src/HOL/Relation.thy
author haftmann
Mon, 04 Jul 2016 19:46:20 +0200
changeset 63376 4c0cc2b356f0
parent 62343 24106dc44def
child 63404 a95e7432d86c
permissions -rw-r--r--
default one-step rules for predicates on relations; clarified status of legacy input abbreviations
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10358
ef2a753cda2a converse: syntax \<inverse>;
wenzelm
parents: 10212
diff changeset
     1
(*  Title:      HOL/Relation.thy
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory; Stefan Berghofer, TU Muenchen
1128
64b30e3cc6d4 Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff changeset
     3
*)
64b30e3cc6d4 Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff changeset
     4
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
     5
section \<open>Relations -- as sets of pairs, and binary predicates\<close>
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
     6
15131
c69542757a4d New theory header syntax.
nipkow
parents: 13830
diff changeset
     7
theory Relation
54555
e8c5e95d338b rationalize imports
blanchet
parents: 54410
diff changeset
     8
imports Finite_Set
15131
c69542757a4d New theory header syntax.
nipkow
parents: 13830
diff changeset
     9
begin
5978
fa2c2dd74f8c moved diag (diagonal relation) from Univ to Relation
paulson
parents: 5608
diff changeset
    10
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    11
text \<open>A preliminary: classical rules for reasoning on predicates\<close>
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    12
46882
6242b4bc05bc tuned simpset
noschinl
parents: 46833
diff changeset
    13
declare predicate1I [Pure.intro!, intro!]
6242b4bc05bc tuned simpset
noschinl
parents: 46833
diff changeset
    14
declare predicate1D [Pure.dest, dest]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    15
declare predicate2I [Pure.intro!, intro!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    16
declare predicate2D [Pure.dest, dest]
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
    17
declare bot1E [elim!] 
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    18
declare bot2E [elim!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    19
declare top1I [intro!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    20
declare top2I [intro!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    21
declare inf1I [intro!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    22
declare inf2I [intro!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    23
declare inf1E [elim!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    24
declare inf2E [elim!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    25
declare sup1I1 [intro?]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    26
declare sup2I1 [intro?]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    27
declare sup1I2 [intro?]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    28
declare sup2I2 [intro?]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    29
declare sup1E [elim!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    30
declare sup2E [elim!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    31
declare sup1CI [intro!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    32
declare sup2CI [intro!]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    33
declare Inf1_I [intro!]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    34
declare INF1_I [intro!]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    35
declare Inf2_I [intro!]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    36
declare INF2_I [intro!]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    37
declare Inf1_D [elim]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    38
declare INF1_D [elim]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    39
declare Inf2_D [elim]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    40
declare INF2_D [elim]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    41
declare Inf1_E [elim]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    42
declare INF1_E [elim]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    43
declare Inf2_E [elim]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    44
declare INF2_E [elim]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    45
declare Sup1_I [intro]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    46
declare SUP1_I [intro]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    47
declare Sup2_I [intro]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    48
declare SUP2_I [intro]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    49
declare Sup1_E [elim!]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    50
declare SUP1_E [elim!]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    51
declare Sup2_E [elim!]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    52
declare SUP2_E [elim!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    53
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
    54
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    55
subsection \<open>Fundamental\<close>
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    56
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    57
subsubsection \<open>Relations as sets of pairs\<close>
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    58
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    59
type_synonym 'a rel = "('a * 'a) set"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    60
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
    61
lemma subrelI: \<comment> \<open>Version of @{thm [source] subsetI} for binary relations\<close>
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    62
  "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (x, y) \<in> s) \<Longrightarrow> r \<subseteq> s"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    63
  by auto
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    64
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
    65
lemma lfp_induct2: \<comment> \<open>Version of @{thm [source] lfp_induct} for binary relations\<close>
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    66
  "(a, b) \<in> lfp f \<Longrightarrow> mono f \<Longrightarrow>
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    67
    (\<And>a b. (a, b) \<in> f (lfp f \<inter> {(x, y). P x y}) \<Longrightarrow> P a b) \<Longrightarrow> P a b"
55414
eab03e9cee8a renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents: 55096
diff changeset
    68
  using lfp_induct_set [of "(a, b)" f "case_prod P"] by auto
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    69
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    70
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    71
subsubsection \<open>Conversions between set and predicate relations\<close>
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    72
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
    73
lemma pred_equals_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) = (\<lambda>x. x \<in> S) \<longleftrightarrow> R = S"
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    74
  by (simp add: set_eq_iff fun_eq_iff)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    75
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
    76
lemma pred_equals_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) = (\<lambda>x y. (x, y) \<in> S) \<longleftrightarrow> R = S"
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    77
  by (simp add: set_eq_iff fun_eq_iff)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    78
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
    79
lemma pred_subset_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<le> (\<lambda>x. x \<in> S) \<longleftrightarrow> R \<subseteq> S"
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    80
  by (simp add: subset_iff le_fun_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    81
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
    82
lemma pred_subset_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<le> (\<lambda>x y. (x, y) \<in> S) \<longleftrightarrow> R \<subseteq> S"
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    83
  by (simp add: subset_iff le_fun_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    84
46883
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
    85
lemma bot_empty_eq [pred_set_conv]: "\<bottom> = (\<lambda>x. x \<in> {})"
46689
f559866a7aa2 marked candidates for rule declarations
haftmann
parents: 46664
diff changeset
    86
  by (auto simp add: fun_eq_iff)
f559866a7aa2 marked candidates for rule declarations
haftmann
parents: 46664
diff changeset
    87
46883
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
    88
lemma bot_empty_eq2 [pred_set_conv]: "\<bottom> = (\<lambda>x y. (x, y) \<in> {})"
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    89
  by (auto simp add: fun_eq_iff)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    90
46883
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
    91
lemma top_empty_eq [pred_set_conv]: "\<top> = (\<lambda>x. x \<in> UNIV)"
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
    92
  by (auto simp add: fun_eq_iff)
46689
f559866a7aa2 marked candidates for rule declarations
haftmann
parents: 46664
diff changeset
    93
46883
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
    94
lemma top_empty_eq2 [pred_set_conv]: "\<top> = (\<lambda>x y. (x, y) \<in> UNIV)"
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
    95
  by (auto simp add: fun_eq_iff)
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    96
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    97
lemma inf_Int_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<sqinter> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)"
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    98
  by (simp add: inf_fun_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    99
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   100
lemma inf_Int_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<sqinter> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)"
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   101
  by (simp add: inf_fun_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   102
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   103
lemma sup_Un_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<squnion> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)"
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   104
  by (simp add: sup_fun_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   105
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   106
lemma sup_Un_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<squnion> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)"
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   107
  by (simp add: sup_fun_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   108
46981
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   109
lemma INF_INT_eq [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Inter>i\<in>S. r i))"
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   110
  by (simp add: fun_eq_iff)
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   111
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   112
lemma INF_INT_eq2 [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Inter>i\<in>S. r i))"
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   113
  by (simp add: fun_eq_iff)
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   114
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   115
lemma SUP_UN_eq [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Union>i\<in>S. r i))"
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   116
  by (simp add: fun_eq_iff)
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   117
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   118
lemma SUP_UN_eq2 [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Union>i\<in>S. r i))"
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   119
  by (simp add: fun_eq_iff)
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   120
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   121
lemma Inf_INT_eq [pred_set_conv]: "\<Sqinter>S = (\<lambda>x. x \<in> INTER S Collect)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   122
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   123
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   124
lemma INF_Int_eq [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x. x \<in> i)) = (\<lambda>x. x \<in> \<Inter>S)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   125
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   126
55414
eab03e9cee8a renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents: 55096
diff changeset
   127
lemma Inf_INT_eq2 [pred_set_conv]: "\<Sqinter>S = (\<lambda>x y. (x, y) \<in> INTER (case_prod ` S) Collect)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   128
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   129
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   130
lemma INF_Int_eq2 [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x y. (x, y) \<in> i)) = (\<lambda>x y. (x, y) \<in> \<Inter>S)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   131
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   132
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   133
lemma Sup_SUP_eq [pred_set_conv]: "\<Squnion>S = (\<lambda>x. x \<in> UNION S Collect)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   134
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   135
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   136
