| author | wenzelm | 
| Mon, 01 May 2017 13:03:56 +0200 | |
| changeset 65666 | 45d0692bb019 | 
| parent 65447 | fae6051ec192 | 
| child 67399 | eab6ce8368fa | 
| permissions | -rw-r--r-- | 
| 17441 | 1 | (* Title: CTT/CTT.thy | 
| 0 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 3 | Copyright 1993 University of Cambridge | |
| 4 | *) | |
| 5 | ||
| 17441 | 6 | theory CTT | 
| 7 | imports Pure | |
| 8 | begin | |
| 9 | ||
| 65447 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 10 | section \<open>Constructive Type Theory: axiomatic basis\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 11 | |
| 48891 | 12 | ML_file "~~/src/Provers/typedsimp.ML" | 
| 39557 
fe5722fce758
renamed structure PureThy to Pure_Thy and moved most content to Global_Theory, to emphasize that this is global-only;
 wenzelm parents: 
35762diff
changeset | 13 | setup Pure_Thy.old_appl_syntax_setup | 
| 26956 
1309a6a0a29f
setup PureThy.old_appl_syntax_setup -- theory Pure provides regular application syntax by default;
 wenzelm parents: 
26391diff
changeset | 14 | |
| 17441 | 15 | typedecl i | 
| 16 | typedecl t | |
| 17 | typedecl o | |
| 0 | 18 | |
| 19 | consts | |
| 63505 | 20 | \<comment> \<open>Types\<close> | 
| 17441 | 21 | F :: "t" | 
| 63505 | 22 | T :: "t" \<comment> \<open>\<open>F\<close> is empty, \<open>T\<close> contains one element\<close> | 
| 58977 | 23 | contr :: "i\<Rightarrow>i" | 
| 0 | 24 | tt :: "i" | 
| 63505 | 25 | \<comment> \<open>Natural numbers\<close> | 
| 0 | 26 | N :: "t" | 
| 58977 | 27 | succ :: "i\<Rightarrow>i" | 
| 28 | rec :: "[i, i, [i,i]\<Rightarrow>i] \<Rightarrow> i" | |
| 63505 | 29 | \<comment> \<open>Unions\<close> | 
| 58977 | 30 | inl :: "i\<Rightarrow>i" | 
| 31 | inr :: "i\<Rightarrow>i" | |
| 60555 
51a6997b1384
support 'when' statement, which corresponds to 'presume';
 wenzelm parents: 
59780diff
changeset | 32 | "when" :: "[i, i\<Rightarrow>i, i\<Rightarrow>i]\<Rightarrow>i" | 
| 63505 | 33 | \<comment> \<open>General Sum and Binary Product\<close> | 
| 58977 | 34 | Sum :: "[t, i\<Rightarrow>t]\<Rightarrow>t" | 
| 35 | fst :: "i\<Rightarrow>i" | |
| 36 | snd :: "i\<Rightarrow>i" | |
| 37 | split :: "[i, [i,i]\<Rightarrow>i] \<Rightarrow>i" | |
| 63505 | 38 | \<comment> \<open>General Product and Function Space\<close> | 
| 58977 | 39 | Prod :: "[t, i\<Rightarrow>t]\<Rightarrow>t" | 
| 63505 | 40 | \<comment> \<open>Types\<close> | 
| 58977 | 41 | Plus :: "[t,t]\<Rightarrow>t" (infixr "+" 40) | 
| 63505 | 42 | \<comment> \<open>Equality type\<close> | 
| 58977 | 43 | Eq :: "[t,i,i]\<Rightarrow>t" | 
| 0 | 44 | eq :: "i" | 
| 63505 | 45 | \<comment> \<open>Judgements\<close> | 
| 58977 | 46 |   Type      :: "t \<Rightarrow> prop"          ("(_ type)" [10] 5)
 | 
| 47 |   Eqtype    :: "[t,t]\<Rightarrow>prop"        ("(_ =/ _)" [10,10] 5)
 | |
| 48 |   Elem      :: "[i, t]\<Rightarrow>prop"       ("(_ /: _)" [10,10] 5)
 | |
| 49 |   Eqelem    :: "[i,i,t]\<Rightarrow>prop"      ("(_ =/ _ :/ _)" [10,10,10] 5)
 | |
| 50 |   Reduce    :: "[i,i]\<Rightarrow>prop"        ("Reduce[_,_]")
 | |
| 14765 | 51 | |
| 63505 | 52 | \<comment> \<open>Types\<close> | 
| 53 | ||
| 54 | \<comment> \<open>Functions\<close> | |
| 61391 | 55 | lambda :: "(i \<Rightarrow> i) \<Rightarrow> i" (binder "\<^bold>\<lambda>" 10) | 
| 58977 | 56 | app :: "[i,i]\<Rightarrow>i" (infixl "`" 60) | 
| 63505 | 57 | \<comment> \<open>Natural numbers\<close> | 
| 41310 | 58 |   Zero      :: "i"                  ("0")
 | 
| 63505 | 59 | \<comment> \<open>Pairing\<close> | 
| 58977 | 60 |   pair      :: "[i,i]\<Rightarrow>i"           ("(1<_,/_>)")
 | 
| 0 | 61 | |
| 14765 | 62 | syntax | 
| 61391 | 63 |   "_PROD"   :: "[idt,t,t]\<Rightarrow>t"       ("(3\<Prod>_:_./ _)" 10)
 | 
| 64 |   "_SUM"    :: "[idt,t,t]\<Rightarrow>t"       ("(3\<Sum>_:_./ _)" 10)
 | |
| 0 | 65 | translations | 
| 61391 | 66 | "\<Prod>x:A. B" \<rightleftharpoons> "CONST Prod(A, \<lambda>x. B)" | 
| 67 | "\<Sum>x:A. B" \<rightleftharpoons> "CONST Sum(A, \<lambda>x. B)" | |
| 19761 | 68 | |
| 63505 | 69 | abbreviation Arrow :: "[t,t]\<Rightarrow>t" (infixr "\<longrightarrow>" 30) | 
| 70 | where "A \<longrightarrow> B \<equiv> \<Prod>_:A. B" | |
| 71 | ||
| 72 | abbreviation Times :: "[t,t]\<Rightarrow>t" (infixr "\<times>" 50) | |
| 73 | where "A \<times> B \<equiv> \<Sum>_:A. B" | |
| 10467 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 paulson parents: 
3837diff
changeset | 74 | |
| 63505 | 75 | text \<open> | 
| 76 | Reduction: a weaker notion than equality; a hack for simplification. | |
| 77 | \<open>Reduce[a,b]\<close> means either that \<open>a = b : A\<close> for some \<open>A\<close> or else | |
| 78 | that \<open>a\<close> and \<open>b\<close> are textually identical. | |
| 0 | 79 | |
| 63505 | 80 | Does not verify \<open>a:A\<close>! Sound because only \<open>trans_red\<close> uses a \<open>Reduce\<close> | 
| 81 | premise. No new theorems can be proved about the standard judgements. | |
| 82 | \<close> | |
| 83 | axiomatization | |
| 84 | where | |
| 51308 | 85 | refl_red: "\<And>a. Reduce[a,a]" and | 
| 58977 | 86 | red_if_equal: "\<And>a b A. a = b : A \<Longrightarrow> Reduce[a,b]" and | 
| 87 | trans_red: "\<And>a b c A. \<lbrakk>a = b : A; Reduce[b,c]\<rbrakk> \<Longrightarrow> a = c : A" and | |
| 0 | 88 | |
| 63505 | 89 | \<comment> \<open>Reflexivity\<close> | 
| 0 | 90 | |
| 58977 | 91 | refl_type: "\<And>A. A type \<Longrightarrow> A = A" and | 
| 92 | refl_elem: "\<And>a A. a : A \<Longrightarrow> a = a : A" and | |
| 0 | 93 | |
| 63505 | 94 | \<comment> \<open>Symmetry\<close> | 
| 0 | 95 | |
| 58977 | 96 | sym_type: "\<And>A B. A = B \<Longrightarrow> B = A" and | 
| 97 | sym_elem: "\<And>a b A. a = b : A \<Longrightarrow> b = a : A" and | |
| 0 | 98 | |
| 63505 | 99 | \<comment> \<open>Transitivity\<close> | 
| 0 | 100 | |
| 58977 | 101 | trans_type: "\<And>A B C. \<lbrakk>A = B; B = C\<rbrakk> \<Longrightarrow> A = C" and | 
| 102 | trans_elem: "\<And>a b c A. \<lbrakk>a = b : A; b = c : A\<rbrakk> \<Longrightarrow> a = c : A" and | |
| 0 | 103 | |
| 58977 | 104 | equal_types: "\<And>a A B. \<lbrakk>a : A; A = B\<rbrakk> \<Longrightarrow> a : B" and | 
| 105 | equal_typesL: "\<And>a b A B. \<lbrakk>a = b : A; A = B\<rbrakk> \<Longrightarrow> a = b : B" and | |
| 0 | 106 | |
| 63505 | 107 | \<comment> \<open>Substitution\<close> | 
| 0 | 108 | |
| 58977 | 109 | subst_type: "\<And>a A B. \<lbrakk>a : A; \<And>z. z:A \<Longrightarrow> B(z) type\<rbrakk> \<Longrightarrow> B(a) type" and | 
| 110 | subst_typeL: "\<And>a c A B D. \<lbrakk>a = c : A; \<And>z. z:A \<Longrightarrow> B(z) = D(z)\<rbrakk> \<Longrightarrow> B(a) = D(c)" and | |
| 0 | 111 | |
| 58977 | 112 | subst_elem: "\<And>a b A B. \<lbrakk>a : A; \<And>z. z:A \<Longrightarrow> b(z):B(z)\<rbrakk> \<Longrightarrow> b(a):B(a)" and | 
| 17441 | 113 | subst_elemL: | 
| 58977 | 114 | "\<And>a b c d A B. \<lbrakk>a = c : A; \<And>z. z:A \<Longrightarrow> b(z)=d(z) : B(z)\<rbrakk> \<Longrightarrow> b(a)=d(c) : B(a)" and | 
| 0 | 115 | |
| 116 | ||
| 63505 | 117 | \<comment> \<open>The type \<open>N\<close> -- natural numbers\<close> | 
| 0 | 118 | |
| 51308 | 119 | NF: "N type" and | 
| 120 | NI0: "0 : N" and | |
| 58977 | 121 | NI_succ: "\<And>a. a : N \<Longrightarrow> succ(a) : N" and | 
| 122 | NI_succL: "\<And>a b. a = b : N \<Longrightarrow> succ(a) = succ(b) : N" and | |
| 0 | 123 | |
| 17441 | 124 | NE: | 
| 58977 | 125 | "\<And>p a b C. \<lbrakk>p: N; a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> | 
| 126 | \<Longrightarrow> rec(p, a, \<lambda>u v. b(u,v)) : C(p)" and | |
| 0 | 127 | |
| 17441 | 128 | NEL: | 
| 58977 | 129 | "\<And>p q a b c d C. \<lbrakk>p = q : N; a = c : C(0); | 
| 130 | \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v) = d(u,v): C(succ(u))\<rbrakk> | |
| 131 | \<Longrightarrow> rec(p, a, \<lambda>u v. b(u,v)) = rec(q,c,d) : C(p)" and | |
| 0 | 132 | |
| 17441 | 133 | NC0: | 
| 58977 | 134 | "\<And>a b C. \<lbrakk>a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> | 
