src/HOL/List.thy
author haftmann
Tue, 21 Jul 2009 14:38:07 +0200
changeset 32120 53a21a5e6889
parent 32078 1c14f77201d4
child 32415 1dddf2f64266
permissions -rw-r--r--
attempt for more concise setup of non-etacontracting binders
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
     1
(*  Title:      HOL/List.thy
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
     2
    Author:     Tobias Nipkow
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     3
*)
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     4
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
     5
header {* The datatype of finite lists *}
13122
wenzelm
parents: 13114
diff changeset
     6
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15113
diff changeset
     7
theory List
30952
7ab2716dd93b power operation on functions with syntax o^; power operation on relations with syntax ^^
haftmann
parents: 30949
diff changeset
     8
imports Plain Presburger Recdef ATP_Linkup
31055
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
     9
uses ("Tools/list_code.ML")
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15113
diff changeset
    10
begin
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    11
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    12
datatype 'a list =
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    13
    Nil    ("[]")
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    14
  | Cons 'a  "'a list"    (infixr "#" 65)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    15
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
    16
subsection{*Basic list processing functions*}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
    17
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    18
consts
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    19
  filter:: "('a => bool) => 'a list => 'a list"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    20
  concat:: "'a list list => 'a list"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    21
  foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    22
  foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    23
  hd:: "'a list => 'a"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    24
  tl:: "'a list => 'a list"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    25
  last:: "'a list => 'a"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    26
  butlast :: "'a list => 'a list"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    27
  set :: "'a list => 'a set"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    28
  map :: "('a=>'b) => ('a list => 'b list)"
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
    29
  listsum ::  "'a list => 'a::monoid_add"
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    30
  list_update :: "'a list => nat => 'a => 'a list"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    31
  take:: "nat => 'a list => 'a list"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    32
  drop:: "nat => 'a list => 'a list"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    33
  takeWhile :: "('a => bool) => 'a list => 'a list"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    34
  dropWhile :: "('a => bool) => 'a list => 'a list"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    35
  rev :: "'a list => 'a list"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    36
  zip :: "'a list => 'b list => ('a * 'b) list"
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
    37
  upt :: "nat => nat => nat list" ("(1[_..</_'])")
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    38
  remdups :: "'a list => 'a list"
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
    39
  remove1 :: "'a => 'a list => 'a list"
27693
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
    40
  removeAll :: "'a => 'a list => 'a list"
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    41
  "distinct":: "'a list => bool"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    42
  replicate :: "nat => 'a => 'a list"
19390
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
    43
  splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
    44
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    45
13146
f43153b63361 *** empty log message ***
nipkow
parents: 13145
diff changeset
    46
nonterminals lupdbinds lupdbind
5077
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
    47
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    48
syntax
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    49
  -- {* list Enumeration *}
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    50
  "@list" :: "args => 'a list"    ("[(_)]")
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    51
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    52
  -- {* Special syntax for filter *}
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
    53
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_<-_./ _])")
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    54
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    55
  -- {* list update *}
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    56
  "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    57
  "" :: "lupdbind => lupdbinds"    ("_")
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    58
  "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    59
  "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
5077
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
    60
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    61
translations
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    62
  "[x, xs]" == "x#[xs]"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    63
  "[x]" == "x#[]"
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
    64
  "[x<-xs . P]"== "filter (%x. P) xs"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    65
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    66
  "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs"
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    67
  "xs[i:=x]" == "list_update xs i x"
5077
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
    68
5427
26c9a7c0b36b Arith: less_diff_conv
nipkow
parents: 5425
diff changeset
    69
12114
a8e860c86252 eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents: 10832
diff changeset
    70
syntax (xsymbols)
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
    71
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
14565
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14538
diff changeset
    72
syntax (HTML output)
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
    73
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
3342
ec3b55fcb165 New operator "lists" for formalizing sets of lists
paulson
parents: 3320
diff changeset
    74
ec3b55fcb165 New operator "lists" for formalizing sets of lists
paulson
parents: 3320
diff changeset
    75
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    76
text {*
14589
feae7b5fd425 tuned document;
wenzelm
parents: 14565
diff changeset
    77
  Function @{text size} is overloaded for all datatypes. Users may
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    78
  refer to the list version as @{text length}. *}
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    79
19363
667b5ea637dd refined 'abbreviation';
wenzelm
parents: 19302
diff changeset
    80
abbreviation
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
    81
  length :: "'a list => nat" where
19363
667b5ea637dd refined 'abbreviation';
wenzelm
parents: 19302
diff changeset
    82
  "length == size"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
    83
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
    84
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
    85
  "hd(x#xs) = x"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
    86
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
    87
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
    88
  "tl([]) = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
    89
  "tl(x#xs) = xs"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
    90
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
    91
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
    92
  "last(x#xs) = (if xs=[] then x else last xs)"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
    93
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
    94
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
    95
  "butlast []= []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
    96
  "butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
    97
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
    98
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
    99
  "set [] = {}"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   100
  "set (x#xs) = insert x (set xs)"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   101
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   102
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   103
  "map f [] = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   104
  "map f (x#xs) = f(x)#map f xs"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   105
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   106
primrec
25559
f14305fb698c authentic primrec
haftmann
parents: 25502
diff changeset
   107
  append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65)
f14305fb698c authentic primrec
haftmann
parents: 25502
diff changeset
   108
where
f14305fb698c authentic primrec
haftmann
parents: 25502
diff changeset
   109
  append_Nil:"[] @ ys = ys"
f14305fb698c authentic primrec
haftmann
parents: 25502
diff changeset
   110
  | append_Cons: "(x#xs) @ ys = x # xs @ ys"
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   111
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   112
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   113
  "rev([]) = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   114
  "rev(x#xs) = rev(xs) @ [x]"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   115
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   116
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   117
  "filter P [] = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   118
  "filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   119
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   120
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   121
  foldl_Nil:"foldl f a [] = a"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   122
  foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   123
8000
acafa0f15131 added foldr
paulson
parents: 7224
diff changeset
   124
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   125
  "foldr f [] a = a"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   126
  "foldr f (x#xs) a = f x (foldr f xs a)"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   127
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   128
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   129
  "concat([]) = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   130
  "concat(x#xs) = x @ concat(xs)"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   131
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   132
primrec
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
   133
"listsum [] = 0"
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
   134
"listsum (x # xs) = x + listsum xs"
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
   135
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
   136
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   137
  drop_Nil:"drop n [] = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   138
  drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   139
  -- {*Warning: simpset does not contain this definition, but separate
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   140
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   141
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   142
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   143
  take_Nil:"take n [] = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   144
  take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   145
  -- {*Warning: simpset does not contain this definition, but separate
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   146
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   147
29822
c45845743f04 authentic syntax for List.nth
haftmann
parents: 29782
diff changeset
   148
primrec nth :: "'a list => nat => 'a" (infixl "!" 100) where
c45845743f04 authentic syntax for List.nth
haftmann
parents: 29782
diff changeset
   149
  nth_Cons: "(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   150
  -- {*Warning: simpset does not contain this definition, but separate
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   151
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   152
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   153
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   154
  "[][i:=v] = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   155
  "(x#xs)[i:=v] = (case i of 0 => v # xs | Suc j => x # xs[j:=v])"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   156
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   157
primrec
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   158
  "takeWhile P [] = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   159
  "takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   160
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   161
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   162
  "dropWhile P [] = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   163
  "dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   164
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   165
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   166
  "zip xs [] = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   167
  zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   168
  -- {*Warning: simpset does not contain this definition, but separate
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   169
       theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   170
5427
26c9a7c0b36b Arith: less_diff_conv
nipkow
parents: 5425
diff changeset
   171
primrec
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
   172
  upt_0: "[i..<0] = []"
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
   173
  upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])"
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   174
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   175
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   176
  "distinct [] = True"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   177
  "distinct (x#xs) = (x ~: set xs \<and> distinct xs)"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   178
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   179
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   180
  "remdups [] = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   181
  "remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   182
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   183
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   184
  "remove1 x [] = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   185
  "remove1 x (y#xs) = (if x=y then xs else y # remove1 x xs)"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   186
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   187
primrec
27693
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
   188
  "removeAll x [] = []"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
   189
  "removeAll x (y#xs) = (if x=y then removeAll x xs else y # removeAll x xs)"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
   190
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
   191
primrec
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   192
  replicate_0: "replicate 0 x = []"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   193
  replicate_Suc: "replicate (Suc n) x = x # replicate n x"
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   194
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   195
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   196
  rotate1 :: "'a list \<Rightarrow> 'a list" where
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   197
  "rotate1 xs = (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])"
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   198
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   199
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   200
  rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
30971
7fbebf75b3ef funpow and relpow with shared "^^" syntax
haftmann
parents: 30952
diff changeset
   201
  "rotate n = rotate1 ^^ n"
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   202
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   203
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   204
  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" where
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28537
diff changeset
   205
  [code del]: "list_all2 P xs ys =
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   206
    (length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y))"
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   207
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   208
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   209
  sublist :: "'a list => nat set => 'a list" where
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21211
diff changeset
   210
  "sublist xs A = map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))"
17086
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
   211
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
   212
primrec
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   213
  "splice [] ys = ys"
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   214
  "splice (x#xs) ys = (if ys=[] then x#xs else x # hd ys # splice xs (tl ys))"
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   215
    -- {*Warning: simpset does not contain the second eqn but a derived one. *}
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   216
26771
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   217
text{*
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   218
\begin{figure}[htbp]
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   219
\fbox{
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   220
\begin{tabular}{l}
27381
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   221
@{lemma "[a,b]@[c,d] = [a,b,c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   222
@{lemma "length [a,b,c] = 3" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   223
@{lemma "set [a,b,c] = {a,b,c}" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   224
@{lemma "map f [a,b,c] = [f a, f b, f c]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   225
@{lemma "rev [a,b,c] = [c,b,a]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   226
@{lemma "hd [a,b,c,d] = a" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   227
@{lemma "tl [a,b,c,d] = [b,c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   228
@{lemma "last [a,b,c,d] = d" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   229
@{lemma "butlast [a,b,c,d] = [a,b,c]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   230
@{lemma[source] "filter (\<lambda>n::nat. n<2) [0,2,1] = [0,1]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   231
@{lemma "concat [[a,b],[c,d,e],[],[f]] = [a,b,c,d,e,f]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   232
@{lemma "foldl f x [a,b,c] = f (f (f x a) b) c" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   233
@{lemma "foldr f [a,b,c] x = f a (f b (f c x))" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   234
@{lemma "zip [a,b,c] [x,y,z] = [(a,x),(b,y),(c,z)]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   235
@{lemma "zip [a,b] [x,y,z] = [(a,x),(b,y)]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   236
@{lemma "splice [a,b,c] [x,y,z] = [a,x,b,y,c,z]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   237
@{lemma "splice [a,b,c,d] [x,y] = [a,x,b,y,c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   238
@{lemma "take 2 [a,b,c,d] = [a,b]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   239
@{lemma "take 6 [a,b,c,d] = [a,b,c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   240
@{lemma "drop 2 [a,b,c,d] = [c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   241
@{lemma "drop 6 [a,b,c,d] = []" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   242
@{lemma "takeWhile (%n::nat. n<3) [1,2,3,0] = [1,2]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   243
@{lemma "dropWhile (%n::nat. n<3) [1,2,3,0] = [3,0]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   244
@{lemma "distinct [2,0,1::nat]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   245
@{lemma "remdups [2,0,2,1::nat,2] = [0,1,2]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   246
@{lemma "remove1 2 [2,0,2,1::nat,2] = [0,2,1,2]" by simp}\\
27693
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
   247
@{lemma "removeAll 2 [2,0,2,1::nat,2] = [0,1]" by simp}\\
27381
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   248
@{lemma "nth [a,b,c,d] 2 = c" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   249
@{lemma "[a,b,c,d][2 := x] = [a,b,x,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   250
@{lemma "sublist [a,b,c,d,e] {0,2,3} = [a,c,d]" by (simp add:sublist_def)}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   251
@{lemma "rotate1 [a,b,c,d] = [b,c,d,a]" by (simp add:rotate1_def)}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   252
@{lemma "rotate 3 [a,b,c,d] = [d,a,b,c]" by (simp add:rotate1_def rotate_def nat_number)}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   253
@{lemma "replicate 4 a = [a,a,a,a]" by (simp add:nat_number)}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   254
@{lemma "[2..<5] = [2,3,4]" by (simp add:nat_number)}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   255
@{lemma "listsum [1,2,3::nat] = 6" by simp}
26771
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   256
\end{tabular}}
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   257
\caption{Characteristic examples}
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   258
\label{fig:Characteristic}
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   259
\end{figure}
29927
ae8f42c245b2 Added nitpick attribute, and fixed typo.
blanchet
parents: 29856
diff changeset
   260
Figure~\ref{fig:Characteristic} shows characteristic examples
26771
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   261
that should give an intuitive understanding of the above functions.
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   262
*}
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   263
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
   264
text{* The following simple sort functions are intended for proofs,
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
   265
not for efficient implementations. *}
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
   266
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   267
context linorder
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   268
begin
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   269
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   270
fun sorted :: "'a list \<Rightarrow> bool" where
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
   271
"sorted [] \<longleftrightarrow> True" |
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
   272
"sorted [x] \<longleftrightarrow> True" |
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
   273
"sorted (x#y#zs) \<longleftrightarrow> x <= y \<and> sorted (y#zs)"
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
   274
25559
f14305fb698c authentic primrec
haftmann
parents: 25502
diff changeset
   275
primrec insort :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
   276
"insort x [] = [x]" |
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
   277
"insort x (y#ys) = (if x <= y then (x#y#ys) else y#(insort x ys))"
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
   278
25559
f14305fb698c authentic primrec
haftmann
parents: 25502
diff changeset
   279
primrec sort :: "'a list \<Rightarrow> 'a list" where
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
   280
"sort [] = []" |
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
   281
"sort (x#xs) = insort x (sort xs)"
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
   282
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   283
end
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   284
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
   285
23388
77645da0db85 tuned proofs: avoid implicit prems;
wenzelm
parents: 23279
diff changeset
   286
subsubsection {* List comprehension *}
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   287
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   288
text{* Input syntax for Haskell-like list comprehension notation.
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   289
Typical example: @{text"[(x,y). x \<leftarrow> xs, y \<leftarrow> ys, x \<noteq> y]"},
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   290
the list of all pairs of distinct elements from @{text xs} and @{text ys}.
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   291
The syntax is as in Haskell, except that @{text"|"} becomes a dot
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   292
(like in Isabelle's set comprehension): @{text"[e. x \<leftarrow> xs, \<dots>]"} rather than
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   293
\verb![e| x <- xs, ...]!.
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   294
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   295
The qualifiers after the dot are
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   296
\begin{description}
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   297
\item[generators] @{text"p \<leftarrow> xs"},
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   298
 where @{text p} is a pattern and @{text xs} an expression of list type, or
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   299
\item[guards] @{text"b"}, where @{text b} is a boolean expression.
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   300
%\item[local bindings] @ {text"let x = e"}.
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   301
\end{description}
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   302
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   303
Just like in Haskell, list comprehension is just a shorthand. To avoid
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   304
misunderstandings, the translation into desugared form is not reversed
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   305
upon output. Note that the translation of @{text"[e. x \<leftarrow> xs]"} is
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   306
optmized to @{term"map (%x. e) xs"}.
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   307
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   308
It is easy to write short list comprehensions which stand for complex
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   309
expressions. During proofs, they may become unreadable (and
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   310
mangled). In such cases it can be advisable to introduce separate
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   311
definitions for the list comprehensions in question.  *}
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   312
23209
098a23702aba *** empty log message ***
nipkow
parents: 23192
diff changeset
   313
(*
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   314
Proper theorem proving support would be nice. For example, if
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   315
@{text"set[f x y. x \<leftarrow> xs, y \<leftarrow> ys, P x y]"}
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   316
produced something like
23209
098a23702aba *** empty log message ***
nipkow
parents: 23192
diff changeset
   317
@{term"{z. EX x: set xs. EX y:set ys. P x y \<and> z = f x y}"}.
098a23702aba *** empty log message ***
nipkow
parents: 23192
diff changeset
   318
*)
098a23702aba *** empty log message ***
nipkow
parents: 23192
diff changeset
   319
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   320
nonterminals lc_qual lc_quals
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   321
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   322
syntax
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   323
"_listcompr" :: "'a \<Rightarrow> lc_qual \<Rightarrow> lc_quals \<Rightarrow> 'a list"  ("[_ . __")
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   324
"_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ <- _")
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   325
"_lc_test" :: "bool \<Rightarrow> lc_qual" ("_")
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   326
(*"_lc_let" :: "letbinds => lc_qual"  ("let _")*)
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   327
"_lc_end" :: "lc_quals" ("]")
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   328
"_lc_quals" :: "lc_qual \<Rightarrow> lc_quals \<Rightarrow> lc_quals" (", __")
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   329
"_lc_abs" :: "'a => 'b list => 'b list"
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   330
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   331
(* These are easier than ML code but cannot express the optimized
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   332
   translation of [e. p<-xs]
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   333
translations
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   334
"[e. p<-xs]" => "concat(map (_lc_abs p [e]) xs)"
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   335
"_listcompr e (_lc_gen p xs) (_lc_quals Q Qs)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   336
 => "concat (map (_lc_abs p (_listcompr e Q Qs)) xs)"
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   337
"[e. P]" => "if P then [e] else []"
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   338
"_listcompr e (_lc_test P) (_lc_quals Q Qs)"
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   339
 => "if P then (_listcompr e Q Qs) else []"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   340
"_listcompr e (_lc_let b) (_lc_quals Q Qs)"
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   341
 => "_Let b (_listcompr e Q Qs)"
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   342
*)
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   343
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
   344
syntax (xsymbols)
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   345
"_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
   346
syntax (HTML output)
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   347
"_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   348
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   349
parse_translation (advanced) {*
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   350
let
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   351
  val NilC = Syntax.const @{const_name Nil};
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   352
  val ConsC = Syntax.const @{const_name Cons};
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   353
  val mapC = Syntax.const @{const_name map};
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   354
  val concatC = Syntax.const @{const_name concat};
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   355
  val IfC = Syntax.const @{const_name If};
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   356
  fun singl x = ConsC $ x $ NilC;
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   357
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   358
   fun pat_tr ctxt p e opti = (* %x. case x of p => e | _ => [] *)
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   359
    let
29281
b22ccb3998db eliminated OldTerm.add_term_free_names;
wenzelm
parents: 29270
diff changeset
   360
      val x = Free (Name.variant (fold Term.add_free_names [p, e] []) "x", dummyT);
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   361
      val e = if opti then singl e else e;
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   362
      val case1 = Syntax.const "_case1" $ p $ e;
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   363
      val case2 = Syntax.const "_case1" $ Syntax.const Term.dummy_patternN
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   364
                                        $ NilC;
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   365
      val cs = Syntax.const "_case2" $ case1 $ case2
31784
bd3486c57ba3 tuned interfaces of datatype module
haftmann
parents: 31723
diff changeset
   366
      val ft = DatatypeCase.case_tr false Datatype.info_of_constr
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   367
                 ctxt [x, cs]
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   368
    in lambda x ft end;
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   369
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   370
  fun abs_tr ctxt (p as Free(s,T)) e opti =
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   371
        let val thy = ProofContext.theory_of ctxt;
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   372
            val s' = Sign.intern_const thy s
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   373
        in if Sign.declared_const thy s'
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   374
           then (pat_tr ctxt p e opti, false)
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   375
           else (lambda p e, true)
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   376
        end
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   377
    | abs_tr ctxt p e opti = (pat_tr ctxt p e opti, false);
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   378
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   379
  fun lc_tr ctxt [e, Const("_lc_test",_)$b, qs] =
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   380
        let val res = case qs of Const("_lc_end",_) => singl e
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   381
                      | Const("_lc_quals",_)$q$qs => lc_tr ctxt [e,q,qs];
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   382
        in IfC $ b $ res $ NilC end
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   383
    | lc_tr ctxt [e, Const("_lc_gen",_) $ p $ es, Const("_lc_end",_)] =
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   384
        (case abs_tr ctxt p e true of
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   385
           (f,true) => mapC $ f $ es
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   386
         | (f, false) => concatC $ (mapC $ f $ es))
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   387
    | lc_tr ctxt [e, Const("_lc_gen",_) $ p $ es, Const("_lc_quals",_)$q$qs] =
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   388
        let val e' = lc_tr ctxt [e,q,qs];
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   389
        in concatC $ (mapC $ (fst(abs_tr ctxt p e' false)) $ es) end
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   390
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   391
in [("_listcompr", lc_tr)] end
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   392
*}
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
   393
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   394
(*
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   395
term "[(x,y,z). b]"
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   396
term "[(x,y,z). x\<leftarrow>xs]"
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   397
term "[e x y. x\<leftarrow>xs, y\<leftarrow>ys]"
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   398
term "[(x,y,z). x<a, x>b]"
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   399
term "[(x,y,z). x\<leftarrow>xs, x>b]"
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   400
term "[(x,y,z). x<a, x\<leftarrow>xs]"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   401
term "[(x,y). Cons True x \<leftarrow> xs]"
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   402
term "[(x,y,z). Cons x [] \<leftarrow> xs]"
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   403
term "[(x,y,z). x<a, x>b, x=d]"
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   404
term "[(x,y,z). x<a, x>b, y\<leftarrow>ys]"
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   405
term "[(x,y,z). x<a, x\<leftarrow>xs,y>b]"
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   406
term "[(x,y,z). x<a, x\<leftarrow>xs, y\<leftarrow>ys]"
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   407
term "[(x,y,z). x\<leftarrow>xs, x>b, y<a]"
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   408
term "[(x,y,z). x\<leftarrow>xs, x>b, y\<leftarrow>ys]"
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   409
term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,y>x]"
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   410
term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,z\<leftarrow>zs]"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   411
term "[(x,y). x\<leftarrow>xs, let xx = x+x, y\<leftarrow>ys, y \<noteq> xx]"
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   412
*)
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   413
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   414
subsubsection {* @{const Nil} and @{const Cons} *}
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   415
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   416
lemma not_Cons_self [simp]:
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   417
  "xs \<noteq> x # xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   418
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   419
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   420
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric]
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   421
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   422
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   423
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   424
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   425
lemma length_induct:
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   426
  "(\<And>xs. \<forall>ys. length ys < length xs \<longrightarrow> P ys \<Longrightarrow> P xs) \<Longrightarrow> P xs"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17501
diff changeset
   427
by (rule measure_induct [of length]) iprover
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   428
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   429
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   430
subsubsection {* @{const length} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   431
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   432
text {*
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   433
  Needs to come before @{text "@"} because of theorem @{text
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   434
  append_eq_append_conv}.
