123 | 46 |
with kp show ?case by blast |
47 |
qed |
|
48 |
||
49 |
||
50 |
text{* Offsetting the variable in a polynomial gives another of same degree *} |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
51 |
|
52380 | 52 |
definition offset_poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly" |
56778 | 53 |
where "offset_poly p h = fold_coeffs (\<lambda>a q. smult h q + pCons a q) p 0" |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
54 |
|
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
55 |
lemma offset_poly_0: "offset_poly 0 h = 0" |
52380 | 56 |
by (simp add: offset_poly_def) |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
57 |
|
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
58 |
lemma offset_poly_pCons: |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
59 |
"offset_poly (pCons a p) h = |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
60 |
smult h (offset_poly p h) + pCons a (offset_poly p h)" |
52380 | 61 |
by (cases "p = 0 \<and> a = 0") (auto simp add: offset_poly_def) |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
62 |
|
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
63 |
lemma offset_poly_single: "offset_poly [:a:] h = [:a:]" |
56778 | 64 |
by (simp add: offset_poly_pCons offset_poly_0) |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
65 |
|
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
66 |
lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)" |
56778 | 67 |
apply (induct p) |
68 |
apply (simp add: offset_poly_0) |
|
69 |
apply (simp add: offset_poly_pCons algebra_simps) |
|
70 |
done |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
71 |
|
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
72 |
lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0" |
56778 | 73 |
by (induct p arbitrary: a) (simp, force) |
26123 | 74 |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
75 |
lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0" |
56778 | 76 |
apply (safe intro!: offset_poly_0) |
56795 | 77 |
apply (induct p) |
78 |
apply simp |
|
56778 | 79 |
apply (simp add: offset_poly_pCons) |
80 |
apply (frule offset_poly_eq_0_lemma, simp) |
|
81 |
done |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
82 |
|
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
83 |
lemma degree_offset_poly: "degree (offset_poly p h) = degree p" |
56778 | 84 |
apply (induct p) |
85 |
apply (simp add: offset_poly_0) |
|
86 |
apply (case_tac "p = 0") |
|
87 |
apply (simp add: offset_poly_0 offset_poly_pCons) |
|
88 |
apply (simp add: offset_poly_pCons) |
|
89 |
apply (subst degree_add_eq_right) |
|
90 |
apply (rule le_less_trans [OF degree_smult_le]) |
|
91 |
apply (simp add: offset_poly_eq_0_iff) |
|
92 |
apply (simp add: offset_poly_eq_0_iff) |
|
93 |
done |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
94 |
|
56778 | 95 |
definition "psize p = (if p = 0 then 0 else Suc (degree p))" |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
96 |
|
29538 | 97 |
lemma psize_eq_0_iff [simp]: "psize p = 0 \<longleftrightarrow> p = 0" |
98 |
unfolding psize_def by simp |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
99 |
|
56778 | 100 |
lemma poly_offset: |
101 |
fixes p :: "'a::comm_ring_1 poly" |
|
102 |
shows "\<exists>q. psize q = psize p \<and> (\<forall>x. poly q x = poly p (a + x))" |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
103 |
proof (intro exI conjI) |
29538 | 104 |
show "psize (offset_poly p a) = psize p" |
105 |
unfolding psize_def |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
106 |
by (simp add: offset_poly_eq_0_iff degree_offset_poly) |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
107 |
show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)" |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
108 |
by (simp add: poly_offset_poly) |
26123 | 109 |
qed |
110 |
||
111 |
text{* An alternative useful formulation of completeness of the reals *} |
|
56778 | 112 |
lemma real_sup_exists: |
113 |
assumes ex: "\<exists>x. P x" |
|
114 |
and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z" |
|
115 |
shows "\<exists>s::real. \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s" |
|
54263
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents:
54230
diff
changeset
|
116 |
proof |
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents:
54230
diff
changeset
|
117 |
from bz have "bdd_above (Collect P)" |
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents:
54230
diff
changeset
|
118 |
by (force intro: less_imp_le) |
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents:
54230
diff
changeset
|
119 |
then show "\<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < Sup (Collect P)" |
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents:
54230
diff
changeset
|
120 |
using ex bz by (subst less_cSup_iff) auto |
26123 | 121 |
qed |
122 |
||
27445 | 123 |
subsection {* Fundamental theorem of algebra *} |
26123 | 124 |
lemma unimodular_reduce_norm: |
125 |
assumes md: "cmod z = 1" |
|
126 |
shows "cmod (z + 1) < 1 \<or> cmod (z - 1) < 1 \<or> cmod (z + ii) < 1 \<or> cmod (z - ii) < 1" |
|
56778 | 127 |
proof - |
128 |
obtain x y where z: "z = Complex x y " |
|
129 |
by (cases z) auto |
|
130 |
from md z have xy: "x\<^sup>2 + y\<^sup>2 = 1" |
|
131 |
by (simp add: cmod_def) |
|
132 |
{ |
|
133 |
assume C: "cmod (z + 1) \<ge> 1" "cmod (z - 1) \<ge> 1" "cmod (z + ii) \<ge> 1" "cmod (z - ii) \<ge> 1" |
|
134 |
from C z xy have "2 * x \<le> 1" "2 * x \<ge> -1" "2 * y \<le> 1" "2 * y \<ge> -1" |
|
29667 | 135 |
by (simp_all add: cmod_def power2_eq_square algebra_simps) |
56778 | 136 |
then have "abs (2 * x) \<le> 1" "abs (2 * y) \<le> 1" |
137 |
by simp_all |
|
138 |
then have "(abs (2 * x))\<^sup>2 \<le> 1\<^sup>2" "(abs (2 * y))\<^sup>2 \<le> 1\<^sup>2" |
|
26123 | 139 |
by - (rule power_mono, simp, simp)+ |
56778 | 140 |
then have th0: "4 * x\<^sup>2 \<le> 1" "4 * y\<^sup>2 \<le> 1" |
51541 | 141 |
by (simp_all add: power_mult_distrib) |
56778 | 142 |
from add_mono[OF th0] xy have False by simp |
143 |
} |
|
144 |
then show ?thesis |
|
145 |
unfolding linorder_not_le[symmetric] by blast |
|
26123 | 146 |
qed |
147 |
||
26135 | 148 |
text{* Hence we can always reduce modulus of @{text "1 + b z^n"} if nonzero *} |
26123 | 149 |
lemma reduce_poly_simple: |
56778 | 150 |
assumes b: "b \<noteq> 0" |
151 |
and n: "n \<noteq> 0" |
|
26123 | 152 |
shows "\<exists>z. cmod (1 + b * z^n) < 1" |
56778 | 153 |
using n |
154 |
proof (induct n rule: nat_less_induct) |
|
26123 | 155 |
fix n |
56778 | 156 |
assume IH: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>z. cmod (1 + b * z ^ m) < 1)" |
157 |
assume n: "n \<noteq> 0" |
|
26123 | 158 |
let ?P = "\<lambda>z n. cmod (1 + b * z ^ n) < 1" |
56778 | 159 |
{ |
160 |
assume e: "even n" |
|
161 |
then have "\<exists>m. n = 2 * m" |
|
162 |
by presburger |
|
163 |
then obtain m where m: "n = 2 * m" |
|
164 |
by blast |
|
165 |
from n m have "m \<noteq> 0" "m < n" |
|
166 |
by presburger+ |
|
167 |
with IH[rule_format, of m] obtain z where z: "?P z m" |
|
168 |
by blast |
|
56795 | 169 |
from z have "?P (csqrt z) n" |
56889
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents:
56795
diff
changeset
|
170 |
by (simp add: m power_mult power2_csqrt) |
56778 | 171 |
then have "\<exists>z. ?P z n" .. |
172 |
} |
|
26123 | 173 |
moreover |
56778 | 174 |
{ |
175 |
assume o: "odd n" |
|
26123 | 176 |
have th0: "cmod (complex_of_real (cmod b) / b) = 1" |