| 135 | \<Longrightarrow> rec(0, a, \<lambda>u v. b(u,v)) = a : C(0)" and | |
| 0 | 136 | |
| 17441 | 137 | NC_succ: | 
| 58977 | 138 | "\<And>p a b C. \<lbrakk>p: N; a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> \<Longrightarrow> | 
| 139 | rec(succ(p), a, \<lambda>u v. b(u,v)) = b(p, rec(p, a, \<lambda>u v. b(u,v))) : C(succ(p))" and | |
| 0 | 140 | |
| 63505 | 141 | \<comment> \<open>The fourth Peano axiom. See page 91 of Martin-Löf's book.\<close> | 
| 58977 | 142 | zero_ne_succ: "\<And>a. \<lbrakk>a: N; 0 = succ(a) : N\<rbrakk> \<Longrightarrow> 0: F" and | 
| 0 | 143 | |
| 144 | ||
| 63505 | 145 | \<comment> \<open>The Product of a family of types\<close> | 
| 0 | 146 | |
| 61391 | 147 | ProdF: "\<And>A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> B(x) type\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x) type" and | 
| 0 | 148 | |
| 17441 | 149 | ProdFL: | 
| 61391 | 150 | "\<And>A B C D. \<lbrakk>A = C; \<And>x. x:A \<Longrightarrow> B(x) = D(x)\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x) = \<Prod>x:C. D(x)" and | 
| 0 | 151 | |
| 17441 | 152 | ProdI: | 
| 61391 | 153 | "\<And>b A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> b(x):B(x)\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b(x) : \<Prod>x:A. B(x)" and | 
| 0 | 154 | |
| 58977 | 155 | ProdIL: "\<And>b c A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> b(x) = c(x) : B(x)\<rbrakk> \<Longrightarrow> | 
| 61391 | 156 | \<^bold>\<lambda>x. b(x) = \<^bold>\<lambda>x. c(x) : \<Prod>x:A. B(x)" and | 
| 0 | 157 | |
| 61391 | 158 | ProdE: "\<And>p a A B. \<lbrakk>p : \<Prod>x:A. B(x); a : A\<rbrakk> \<Longrightarrow> p`a : B(a)" and | 
| 159 | ProdEL: "\<And>p q a b A B. \<lbrakk>p = q: \<Prod>x:A. B(x); a = b : A\<rbrakk> \<Longrightarrow> p`a = q`b : B(a)" and | |
| 0 | 160 | |
| 61391 | 161 | ProdC: "\<And>a b A B. \<lbrakk>a : A; \<And>x. x:A \<Longrightarrow> b(x) : B(x)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. b(x)) ` a = b(a) : B(a)" and | 
| 0 | 162 | |
| 61391 | 163 | ProdC2: "\<And>p A B. p : \<Prod>x:A. B(x) \<Longrightarrow> (\<^bold>\<lambda>x. p`x) = p : \<Prod>x:A. B(x)" and | 
| 0 | 164 | |
| 165 | ||
| 63505 | 166 | \<comment> \<open>The Sum of a family of types\<close> | 
| 0 | 167 | |
| 61391 | 168 | SumF: "\<And>A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> B(x) type\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x) type" and | 
| 169 | SumFL: "\<And>A B C D. \<lbrakk>A = C; \<And>x. x:A \<Longrightarrow> B(x) = D(x)\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x) = \<Sum>x:C. D(x)" and | |
| 0 | 170 | |
| 61391 | 171 | SumI: "\<And>a b A B. \<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> <a,b> : \<Sum>x:A. B(x)" and | 
| 172 | SumIL: "\<And>a b c d A B. \<lbrakk> a = c : A; b = d : B(a)\<rbrakk> \<Longrightarrow> <a,b> = <c,d> : \<Sum>x:A. B(x)" and | |
| 0 | 173 | |
| 61391 | 174 | SumE: "\<And>p c A B C. \<lbrakk>p: \<Sum>x:A. B(x); \<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y): C(<x,y>)\<rbrakk> | 
| 58977 | 175 | \<Longrightarrow> split(p, \<lambda>x y. c(x,y)) : C(p)" and | 
| 0 | 176 | |
| 61391 | 177 | SumEL: "\<And>p q c d A B C. \<lbrakk>p = q : \<Sum>x:A. B(x); | 
| 58977 | 178 | \<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y)=d(x,y): C(<x,y>)\<rbrakk> | 
| 179 | \<Longrightarrow> split(p, \<lambda>x y. c(x,y)) = split(q, \<lambda>x y. d(x,y)) : C(p)" and | |
| 0 | 180 | |
| 58977 | 181 | SumC: "\<And>a b c A B C. \<lbrakk>a: A; b: B(a); \<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y): C(<x,y>)\<rbrakk> | 
| 182 | \<Longrightarrow> split(<a,b>, \<lambda>x y. c(x,y)) = c(a,b) : C(<a,b>)" and | |
| 0 | 183 | |
| 61391 | 184 | fst_def: "\<And>a. fst(a) \<equiv> split(a, \<lambda>x y. x)" and | 
| 185 | snd_def: "\<And>a. snd(a) \<equiv> split(a, \<lambda>x y. y)" and | |
| 0 | 186 | |
| 187 | ||
| 63505 | 188 | \<comment> \<open>The sum of two types\<close> | 
| 0 | 189 | |
| 58977 | 190 | PlusF: "\<And>A B. \<lbrakk>A type; B type\<rbrakk> \<Longrightarrow> A+B type" and | 
| 191 | PlusFL: "\<And>A B C D. \<lbrakk>A = C; B = D\<rbrakk> \<Longrightarrow> A+B = C+D" and | |
| 0 | 192 | |
| 58977 | 193 | PlusI_inl: "\<And>a A B. \<lbrakk>a : A; B type\<rbrakk> \<Longrightarrow> inl(a) : A+B" and | 
| 194 | PlusI_inlL: "\<And>a c A B. \<lbrakk>a = c : A; B type\<rbrakk> \<Longrightarrow> inl(a) = inl(c) : A+B" and | |
| 0 | 195 | |
| 58977 | 196 | PlusI_inr: "\<And>b A B. \<lbrakk>A type; b : B\<rbrakk> \<Longrightarrow> inr(b) : A+B" and | 
| 197 | PlusI_inrL: "\<And>b d A B. \<lbrakk>A type; b = d : B\<rbrakk> \<Longrightarrow> inr(b) = inr(d) : A+B" and | |
| 0 | 198 | |
| 17441 | 199 | PlusE: | 
| 58977 | 200 | "\<And>p c d A B C. \<lbrakk>p: A+B; | 
| 201 | \<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); | |
| 202 | \<And>y. y:B \<Longrightarrow> d(y): C(inr(y)) \<rbrakk> \<Longrightarrow> when(p, \<lambda>x. c(x), \<lambda>y. d(y)) : C(p)" and | |
| 0 | 203 | |
| 17441 | 204 | PlusEL: | 
| 58977 | 205 | "\<And>p q c d e f A B C. \<lbrakk>p = q : A+B; | 
| 206 | \<And>x. x: A \<Longrightarrow> c(x) = e(x) : C(inl(x)); | |
| 207 | \<And>y. y: B \<Longrightarrow> d(y) = f(y) : C(inr(y))\<rbrakk> | |
| 208 | \<Longrightarrow> when(p, \<lambda>x. c(x), \<lambda>y. d(y)) = when(q, \<lambda>x. e(x), \<lambda>y. f(y)) : C(p)" and | |
| 0 | 209 | |
| 17441 | 210 | PlusC_inl: | 
| 64980 | 211 | "\<And>a c d A B C. \<lbrakk>a: A; | 
| 58977 | 212 | \<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); | 
| 213 | \<And>y. y:B \<Longrightarrow> d(y): C(inr(y)) \<rbrakk> | |
| 214 | \<Longrightarrow> when(inl(a), \<lambda>x. c(x), \<lambda>y. d(y)) = c(a) : C(inl(a))" and | |
| 0 | 215 | |
| 17441 | 216 | PlusC_inr: | 
| 58977 | 217 | "\<And>b c d A B C. \<lbrakk>b: B; | 
| 218 | \<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); | |
| 219 | \<And>y. y:B \<Longrightarrow> d(y): C(inr(y))\<rbrakk> | |
| 220 | \<Longrightarrow> when(inr(b), \<lambda>x. c(x), \<lambda>y. d(y)) = d(b) : C(inr(b))" and | |
| 0 | 221 | |
| 222 | ||
| 63505 | 223 | \<comment> \<open>The type \<open>Eq\<close>\<close> | 
| 0 | 224 | |
| 58977 | 225 | EqF: "\<And>a b A. \<lbrakk>A type; a : A; b : A\<rbrakk> \<Longrightarrow> Eq(A,a,b) type" and | 
| 226 | EqFL: "\<And>a b c d A B. \<lbrakk>A = B; a = c : A; b = d : A\<rbrakk> \<Longrightarrow> Eq(A,a,b) = Eq(B,c,d)" and | |
| 227 | EqI: "\<And>a b A. a = b : A \<Longrightarrow> eq : Eq(A,a,b)" and | |
| 228 | EqE: "\<And>p a b A. p : Eq(A,a,b) \<Longrightarrow> a = b : A" and | |
| 0 | 229 | |
| 63505 | 230 | \<comment> \<open>By equality of types, can prove \<open>C(p)\<close> from \<open>C(eq)\<close>, an elimination rule\<close> | 
| 58977 | 231 | EqC: "\<And>p a b A. p : Eq(A,a,b) \<Longrightarrow> p = eq : Eq(A,a,b)" and | 
| 0 | 232 | |
| 63505 | 233 | |
| 234 | \<comment> \<open>The type \<open>F\<close>\<close> | |
| 0 | 235 | |
| 51308 | 236 | FF: "F type" and | 
| 58977 | 237 | FE: "\<And>p C. \<lbrakk>p: F; C type\<rbrakk> \<Longrightarrow> contr(p) : C" and | 
| 238 | FEL: "\<And>p q C. \<lbrakk>p = q : F; C type\<rbrakk> \<Longrightarrow> contr(p) = contr(q) : C" and | |
| 0 | 239 | |
| 63505 | 240 | |
| 241 | \<comment> \<open>The type T\<close> | |
| 242 | \<comment> \<open> | |
| 243 | Martin-Löf's book (page 68) discusses elimination and computation. | |
| 244 | Elimination can be derived by computation and equality of types, | |
| 245 | but with an extra premise \<open>C(x)\<close> type \<open>x:T\<close>. | |
| 246 | Also computation can be derived from elimination. | |
| 247 | \<close> | |
| 0 | 248 | |
| 51308 | 249 | TF: "T type" and | 
| 250 | TI: "tt : T" and | |
| 58977 | 251 | TE: "\<And>p c C. \<lbrakk>p : T; c : C(tt)\<rbrakk> \<Longrightarrow> c : C(p)" and | 
| 252 | TEL: "\<And>p q c d C. \<lbrakk>p = q : T; c = d : C(tt)\<rbrakk> \<Longrightarrow> c = d : C(p)" and | |
| 253 | TC: "\<And>p. p : T \<Longrightarrow> p = tt : T" | |
| 0 | 254 | |
| 19761 | 255 | |
| 256 | subsection "Tactics and derived rules for Constructive Type Theory" | |
| 257 | ||