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   435
*}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   436
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   437
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   438
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   439
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   440
lemma length_map [simp]: "length (map f xs) = length xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   441
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   442
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   443
lemma length_rev [simp]: "length (rev xs) = length xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   444
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   445
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   446
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   447
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   448
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   449
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   450
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   451
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   452
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   453
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   454
23479
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
   455
lemma length_pos_if_in_set: "x : set xs \<Longrightarrow> length xs > 0"
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
   456
by auto
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
   457
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   458
lemma length_Suc_conv:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   459
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   460
by (induct xs) auto
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   461
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   462
lemma Suc_length_conv:
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   463
"(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   464
apply (induct xs, simp, simp)
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   465
apply blast
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   466
done
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   467
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   468
lemma impossible_Cons: "length xs <= length ys ==> xs = x # ys = False"
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   469
  by (induct xs) auto
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   470
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   471
lemma list_induct2 [consumes 1, case_names Nil Cons]:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   472
  "length xs = length ys \<Longrightarrow> P [] [] \<Longrightarrow>
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   473
   (\<And>x xs y ys. length xs = length ys \<Longrightarrow> P xs ys \<Longrightarrow> P (x#xs) (y#ys))
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   474
   \<Longrightarrow> P xs ys"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   475
proof (induct xs arbitrary: ys)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   476
  case Nil then show ?case by simp
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   477
next
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   478
  case (Cons x xs ys) then show ?case by (cases ys) simp_all
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   479
qed
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   480
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   481
lemma list_induct3 [consumes 2, case_names Nil Cons]:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   482
  "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P [] [] [] \<Longrightarrow>
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   483
   (\<And>x xs y ys z zs. length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P xs ys zs \<Longrightarrow> P (x#xs) (y#ys) (z#zs))
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   484
   \<Longrightarrow> P xs ys zs"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   485
proof (induct xs arbitrary: ys zs)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   486
  case Nil then show ?case by simp
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   487
next
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   488
  case (Cons x xs ys zs) then show ?case by (cases ys, simp_all)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   489
    (cases zs, simp_all)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   490
qed
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   491
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   492
lemma list_induct2': 
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   493
  "\<lbrakk> P [] [];
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   494
  \<And>x xs. P (x#xs) [];
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   495
  \<And>y ys. P [] (y#ys);
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   496
   \<And>x xs y ys. P xs ys  \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   497
 \<Longrightarrow> P xs ys"
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   498
by (induct xs arbitrary: ys) (case_tac x, auto)+
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   499
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   500
lemma neq_if_length_neq: "length xs \<noteq> length ys \<Longrightarrow> (xs = ys) == False"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   501
by (rule Eq_FalseI) auto
24037
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   502
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   503
simproc_setup list_neq ("(xs::'a list) = ys") = {*
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   504
(*
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   505
Reduces xs=ys to False if xs and ys cannot be of the same length.
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   506
This is the case if the atomic sublists of one are a submultiset
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   507
of those of the other list and there are fewer Cons's in one than the other.
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   508
*)
24037
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   509
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   510
let
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   511
29856
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   512
fun len (Const(@{const_name Nil},_)) acc = acc
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   513
  | len (Const(@{const_name Cons},_) $ _ $ xs) (ts,n) = len xs (ts,n+1)
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   514
  | len (Const(@{const_name append},_) $ xs $ ys) acc = len xs (len ys acc)
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   515
  | len (Const(@{const_name rev},_) $ xs) acc = len xs acc
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   516
  | len (Const(@{const_name map},_) $ _ $ xs) acc = len xs acc
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   517
  | len t (ts,n) = (t::ts,n);
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   518
24037
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   519
fun list_neq _ ss ct =
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   520
  let
24037
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   521
    val (Const(_,eqT) $ lhs $ rhs) = Thm.term_of ct;
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   522
    val (ls,m) = len lhs ([],0) and (rs,n) = len rhs ([],0);
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   523
    fun prove_neq() =
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   524
      let
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   525
        val Type(_,listT::_) = eqT;
22994
02440636214f abstract size function in hologic.ML
haftmann
parents: 22940
diff changeset
   526
        val size = HOLogic.size_const listT;
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   527
        val eq_len = HOLogic.mk_eq (size $ lhs, size $ rhs);
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   528
        val neq_len = HOLogic.mk_Trueprop (HOLogic.Not $ eq_len);
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   529
        val thm = Goal.prove (Simplifier.the_context ss) [] [] neq_len
22633
haftmann
parents: 22551
diff changeset
   530
          (K (simp_tac (Simplifier.inherit_context ss @{simpset}) 1));
haftmann
parents: 22551
diff changeset
   531
      in SOME (thm RS @{thm neq_if_length_neq}) end
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   532
  in
23214
dc23c062b58c renamed gen_submultiset to submultiset;
wenzelm
parents: 23212
diff changeset
   533
    if m < n andalso submultiset (op aconv) (ls,rs) orelse
dc23c062b58c renamed gen_submultiset to submultiset;
wenzelm
parents: 23212
diff changeset
   534
       n < m andalso submultiset (op aconv) (rs,ls)
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   535
    then prove_neq() else NONE
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   536
  end;
24037
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   537
in list_neq end;
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   538
*}
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   539
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   540
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
   541
subsubsection {* @{text "@"} -- append *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   542
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   543
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   544
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   545
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   546
lemma append_Nil2 [simp]: "xs @ [] = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   547
by (induct xs) auto
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   548
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   549
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   550
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   551
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   552
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   553
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   554
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   555
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   556
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   557
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   558
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   559
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   560
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   561
lemma append_eq_append_conv [simp, noatp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   562
 "length xs = length ys \<or> length us = length vs
13883
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
   563
 ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   564
apply (induct xs arbitrary: ys)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   565
 apply (case_tac ys, simp, force)
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   566
apply (case_tac ys, force, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   567
done
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   568
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   569
lemma append_eq_append_conv2: "(xs @ ys = zs @ ts) =
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   570
  (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   571
apply (induct xs arbitrary: ys zs ts)
14495
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   572
 apply fastsimp
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   573
apply(case_tac zs)
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   574
 apply simp
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   575
apply fastsimp
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   576
done
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   577
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   578
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   579
by simp
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   580
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   581
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   582
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   583
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   584
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   585
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   586
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   587
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   588
using append_same_eq [of _ _ "[]"] by auto
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   589
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   590
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   591
using append_same_eq [of "[]"] by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   592
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24219
diff changeset
   593
lemma hd_Cons_tl [simp,noatp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   594
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   595
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   596
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   597
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   598
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   599
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   600
by (simp add: hd_append split: list.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   601
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   602
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   603
by (simp split: list.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   604
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   605
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   606
by (simp add: tl_append split: list.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   607
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   608
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   609
lemma Cons_eq_append_conv: "x#xs = ys@zs =
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   610
 (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   611
by(cases ys) auto
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   612
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
   613
lemma append_eq_Cons_conv: "(ys@zs = x#xs) =
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
   614
 (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
   615
by(cases ys) auto
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
   616
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   617
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   618
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   619
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   620
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   621
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   622
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   623
lemma Cons_eq_appendI:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   624
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   625
by (drule sym) simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   626
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   627
lemma append_eq_appendI:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   628
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   629
by (drule sym) simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   630
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   631
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   632
text {*
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   633
Simplification procedure for all list equalities.
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   634
Currently only tries to rearrange @{text "@"} to see if
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   635
- both lists end in a singleton list,
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   636
- or both lists end in the same list.
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   637
*}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   638
26480
544cef16045b replaced 'ML_setup' by 'ML';
wenzelm
parents: 26442
diff changeset
   639
ML {*
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   640
local
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   641
29856
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   642
fun last (cons as Const(@{const_name Cons},_) $ _ $ xs) =
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   643
  (case xs of Const(@{const_name Nil},_) => cons | _ => last xs)
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   644
  | last (Const(@{const_name append},_) $ _ $ ys) = last ys
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   645
  | last t = t;
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   646
29856
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   647
fun list1 (Const(@{const_name Cons},_) $ _ $ Const(@{const_name Nil},_)) = true
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   648
  | list1 _ = false;
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   649
29856
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   650
fun butlast ((cons as Const(@{const_name Cons},_) $ x) $ xs) =
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   651
  (case xs of Const(@{const_name Nil},_) => xs | _ => cons $ butlast xs)
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   652
  | butlast ((app as Const(@{const_name append},_) $ xs) $ ys) = app $ butlast ys
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   653
  | butlast xs = Const(@{const_name Nil},fastype_of xs);
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   654
22633
haftmann
parents: 22551
diff changeset
   655
val rearr_ss = HOL_basic_ss addsimps [@{thm append_assoc},
haftmann
parents: 22551
diff changeset
   656
  @{thm append_Nil}, @{thm append_Cons}];
16973
b2a894562b8f simprocs: Simplifier.inherit_bounds;
wenzelm
parents: 16965
diff changeset
   657
20044
92cc2f4c7335 simprocs: no theory argument -- use simpset context instead;
wenzelm
parents: 19890
diff changeset
   658
fun list_eq ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   659
  let
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   660
    val lastl = last lhs and lastr = last rhs;
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   661
    fun rearr conv =
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   662
      let
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   663
        val lhs1 = butlast lhs and rhs1 = butlast rhs;
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   664
        val Type(_,listT::_) = eqT
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   665
        val appT = [listT,listT] ---> listT
29856
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   666
        val app = Const(@{const_name append},appT)
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   667
        val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
13480
bb72bd43c6c3 use Tactic.prove instead of prove_goalw_cterm in internal proofs!
wenzelm
parents: 13462
diff changeset
   668
        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
20044
92cc2f4c7335 simprocs: no theory argument -- use simpset context instead;
wenzelm
parents: 19890
diff changeset
   669
        val thm = Goal.prove (Simplifier.the_context ss) [] [] eq
17877
67d5ab1cb0d8 Simplifier.inherit_context instead of Simplifier.inherit_bounds;
wenzelm
parents: 17830
diff changeset
   670
          (K (simp_tac (Simplifier.inherit_context ss rearr_ss) 1));
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15489
diff changeset
   671
      in SOME ((conv RS (thm RS trans)) RS eq_reflection) end;
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   672
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   673
  in
22633
haftmann
parents: 22551
diff changeset
   674
    if list1 lastl andalso list1 lastr then rearr @{thm append1_eq_conv}
haftmann
parents: 22551
diff changeset
   675
    else if lastl aconv lastr then rearr @{thm append_same_eq}
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15489
diff changeset
   676
    else NONE
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   677
  end;
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   678
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   679
in
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   680
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   681
val list_eq_simproc =
32010
cb1a1c94b4cd more antiquotations;
wenzelm
parents: 32007
diff changeset
   682
  Simplifier.simproc @{theory} "list_eq" ["(xs::'a list) = ys"] (K list_eq);
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   683
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   684
end;
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   685
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   686
Addsimprocs [list_eq_simproc];
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   687
*}
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   688
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   689
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
   690
subsubsection {* @{text map} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   691
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   692
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   693
by (induct xs) simp_all
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   694
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   695
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   696
by (rule ext, induct_tac xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   697
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   698
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   699
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   700
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   701
lemma map_compose: "map (f o g) xs = map f (map g xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   702
by (induct xs) (auto simp add: o_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   703
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   704
lemma rev_map: "rev (map f xs) = map f (rev xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   705
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   706
13737
e564c3d2d174 added a few lemmas
nipkow
parents: 13601
diff changeset
   707
lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
e564c3d2d174 added a few lemmas
nipkow
parents: 13601
diff changeset
   708
by (induct xs) auto
e564c3d2d174 added a few lemmas
nipkow
parents: 13601
diff changeset
   709
19770
be5c23ebe1eb HOL/Tools/function_package: Added support for mutual recursive definitions.
krauss
parents: 19623
diff changeset
   710
lemma map_cong [fundef_cong, recdef_cong]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   711
"xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   712
-- {* a congruence rule for @{text map} *}
13737
e564c3d2d174 added a few lemmas
nipkow
parents: 13601
diff changeset
   713
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   714
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   715
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   716
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   717
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   718
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   719
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   720
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   721
lemma map_eq_Cons_conv:
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   722
 "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   723
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   724
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   725
lemma Cons_eq_map_conv:
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   726
 "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   727
by (cases ys) auto
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   728
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   729
lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1]
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   730
lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1]
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   731
declare map_eq_Cons_D [dest!]  Cons_eq_map_D [dest!]
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   732
14111
993471c762b8 Some new thm (ex_map_conv?)
nipkow
parents: 14099
diff changeset
   733
lemma ex_map_conv:
993471c762b8 Some new thm (ex_map_conv?)
nipkow
parents: 14099
diff changeset
   734
  "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
   735
by(induct ys, auto simp add: Cons_eq_map_conv)
14111
993471c762b8 Some new thm (ex_map_conv?)
nipkow
parents: 14099
diff changeset
   736
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   737
lemma map_eq_imp_length_eq:
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   738
  assumes "map f xs = map f ys"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   739
  shows "length xs = length ys"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   740
using assms proof (induct ys arbitrary: xs)
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   741
  case Nil then show ?case by simp
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   742
next
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   743
  case (Cons y ys) then obtain z zs where xs: "xs = z # zs" by auto
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   744
  from Cons xs have "map f zs = map f ys" by simp
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   745
  moreover with Cons have "length zs = length ys" by blast
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   746
  with xs show ?case by simp
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   747
qed
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   748
  
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   749
lemma map_inj_on:
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   750
 "[| map f xs = map f ys; inj_on f (set xs Un set ys) |]
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   751
  ==> xs = ys"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   752
apply(frule map_eq_imp_length_eq)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   753
apply(rotate_tac -1)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   754
apply(induct rule:list_induct2)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   755
 apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   756
apply(simp)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   757
apply (blast intro:sym)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   758
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   759
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   760
lemma inj_on_map_eq_map:
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   761
 "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   762
by(blast dest:map_inj_on)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   763
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   764
lemma map_injective:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   765
 "map f xs = map f ys ==> inj f ==> xs = ys"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   766
by (induct ys arbitrary: xs) (auto dest!:injD)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   767
14339
ec575b7bde7a *** empty log message ***
nipkow
parents: 14338
diff changeset
   768
lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
ec575b7bde7a *** empty log message ***
nipkow
parents: 14338
diff changeset
   769
by(blast dest:map_injective)
ec575b7bde7a *** empty log message ***
nipkow
parents: 14338
diff changeset
   770
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   771
lemma inj_mapI: "inj f ==> inj (map f)"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17501
diff changeset
   772
by (iprover dest: map_injective injD intro: inj_onI)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   773
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   774
lemma inj_mapD: "inj (map f) ==> inj f"
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   775
apply (unfold inj_on_def, clarify)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   776
apply (erule_tac x = "[x]" in ballE)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   777
 apply (erule_tac x = "[y]" in ballE, simp, blast)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   778
apply blast
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   779
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   780
14339
ec575b7bde7a *** empty log message ***
nipkow
parents: 14338
diff changeset
   781
lemma inj_map[iff]: "inj (map f) = inj f"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   782
by (blast dest: inj_mapD intro: inj_mapI)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   783
15303
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
   784
lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A"
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
   785
apply(rule inj_onI)
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
   786
apply(erule map_inj_on)
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
   787
apply(blast intro:inj_onI dest:inj_onD)
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
   788
done
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
   789
14343
6bc647f472b9 map_idI
kleing
parents: 14339
diff changeset
   790
lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
6bc647f472b9 map_idI
kleing
parents: 14339
diff changeset
   791
by (induct xs, auto)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   792
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
   793
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
   794
by (induct xs) auto
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
   795
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   796
lemma map_fst_zip[simp]:
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   797
  "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   798
by (induct rule:list_induct2, simp_all)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   799
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   800
lemma map_snd_zip[simp]:
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   801
  "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   802
by (induct rule:list_induct2, simp_all)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   803
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
   804
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
   805
subsubsection {* @{text rev} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   806
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   807
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   808
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   809
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   810
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   811
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   812
15870
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   813
lemma rev_swap: "(rev xs = ys) = (xs = rev ys)"
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   814
by auto
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   815
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   816
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   817
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   818
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   819
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   820
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   821
15870
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   822
lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])"
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   823
by (cases xs) auto
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   824
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   825
lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])"
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   826
by (cases xs) auto
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
   827
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   828
lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)"
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   829
apply (induct xs arbitrary: ys, force)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   830
apply (case_tac ys, simp, force)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   831
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   832
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
   833
lemma inj_on_rev[iff]: "inj_on rev A"
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
   834
by(simp add:inj_on_def)
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
   835
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   836
lemma rev_induct [case_names Nil snoc]:
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   837
  "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
15489
d136af442665 Replaced application of subst by simplesubst in proof of rev_induct
berghofe
parents: 15439
diff changeset
   838
apply(simplesubst rev_rev_ident[symmetric])
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   839
apply(rule_tac list = "rev xs" in list.induct, simp_all)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   840
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   841
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   842
lemma rev_exhaust [case_names Nil snoc]:
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   843
  "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   844
by (induct xs rule: rev_induct) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   845
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   846
lemmas rev_cases = rev_exhaust
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   847
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
   848
lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])"
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
   849
by(rule rev_cases[of xs]) auto
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
   850
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   851
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
   852
subsubsection {* @{text set} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   853
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   854
lemma finite_set [iff]: "finite (set xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   855
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   856
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   857
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   858
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   859
17830
695a2365d32f added hd lemma
nipkow
parents: 17765
diff changeset
   860
lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs"
695a2365d32f added hd lemma
nipkow
parents: 17765
diff changeset
   861
by(cases xs) auto
14099
55d244f3c86d added fold_red, o2l, postfix, some thms
oheimb
parents: 14050
diff changeset
   862
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   863
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   864
by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   865
14099
55d244f3c86d added fold_red, o2l, postfix, some thms
oheimb
parents: 14050
diff changeset
   866
lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
55d244f3c86d added fold_red, o2l, postfix, some thms
oheimb
parents: 14050
diff changeset
   867
by auto
55d244f3c86d added fold_red, o2l, postfix, some thms
oheimb
parents: 14050
diff changeset
   868
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   869
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   870
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   871
15245
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
   872
lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
   873
by(induct xs) auto
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
   874
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   875
lemma set_rev [simp]: "set (rev xs) = set xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   876
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   877
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   878
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   879
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   880
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   881
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   882
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   883
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
   884
lemma set_upt [simp]: "set[i..<j] = {k. i \<le> k \<and> k < j}"
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   885
apply (induct j, simp_all)
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   886
apply (erule ssubst, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   887
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   888
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   889
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   890
lemma split_list: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs"
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
   891
proof (induct xs)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   892
  case Nil thus ?case by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   893
next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   894
  case Cons thus ?case by (auto intro: Cons_eq_appendI)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   895
qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   896
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   897
lemma in_set_conv_decomp: "x \<in> set xs \<longleftrightarrow> (\<exists>ys zs. xs = ys @ x # zs)"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   898
  by (auto elim: split_list)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   899
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   900
lemma split_list_first: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys"
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   901
proof (induct xs)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   902
  case Nil thus ?case by simp
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
   903
next
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
   904
  case (Cons a xs)
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
   905
  show ?case
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
   906
  proof cases
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   907
    assume "x = a" thus ?case using Cons by fastsimp
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
   908
  next
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   909
    assume "x \<noteq> a" thus ?case using Cons by(fastsimp intro!: Cons_eq_appendI)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   910
  qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   911
qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   912
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   913
lemma in_set_conv_decomp_first:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   914
  "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   915
  by (auto dest!: split_list_first)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   916
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   917
lemma split_list_last: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs"
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   918
proof (induct xs rule:rev_induct)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   919
  case Nil thus ?case by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   920
next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   921
  case (snoc a xs)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   922
  show ?case
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   923
  proof cases
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   924
    assume "x = a" thus ?case using snoc by simp (metis ex_in_conv set_empty2)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   925
  next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   926
    assume "x \<noteq> a" thus ?case using snoc by fastsimp
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
   927
  qed
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
   928
qed
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
   929
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   930
lemma in_set_conv_decomp_last:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   931
  "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs)"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   932
  by (auto dest!: split_list_last)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   933
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   934
lemma split_list_prop: "\<exists>x \<in> set xs. P x \<Longrightarrow> \<exists>ys x zs. xs = ys @ x # zs & P x"
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   935
proof (induct xs)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   936
  case Nil thus ?case by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   937
next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   938
  case Cons thus ?case
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   939
    by(simp add:Bex_def)(metis append_Cons append.simps(1))
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   940
qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   941
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   942
lemma split_list_propE:
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   943
  assumes "\<exists>x \<in> set xs. P x"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   944
  obtains ys x zs where "xs = ys @ x # zs" and "P x"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   945
using split_list_prop [OF assms] by blast
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   946
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   947
lemma split_list_first_prop:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   948
  "\<exists>x \<in> set xs. P x \<Longrightarrow>
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   949
   \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y)"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   950
proof (induct xs)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   951
  case Nil thus ?case by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   952
next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   953
  case (Cons x xs)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   954
  show ?case
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   955
  proof cases
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   956
    assume "P x"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   957
    thus ?thesis by simp
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   958
      (metis Un_upper1 contra_subsetD in_set_conv_decomp_first self_append_conv2 set_append)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   959
  next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   960
    assume "\<not> P x"
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   961
    hence "\<exists>x\<in>set xs. P x" using Cons(2) by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   962
    thus ?thesis using `\<not> P x` Cons(1) by (metis append_Cons set_ConsD)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   963
  qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   964
qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   965
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   966
lemma split_list_first_propE:
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   967
  assumes "\<exists>x \<in> set xs. P x"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   968
  obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>y \<in> set ys. \<not> P y"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   969
using split_list_first_prop [OF assms] by blast
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   970
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   971
lemma split_list_first_prop_iff:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   972
  "(\<exists>x \<in> set xs. P x) \<longleftrightarrow>
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   973
   (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y))"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   974
by (rule, erule split_list_first_prop) auto
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   975
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   976
lemma split_list_last_prop:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   977
  "\<exists>x \<in> set xs. P x \<Longrightarrow>
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   978
   \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z)"
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   979
proof(induct xs rule:rev_induct)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   980
  case Nil thus ?case by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   981
next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   982
  case (snoc x xs)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   983
  show ?case
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   984
  proof cases
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   985
    assume "P x" thus ?thesis by (metis emptyE set_empty)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   986
  next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   987
    assume "\<not> P x"
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   988
    hence "\<exists>x\<in>set xs. P x" using snoc(2) by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   989
    thus ?thesis using `\<not> P x` snoc(1) by fastsimp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   990
  qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   991
qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   992
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   993
lemma split_list_last_propE:
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   994
  assumes "\<exists>x \<in> set xs. P x"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   995
  obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>z \<in> set zs. \<not> P z"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
   996
using split_list_last_prop [OF assms] by blast
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   997
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   998
lemma split_list_last_prop_iff:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
   999
  "(\<exists>x \<in> set xs. P x) \<longleftrightarrow>
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1000
   (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z))"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1001
by (metis split_list_last_prop [where P=P] in_set_conv_decomp)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1002
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1003
lemma finite_list: "finite A ==> EX xs. set xs = A"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1004
  by (erule finite_induct)
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1005
    (auto simp add: set.simps(2) [symmetric] simp del: set.simps(2))
13508
890d736b93a5 Frederic Blanqui's new "guard" examples
paulson
parents: 13480
diff changeset
  1006
14388
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  1007
lemma card_length: "card (set xs) \<le> length xs"
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  1008
by (induct xs) (auto simp add: card_insert_if)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1009
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1010
lemma set_minus_filter_out:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1011
  "set xs - {y} = set (filter (\<lambda>x. \<not> (x = y)) xs)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1012
  by (induct xs) auto
15168
33a08cfc3ae5 new functions for sets of lists
paulson
parents: 15140
diff changeset
  1013
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1014
subsubsection {* @{text filter} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1015
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1016
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1017
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1018
15305
0bd9eedaa301 added lemmas
nipkow
parents: 15304
diff changeset
  1019
lemma rev_filter: "rev (filter P xs) = filter P (rev xs)"
0bd9eedaa301 added lemmas
nipkow
parents: 15304
diff changeset
  1020
by (induct xs) simp_all
0bd9eedaa301 added lemmas
nipkow
parents: 15304
diff changeset
  1021
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1022
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1023
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1024
16998
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1025
lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs"
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1026
by (induct xs) (auto simp add: le_SucI)
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1027
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1028
lemma sum_length_filter_compl:
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1029
  "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs"
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1030
by(induct xs) simp_all
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1031
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1032
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1033
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1034
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1035
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1036
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1037
16998
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1038
lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" 
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  1039
by (induct xs) simp_all
16998
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1040
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1041
lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)"
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1042
apply (induct xs)
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1043
 apply auto
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1044
apply(cut_tac P=P and xs=xs in length_filter_le)
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1045
apply simp
e0050191e2d1 Added filter lemma
nipkow
parents: 16973
diff changeset
  1046
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1047
16965
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1048
lemma filter_map:
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1049
  "filter P (map f xs) = map f (filter (P o f) xs)"
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1050
by (induct xs) simp_all
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1051
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1052
lemma length_filter_map[simp]:
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1053
  "length (filter P (map f xs)) = length(filter (P o f) xs)"
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1054
by (simp add:filter_map)
46697fa536ab added map_filter lemmas
nipkow
parents: 16770
diff changeset
  1055
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1056
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1057
by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1058
15246
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1059
lemma length_filter_less:
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1060
  "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs"
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1061
proof (induct xs)
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1062
  case Nil thus ?case by simp
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1063
next
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1064
  case (Cons x xs) thus ?case
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1065
    apply (auto split:split_if_asm)
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1066
    using length_filter_le[of P xs] apply arith
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1067
  done
0984a2c2868b added and renamed
nipkow
parents: 15245
diff changeset
  1068
qed
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1069
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1070
lemma length_filter_conv_card:
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1071
 "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1072
proof (induct xs)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1073
  case Nil thus ?case by simp
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1074
next
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1075
  case (Cons x xs)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1076
  let ?S = "{i. i < length xs & p(xs!i)}"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1077
  have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1078
  show ?case (is "?l = card ?S'")
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1079
  proof (cases)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1080
    assume "p x"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1081
    hence eq: "?S' = insert 0 (Suc ` ?S)"
25162
ad4d5365d9d8 went back to >0
nipkow
parents: 25157
diff changeset
  1082
      by(auto simp: image_def split:nat.split dest:gr0_implies_Suc)
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1083
    have "length (filter p (x # xs)) = Suc(card ?S)"
23388
77645da0db85 tuned proofs: avoid implicit prems;
wenzelm
parents: 23279
diff changeset
  1084
      using Cons `p x` by simp
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1085
    also have "\<dots> = Suc(card(Suc ` ?S))" using fin
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1086
      by (simp add: card_image inj_Suc)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1087
    also have "\<dots> = card ?S'" using eq fin
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1088
      by (simp add:card_insert_if) (simp add:image_def)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1089
    finally show ?thesis .