lemma SUP_Sup_eq [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x. x \<in> i)) = (\<lambda>x. x \<in> \<Union>S)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   137
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   138
55414
eab03e9cee8a renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents: 55096
diff changeset
   139
lemma Sup_SUP_eq2 [pred_set_conv]: "\<Squnion>S = (\<lambda>x y. (x, y) \<in> UNION (case_prod ` S) Collect)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   140
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   141
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   142
lemma SUP_Sup_eq2 [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x y. (x, y) \<in> i)) = (\<lambda>x y. (x, y) \<in> \<Union>S)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   143
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   144
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   145
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   146
subsection \<open>Properties of relations\<close>
5978
fa2c2dd74f8c moved diag (diagonal relation) from Univ to Relation
paulson
parents: 5608
diff changeset
   147
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   148
subsubsection \<open>Reflexivity\<close>
10786
04ee73606993 Field of a relation, and some Domain/Range rules
paulson
parents: 10358
diff changeset
   149
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   150
definition refl_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   151
where
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   152
  "refl_on A r \<longleftrightarrow> r \<subseteq> A \<times> A \<and> (\<forall>x\<in>A. (x, x) \<in> r)"
6806
43c081a0858d new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents: 5978
diff changeset
   153
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   154
abbreviation refl :: "'a rel \<Rightarrow> bool"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   155
where \<comment> \<open>reflexivity over a type\<close>
45137
6e422d180de8 modernized definitions
haftmann
parents: 45012
diff changeset
   156
  "refl \<equiv> refl_on UNIV"
26297
74012d599204 added lemmas
nipkow
parents: 26271
diff changeset
   157
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   158
definition reflp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   159
where
47375
8e6a45f1bf8f define reflp directly, in the manner of symp and transp
huffman
parents: 47087
diff changeset
   160
  "reflp r \<longleftrightarrow> (\<forall>x. r x x)"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   161
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   162
lemma reflp_refl_eq [pred_set_conv]:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   163
  "reflp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> refl r" 
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   164
  by (simp add: refl_on_def reflp_def)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   165
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   166
lemma refl_onI [intro?]: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl_on A r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   167
  by (unfold refl_on_def) (iprover intro!: ballI)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   168
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   169
lemma refl_onD: "refl_on A r ==> a : A ==> (a, a) : r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   170
  by (unfold refl_on_def) blast
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   171
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   172
lemma refl_onD1: "refl_on A r ==> (x, y) : r ==> x : A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   173
  by (unfold refl_on_def) blast
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   174
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   175
lemma refl_onD2: "refl_on A r ==> (x, y) : r ==> y : A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   176
  by (unfold refl_on_def) blast
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   177
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   178
lemma reflpI [intro?]:
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   179
  "(\<And>x. r x x) \<Longrightarrow> reflp r"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   180
  by (auto intro: refl_onI simp add: reflp_def)
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   181
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   182
lemma reflpE:
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   183
  assumes "reflp r"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   184
  obtains "r x x"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   185
  using assms by (auto dest: refl_onD simp add: reflp_def)
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   186
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   187
lemma reflpD [dest?]:
47937
70375fa2679d generate abs_eq, use it as a code equation for total quotients; no_abs_code renamed to no_code; added no_code for quotient_type command
kuncar
parents: 47436
diff changeset
   188
  assumes "reflp r"
70375fa2679d generate abs_eq, use it as a code equation for total quotients; no_abs_code renamed to no_code; added no_code for quotient_type command
kuncar
parents: 47436
diff changeset
   189
  shows "r x x"
70375fa2679d generate abs_eq, use it as a code equation for total quotients; no_abs_code renamed to no_code; added no_code for quotient_type command
kuncar
parents: 47436
diff changeset
   190
  using assms by (auto elim: reflpE)
70375fa2679d generate abs_eq, use it as a code equation for total quotients; no_abs_code renamed to no_code; added no_code for quotient_type command
kuncar
parents: 47436
diff changeset
   191
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   192
lemma refl_on_Int: "refl_on A r ==> refl_on B s ==> refl_on (A \<inter> B) (r \<inter> s)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   193
  by (unfold refl_on_def) blast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   194
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   195
lemma reflp_inf:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   196
  "reflp r \<Longrightarrow> reflp s \<Longrightarrow> reflp (r \<sqinter> s)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   197
  by (auto intro: reflpI elim: reflpE)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   198
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   199
lemma refl_on_Un: "refl_on A r ==> refl_on B s ==> refl_on (A \<union> B) (r \<union> s)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   200
  by (unfold refl_on_def) blast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   201
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   202
lemma reflp_sup:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   203
  "reflp r \<Longrightarrow> reflp s \<Longrightarrow> reflp (r \<squnion> s)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   204
  by (auto intro: reflpI elim: reflpE)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   205
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   206
lemma refl_on_INTER:
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   207
  "ALL x:S. refl_on (A x) (r x) ==> refl_on (INTER S A) (INTER S r)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   208
  by (unfold refl_on_def) fast
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   209
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   210
lemma refl_on_UNION:
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   211
  "ALL x:S. refl_on (A x) (r x) \<Longrightarrow> refl_on (UNION S A) (UNION S r)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   212
  by (unfold refl_on_def) blast
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   213
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   214
lemma refl_on_empty [simp]: "refl_on {} {}"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   215
  by (simp add:refl_on_def)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   216
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   217
lemma refl_on_def' [nitpick_unfold, code]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   218
  "refl_on A r \<longleftrightarrow> (\<forall>(x, y) \<in> r. x \<in> A \<and> y \<in> A) \<and> (\<forall>x \<in> A. (x, x) \<in> r)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   219
  by (auto intro: refl_onI dest: refl_onD refl_onD1 refl_onD2)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   220
60057
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59518
diff changeset
   221
lemma reflp_equality [simp]: "reflp op ="
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59518
diff changeset
   222
by(simp add: reflp_def)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   223
61630
608520e0e8e2 add various lemmas
Andreas Lochbihler
parents: 61424
diff changeset
   224
lemma reflp_mono: "\<lbrakk> reflp R; \<And>x y. R x y \<longrightarrow> Q x y \<rbrakk> \<Longrightarrow> reflp Q"
608520e0e8e2 add various lemmas
Andreas Lochbihler
parents: 61424
diff changeset
   225
by(auto intro: reflpI dest: reflpD)
608520e0e8e2 add various lemmas
Andreas Lochbihler
parents: 61424
diff changeset
   226
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   227
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   228
subsubsection \<open>Irreflexivity\<close>
6806
43c081a0858d new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents: 5978
diff changeset
   229
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   230
definition irrefl :: "'a rel \<Rightarrow> bool"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   231
where
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   232
  "irrefl r \<longleftrightarrow> (\<forall>a. (a, a) \<notin> r)"
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   233
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   234
definition irreflp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   235
where
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   236
  "irreflp R \<longleftrightarrow> (\<forall>a. \<not> R a a)"
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   237
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   238
lemma irreflp_irrefl_eq [pred_set_conv]:
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   239
  "irreflp (\<lambda>a b. (a, b) \<in> R) \<longleftrightarrow> irrefl R" 
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   240
  by (simp add: irrefl_def irreflp_def)
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   241
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   242
lemma irreflI [intro?]:
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   243
  "(\<And>a. (a, a) \<notin> R) \<Longrightarrow> irrefl R"
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   244
  by (simp add: irrefl_def)
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   245
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   246
lemma irreflpI [intro?]:
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   247
  "(\<And>a. \<not> R a a) \<Longrightarrow> irreflp R"
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   248
  by (fact irreflI [to_pred])
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   249
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   250
lemma irrefl_distinct [code]:
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   251
  "irrefl r \<longleftrightarrow> (\<forall>(a, b) \<in> r. a \<noteq> b)"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   252
  by (auto simp add: irrefl_def)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   253
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   254
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   255
subsubsection \<open>Asymmetry\<close>
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   256
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   257
inductive asym :: "'a rel \<Rightarrow> bool"
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   258
where
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   259
  asymI: "irrefl R \<Longrightarrow> (\<And>a b. (a, b) \<in> R \<Longrightarrow> (b, a) \<notin> R) \<Longrightarrow> asym R"
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   260
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   261
inductive asymp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   262
where
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   263
  asympI: "irreflp R \<Longrightarrow> (\<And>a b. R a b \<Longrightarrow> \<not> R b a) \<Longrightarrow> asymp R"
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   264
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   265
lemma asymp_asym_eq [pred_set_conv]:
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   266
  "asymp (\<lambda>a b. (a, b) \<in> R) \<longleftrightarrow> asym R" 
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   267
  by (auto intro!: asymI asympI elim: asym.cases asymp.cases simp add: irreflp_irrefl_eq)
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   268
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   269
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   270
subsubsection \<open>Symmetry\<close>
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   271
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   272
definition sym :: "'a rel \<Rightarrow> bool"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   273
where
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   274
  "sym r \<longleftrightarrow> (\<forall>x y. (x, y) \<in> r \<longrightarrow> (y, x) \<in> r)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   275