| 63505 | 258 | text \<open>Formation rules.\<close> | 
| 19761 | 259 | lemmas form_rls = NF ProdF SumF PlusF EqF FF TF | 
| 260 | and formL_rls = ProdFL SumFL PlusFL EqFL | |
| 261 | ||
| 63505 | 262 | text \<open> | 
| 263 | Introduction rules. OMITTED: | |
| 264 | \<^item> \<open>EqI\<close>, because its premise is an \<open>eqelem\<close>, not an \<open>elem\<close>. | |
| 265 | \<close> | |
| 19761 | 266 | lemmas intr_rls = NI0 NI_succ ProdI SumI PlusI_inl PlusI_inr TI | 
| 267 | and intrL_rls = NI_succL ProdIL SumIL PlusI_inlL PlusI_inrL | |
| 268 | ||
| 63505 | 269 | text \<open> | 
| 270 | Elimination rules. OMITTED: | |
| 271 | \<^item> \<open>EqE\<close>, because its conclusion is an \<open>eqelem\<close>, not an \<open>elem\<close> | |
| 272 | \<^item> \<open>TE\<close>, because it does not involve a constructor. | |
| 273 | \<close> | |
| 19761 | 274 | lemmas elim_rls = NE ProdE SumE PlusE FE | 
| 275 | and elimL_rls = NEL ProdEL SumEL PlusEL FEL | |
| 276 | ||
| 63505 | 277 | text \<open>OMITTED: \<open>eqC\<close> are \<open>TC\<close> because they make rewriting loop: \<open>p = un = un = \<dots>\<close>\<close> | 
| 19761 | 278 | lemmas comp_rls = NC0 NC_succ ProdC SumC PlusC_inl PlusC_inr | 
| 279 | ||
| 63505 | 280 | text \<open>Rules with conclusion \<open>a:A\<close>, an elem judgement.\<close> | 
| 19761 | 281 | lemmas element_rls = intr_rls elim_rls | 
| 282 | ||
| 63505 | 283 | text \<open>Definitions are (meta)equality axioms.\<close> | 
| 19761 | 284 | lemmas basic_defs = fst_def snd_def | 
| 285 | ||
| 63505 | 286 | text \<open>Compare with standard version: \<open>B\<close> is applied to UNSIMPLIFIED expression!\<close> | 
| 58977 | 287 | lemma SumIL2: "\<lbrakk>c = a : A; d = b : B(a)\<rbrakk> \<Longrightarrow> <c,d> = <a,b> : Sum(A,B)" | 
| 65338 | 288 | by (rule sym_elem) (rule SumIL; rule sym_elem) | 
| 19761 | 289 | |
| 290 | lemmas intrL2_rls = NI_succL ProdIL SumIL2 PlusI_inlL PlusI_inrL | |
| 291 | ||
| 63505 | 292 | text \<open> | 
| 293 | Exploit \<open>p:Prod(A,B)\<close> to create the assumption \<open>z:B(a)\<close>. | |
| 294 | A more natural form of product elimination. | |
| 295 | \<close> | |
| 19761 | 296 | lemma subst_prodE: | 
| 297 | assumes "p: Prod(A,B)" | |
| 298 | and "a: A" | |
| 58977 | 299 | and "\<And>z. z: B(a) \<Longrightarrow> c(z): C(z)" | 
| 19761 | 300 | shows "c(p`a): C(p`a)" | 
| 63505 | 301 | by (rule assms ProdE)+ | 
| 19761 | 302 | |
| 303 | ||
| 60770 | 304 | subsection \<open>Tactics for type checking\<close> | 
| 19761 | 305 | |
| 60770 | 306 | ML \<open> | 
| 19761 | 307 | local | 
| 308 | ||
| 56250 | 309 | fun is_rigid_elem (Const(@{const_name Elem},_) $ a $ _) = not(is_Var (head_of a))
 | 
| 310 |   | is_rigid_elem (Const(@{const_name Eqelem},_) $ a $ _ $ _) = not(is_Var (head_of a))
 | |
| 311 |   | is_rigid_elem (Const(@{const_name Type},_) $ a) = not(is_Var (head_of a))
 | |
| 19761 | 312 | | is_rigid_elem _ = false | 
| 313 | ||
| 314 | in | |
| 315 | ||
| 316 | (*Try solving a:A or a=b:A by assumption provided a is rigid!*) | |
| 63505 | 317 | fun test_assume_tac ctxt = SUBGOAL (fn (prem, i) => | 
| 318 | if is_rigid_elem (Logic.strip_assums_concl prem) | |
| 319 | then assume_tac ctxt i else no_tac) | |
| 19761 | 320 | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 321 | fun ASSUME ctxt tf i = test_assume_tac ctxt i ORELSE tf i | 
| 19761 | 322 | |
| 63505 | 323 | end | 
| 60770 | 324 | \<close> | 
| 19761 | 325 | |
| 63505 | 326 | text \<open> | 
| 327 | For simplification: type formation and checking, | |
| 328 | but no equalities between terms. | |
| 329 | \<close> | |
| 19761 | 330 | lemmas routine_rls = form_rls formL_rls refl_type element_rls | 
| 331 | ||
| 60770 | 332 | ML \<open> | 
| 59164 | 333 | fun routine_tac rls ctxt prems = | 
| 334 | ASSUME ctxt (filt_resolve_from_net_tac ctxt 4 (Tactic.build_net (prems @ rls))); | |
| 19761 | 335 | |
| 336 | (*Solve all subgoals "A type" using formation rules. *) | |
| 59164 | 337 | val form_net = Tactic.build_net @{thms form_rls};
 | 
| 338 | fun form_tac ctxt = | |
| 339 | REPEAT_FIRST (ASSUME ctxt (filt_resolve_from_net_tac ctxt 1 form_net)); | |
| 19761 | 340 | |
| 341 | (*Type checking: solve a:A (a rigid, A flexible) by intro and elim rules. *) | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 342 | fun typechk_tac ctxt thms = | 
| 59164 | 343 | let val tac = | 
| 344 | filt_resolve_from_net_tac ctxt 3 | |
| 345 |       (Tactic.build_net (thms @ @{thms form_rls} @ @{thms element_rls}))
 | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 346 | in REPEAT_FIRST (ASSUME ctxt tac) end | 
| 19761 | 347 | |
| 348 | (*Solve a:A (a flexible, A rigid) by introduction rules. | |
| 349 | Cannot use stringtrees (filt_resolve_tac) since | |
| 350 | goals like ?a:SUM(A,B) have a trivial head-string *) | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 351 | fun intr_tac ctxt thms = | 
| 59164 | 352 | let val tac = | 
| 353 | filt_resolve_from_net_tac ctxt 1 | |
| 354 |       (Tactic.build_net (thms @ @{thms form_rls} @ @{thms intr_rls}))
 | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 355 | in REPEAT_FIRST (ASSUME ctxt tac) end | 
| 19761 | 356 | |
| 357 | (*Equality proving: solve a=b:A (where a is rigid) by long rules. *) | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 358 | fun equal_tac ctxt thms = | 
| 59164 | 359 | REPEAT_FIRST | 
| 63505 | 360 | (ASSUME ctxt | 
| 361 | (filt_resolve_from_net_tac ctxt 3 | |
| 362 |         (Tactic.build_net (thms @ @{thms form_rls element_rls intrL_rls elimL_rls refl_elem}))))
 | |
| 60770 | 363 | \<close> | 
| 19761 | 364 | |
| 60770 | 365 | method_setup form = \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD (form_tac ctxt))\<close> | 
| 366 | method_setup typechk = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (typechk_tac ctxt ths))\<close> | |
| 367 | method_setup intr = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (intr_tac ctxt ths))\<close> | |
| 368 | method_setup equal = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (equal_tac ctxt ths))\<close> | |
| 19761 | 369 | |
| 370 | ||
| 60770 | 371 | subsection \<open>Simplification\<close> | 
| 19761 | 372 | |
| 63505 | 373 | text \<open>To simplify the type in a goal.\<close> | 
| 58977 | 374 | lemma replace_type: "\<lbrakk>B = A; a : A\<rbrakk> \<Longrightarrow> a : B" | 
| 63505 | 375 | apply (rule equal_types) | 
| 376 | apply (rule_tac [2] sym_type) | |
| 377 | apply assumption+ | |
| 378 | done | |
| 19761 | 379 | |
| 63505 | 380 | text \<open>Simplify the parameter of a unary type operator.\<close> | 
| 19761 | 381 | lemma subst_eqtyparg: | 
| 23467 | 382 | assumes 1: "a=c : A" | 
| 58977 | 383 | and 2: "\<And>z. z:A \<Longrightarrow> B(z) type" | 
| 63505 | 384 | shows "B(a) = B(c)" | 
| 385 | apply (rule subst_typeL) | |
| 386 | apply (rule_tac [2] refl_type) | |
| 387 | apply (rule 1) | |
| 388 | apply (erule 2) | |
| 389 | done | |
| 19761 | 390 | |
| 63505 | 391 | text \<open>Simplification rules for Constructive Type Theory.\<close> | 
| 19761 | 392 | lemmas reduction_rls = comp_rls [THEN trans_elem] | 
| 393 | ||
| 60770 | 394 | ML \<open> | 
| 19761 | 395 | (*Converts each goal "e : Eq(A,a,b)" into "a=b:A" for simplification. | 
| 396 | Uses other intro rules to avoid changing flexible goals.*) | |
| 59164 | 397 | val eqintr_net = Tactic.build_net @{thms EqI intr_rls}
 | 
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 398 | fun eqintr_tac ctxt = | 
| 59164 | 399 | REPEAT_FIRST (ASSUME ctxt (filt_resolve_from_net_tac ctxt 1 eqintr_net)) | 
| 19761 | 400 | |
| 401 | (** Tactics that instantiate CTT-rules. | |
| 402 | Vars in the given terms will be incremented! | |
| 403 | The (rtac EqE i) lets them apply to equality judgements. **) | |
| 404 | ||
| 27208 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 405 | fun NE_tac ctxt sp i = | 
| 60754 | 406 |   TRY (resolve_tac ctxt @{thms EqE} i) THEN
 | 
| 59780 | 407 |   Rule_Insts.res_inst_tac ctxt [((("p", 0), Position.none), sp)] [] @{thm NE} i
 | 
| 19761 | 408 | |