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1090
  next
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1091
    assume "\<not> p x"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1092
    hence eq: "?S' = Suc ` ?S"
25162
ad4d5365d9d8 went back to >0
nipkow
parents: 25157
diff changeset
  1093
      by(auto simp add: image_def split:nat.split elim:lessE)
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1094
    have "length (filter p (x # xs)) = card ?S"
23388
77645da0db85 tuned proofs: avoid implicit prems;
wenzelm
parents: 23279
diff changeset
  1095
      using Cons `\<not> p x` by simp
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1096
    also have "\<dots> = card(Suc ` ?S)" using fin
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1097
      by (simp add: card_image inj_Suc)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1098
    also have "\<dots> = card ?S'" using eq fin
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1099
      by (simp add:card_insert_if)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1100
    finally show ?thesis .
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1101
  qed
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1102
qed
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1103
17629
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1104
lemma Cons_eq_filterD:
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1105
 "x#xs = filter P ys \<Longrightarrow>
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1106
  \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
19585
70a1ce3b23ae removed 'concl is' patterns;
wenzelm
parents: 19487
diff changeset
  1107
  (is "_ \<Longrightarrow> \<exists>us vs. ?P ys us vs")
17629
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1108
proof(induct ys)
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1109
  case Nil thus ?case by simp
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1110
next
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1111
  case (Cons y ys)
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1112
  show ?case (is "\<exists>x. ?Q x")
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1113
  proof cases
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1114
    assume Py: "P y"
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1115
    show ?thesis
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1116
    proof cases
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1117
      assume "x = y"
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1118
      with Py Cons.prems have "?Q []" by simp
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1119
      then show ?thesis ..
17629
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1120
    next
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1121
      assume "x \<noteq> y"
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1122
      with Py Cons.prems show ?thesis by simp
17629
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1123
    qed
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1124
  next
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1125
    assume "\<not> P y"
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1126
    with Cons obtain us vs where "?P (y#ys) (y#us) vs" by fastsimp
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1127
    then have "?Q (y#us)" by simp
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1128
    then show ?thesis ..
17629
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1129
  qed
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1130
qed
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1131
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1132
lemma filter_eq_ConsD:
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1133
 "filter P ys = x#xs \<Longrightarrow>
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1134
  \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1135
by(rule Cons_eq_filterD) simp
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1136
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1137
lemma filter_eq_Cons_iff:
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1138
 "(filter P ys = x#xs) =
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1139
  (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1140
by(auto dest:filter_eq_ConsD)
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1141
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1142
lemma Cons_eq_filter_iff:
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1143
 "(x#xs = filter P ys) =
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1144
  (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1145
by(auto dest:Cons_eq_filterD)
f8ea8068c6d9 a few new filter lemmas
nipkow
parents: 17589
diff changeset
  1146
19770
be5c23ebe1eb HOL/Tools/function_package: Added support for mutual recursive definitions.
krauss
parents: 19623
diff changeset
  1147
lemma filter_cong[fundef_cong, recdef_cong]:
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1148
 "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1149
apply simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1150
apply(erule thin_rl)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1151
by (induct ys) simp_all
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1152
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1153
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1154
subsubsection {* List partitioning *}
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1155
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1156
primrec partition :: "('a \<Rightarrow> bool) \<Rightarrow>'a list \<Rightarrow> 'a list \<times> 'a list" where
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1157
  "partition P [] = ([], [])"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1158
  | "partition P (x # xs) = 
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1159
      (let (yes, no) = partition P xs
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1160
      in if P x then (x # yes, no) else (yes, x # no))"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1161
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1162
lemma partition_filter1:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1163
    "fst (partition P xs) = filter P xs"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1164
by (induct xs) (auto simp add: Let_def split_def)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1165
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1166
lemma partition_filter2:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1167
    "snd (partition P xs) = filter (Not o P) xs"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1168
by (induct xs) (auto simp add: Let_def split_def)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1169
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1170
lemma partition_P:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1171
  assumes "partition P xs = (yes, no)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1172
  shows "(\<forall>p \<in> set yes.  P p) \<and> (\<forall>p  \<in> set no. \<not> P p)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1173
proof -
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1174
  from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1175
    by simp_all
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1176
  then show ?thesis by (simp_all add: partition_filter1 partition_filter2)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1177
qed
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1178
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1179
lemma partition_set:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1180
  assumes "partition P xs = (yes, no)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1181
  shows "set yes \<union> set no = set xs"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1182
proof -
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1183
  from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1184
    by simp_all
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1185
  then show ?thesis by (auto simp add: partition_filter1 partition_filter2) 
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1186
qed
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1187
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  1188
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1189
subsubsection {* @{text concat} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1190
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1191
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1192
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1193
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
  1194
lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1195
by (induct xss) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1196
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
  1197
lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1198
by (induct xss) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1199
24308
700e745994c1 removed set_concat_map and improved set_concat
nipkow
parents: 24286
diff changeset
  1200
lemma set_concat [simp]: "set (concat xs) = (UN x:set xs. set x)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1201
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1202
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
  1203
lemma concat_map_singleton[simp]: "concat(map (%x. [f x]) xs) = map f xs"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  1204
by (induct xs) auto
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  1205
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1206
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1207
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1208
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1209
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1210
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1211
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1212
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1213
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1214
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1215
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1216
subsubsection {* @{text nth} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1217
29827
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1218
lemma nth_Cons_0 [simp, code]: "(x # xs)!0 = x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1219
by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1220
29827
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1221
lemma nth_Cons_Suc [simp, code]: "(x # xs)!(Suc n) = xs!n"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1222
by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1223
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1224
declare nth.simps [simp del]
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1225
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1226
lemma nth_append:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1227
  "(xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1228
apply (induct xs arbitrary: n, simp)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1229
apply (case_tac n, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1230
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1231
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1232
lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1233
by (induct xs) auto
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1234
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1235
lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1236
by (induct xs) auto
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1237
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1238
lemma nth_map [simp]: "n < length xs ==> (map f xs)!n = f(xs!n)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1239
apply (induct xs arbitrary: n, simp)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1240
apply (case_tac n, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1241
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1242
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1243
lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0"
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1244
by(cases xs) simp_all
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1245
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1246
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1247
lemma list_eq_iff_nth_eq:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1248
 "(xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1249
apply(induct xs arbitrary: ys)
24632
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  1250
 apply force
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1251
apply(case_tac ys)
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1252
 apply simp
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1253
apply(simp add:nth_Cons split:nat.split)apply blast
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1254
done
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1255
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1256
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15246
diff changeset
  1257
apply (induct xs, simp, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1258
apply safe
24632
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  1259
apply (metis nat_case_0 nth.simps zero_less_Suc)
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  1260
apply (metis less_Suc_eq_0_disj nth_Cons_Suc)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1261
apply (case_tac i, simp)
24632
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  1262
apply (metis diff_Suc_Suc nat_case_Suc nth.simps zero_less_diff)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1263
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1264
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1265
lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1266
by(auto simp:set_conv_nth)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1267
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1268
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1269
by (auto simp add: set_conv_nth)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1270
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1271
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1272
by (auto simp add: set_conv_nth)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1273
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1274
lemma all_nth_imp_all_set:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1275
"[| !i < length xs. P(xs!i); x : set xs|] ==> P x"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1276
by (auto simp add: set_conv_nth)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1277
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1278
lemma all_set_conv_all_nth:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1279
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1280
by (auto simp add: set_conv_nth)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1281
25296
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1282
lemma rev_nth:
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1283
  "n < size xs \<Longrightarrow> rev xs ! n = xs ! (length xs - Suc n)"
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1284
proof (induct xs arbitrary: n)
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1285
  case Nil thus ?case by simp
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1286
next
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1287
  case (Cons x xs)
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1288
  hence n: "n < Suc (length xs)" by simp
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1289
  moreover
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1290
  { assume "n < length xs"
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1291
    with n obtain n' where "length xs - n = Suc n'"
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1292
      by (cases "length xs - n", auto)
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1293
    moreover
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1294
    then have "length xs - Suc n = n'" by simp
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1295
    ultimately
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1296
    have "xs ! (length xs - Suc n) = (x # xs) ! (length xs - n)" by simp
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1297
  }
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1298
  ultimately
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1299
  show ?case by (clarsimp simp add: Cons nth_append)
c187b7422156 rev_nth
kleing
parents: 25287
diff changeset
  1300
qed
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1301
31159
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1302
lemma Skolem_list_nth:
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1303
  "(ALL i<k. EX x. P i x) = (EX xs. size xs = k & (ALL i<k. P i (xs!i)))"
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1304
  (is "_ = (EX xs. ?P k xs)")
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1305
proof(induct k)
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1306
  case 0 show ?case by simp
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1307
next
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1308
  case (Suc k)
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1309
  show ?case (is "?L = ?R" is "_ = (EX xs. ?P' xs)")
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1310
  proof
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1311
    assume "?R" thus "?L" using Suc by auto
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1312
  next
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1313
    assume "?L"
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1314
    with Suc obtain x xs where "?P k xs & P k x" by (metis less_Suc_eq)
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1315
    hence "?P'(xs@[x])" by(simp add:nth_append less_Suc_eq)
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1316
    thus "?R" ..
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1317
  qed
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1318
qed
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1319
bac0d673b6d6 new lemma
nipkow
parents: 31154
diff changeset
  1320
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1321
subsubsection {* @{text list_update} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1322
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1323
lemma length_list_update [simp]: "length(xs[i:=x]) = length xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1324
by (induct xs arbitrary: i) (auto split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1325
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1326
lemma nth_list_update:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1327
"i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1328
by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1329
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1330
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1331
by (simp add: nth_list_update)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1332
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1333
lemma nth_list_update_neq [simp]: "i \<noteq> j ==> xs[i:=x]!j = xs!j"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1334
by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1335
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1336
lemma list_update_id[simp]: "xs[i := xs!i] = xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1337
by (induct xs arbitrary: i) (simp_all split:nat.splits)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1338
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1339
lemma list_update_beyond[simp]: "length xs \<le> i \<Longrightarrow> xs[i:=x] = xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1340
apply (induct xs arbitrary: i)
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1341
 apply simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1342
apply (case_tac i)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1343
apply simp_all
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1344
done
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1345
31077
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1346
lemma list_update_nonempty[simp]: "xs[k:=x] = [] \<longleftrightarrow> xs=[]"
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1347
by(metis length_0_conv length_list_update)
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1348
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1349
lemma list_update_same_conv:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1350
"i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1351
by (induct xs arbitrary: i) (auto split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1352
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1353
lemma list_update_append1:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1354
 "i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1355
apply (induct xs arbitrary: i, simp)
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1356
apply(simp split:nat.split)
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1357
done
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1358
15868
9634b3f9d910 more about list_update
kleing
parents: 15693
diff changeset
  1359
lemma list_update_append:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1360
  "(xs @ ys) [n:= x] = 
15868
9634b3f9d910 more about list_update
kleing
parents: 15693
diff changeset
  1361
  (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1362
by (induct xs arbitrary: n) (auto split:nat.splits)
15868
9634b3f9d910 more about list_update
kleing
parents: 15693
diff changeset
  1363
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1364
lemma list_update_length [simp]:
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1365
 "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1366
by (induct xs, auto)
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1367
31264
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1368
lemma map_update: "map f (xs[k:= y]) = (map f xs)[k := f y]"
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1369
by(induct xs arbitrary: k)(auto split:nat.splits)
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1370
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1371
lemma rev_update:
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1372
  "k < length xs \<Longrightarrow> rev (xs[k:= y]) = (rev xs)[length xs - k - 1 := y]"
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1373
by (induct xs arbitrary: k) (auto simp: list_update_append split:nat.splits)
2662d1cdc51f more lemmas
nipkow
parents: 31258
diff changeset
  1374
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1375
lemma update_zip:
31080
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  1376
  "(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1377
by (induct ys arbitrary: i xy xs) (auto, case_tac xs, auto split: nat.split)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1378
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1379
lemma set_update_subset_insert: "set(xs[i:=x]) <= insert x (set xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1380
by (induct xs arbitrary: i) (auto split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1381
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1382
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1383
by (blast dest!: set_update_subset_insert [THEN subsetD])
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1384
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1385
lemma set_update_memI: "n < length xs \<Longrightarrow> x \<in> set (xs[n := x])"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1386
by (induct xs arbitrary: n) (auto split:nat.splits)
15868
9634b3f9d910 more about list_update
kleing
parents: 15693
diff changeset
  1387
31077
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1388
lemma list_update_overwrite[simp]:
24796
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1389
  "xs [i := x, i := y] = xs [i := y]"
31077
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1390
apply (induct xs arbitrary: i) apply simp
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1391
apply (case_tac i, simp_all)
24796
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1392
done
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1393
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1394
lemma list_update_swap:
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1395
  "i \<noteq> i' \<Longrightarrow> xs [i := x, i' := x'] = xs [i' := x', i := x]"
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1396
apply (induct xs arbitrary: i i')
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1397
apply simp
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1398
apply (case_tac i, case_tac i')
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1399
apply auto
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1400
apply (case_tac i')
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1401
apply auto
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1402
done
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1403
29827
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1404
lemma list_update_code [code]:
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1405
  "[][i := y] = []"
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1406
  "(x # xs)[0 := y] = y # xs"
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1407
  "(x # xs)[Suc i := y] = x # xs[i := y]"
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1408
  by simp_all
c82b3e8a4daf code theorems for nth, list_update
haftmann
parents: 29822
diff changeset
  1409
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1410
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1411
subsubsection {* @{text last} and @{text butlast} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1412
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1413
lemma last_snoc [simp]: "last (xs @ [x]) = x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1414
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1415
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1416
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1417
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1418
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1419
lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1420
by(simp add:last.simps)
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1421
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1422
lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1423
by(simp add:last.simps)
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1424
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1425
lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1426
by (induct xs) (auto)
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1427
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1428
lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1429
by(simp add:last_append)
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1430
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1431
lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1432
by(simp add:last_append)
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  1433
17762
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1434
lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs"
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1435
by(rule rev_exhaust[of xs]) simp_all
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1436
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1437
lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs"
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1438
by(cases xs) simp_all
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1439
17765
e3cd31bc2e40 added last in set lemma
nipkow
parents: 17762
diff changeset
  1440
lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as"
e3cd31bc2e40 added last in set lemma
nipkow
parents: 17762
diff changeset
  1441
by (induct as) auto
17762
478869f444ca new hd/rev/last lemmas
nipkow
parents: 17724
diff changeset
  1442
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1443
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1444
by (induct xs rule: rev_induct) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1445
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1446
lemma butlast_append:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1447
  "butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1448
by (induct xs arbitrary: ys) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1449
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1450
lemma append_butlast_last_id [simp]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1451
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1452
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1453
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1454
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1455
by (induct xs) (auto split: split_if_asm)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1456
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1457
lemma in_set_butlast_appendI:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1458
"x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1459
by (auto dest: in_set_butlastD simp add: butlast_append)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1460
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1461
lemma last_drop[simp]: "n < length xs \<Longrightarrow> last (drop n xs) = last xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1462
apply (induct xs arbitrary: n)
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1463
 apply simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1464
apply (auto split:nat.split)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1465
done
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1466
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1467
lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17501
diff changeset
  1468
by(induct xs)(auto simp:neq_Nil_conv)
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17501
diff changeset
  1469
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1470
lemma butlast_conv_take: "butlast xs = take (length xs - 1) xs"
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1471
by (induct xs, simp, case_tac xs, simp_all)
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1472
31077
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1473
lemma last_list_update:
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1474
  "xs \<noteq> [] \<Longrightarrow> last(xs[k:=x]) = (if k = size xs - 1 then x else last xs)"
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1475
by (auto simp: last_conv_nth)
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1476
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1477
lemma butlast_list_update:
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1478
  "butlast(xs[k:=x]) =
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1479
 (if k = size xs - 1 then butlast xs else (butlast xs)[k:=x])"
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1480
apply(cases xs rule:rev_cases)
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1481
apply simp
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1482
apply(simp add:list_update_append split:nat.splits)
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1483
done
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1484
24796
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1485
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1486
subsubsection {* @{text take} and @{text drop} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1487
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1488
lemma take_0 [simp]: "take 0 xs = []"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1489
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1490
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1491
lemma drop_0 [simp]: "drop 0 xs = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1492
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1493
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1494
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1495
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1496
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1497
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1498
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1499
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1500
declare take_Cons [simp del] and drop_Cons [simp del]
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1501
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1502
lemma take_1_Cons [simp]: "take 1 (x # xs) = [x]"
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1503
  unfolding One_nat_def by simp
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1504
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1505
lemma drop_1_Cons [simp]: "drop 1 (x # xs) = xs"
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1506
  unfolding One_nat_def by simp
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1507
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1508
lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1509
by(clarsimp simp add:neq_Nil_conv)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1510
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1511
lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1512
by(cases xs, simp_all)
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1513
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1514
lemma take_tl: "take n (tl xs) = tl (take (Suc n) xs)"
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1515
by (induct xs arbitrary: n) simp_all
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1516
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1517
lemma drop_tl: "drop n (tl xs) = tl(drop n xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1518
by(induct xs arbitrary: n, simp_all add:drop_Cons drop_Suc split:nat.split)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1519
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1520
lemma tl_take: "tl (take n xs) = take (n - 1) (tl xs)"
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1521
by (cases n, simp, cases xs, auto)
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1522
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1523
lemma tl_drop: "tl (drop n xs) = drop n (tl xs)"
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1524
by (simp only: drop_tl)
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1525
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1526
lemma nth_via_drop: "drop n xs = y#ys \<Longrightarrow> xs!n = y"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1527
apply (induct xs arbitrary: n, simp)
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1528
apply(simp add:drop_Cons nth_Cons split:nat.splits)
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1529
done
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1530
13913
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1531
lemma take_Suc_conv_app_nth:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1532
  "i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1533
apply (induct xs arbitrary: i, simp)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1534
apply (case_tac i, auto)
13913
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1535
done
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1536
14591
7be4d5dadf15 lemma drop_Suc_conv_tl added.