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   276
definition symp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   277
where
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   278
  "symp r \<longleftrightarrow> (\<forall>x y. r x y \<longrightarrow> r y x)"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   279
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   280
lemma symp_sym_eq [pred_set_conv]:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   281
  "symp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> sym r" 
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   282
  by (simp add: sym_def symp_def)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   283
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   284
lemma symI [intro?]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   285
  "(\<And>a b. (a, b) \<in> r \<Longrightarrow> (b, a) \<in> r) \<Longrightarrow> sym r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   286
  by (unfold sym_def) iprover
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   287
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   288
lemma sympI [intro?]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   289
  "(\<And>a b. r a b \<Longrightarrow> r b a) \<Longrightarrow> symp r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   290
  by (fact symI [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   291
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   292
lemma symE:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   293
  assumes "sym r" and "(b, a) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   294
  obtains "(a, b) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   295
  using assms by (simp add: sym_def)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   296
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   297
lemma sympE:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   298
  assumes "symp r" and "r b a"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   299
  obtains "r a b"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   300
  using assms by (rule symE [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   301
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   302
lemma symD [dest?]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   303
  assumes "sym r" and "(b, a) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   304
  shows "(a, b) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   305
  using assms by (rule symE)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   306
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   307
lemma sympD [dest?]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   308
  assumes "symp r" and "r b a"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   309
  shows "r a b"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   310
  using assms by (rule symD [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   311
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   312
lemma sym_Int:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   313
  "sym r \<Longrightarrow> sym s \<Longrightarrow> sym (r \<inter> s)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   314
  by (fast intro: symI elim: symE)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   315
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   316
lemma symp_inf:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   317
  "symp r \<Longrightarrow> symp s \<Longrightarrow> symp (r \<sqinter> s)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   318
  by (fact sym_Int [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   319
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   320
lemma sym_Un:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   321
  "sym r \<Longrightarrow> sym s \<Longrightarrow> sym (r \<union> s)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   322
  by (fast intro: symI elim: symE)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   323
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   324
lemma symp_sup:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   325
  "symp r \<Longrightarrow> symp s \<Longrightarrow> symp (r \<squnion> s)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   326
  by (fact sym_Un [to_pred])
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   327
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   328
lemma sym_INTER:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   329
  "\<forall>x\<in>S. sym (r x) \<Longrightarrow> sym (INTER S r)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   330
  by (fast intro: symI elim: symE)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   331
46982
144d94446378 spelt out missing colemmas
haftmann
parents: 46981
diff changeset
   332
lemma symp_INF:
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56085
diff changeset
   333
  "\<forall>x\<in>S. symp (r x) \<Longrightarrow> symp (INFIMUM S r)"
46982
144d94446378 spelt out missing colemmas
haftmann
parents: 46981
diff changeset
   334
  by (fact sym_INTER [to_pred])
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   335
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   336
lemma sym_UNION:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   337
  "\<forall>x\<in>S. sym (r x) \<Longrightarrow> sym (UNION S r)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   338
  by (fast intro: symI elim: symE)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   339
46982
144d94446378 spelt out missing colemmas
haftmann
parents: 46981
diff changeset
   340
lemma symp_SUP:
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56085
diff changeset
   341
  "\<forall>x\<in>S. symp (r x) \<Longrightarrow> symp (SUPREMUM S r)"
46982
144d94446378 spelt out missing colemmas
haftmann
parents: 46981
diff changeset
   342
  by (fact sym_UNION [to_pred])
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   343
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   344
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   345
subsubsection \<open>Antisymmetry\<close>
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   346
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   347
definition antisym :: "'a rel \<Rightarrow> bool"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   348
where
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   349
  "antisym r \<longleftrightarrow> (\<forall>x y. (x, y) \<in> r \<longrightarrow> (y, x) \<in> r \<longrightarrow> x = y)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   350
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   351
abbreviation antisymP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   352
where -- \<open>FIXME proper logical operation\<close>
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   353
  "antisymP r \<equiv> antisym {(x, y). r x y}"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   354
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   355
lemma antisymI [intro?]:
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   356
  "(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   357
  by (unfold antisym_def) iprover
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   358
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   359
lemma antisymD [dest?]: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   360
  by (unfold antisym_def) iprover
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   361
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   362
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   363
  by (unfold antisym_def) blast
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   364
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   365
lemma antisym_empty [simp]: "antisym {}"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   366
  by (unfold antisym_def) blast
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   367
60057
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59518
diff changeset
   368
lemma antisymP_equality [simp]: "antisymP op ="
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59518
diff changeset
   369
by(auto intro: antisymI)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   370
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   371
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   372
subsubsection \<open>Transitivity\<close>
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   373
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   374
definition trans :: "'a rel \<Rightarrow> bool"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   375
where
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   376
  "trans r \<longleftrightarrow> (\<forall>x y z. (x, y) \<in> r \<longrightarrow> (y, z) \<in> r \<longrightarrow> (x, z) \<in> r)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   377
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   378
definition transp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   379
where
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   380
  "transp r \<longleftrightarrow> (\<forall>x y z. r x y \<longrightarrow> r y z \<longrightarrow> r x z)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   381
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   382
lemma transp_trans_eq [pred_set_conv]:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   383
  "transp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> trans r" 
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   384
  by (simp add: trans_def transp_def)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   385
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   386
lemma transI [intro?]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   387
  "(\<And>x y z. (x, y) \<in> r \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> (x, z) \<in> r) \<Longrightarrow> trans r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   388
  by (unfold trans_def) iprover
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   389
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   390
lemma transpI [intro?]:
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   391
  "(\<And>x y z. r x y \<Longrightarrow> r y z \<Longrightarrow> r x z) \<Longrightarrow> transp r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   392
  by (fact transI [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   393
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   394
lemma transE:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   395
  assumes "trans r" and "(x, y) \<in> r" and "(y, z) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   396
  obtains "(x, z) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   397
  using assms by (unfold trans_def) iprover
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   398
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   399
lemma transpE:
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   400
  assumes "transp r" and "r x y" and "r y z"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   401
  obtains "r x z"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   402
  using assms by (rule transE [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   403
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   404
lemma transD [dest?]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   405
  assumes "trans r" and "(x, y) \<in> r" and "(y, z) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   406
  shows "(x, z) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   407
  using assms by (rule transE)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   408
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   409
lemma transpD [dest?]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   410
  assumes "transp r" and "r x y" and "r y z"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   411
  shows "r x z"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   412
  using assms by (rule transD [to_pred])
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   413
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   414
lemma trans_Int:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   415
  "trans r \<Longrightarrow> trans s \<Longrightarrow> trans (r \<inter> s)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   416
  by (fast intro: transI elim: transE)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   417
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   418
lemma transp_inf:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   419
  "transp r \<Longrightarrow> transp s \<Longrightarrow> transp (r \<sqinter> s)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   420
  by (fact trans_Int [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   421
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   422
lemma trans_INTER:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   423
  "\<forall>x\<in>S. trans (r x) \<Longrightarrow> trans (INTER S r)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   424
  by (fast intro: transI elim: transD)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   425
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   426
(* FIXME thm trans_INTER [to_pred] *)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   427
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   428
lemma trans_join [code]:
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   429