| 27208 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 409 | fun SumE_tac ctxt sp i = | 
| 60754 | 410 |   TRY (resolve_tac ctxt @{thms EqE} i) THEN
 | 
| 59780 | 411 |   Rule_Insts.res_inst_tac ctxt [((("p", 0), Position.none), sp)] [] @{thm SumE} i
 | 
| 19761 | 412 | |
| 27208 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 413 | fun PlusE_tac ctxt sp i = | 
| 60754 | 414 |   TRY (resolve_tac ctxt @{thms EqE} i) THEN
 | 
| 59780 | 415 |   Rule_Insts.res_inst_tac ctxt [((("p", 0), Position.none), sp)] [] @{thm PlusE} i
 | 
| 19761 | 416 | |
| 417 | (** Predicate logic reasoning, WITH THINNING!! Procedures adapted from NJ. **) | |
| 418 | ||
| 419 | (*Finds f:Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) *) | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 420 | fun add_mp_tac ctxt i = | 
| 60754 | 421 |   resolve_tac ctxt @{thms subst_prodE} i  THEN  assume_tac ctxt i  THEN  assume_tac ctxt i
 | 
| 19761 | 422 | |
| 61391 | 423 | (*Finds P\<longrightarrow>Q and P in the assumptions, replaces implication by Q *) | 
| 60754 | 424 | fun mp_tac ctxt i = eresolve_tac ctxt @{thms subst_prodE} i  THEN  assume_tac ctxt i
 | 
| 19761 | 425 | |
| 426 | (*"safe" when regarded as predicate calculus rules*) | |
| 427 | val safe_brls = sort (make_ord lessb) | |
| 27208 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 428 |     [ (true, @{thm FE}), (true,asm_rl),
 | 
| 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 429 |       (false, @{thm ProdI}), (true, @{thm SumE}), (true, @{thm PlusE}) ]
 | 
| 19761 | 430 | |
| 431 | val unsafe_brls = | |
| 27208 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 432 |     [ (false, @{thm PlusI_inl}), (false, @{thm PlusI_inr}), (false, @{thm SumI}),
 | 
| 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 433 |       (true, @{thm subst_prodE}) ]
 | 
| 19761 | 434 | |
| 435 | (*0 subgoals vs 1 or more*) | |
| 436 | val (safe0_brls, safep_brls) = | |
| 437 | List.partition (curry (op =) 0 o subgoals_of_brl) safe_brls | |
| 438 | ||
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 439 | fun safestep_tac ctxt thms i = | 
| 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 440 | form_tac ctxt ORELSE | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59164diff
changeset | 441 | resolve_tac ctxt thms i ORELSE | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59164diff
changeset | 442 | biresolve_tac ctxt safe0_brls i ORELSE mp_tac ctxt i ORELSE | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59164diff
changeset | 443 | DETERM (biresolve_tac ctxt safep_brls i) | 
| 19761 | 444 | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 445 | fun safe_tac ctxt thms i = DEPTH_SOLVE_1 (safestep_tac ctxt thms i) | 
| 19761 | 446 | |
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59164diff
changeset | 447 | fun step_tac ctxt thms = safestep_tac ctxt thms ORELSE' biresolve_tac ctxt unsafe_brls | 
| 19761 | 448 | |
| 449 | (*Fails unless it solves the goal!*) | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 450 | fun pc_tac ctxt thms = DEPTH_SOLVE_1 o (step_tac ctxt thms) | 
| 60770 | 451 | \<close> | 
| 19761 | 452 | |
| 60770 | 453 | method_setup eqintr = \<open>Scan.succeed (SIMPLE_METHOD o eqintr_tac)\<close> | 
| 454 | method_setup NE = \<open> | |
| 63120 
629a4c5e953e
embedded content may be delimited via cartouches;
 wenzelm parents: 
61391diff
changeset | 455 | Scan.lift Args.embedded_inner_syntax >> (fn s => fn ctxt => SIMPLE_METHOD' (NE_tac ctxt s)) | 
| 60770 | 456 | \<close> | 
| 457 | method_setup pc = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (pc_tac ctxt ths))\<close> | |
| 458 | method_setup add_mp = \<open>Scan.succeed (SIMPLE_METHOD' o add_mp_tac)\<close> | |
| 58972 | 459 | |
| 48891 | 460 | ML_file "rew.ML" | 
| 60770 | 461 | method_setup rew = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (rew_tac ctxt ths))\<close> | 
| 462 | method_setup hyp_rew = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (hyp_rew_tac ctxt ths))\<close> | |
| 58972 | 463 | |
| 19761 | 464 | |
| 60770 | 465 | subsection \<open>The elimination rules for fst/snd\<close> | 
| 19761 | 466 | |
| 58977 | 467 | lemma SumE_fst: "p : Sum(A,B) \<Longrightarrow> fst(p) : A" | 
| 63505 | 468 | apply (unfold basic_defs) | 
| 469 | apply (erule SumE) | |
| 470 | apply assumption | |
| 471 | done | |
| 19761 | 472 | |
| 63505 | 473 | text \<open>The first premise must be \<open>p:Sum(A,B)\<close>!!.\<close> | 
| 19761 | 474 | lemma SumE_snd: | 
| 475 | assumes major: "p: Sum(A,B)" | |
| 476 | and "A type" | |
| 58977 | 477 | and "\<And>x. x:A \<Longrightarrow> B(x) type" | 
| 19761 | 478 | shows "snd(p) : B(fst(p))" | 
| 479 | apply (unfold basic_defs) | |
| 480 | apply (rule major [THEN SumE]) | |
| 481 | apply (rule SumC [THEN subst_eqtyparg, THEN replace_type]) | |
| 63505 | 482 | apply (typechk assms) | 
| 19761 | 483 | done | 
| 484 | ||
| 65447 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 485 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 486 | section \<open>The two-element type (booleans and conditionals)\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 487 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 488 | definition Bool :: "t" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 489 | where "Bool \<equiv> T+T" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 490 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 491 | definition true :: "i" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 492 | where "true \<equiv> inl(tt)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 493 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 494 | definition false :: "i" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 495 | where "false \<equiv> inr(tt)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 496 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 497 | definition cond :: "[i,i,i]\<Rightarrow>i" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 498 | where "cond(a,b,c) \<equiv> when(a, \<lambda>_. b, \<lambda>_. c)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 499 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 500 | lemmas bool_defs = Bool_def true_def false_def cond_def | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 501 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 502 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 503 | subsection \<open>Derivation of rules for the type \<open>Bool\<close>\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 504 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 505 | text \<open>Formation rule.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 506 | lemma boolF: "Bool type" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 507 | unfolding bool_defs by typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 508 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 509 | text \<open>Introduction rules for \<open>true\<close>, \<open>false\<close>.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 510 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 511 | lemma boolI_true: "true : Bool" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 512 | unfolding bool_defs by typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 513 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 514 | lemma boolI_false: "false : Bool" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 515 | unfolding bool_defs by typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 516 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 517 | text \<open>Elimination rule: typing of \<open>cond\<close>.