36975 | 177 |
using b by (simp add: norm_divide) |
56778 | 178 |
from o have "\<exists>m. n = Suc (2 * m)" |
179 |
by presburger+ |
|
56795 | 180 |
then obtain m where m: "n = Suc (2 * m)" |
56778 | 181 |
by blast |
26123 | 182 |
from unimodular_reduce_norm[OF th0] o |
183 |
have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1" |
|
56795 | 184 |
apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1") |
185 |
apply (rule_tac x="1" in exI) |
|
186 |
apply simp |
|
187 |
apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1") |
|
188 |
apply (rule_tac x="-1" in exI) |
|
189 |
apply simp |
|
26123 | 190 |
apply (cases "cmod (complex_of_real (cmod b) / b + ii) < 1") |
56795 | 191 |
apply (cases "even m") |
192 |
apply (rule_tac x="ii" in exI) |
|
193 |
apply (simp add: m power_mult) |
|
194 |
apply (rule_tac x="- ii" in exI) |
|
195 |
apply (simp add: m power_mult) |
|
196 |
apply (cases "even m") |
|
197 |
apply (rule_tac x="- ii" in exI) |
|
198 |
apply (simp add: m power_mult) |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
199 |
apply (auto simp add: m power_mult) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
200 |
apply (rule_tac x="ii" in exI) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
201 |
apply (auto simp add: m power_mult) |
26123 | 202 |
done |
56778 | 203 |
then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1" |
204 |
by blast |
|
26123 | 205 |
let ?w = "v / complex_of_real (root n (cmod b))" |
206 |
from odd_real_root_pow[OF o, of "cmod b"] |
|
30488 | 207 |
have th1: "?w ^ n = v^n / complex_of_real (cmod b)" |
56889
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents:
56795
diff
changeset
|
208 |
by (simp add: power_divide of_real_power[symmetric]) |
56778 | 209 |
have th2:"cmod (complex_of_real (cmod b) / b) = 1" |
210 |
using b by (simp add: norm_divide) |
|
211 |
then have th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0" |
|
212 |
by simp |
|
26123 | 213 |
have th4: "cmod (complex_of_real (cmod b) / b) * |
56778 | 214 |
cmod (1 + b * (v ^ n / complex_of_real (cmod b))) < |
215 |
cmod (complex_of_real (cmod b) / b) * 1" |
|
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
46240
diff
changeset
|
216 |
apply (simp only: norm_mult[symmetric] distrib_left) |
56778 | 217 |
using b v |
218 |
apply (simp add: th2) |
|
219 |
done |
|
26123 | 220 |
from mult_less_imp_less_left[OF th4 th3] |
30488 | 221 |
have "?P ?w n" unfolding th1 . |
56778 | 222 |
then have "\<exists>z. ?P z n" .. |
223 |
} |
|
26123 | 224 |
ultimately show "\<exists>z. ?P z n" by blast |
225 |
qed |
|
226 |
||
227 |
text{* Bolzano-Weierstrass type property for closed disc in complex plane. *} |
|
228 |
||
56778 | 229 |
lemma metric_bound_lemma: "cmod (x - y) \<le> \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>" |
56795 | 230 |
using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y"] |
26123 | 231 |
unfolding cmod_def by simp |
232 |
||
233 |
lemma bolzano_weierstrass_complex_disc: |
|
234 |
assumes r: "\<forall>n. cmod (s n) \<le> r" |
|
235 |
shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)" |
|
236 |
proof- |
|
56778 | 237 |
from seq_monosub[of "Re \<circ> s"] |
55358
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
238 |
obtain f where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))" |
26123 | 239 |
unfolding o_def by blast |
56778 | 240 |
from seq_monosub[of "Im \<circ> s \<circ> f"] |
241 |
obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s (f (g n))))" |
|
242 |
unfolding o_def by blast |
|
243 |
let ?h = "f \<circ> g" |
|
244 |
from r[rule_format, of 0] have rp: "r \<ge> 0" |
|
245 |
using norm_ge_zero[of "s 0"] by arith |
|
246 |
have th: "\<forall>n. r + 1 \<ge> \<bar>Re (s n)\<bar>" |
|
26123 | 247 |
proof |
248 |
fix n |
|
56778 | 249 |
from abs_Re_le_cmod[of "s n"] r[rule_format, of n] |
250 |
show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith |
|
26123 | 251 |
qed |
56778 | 252 |
have conv1: "convergent (\<lambda>n. Re (s (f n)))" |
26123 | 253 |
apply (rule Bseq_monoseq_convergent) |
254 |
apply (simp add: Bseq_def) |
|
55358
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
255 |
apply (metis gt_ex le_less_linear less_trans order.trans th) |
56778 | 256 |
apply (rule f(2)) |
257 |
done |
|
258 |
have th: "\<forall>n. r + 1 \<ge> \<bar>Im (s n)\<bar>" |
|
26123 | 259 |
proof |
260 |
fix n |
|
56778 | 261 |
from abs_Im_le_cmod[of "s n"] r[rule_format, of n] |
262 |
show "\<bar>Im (s n)\<bar> \<le> r + 1" |
|
263 |
by arith |
|
26123 | 264 |
qed |
265 |
||
266 |
have conv2: "convergent (\<lambda>n. Im (s (f (g n))))" |
|
267 |
apply (rule Bseq_monoseq_convergent) |
|
268 |
apply (simp add: Bseq_def) |
|
55358
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
269 |
apply (metis gt_ex le_less_linear less_trans order.trans th) |
56778 | 270 |
apply (rule g(2)) |
271 |
done |
|
26123 | 272 |
|
30488 | 273 |
from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x" |
274 |
by blast |
|
56795 | 275 |
then have x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Re (s (f n)) - x\<bar> < r" |
31337 | 276 |
unfolding LIMSEQ_iff real_norm_def . |
26123 | 277 |
|
30488 | 278 |
from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y" |
279 |
by blast |
|
56795 | 280 |
then have y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Im (s (f (g n))) - y\<bar> < r" |
31337 | 281 |
unfolding LIMSEQ_iff real_norm_def . |
26123 | 282 |
let ?w = "Complex x y" |
56778 | 283 |
from f(1) g(1) have hs: "subseq ?h" |
284 |
unfolding subseq_def by auto |
|
285 |
{ |
|
286 |
fix e :: real |
|
287 |
assume ep: "e > 0" |
|
56795 | 288 |
then have e2: "e/2 > 0" |
289 |
by simp |
|
26123 | 290 |
from x[rule_format, OF e2] y[rule_format, OF e2] |
56778 | 291 |
obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2" |
56795 | 292 |
and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2" |
293 |
by blast |
|
56778 | 294 |
{ |
295 |
fix n |
|
296 |
assume nN12: "n \<ge> N1 + N2" |
|
297 |
then have nN1: "g n \<ge> N1" and nN2: "n \<ge> N2" |
|
298 |
using seq_suble[OF g(1), of n] by arith+ |
|
26123 | 299 |
from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]] |
30488 | 300 |
have "cmod (s (?h n) - ?w) < e" |
56778 | 301 |
using metric_bound_lemma[of "s (f (g n))" ?w] by simp |
302 |
} |
|
56795 | 303 |
then have "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e" |
304 |
by blast |
|
56778 | 305 |
} |
306 |
with hs show ?thesis by blast |
|
26123 | 307 |
qed |
308 |
||
309 |
text{* Polynomial is continuous. *} |
|
310 |
||
311 |
lemma poly_cont: |
|
56778 | 312 |
fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly" |
30488 | 313 |
assumes ep: "e > 0" |
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
314 |
shows "\<exists>d >0. \<forall>w. 0 < norm (w - z) \<and> norm (w - z) < d \<longrightarrow> norm (poly p w - poly p z) < e" |
56778 | 315 |
proof - |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
316 |
obtain q where q: "degree q = degree p" "\<And>x. poly q x = poly p (z + x)" |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
317 |
proof |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
318 |
show "degree (offset_poly p z) = degree p" |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
319 |
by (rule degree_offset_poly) |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
320 |
show "\<And>x. poly (offset_poly p z) x = poly p (z + x)" |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
321 |