  "trans r \<longleftrightarrow> (\<forall>(x, y1) \<in> r. \<forall>(y2, z) \<in> r. y1 = y2 \<longrightarrow> (x, z) \<in> r)"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   430
  by (auto simp add: trans_def)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   431
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   432
lemma transp_trans:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   433
  "transp r \<longleftrightarrow> trans {(x, y). r x y}"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   434
  by (simp add: trans_def transp_def)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   435
59518
28cfc60dea7a add lemma
Andreas Lochbihler
parents: 58889
diff changeset
   436
lemma transp_equality [simp]: "transp op ="
28cfc60dea7a add lemma
Andreas Lochbihler
parents: 58889
diff changeset
   437
by(auto intro: transpI)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   438
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   439
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   440
subsubsection \<open>Totality\<close>
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   441
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   442
definition total_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   443
where
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   444
  "total_on A r \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. x \<noteq> y \<longrightarrow> (x, y) \<in> r \<or> (y, x) \<in> r)"
29859
33bff35f1335 Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents: 29609
diff changeset
   445
33bff35f1335 Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents: 29609
diff changeset
   446
abbreviation "total \<equiv> total_on UNIV"
33bff35f1335 Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents: 29609
diff changeset
   447
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   448
lemma total_on_empty [simp]: "total_on {} r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   449
  by (simp add: total_on_def)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   450
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   451
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   452
subsubsection \<open>Single valued relations\<close>
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   453
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   454
definition single_valued :: "('a \<times> 'b) set \<Rightarrow> bool"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   455
where
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   456
  "single_valued r \<longleftrightarrow> (\<forall>x y. (x, y) \<in> r \<longrightarrow> (\<forall>z. (x, z) \<in> r \<longrightarrow> y = z))"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   457
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   458
abbreviation single_valuedP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   459
where -- \<open>FIXME proper logical operation\<close>
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   460
  "single_valuedP r \<equiv> single_valued {(x, y). r x y}"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   461
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   462
lemma single_valuedI:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   463
  "ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   464
  by (unfold single_valued_def)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   465
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   466
lemma single_valuedD:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   467
  "single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   468
  by (simp add: single_valued_def)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   469
57111
nipkow
parents: 56790
diff changeset
   470
lemma single_valued_empty[simp]: "single_valued {}"
52392
ee996ca08de3 added lemma
nipkow
parents: 50420
diff changeset
   471
by(simp add: single_valued_def)
ee996ca08de3 added lemma
nipkow
parents: 50420
diff changeset
   472
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   473
lemma single_valued_subset:
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   474
  "r \<subseteq> s ==> single_valued s ==> single_valued r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   475
  by (unfold single_valued_def) blast
11136
e34e7f6d9b57 moved inv_image to Relation
oheimb
parents: 10832
diff changeset
   476
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   477
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   478
subsection \<open>Relation operations\<close>
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   479
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   480
subsubsection \<open>The identity relation\<close>
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   481
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   482
definition Id :: "'a rel"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   483
where
48253
4410a709913c a first guess to avoid the Codegenerator_Test to loop infinitely
bulwahn
parents: 47937
diff changeset
   484
  [code del]: "Id = {p. \<exists>x. p = (x, x)}"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   485
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   486
lemma IdI [intro]: "(a, a) : Id"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   487
  by (simp add: Id_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   488
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   489
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   490
  by (unfold Id_def) (iprover elim: CollectE)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   491
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   492
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   493
  by (unfold Id_def) blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   494
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
   495
lemma refl_Id: "refl Id"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   496
  by (simp add: refl_on_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   497
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   498
lemma antisym_Id: "antisym Id"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   499
  \<comment> \<open>A strange result, since \<open>Id\<close> is also symmetric.\<close>
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   500
  by (simp add: antisym_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   501
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   502
lemma sym_Id: "sym Id"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   503
  by (simp add: sym_def)
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   504
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   505
lemma trans_Id: "trans Id"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   506
  by (simp add: trans_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   507
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   508
lemma single_valued_Id [simp]: "single_valued Id"
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   509
  by (unfold single_valued_def) blast
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   510
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   511
lemma irrefl_diff_Id [simp]: "irrefl (r - Id)"
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   512
  by (simp add:irrefl_def)
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   513
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   514
lemma trans_diff_Id: "trans r \<Longrightarrow> antisym r \<Longrightarrow> trans (r - Id)"
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   515
  unfolding antisym_def trans_def by blast
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   516
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   517
lemma total_on_diff_Id [simp]: "total_on A (r - Id) = total_on A r"
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   518
  by (simp add: total_on_def)
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   519
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   520
lemma Id_fstsnd_eq: "Id = {x. fst x = snd x}"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   521
  by force
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   522
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   523
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   524
subsubsection \<open>Diagonal: identity over a set\<close>
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   525
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   526
definition Id_on  :: "'a set \<Rightarrow> 'a rel"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   527
where
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   528
  "Id_on A = (\<Union>x\<in>A. {(x, x)})"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   529
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
   530
lemma Id_on_empty [simp]: "Id_on {} = {}"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   531
  by (simp add: Id_on_def) 
13812
91713a1915ee converting HOL/UNITY to use unconditional fairness
paulson
parents: 13639
diff changeset
   532
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
   533
lemma Id_on_eqI: "a = b ==> a : A ==> (a, b) : Id_on A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   534
  by (simp add: Id_on_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   535
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53680
diff changeset
   536
lemma Id_onI [intro!]: "a : A ==> (a, a) : Id_on A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   537
  by (rule Id_on_eqI) (rule refl)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   538
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
   539
lemma Id_onE [elim!]:
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
   540
  "c : Id_on A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   541
  \<comment> \<open>The general elimination rule.\<close>
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   542
  by (unfold Id_on_def) (iprover elim!: UN_E singletonE)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   543
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
   544
lemma Id_on_iff: "((x, y) : Id_on A) = (x = y & x : A)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   545
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   546
45967
76cf71ed15c7 dropped obsolete code equation for Id
haftmann
parents: 45139
diff changeset
   547
lemma Id_on_def' [nitpick_unfold]:
44278
1220ecb81e8f observe distinction between sets and predicates more properly
haftmann
parents: 41792
diff changeset
   548
  "Id_on {x. A x} = Collect (\<lambda>(x, y). x = y \<and> A x)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   549
  by auto
40923
be80c93ac0a2 adding a nice definition of Id_on for quickcheck and nitpick
bulwahn
parents: 36772
diff changeset
   550
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
   551
lemma Id_on_subset_Times: "Id_on A \<subseteq> A \<times> A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   552
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   553
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   554
lemma refl_on_Id_on: "refl_on A (Id_on A)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   555
  by (rule refl_onI [OF Id_on_subset_Times Id_onI])
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   556
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   557
lemma antisym_Id_on [simp]: "antisym (Id_on A)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   558
  by (unfold antisym_def) blast
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   559
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   560
lemma sym_Id_on [simp]: "sym (Id_on A)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   561
  by (rule symI) clarify
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   562
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   563
lemma trans_Id_on [simp]: "trans (Id_on A)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   564
  by (fast intro: transI elim: transD)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   565
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   566
lemma single_valued_Id_on [simp]: "single_valued (Id_on A)"
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   567
  by (unfold single_valued_def) blast
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   568
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   569
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   570
subsubsection \<open>Composition\<close>
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   571
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   572
inductive_set relcomp  :: "('a \<times> 'b) set \<Rightarrow> ('b \<times> 'c) set \<Rightarrow> ('a \<times> 'c) set" (infixr "O" 75)
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   573
  for r :: "('a \<times> 'b) set" and s :: "('b \<times> 'c) set"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   574
where
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   575
  relcompI [intro]: "(a, b) \<in> r \<Longrightarrow> (b, c) \<in> s \<Longrightarrow> (a, c) \<in> r O s"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   576
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   577
notation relcompp (infixr "OO" 75)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   578
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   579
lemmas relcomppI = relcompp.intros
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   580
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   581
text \<open>
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   582
  For historic reasons, the elimination rules are not wholly corresponding.