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 518 | lemma boolE: "\<lbrakk>p:Bool; a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(p,a,b) : C(p)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 519 | unfolding bool_defs | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 520 | apply (typechk; erule TE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 521 | apply typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 522 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 523 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 524 | lemma boolEL: "\<lbrakk>p = q : Bool; a = c : C(true); b = d : C(false)\<rbrakk> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 525 | \<Longrightarrow> cond(p,a,b) = cond(q,c,d) : C(p)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 526 | unfolding bool_defs | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 527 | apply (rule PlusEL) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 528 | apply (erule asm_rl refl_elem [THEN TEL])+ | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 529 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 530 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 531 | text \<open>Computation rules for \<open>true\<close>, \<open>false\<close>.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 532 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 533 | lemma boolC_true: "\<lbrakk>a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(true,a,b) = a : C(true)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 534 | unfolding bool_defs | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 535 | apply (rule comp_rls) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 536 | apply typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 537 | apply (erule_tac [!] TE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 538 | apply typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 539 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 540 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 541 | lemma boolC_false: "\<lbrakk>a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(false,a,b) = b : C(false)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 542 | unfolding bool_defs | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 543 | apply (rule comp_rls) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 544 | apply typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 545 | apply (erule_tac [!] TE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 546 | apply typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 547 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 548 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 549 | section \<open>Elementary arithmetic\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 550 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 551 | subsection \<open>Arithmetic operators and their definitions\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 552 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 553 | definition add :: "[i,i]\<Rightarrow>i" (infixr "#+" 65) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 554 | where "a#+b \<equiv> rec(a, b, \<lambda>u v. succ(v))" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 555 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 556 | definition diff :: "[i,i]\<Rightarrow>i" (infixr "-" 65) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 557 | where "a-b \<equiv> rec(b, a, \<lambda>u v. rec(v, 0, \<lambda>x y. x))" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 558 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 559 | definition absdiff :: "[i,i]\<Rightarrow>i" (infixr "|-|" 65) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 560 | where "a|-|b \<equiv> (a-b) #+ (b-a)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 561 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 562 | definition mult :: "[i,i]\<Rightarrow>i" (infixr "#*" 70) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 563 | where "a#*b \<equiv> rec(a, 0, \<lambda>u v. b #+ v)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 564 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 565 | definition mod :: "[i,i]\<Rightarrow>i" (infixr "mod" 70) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 566 | where "a mod b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(v) |-| b, 0, \<lambda>x y. succ(v)))" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 567 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 568 | definition div :: "[i,i]\<Rightarrow>i" (infixr "div" 70) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 569 | where "a div b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(u) mod b, succ(v), \<lambda>x y. v))" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 570 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 571 | lemmas arith_defs = add_def diff_def absdiff_def mult_def mod_def div_def | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 572 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 573 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 574 | subsection \<open>Proofs about elementary arithmetic: addition, multiplication, etc.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 575 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 576 | subsubsection \<open>Addition\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 577 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 578 | text \<open>Typing of \<open>add\<close>: short and long versions.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 579 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 580 | lemma add_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 581 | unfolding arith_defs by typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 582 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 583 | lemma add_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #+ b = c #+ d : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 584 | unfolding arith_defs by equal | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 585 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 586 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 587 | text \<open>Computation for \<open>add\<close>: 0 and successor cases.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 588 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 589 | lemma addC0: "b:N \<Longrightarrow> 0 #+ b = b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 590 | unfolding arith_defs by rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 591 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 592 | lemma addC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #+ b = succ(a #+ b) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 593 | unfolding arith_defs by rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 594 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 595 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 596 | subsubsection \<open>Multiplication\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 597 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 598 | text \<open>Typing of \<open>mult\<close>: short and long versions.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 599 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 600 | lemma mult_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 601 | unfolding arith_defs by (typechk add_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 602 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 603 | lemma mult_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #* b = c #* d : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 604 | unfolding arith_defs by (equal add_typingL) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 605 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 606 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 607 | text \<open>Computation for \<open>mult\<close>: 0 and successor cases.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 608 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 609 | lemma multC0: "b:N \<Longrightarrow> 0 #* b = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 610 | unfolding arith_defs by rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 611 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 612 | lemma multC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #* b = b #+ (a #* b) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 613 | unfolding arith_defs by rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 614 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 615 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 616 | subsubsection \<open>Difference\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 617 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 618 | text \<open>Typing of difference.