mehta
parents: 14589
diff changeset
  1537
lemma drop_Suc_conv_tl:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1538
  "i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1539
apply (induct xs arbitrary: i, simp)
14591
7be4d5dadf15 lemma drop_Suc_conv_tl added.
mehta
parents: 14589
diff changeset
  1540
apply (case_tac i, auto)
7be4d5dadf15 lemma drop_Suc_conv_tl added.
mehta
parents: 14589
diff changeset
  1541
done
7be4d5dadf15 lemma drop_Suc_conv_tl added.
mehta
parents: 14589
diff changeset
  1542
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1543
lemma length_take [simp]: "length (take n xs) = min (length xs) n"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1544
by (induct n arbitrary: xs) (auto, case_tac xs, auto)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1545
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1546
lemma length_drop [simp]: "length (drop n xs) = (length xs - n)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1547
by (induct n arbitrary: xs) (auto, case_tac xs, auto)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1548
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1549
lemma take_all [simp]: "length xs <= n ==> take n xs = xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1550
by (induct n arbitrary: xs) (auto, case_tac xs, auto)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1551
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1552
lemma drop_all [simp]: "length xs <= n ==> drop n xs = []"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1553
by (induct n arbitrary: xs) (auto, case_tac xs, auto)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1554
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1555
lemma take_append [simp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1556
  "take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1557
by (induct n arbitrary: xs) (auto, case_tac xs, auto)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1558
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1559
lemma drop_append [simp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1560
  "drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1561
by (induct n arbitrary: xs) (auto, case_tac xs, auto)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1562
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1563
lemma take_take [simp]: "take n (take m xs) = take (min n m) xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1564
apply (induct m arbitrary: xs n, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1565
apply (case_tac xs, auto)
15236
f289e8ba2bb3 Proofs needed to be updated because induction now preserves name of
nipkow
parents: 15176
diff changeset
  1566
apply (case_tac n, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1567
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1568
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1569
lemma drop_drop [simp]: "drop n (drop m xs) = drop (n + m) xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1570
apply (induct m arbitrary: xs, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1571
apply (case_tac xs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1572
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1573
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1574
lemma take_drop: "take n (drop m xs) = drop m (take (n + m) xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1575
apply (induct m arbitrary: xs n, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1576
apply (case_tac xs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1577
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1578
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1579
lemma drop_take: "drop n (take m xs) = take (m-n) (drop n xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1580
apply(induct xs arbitrary: m n)
14802
e05116289ff9 added drop_take:thm
nipkow
parents: 14770
diff changeset
  1581
 apply simp
e05116289ff9 added drop_take:thm
nipkow
parents: 14770
diff changeset
  1582
apply(simp add: take_Cons drop_Cons split:nat.split)
e05116289ff9 added drop_take:thm
nipkow
parents: 14770
diff changeset
  1583
done
e05116289ff9 added drop_take:thm
nipkow
parents: 14770
diff changeset
  1584
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1585
lemma append_take_drop_id [simp]: "take n xs @ drop n xs = xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1586
apply (induct n arbitrary: xs, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1587
apply (case_tac xs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1588
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1589
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1590
lemma take_eq_Nil[simp]: "(take n xs = []) = (n = 0 \<or> xs = [])"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1591
apply(induct xs arbitrary: n)
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1592
 apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1593
apply(simp add:take_Cons split:nat.split)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1594
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1595
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1596
lemma drop_eq_Nil[simp]: "(drop n xs = []) = (length xs <= n)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1597
apply(induct xs arbitrary: n)
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1598
apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1599
apply(simp add:drop_Cons split:nat.split)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1600
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1601
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1602
lemma take_map: "take n (map f xs) = map f (take n xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1603
apply (induct n arbitrary: xs, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1604
apply (case_tac xs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1605
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1606
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1607
lemma drop_map: "drop n (map f xs) = map f (drop n xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1608
apply (induct n arbitrary: xs, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1609
apply (case_tac xs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1610
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1611
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1612
lemma rev_take: "rev (take i xs) = drop (length xs - i) (rev xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1613
apply (induct xs arbitrary: i, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1614
apply (case_tac i, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1615
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1616
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1617
lemma rev_drop: "rev (drop i xs) = take (length xs - i) (rev xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1618
apply (induct xs arbitrary: i, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1619
apply (case_tac i, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1620
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1621
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1622
lemma nth_take [simp]: "i < n ==> (take n xs)!i = xs!i"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1623
apply (induct xs arbitrary: i n, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1624
apply (case_tac n, blast)
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1625
apply (case_tac i, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1626
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1627
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1628
lemma nth_drop [simp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1629
  "n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1630
apply (induct n arbitrary: xs i, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1631
apply (case_tac xs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1632
done
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
  1633
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1634
lemma butlast_take:
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1635
  "n <= length xs ==> butlast (take n xs) = take (n - 1) xs"
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1636
by (simp add: butlast_conv_take min_max.inf_absorb1 min_max.inf_absorb2)
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1637
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1638
lemma butlast_drop: "butlast (drop n xs) = drop n (butlast xs)"
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1639
by (simp add: butlast_conv_take drop_take add_ac)
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1640
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1641
lemma take_butlast: "n < length xs ==> take n (butlast xs) = take n xs"
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1642
by (simp add: butlast_conv_take min_max.inf_absorb1)
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1643
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1644
lemma drop_butlast: "drop n (butlast xs) = butlast (drop n xs)"
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  1645
by (simp add: butlast_conv_take drop_take add_ac)
26584
46f3b89b2445 move lemmas from Word/BinBoolList.thy to List.thy
huffman
parents: 26480
diff changeset
  1646
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1647
lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n"
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1648
by(simp add: hd_conv_nth)
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1649
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1650
lemma set_take_subset: "set(take n xs) \<subseteq> set xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1651
by(induct xs arbitrary: n)(auto simp:take_Cons split:nat.split)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1652
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1653
lemma set_drop_subset: "set(drop n xs) \<subseteq> set xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1654
by(induct xs arbitrary: n)(auto simp:drop_Cons split:nat.split)
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
  1655
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1656
lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs"
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1657
using set_take_subset by fast
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1658
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1659
lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs"
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1660
using set_drop_subset by fast
26dfcd0ac436 Added new theorems
nipkow
parents: 14111
diff changeset
  1661
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1662
lemma append_eq_conv_conj:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1663
  "(xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1664
apply (induct xs arbitrary: zs, simp, clarsimp)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1665
apply (case_tac zs, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1666
done
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1667
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1668
lemma take_add: 
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1669
  "i+j \<le> length(xs) \<Longrightarrow> take (i+j) xs = take i xs @ take j (drop i xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1670
apply (induct xs arbitrary: i, auto) 
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1671
apply (case_tac i, simp_all)
14050
826037db30cd new theorem
paulson
parents: 14025
diff changeset
  1672
done
826037db30cd new theorem
paulson
parents: 14025
diff changeset
  1673
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1674
lemma append_eq_append_conv_if:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1675
 "(xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) =
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1676
  (if size xs\<^isub>1 \<le> size ys\<^isub>1
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1677
   then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1678
   else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1679
apply(induct xs\<^isub>1 arbitrary: ys\<^isub>1)
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1680
 apply simp
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1681
apply(case_tac ys\<^isub>1)
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1682
apply simp_all
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1683
done
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
  1684
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1685
lemma take_hd_drop:
30079
293b896b9c25 make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
huffman
parents: 30008
diff changeset
  1686
  "n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (Suc n) xs"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1687
apply(induct xs arbitrary: n)
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1688
apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1689
apply(simp add:drop_Cons split:nat.split)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1690
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1691
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1692
lemma id_take_nth_drop:
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1693
 "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" 
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1694
proof -
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1695
  assume si: "i < length xs"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1696
  hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1697
  moreover
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1698
  from si have "take (Suc i) xs = take i xs @ [xs!i]"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1699
    apply (rule_tac take_Suc_conv_app_nth) by arith
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1700
  ultimately show ?thesis by auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1701
qed
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1702
  
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1703
lemma upd_conv_take_nth_drop:
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1704
 "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1705
proof -
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1706
  assume i: "i < length xs"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1707
  have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1708
    by(rule arg_cong[OF id_take_nth_drop[OF i]])
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1709
  also have "\<dots> = take i xs @ a # drop (Suc i) xs"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1710
    using i by (simp add: list_update_append)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1711
  finally show ?thesis .
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1712
qed
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1713
24796
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1714
lemma nth_drop':
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1715
  "i < length xs \<Longrightarrow> xs ! i # drop (Suc i) xs = drop i xs"
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1716
apply (induct i arbitrary: xs)
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1717
apply (simp add: neq_Nil_conv)
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1718
apply (erule exE)+
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1719
apply simp
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1720
apply (case_tac xs)
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1721
apply simp_all
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1722
done
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  1723
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1724
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1725
subsubsection {* @{text takeWhile} and @{text dropWhile} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1726
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1727
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1728
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1729
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1730
lemma takeWhile_append1 [simp]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1731
"[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1732
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1733
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1734
lemma takeWhile_append2 [simp]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1735
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1736
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1737
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1738
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1739
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1740
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1741
lemma dropWhile_append1 [simp]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1742
"[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1743
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1744
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1745
lemma dropWhile_append2 [simp]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1746
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1747
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1748
23971
e6d505d5b03d renamed lemma "set_take_whileD" to "set_takeWhileD"
krauss
parents: 23740
diff changeset
  1749
lemma set_takeWhileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1750
by (induct xs) (auto split: split_if_asm)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1751
13913
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1752
lemma takeWhile_eq_all_conv[simp]:
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1753
 "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1754
by(induct xs, auto)
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1755
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1756
lemma dropWhile_eq_Nil_conv[simp]:
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1757
 "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1758
by(induct xs, auto)
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1759
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1760
lemma dropWhile_eq_Cons_conv:
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1761
 "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)"
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1762
by(induct xs, auto)
b3ed67af04b8 Added take/dropWhile thms
nipkow
parents: 13883
diff changeset
  1763
31077
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1764
lemma distinct_takeWhile[simp]: "distinct xs ==> distinct (takeWhile P xs)"
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1765
by (induct xs) (auto dest: set_takeWhileD)
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1766
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1767
lemma distinct_dropWhile[simp]: "distinct xs ==> distinct (dropWhile P xs)"
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1768
by (induct xs) auto
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1769
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  1770
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1771
text{* The following two lemmmas could be generalized to an arbitrary
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1772
property. *}
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1773
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1774
lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1775
 takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1776
by(induct xs) (auto simp: takeWhile_tail[where l="[]"])
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1777
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1778
lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1779
  dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1780
apply(induct xs)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1781
 apply simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1782
apply auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1783
apply(subst dropWhile_append2)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1784
apply auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1785
done
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  1786
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1787
lemma takeWhile_not_last:
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1788
 "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs"
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1789
apply(induct xs)
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1790
 apply simp
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1791
apply(case_tac xs)
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1792
apply(auto)
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1793
done
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1794
19770
be5c23ebe1eb HOL/Tools/function_package: Added support for mutual recursive definitions.
krauss
parents: 19623
diff changeset
  1795
lemma takeWhile_cong [fundef_cong, recdef_cong]:
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  1796
  "[| l = k; !!x. x : set l ==> P x = Q x |] 
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  1797
  ==> takeWhile P l = takeWhile Q k"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  1798
by (induct k arbitrary: l) (simp_all)
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  1799
19770
be5c23ebe1eb HOL/Tools/function_package: Added support for mutual recursive definitions.
krauss
parents: 19623
diff changeset
  1800
lemma dropWhile_cong [fundef_cong, recdef_cong]:
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  1801
  "[| l = k; !!x. x : set l ==> P x = Q x |] 
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  1802
  ==> dropWhile P l = dropWhile Q k"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  1803
by (induct k arbitrary: l, simp_all)
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  1804
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1805
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1806
subsubsection {* @{text zip} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1807
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1808
lemma zip_Nil [simp]: "zip [] ys = []"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1809
by (induct ys) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1810
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1811
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1812
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1813
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1814
declare zip_Cons [simp del]
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1815
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1816
lemma zip_Cons1:
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1817
 "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1818
by(auto split:list.split)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  1819
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1820
lemma length_zip [simp]:
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  1821
"length (zip xs ys) = min (length xs) (length ys)"
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  1822
by (induct xs ys rule:list_induct2') auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1823
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1824
lemma zip_append1:
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  1825
"zip (xs @ ys) zs =
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1826
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  1827
by (induct xs zs rule:list_induct2') auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1828
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1829
lemma zip_append2:
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  1830
"zip xs (ys @ zs) =
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1831
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  1832
by (induct xs ys rule:list_induct2') auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1833
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1834
lemma zip_append [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1835
 "[| length xs = length us; length ys = length vs |] ==>
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1836
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1837
by (simp add: zip_append1)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1838
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1839
lemma zip_rev:
14247
cb32eb89bddd *** empty log message ***
nipkow
parents: 14208
diff changeset
  1840
"length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
cb32eb89bddd *** empty log message ***
nipkow
parents: 14208
diff changeset
  1841
by (induct rule:list_induct2, simp_all)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1842
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1843
lemma map_zip_map:
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1844
 "map f (zip (map g xs) ys) = map (%(x,y). f(g x, y)) (zip xs ys)"
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1845
apply(induct xs arbitrary:ys) apply simp
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1846
apply(case_tac ys)
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1847
apply simp_all
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1848
done
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1849
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1850
lemma map_zip_map2:
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1851
 "map f (zip xs (map g ys)) = map (%(x,y). f(x, g y)) (zip xs ys)"
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1852
apply(induct xs arbitrary:ys) apply simp
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1853
apply(case_tac ys)
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1854
apply simp_all
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1855
done
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  1856
31080
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  1857
text{* Courtesy of Andreas Lochbihler: *}
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  1858
lemma zip_same_conv_map: "zip xs xs = map (\<lambda>x. (x, x)) xs"
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  1859
by(induct xs) auto
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  1860
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1861
lemma nth_zip [simp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1862
"[| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1863
apply (induct ys arbitrary: i xs, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1864
apply (case_tac xs)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1865
 apply (simp_all add: nth.simps split: nat.split)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1866
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1867
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1868
lemma set_zip:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1869
"set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
31080
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  1870
by(simp add: set_conv_nth cong: rev_conj_cong)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1871
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1872
lemma zip_update:
31080
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  1873
  "zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  1874
by(rule sym, simp add: update_zip)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1875
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1876
lemma zip_replicate [simp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1877
  "zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1878
apply (induct i arbitrary: j, auto)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1879
apply (case_tac j, auto)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1880
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1881
19487
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  1882
lemma take_zip:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1883
  "take n (zip xs ys) = zip (take n xs) (take n ys)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1884
apply (induct n arbitrary: xs ys)
19487
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  1885
 apply simp
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  1886
apply (case_tac xs, simp)
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  1887
apply (case_tac ys, simp_all)
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  1888
done
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  1889
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  1890
lemma drop_zip:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1891
  "drop n (zip xs ys) = zip (drop n xs) (drop n ys)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1892
apply (induct n arbitrary: xs ys)
19487
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  1893
 apply simp
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  1894
apply (case_tac xs, simp)
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  1895
apply (case_tac ys, simp_all)
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  1896
done
d5e79a41bce0 added zip/take/drop lemmas
nipkow
parents: 19390
diff changeset
  1897
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  1898
lemma set_zip_leftD:
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  1899
  "(x,y)\<in> set (zip xs ys) \<Longrightarrow> x \<in> set xs"
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  1900
by (induct xs ys rule:list_induct2') auto
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  1901
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  1902
lemma set_zip_rightD:
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  1903
  "(x,y)\<in> set (zip xs ys) \<Longrightarrow> y \<in> set ys"
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
  1904
by (induct xs ys rule:list_induct2') auto
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1905
23983
79dc793bec43 Added lemmas
nipkow
parents: 23971
diff changeset
  1906
lemma in_set_zipE:
79dc793bec43 Added lemmas
nipkow
parents: 23971
diff changeset
  1907
  "(x,y) : set(zip xs ys) \<Longrightarrow> (\<lbrakk> x : set xs; y : set ys \<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R"
79dc793bec43 Added lemmas
nipkow
parents: 23971
diff changeset
  1908
by(blast dest: set_zip_leftD set_zip_rightD)
79dc793bec43 Added lemmas
nipkow
parents: 23971
diff changeset
  1909
29829
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  1910
lemma zip_map_fst_snd:
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  1911
  "zip (map fst zs) (map snd zs) = zs"
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  1912
  by (induct zs) simp_all
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  1913
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  1914
lemma zip_eq_conv:
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  1915
  "length xs = length ys \<Longrightarrow> zip xs ys = zs \<longleftrightarrow> map fst zs = xs \<and> map snd zs = ys"
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  1916
  by (auto simp add: zip_map_fst_snd)
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  1917
9acb915a62fa code theorems for nth, list_update
haftmann
parents: 29827
diff changeset
  1918
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  1919
subsubsection {* @{text list_all2} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1920
14316
91b897b9a2dc added some [intro?] and [trans] for list_all2 lemmas
kleing
parents: 14302
diff changeset
  1921
lemma list_all2_lengthD [intro?]: 
91b897b9a2dc added some [intro?] and [trans] for list_all2 lemmas
kleing
parents: 14302
diff changeset
  1922
  "list_all2 P xs ys ==> length xs = length ys"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  1923
by (simp add: list_all2_def)
19607
07eeb832f28d introduced characters for code generator; some improved code lemmas for some list functions
haftmann
parents: 19585
diff changeset
  1924
19787
b949911ecff5 improved code lemmas
haftmann
parents: 19770
diff changeset
  1925
lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  1926
by (simp add: list_all2_def)
19607
07eeb832f28d introduced characters for code generator; some improved code lemmas for some list functions
haftmann
parents: 19585
diff changeset
  1927
19787
b949911ecff5 improved code lemmas
haftmann
parents: 19770
diff changeset
  1928
lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  1929
by (simp add: list_all2_def)
19607
07eeb832f28d introduced characters for code generator; some improved code lemmas for some list functions
haftmann
parents: 19585
diff changeset
  1930
07eeb832f28d introduced characters for code generator; some improved code lemmas for some list functions
haftmann
parents: 19585
diff changeset
  1931
lemma list_all2_Cons [iff, code]:
07eeb832f28d introduced characters for code generator; some improved code lemmas for some list functions
haftmann
parents: 19585
diff changeset
  1932
  "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  1933
by (auto simp add: list_all2_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1934
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1935
lemma list_all2_Cons1:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1936
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1937
by (cases ys) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1938
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1939
lemma list_all2_Cons2:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1940
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1941
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1942
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1943
lemma list_all2_rev [iff]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1944
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1945
by (simp add: list_all2_def zip_rev cong: conj_cong)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1946
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  1947
lemma list_all2_rev1:
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  1948
"list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  1949
by (subst list_all2_rev [symmetric]) simp
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  1950
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1951
lemma list_all2_append1:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1952
"list_all2 P (xs @ ys) zs =
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1953
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1954
list_all2 P xs us \<and> list_all2 P ys vs)"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1955
apply (simp add: list_all2_def zip_append1)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1956
apply (rule iffI)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1957
 apply (rule_tac x = "take (length xs) zs" in exI)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1958
 apply (rule_tac x = "drop (length xs) zs" in exI)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1959
 apply (force split: nat_diff_split simp add: min_def, clarify)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1960
apply (simp add: ball_Un)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1961
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1962
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1963
lemma list_all2_append2:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1964
"list_all2 P xs (ys @ zs) =
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1965
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1966
list_all2 P us ys \<and> list_all2 P vs zs)"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1967
apply (simp add: list_all2_def zip_append2)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1968
apply (rule iffI)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1969
 apply (rule_tac x = "take (length ys) xs" in exI)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1970
 apply (rule_tac x = "drop (length ys) xs" in exI)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1971
 apply (force split: nat_diff_split simp add: min_def, clarify)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1972
apply (simp add: ball_Un)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1973
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1974
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  1975
lemma list_all2_append:
14247
cb32eb89bddd *** empty log message ***
nipkow
parents: 14208
diff changeset
  1976
  "length xs = length ys \<Longrightarrow>
cb32eb89bddd *** empty log message ***
nipkow
parents: 14208
diff changeset
  1977
  list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
cb32eb89bddd *** empty log message ***
nipkow
parents: 14208
diff changeset
  1978
by (induct rule:list_induct2, simp_all)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  1979
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  1980
lemma list_all2_appendI [intro?, trans]:
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  1981
  "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  1982
by (simp add: list_all2_append list_all2_lengthD)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  1983
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1984
lemma list_all2_conv_all_nth:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1985
"list_all2 P xs ys =
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1986
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1987
by (force simp add: list_all2_def set_zip)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1988
13883
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  1989
lemma list_all2_trans:
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  1990
  assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  1991
  shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  1992
        (is "!!bs cs. PROP ?Q as bs cs")
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  1993
proof (induct as)
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  1994
  fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  1995
  show "!!cs. PROP ?Q (x # xs) bs cs"
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  1996
  proof (induct bs)
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  1997
    fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs"
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  1998
    show "PROP ?Q (x # xs) (y # ys) cs"
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  1999
      by (induct cs) (auto intro: tr I1 I2)
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2000
  qed simp
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2001
qed simp
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2002
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2003
lemma list_all2_all_nthI [intro?]:
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2004
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2005
by (simp add: list_all2_conv_all_nth)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2006
14395
cc96cc06abf9 new theorem
paulson
parents: 14388
diff changeset
  2007
lemma list_all2I:
cc96cc06abf9 new theorem
paulson
parents: 14388
diff changeset
  2008
  "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2009
by (simp add: list_all2_def)
14395
cc96cc06abf9 new theorem
paulson
parents: 14388
diff changeset
  2010
14328
fd063037fdf5 list_all2_nthD no good as [intro?]