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   583
  Feel free to consolidate this.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   584
\<close>
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   585
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   586
inductive_cases relcompEpair: "(a, c) \<in> r O s"
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   587
inductive_cases relcomppE [elim!]: "(r OO s) a c"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   588
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   589
lemma relcompE [elim!]: "xz \<in> r O s \<Longrightarrow>
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   590
  (\<And>x y z. xz = (x, z) \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, z) \<in> s  \<Longrightarrow> P) \<Longrightarrow> P"
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   591
  by (cases xz) (simp, erule relcompEpair, iprover)
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   592
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   593
lemma R_O_Id [simp]:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   594
  "R O Id = R"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   595
  by fast
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   596
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   597
lemma Id_O_R [simp]:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   598
  "Id O R = R"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   599
  by fast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   600
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   601
lemma relcomp_empty1 [simp]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   602
  "{} O R = {}"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   603
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   604
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   605
lemma relcompp_bot1 [simp]:
46883
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
   606
  "\<bottom> OO R = \<bottom>"
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   607
  by (fact relcomp_empty1 [to_pred])
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   608
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   609
lemma relcomp_empty2 [simp]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   610
  "R O {} = {}"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   611
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   612
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   613
lemma relcompp_bot2 [simp]:
46883
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
   614
  "R OO \<bottom> = \<bottom>"
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   615
  by (fact relcomp_empty2 [to_pred])
23185
1fa87978cf27 Added simp-rules: "R O {} = {}" and "{} O R = {}"
krauss
parents: 22172
diff changeset
   616
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   617
lemma O_assoc:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   618
  "(R O S) O T = R O (S O T)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   619
  by blast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   620
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   621
lemma relcompp_assoc:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   622
  "(r OO s) OO t = r OO (s OO t)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   623
  by (fact O_assoc [to_pred])
23185
1fa87978cf27 Added simp-rules: "R O {} = {}" and "{} O R = {}"
krauss
parents: 22172
diff changeset
   624
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   625
lemma trans_O_subset:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   626
  "trans r \<Longrightarrow> r O r \<subseteq> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   627
  by (unfold trans_def) blast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   628
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   629
lemma transp_relcompp_less_eq:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   630
  "transp r \<Longrightarrow> r OO r \<le> r "
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   631
  by (fact trans_O_subset [to_pred])
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   632
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   633
lemma relcomp_mono:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   634
  "r' \<subseteq> r \<Longrightarrow> s' \<subseteq> s \<Longrightarrow> r' O s' \<subseteq> r O s"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   635
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   636
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   637
lemma relcompp_mono:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   638
  "r' \<le> r \<Longrightarrow> s' \<le> s \<Longrightarrow> r' OO s' \<le> r OO s "
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   639
  by (fact relcomp_mono [to_pred])
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   640
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   641
lemma relcomp_subset_Sigma:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   642
  "r \<subseteq> A \<times> B \<Longrightarrow> s \<subseteq> B \<times> C \<Longrightarrow> r O s \<subseteq> A \<times> C"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   643
  by blast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   644
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   645
lemma relcomp_distrib [simp]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   646
  "R O (S \<union> T) = (R O S) \<union> (R O T)" 
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   647
  by auto
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   648
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   649
lemma relcompp_distrib [simp]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   650
  "R OO (S \<squnion> T) = R OO S \<squnion> R OO T"
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   651
  by (fact relcomp_distrib [to_pred])
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   652
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   653
lemma relcomp_distrib2 [simp]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   654
  "(S \<union> T) O R = (S O R) \<union> (T O R)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   655
  by auto
28008
f945f8d9ad4d added distributivity of relation composition over union [simp]
krauss
parents: 26297
diff changeset
   656
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   657
lemma relcompp_distrib2 [simp]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   658
  "(S \<squnion> T) OO R = S OO R \<squnion> T OO R"
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   659
  by (fact relcomp_distrib2 [to_pred])
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   660
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   661
lemma relcomp_UNION_distrib:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   662
  "s O UNION I r = (\<Union>i\<in>I. s O r i) "
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   663
  by auto
28008
f945f8d9ad4d added distributivity of relation composition over union [simp]
krauss
parents: 26297
diff changeset
   664
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   665
(* FIXME thm relcomp_UNION_distrib [to_pred] *)
36772
ef97c5006840 added lemmas rel_comp_UNION_distrib(2)
krauss
parents: 36729
diff changeset
   666
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   667
lemma relcomp_UNION_distrib2:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   668
  "UNION I r O s = (\<Union>i\<in>I. r i O s) "
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   669
  by auto
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   670
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   671
(* FIXME thm relcomp_UNION_distrib2 [to_pred] *)
36772
ef97c5006840 added lemmas rel_comp_UNION_distrib(2)
krauss
parents: 36729
diff changeset
   672
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   673
lemma single_valued_relcomp:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   674
  "single_valued r \<Longrightarrow> single_valued s \<Longrightarrow> single_valued (r O s)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   675
  by (unfold single_valued_def) blast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   676
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   677
lemma relcomp_unfold:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   678
  "r O s = {(x, z). \<exists>y. (x, y) \<in> r \<and> (y, z) \<in> s}"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   679
  by (auto simp add: set_eq_iff)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   680
58195
1fee63e0377d added various facts
haftmann
parents: 57111
diff changeset
   681
lemma relcompp_apply: "(R OO S) a c \<longleftrightarrow> (\<exists>b. R a b \<and> S b c)"
1fee63e0377d added various facts
haftmann
parents: 57111
diff changeset
   682
  unfolding relcomp_unfold [to_pred] ..
1fee63e0377d added various facts
haftmann
parents: 57111
diff changeset
   683
55083
0a689157e3ce move BNF_LFP up the dependency chain
blanchet
parents: 54611
diff changeset
   684
lemma eq_OO: "op= OO R = R"
0a689157e3ce move BNF_LFP up the dependency chain
blanchet
parents: 54611
diff changeset
   685
by blast
0a689157e3ce move BNF_LFP up the dependency chain
blanchet
parents: 54611
diff changeset
   686
61630
608520e0e8e2 add various lemmas
Andreas Lochbihler
parents: 61424
diff changeset
   687
lemma OO_eq: "R OO op = = R"
608520e0e8e2 add various lemmas
Andreas Lochbihler
parents: 61424
diff changeset
   688
by blast
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   689
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   690
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   691
subsubsection \<open>Converse\<close>
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   692
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   693
inductive_set converse :: "('a \<times> 'b) set \<Rightarrow> ('b \<times> 'a) set"  ("(_\<inverse>)" [1000] 999)
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   694
  for r :: "('a \<times> 'b) set"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   695
where
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   696
  "(a, b) \<in> r \<Longrightarrow> (b, a) \<in> r\<inverse>"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   697
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   698
notation
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   699
  conversep  ("(_\<inverse>\<inverse>)" [1000] 1000)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   700
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   701
notation (ASCII)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   702
  converse  ("(_^-1)" [1000] 999) and
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   703
  conversep ("(_^--1)" [1000] 1000)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   704
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   705
lemma converseI [sym]:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   706
  "(a, b) \<in> r \<Longrightarrow> (b, a) \<in> r\<inverse>"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   707
  by (fact converse.intros)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   708
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   709
lemma conversepI (* CANDIDATE [sym] *):
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   710
  "r a b \<Longrightarrow> r\<inverse>\<inverse> b a"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   711
  by (fact conversep.intros)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   712
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   713
lemma converseD [sym]:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   714
  "(a, b) \<in> r\<inverse> \<Longrightarrow> (b, a) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   715
  by (erule converse.cases) iprover
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   716
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   717
lemma conversepD (* CANDIDATE [sym] *):
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   718
  "r\<inverse>\<inverse> b a \<Longrightarrow> r a b"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   719
  by (fact converseD [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   720
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   721
lemma converseE [elim!]:
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   722
  \<comment> \<open>More general than \<open>converseD\<close>, as it ``splits'' the member of the relation.\<close>
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   723
  "yx \<in> r\<inverse> \<Longrightarrow> (\<And>x y. yx = (y, x) \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> P) \<Longrightarrow> P"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   724
  by (cases yx) (simp, erule converse.cases, iprover)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   725
46882
6242b4bc05bc tuned simpset
noschinl
parents: 46833
diff changeset
   726
lemmas conversepE [elim!] = conversep.cases
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   727
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   728
lemma converse_iff [iff]:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   729
  "(a, b) \<in> r\<inverse> \<longleftrightarrow> (b, a) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   730
  by (auto intro: converseI)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   731
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   732
lemma conversep_iff [iff]:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   733
  "r\<inverse>\<inverse> a b = r b a"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   734
  by (fact converse_iff [to_pred])
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   735
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   736
lemma converse_converse [simp]:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   737