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 619 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 620 | lemma diff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a - b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 621 | unfolding arith_defs by typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 622 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 623 | lemma diff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a - b = c - d : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 624 | unfolding arith_defs by equal | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 625 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 626 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 627 | text \<open>Computation for difference: 0 and successor cases.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 628 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 629 | lemma diffC0: "a:N \<Longrightarrow> a - 0 = a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 630 | unfolding arith_defs by rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 631 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 632 | text \<open>Note: \<open>rec(a, 0, \<lambda>z w.z)\<close> is \<open>pred(a).\<close>\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 633 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 634 | lemma diff_0_eq_0: "b:N \<Longrightarrow> 0 - b = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 635 | unfolding arith_defs | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 636 | apply (NE b) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 637 | apply hyp_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 638 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 639 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 640 | text \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 641 | Essential to simplify FIRST!! (Else we get a critical pair) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 642 | \<open>succ(a) - succ(b)\<close> rewrites to \<open>pred(succ(a) - b)\<close>. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 643 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 644 | lemma diff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) - succ(b) = a - b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 645 | unfolding arith_defs | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 646 | apply hyp_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 647 | apply (NE b) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 648 | apply hyp_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 649 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 650 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 651 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 652 | subsection \<open>Simplification\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 653 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 654 | lemmas arith_typing_rls = add_typing mult_typing diff_typing | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 655 | and arith_congr_rls = add_typingL mult_typingL diff_typingL | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 656 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 657 | lemmas congr_rls = arith_congr_rls intrL2_rls elimL_rls | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 658 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 659 | lemmas arithC_rls = | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 660 | addC0 addC_succ | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 661 | multC0 multC_succ | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 662 | diffC0 diff_0_eq_0 diff_succ_succ | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 663 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 664 | ML \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 665 | structure Arith_simp = TSimpFun( | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 666 |     val refl = @{thm refl_elem}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 667 |     val sym = @{thm sym_elem}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 668 |     val trans = @{thm trans_elem}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 669 |     val refl_red = @{thm refl_red}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 670 |     val trans_red = @{thm trans_red}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 671 |     val red_if_equal = @{thm red_if_equal}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 672 |     val default_rls = @{thms arithC_rls comp_rls}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 673 |     val routine_tac = routine_tac @{thms arith_typing_rls routine_rls}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 674 | ) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 675 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 676 | fun arith_rew_tac ctxt prems = | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 677 |     make_rew_tac ctxt (Arith_simp.norm_tac ctxt (@{thms congr_rls}, prems))
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 678 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 679 | fun hyp_arith_rew_tac ctxt prems = | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 680 | make_rew_tac ctxt | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 681 |       (Arith_simp.cond_norm_tac ctxt (prove_cond_tac ctxt, @{thms congr_rls}, prems))
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 682 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 683 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 684 | method_setup arith_rew = \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 685 | Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (arith_rew_tac ctxt ths)) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 686 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 687 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 688 | method_setup hyp_arith_rew = \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 689 | Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (hyp_arith_rew_tac ctxt ths)) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 690 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 691 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 692 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 693 | subsection \<open>Addition\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 694 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 695 | text \<open>Associative law for addition.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 696 | lemma add_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #+ c = a #+ (b #+ c) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 697 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 698 | apply hyp_arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 699 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 700 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 701 | text \<open>Commutative law for addition. Can be proved using three inductions. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 702 | Must simplify after first induction! Orientation of rewrites is delicate.