by (rule poly_offset_poly) |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
322 |
qed |
56778 | 323 |
have th: "\<And>w. poly q (w - z) = poly p w" |
324 |
using q(2)[of "w - z" for w] by simp |
|
26123 | 325 |
show ?thesis unfolding th[symmetric] |
56778 | 326 |
proof (induct q) |
327 |
case 0 |
|
328 |
then show ?case |
|
329 |
using ep by auto |
|
26123 | 330 |
next |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
331 |
case (pCons c cs) |
30488 | 332 |
from poly_bound_exists[of 1 "cs"] |
56778 | 333 |
obtain m where m: "m > 0" "\<And>z. norm z \<le> 1 \<Longrightarrow> norm (poly cs z) \<le> m" |
334 |
by blast |
|
335 |
from ep m(1) have em0: "e/m > 0" |
|
336 |
by (simp add: field_simps) |
|
337 |
have one0: "1 > (0::real)" |
|
338 |
by arith |
|
30488 | 339 |
from real_lbound_gt_zero[OF one0 em0] |
56778 | 340 |
obtain d where d: "d > 0" "d < 1" "d < e / m" |
341 |
by blast |
|
342 |
from d(1,3) m(1) have dm: "d * m > 0" "d * m < e" |
|
56544 | 343 |
by (simp_all add: field_simps) |
30488 | 344 |
show ?case |
56778 | 345 |
proof (rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult) |
346 |
fix d w |
|
347 |
assume H: "d > 0" "d < 1" "d < e/m" "w \<noteq> z" "norm (w - z) < d" |
|
348 |
then have d1: "norm (w-z) \<le> 1" "d \<ge> 0" |
|
349 |
by simp_all |
|
350 |
from H(3) m(1) have dme: "d*m < e" |
|
351 |
by (simp add: field_simps) |
|
352 |
from H have th: "norm (w - z) \<le> d" |
|
353 |
by simp |
|
354 |
from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme |
|
355 |
show "norm (w - z) * norm (poly cs (w - z)) < e" |
|
356 |
by simp |
|
26123 | 357 |
qed |
56778 | 358 |
qed |
26123 | 359 |
qed |
360 |
||
30488 | 361 |
text{* Hence a polynomial attains minimum on a closed disc |
26123 | 362 |
in the complex plane. *} |
56778 | 363 |
lemma poly_minimum_modulus_disc: "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)" |
364 |
proof - |
|
365 |
{ |
|
366 |
assume "\<not> r \<ge> 0" |
|
367 |
then have ?thesis |
|
368 |
by (metis norm_ge_zero order.trans) |
|
369 |
} |
|
26123 | 370 |
moreover |
56778 | 371 |
{ |
372 |
assume rp: "r \<ge> 0" |
|
373 |
from rp have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))" |
|
374 |
by simp |
|
375 |
then have mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x" |
|
376 |
by blast |
|
377 |
{ |
|
378 |
fix x z |
|
379 |
assume H: "cmod z \<le> r" "cmod (poly p z) = - x" "\<not> x < 1" |
|
380 |
then have "- x < 0 " |
|
381 |
by arith |
|
382 |
with H(2) norm_ge_zero[of "poly p z"] have False |
|
383 |
by simp |
|
384 |
} |
|
385 |
then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z" |
|
386 |
by blast |
|
30488 | 387 |
from real_sup_exists[OF mth1 mth2] obtain s where |
56778 | 388 |
s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow> y < s" by blast |
389 |
let ?m = "- s" |
|
390 |
{ |
|
391 |
fix y |
|
392 |
from s[rule_format, of "-y"] |
|
393 |
have "(\<exists>z x. cmod z \<le> r \<and> - (- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y" |
|
394 |
unfolding minus_less_iff[of y ] equation_minus_iff by blast |
|
395 |
} |
|
26123 | 396 |
note s1 = this[unfolded minus_minus] |
30488 | 397 |
from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m" |
26123 | 398 |
by auto |
56778 | 399 |
{ |
400 |
fix n :: nat |
|
30488 | 401 |
from s1[rule_format, of "?m + 1/real (Suc n)"] |
26123 | 402 |
have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" |
56778 | 403 |
by simp |
404 |
} |
|
405 |
then have th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" .. |
|
30488 | 406 |
from choice[OF th] obtain g where |
56778 | 407 |
g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m + 1 /real(Suc n)" |
26123 | 408 |
by blast |
30488 | 409 |
from bolzano_weierstrass_complex_disc[OF g(1)] |
26123 | 410 |
obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e" |
30488 | 411 |
by blast |
56778 | 412 |
{ |
413 |
fix w |
|
26123 | 414 |
assume wr: "cmod w \<le> r" |
415 |
let ?e = "\<bar>cmod (poly p z) - ?m\<bar>" |
|
56778 | 416 |
{ |
417 |
assume e: "?e > 0" |
|
56795 | 418 |
then have e2: "?e/2 > 0" |
419 |
by simp |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
420 |
from poly_cont[OF e2, of z p] obtain d where |
56778 | 421 |
d: "d > 0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2" |
422 |
by blast |
|
423 |
{ |
|
424 |
fix w |
|
425 |
assume w: "cmod (w - z) < d" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
426 |
have "cmod(poly p w - poly p z) < ?e / 2" |
56778 | 427 |
using d(2)[rule_format, of w] w e by (cases "w = z") simp_all |
428 |
} |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
429 |
note th1 = this |
30488 | 430 |
|
56778 | 431 |
from fz(2) d(1) obtain N1 where N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d" |
432 |
by blast |
|
433 |
from reals_Archimedean2[of "2/?e"] obtain N2 :: nat where N2: "2/?e < real N2" |
|
434 |
by blast |
|
435 |
have th2: "cmod (poly p (g (f (N1 + N2))) - poly p z) < ?e/2" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
436 |
using N1[rule_format, of "N1 + N2"] th1 by simp |
56778 | 437 |
{ |
438 |
fix a b e2 m :: real |
|
439 |
have "a < e2 \<Longrightarrow> \<bar>b - m\<bar> < e2 \<Longrightarrow> 2 * e2 \<le> \<bar>b - m\<bar> + a \<Longrightarrow> False" |
|
440 |
by arith |
|
441 |
} |
|
442 |
note th0 = this |
|
443 |
have ath: "\<And>m x e::real. m \<le> x \<Longrightarrow> x < m + e \<Longrightarrow> \<bar>x - m\<bar> < e" |
|
444 |
by arith |
|
445 |
from s1m[OF g(1)[rule_format]] have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" . |
|
56795 | 446 |
from seq_suble[OF fz(1), of "N1 + N2"] |
56778 | 447 |
have th00: "real (Suc (N1 + N2)) \<le> real (Suc (f (N1 + N2)))" |
448 |
by simp |
|
449 |
have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1 + N2)) > 0" |
|
450 |
using N2 by auto |
|
451 |
from frac_le[OF th000 th00] |
|
56795 | 452 |
have th00: "?m + 1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))" |
56778 | 453 |
by simp |
454 |
from g(2)[rule_format, of "f (N1 + N2)"] |
|
455 |
have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" . |
|
456 |
from order_less_le_trans[OF th01 th00] |
|
56795 | 457 |
have th32: "cmod (poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" . |
56778 | 458 |
from N2 have "2/?e < real (Suc (N1 + N2))" |
459 |
by arith |
|
460 |
with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"] |
|
461 |
have "?e/2 > 1/ real (Suc (N1 + N2))" |
|
462 |
by (simp add: inverse_eq_divide) |
|
463 |
with ath[OF th31 th32] |
|
56795 | 464 |
have thc1: "\<bar>cmod (poly p (g (f (N1 + N2)))) - ?m\<bar> < ?e/2" |
56778 | 465 |
by arith |
466 |
have ath2: "\<And>a b c m::real. \<bar>a - b\<bar> \<le> c \<Longrightarrow> \<bar>b - m\<bar> \<le> \<bar>a - m\<bar> + c" |
|
467 |
by arith |
|
468 |
have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar> \<le> |
|
469 |
cmod (poly p (g (f (N1 + N2))) - poly p z)" |
|
470 |
by (simp add: norm_triangle_ineq3) |
|
471 |
from ath2[OF th22, of ?m] |
|
472 |
have thc2: "2 * (?e/2) \<le> |
|
473 |
\<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)" |
|
474 |
by simp |
|
475 |
from th0[OF th2 thc1 thc2] have False . |
|
476 |
} |
|
477 |
then have "?e = 0" |
|
478 |
by auto |
|
479 |
then have "cmod (poly p z) = ?m" |
|
480 |
by simp |
|
481 |
with s1m[OF wr] have "cmod (poly p z) \<le> cmod (poly p w)" |
|
482 |
by simp |
|
483 |
} |
|
484 |
then have ?thesis by blast |
|
485 |
} |
|
26123 | 486 |
ultimately show ?thesis by blast |
487 |
qed |
|