  "(r\<inverse>)\<inverse> = r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   738
  by (simp add: set_eq_iff)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   739
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   740
lemma conversep_conversep [simp]:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   741
  "(r\<inverse>\<inverse>)\<inverse>\<inverse> = r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   742
  by (fact converse_converse [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   743
53680
c5096c22892b added lemmas and made concerse executable
nipkow
parents: 52749
diff changeset
   744
lemma converse_empty[simp]: "{}\<inverse> = {}"
c5096c22892b added lemmas and made concerse executable
nipkow
parents: 52749
diff changeset
   745
by auto
c5096c22892b added lemmas and made concerse executable
nipkow
parents: 52749
diff changeset
   746
c5096c22892b added lemmas and made concerse executable
nipkow
parents: 52749
diff changeset
   747
lemma converse_UNIV[simp]: "UNIV\<inverse> = UNIV"
c5096c22892b added lemmas and made concerse executable
nipkow
parents: 52749
diff changeset
   748
by auto
c5096c22892b added lemmas and made concerse executable
nipkow
parents: 52749
diff changeset
   749
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   750
lemma converse_relcomp: "(r O s)^-1 = s^-1 O r^-1"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   751
  by blast
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   752
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   753
lemma converse_relcompp: "(r OO s)^--1 = s^--1 OO r^--1"
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   754
  by (iprover intro: order_antisym conversepI relcomppI
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   755
    elim: relcomppE dest: conversepD)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   756
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   757
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   758
  by blast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   759
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   760
lemma converse_meet: "(r \<sqinter> s)^--1 = r^--1 \<sqinter> s^--1"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   761
  by (simp add: inf_fun_def) (iprover intro: conversepI ext dest: conversepD)
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   762
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   763
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   764
  by blast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   765
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   766
lemma converse_join: "(r \<squnion> s)^--1 = r^--1 \<squnion> s^--1"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   767
  by (simp add: sup_fun_def) (iprover intro: conversepI ext dest: conversepD)
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   768
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   769
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   770
  by fast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   771
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   772
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   773
  by blast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   774
52749
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   775
lemma converse_mono[simp]: "r^-1 \<subseteq> s ^-1 \<longleftrightarrow> r \<subseteq> s"
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   776
  by auto
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   777
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   778
lemma conversep_mono[simp]: "r^--1 \<le> s ^--1 \<longleftrightarrow> r \<le> s"
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   779
  by (fact converse_mono[to_pred])
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   780
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   781
lemma converse_inject[simp]: "r^-1 = s ^-1 \<longleftrightarrow> r = s"
52730
6bf02eb4ddf7 two useful relation theorems
traytel
parents: 52392
diff changeset
   782
  by auto
6bf02eb4ddf7 two useful relation theorems
traytel
parents: 52392
diff changeset
   783
52749
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   784
lemma conversep_inject[simp]: "r^--1 = s ^--1 \<longleftrightarrow> r = s"
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   785
  by (fact converse_inject[to_pred])
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   786
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   787
lemma converse_subset_swap: "r \<subseteq> s ^-1 = (r ^-1 \<subseteq> s)"
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   788
  by auto
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   789
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   790
lemma conversep_le_swap: "r \<le> s ^--1 = (r ^--1 \<le> s)"
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   791
  by (fact converse_subset_swap[to_pred])
52730
6bf02eb4ddf7 two useful relation theorems
traytel
parents: 52392
diff changeset
   792
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   793
lemma converse_Id [simp]: "Id^-1 = Id"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   794
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   795
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
   796
lemma converse_Id_on [simp]: "(Id_on A)^-1 = Id_on A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   797
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   798
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
   799
lemma refl_on_converse [simp]: "refl_on A (converse r) = refl_on A r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   800
  by (unfold refl_on_def) auto
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   801
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   802
lemma sym_converse [simp]: "sym (converse r) = sym r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   803
  by (unfold sym_def) blast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   804
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   805
lemma antisym_converse [simp]: "antisym (converse r) = antisym r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   806
  by (unfold antisym_def) blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   807
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   808
lemma trans_converse [simp]: "trans (converse r) = trans r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   809
  by (unfold trans_def) blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   810
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   811
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   812
  by (unfold sym_def) fast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   813
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   814
lemma sym_Un_converse: "sym (r \<union> r^-1)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   815
  by (unfold sym_def) blast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   816
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   817
lemma sym_Int_converse: "sym (r \<inter> r^-1)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   818
  by (unfold sym_def) blast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   819
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   820
lemma total_on_converse [simp]: "total_on A (r^-1) = total_on A r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   821
  by (auto simp: total_on_def)
29859
33bff35f1335 Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents: 29609
diff changeset
   822
52749
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   823
lemma finite_converse [iff]: "finite (r^-1) = finite r"  
54611
31afce809794 set_comprehension_pointfree simproc causes to many surprises if enabled by default
traytel
parents: 54555
diff changeset
   824
  unfolding converse_def conversep_iff using [[simproc add: finite_Collect]]
31afce809794 set_comprehension_pointfree simproc causes to many surprises if enabled by default
traytel
parents: 54555
diff changeset
   825
  by (auto elim: finite_imageD simp: inj_on_def)
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   826
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   827
lemma conversep_noteq [simp]: "(op \<noteq>)^--1 = op \<noteq>"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   828
  by (auto simp add: fun_eq_iff)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   829
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   830
lemma conversep_eq [simp]: "(op =)^--1 = op ="
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   831
  by (auto simp add: fun_eq_iff)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   832
53680
c5096c22892b added lemmas and made concerse executable
nipkow
parents: 52749
diff changeset
   833
lemma converse_unfold [code]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   834
  "r\<inverse> = {(y, x). (x, y) \<in> r}"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   835
  by (simp add: set_eq_iff)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   836
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   837
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   838
subsubsection \<open>Domain, range and field\<close>
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   839
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   840
inductive_set Domain :: "('a \<times> 'b) set \<Rightarrow> 'a set"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   841
  for r :: "('a \<times> 'b) set"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   842
where
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   843
  DomainI [intro]: "(a, b) \<in> r \<Longrightarrow> a \<in> Domain r"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   844
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   845
lemmas DomainPI = Domainp.DomainI
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   846
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   847
inductive_cases DomainE [elim!]: "a \<in> Domain r"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   848
inductive_cases DomainpE [elim!]: "Domainp r a"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   849
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   850
inductive_set Range :: "('a \<times> 'b) set \<Rightarrow> 'b set"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   851
  for r :: "('a \<times> 'b) set"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   852
where
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   853
  RangeI [intro]: "(a, b) \<in> r \<Longrightarrow> b \<in> Range r"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   854
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   855
lemmas RangePI = Rangep.RangeI
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   856
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   857
inductive_cases RangeE [elim!]: "b \<in> Range r"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   858
inductive_cases RangepE [elim!]: "Rangep r b"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   859
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   860
definition Field :: "'a rel \<Rightarrow> 'a set"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   861
where
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   862
  "Field r = Domain r \<union> Range r"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   863
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   864
lemma Domain_fst [code]:
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   865
  "Domain r = fst ` r"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   866
  by force
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   867
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   868
lemma Range_snd [code]:
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   869
  "Range r = snd ` r"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   870
  by force
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   871
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   872
lemma fst_eq_Domain: "fst ` R = Domain R"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   873
  by force
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   874
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   875
lemma snd_eq_Range: "snd ` R = Range R"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   876
  by force
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   877
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   878
lemma range_fst [simp]: "range fst = UNIV"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   879
  by (auto simp: fst_eq_Domain)
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   880
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   881
lemma range_snd [simp]: "range snd = UNIV"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   882
  by (auto simp: snd_eq_Range)
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   883
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   884
lemma Domain_empty [simp]: "Domain {} = {}"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   885
  by auto
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   886
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   887
lemma Range_empty [simp]: "Range {} = {}"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   888
  by auto
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   889
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   890
lemma Field_empty [simp]: "Field {} = {}"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   891
  by (simp add: Field_def)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   892
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   893
lemma Domain_empty_iff: "Domain r = {} \<longleftrightarrow> r = {}"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   894
  by auto
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   895
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   896