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 703 | lemma add_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b = b #+ a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 704 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 705 | apply hyp_arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 706 | apply (rule sym_elem) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 707 | prefer 2 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 708 | apply (NE b) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 709 | prefer 4 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 710 | apply (NE b) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 711 | apply hyp_arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 712 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 713 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 714 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 715 | subsection \<open>Multiplication\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 716 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 717 | text \<open>Right annihilation in product.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 718 | lemma mult_0_right: "a:N \<Longrightarrow> a #* 0 = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 719 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 720 | apply hyp_arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 721 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 722 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 723 | text \<open>Right successor law for multiplication.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 724 | lemma mult_succ_right: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* succ(b) = a #+ (a #* b) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 725 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 726 | apply (hyp_arith_rew add_assoc [THEN sym_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 727 | apply (assumption | rule add_commute mult_typingL add_typingL intrL_rls refl_elem)+ | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 728 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 729 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 730 | text \<open>Commutative law for multiplication.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 731 | lemma mult_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b = b #* a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 732 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 733 | apply (hyp_arith_rew mult_0_right mult_succ_right) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 734 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 735 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 736 | text \<open>Addition distributes over multiplication.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 737 | lemma add_mult_distrib: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #* c = (a #* c) #+ (b #* c) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 738 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 739 | apply (hyp_arith_rew add_assoc [THEN sym_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 740 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 741 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 742 | text \<open>Associative law for multiplication.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 743 | lemma mult_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #* b) #* c = a #* (b #* c) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 744 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 745 | apply (hyp_arith_rew add_mult_distrib) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 746 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 747 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 748 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 749 | subsection \<open>Difference\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 750 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 751 | text \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 752 | Difference on natural numbers, without negative numbers | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 753 | \<^item> \<open>a - b = 0\<close> iff \<open>a \<le> b\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 754 | \<^item> \<open>a - b = succ(c)\<close> iff \<open>a > b\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 755 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 756 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 757 | lemma diff_self_eq_0: "a:N \<Longrightarrow> a - a = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 758 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 759 | apply hyp_arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 760 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 761 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 762 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 763 | lemma add_0_right: "\<lbrakk>c : N; 0 : N; c : N\<rbrakk> \<Longrightarrow> c #+ 0 = c : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 764 | by (rule addC0 [THEN [3] add_commute [THEN trans_elem]]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 765 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 766 | text \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 767 | Addition is the inverse of subtraction: if \<open>b \<le> x\<close> then \<open>b #+ (x - b) = x\<close>. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 768 | An example of induction over a quantified formula (a product). | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 769 | Uses rewriting with a quantified, implicative inductive hypothesis. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 770 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 771 | schematic_goal add_diff_inverse_lemma: | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 772 | "b:N \<Longrightarrow> ?a : \<Prod>x:N. Eq(N, b-x, 0) \<longrightarrow> Eq(N, b #+ (x-b), x)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 773 | apply (NE b) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 774 | \<comment> \<open>strip one "universal quantifier" but not the "implication"\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 775 | apply (rule_tac [3] intr_rls) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 776 | \<comment> \<open>case analysis on \<open>x\<close> in \<open>succ(u) \<le> x \<longrightarrow> succ(u) #+ (x - succ(u)) = x\<close>\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 777 | prefer 4 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 778 | apply (NE x) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 779 | apply assumption | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 780 | \<comment> \<open>Prepare for simplification of types -- the antecedent \<open>succ(u) \<le> x\<close>\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 781 | apply (rule_tac [2] replace_type) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 782 | apply (rule_tac [1] replace_type) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 783 | apply arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 784 | \<comment> \<open>Solves first 0 goal, simplifies others. Two sugbgoals remain. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 785 | Both follow by rewriting, (2) using quantified induction hyp.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 786 | apply intr \<comment> \<open>strips remaining \<open>\<Prod>\<close>s\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 787 | apply (hyp_arith_rew add_0_right) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 788 | apply assumption | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 789 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 790 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 791 | text \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 792 | Version of above with premise \<open>b - a = 0\<close> i.e. \<open>a \<ge> b\<close>. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 793 |   Using @{thm ProdE} does not work -- for \<open>?B(?a)\<close> is ambiguous.
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 794 |   Instead, @{thm add_diff_inverse_lemma} states the desired induction scheme;
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 795 |   the use of \<open>THEN\<close> below instantiates Vars in @{thm ProdE} automatically.