kleing
parents: 14327
diff changeset
  2011
lemma list_all2_nthD:
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2012
  "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2013
by (simp add: list_all2_conv_all_nth)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2014
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  2015
lemma list_all2_nthD2:
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  2016
  "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2017
by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  2018
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2019
lemma list_all2_map1: 
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2020
  "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2021
by (simp add: list_all2_conv_all_nth)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2022
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2023
lemma list_all2_map2: 
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2024
  "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2025
by (auto simp add: list_all2_conv_all_nth)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2026
14316
91b897b9a2dc added some [intro?] and [trans] for list_all2 lemmas
kleing
parents: 14302
diff changeset
  2027
lemma list_all2_refl [intro?]:
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2028
  "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2029
by (simp add: list_all2_conv_all_nth)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2030
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2031
lemma list_all2_update_cong:
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2032
  "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2033
by (simp add: list_all2_conv_all_nth nth_list_update)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2034
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2035
lemma list_all2_update_cong2:
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2036
  "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2037
by (simp add: list_all2_lengthD list_all2_update_cong)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2038
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  2039
lemma list_all2_takeI [simp,intro?]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2040
  "list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2041
apply (induct xs arbitrary: n ys)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2042
 apply simp
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2043
apply (clarsimp simp add: list_all2_Cons1)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2044
apply (case_tac n)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2045
apply auto
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2046
done
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  2047
6c24235e8d5d *** empty log message ***
nipkow
parents: 14300
diff changeset
  2048
lemma list_all2_dropI [simp,intro?]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2049
  "list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2050
apply (induct as arbitrary: n bs, simp)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2051
apply (clarsimp simp add: list_all2_Cons1)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2052
apply (case_tac n, simp, simp)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2053
done
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2054
14327
9cd4dea593e3 list_all2_mono should not be [trans]
kleing
parents: 14316
diff changeset
  2055
lemma list_all2_mono [intro?]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2056
  "list_all2 P xs ys \<Longrightarrow> (\<And>xs ys. P xs ys \<Longrightarrow> Q xs ys) \<Longrightarrow> list_all2 Q xs ys"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2057
apply (induct xs arbitrary: ys, simp)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2058
apply (case_tac ys, auto)
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2059
done
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2060
22551
e52f5400e331 paraphrasing equality
haftmann
parents: 22539
diff changeset
  2061
lemma list_all2_eq:
e52f5400e331 paraphrasing equality
haftmann
parents: 22539
diff changeset
  2062
  "xs = ys \<longleftrightarrow> list_all2 (op =) xs ys"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2063
by (induct xs ys rule: list_induct2') auto
22551
e52f5400e331 paraphrasing equality
haftmann
parents: 22539
diff changeset
  2064
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2065
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  2066
subsubsection {* @{text foldl} and @{text foldr} *}
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2067
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2068
lemma foldl_append [simp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2069
  "foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2070
by (induct xs arbitrary: a) auto
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2071
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  2072
lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  2073
by (induct xs) auto
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  2074
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2075
lemma foldr_map: "foldr g (map f xs) a = foldr (g o f) xs a"
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2076
by(induct xs) simp_all
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2077
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2078
text{* For efficient code generation: avoid intermediate list. *}
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  2079
lemma foldl_map[code_unfold]:
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2080
  "foldl g a (map f xs) = foldl (%a x. g a (f x)) a xs"
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2081
by(induct xs arbitrary:a) simp_all
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2082
31930
3107b9af1fb3 lemma foldl_apply_inv
haftmann
parents: 31784
diff changeset
  2083
lemma foldl_apply_inv:
3107b9af1fb3 lemma foldl_apply_inv
haftmann
parents: 31784
diff changeset
  2084
  assumes "\<And>x. g (h x) = x"
3107b9af1fb3 lemma foldl_apply_inv
haftmann
parents: 31784
diff changeset
  2085
  shows "foldl f (g s) xs = g (foldl (\<lambda>s x. h (f (g s) x)) s xs)"
3107b9af1fb3 lemma foldl_apply_inv
haftmann
parents: 31784
diff changeset
  2086
  by (rule sym, induct xs arbitrary: s) (simp_all add: assms)
3107b9af1fb3 lemma foldl_apply_inv
haftmann
parents: 31784
diff changeset
  2087
19770
be5c23ebe1eb HOL/Tools/function_package: Added support for mutual recursive definitions.
krauss
parents: 19623
diff changeset
  2088
lemma foldl_cong [fundef_cong, recdef_cong]:
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2089
  "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] 
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2090
  ==> foldl f a l = foldl g b k"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2091
by (induct k arbitrary: a b l) simp_all
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2092
19770
be5c23ebe1eb HOL/Tools/function_package: Added support for mutual recursive definitions.
krauss
parents: 19623
diff changeset
  2093
lemma foldr_cong [fundef_cong, recdef_cong]:
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2094
  "[| a = b; l = k; !!a x. x : set l ==> f x a = g x a |] 
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2095
  ==> foldr f l a = foldr g k b"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2096
by (induct k arbitrary: a b l) simp_all
18336
1a2e30b37ed3 Added recdef congruence rules for bounded quantifiers and commonly used
krauss
parents: 18049
diff changeset
  2097
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2098
lemma (in semigroup_add) foldl_assoc:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  2099
shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)"
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2100
by (induct zs arbitrary: y) (simp_all add:add_assoc)
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2101
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2102
lemma (in monoid_add) foldl_absorb0:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  2103
shows "x + (foldl op+ 0 zs) = foldl op+ x zs"
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2104
by (induct zs) (simp_all add:foldl_assoc)
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2105
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2106
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2107
text{* The ``First Duality Theorem'' in Bird \& Wadler: *}
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2108
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2109
lemma foldl_foldr1_lemma:
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2110
 "foldl op + a xs = a + foldr op + xs (0\<Colon>'a::monoid_add)"
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2111
by (induct xs arbitrary: a) (auto simp:add_assoc)
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2112
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2113
corollary foldl_foldr1:
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2114
 "foldl op + 0 xs = foldr op + xs (0\<Colon>'a::monoid_add)"
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2115
by (simp add:foldl_foldr1_lemma)
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2116
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2117
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2118
text{* The ``Third Duality Theorem'' in Bird \& Wadler: *}
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2119
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  2120
lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)"
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  2121
by (induct xs) auto
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  2122
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  2123
lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a"
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  2124
by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"])
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  2125
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  2126
lemma (in ab_semigroup_add) foldr_conv_foldl: "foldr op + xs a = foldl op + a xs"
24471
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2127
  by (induct xs, auto simp add: foldl_assoc add_commute)
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2128
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2129
text {*
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2130
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2131
difficult to use because it requires an additional transitivity step.
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2132
*}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2133
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2134
lemma start_le_sum: "(m::nat) <= n ==> m <= foldl (op +) n ns"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2135
by (induct ns arbitrary: n) auto
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2136
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2137
lemma elem_le_sum: "(n::nat) : set ns ==> n <= foldl (op +) 0 ns"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2138
by (force intro: start_le_sum simp add: in_set_conv_decomp)
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2139
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2140
lemma sum_eq_0_conv [iff]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2141
  "(foldl (op +) (m::nat) ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2142
by (induct ns arbitrary: m) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2143
24471
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2144
lemma foldr_invariant: 
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2145
  "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f x y) \<rbrakk> \<Longrightarrow> Q (foldr f xs x)"
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2146
  by (induct xs, simp_all)
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2147
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2148
lemma foldl_invariant: 
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2149
  "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f y x) \<rbrakk> \<Longrightarrow> Q (foldl f x xs)"
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2150
  by (induct xs arbitrary: x, simp_all)
d7cf53c1085f removed unused theorems ; added lifting properties for foldr and foldl
chaieb
parents: 24461
diff changeset
  2151
31455
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2152
text {* @{const foldl} and @{const concat} *}
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2153
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2154
lemma foldl_conv_concat:
29782
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2155
  "foldl (op @) xs xss = xs @ concat xss"
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2156
proof (induct xss arbitrary: xs)
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2157
  case Nil show ?case by simp
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2158
next
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2159
  interpret monoid_add "[]" "op @" proof qed simp_all
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2160
  case Cons then show ?case by (simp add: foldl_absorb0)
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2161
qed
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2162
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2163
lemma concat_conv_foldl: "concat xss = foldl (op @) [] xss"
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2164
  by (simp add: foldl_conv_concat)
02e76245e5af dropped global Nil/Append interpretation
haftmann
parents: 29626
diff changeset
  2165
31455
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2166
text {* @{const Finite_Set.fold} and @{const foldl} *}
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2167
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2168
lemma (in fun_left_comm_idem) fold_set:
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2169
  "fold f y (set xs) = foldl (\<lambda>y x. f x y) y xs"
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2170
  by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm)
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2171
2754a0dadccc lemma about List.foldl and Finite_Set.fold
haftmann
parents: 31363
diff changeset
  2172
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2173
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2174
subsubsection {* List summation: @{const listsum} and @{text"\<Sum>"}*}
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2175
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2176
lemma listsum_append [simp]: "listsum (xs @ ys) = listsum xs + listsum ys"
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2177
by (induct xs) (simp_all add:add_assoc)
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2178
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2179
lemma listsum_rev [simp]:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2180
  fixes xs :: "'a\<Colon>comm_monoid_add list"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2181
  shows "listsum (rev xs) = listsum xs"
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2182
by (induct xs) (simp_all add:add_ac)
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2183
31022
a438b4516dd3 added listsum lemmas
nipkow
parents: 30971
diff changeset
  2184
lemma listsum_map_remove1:
a438b4516dd3 added listsum lemmas
nipkow
parents: 30971
diff changeset
  2185
fixes f :: "'a \<Rightarrow> ('b::comm_monoid_add)"
a438b4516dd3 added listsum lemmas
nipkow
parents: 30971
diff changeset
  2186
shows "x : set xs \<Longrightarrow> listsum(map f xs) = f x + listsum(map f (remove1 x xs))"
a438b4516dd3 added listsum lemmas
nipkow
parents: 30971
diff changeset
  2187
by (induct xs)(auto simp add:add_ac)
a438b4516dd3 added listsum lemmas
nipkow
parents: 30971
diff changeset
  2188
a438b4516dd3 added listsum lemmas
nipkow
parents: 30971
diff changeset
  2189
lemma list_size_conv_listsum:
a438b4516dd3 added listsum lemmas
nipkow
parents: 30971
diff changeset
  2190
  "list_size f xs = listsum (map f xs) + size xs"
a438b4516dd3 added listsum lemmas
nipkow
parents: 30971
diff changeset
  2191
by(induct xs) auto
a438b4516dd3 added listsum lemmas
nipkow
parents: 30971
diff changeset
  2192
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2193
lemma listsum_foldr: "listsum xs = foldr (op +) xs 0"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2194
by (induct xs) auto
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2195
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2196
lemma length_concat: "length (concat xss) = listsum (map length xss)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2197
by (induct xss) simp_all
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2198
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2199
text{* For efficient code generation ---
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2200
       @{const listsum} is not tail recursive but @{const foldl} is. *}
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  2201
lemma listsum[code_unfold]: "listsum xs = foldl (op +) 0 xs"
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2202
by(simp add:listsum_foldr foldl_foldr1)
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2203
31077
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  2204
lemma distinct_listsum_conv_Setsum:
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  2205
  "distinct xs \<Longrightarrow> listsum xs = Setsum(set xs)"
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  2206
by (induct xs) simp_all
28dd6fd3d184 more lemmas
nipkow
parents: 31055
diff changeset
  2207
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  2208
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2209
text{* Some syntactic sugar for summing a function over a list: *}
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2210
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2211
syntax
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2212
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2213
syntax (xsymbols)
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2214
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2215
syntax (HTML output)
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2216
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2217
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2218
translations -- {* Beware of argument permutation! *}
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2219
  "SUM x<-xs. b" == "CONST listsum (map (%x. b) xs)"
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2220
  "\<Sum>x\<leftarrow>xs. b" == "CONST listsum (map (%x. b) xs)"
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2221
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2222
lemma listsum_triv: "(\<Sum>x\<leftarrow>xs. r) = of_nat (length xs) * r"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2223
  by (induct xs) (simp_all add: left_distrib)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2224
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2225
lemma listsum_0 [simp]: "(\<Sum>x\<leftarrow>xs. 0) = 0"
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2226
  by (induct xs) (simp_all add: left_distrib)
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2227
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2228
text{* For non-Abelian groups @{text xs} needs to be reversed on one side: *}
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2229
lemma uminus_listsum_map:
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2230
  fixes f :: "'a \<Rightarrow> 'b\<Colon>ab_group_add"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2231
  shows "- listsum (map f xs) = (listsum (map (uminus o f) xs))"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  2232
by (induct xs) simp_all
23096
423ad2fe9f76 *** empty log message ***
nipkow
parents: 23060
diff changeset
  2233
31258
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2234
lemma listsum_addf:
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2235
  fixes f g :: "'a \<Rightarrow> 'b::comm_monoid_add"
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2236
  shows "(\<Sum>x\<leftarrow>xs. f x + g x) = listsum (map f xs) + listsum (map g xs)"
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2237
by (induct xs) (simp_all add: algebra_simps)
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2238
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2239
lemma listsum_subtractf:
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2240
  fixes f g :: "'a \<Rightarrow> 'b::ab_group_add"
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2241
  shows "(\<Sum>x\<leftarrow>xs. f x - g x) = listsum (map f xs) - listsum (map g xs)"
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2242
by (induct xs) simp_all
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2243
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2244
lemma listsum_const_mult:
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2245
  fixes f :: "'a \<Rightarrow> 'b::semiring_0"
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2246
  shows "(\<Sum>x\<leftarrow>xs. c * f x) = c * (\<Sum>x\<leftarrow>xs. f x)"
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2247
by (induct xs, simp_all add: algebra_simps)
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2248
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2249
lemma listsum_mult_const:
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2250
  fixes f :: "'a \<Rightarrow> 'b::semiring_0"
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2251
  shows "(\<Sum>x\<leftarrow>xs. f x * c) = (\<Sum>x\<leftarrow>xs. f x) * c"
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2252
by (induct xs, simp_all add: algebra_simps)
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2253
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2254
lemma listsum_abs:
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2255
  fixes xs :: "'a::pordered_ab_group_add_abs list"
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2256
  shows "\<bar>listsum xs\<bar> \<le> listsum (map abs xs)"
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2257
by (induct xs, simp, simp add: order_trans [OF abs_triangle_ineq])
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2258
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2259
lemma listsum_mono:
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2260
  fixes f g :: "'a \<Rightarrow> 'b::{comm_monoid_add, pordered_ab_semigroup_add}"
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2261
  shows "(\<And>x. x \<in> set xs \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sum>x\<leftarrow>xs. f x) \<le> (\<Sum>x\<leftarrow>xs. g x)"
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2262
by (induct xs, simp, simp add: add_mono)
43a418a41317 listsum lemmas
huffman
parents: 31201
diff changeset
  2263
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2264
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  2265
subsubsection {* @{text upt} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2266
17090
603f23d71ada small mods to code lemmas
nipkow
parents: 17086
diff changeset
  2267
lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])"
603f23d71ada small mods to code lemmas
nipkow
parents: 17086
diff changeset
  2268
-- {* simp does not terminate! *}
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2269
by (induct j) auto
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2270
32005
c369417be055 made upt/upto executable on nat/int by simp
nipkow
parents: 31998
diff changeset
  2271
lemmas upt_rec_number_of[simp] = upt_rec[of "number_of m" "number_of n", standard]
c369417be055 made upt/upto executable on nat/int by simp
nipkow
parents: 31998
diff changeset
  2272
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2273
lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2274
by (subst upt_rec) simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2275
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2276
lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)"
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2277
by(induct j)simp_all
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2278
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2279
lemma upt_eq_Cons_conv:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2280
 "([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2281
apply(induct j arbitrary: x xs)
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2282
 apply simp
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2283
apply(clarsimp simp add: append_eq_Cons_conv)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2284
apply arith
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2285
done
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2286
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2287
lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2288
-- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2289
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2290
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2291
lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  2292
  by (simp add: upt_rec)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2293
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2294
lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2295
-- {* LOOPS as a simprule, since @{text "j <= j"}. *}
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2296
by (induct k) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2297
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2298
lemma length_upt [simp]: "length [i..<j] = j - i"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2299
by (induct j) (auto simp add: Suc_diff_le)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2300
15425
6356d2523f73 [ .. (] -> [ ..< ]
nipkow
parents: 15392
diff changeset
  2301
lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2302
apply (induct j)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2303
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2304
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2305
17906
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2306
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2307
lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i"
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2308
by(simp add:upt_conv_Cons)
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2309
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2310
lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1"
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2311
apply(cases j)
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2312
 apply simp
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2313
by(simp add:upt_Suc_append)
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2314
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2315
lemma take_upt [simp]: "i+m <= n ==> take m [i..<n] = [i..<i+m]"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2316
apply (induct m arbitrary: i, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2317
apply (subst upt_rec)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2318
apply (rule sym)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2319
apply (subst upt_rec)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2320
apply (simp del: upt.simps)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2321
done
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
  2322
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2323
lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2324
apply(induct j)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2325
apply auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2326
done
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2327
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  2328
lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..<Suc n]"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2329
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2330
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2331
lemma nth_map_upt: "i < n-m ==> (map f [m..<n]) ! i = f(m+i)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2332
apply (induct n m  arbitrary: i rule: diff_induct)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2333
prefer 3 apply (subst map_Suc_upt[symmetric])
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2334
apply (auto simp add: less_diff_conv nth_upt)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2335
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2336
13883
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2337
lemma nth_take_lemma:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2338
  "k <= length xs ==> k <= length ys ==>
13883
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
  2339
     (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2340
apply (atomize, induct k arbitrary: xs ys)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2341
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2342
txt {* Both lists must be non-empty *}
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2343
apply (case_tac xs, simp)
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2344
apply (case_tac ys, clarify)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2345
 apply (simp (no_asm_use))
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2346
apply clarify
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2347
txt {* prenexing's needed, not miniscoping *}
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2348
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2349
apply blast
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2350
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2351
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2352
lemma nth_equalityI:
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2353
 "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2354
apply (frule nth_take_lemma [OF le_refl eq_imp_le])
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2355
apply (simp_all add: take_all)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2356
done
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2357
24796
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2358
lemma map_nth:
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2359
  "map (\<lambda>i. xs ! i) [0..<length xs] = xs"
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2360
  by (rule nth_equalityI, auto)
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2361
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2362
(* needs nth_equalityI *)
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2363
lemma list_all2_antisym:
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2364
  "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> 
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2365
  \<Longrightarrow> xs = ys"
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2366
  apply (simp add: list_all2_conv_all_nth) 
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2367
  apply (rule nth_equalityI, blast, simp)
13863
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2368
  done
ec901a432ea1 more about list_all2
kleing
parents: 13737
diff changeset
  2369
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2370
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2371
-- {* The famous take-lemma. *}
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2372
apply (drule_tac x = "max (length xs) (length ys)" in spec)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2373
apply (simp add: le_max_iff_disj take_all)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2374
done
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2375
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2376
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2377
lemma take_Cons':
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2378
     "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2379
by (cases n) simp_all
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2380
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2381
lemma drop_Cons':
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2382
     "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2383
by (cases n) simp_all
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2384
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2385
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2386
by (cases n) simp_all
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2387
18622
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2388
lemmas take_Cons_number_of = take_Cons'[of "number_of v",standard]
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2389
lemmas drop_Cons_number_of = drop_Cons'[of "number_of v",standard]
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2390
lemmas nth_Cons_number_of = nth_Cons'[of _ _ "number_of v",standard]
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2391
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2392
declare take_Cons_number_of [simp] 
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2393
        drop_Cons_number_of [simp] 
4524643feecc theorems need names
paulson
parents: 18490
diff changeset
  2394
        nth_Cons_number_of [simp] 
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2395
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2396
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  2397
subsubsection {* @{text "distinct"} and @{text remdups} *}
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2398
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2399
lemma distinct_append [simp]:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2400
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2401
by (induct xs) auto
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2402
15305
0bd9eedaa301 added lemmas
nipkow
parents: 15304
diff changeset
  2403
lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs"
0bd9eedaa301 added lemmas
nipkow
parents: 15304
diff changeset
  2404
by(induct xs) auto
0bd9eedaa301 added lemmas
nipkow
parents: 15304
diff changeset
  2405
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2406
lemma set_remdups [simp]: "set (remdups xs) = set xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2407
by (induct xs) (auto simp add: insert_absorb)
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2408
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2409
lemma distinct_remdups [iff]: "distinct (remdups xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2410
by (induct xs) auto
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2411
25287
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2412
lemma distinct_remdups_id: "distinct xs ==> remdups xs = xs"
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2413
by (induct xs, auto)
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2414
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  2415
lemma remdups_id_iff_distinct [simp]: "remdups xs = xs \<longleftrightarrow> distinct xs"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  2416
by (metis distinct_remdups distinct_remdups_id)
25287
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2417
24566
2bfa0215904c added lemma
nipkow
parents: 24526
diff changeset
  2418
lemma finite_distinct_list: "finite A \<Longrightarrow> EX xs. set xs = A & distinct xs"
24632
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  2419
by (metis distinct_remdups finite_list set_remdups)
24566
2bfa0215904c added lemma
nipkow
parents: 24526
diff changeset
  2420
15072
4861bf6af0b4 new material courtesy of Norbert Voelker
paulson
parents: 15064
diff changeset
  2421
lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2422
by (induct x, auto) 
15072
4861bf6af0b4 new material courtesy of Norbert Voelker
paulson
parents: 15064
diff changeset
  2423
4861bf6af0b4 new material courtesy of Norbert Voelker
paulson
parents: 15064
diff changeset
  2424
lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2425
by (induct x, auto)
15072
4861bf6af0b4 new material courtesy of Norbert Voelker
paulson
parents: 15064
diff changeset
  2426
15245
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2427
lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs"
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2428
by (induct xs) auto
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2429
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2430
lemma length_remdups_eq[iff]:
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2431
  "(length (remdups xs) = length xs) = (remdups xs = xs)"
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2432
apply(induct xs)
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2433
 apply auto
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2434
apply(subgoal_tac "length (remdups xs) <= length xs")
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2435
 apply arith
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2436
apply(rule length_remdups_leq)
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2437
done
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  2438
18490
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2439
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2440
lemma distinct_map:
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2441
  "distinct(map f xs) = (distinct xs & inj_on f (set xs))"
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2442