lemma Range_empty_iff: "Range r = {} \<longleftrightarrow> r = {}"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   897
  by auto
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   898
46882
6242b4bc05bc tuned simpset
noschinl
parents: 46833
diff changeset
   899
lemma Domain_insert [simp]: "Domain (insert (a, b) r) = insert a (Domain r)"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   900
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   901
46882
6242b4bc05bc tuned simpset
noschinl
parents: 46833
diff changeset
   902
lemma Range_insert [simp]: "Range (insert (a, b) r) = insert b (Range r)"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   903
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   904
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   905
lemma Field_insert [simp]: "Field (insert (a, b) r) = {a, b} \<union> Field r"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   906
  by (auto simp add: Field_def)
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   907
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   908
lemma Domain_iff: "a \<in> Domain r \<longleftrightarrow> (\<exists>y. (a, y) \<in> r)"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   909
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   910
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   911
lemma Range_iff: "a \<in> Range r \<longleftrightarrow> (\<exists>y. (y, a) \<in> r)"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   912
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   913
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   914
lemma Domain_Id [simp]: "Domain Id = UNIV"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   915
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   916
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   917
lemma Range_Id [simp]: "Range Id = UNIV"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   918
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   919
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   920
lemma Domain_Id_on [simp]: "Domain (Id_on A) = A"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   921
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   922
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   923
lemma Range_Id_on [simp]: "Range (Id_on A) = A"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   924
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   925
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   926
lemma Domain_Un_eq: "Domain (A \<union> B) = Domain A \<union> Domain B"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   927
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   928
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   929
lemma Range_Un_eq: "Range (A \<union> B) = Range A \<union> Range B"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   930
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   931
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   932
lemma Field_Un [simp]: "Field (r \<union> s) = Field r \<union> Field s"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   933
  by (auto simp: Field_def)
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   934
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   935
lemma Domain_Int_subset: "Domain (A \<inter> B) \<subseteq> Domain A \<inter> Domain B"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   936
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   937
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   938
lemma Range_Int_subset: "Range (A \<inter> B) \<subseteq> Range A \<inter> Range B"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   939
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   940
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   941
lemma Domain_Diff_subset: "Domain A - Domain B \<subseteq> Domain (A - B)"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   942
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   943
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   944
lemma Range_Diff_subset: "Range A - Range B \<subseteq> Range (A - B)"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   945
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   946
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   947
lemma Domain_Union: "Domain (\<Union>S) = (\<Union>A\<in>S. Domain A)"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   948
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   949
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   950
lemma Range_Union: "Range (\<Union>S) = (\<Union>A\<in>S. Range A)"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   951
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   952
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   953
lemma Field_Union [simp]: "Field (\<Union>R) = \<Union>(Field ` R)"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   954
  by (auto simp: Field_def)
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   955
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   956
lemma Domain_converse [simp]: "Domain (r\<inverse>) = Range r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   957
  by auto
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   958
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   959
lemma Range_converse [simp]: "Range (r\<inverse>) = Domain r"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   960
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   961
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   962
lemma Field_converse [simp]: "Field (r\<inverse>) = Field r"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   963
  by (auto simp: Field_def)
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   964
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61169
diff changeset
   965
lemma Domain_Collect_case_prod [simp]: "Domain {(x, y). P x y} = {x. EX y. P x y}"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   966
  by auto
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   967
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61169
diff changeset
   968
lemma Range_Collect_case_prod [simp]: "Range {(x, y). P x y} = {y. EX x. P x y}"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   969
  by auto
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   970
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   971
lemma finite_Domain: "finite r \<Longrightarrow> finite (Domain r)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   972
  by (induct set: finite) auto
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   973
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   974
lemma finite_Range: "finite r \<Longrightarrow> finite (Range r)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   975
  by (induct set: finite) auto
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   976
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   977
lemma finite_Field: "finite r \<Longrightarrow> finite (Field r)"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   978
  by (simp add: Field_def finite_Domain finite_Range)
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   979
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   980
lemma Domain_mono: "r \<subseteq> s \<Longrightarrow> Domain r \<subseteq> Domain s"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   981
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   982
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   983
lemma Range_mono: "r \<subseteq> s \<Longrightarrow> Range r \<subseteq> Range s"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   984
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   985
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   986
lemma mono_Field: "r \<subseteq> s \<Longrightarrow> Field r \<subseteq> Field s"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   987
  by (auto simp: Field_def Domain_def Range_def)
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   988
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   989
lemma Domain_unfold:
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   990
  "Domain r = {x. \<exists>y. (x, y) \<in> r}"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   991
  by blast
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   992
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   993
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   994
subsubsection \<open>Image of a set under a relation\<close>
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   995
50420
f1a27e82af16 corrected nonsensical associativity of `` and dvd
nipkow
parents: 48620
diff changeset
   996
definition Image :: "('a \<times> 'b) set \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "``" 90)
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   997
where
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   998
  "r `` s = {y. \<exists>x\<in>s. (x, y) \<in> r}"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   999
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
  1000
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1001
  by (simp add: Image_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1002
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
  1003
lemma Image_singleton: "r``{a} = {b. (a, b) : r}"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1004
  by (simp add: Image_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1005
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
  1006
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1007
  by (rule Image_iff [THEN trans]) simp
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1008
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53680
diff changeset
  1009
lemma ImageI [intro]: "(a, b) : r ==> a : A ==> b : r``A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1010
  by (unfold Image_def) blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1011
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1012
lemma ImageE [elim!]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1013
  "b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1014
  by (unfold Image_def) (iprover elim!: CollectE bexE)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1015
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1016
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
  1017
  \<comment> \<open>This version's more effective when we already have the required \<open>a\<close>\<close>
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1018
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1019
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1020
lemma Image_empty [simp]: "R``{} = {}"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1021
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1022
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1023
lemma Image_Id [simp]: "Id `` A = A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1024
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1025
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
  1026
lemma Image_Id_on [simp]: "Id_on A `` B = A \<inter> B"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1027
  by blast
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1028
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1029
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1030
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1031
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1032
lemma Image_Int_eq:
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1033
  "single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1034
  by (simp add: single_valued_def, blast) 
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1035
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1036
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1037
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1038
13812
91713a1915ee converting HOL/UNITY to use unconditional fairness
paulson
parents: 13639
diff changeset
  1039
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1040
  by blast
13812
91713a1915ee converting HOL/UNITY to use unconditional fairness
paulson
parents: 13639
diff changeset
  1041
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
  1042
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1043
  by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1044
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1045
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
  1046
  \<comment> \<open>NOT suitable for rewriting\<close>
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1047
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1048
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
  1049
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1050
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1051
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1052
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1053
  by blast
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1054
54410
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1055
lemma UN_Image: "(\<Union>i\<in>I. X i) `` S = (\<Union>i\<in>I. X i `` S)"
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1056
  by auto
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1057
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1058
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1059
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1060
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1061
text\<open>Converse inclusion requires some assumptions\<close>
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1062
lemma Image_INT_eq:
62343
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62087
diff changeset
  1063
  "single_valued (r\<inverse>) \<Longrightarrow> A \<noteq> {} \<Longrightarrow> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)"
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1064