488 |
||
489 |
text {* Nonzero polynomial in z goes to infinity as z does. *} |
|
490 |
||
491 |
lemma poly_infinity: |
|
56778 | 492 |
fixes p:: "'a::{comm_semiring_0,real_normed_div_algebra} poly" |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
493 |
assumes ex: "p \<noteq> 0" |
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
494 |
shows "\<exists>r. \<forall>z. r \<le> norm z \<longrightarrow> d \<le> norm (poly (pCons a p) z)" |
56778 | 495 |
using ex |
496 |
proof (induct p arbitrary: a d) |
|
56795 | 497 |
case 0 |
498 |
then show ?case by simp |
|
499 |
next |
|
30488 | 500 |
case (pCons c cs a d) |
56795 | 501 |
show ?case |
502 |
proof (cases "cs = 0") |
|
503 |
case False |
|
56778 | 504 |
with pCons.hyps obtain r where r: "\<forall>z. r \<le> norm z \<longrightarrow> d + norm a \<le> norm (poly (pCons c cs) z)" |
505 |
by blast |
|
26123 | 506 |
let ?r = "1 + \<bar>r\<bar>" |
56778 | 507 |
{ |
56795 | 508 |
fix z :: 'a |
56778 | 509 |
assume h: "1 + \<bar>r\<bar> \<le> norm z" |
56795 | 510 |
have r0: "r \<le> norm z" |
511 |
using h by arith |
|
56778 | 512 |
from r[rule_format, OF r0] have th0: "d + norm a \<le> 1 * norm(poly (pCons c cs) z)" |
513 |
by arith |
|
514 |
from h have z1: "norm z \<ge> 1" |
|
515 |
by arith |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
516 |
from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]] |
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
517 |
have th1: "d \<le> norm(z * poly (pCons c cs) z) - norm a" |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
518 |
unfolding norm_mult by (simp add: algebra_simps) |
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
519 |
from norm_diff_ineq[of "z * poly (pCons c cs) z" a] |
56795 | 520 |
have th2: "norm (z * poly (pCons c cs) z) - norm a \<le> norm (poly (pCons a (pCons c cs)) z)" |
51541 | 521 |
by (simp add: algebra_simps) |
56795 | 522 |
from th1 th2 have "d \<le> norm (poly (pCons a (pCons c cs)) z)" |
523 |
by arith |
|
56778 | 524 |
} |
56795 | 525 |
then show ?thesis by blast |
526 |
next |
|
527 |
case True |
|
56778 | 528 |
with pCons.prems have c0: "c \<noteq> 0" |
529 |
by simp |
|
530 |
{ |
|
56795 | 531 |
fix z :: 'a |
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
532 |
assume h: "(\<bar>d\<bar> + norm a) / norm c \<le> norm z" |
56778 | 533 |
from c0 have "norm c > 0" |
534 |
by simp |
|
56403 | 535 |
from h c0 have th0: "\<bar>d\<bar> + norm a \<le> norm (z * c)" |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
536 |
by (simp add: field_simps norm_mult) |
56778 | 537 |
have ath: "\<And>mzh mazh ma. mzh \<le> mazh + ma \<Longrightarrow> \<bar>d\<bar> + ma \<le> mzh \<Longrightarrow> d \<le> mazh" |
538 |
by arith |
|
539 |
from norm_diff_ineq[of "z * c" a] have th1: "norm (z * c) \<le> norm (a + z * c) + norm a" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
540 |
by (simp add: algebra_simps) |
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
541 |
from ath[OF th1 th0] have "d \<le> norm (poly (pCons a (pCons c cs)) z)" |
56795 | 542 |
using True by simp |
56778 | 543 |
} |
56795 | 544 |
then show ?thesis by blast |
545 |
qed |
|
546 |
qed |
|
26123 | 547 |
|
548 |
text {* Hence polynomial's modulus attains its minimum somewhere. *} |
|
56778 | 549 |
lemma poly_minimum_modulus: "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)" |
550 |
proof (induct p) |
|
551 |
case 0 |
|
552 |
then show ?case by simp |
|
553 |
next |
|
30488 | 554 |
case (pCons c cs) |
56778 | 555 |
show ?case |
556 |
proof (cases "cs = 0") |
|
557 |
case False |
|
558 |
from poly_infinity[OF False, of "cmod (poly (pCons c cs) 0)" c] |
|
559 |
obtain r where r: "\<And>z. r \<le> cmod z \<Longrightarrow> cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)" |
|
560 |
by blast |
|
561 |
have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>" |
|
562 |
by arith |
|
30488 | 563 |
from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"] |
56778 | 564 |
obtain v where v: "\<And>w. cmod w \<le> \<bar>r\<bar> \<Longrightarrow> cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)" |
565 |
by blast |
|
566 |
{ |
|
567 |
fix z |
|
568 |
assume z: "r \<le> cmod z" |
|
569 |
from v[of 0] r[OF z] have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)" |
|
570 |
by simp |
|
571 |
} |
|
26123 | 572 |
note v0 = this |
56778 | 573 |
from v0 v ath[of r] show ?thesis |
574 |
by blast |
|
575 |
next |
|
576 |
case True |
|
577 |
with pCons.hyps show ?thesis by simp |
|
578 |
qed |
|
579 |
qed |
|
26123 | 580 |
|
581 |
text{* Constant function (non-syntactic characterization). *} |
|
56795 | 582 |
definition "constant f \<longleftrightarrow> (\<forall>x y. f x = f y)" |
26123 | 583 |
|
56778 | 584 |
lemma nonconstant_length: "\<not> constant (poly p) \<Longrightarrow> psize p \<ge> 2" |
585 |
by (induct p) (auto simp: constant_def psize_def) |
|
30488 | 586 |
|
56795 | 587 |
lemma poly_replicate_append: "poly (monom 1 n * p) (x::'a::comm_ring_1) = x^n * poly p x" |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
588 |
by (simp add: poly_monom) |
26123 | 589 |
|
30488 | 590 |
text {* Decomposition of polynomial, skipping zero coefficients |
26123 | 591 |
after the first. *} |
592 |
||
593 |
lemma poly_decompose_lemma: |
|
56778 | 594 |
assumes nz: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly p z = (0::'a::idom))" |
56795 | 595 |
shows "\<exists>k a q. a \<noteq> 0 \<and> Suc (psize q + k) = psize p \<and> (\<forall>z. poly p z = z^k * poly (pCons a q) z)" |
56778 | 596 |
unfolding psize_def |
597 |
using nz |
|
598 |
proof (induct p) |
|
599 |
case 0 |
|
600 |
then show ?case by simp |
|
26123 | 601 |
next |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
602 |
case (pCons c cs) |
56778 | 603 |
show ?case |
604 |
proof (cases "c = 0") |
|
605 |
case True |
|
606 |
from pCons.hyps pCons.prems True show ?thesis |
|
32456
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
nipkow
parents:
31337
diff
changeset
|
607 |
apply (auto) |
26123 | 608 |
apply (rule_tac x="k+1" in exI) |
609 |
apply (rule_tac x="a" in exI, clarsimp) |
|
610 |
apply (rule_tac x="q" in exI) |
|
56778 | 611 |
apply auto |
612 |
done |
|
613 |
next |
|
614 |
case False |
|
615 |
show ?thesis |
|
26123 | 616 |
apply (rule exI[where x=0]) |
56778 | 617 |
apply (rule exI[where x=c], auto simp add: False) |
618 |
done |
|
619 |
qed |
|
26123 | 620 |
qed |
621 |
||
622 |
lemma poly_decompose: |
|
56776 | 623 |
assumes nc: "\<not> constant (poly p)" |
56778 | 624 |
shows "\<exists>k a q. a \<noteq> (0::'a::idom) \<and> k \<noteq> 0 \<and> |
30488 | 625 |
psize q + k + 1 = psize p \<and> |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
626 |
(\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)" |
56776 | 627 |
using nc |
628 |
proof (induct p) |
|
629 |
case 0 |
|
630 |
then show ?case |
|
631 |
by (simp add: constant_def) |
|
26123 | 632 |
next |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
633 |
case (pCons c cs) |
56776 | 634 |
{ |
56795 | 635 |
assume C: "\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0" |
56776 | 636 |
{ |
637 |
fix x y |
|
638 |
from C have "poly (pCons c cs) x = poly (pCons c cs) y" |
|
639 |
by (cases "x = 0") auto |
|
640 |
} |
|
56778 | 641 |
with pCons.prems have False |
642 |
by (auto simp add: constant_def) |
|
56776 | 643 |
} |
644 |
then have th: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0)" .. |
|
30488 | 645 |
from poly_decompose_lemma[OF th] |