by (induct xs) auto
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2443
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2444
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2445
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2446
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2447
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2448
lemma distinct_upt[simp]: "distinct[i..<j]"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2449
by (induct j) auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2450
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2451
lemma distinct_take[simp]: "distinct xs \<Longrightarrow> distinct (take i xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2452
apply(induct xs arbitrary: i)
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2453
 apply simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2454
apply (case_tac i)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2455
 apply simp_all
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2456
apply(blast dest:in_set_takeD)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2457
done
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2458
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2459
lemma distinct_drop[simp]: "distinct xs \<Longrightarrow> distinct (drop i xs)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2460
apply(induct xs arbitrary: i)
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2461
 apply simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2462
apply (case_tac i)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2463
 apply simp_all
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2464
done
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2465
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2466
lemma distinct_list_update:
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2467
assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2468
shows "distinct (xs[i:=a])"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2469
proof (cases "i < length xs")
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2470
  case True
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2471
  with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2472
    apply (drule_tac id_take_nth_drop) by simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2473
  with d True show ?thesis
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2474
    apply (simp add: upd_conv_take_nth_drop)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2475
    apply (drule subst [OF id_take_nth_drop]) apply assumption
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2476
    apply simp apply (cases "a = xs!i") apply simp by blast
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2477
next
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2478
  case False with d show ?thesis by auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2479
qed
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2480
31363
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2481
lemma distinct_concat:
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2482
  assumes "distinct xs"
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2483
  and "\<And> ys. ys \<in> set xs \<Longrightarrow> distinct ys"
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2484
  and "\<And> ys zs. \<lbrakk> ys \<in> set xs ; zs \<in> set xs ; ys \<noteq> zs \<rbrakk> \<Longrightarrow> set ys \<inter> set zs = {}"
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2485
  shows "distinct (concat xs)"
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2486
  using assms by (induct xs) auto
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2487
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2488
text {* It is best to avoid this indexed version of distinct, but
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2489
sometimes it is useful. *}
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2490
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2491
lemma distinct_conv_nth:
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2492
"distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15246
diff changeset
  2493
apply (induct xs, simp, simp)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2494
apply (rule iffI, clarsimp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2495
 apply (case_tac i)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2496
apply (case_tac j, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2497
apply (simp add: set_conv_nth)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2498
 apply (case_tac j)
24648
1e8053a6d725 metis too slow
paulson
parents: 24645
diff changeset
  2499
apply (clarsimp simp add: set_conv_nth, simp) 
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2500
apply (rule conjI)
24648
1e8053a6d725 metis too slow
paulson
parents: 24645
diff changeset
  2501
(*TOO SLOW
24632
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  2502
apply (metis Zero_neq_Suc gr0_conv_Suc in_set_conv_nth lessI less_trans_Suc nth_Cons' nth_Cons_Suc)
24648
1e8053a6d725 metis too slow
paulson
parents: 24645
diff changeset
  2503
*)
1e8053a6d725 metis too slow
paulson
parents: 24645
diff changeset
  2504
 apply (clarsimp simp add: set_conv_nth)
1e8053a6d725 metis too slow
paulson
parents: 24645
diff changeset
  2505
 apply (erule_tac x = 0 in allE, simp)
1e8053a6d725 metis too slow
paulson
parents: 24645
diff changeset
  2506
 apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
25130
d91391a8705b avoid very slow metis invocation;
wenzelm
parents: 25112
diff changeset
  2507
(*TOO SLOW
24632
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  2508
apply (metis Suc_Suc_eq lessI less_trans_Suc nth_Cons_Suc)
25130
d91391a8705b avoid very slow metis invocation;
wenzelm
parents: 25112
diff changeset
  2509
*)
d91391a8705b avoid very slow metis invocation;
wenzelm
parents: 25112
diff changeset
  2510
apply (erule_tac x = "Suc i" in allE, simp)
d91391a8705b avoid very slow metis invocation;
wenzelm
parents: 25112
diff changeset
  2511
apply (erule_tac x = "Suc j" in allE, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2512
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2513
18490
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2514
lemma nth_eq_iff_index_eq:
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2515
 "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)"
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2516
by(auto simp: distinct_conv_nth)
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2517
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2518
lemma distinct_card: "distinct xs ==> card (set xs) = size xs"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  2519
by (induct xs) auto
14388
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2520
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2521
lemma card_distinct: "card (set xs) = size xs ==> distinct xs"
14388
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2522
proof (induct xs)
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2523
  case Nil thus ?case by simp
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2524
next
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2525
  case (Cons x xs)
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2526
  show ?case
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2527
  proof (cases "x \<in> set xs")
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2528
    case False with Cons show ?thesis by simp
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2529
  next
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2530
    case True with Cons.prems
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2531
    have "card (set xs) = Suc (length xs)" 
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2532
      by (simp add: card_insert_if split: split_if_asm)
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2533
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2534
    ultimately have False by simp
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2535
    thus ?thesis ..
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2536
  qed
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2537
qed
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  2538
25287
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2539
lemma not_distinct_decomp: "~ distinct ws ==> EX xs ys zs y. ws = xs@[y]@ys@[y]@zs"
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2540
apply (induct n == "length ws" arbitrary:ws) apply simp
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2541
apply(case_tac ws) apply simp
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2542
apply (simp split:split_if_asm)
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2543
apply (metis Cons_eq_appendI eq_Nil_appendI split_list)
094dab519ff5 added lemmas
nipkow
parents: 25277
diff changeset
  2544
done
18490
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2545
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2546
lemma length_remdups_concat:
434e34392c40 new lemmas
nipkow
parents: 18451
diff changeset
  2547
 "length(remdups(concat xss)) = card(\<Union>xs \<in> set xss. set xs)"
24308
700e745994c1 removed set_concat_map and improved set_concat
nipkow
parents: 24286
diff changeset
  2548
by(simp add: set_concat distinct_card[symmetric])
17906
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2549
719364f5179b added 2 lemmas
nipkow
parents: 17877
diff changeset
  2550
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  2551
subsubsection {* @{text remove1} *}
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2552
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  2553
lemma remove1_append:
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  2554
  "remove1 x (xs @ ys) =
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  2555
  (if x \<in> set xs then remove1 x xs @ ys else xs @ remove1 x ys)"
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  2556
by (induct xs) auto
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  2557
23479
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  2558
lemma in_set_remove1[simp]:
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  2559
  "a \<noteq> b \<Longrightarrow> a : set(remove1 b xs) = (a : set xs)"
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  2560
apply (induct xs)
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  2561
apply auto
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  2562
done
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  2563
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2564
lemma set_remove1_subset: "set(remove1 x xs) <= set xs"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2565
apply(induct xs)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2566
 apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2567
apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2568
apply blast
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2569
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2570
17724
e969fc0a4925 simprules need names
paulson
parents: 17629
diff changeset
  2571
lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2572
apply(induct xs)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2573
 apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2574
apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2575
apply blast
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2576
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2577
23479
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  2578
lemma length_remove1:
30128
365ee7319b86 revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
huffman
parents: 30079
diff changeset
  2579
  "length(remove1 x xs) = (if x : set xs then length xs - 1 else length xs)"
23479
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  2580
apply (induct xs)
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  2581
 apply (auto dest!:length_pos_if_in_set)
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  2582
done
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
  2583
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  2584
lemma remove1_filter_not[simp]:
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  2585
  "\<not> P x \<Longrightarrow> remove1 x (filter P xs) = filter P xs"
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  2586
by(induct xs) auto
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  2587
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2588
lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2589
apply(insert set_remove1_subset)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2590
apply fast
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2591
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2592
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2593
lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2594
by (induct xs) simp_all
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  2595
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2596
27693
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2597
subsubsection {* @{text removeAll} *}
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2598
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2599
lemma removeAll_append[simp]:
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2600
  "removeAll x (xs @ ys) = removeAll x xs @ removeAll x ys"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2601
by (induct xs) auto
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2602
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2603
lemma set_removeAll[simp]: "set(removeAll x xs) = set xs - {x}"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2604
by (induct xs) auto
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2605
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2606
lemma removeAll_id[simp]: "x \<notin> set xs \<Longrightarrow> removeAll x xs = xs"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2607
by (induct xs) auto
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2608
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2609
(* Needs count:: 'a \<Rightarrow> a' list \<Rightarrow> nat
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2610
lemma length_removeAll:
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2611
  "length(removeAll x xs) = length xs - count x xs"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2612
*)
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2613
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2614
lemma removeAll_filter_not[simp]:
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2615
  "\<not> P x \<Longrightarrow> removeAll x (filter P xs) = filter P xs"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2616
by(induct xs) auto
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2617
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2618
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2619
lemma distinct_remove1_removeAll:
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2620
  "distinct xs ==> remove1 x xs = removeAll x xs"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2621
by (induct xs) simp_all
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2622
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2623
lemma map_removeAll_inj_on: "inj_on f (insert x (set xs)) \<Longrightarrow>
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2624
  map f (removeAll x xs) = removeAll (f x) (map f xs)"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2625
by (induct xs) (simp_all add:inj_on_def)
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2626
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2627
lemma map_removeAll_inj: "inj f \<Longrightarrow>
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2628
  map f (removeAll x xs) = removeAll (f x) (map f xs)"
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2629
by(metis map_removeAll_inj_on subset_inj_on subset_UNIV)
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2630
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
  2631
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  2632
subsubsection {* @{text replicate} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2633
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2634
lemma length_replicate [simp]: "length (replicate n x) = n"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2635
by (induct n) auto
13124
6e1decd8a7a9 new thm distinct_conv_nth
nipkow
parents: 13122
diff changeset
  2636
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2637
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2638
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2639
31363
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2640
lemma map_replicate_const:
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2641
  "map (\<lambda> x. k) lst = replicate (length lst) k"
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2642
  by (induct lst) auto
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2643
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2644
lemma replicate_app_Cons_same:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2645
"(replicate n x) @ (x # xs) = x # replicate n x @ xs"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2646
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2647
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2648
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2649
apply (induct n, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2650
apply (simp add: replicate_app_Cons_same)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2651
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2652
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2653
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2654
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2655
16397
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2656
text{* Courtesy of Matthias Daum: *}
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2657
lemma append_replicate_commute:
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2658
  "replicate n x @ replicate k x = replicate k x @ replicate n x"
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2659
apply (simp add: replicate_add [THEN sym])
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2660
apply (simp add: add_commute)
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2661
done
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2662
31080
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  2663
text{* Courtesy of Andreas Lochbihler: *}
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  2664
lemma filter_replicate:
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  2665
  "filter P (replicate n x) = (if P x then replicate n x else [])"
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  2666
by(induct n) auto
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 31077
diff changeset
  2667
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2668
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2669
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2670
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2671
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2672
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2673
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2674
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2675
by (atomize (full), induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2676
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2677
lemma nth_replicate[simp]: "i < n ==> (replicate n x)!i = x"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2678
apply (induct n arbitrary: i, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2679
apply (simp add: nth_Cons split: nat.split)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2680
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2681
16397
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2682
text{* Courtesy of Matthias Daum (2 lemmas): *}
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2683
lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x"
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2684
apply (case_tac "k \<le> i")
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2685
 apply  (simp add: min_def)
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2686
apply (drule not_leE)
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2687
apply (simp add: min_def)
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2688
apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x")
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2689
 apply  simp
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2690
apply (simp add: replicate_add [symmetric])
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2691
done
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2692
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2693
lemma drop_replicate[simp]: "drop i (replicate k x) = replicate (k-i) x"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2694
apply (induct k arbitrary: i)
16397
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2695
 apply simp
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2696
apply clarsimp
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2697
apply (case_tac i)
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2698
 apply simp
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2699
apply clarsimp
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2700
done
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2701
c047008f88d4 added lemmas
nipkow
parents: 15870
diff changeset
  2702
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2703
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2704
by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2705
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2706
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2707
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2708
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2709
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2710
by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2711
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2712
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2713
by (simp add: set_replicate_conv_if split: split_if_asm)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2714
24796
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2715
lemma replicate_append_same:
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2716
  "replicate i x @ [x] = x # replicate i x"
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2717
  by (induct i) simp_all
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2718
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2719
lemma map_replicate_trivial:
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2720
  "map (\<lambda>i. x) [0..<i] = replicate i x"
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2721
  by (induct i) (simp_all add: replicate_append_same)
529e458f84d2 added some lemmas
haftmann
parents: 24748
diff changeset
  2722
31363
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2723
lemma concat_replicate_trivial[simp]:
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2724
  "concat (replicate i []) = []"
7493b571b37d Added theorems about distinct & concat, map & replicate and concat & replicate
hoelzl
parents: 31264
diff changeset
  2725
  by (induct i) (auto simp add: map_replicate_const)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2726
28642
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2727
lemma replicate_empty[simp]: "(replicate n x = []) \<longleftrightarrow> n=0"
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2728
by (induct n) auto
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2729
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2730
lemma empty_replicate[simp]: "([] = replicate n x) \<longleftrightarrow> n=0"
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2731
by (induct n) auto
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2732
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2733
lemma replicate_eq_replicate[simp]:
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2734
  "(replicate m x = replicate n y) \<longleftrightarrow> (m=n & (m\<noteq>0 \<longrightarrow> x=y))"
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2735
apply(induct m arbitrary: n)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2736
 apply simp
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2737
apply(induct_tac n)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2738
apply auto
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2739
done
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2740
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2741
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  2742
subsubsection{*@{text rotate1} and @{text rotate}*}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2743
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2744
lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2745
by(simp add:rotate1_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2746
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2747
lemma rotate0[simp]: "rotate 0 = id"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2748
by(simp add:rotate_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2749
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2750
lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2751
by(simp add:rotate_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2752
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2753
lemma rotate_add:
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2754
  "rotate (m+n) = rotate m o rotate n"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2755
by(simp add:rotate_def funpow_add)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2756
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2757
lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2758
by(simp add:rotate_add)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2759
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  2760
lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)"
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  2761
by(simp add:rotate_def funpow_swap1)
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  2762
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2763
lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2764
by(cases xs) simp_all
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2765
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2766
lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2767
apply(induct n)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2768
 apply simp
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2769
apply (simp add:rotate_def)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2770
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2771
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2772
lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2773
by(simp add:rotate1_def split:list.split)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2774
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2775
lemma rotate_drop_take:
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2776
  "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2777
apply(induct n)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2778
 apply simp
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2779
apply(simp add:rotate_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2780
apply(cases "xs = []")
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2781
 apply (simp)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2782
apply(case_tac "n mod length xs = 0")
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2783
 apply(simp add:mod_Suc)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2784
 apply(simp add: rotate1_hd_tl drop_Suc take_Suc)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2785
apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric]
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2786
                take_hd_drop linorder_not_le)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2787
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2788
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2789
lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2790
by(simp add:rotate_drop_take)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2791
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2792
lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2793
by(simp add:rotate_drop_take)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2794
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2795
lemma length_rotate1[simp]: "length(rotate1 xs) = length xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2796
by(simp add:rotate1_def split:list.split)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2797
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2798
lemma length_rotate[simp]: "length(rotate n xs) = length xs"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2799
by (induct n arbitrary: xs) (simp_all add:rotate_def)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2800
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2801
lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2802
by(simp add:rotate1_def split:list.split) blast
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2803
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2804
lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2805
by (induct n) (simp_all add:rotate_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2806
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2807
lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2808
by(simp add:rotate_drop_take take_map drop_map)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2809
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2810
lemma set_rotate1[simp]: "set(rotate1 xs) = set xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2811
by(simp add:rotate1_def split:list.split)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2812
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2813
lemma set_rotate[simp]: "set(rotate n xs) = set xs"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2814
by (induct n) (simp_all add:rotate_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2815
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2816
lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2817
by(simp add:rotate1_def split:list.split)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2818
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2819
lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  2820
by (induct n) (simp_all add:rotate_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2821
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  2822
lemma rotate_rev:
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  2823
  "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)"
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  2824
apply(simp add:rotate_drop_take rev_drop rev_take)
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  2825
apply(cases "length xs = 0")
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  2826
 apply simp
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  2827
apply(cases "n mod length xs = 0")
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  2828
 apply simp
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  2829
apply(simp add:rotate_drop_take rev_drop rev_take)
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  2830
done
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  2831
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2832
lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)"
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2833
apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth)
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2834
apply(subgoal_tac "length xs \<noteq> 0")
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2835
 prefer 2 apply simp
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2836
using mod_less_divisor[of "length xs" n] by arith
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  2837
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2838
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  2839
subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2840
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2841
lemma sublist_empty [simp]: "sublist xs {} = []"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2842
by (auto simp add: sublist_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2843
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2844
lemma sublist_nil [simp]: "sublist [] A = []"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2845
by (auto simp add: sublist_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2846
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2847
lemma length_sublist:
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2848
  "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2849
by(simp add: sublist_def length_filter_conv_card cong:conj_cong)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2850
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2851
lemma sublist_shift_lemma_Suc:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2852
  "map fst (filter (%p. P(Suc(snd p))) (zip xs is)) =
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2853
   map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2854
apply(induct xs arbitrary: "is")
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2855
 apply simp
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2856
apply (case_tac "is")
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2857
 apply simp
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2858
apply simp
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2859
done
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2860
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2861
lemma sublist_shift_lemma:
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
  2862
     "map fst [p<-zip xs [i..<i + length xs] . snd p : A] =
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
  2863
      map fst [p<-zip xs [0..<length xs] . snd p + i : A]"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2864
by (induct xs rule: rev_induct) (simp_all add: add_commute)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2865
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2866
lemma sublist_append:
15168
33a08cfc3ae5 new functions for sets of lists
paulson
parents: 15140
diff changeset
  2867
     "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2868
apply (unfold sublist_def)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2869
apply (induct l' rule: rev_induct, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2870
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2871
apply (simp add: add_commute)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2872
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2873
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2874
lemma sublist_Cons:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2875
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2876
apply (induct l rule: rev_induct)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2877
 apply (simp add: sublist_def)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2878
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2879
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2880
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2881
lemma set_sublist: "set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2882
apply(induct xs arbitrary: I)
25162
ad4d5365d9d8 went back to >0
nipkow
parents: 25157
diff changeset
  2883
apply(auto simp: sublist_Cons nth_Cons split:nat.split dest!: gr0_implies_Suc)
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2884
done
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2885
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2886
lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2887
by(auto simp add:set_sublist)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2888
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2889
lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2890
by(auto simp add:set_sublist)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2891
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2892
lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2893
by(auto simp add:set_sublist)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2894
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  2895
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2896
by (simp add: sublist_Cons)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2897
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2898
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2899
lemma distinct_sublistI[simp]: "distinct xs \<Longrightarrow> distinct(sublist xs I)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2900
apply(induct xs arbitrary: I)
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2901
 apply simp
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2902
apply(auto simp add:sublist_Cons)
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2903
done
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2904
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
  2905
15045
d59f7e2e18d3 Moved to new m<..<n syntax for set intervals.