apply (rule equalityI)
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1065
 apply (rule Image_INT_subset) 
62343
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62087
diff changeset
  1066
apply (auto simp add: single_valued_def)
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62087
diff changeset
  1067
apply blast
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1068
done
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1069
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
  1070
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1071
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1072
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61169
diff changeset
  1073
lemma Image_Collect_case_prod [simp]: "{(x, y). P x y} `` A = {y. EX x:A. P x y}"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1074
  by auto
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1075
54410
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1076
lemma Sigma_Image: "(SIGMA x:A. B x) `` X = (\<Union>x\<in>X \<inter> A. B x)"
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1077
  by auto
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1078
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1079
lemma relcomp_Image: "(X O Y) `` Z = Y `` (X `` Z)"
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1080
  by auto
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1081
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1082
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1083
subsubsection \<open>Inverse image\<close>
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1084
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1085
definition inv_image :: "'b rel \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a rel"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1086
where
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1087
  "inv_image r f = {(x, y). (f x, f y) \<in> r}"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
  1088
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1089
definition inv_imagep :: "('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1090
where
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
  1091
  "inv_imagep r f = (\<lambda>x y. r (f x) (f y))"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
  1092
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
  1093
lemma [pred_set_conv]: "inv_imagep (\<lambda>x y. (x, y) \<in> r) f = (\<lambda>x y. (x, y) \<in> inv_image r f)"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
  1094
  by (simp add: inv_image_def inv_imagep_def)
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
  1095
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
  1096
lemma sym_inv_image: "sym r ==> sym (inv_image r f)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1097
  by (unfold sym_def inv_image_def) blast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
  1098
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
  1099
lemma trans_inv_image: "trans r ==> trans (inv_image r f)"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1100
  apply (unfold trans_def inv_image_def)
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1101
  apply (simp (no_asm))
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1102
  apply blast
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1103
  done
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1104
32463
3a0a65ca2261 moved lemma Wellfounded.in_inv_image to Relation.thy
krauss
parents: 32235
diff changeset
  1105
lemma in_inv_image[simp]: "((x,y) : inv_image r f) = ((f x, f y) : r)"
3a0a65ca2261 moved lemma Wellfounded.in_inv_image to Relation.thy
krauss
parents: 32235
diff changeset
  1106
  by (auto simp:inv_image_def)
3a0a65ca2261 moved lemma Wellfounded.in_inv_image to Relation.thy
krauss
parents: 32235
diff changeset
  1107
33218
ecb5cd453ef2 lemma converse_inv_image
krauss
parents: 32876
diff changeset
  1108
lemma converse_inv_image[simp]: "(inv_image R f)^-1 = inv_image (R^-1) f"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1109
  unfolding inv_image_def converse_unfold by auto
33218
ecb5cd453ef2 lemma converse_inv_image
krauss
parents: 32876
diff changeset
  1110
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1111
lemma in_inv_imagep [simp]: "inv_imagep r f x y = r (f x) (f y)"
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1112
  by (simp add: inv_imagep_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1113
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1114
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1115
subsubsection \<open>Powerset\<close>
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1116
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1117
definition Powp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1118
where
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1119
  "Powp A = (\<lambda>B. \<forall>x \<in> B. A x)"
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1120
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1121
lemma Powp_Pow_eq [pred_set_conv]: "Powp (\<lambda>x. x \<in> A) = (\<lambda>x. x \<in> Pow A)"
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1122
  by (auto simp add: Powp_def fun_eq_iff)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1123
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1124
lemmas Powp_mono [mono] = Pow_mono [to_pred]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1125
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1126
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1127
subsubsection \<open>Expressing relation operations via @{const Finite_Set.fold}\<close>
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1128
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1129
lemma Id_on_fold:
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1130
  assumes "finite A"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1131
  shows "Id_on A = Finite_Set.fold (\<lambda>x. Set.insert (Pair x x)) {} A"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1132
proof -
61169
4de9ff3ea29a tuned proofs -- less legacy;
wenzelm
parents: 60758
diff changeset
  1133
  interpret comp_fun_commute "\<lambda>x. Set.insert (Pair x x)" by standard auto
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1134
  show ?thesis using assms unfolding Id_on_def by (induct A) simp_all
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1135
qed
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1136
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1137
lemma comp_fun_commute_Image_fold:
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1138
  "comp_fun_commute (\<lambda>(x,y) A. if x \<in> S then Set.insert y A else A)"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1139
proof -
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1140
  interpret comp_fun_idem Set.insert
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1141
      by (fact comp_fun_idem_insert)
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1142
  show ?thesis 
61169
4de9ff3ea29a tuned proofs -- less legacy;
wenzelm
parents: 60758
diff changeset
  1143
  by standard (auto simp add: fun_eq_iff comp_fun_commute split:prod.split)
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1144
qed
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1145
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1146
lemma Image_fold:
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1147
  assumes "finite R"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1148
  shows "R `` S = Finite_Set.fold (\<lambda>(x,y) A. if x \<in> S then Set.insert y A else A) {} R"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1149
proof -
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1150
  interpret comp_fun_commute "(\<lambda>(x,y) A. if x \<in> S then Set.insert y A else A)" 
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1151
    by (rule comp_fun_commute_Image_fold)
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1152
  have *: "\<And>x F. Set.insert x F `` S = (if fst x \<in> S then Set.insert (snd x) (F `` S) else (F `` S))"
52749
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
  1153
    by (force intro: rev_ImageI)
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1154
  show ?thesis using assms by (induct R) (auto simp: *)
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1155
qed
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1156
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1157
lemma insert_relcomp_union_fold:
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1158
  assumes "finite S"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1159
  shows "{x} O S \<union> X = Finite_Set.fold (\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A') X S"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1160
proof -
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1161
  interpret comp_fun_commute "\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A'"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1162
  proof - 
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1163
    interpret comp_fun_idem Set.insert by (fact comp_fun_idem_insert)
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1164
    show "comp_fun_commute (\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A')"
61169
4de9ff3ea29a tuned proofs -- less legacy;
wenzelm
parents: 60758
diff changeset
  1165
    by standard (auto simp add: fun_eq_iff split:prod.split)
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1166
  qed
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1167
  have *: "{x} O S = {(x', z). x' = fst x \<and> (snd x,z) \<in> S}" by (auto simp: relcomp_unfold intro!: exI)
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1168
  show ?thesis unfolding *
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1169
  using \<open>finite S\<close> by (induct S) (auto split: prod.split)
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1170
qed
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1171
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1172
lemma insert_relcomp_fold:
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1173
  assumes "finite S"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1174
  shows "Set.insert x R O S = 
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1175
    Finite_Set.fold (\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A') (R O S) S"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1176
proof -
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1177
  have "Set.insert x R O S = ({x} O S) \<union> (R O S)" by auto
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1178
  then show ?thesis by (auto simp: insert_relcomp_union_fold[OF assms])
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1179
qed
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1180
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1181
lemma comp_fun_commute_relcomp_fold:
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1182
  assumes "finite S"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1183
  shows "comp_fun_commute (\<lambda>(x,y) A. 
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1184
    Finite_Set.fold (\<lambda>(w,z) A'. if y = w then Set.insert (x,z) A' else A') A S)"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1185
proof -
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1186
  have *: "\<And>a b A. 
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1187
    Finite_Set.fold (\<lambda>(w, z) A'. if b = w then Set.insert (a, z) A' else A') A S = {(a,b)} O S \<union> A"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1188
    by (auto simp: insert_relcomp_union_fold[OF assms] cong: if_cong)
61169
4de9ff3ea29a tuned proofs -- less legacy;
wenzelm
parents: 60758
diff changeset
  1189
  show ?thesis by standard (auto simp: *)
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1190
qed
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1191
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1192
lemma relcomp_fold:
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1193
  assumes "finite R"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1194
  assumes "finite S"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1195
  shows "R O S = Finite_Set.fold 
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1196
    (\<lambda>(x,y) A. Finite_Set.fold (\<lambda>(w,z) A'. if y = w then Set.insert (x,z) A' else A') A S) {} R"
52749
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
  1197
  using assms by (induct R)
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
  1198
    (auto simp: comp_fun_commute.fold_insert comp_fun_commute_relcomp_fold insert_relcomp_fold
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1199
      cong: if_cong)
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1200
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1201
text \<open>Misc\<close>
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1202
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1203
abbreviation (input) transP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1204
where \<comment> \<open>FIXME drop\<close>
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1205
  "transP r \<equiv> trans {(x, y). r x y}"
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1206
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1207
abbreviation (input)
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1208
  "RangeP \<equiv> Rangep"
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1209
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1210
abbreviation (input)
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1211
  "DomainP \<equiv> Domainp"
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1212
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1213
1128
64b30e3cc6d4 Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff changeset
  1214
end