646 |
show ?case |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
647 |
apply clarsimp |
26123 | 648 |
apply (rule_tac x="k+1" in exI) |
649 |
apply (rule_tac x="a" in exI) |
|
650 |
apply simp |
|
651 |
apply (rule_tac x="q" in exI) |
|
29538 | 652 |
apply (auto simp add: psize_def split: if_splits) |
26123 | 653 |
done |
654 |
qed |
|
655 |
||
34915 | 656 |
text{* Fundamental theorem of algebra *} |
26123 | 657 |
|
658 |
lemma fundamental_theorem_of_algebra: |
|
56776 | 659 |
assumes nc: "\<not> constant (poly p)" |
26123 | 660 |
shows "\<exists>z::complex. poly p z = 0" |
56776 | 661 |
using nc |
662 |
proof (induct "psize p" arbitrary: p rule: less_induct) |
|
34915 | 663 |
case less |
26123 | 664 |
let ?p = "poly p" |
665 |
let ?ths = "\<exists>z. ?p z = 0" |
|
666 |
||
34915 | 667 |
from nonconstant_length[OF less(2)] have n2: "psize p \<ge> 2" . |
56776 | 668 |
from poly_minimum_modulus obtain c where c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)" |
669 |
by blast |
|
56778 | 670 |
|
671 |
show ?ths |
|
672 |
proof (cases "?p c = 0") |
|
673 |
case True |
|
674 |
then show ?thesis by blast |
|
675 |
next |
|
676 |
case False |
|
677 |
note pc0 = this |
|
678 |
from poly_offset[of p c] obtain q where q: "psize q = psize p" "\<forall>x. poly q x = ?p (c + x)" |
|
679 |
by blast |
|
680 |
{ |
|
681 |
assume h: "constant (poly q)" |
|
56795 | 682 |
from q(2) have th: "\<forall>x. poly q (x - c) = ?p x" |
683 |
by auto |
|
56778 | 684 |
{ |
685 |
fix x y |
|
56795 | 686 |
from th have "?p x = poly q (x - c)" |
687 |
by auto |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
688 |
also have "\<dots> = poly q (y - c)" |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
689 |
using h unfolding constant_def by blast |
56795 | 690 |
also have "\<dots> = ?p y" |
691 |
using th by auto |
|
56778 | 692 |
finally have "?p x = ?p y" . |
693 |
} |
|
694 |
with less(2) have False |
|
695 |
unfolding constant_def by blast |
|
696 |
} |
|
697 |
then have qnc: "\<not> constant (poly q)" |
|
698 |
by blast |
|
699 |
from q(2) have pqc0: "?p c = poly q 0" |
|
700 |
by simp |
|
701 |
from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)" |
|
702 |
by simp |
|
26123 | 703 |
let ?a0 = "poly q 0" |
56778 | 704 |
from pc0 pqc0 have a00: "?a0 \<noteq> 0" |
705 |
by simp |
|
706 |
from a00 have qr: "\<forall>z. poly q z = poly (smult (inverse ?a0) q) z * ?a0" |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
707 |
by simp |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
708 |
let ?r = "smult (inverse ?a0) q" |
29538 | 709 |
have lgqr: "psize q = psize ?r" |
56778 | 710 |
using a00 |
711 |
unfolding psize_def degree_def |
|
52380 | 712 |
by (simp add: poly_eq_iff) |
56778 | 713 |
{ |
714 |
assume h: "\<And>x y. poly ?r x = poly ?r y" |
|
715 |
{ |
|
716 |
fix x y |
|
717 |
from qr[rule_format, of x] have "poly q x = poly ?r x * ?a0" |
|
718 |
by auto |
|
719 |
also have "\<dots> = poly ?r y * ?a0" |
|
720 |
using h by simp |
|
721 |
also have "\<dots> = poly q y" |
|
722 |
using qr[rule_format, of y] by simp |
|
723 |
finally have "poly q x = poly q y" . |
|
724 |
} |
|
56795 | 725 |
with qnc have False |
726 |
unfolding constant_def by blast |
|
56778 | 727 |
} |
728 |
then have rnc: "\<not> constant (poly ?r)" |
|
729 |
unfolding constant_def by blast |
|
730 |
from qr[rule_format, of 0] a00 have r01: "poly ?r 0 = 1" |
|
731 |
by auto |
|
732 |
{ |
|
733 |
fix w |
|
26123 | 734 |
have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1" |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
735 |
using qr[rule_format, of w] a00 by (simp add: divide_inverse mult_ac) |
26123 | 736 |
also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0" |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
737 |
using a00 unfolding norm_divide by (simp add: field_simps) |
56778 | 738 |
finally have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" . |
739 |
} |
|
26123 | 740 |
note mrmq_eq = this |
30488 | 741 |
from poly_decompose[OF rnc] obtain k a s where |
56778 | 742 |
kas: "a \<noteq> 0" "k \<noteq> 0" "psize s + k + 1 = psize ?r" |
743 |
"\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast |
|
744 |
{ |
|
745 |
assume "psize p = k + 1" |
|
746 |
with kas(3) lgqr[symmetric] q(1) have s0: "s = 0" |
|
747 |
by auto |
|
748 |
{ |
|
749 |
fix w |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
750 |
have "cmod (poly ?r w) = cmod (1 + a * w ^ k)" |
56778 | 751 |
using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps) |
752 |
} |
|
26123 | 753 |
note hth = this [symmetric] |
56778 | 754 |
from reduce_poly_simple[OF kas(1,2)] have "\<exists>w. cmod (poly ?r w) < 1" |
755 |
unfolding hth by blast |
|
756 |
} |
|
26123 | 757 |
moreover |
56778 | 758 |
{ |
759 |
assume kn: "psize p \<noteq> k + 1" |
|
760 |
from kn kas(3) q(1) lgqr have k1n: "k + 1 < psize p" |
|
761 |
by simp |
|
30488 | 762 |
have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))" |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
763 |
unfolding constant_def poly_pCons poly_monom |
56795 | 764 |
using kas(1) |
765 |
apply simp |
|
56778 | 766 |
apply (rule exI[where x=0]) |
767 |
apply (rule exI[where x=1]) |
|
768 |
apply simp |
|
769 |
done |
|
770 |
from kas(1) kas(2) have th02: "k + 1 = psize (pCons 1 (monom a (k - 1)))" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
771 |
by (simp add: psize_def degree_monom_eq) |
34915 | 772 |
from less(1) [OF k1n [simplified th02] th01] |
26123 | 773 |
obtain w where w: "1 + w^k * a = 0" |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
774 |
unfolding poly_pCons poly_monom |
56778 | 775 |
using kas(2) by (cases k) (auto simp add: algebra_simps) |
30488 | 776 |
from poly_bound_exists[of "cmod w" s] obtain m where |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
777 |
m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast |
56795 | 778 |
have w0: "w \<noteq> 0" |
779 |
using kas(2) w by (auto simp add: power_0_left) |
|
56778 | 780 |
from w have "(1 + w ^ k * a) - 1 = 0 - 1" |
781 |
by simp |
|
782 |
then have wm1: "w^k * a = - 1" |
|
783 |
by simp |
|
30488 | 784 |
have inv0: "0 < inverse (cmod w ^ (k + 1) * m)" |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
785 |
using norm_ge_zero[of w] w0 m(1) |
56778 | 786 |
by (simp add: inverse_eq_divide zero_less_mult_iff) |
55358
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
787 |
with real_lbound_gt_zero[OF zero_less_one] obtain t where |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
788 |
t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast |
26123 | 789 |
let ?ct = "complex_of_real t" |
790 |
let ?w = "?ct * w" |
|
56778 | 791 |
have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w" |
792 |
using kas(1) by (simp add: algebra_simps power_mult_distrib) |
|
26123 | 793 |
also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w" |
56778 | 794 |
unfolding wm1 by simp |
795 |
finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) = |
|
796 |
cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)" |
|
55358
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
797 |
by metis |
30488 | 798 |
with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"] |
56778 | 799 |
have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)" |
800 |
unfolding norm_of_real by simp |
|
801 |
have ath: "\<And>x t::real. 0 \<le> x \<Longrightarrow> x < t \<Longrightarrow> t \<le> 1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1" |