nipkow
parents: 14981
diff changeset
  2906
lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  2907
apply (induct l rule: rev_induct, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2908
apply (simp split: nat_diff_split add: sublist_append)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  2909
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2910
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2911
lemma filter_in_sublist:
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2912
 "distinct xs \<Longrightarrow> filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2913
proof (induct xs arbitrary: s)
17501
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2914
  case Nil thus ?case by simp
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2915
next
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2916
  case (Cons a xs)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2917
  moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2918
  ultimately show ?case by(simp add: sublist_Cons cong:filter_cong)
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2919
qed
acbebb72e85a added a number of lemmas
nipkow
parents: 17090
diff changeset
  2920
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  2921
19390
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  2922
subsubsection {* @{const splice} *}
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  2923
19607
07eeb832f28d introduced characters for code generator; some improved code lemmas for some list functions
haftmann
parents: 19585
diff changeset
  2924
lemma splice_Nil2 [simp, code]:
19390
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  2925
 "splice xs [] = xs"
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  2926
by (cases xs) simp_all
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  2927
19607
07eeb832f28d introduced characters for code generator; some improved code lemmas for some list functions
haftmann
parents: 19585
diff changeset
  2928
lemma splice_Cons_Cons [simp, code]:
19390
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  2929
 "splice (x#xs) (y#ys) = x # y # splice xs ys"
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  2930
by simp
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  2931
19607
07eeb832f28d introduced characters for code generator; some improved code lemmas for some list functions
haftmann
parents: 19585
diff changeset
  2932
declare splice.simps(2) [simp del, code del]
19390
6c7383f80ad1 Added function "splice"
nipkow
parents: 19363
diff changeset
  2933
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2934
lemma length_splice[simp]: "length(splice xs ys) = length xs + length ys"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  2935
apply(induct xs arbitrary: ys) apply simp
22793
dc13dfd588b2 new lemma splice_length
nipkow
parents: 22633
diff changeset
  2936
apply(case_tac ys)
dc13dfd588b2 new lemma splice_length
nipkow
parents: 22633
diff changeset
  2937
 apply auto
dc13dfd588b2 new lemma splice_length
nipkow
parents: 22633
diff changeset
  2938
done
dc13dfd588b2 new lemma splice_length
nipkow
parents: 22633
diff changeset
  2939
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  2940
31557
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2941
subsubsection {* (In)finiteness *}
28642
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2942
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2943
lemma finite_maxlen:
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2944
  "finite (M::'a list set) ==> EX n. ALL s:M. size s < n"
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2945
proof (induct rule: finite.induct)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2946
  case emptyI show ?case by simp
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2947
next
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2948
  case (insertI M xs)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2949
  then obtain n where "\<forall>s\<in>M. length s < n" by blast
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2950
  hence "ALL s:insert xs M. size s < max n (size xs) + 1" by auto
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2951
  thus ?case ..
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2952
qed
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2953
31557
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2954
lemma finite_lists_length_eq:
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2955
assumes "finite A"
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2956
shows "finite {xs. set xs \<subseteq> A \<and> length xs = n}" (is "finite (?S n)")
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2957
proof(induct n)
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2958
  case 0 show ?case by simp
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2959
next
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2960
  case (Suc n)
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2961
  have "?S (Suc n) = (\<Union>x\<in>A. (\<lambda>xs. x#xs) ` ?S n)"
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2962
    by (auto simp:length_Suc_conv)
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2963
  then show ?case using `finite A`
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2964
    by (auto intro: finite_imageI Suc) (* FIXME metis? *)
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2965
qed
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2966
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2967
lemma finite_lists_length_le:
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2968
  assumes "finite A" shows "finite {xs. set xs \<subseteq> A \<and> length xs \<le> n}"
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2969
 (is "finite ?S")
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2970
proof-
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2971
  have "?S = (\<Union>n\<in>{0..n}. {xs. set xs \<subseteq> A \<and> length xs = n})" by auto
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2972
  thus ?thesis by (auto intro: finite_lists_length_eq[OF `finite A`])
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2973
qed
4e36f2f17c63 two finiteness lemmas by Robert Himmelmann
nipkow
parents: 31455
diff changeset
  2974
28642
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2975
lemma infinite_UNIV_listI: "~ finite(UNIV::'a list set)"
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2976
apply(rule notI)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2977
apply(drule finite_maxlen)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2978
apply (metis UNIV_I length_replicate less_not_refl)
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2979
done
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2980
658b598d8af4 added lemmas
nipkow
parents: 28562
diff changeset
  2981
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  2982
subsection {*Sorting*}
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  2983
24617
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  2984
text{* Currently it is not shown that @{const sort} returns a
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  2985
permutation of its input because the nicest proof is via multisets,
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  2986
which are not yet available. Alternatively one could define a function
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  2987
that counts the number of occurrences of an element in a list and use
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  2988
that instead of multisets to state the correctness property. *}
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  2989
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  2990
context linorder
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  2991
begin
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  2992
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  2993
lemma sorted_Cons: "sorted (x#xs) = (sorted xs & (ALL y:set xs. x <= y))"
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  2994
apply(induct xs arbitrary: x) apply simp
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  2995
by simp (blast intro: order_trans)
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  2996
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  2997
lemma sorted_append:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  2998
  "sorted (xs@ys) = (sorted xs & sorted ys & (\<forall>x \<in> set xs. \<forall>y \<in> set ys. x\<le>y))"
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  2999
by (induct xs) (auto simp add:sorted_Cons)
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3000
31201
3dde56615750 new lemma
nipkow
parents: 31159
diff changeset
  3001
lemma sorted_nth_mono:
3dde56615750 new lemma
nipkow
parents: 31159
diff changeset
  3002
  "sorted xs \<Longrightarrow> i <= j \<Longrightarrow> j < length xs \<Longrightarrow> xs!i <= xs!j"
3dde56615750 new lemma
nipkow
parents: 31159
diff changeset
  3003
by (induct xs arbitrary: i j) (auto simp:nth_Cons' sorted_Cons)
3dde56615750 new lemma
nipkow
parents: 31159
diff changeset
  3004
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3005
lemma set_insort: "set(insort x xs) = insert x (set xs)"
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3006
by (induct xs) auto
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3007
24617
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  3008
lemma set_sort[simp]: "set(sort xs) = set xs"
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3009
by (induct xs) (simp_all add:set_insort)
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3010
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3011
lemma distinct_insort: "distinct (insort x xs) = (x \<notin> set xs \<and> distinct xs)"
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3012
by(induct xs)(auto simp:set_insort)
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3013
24617
bc484b2671fd sorting
nipkow
parents: 24616
diff changeset
  3014
lemma distinct_sort[simp]: "distinct (sort xs) = distinct xs"
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3015
by(induct xs)(simp_all add:distinct_insort set_sort)
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3016
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3017
lemma sorted_insort: "sorted (insort x xs) = sorted xs"
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3018
apply (induct xs)
24650
nipkow
parents: 24648
diff changeset
  3019
 apply(auto simp:sorted_Cons set_insort)
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3020
done
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3021
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3022
theorem sorted_sort[simp]: "sorted (sort xs)"
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3023
by (induct xs) (auto simp:sorted_insort)
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3024
26143
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3025
lemma insort_is_Cons: "\<forall>x\<in>set xs. a \<le> x \<Longrightarrow> insort a xs = a # xs"
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3026
by (cases xs) auto
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3027
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3028
lemma sorted_remove1: "sorted xs \<Longrightarrow> sorted (remove1 a xs)"
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3029
by (induct xs, auto simp add: sorted_Cons)
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3030
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3031
lemma insort_remove1: "\<lbrakk> a \<in> set xs; sorted xs \<rbrakk> \<Longrightarrow> insort a (remove1 a xs) = xs"
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3032
by (induct xs, auto simp add: sorted_Cons insort_is_Cons)
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3033
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3034
lemma sorted_remdups[simp]:
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3035
  "sorted l \<Longrightarrow> sorted (remdups l)"
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3036
by (induct l) (auto simp: sorted_Cons)
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26073
diff changeset
  3037
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3038
lemma sorted_distinct_set_unique:
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3039
assumes "sorted xs" "distinct xs" "sorted ys" "distinct ys" "set xs = set ys"
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3040
shows "xs = ys"
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3041
proof -
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  3042
  from assms have 1: "length xs = length ys" by (auto dest!: distinct_card)
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3043
  from assms show ?thesis
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3044
  proof(induct rule:list_induct2[OF 1])
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3045
    case 1 show ?case by simp
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3046
  next
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3047
    case 2 thus ?case by (simp add:sorted_Cons)
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3048
       (metis Diff_insert_absorb antisym insertE insert_iff)
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3049
  qed
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3050
qed
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3051
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3052
lemma finite_sorted_distinct_unique:
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3053
shows "finite A \<Longrightarrow> EX! xs. set xs = A & sorted xs & distinct xs"
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3054
apply(drule finite_distinct_list)
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3055
apply clarify
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3056
apply(rule_tac a="sort xs" in ex1I)
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3057
apply (auto simp: sorted_distinct_set_unique)
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3058
done
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3059
29626
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3060
lemma sorted_take:
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3061
  "sorted xs \<Longrightarrow> sorted (take n xs)"
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3062
proof (induct xs arbitrary: n rule: sorted.induct)
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3063
  case 1 show ?case by simp
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3064
next
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3065
  case 2 show ?case by (cases n) simp_all
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3066
next
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3067
  case (3 x y xs)
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3068
  then have "x \<le> y" by simp
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3069
  show ?case proof (cases n)
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3070
    case 0 then show ?thesis by simp
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3071
  next
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3072
    case (Suc m) 
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3073
    with 3 have "sorted (take m (y # xs))" by simp
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3074
    with Suc  `x \<le> y` show ?thesis by (cases m) simp_all
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3075
  qed
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3076
qed
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3077
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3078
lemma sorted_drop:
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3079
  "sorted xs \<Longrightarrow> sorted (drop n xs)"
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3080
proof (induct xs arbitrary: n rule: sorted.induct)
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3081
  case 1 show ?case by simp
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3082
next
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3083
  case 2 show ?case by (cases n) simp_all
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3084
next
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3085
  case 3 then show ?case by (cases n) simp_all
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3086
qed
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3087
6f8aada233c1 sorted_take, sorted_drop
haftmann
parents: 29509
diff changeset
  3088
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3089
end
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3090
25277
95128fcdd7e8 added lemmas
nipkow
parents: 25221
diff changeset
  3091
lemma sorted_upt[simp]: "sorted[i..<j]"
95128fcdd7e8 added lemmas
nipkow
parents: 25221
diff changeset
  3092
by (induct j) (simp_all add:sorted_append)
95128fcdd7e8 added lemmas
nipkow
parents: 25221
diff changeset
  3093
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
  3094
25069
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3095
subsubsection {* @{text sorted_list_of_set} *}
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3096
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3097
text{* This function maps (finite) linearly ordered sets to sorted
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3098
lists. Warning: in most cases it is not a good idea to convert from
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3099
sets to lists but one should convert in the other direction (via
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3100
@{const set}). *}
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3101
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3102
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3103
context linorder
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3104
begin
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3105
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3106
definition
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3107
 sorted_list_of_set :: "'a set \<Rightarrow> 'a list" where
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28537
diff changeset
  3108
 [code del]: "sorted_list_of_set A == THE xs. set xs = A & sorted xs & distinct xs"
25069
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3109
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3110
lemma sorted_list_of_set[simp]: "finite A \<Longrightarrow>
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3111
  set(sorted_list_of_set A) = A &
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3112
  sorted(sorted_list_of_set A) & distinct(sorted_list_of_set A)"
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3113
apply(simp add:sorted_list_of_set_def)
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3114
apply(rule the1I2)
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3115
 apply(simp_all add: finite_sorted_distinct_unique)
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3116
done
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3117
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3118
lemma sorted_list_of_empty[simp]: "sorted_list_of_set {} = []"
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3119
unfolding sorted_list_of_set_def
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3120
apply(subst the_equality[of _ "[]"])
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3121
apply simp_all
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3122
done
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3123
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3124
end
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3125
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3126
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3127
subsubsection {* @{text upto}: the generic interval-list *}
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3128
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3129
class finite_intvl_succ = linorder +
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3130
fixes successor :: "'a \<Rightarrow> 'a"
25069
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3131
assumes finite_intvl: "finite{a..b}"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  3132
and successor_incr: "a < successor a"
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  3133
and ord_discrete: "\<not>(\<exists>x. a < x & x < successor a)"
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3134
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3135
context finite_intvl_succ
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3136
begin
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3137
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3138
definition
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  3139
 upto :: "'a \<Rightarrow> 'a \<Rightarrow> 'a list" ("(1[_../_])") where
25069
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3140
"upto i j == sorted_list_of_set {i..j}"
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3141
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3142
lemma upto[simp]: "set[a..b] = {a..b} & sorted[a..b] & distinct[a..b]"
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3143
by(simp add:upto_def finite_intvl)
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3144
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  3145
lemma insert_intvl: "i \<le> j \<Longrightarrow> insert i {successor i..j} = {i..j}"
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3146
apply(insert successor_incr[of i])
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3147
apply(auto simp: atLeastAtMost_def atLeast_def atMost_def)
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  3148
apply(metis ord_discrete less_le not_le)
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3149
done
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3150
25069
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3151
lemma sorted_list_of_set_rec: "i \<le> j \<Longrightarrow>
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3152
  sorted_list_of_set {i..j} = i # sorted_list_of_set {successor i..j}"
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3153
apply(simp add:sorted_list_of_set_def upto_def)
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3154
apply (rule the1_equality[OF finite_sorted_distinct_unique])
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3155
 apply (simp add:finite_intvl)
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3156
apply(rule the1I2[OF finite_sorted_distinct_unique])
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3157
 apply (simp add:finite_intvl)
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3158
apply (simp add: sorted_Cons insert_intvl Ball_def)
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3159
apply (metis successor_incr leD less_imp_le order_trans)
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3160
done
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3161
27715
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3162
lemma sorted_list_of_set_rec2: "i \<le> j \<Longrightarrow>
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3163
  sorted_list_of_set {i..successor j} =
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3164
  sorted_list_of_set {i..j} @ [successor j]"
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3165
apply(simp add:sorted_list_of_set_def upto_def)
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3166
apply (rule the1_equality[OF finite_sorted_distinct_unique])
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3167
 apply (simp add:finite_intvl)
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3168
apply(rule the1I2[OF finite_sorted_distinct_unique])
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3169
 apply (simp add:finite_intvl)
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3170
apply (simp add: sorted_append Ball_def expand_set_eq)
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3171
apply(rule conjI)
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3172
apply (metis eq_iff leD linear not_leE ord_discrete order_trans successor_incr)
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3173
apply (metis leD linear order_trans successor_incr)
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3174
done
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3175
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24902
diff changeset
  3176
lemma upto_rec[code]: "[i..j] = (if i \<le> j then i # [successor i..j] else [])"
25069
081189141a6e added sorted_list_of_set
nipkow
parents: 25062
diff changeset
  3177
by(simp add: upto_def sorted_list_of_set_rec)
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3178
27715
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3179
lemma upto_empty[simp]: "j < i \<Longrightarrow> [i..j] = []"
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3180
by(simp add: upto_rec)
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3181
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3182
lemma upto_rec2: "i \<le> j \<Longrightarrow> [i..successor j] = [i..j] @ [successor j]"
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3183
by(simp add: upto_def sorted_list_of_set_rec2)
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3184
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3185
end
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3186
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3187
text{* The integers are an instance of the above class: *}
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3188
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25563
diff changeset
  3189
instantiation int:: finite_intvl_succ
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25563
diff changeset
  3190
begin
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25563
diff changeset
  3191
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25563
diff changeset
  3192
definition
32007
a2a3685f61c3 Made "prime" executable
nipkow
parents: 32005
diff changeset
  3193
successor_int_def[simp]: "successor = (%i\<Colon>int. i+1)"
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25563
diff changeset
  3194
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25563
diff changeset
  3195
instance
27715
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3196
by intro_classes (simp_all add: successor_int_def)
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25563
diff changeset
  3197
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25563
diff changeset
  3198
end
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3199
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3200
text{* Now @{term"[i..j::int]"} is defined for integers. *}
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
  3201
24698
9800a7602629 hide successor
nipkow
parents: 24697
diff changeset
  3202
hide (open) const successor
9800a7602629 hide successor
nipkow
parents: 24697
diff changeset
  3203
27715
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3204
lemma upto_rec2_int: "(i::int) \<le> j \<Longrightarrow> [i..j+1] = [i..j] @ [j+1]"
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3205
by(rule upto_rec2[where 'a = int, simplified successor_int_def])
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3206
32005
c369417be055 made upt/upto executable on nat/int by simp
nipkow
parents: 31998
diff changeset
  3207
lemmas upto_rec_number_of_int[simp] = upto_rec[of "number_of m :: int" "number_of n", standard]
c369417be055 made upt/upto executable on nat/int by simp
nipkow
parents: 31998
diff changeset
  3208
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3209
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  3210
subsubsection {* @{text lists}: the list-forming operator over sets *}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3211
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3212
inductive_set
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3213
  lists :: "'a set => 'a list set"
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3214
  for A :: "'a set"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3215
where
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3216
    Nil [intro!]: "[]: lists A"
27715
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3217
  | Cons [intro!,noatp]: "[| a: A; l: lists A|] ==> a#l : lists A"
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24219
diff changeset
  3218
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24219
diff changeset
  3219
inductive_cases listsE [elim!,noatp]: "x#l : lists A"
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24219
diff changeset
  3220
inductive_cases listspE [elim!,noatp]: "listsp A (x # l)"
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3221
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3222
lemma listsp_mono [mono]: "A \<le> B ==> listsp A \<le> listsp B"
26795
a27607030a1c - Explicitely applied predicate1I in a few proofs, because it is no longer
berghofe
parents: 26771
diff changeset
  3223
by (rule predicate1I, erule listsp.induct, blast+)
a27607030a1c - Explicitely applied predicate1I in a few proofs, because it is no longer
berghofe
parents: 26771
diff changeset
  3224
a27607030a1c - Explicitely applied predicate1I in a few proofs, because it is no longer
berghofe
parents: 26771
diff changeset
  3225
lemmas lists_mono = listsp_mono [to_set pred_subset_eq]
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3226
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3227
lemma listsp_infI:
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3228
  assumes l: "listsp A l" shows "listsp B l ==> listsp (inf A B) l" using l
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3229
by induct blast+
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3230
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3231
lemmas lists_IntI = listsp_infI [to_set]
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3232
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3233
lemma listsp_inf_eq [simp]: "listsp (inf A B) = inf (listsp A) (listsp B)"
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3234
proof (rule mono_inf [where f=listsp, THEN order_antisym])
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3235
  show "mono listsp" by (simp add: mono_def listsp_mono)
26795
a27607030a1c - Explicitely applied predicate1I in a few proofs, because it is no longer
berghofe
parents: 26771
diff changeset
  3236
  show "inf (listsp A) (listsp B) \<le> listsp (inf A B)" by (blast intro!: listsp_infI predicate1I)
14388
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  3237
qed
04f04408b99b lemmas about card (set xs)
kleing
parents: 14343
diff changeset
  3238
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3239
lemmas listsp_conj_eq [simp] = listsp_inf_eq [simplified inf_fun_eq inf_bool_eq]
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3240
26795
a27607030a1c - Explicitely applied predicate1I in a few proofs, because it is no longer
berghofe
parents: 26771
diff changeset
  3241
lemmas lists_Int_eq [simp] = listsp_inf_eq [to_set pred_equals_eq]
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3242
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3243
lemma append_in_listsp_conv [iff]:
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3244
     "(listsp A (xs @ ys)) = (listsp A xs \<and> listsp A ys)"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3245
by (induct xs) auto
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3246
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3247
lemmas append_in_lists_conv [iff] = append_in_listsp_conv [to_set]
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3248
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3249
lemma in_listsp_conv_set: "(listsp A xs) = (\<forall>x \<in> set xs. A x)"
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3250
-- {* eliminate @{text listsp} in favour of @{text set} *}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3251
by (induct xs) auto
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3252
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3253
lemmas in_lists_conv_set = in_listsp_conv_set [to_set]
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3254
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24219
diff changeset
  3255
lemma in_listspD [dest!,noatp]: "listsp A xs ==> \<forall>x\<in>set xs. A x"
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3256
by (rule in_listsp_conv_set [THEN iffD1])
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3257
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24219
diff changeset
  3258
lemmas in_listsD [dest!,noatp] = in_listspD [to_set]
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24219
diff changeset
  3259
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24219
diff changeset
  3260
lemma in_listspI [intro!,noatp]: "\<forall>x\<in>set xs. A x ==> listsp A xs"
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3261
by (rule in_listsp_conv_set [THEN iffD2])
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3262
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24219
diff changeset
  3263
lemmas in_listsI [intro!,noatp] = in_listspI [to_set]
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3264
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3265
lemma lists_UNIV [simp]: "lists UNIV = UNIV"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3266
by auto
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3267
17086
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  3268
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  3269
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  3270
subsubsection{* Inductive definition for membership *}
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  3271
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3272
inductive ListMem :: "'a \<Rightarrow> 'a list \<Rightarrow> bool"
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3273
where
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3274
    elem:  "ListMem x (x # xs)"
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3275
  | insert:  "ListMem x xs \<Longrightarrow> ListMem x (y # xs)"
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3276
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3277
lemma ListMem_iff: "(ListMem x xs) = (x \<in> set xs)"
17086
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  3278
apply (rule iffI)
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  3279
 apply (induct set: ListMem)
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  3280
  apply auto
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  3281
apply (induct xs)
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  3282
 apply (auto intro: ListMem.intros)
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  3283
done
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  3284
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  3285
0eb0c9259dd7 added quite a few functions for code generation
nipkow
parents: 16998
diff changeset
  3286
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  3287
subsubsection{*Lists as Cartesian products*}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3288
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3289
text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3290
@{term A} and tail drawn from @{term Xs}.*}
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3291
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3292
constdefs
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3293
  set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3294
  "set_Cons A XS == {z. \<exists>x xs. z = x#xs & x \<in> A & xs \<in> XS}"
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28537
diff changeset
  3295
declare set_Cons_def [code del]
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3296
17724
e969fc0a4925 simprules need names
paulson
parents: 17629
diff changeset
  3297
lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3298
by (auto simp add: set_Cons_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3299
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3300
text{*Yields the set of lists, all of the same length as the argument and
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3301
with elements drawn from the corresponding element of the argument.*}
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3303
consts  listset :: "'a set list \<Rightarrow> 'a list set"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3304
primrec
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3305
   "listset []    = {[]}"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3306
   "listset(A#As) = set_Cons A (listset As)"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3307
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3308
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3309
subsection{*Relations on Lists*}
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3310
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3311
subsubsection {* Length Lexicographic Ordering *}
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3312
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3313
text{*These orderings preserve well-foundedness: shorter lists 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3314
  precede longer lists. These ordering are not used in dictionaries.*}
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3315
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3316
consts lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3317
        --{*The lexicographic ordering for lists of the specified length*}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3318
primrec
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3319
  "lexn r 0 = {}"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3320
  "lexn r (Suc n) =
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3321
    (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3322
    {(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3323
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3324
constdefs
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3325
  lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3326
    "lex r == \<Union>n. lexn r n"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3327
        --{*Holds only between lists of the same length*}
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3328
15693
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15656
diff changeset
  3329
  lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15656
diff changeset
  3330
    "lenlex r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3331
        --{*Compares lists by their length and then lexicographically*}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3332
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28537
diff changeset
  3333
declare lex_def [code del]
27106
ff27dc6e7d05 removed some dubious code lemmas
haftmann
parents: 26975
diff changeset
  3334
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3335
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3336
lemma wf_lexn: "wf r ==> wf (lexn r n)"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3337
apply (induct n, simp, simp)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3338
apply(rule wf_subset)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3339
 prefer 2 apply (rule Int_lower1)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3340
apply(rule wf_prod_fun_image)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3341
 prefer 2 apply (rule inj_onI, auto)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3342
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3343
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3344
lemma lexn_length:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3345
  "(xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  3346
by (induct n arbitrary: xs ys) auto
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3347
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3348
lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3349
apply (unfold lex_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3350
apply (rule wf_UN)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3351
apply (blast intro: wf_lexn, clarify)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3352
apply (rename_tac m n)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3353
apply (subgoal_tac "m \<noteq> n")
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3354
 prefer 2 apply blast
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3355
apply (blast dest: lexn_length not_sym)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3356
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3357
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3358
lemma lexn_conv:
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3359
  "lexn r n =
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3360
    {(xs,ys). length xs = n \<and> length ys = n \<and>
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3361
    (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  3362
apply (induct n, simp)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3363
apply (simp add: image_Collect lex_prod_def, safe, blast)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3364
 apply (rule_tac x = "ab # xys" in exI, simp)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3365
apply (case_tac xys, simp_all, blast)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3366
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3367
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3368
lemma lex_conv:
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3369
  "lex r =
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3370
    {(xs,ys). length xs = length ys \<and>
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3371
    (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3372
by (force simp add: lex_def lexn_conv)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3373
15693
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15656
diff changeset
  3374
lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)"
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15656
diff changeset
  3375
by (unfold lenlex_def) blast
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15656
diff changeset
  3376
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15656
diff changeset
  3377
lemma lenlex_conv:
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15656
diff changeset
  3378
    "lenlex r = {(xs,ys). length xs < length ys |
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3379
                 length xs = length ys \<and> (xs, ys) : lex r}"
30198
922f944f03b2 name changes
nipkow
parents: 30128
diff changeset
  3380
by (simp add: lenlex_def Id_on_def lex_prod_def inv_image_def)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3381
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3382
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3383
by (simp add: lex_conv)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3384
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3385
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3386
by (simp add:lex_conv)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3387
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
  3388
lemma Cons_in_lex [simp]:
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3389
    "((x # xs, y # ys) : lex r) =
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3390
      ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3391
apply (simp add: lex_conv)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3392
apply (rule iffI)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3393
 prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3394
apply (case_tac xys, simp, simp)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3395
apply blast
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3396
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3397
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3398
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3399
subsubsection {* Lexicographic Ordering *}
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3400
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3401
text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3402
    This ordering does \emph{not} preserve well-foundedness.