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 796 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 797 | lemma add_diff_inverse: "\<lbrakk>a:N; b:N; b - a = 0 : N\<rbrakk> \<Longrightarrow> b #+ (a-b) = a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 798 | apply (rule EqE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 799 | apply (rule add_diff_inverse_lemma [THEN ProdE, THEN ProdE]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 800 | apply (assumption | rule EqI)+ | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 801 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 802 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 803 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 804 | subsection \<open>Absolute difference\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 805 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 806 | text \<open>Typing of absolute difference: short and long versions.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 807 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 808 | lemma absdiff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a |-| b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 809 | unfolding arith_defs by typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 810 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 811 | lemma absdiff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a |-| b = c |-| d : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 812 | unfolding arith_defs by equal | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 813 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 814 | lemma absdiff_self_eq_0: "a:N \<Longrightarrow> a |-| a = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 815 | unfolding absdiff_def by (arith_rew diff_self_eq_0) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 816 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 817 | lemma absdiffC0: "a:N \<Longrightarrow> 0 |-| a = a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 818 | unfolding absdiff_def by hyp_arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 819 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 820 | lemma absdiff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) |-| succ(b) = a |-| b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 821 | unfolding absdiff_def by hyp_arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 822 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 823 | text \<open>Note how easy using commutative laws can be? ...not always...\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 824 | lemma absdiff_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a |-| b = b |-| a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 825 | unfolding absdiff_def | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 826 | apply (rule add_commute) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 827 | apply (typechk diff_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 828 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 829 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 830 | text \<open>If \<open>a + b = 0\<close> then \<open>a = 0\<close>. Surprisingly tedious.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 831 | schematic_goal add_eq0_lemma: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> ?c : Eq(N,a#+b,0) \<longrightarrow> Eq(N,a,0)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 832 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 833 | apply (rule_tac [3] replace_type) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 834 | apply arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 835 | apply intr \<comment> \<open>strips remaining \<open>\<Prod>\<close>s\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 836 | apply (rule_tac [2] zero_ne_succ [THEN FE]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 837 | apply (erule_tac [3] EqE [THEN sym_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 838 | apply (typechk add_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 839 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 840 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 841 | text \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 842 | Version of above with the premise \<open>a + b = 0\<close>. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 843 |   Again, resolution instantiates variables in @{thm ProdE}.
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 844 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 845 | lemma add_eq0: "\<lbrakk>a:N; b:N; a #+ b = 0 : N\<rbrakk> \<Longrightarrow> a = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 846 | apply (rule EqE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 847 | apply (rule add_eq0_lemma [THEN ProdE]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 848 | apply (rule_tac [3] EqI) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 849 | apply typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 850 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 851 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 852 | text \<open>Here is a lemma to infer \<open>a - b = 0\<close> and \<open>b - a = 0\<close> from \<open>a |-| b = 0\<close>, below.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 853 | schematic_goal absdiff_eq0_lem: | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 854 | "\<lbrakk>a:N; b:N; a |-| b = 0 : N\<rbrakk> \<Longrightarrow> ?a : Eq(N, a-b, 0) \<times> Eq(N, b-a, 0)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 855 | apply (unfold absdiff_def) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 856 | apply intr | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 857 | apply eqintr | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 858 | apply (rule_tac [2] add_eq0) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 859 | apply (rule add_eq0) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 860 | apply (rule_tac [6] add_commute [THEN trans_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 861 | apply (typechk diff_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 862 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 863 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 864 | text \<open>If \<open>a |-| b = 0\<close> then \<open>a = b\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 865 | proof: \<open>a - b = 0\<close> and \<open>b - a = 0\<close>, so \<open>b = a + (b - a) = a + 0 = a\<close>. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 866 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 867 | lemma absdiff_eq0: "\<lbrakk>a |-| b = 0 : N; a:N; b:N\<rbrakk> \<Longrightarrow> a = b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 868 | apply (rule EqE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 869 | apply (rule absdiff_eq0_lem [THEN SumE]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 870 | apply eqintr | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 871 | apply (rule add_diff_inverse [THEN sym_elem, THEN trans_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 872 | apply (erule_tac [3] EqE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 873 | apply (hyp_arith_rew add_0_right) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 874 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 875 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 876 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 877 | subsection \<open>Remainder and Quotient\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 878 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 879 | text \<open>Typing of remainder: short and long versions.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 880 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 881 | lemma mod_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 882 | unfolding mod_def by (typechk absdiff_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 883 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 884 | lemma mod_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a mod b = c mod d : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 885 | unfolding mod_def by (equal absdiff_typingL) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 886 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 887 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 888 | text \<open>Computation for \<open>mod\<close>: 0 and successor cases.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 889 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 890 | lemma modC0: "b:N \<Longrightarrow> 0 mod b = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 891 | unfolding mod_def by (rew absdiff_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 892 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 893 | lemma modC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 894 | succ(a) mod b = rec(succ(a mod b) |-| b, 0, \<lambda>x y. succ(a mod b)) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 895 | unfolding mod_def by (rew absdiff_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 896 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 897 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 898 | text \<open>Typing of quotient: short and long versions.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 899 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 900 | lemma div_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a div b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 901 | unfolding div_def by (typechk absdiff_typing mod_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 902 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 903 | lemma div_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a div b = c div d : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 904 | unfolding div_def by (equal absdiff_typingL mod_typingL) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 905 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 906 | lemmas div_typing_rls = mod_typing div_typing absdiff_typing | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 907 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 908 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 909 | text \<open>Computation for quotient: 0 and successor cases.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 910 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 911 | lemma divC0: "b:N \<Longrightarrow> 0 div b = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 912 | unfolding div_def by (rew mod_typing absdiff_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 913 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 914 | lemma divC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 915 | succ(a) div b = rec(succ(a) mod b, succ(a div b), \<lambda>x y. a div b) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 916 | unfolding div_def by (rew mod_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 917 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 918 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 919 | text \<open>Version of above with same condition as the \<open>mod\<close> one.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 920 | lemma divC_succ2: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 921 | succ(a) div b =rec(succ(a mod b) |-| b, succ(a div b), \<lambda>x y. a div b) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 922 | apply (rule divC_succ [THEN trans_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 923 | apply (rew div_typing_rls modC_succ) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 924 | apply (NE "succ (a mod b) |-|b") | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 925 | apply (rew mod_typing div_typing absdiff_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 926 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 927 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 928 | text \<open>For case analysis on whether a number is 0 or a successor.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 929 | lemma iszero_decidable: "a:N \<Longrightarrow> rec(a, inl(eq), \<lambda>ka kb. inr(<ka, eq>)) : | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 930 | Eq(N,a,0) + (\<Sum>x:N. Eq(N,a, succ(x)))" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 931 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 932 | apply (rule_tac [3] PlusI_inr) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 933 | apply (rule_tac [2] PlusI_inl) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 934 | apply eqintr | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 935 | apply equal | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 936 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 937 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 938 | text \<open>Main Result. Holds when \<open>b\<close> is 0 since \<open>a mod 0 = a\<close> and \<open>a div 0 = 0\<close>.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 939 | lemma mod_div_equality: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b #+ (a div b) #* b = a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 940 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 941 | apply (arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 942 | apply (rule EqE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 943 | \<comment> \<open>case analysis on \<open>succ(u mod b) |-| b\<close>\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 944 | apply (rule_tac a1 = "succ (u mod b) |-| b" in iszero_decidable [THEN PlusE]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 945 | apply (erule_tac [3] SumE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 946 | apply (hyp_arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 947 | \<comment> \<open>Replace one occurrence of \<open>b\<close> by \<open>succ(u mod b)\<close>. Clumsy!\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 948 | apply (rule add_typingL [THEN trans_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 949 | apply (erule EqE [THEN absdiff_eq0, THEN sym_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 950 | apply (rule_tac [3] refl_elem) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 951 | apply (hyp_arith_rew div_typing_rls) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 952 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 953 | |
| 19761 | 954 | end |