|
802 |
by arith |
|
803 |
have "t * cmod w \<le> 1 * cmod w" |
|
804 |
apply (rule mult_mono) |
|
805 |
using t(1,2) |
|
806 |
apply auto |
|
807 |
done |
|
808 |
then have tw: "cmod ?w \<le> cmod w" |
|
809 |
using t(1) by (simp add: norm_mult) |
|
810 |
from t inv0 have "t * (cmod w ^ (k + 1) * m) < 1" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
811 |
by (simp add: inverse_eq_divide field_simps) |
56778 | 812 |
with zero_less_power[OF t(1), of k] have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1" |
55358
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
813 |
by (metis comm_mult_strict_left_mono) |
56778 | 814 |
have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k + 1) * cmod (poly s ?w)))" |
815 |
using w0 t(1) |
|
51541 | 816 |
by (simp add: algebra_simps power_mult_distrib norm_power norm_mult) |
26123 | 817 |
then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))" |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
818 |
using t(1,2) m(2)[rule_format, OF tw] w0 |
55358
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
819 |
by auto |
56778 | 820 |
with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k" |
821 |
by simp |
|
30488 | 822 |
from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1" |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
823 |
by auto |
27514 | 824 |
from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121] |
30488 | 825 |
have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" . |
56778 | 826 |
from th11 th12 have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1" |
827 |
by arith |
|
30488 | 828 |
then have "cmod (poly ?r ?w) < 1" |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
829 |
unfolding kas(4)[rule_format, of ?w] r01 by simp |
56778 | 830 |
then have "\<exists>w. cmod (poly ?r w) < 1" |
831 |
by blast |
|
832 |
} |
|
833 |
ultimately have cr0_contr: "\<exists>w. cmod (poly ?r w) < 1" |
|
834 |
by blast |
|
835 |
from cr0_contr cq0 q(2) show ?thesis |
|
836 |
unfolding mrmq_eq not_less[symmetric] by auto |
|
837 |
qed |
|
26123 | 838 |
qed |
839 |
||
840 |
text {* Alternative version with a syntactic notion of constant polynomial. *} |
|
841 |
||
842 |
lemma fundamental_theorem_of_algebra_alt: |
|
56778 | 843 |
assumes nc: "\<not> (\<exists>a l. a \<noteq> 0 \<and> l = 0 \<and> p = pCons a l)" |
26123 | 844 |
shows "\<exists>z. poly p z = (0::complex)" |
56778 | 845 |
using nc |
846 |
proof (induct p) |
|
847 |
case 0 |
|
848 |
then show ?case by simp |
|
849 |
next |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
850 |
case (pCons c cs) |
56778 | 851 |
show ?case |
852 |
proof (cases "c = 0") |
|
853 |
case True |
|
854 |
then show ?thesis by auto |
|
855 |
next |
|
856 |
case False |
|
857 |
{ |
|
858 |
assume nc: "constant (poly (pCons c cs))" |
|
30488 | 859 |
from nc[unfolded constant_def, rule_format, of 0] |
860 |
have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto |
|
56778 | 861 |
then have "cs = 0" |
862 |
proof (induct cs) |
|
863 |
case 0 |
|
864 |
then show ?case by simp |
|
865 |
next |
|
866 |
case (pCons d ds) |
|
867 |
show ?case |
|
868 |
proof (cases "d = 0") |
|
869 |
case True |
|
870 |
then show ?thesis using pCons.prems pCons.hyps by simp |
|
871 |
next |
|
872 |
case False |
|
873 |
from poly_bound_exists[of 1 ds] obtain m where |
|
874 |
m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast |
|
56795 | 875 |
have dm: "cmod d / m > 0" |
876 |
using False m(1) by (simp add: field_simps) |
|
56778 | 877 |
from real_lbound_gt_zero[OF dm zero_less_one] obtain x where |
878 |
x: "x > 0" "x < cmod d / m" "x < 1" by blast |
|
879 |
let ?x = "complex_of_real x" |
|
56795 | 880 |
from x have cx: "?x \<noteq> 0" "cmod ?x \<le> 1" |
881 |
by simp_all |
|
56778 | 882 |
from pCons.prems[rule_format, OF cx(1)] |
56795 | 883 |
have cth: "cmod (?x*poly ds ?x) = cmod d" |
884 |
by (simp add: eq_diff_eq[symmetric]) |
|
56778 | 885 |
from m(2)[rule_format, OF cx(2)] x(1) |
886 |
have th0: "cmod (?x*poly ds ?x) \<le> x*m" |
|
887 |
by (simp add: norm_mult) |
|
56795 | 888 |
from x(2) m(1) have "x * m < cmod d" |
889 |
by (simp add: field_simps) |
|
890 |
with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d" |
|
891 |
by auto |
|
892 |
with cth show ?thesis |
|
893 |
by blast |
|
56778 | 894 |
qed |
895 |
qed |
|
896 |
} |
|
56795 | 897 |
then have nc: "\<not> constant (poly (pCons c cs))" |
898 |
using pCons.prems False by blast |
|
56778 | 899 |
from fundamental_theorem_of_algebra[OF nc] show ?thesis . |
900 |
qed |
|
901 |
qed |
|
26123 | 902 |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
903 |
|
37093 | 904 |
subsection{* Nullstellensatz, degrees and divisibility of polynomials *} |
26123 | 905 |
|
906 |
lemma nullstellensatz_lemma: |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
907 |
fixes p :: "complex poly" |
26123 | 908 |
assumes "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0" |
56776 | 909 |
and "degree p = n" |
910 |
and "n \<noteq> 0" |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
911 |
shows "p dvd (q ^ n)" |
56776 | 912 |
using assms |
913 |
proof (induct n arbitrary: p q rule: nat_less_induct) |
|
914 |
fix n :: nat |
|
915 |
fix p q :: "complex poly" |
|
26123 | 916 |
assume IH: "\<forall>m<n. \<forall>p q. |
917 |
(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow> |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
918 |
degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p dvd (q ^ m)" |
30488 | 919 |
and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0" |
56778 | 920 |
and dpn: "degree p = n" |
921 |
and n0: "n \<noteq> 0" |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
922 |
from dpn n0 have pne: "p \<noteq> 0" by auto |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
923 |
let ?ths = "p dvd (q ^ n)" |
56778 | 924 |
{ |
925 |
fix a |
|
926 |
assume a: "poly p a = 0" |
|
927 |
{ |
|
928 |
assume oa: "order a p \<noteq> 0" |
|
26123 | 929 |
let ?op = "order a p" |
56778 | 930 |
from pne have ap: "([:- a, 1:] ^ ?op) dvd p" "\<not> [:- a, 1:] ^ (Suc ?op) dvd p" |
931 |
using order by blast+ |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
932 |
note oop = order_degree[OF pne, unfolded dpn] |
56778 | 933 |
{ |
934 |
assume q0: "q = 0" |
|
935 |
then have ?ths using n0 |
|
936 |
by (simp add: power_0_left) |
|
937 |
} |
|
26123 | 938 |
moreover |
56778 | 939 |
{ |
940 |
assume q0: "q \<noteq> 0" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
941 |
from pq0[rule_format, OF a, unfolded poly_eq_0_iff_dvd] |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
942 |
obtain r where r: "q = [:- a, 1:] * r" by (rule dvdE) |
56778 | 943 |
from ap(1) obtain s where s: "p = [:- a, 1:] ^ ?op * s" |
944 |
by (rule dvdE) |
|
945 |
have sne: "s \<noteq> 0" using s pne by auto |
|
946 |
{ |
|
947 |
assume ds0: "degree s = 0" |
|
51541 | 948 |
from ds0 obtain k where kpn: "s = [:k:]" |
949 |
by (cases s) (auto split: if_splits) |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
950 |
from sne kpn have k: "k \<noteq> 0" by simp |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
951 |
let ?w = "([:1/k:] * ([:-a,1:] ^ (n - ?op))) * (r ^ n)" |
55358
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
952 |
have "q ^ n = p * ?w" |
56795 | 953 |
apply (subst r) |
954 |
apply (subst s) |
|
955 |
apply (subst kpn) |
|
56778 | 956 |
using k oop [of a] |
56795 | 957 |
apply (subst power_mult_distrib) |
958 |
apply simp |
|
959 |
apply (subst power_add [symmetric]) |
|
960 |
apply simp |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
961 |
done |
56795 | 962 |
then have ?ths |
963 |
unfolding dvd_def by blast |
|
56778 | 964 |
} |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
965 |
moreover |
56778 | 966 |
{ |
967 |
assume ds0: "degree s \<noteq> 0" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
968 |
from ds0 sne dpn s oa |
56778 | 969 |
have dsn: "degree s < n" |
970 |
apply auto |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
971 |
apply (erule ssubst) |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
972 |
apply (simp add: degree_mult_eq degree_linear_power) |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
973 |
done |
56778 | 974 |
{ |
975 |
fix x assume h: "poly s x = 0" |
|
976 |
{ |
|
977 |
assume xa: "x = a" |
|
978 |
from h[unfolded xa poly_eq_0_iff_dvd] obtain u where u: "s = [:- a, 1:] * u" |
|
979 |
by (rule dvdE) |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
980 |
have "p = [:- a, 1:] ^ (Suc ?op) * u" |
56795 | 981 |
apply (subst s) |
982 |
apply (subst u) |
|
983 |
apply (simp only: power_Suc mult_ac) |
|
984 |
done |
|
985 |
with ap(2)[unfolded dvd_def] have False |
|
986 |
by blast |
|
56778 | 987 |
} |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
988 |
note xa = this |
56795 | 989 |
from h have "poly p x = 0" |
990 |
by (subst s) simp |
|
991 |
with pq0 have "poly q x = 0" |
|
992 |
by blast |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
993 |
with r xa have "poly r x = 0" |
56778 | 994 |
by auto |
995 |
} |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
996 |
note impth = this |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
997 |
from IH[rule_format, OF dsn, of s r] impth ds0 |
56795 | 998 |
have "s dvd (r ^ (degree s))" |
999 |
by blast |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
1000 |
then obtain u where u: "r ^ (degree s) = s * u" .. |
56778 | 1001 |
then have u': "\<And>x. poly s x * poly u x = poly r x ^ degree s" |
29470
1851088a1f87
convert Deriv.thy to use new Polynomial library (incomplete)
huffman
parents:
29464
diff
changeset
|
1002 |
by (simp only: poly_mult[symmetric] poly_power[symmetric]) |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
1003 |
let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))" |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
1004 |
from oop[of a] dsn have "q ^ n = p * ?w" |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1005 |
apply - |
56795 | 1006 |
apply (subst s) |
1007 |
apply (subst r) |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1008 |
apply (simp only: power_mult_distrib) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56889
diff
changeset
|
1009 |
apply (subst mult.assoc [where b=s]) |
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56889
diff
changeset
|
1010 |
apply (subst mult.assoc [where a=u]) |
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56889
diff
changeset
|
1011 |
apply (subst mult.assoc [where b=u, symmetric]) |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1012 |
apply (subst u [symmetric]) |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1013 |
apply (simp add: mult_ac power_add [symmetric]) |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1014 |
done |
56795 | 1015 |
then have ?ths |
1016 |
unfolding dvd_def by blast |
|
56778 | 1017 |
} |
1018 |
ultimately have ?ths by blast |
|
1019 |
} |
|
1020 |
ultimately have ?ths by blast |
|
1021 |
} |
|
1022 |
then have ?ths using a order_root pne by blast |
|
1023 |
} |
|
26123 | 1024 |
moreover |
56778 | 1025 |
{ |
1026 |
assume exa: "\<not> (\<exists>a. poly p a = 0)" |
|
1027 |
from fundamental_theorem_of_algebra_alt[of p] exa |
|
1028 |
obtain c where ccs: "c \<noteq> 0" "p = pCons c 0" |
|
1029 |
by blast |
|
1030 |
then have pp: "\<And>x. poly p x = c" |
|
1031 |
by simp |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1032 |
let ?w = "[:1/c:] * (q ^ n)" |
56778 | 1033 |
from ccs have "(q ^ n) = (p * ?w)" |
1034 |
by simp |
|
1035 |
then have ?ths |
|
1036 |
unfolding dvd_def by blast |
|
1037 |
} |
|
26123 | 1038 |
ultimately show ?ths by blast |
1039 |
qed |
|
1040 |
||
1041 |
lemma nullstellensatz_univariate: |
|
30488 | 1042 |
"(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1043 |
p dvd (q ^ (degree p)) \<or> (p = 0 \<and> q = 0)" |
56776 | 1044 |
proof - |
56778 | 1045 |
{ |
1046 |
assume pe: "p = 0" |
|
1047 |
then have eq: "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> q = 0" |
|
52380 | 1048 |
by (auto simp add: poly_all_0_iff_0) |
56778 | 1049 |
{ |
1050 |
assume "p dvd (q ^ (degree p))" |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1051 |
then obtain r where r: "q ^ (degree p) = p * r" .. |
56778 | 1052 |
from r pe have False by simp |
1053 |
} |
|
1054 |
with eq pe have ?thesis by blast |
|
1055 |
} |
|
26123 | 1056 |
moreover |
56778 | 1057 |
{ |
1058 |
assume pe: "p \<noteq> 0" |
|
1059 |
{ |
|
1060 |
assume dp: "degree p = 0" |
|
1061 |
then obtain k where k: "p = [:k:]" "k \<noteq> 0" using pe |
|
51541 | 1062 |
by (cases p) (simp split: if_splits) |
56778 | 1063 |
then have th1: "\<forall>x. poly p x \<noteq> 0" |
1064 |
by simp |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1065 |
from k dp have "q ^ (degree p) = p * [:1/k:]" |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1066 |
by (simp add: one_poly_def) |
56778 | 1067 |
then have th2: "p dvd (q ^ (degree p))" .. |
56795 | 1068 |
from th1 th2 pe have ?thesis |
1069 |
by blast |
|
56778 | 1070 |
} |
26123 | 1071 |
moreover |
56778 | 1072 |
{ |
1073 |
assume dp: "degree p \<noteq> 0" |
|
1074 |
then obtain n where n: "degree p = Suc n " |
|
1075 |
by (cases "degree p") auto |
|
1076 |
{ |
|
1077 |
assume "p dvd (q ^ (Suc n))" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
1078 |
then obtain u where u: "q ^ (Suc n) = p * u" .. |
56778 | 1079 |
{ |
1080 |
fix x |
|
1081 |
assume h: "poly p x = 0" "poly q x \<noteq> 0" |
|
1082 |
then have "poly (q ^ (Suc n)) x \<noteq> 0" |
|
1083 |
by simp |
|
1084 |
then have False using u h(1) |
|
1085 |
by (simp only: poly_mult) simp |
|
1086 |
} |
|
1087 |
} |
|
1088 |
with n nullstellensatz_lemma[of p q "degree p"] dp |
|
1089 |
have ?thesis by auto |
|
1090 |
} |
|
1091 |
ultimately have ?thesis by blast |
|
1092 |
} |
|
26123 | 1093 |
ultimately show ?thesis by blast |
1094 |
qed |
|
1095 |
||
56795 | 1096 |
text {* Useful lemma *} |
26123 | 1097 |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1098 |
lemma constant_degree: |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1099 |
fixes p :: "'a::{idom,ring_char_0} poly" |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1100 |
shows "constant (poly p) \<longleftrightarrow> degree p = 0" (is "?lhs = ?rhs") |
26123 | 1101 |
proof |
1102 |
assume l: ?lhs |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1103 |
from l[unfolded constant_def, rule_format, of _ "0"] |
56776 | 1104 |
have th: "poly p = poly [:poly p 0:]" |
1105 |
by auto |
|
1106 |
then have "p = [:poly p 0:]" |
|
1107 |
by (simp add: poly_eq_poly_eq_iff) |
|
1108 |
then have "degree p = degree [:poly p 0:]" |
|
1109 |
by simp |
|
1110 |
then show ?rhs |
|
1111 |
by simp |
|
26123 | 1112 |
next |
1113 |
assume r: ?rhs |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1114 |
then obtain k where "p = [:k:]" |
51541 | 1115 |
by (cases p) (simp split: if_splits) |
56776 | 1116 |
then show ?lhs |
1117 |
unfolding constant_def by auto |
|
26123 | 1118 |
qed |
1119 |
||
56776 | 1120 |
lemma divides_degree: |
1121 |
assumes pq: "p dvd (q:: complex poly)" |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1122 |
shows "degree p \<le> degree q \<or> q = 0" |
56776 | 1123 |
by (metis dvd_imp_degree_le pq) |
26123 | 1124 |
|
56795 | 1125 |
text {* Arithmetic operations on multivariate polynomials. *} |
26123 | 1126 |
|
30488 | 1127 |
lemma mpoly_base_conv: |
56778 | 1128 |
fixes x :: "'a::comm_ring_1" |
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
1129 |
shows "0 = poly 0 x" "c = poly [:c:] x" "x = poly [:0,1:] x" |
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
1130 |
by simp_all |
26123 | 1131 |
|
30488 | 1132 |
lemma mpoly_norm_conv: |
56778 | 1133 |
fixes x :: "'a::comm_ring_1" |
56776 | 1134 |
shows "poly [:0:] x = poly 0 x" "poly [:poly 0 y:] x = poly 0 x" |
1135 |
by simp_all |
|
26123 | 1136 |
|
30488 | 1137 |
lemma mpoly_sub_conv: |
56778 | 1138 |
fixes x :: "'a::comm_ring_1" |
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
1139 |
shows "poly p x - poly q x = poly p x + -1 * poly q x" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53077
diff
changeset
|
1140 |
by simp |
26123 | 1141 |
|
56778 | 1142 |
lemma poly_pad_rule: "poly p x = 0 \<Longrightarrow> poly (pCons 0 p) x = 0" |
1143 |
by simp |
|
26123 | 1144 |
|
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
1145 |
lemma poly_cancel_eq_conv: |
56778 | 1146 |
fixes x :: "'a::field" |
56795 | 1147 |
shows "x = 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> y = 0 \<longleftrightarrow> a * y - b * x = 0" |
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
1148 |
by auto |
26123 | 1149 |
|
30488 | 1150 |
lemma poly_divides_pad_rule: |
56778 | 1151 |
fixes p:: "('a::comm_ring_1) poly" |
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1152 |
assumes pq: "p dvd q" |
56778 | 1153 |
shows "p dvd (pCons 0 q)" |
1154 |
proof - |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1155 |
have "pCons 0 q = q * [:0,1:]" by simp |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1156 |
then have "q dvd (pCons 0 q)" .. |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1157 |
with pq show ?thesis by (rule dvd_trans) |
26123 | 1158 |
qed |
1159 |
||
30488 | 1160 |
lemma poly_divides_conv0: |
56778 | 1161 |
fixes p:: "'a::field poly" |
56776 | 1162 |
assumes lgpq: "degree q < degree p" |
1163 |
and lq: "p \<noteq> 0" |
|
1164 |
shows "p dvd q \<longleftrightarrow> q = 0" (is "?lhs \<longleftrightarrow> ?rhs") |
|
1165 |
proof |
|
1166 |
assume r: ?rhs |
|
1167 |
then have "q = p * 0" by simp |
|
1168 |
then show ?lhs .. |
|
1169 |
next |
|
1170 |
assume l: ?lhs |
|
56778 | 1171 |
show ?rhs |
1172 |
proof (cases "q = 0") |
|
1173 |
case True |
|
1174 |
then show ?thesis by simp |
|
1175 |
next |
|
56776 | 1176 |
assume q0: "q \<noteq> 0" |
1177 |
from l q0 have "degree p \<le> degree q" |
|
1178 |
by (rule dvd_imp_degree_le) |
|
56778 | 1179 |
with lgpq show ?thesis by simp |
1180 |
qed |
|
26123 | 1181 |
qed |
1182 |
||
30488 | 1183 |
lemma poly_divides_conv1: |
56778 | 1184 |
fixes p :: "'a::field poly" |
56776 | 1185 |
assumes a0: "a \<noteq> 0" |
1186 |
and pp': "p dvd p'" |
|
1187 |
and qrp': "smult a q - p' = r" |
|
1188 |
shows "p dvd q \<longleftrightarrow> p dvd r" (is "?lhs \<longleftrightarrow> ?rhs") |
|
1189 |
proof |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1190 |
from pp' obtain t where t: "p' = p * t" .. |
56776 | 1191 |
{ |
1192 |
assume l: ?lhs |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1193 |
then obtain u where u: "q = p * u" .. |
56776 | 1194 |
have "r = p * (smult a u - t)" |
1195 |
using u qrp' [symmetric] t by (simp add: algebra_simps) |
|
1196 |
then show ?rhs .. |
|
1197 |
next |
|
1198 |
assume r: ?rhs |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1199 |
then obtain u where u: "r = p * u" .. |
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1200 |
from u [symmetric] t qrp' [symmetric] a0 |
51541 | 1201 |
have "q = p * smult (1/a) (u + t)" by (simp add: algebra_simps) |
56776 | 1202 |
then show ?lhs .. |
1203 |
} |
|
26123 | 1204 |
qed |
1205 |
||
1206 |
lemma basic_cqe_conv1: |
|
55358
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
1207 |
"(\<exists>x. poly p x = 0 \<and> poly 0 x \<noteq> 0) \<longleftrightarrow> False" |
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
1208 |
"(\<exists>x. poly 0 x \<noteq> 0) \<longleftrightarrow> False" |
56776 | 1209 |
"(\<exists>x. poly [:c:] x \<noteq> 0) \<longleftrightarrow> c \<noteq> 0" |
55358
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
1210 |
"(\<exists>x. poly 0 x = 0) \<longleftrightarrow> True" |
56776 | 1211 |
"(\<exists>x. poly [:c:] x = 0) \<longleftrightarrow> c = 0" |
1212 |
by simp_all |
|
26123 | 1213 |
|
30488 | 1214 |
lemma basic_cqe_conv2: |
56795 | 1215 |
assumes l: "p \<noteq> 0" |
1216 |
shows "\<exists>x. poly (pCons a (pCons b p)) x = (0::complex)" |
|
56776 | 1217 |
proof - |
1218 |
{ |
|
1219 |
fix h t |
|
1220 |
assume h: "h \<noteq> 0" "t = 0" and "pCons a (pCons b p) = pCons h t" |
|
1221 |
with l have False by simp |
|
1222 |
} |
|
1223 |
then have th: "\<not> (\<exists> h t. h \<noteq> 0 \<and> t = 0 \<and> pCons a (pCons b p) = pCons h t)" |
|
26123 | 1224 |
by blast |
56776 | 1225 |
from fundamental_theorem_of_algebra_alt[OF th] show ?thesis |
1226 |
by auto |
|
26123 | 1227 |
qed |
1228 |
||
56776 | 1229 |
lemma basic_cqe_conv_2b: "(\<exists>x. poly p x \<noteq> (0::complex)) \<longleftrightarrow> p \<noteq> 0" |
1230 |
by (metis poly_all_0_iff_0) |
|
26123 | 1231 |
|
1232 |
lemma basic_cqe_conv3: |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1233 |
fixes p q :: "complex poly" |
30488 | 1234 |
assumes l: "p \<noteq> 0" |
56795 | 1235 |
shows "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<longleftrightarrow> \<not> (pCons a p) dvd (q ^ psize p)" |
55358
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
1236 |
proof - |
56776 | 1237 |
from l have dp: "degree (pCons a p) = psize p" |
1238 |
by (simp add: psize_def) |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1239 |
from nullstellensatz_univariate[of "pCons a p" q] l |
55358
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
1240 |
show ?thesis |
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
1241 |
by (metis dp pCons_eq_0_iff) |
26123 | 1242 |
qed |
1243 |
||
1244 |
lemma basic_cqe_conv4: |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1245 |
fixes p q :: "complex poly" |
55358
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
1246 |
assumes h: "\<And>x. poly (q ^ n) x = poly r x" |
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
1247 |
shows "p dvd (q ^ n) \<longleftrightarrow> p dvd r" |
56776 | 1248 |
proof - |
1249 |
from h have "poly (q ^ n) = poly r" |
|
1250 |
by auto |
|
1251 |
then have "(q ^ n) = r" |
|
1252 |
by (simp add: poly_eq_poly_eq_iff) |
|
1253 |
then show "p dvd (q ^ n) \<longleftrightarrow> p dvd r" |
|
1254 |
by simp |
|
26123 | 1255 |
qed |
1256 |
||
55735
81ba62493610
generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents:
55734
diff
changeset
|
1257 |
lemma poly_const_conv: |
56778 | 1258 |
fixes x :: "'a::comm_ring_1" |
56776 | 1259 |
shows "poly [:c:] x = y \<longleftrightarrow> c = y" |
1260 |
by simp |
|
26123 | 1261 |
|
29464
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents:
29292
diff
changeset
|
1262 |
end |