17090
603f23d71ada small mods to code lemmas
nipkow
parents: 17086
diff changeset
  3403
     Author: N. Voelker, March 2005. *} 
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3404
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3405
constdefs 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3406
  lexord :: "('a * 'a)set \<Rightarrow> ('a list * 'a list) set" 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3407
  "lexord  r == {(x,y). \<exists> a v. y = x @ a # v \<or> 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3408
            (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}"
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28537
diff changeset
  3409
declare lexord_def [code del]
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3410
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3411
lemma lexord_Nil_left[simp]:  "([],y) \<in> lexord r = (\<exists> a x. y = a # x)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3412
by (unfold lexord_def, induct_tac y, auto) 
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3413
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3414
lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3415
by (unfold lexord_def, induct_tac x, auto)
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3416
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3417
lemma lexord_cons_cons[simp]:
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3418
     "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3419
  apply (unfold lexord_def, safe, simp_all)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3420
  apply (case_tac u, simp, simp)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3421
  apply (case_tac u, simp, clarsimp, blast, blast, clarsimp)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3422
  apply (erule_tac x="b # u" in allE)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3423
  by force
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3424
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3425
lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3426
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3427
lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3428
by (induct_tac x, auto)  
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3429
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3430
lemma lexord_append_left_rightI:
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3431
     "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3432
by (induct_tac u, auto)
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3433
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3434
lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3435
by (induct x, auto)
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3436
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3437
lemma lexord_append_leftD:
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3438
     "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3439
by (erule rev_mp, induct_tac x, auto)
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3440
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3441
lemma lexord_take_index_conv: 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3442
   "((x,y) : lexord r) = 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3443
    ((length x < length y \<and> take (length x) y = x) \<or> 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3444
     (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3445
  apply (unfold lexord_def Let_def, clarsimp) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3446
  apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3447
  apply auto 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3448
  apply (rule_tac x="hd (drop (length x) y)" in exI)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3449
  apply (rule_tac x="tl (drop (length x) y)" in exI)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3450
  apply (erule subst, simp add: min_def) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3451
  apply (rule_tac x ="length u" in exI, simp) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3452
  apply (rule_tac x ="take i x" in exI) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3453
  apply (rule_tac x ="x ! i" in exI) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3454
  apply (rule_tac x ="y ! i" in exI, safe) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3455
  apply (rule_tac x="drop (Suc i) x" in exI)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3456
  apply (drule sym, simp add: drop_Suc_conv_tl) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3457
  apply (rule_tac x="drop (Suc i) y" in exI)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3458
  by (simp add: drop_Suc_conv_tl) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3459
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3460
-- {* lexord is extension of partial ordering List.lex *} 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3461
lemma lexord_lex: " (x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3462
  apply (rule_tac x = y in spec) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3463
  apply (induct_tac x, clarsimp) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3464
  by (clarify, case_tac x, simp, force)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3465
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3466
lemma lexord_irreflexive: "(! x. (x,x) \<notin> r) \<Longrightarrow> (y,y) \<notin> lexord r"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3467
  by (induct y, auto)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3468
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3469
lemma lexord_trans: 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3470
    "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3471
   apply (erule rev_mp)+
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3472
   apply (rule_tac x = x in spec) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3473
  apply (rule_tac x = z in spec) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3474
  apply ( induct_tac y, simp, clarify)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3475
  apply (case_tac xa, erule ssubst) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3476
  apply (erule allE, erule allE) -- {* avoid simp recursion *} 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3477
  apply (case_tac x, simp, simp) 
24632
779fc4fcbf8b metis now available in PreList
paulson
parents: 24617
diff changeset
  3478
  apply (case_tac x, erule allE, erule allE, simp)
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3479
  apply (erule_tac x = listb in allE) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3480
  apply (erule_tac x = lista in allE, simp)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3481
  apply (unfold trans_def)
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3482
  by blast
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3483
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3484
lemma lexord_transI:  "trans r \<Longrightarrow> trans (lexord r)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3485
by (rule transI, drule lexord_trans, blast) 
15656
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3486
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3487
lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r"
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3488
  apply (rule_tac x = y in spec) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3489
  apply (induct_tac x, rule allI) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3490
  apply (case_tac x, simp, simp) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3491
  apply (rule allI, case_tac x, simp, simp) 
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3492
  by blast
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3493
988f91b9c4ef lexicographic order by Norbert Voelker
paulson
parents: 15570
diff changeset
  3494
21103
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3495
subsection {* Lexicographic combination of measure functions *}
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3496
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3497
text {* These are useful for termination proofs *}
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3498
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3499
definition
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3500
  "measures fs = inv_image (lex less_than) (%a. map (%f. f a) fs)"
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3501
21106
51599a81b308 Added "recdef_wf" and "simp" attribute to "wf_measures"
krauss
parents: 21103
diff changeset
  3502
lemma wf_measures[recdef_wf, simp]: "wf (measures fs)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3503
unfolding measures_def
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3504
by blast
21103
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3505
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3506
lemma in_measures[simp]: 
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3507
  "(x, y) \<in> measures [] = False"
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3508
  "(x, y) \<in> measures (f # fs)
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3509
         = (f x < f y \<or> (f x = f y \<and> (x, y) \<in> measures fs))"  
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3510
unfolding measures_def
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3511
by auto
21103
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3512
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3513
lemma measures_less: "f x < f y ==> (x, y) \<in> measures (f#fs)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3514
by simp
21103
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3515
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3516
lemma measures_lesseq: "f x <= f y ==> (x, y) \<in> measures fs ==> (x, y) \<in> measures (f#fs)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3517
by auto
21103
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3518
367b4ad7c7cc Added "measures" combinator for lexicographic combinations of multiple measures.
krauss
parents: 21079
diff changeset
  3519
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
  3520
subsubsection{*Lifting a Relation on List Elements to the Lists*}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3521
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3522
inductive_set
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3523
  listrel :: "('a * 'a)set => ('a list * 'a list)set"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3524
  for r :: "('a * 'a)set"
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22143
diff changeset
  3525
where
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3526
    Nil:  "([],[]) \<in> listrel r"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3527
  | Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3528
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3529
inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3530
inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3531
inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3532
inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r"
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3533
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3534
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3535
lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3536
apply clarify  
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3537
apply (erule listrel.induct)
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3538
apply (blast intro: listrel.intros)+
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3539
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3540
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3541
lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A"
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3542
apply clarify 
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3543
apply (erule listrel.induct, auto) 
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3544
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3545
30198
922f944f03b2 name changes
nipkow
parents: 30128
diff changeset
  3546
lemma listrel_refl_on: "refl_on A r \<Longrightarrow> refl_on (lists A) (listrel r)" 
922f944f03b2 name changes
nipkow
parents: 30128
diff changeset
  3547
apply (simp add: refl_on_def listrel_subset Ball_def)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3548
apply (rule allI) 
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3549
apply (induct_tac x) 
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3550
apply (auto intro: listrel.intros)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3551
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3552
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3553
lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" 
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3554
apply (auto simp add: sym_def)
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3555
apply (erule listrel.induct) 
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3556
apply (blast intro: listrel.intros)+
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3557
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3558
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3559
lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" 
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3560
apply (simp add: trans_def)
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3561
apply (intro allI) 
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3562
apply (rule impI) 
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3563
apply (erule listrel.induct) 
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3564
apply (blast intro: listrel.intros)+
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3565
done
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3566
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3567
theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)"
30198
922f944f03b2 name changes
nipkow
parents: 30128
diff changeset
  3568
by (simp add: equiv_def listrel_refl_on listrel_sym listrel_trans) 
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3569
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3570
lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3571
by (blast intro: listrel.intros)
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3572
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3573
lemma listrel_Cons:
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3574
     "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})";
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23554
diff changeset
  3575
by (auto simp add: set_Cons_def intro: listrel.intros) 
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3576
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
  3577
26749
397a1aeede7d * New attribute "termination_simp": Simp rules for termination proofs
krauss
parents: 26734
diff changeset
  3578
subsection {* Size function *}
397a1aeede7d * New attribute "termination_simp": Simp rules for termination proofs
krauss
parents: 26734
diff changeset
  3579
26875
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3580
lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (list_size f)"
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3581
by (rule is_measure_trivial)
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3582
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3583
lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (option_size f)"
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3584
by (rule is_measure_trivial)
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3585
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3586
lemma list_size_estimation[termination_simp]: 
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3587
  "x \<in> set xs \<Longrightarrow> y < f x \<Longrightarrow> y < list_size f xs"
26749
397a1aeede7d * New attribute "termination_simp": Simp rules for termination proofs
krauss
parents: 26734
diff changeset
  3588
by (induct xs) auto
397a1aeede7d * New attribute "termination_simp": Simp rules for termination proofs
krauss
parents: 26734
diff changeset
  3589
26875
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3590
lemma list_size_estimation'[termination_simp]: 
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3591
  "x \<in> set xs \<Longrightarrow> y \<le> f x \<Longrightarrow> y \<le> list_size f xs"
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3592
by (induct xs) auto
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3593
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3594
lemma list_size_map[simp]: "list_size f (map g xs) = list_size (f o g) xs"
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3595
by (induct xs) auto
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3596
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3597
lemma list_size_pointwise[termination_simp]: 
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3598
  "(\<And>x. x \<in> set xs \<Longrightarrow> f x < g x) \<Longrightarrow> list_size f xs \<le> list_size g xs"
e18574413bc4 Measure functions can now be declared via special rules, allowing for a
krauss
parents: 26795
diff changeset
  3599
by (induct xs) force+
26749
397a1aeede7d * New attribute "termination_simp": Simp rules for termination proofs
krauss
parents: 26734
diff changeset
  3600
31048
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3601
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3602
subsection {* Code generator *}
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3603
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3604
subsubsection {* Setup *}
15064
4f3102b50197 - Moved code generator setup for lists from Main.thy to List.thy
berghofe
parents: 15045
diff changeset
  3605
31055
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3606
use "Tools/list_code.ML"
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3607
31048
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3608
code_type list
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3609
  (SML "_ list")
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3610
  (OCaml "_ list")
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3611
  (Haskell "![_]")
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3612
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3613
code_const Nil
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3614
  (SML "[]")
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3615
  (OCaml "[]")
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3616
  (Haskell "[]")
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3617
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3618
code_instance list :: eq
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3619
  (Haskell -)
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3620
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3621
code_const "eq_class.eq \<Colon> 'a\<Colon>eq list \<Rightarrow> 'a list \<Rightarrow> bool"
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3622
  (Haskell infixl 4 "==")
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3623
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3624
code_reserved SML
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3625
  list
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3626
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3627
code_reserved OCaml
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3628
  list
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3629
16770
1f1b1fae30e4 Auxiliary functions to be used in generated code are now defined using "attach".
berghofe
parents: 16634
diff changeset
  3630
types_code
1f1b1fae30e4 Auxiliary functions to be used in generated code are now defined using "attach".
berghofe
parents: 16634
diff changeset
  3631
  "list" ("_ list")
1f1b1fae30e4 Auxiliary functions to be used in generated code are now defined using "attach".
berghofe
parents: 16634
diff changeset
  3632
attach (term_of) {*
21760
78248dda3a90 fixed term_of_list;
wenzelm
parents: 21754
diff changeset
  3633
fun term_of_list f T = HOLogic.mk_list T o map f;
16770
1f1b1fae30e4 Auxiliary functions to be used in generated code are now defined using "attach".
berghofe
parents: 16634
diff changeset
  3634
*}
1f1b1fae30e4 Auxiliary functions to be used in generated code are now defined using "attach".
berghofe
parents: 16634
diff changeset
  3635
attach (test) {*
25885
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  3636
fun gen_list' aG aT i j = frequency
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  3637
  [(i, fn () =>
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  3638
      let
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  3639
        val (x, t) = aG j;
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  3640
        val (xs, ts) = gen_list' aG aT (i-1) j
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  3641
      in (x :: xs, fn () => HOLogic.cons_const aT $ t () $ ts ()) end),
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  3642
   (1, fn () => ([], fn () => HOLogic.nil_const aT))] ()
6fbc3f54f819 New interface for test data generators.
berghofe
parents: 25591
diff changeset
  3643
and gen_list aG aT i = gen_list' aG aT i i;
16770
1f1b1fae30e4 Auxiliary functions to be used in generated code are now defined using "attach".
berghofe
parents: 16634
diff changeset
  3644
*}
31048
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3645
ac146fc38b51 refined HOL string theories and corresponding ML fragments
haftmann
parents: 31022
diff changeset
  3646
consts_code Cons ("(_ ::/ _)")
20588
c847c56edf0c added operational equality
haftmann
parents: 20503
diff changeset
  3647
20453
855f07fabd76 final syntax for some Isar code generator keywords
haftmann
parents: 20439
diff changeset
  3648
setup {*
855f07fabd76 final syntax for some Isar code generator keywords
haftmann
parents: 20439
diff changeset
  3649
let
31055
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3650
  fun list_codegen thy defs dep thyname b t gr =
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3651
    let
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3652
      val ts = HOLogic.dest_list t;
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3653
      val (_, gr') = Codegen.invoke_tycodegen thy defs dep thyname false
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3654
        (fastype_of t) gr;
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3655
      val (ps, gr'') = fold_map
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3656
        (Codegen.invoke_codegen thy defs dep thyname false) ts gr'
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3657
    in SOME (Pretty.list "[" "]" ps, gr'') end handle TERM _ => NONE;
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3658
in
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3659
  fold (List_Code.add_literal_list) ["SML", "OCaml", "Haskell"]
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3660
  #> Codegen.add_codegen "list_codegen" list_codegen
2cf6efca6c71 proper structures for list and string code generation stuff
haftmann
parents: 31048
diff changeset
  3661
end
20453
855f07fabd76 final syntax for some Isar code generator keywords
haftmann
parents: 20439
diff changeset
  3662
*}
15064
4f3102b50197 - Moved code generator setup for lists from Main.thy to List.thy
berghofe
parents: 15045
diff changeset
  3663
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3664
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3665
subsubsection {* Generation of efficient code *}
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3666
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  3667
primrec
25559
f14305fb698c authentic primrec
haftmann
parents: 25502
diff changeset
  3668
  member :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" (infixl "mem" 55)
f14305fb698c authentic primrec
haftmann
parents: 25502
diff changeset
  3669
where 
f14305fb698c authentic primrec
haftmann
parents: 25502
diff changeset
  3670
  "x mem [] \<longleftrightarrow> False"
28515
b26ba1b1dbda dropped superfluous if
haftmann
parents: 28370
diff changeset
  3671
  | "x mem (y#ys) \<longleftrightarrow> x = y \<or> x mem ys"
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3672
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3673
primrec
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3674
  null:: "'a list \<Rightarrow> bool"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3675
where
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3676
  "null [] = True"
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3677
  | "null (x#xs) = False"
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3678
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3679
primrec
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3680
  list_inter :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3681
where
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3682
  "list_inter [] bs = []"
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3683
  | "list_inter (a#as) bs =
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3684
     (if a \<in> set bs then a # list_inter as bs else list_inter as bs)"
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3685
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3686
primrec
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3687
  list_all :: "('a \<Rightarrow> bool) \<Rightarrow> ('a list \<Rightarrow> bool)"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3688
where
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3689
  "list_all P [] = True"
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3690
  | "list_all P (x#xs) = (P x \<and> list_all P xs)"
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3691
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3692
primrec
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3693
  list_ex :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3694
where
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3695
  "list_ex P [] = False"
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3696
  | "list_ex P (x#xs) = (P x \<or> list_ex P xs)"
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3697
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3698
primrec
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3699
  filtermap :: "('a \<Rightarrow> 'b option) \<Rightarrow> 'a list \<Rightarrow> 'b list"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3700
where
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3701
  "filtermap f [] = []"
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3702
  | "filtermap f (x#xs) =
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3703
     (case f x of None \<Rightarrow> filtermap f xs
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3704
      | Some y \<Rightarrow> y # filtermap f xs)"
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3705
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3706
primrec
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3707
  map_filter :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3708
where
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3709
  "map_filter f P [] = []"
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
  3710
  | "map_filter f P (x#xs) =
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3711
     (if P x then f x # map_filter f P xs else map_filter f P xs)"
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3712
28789
5a404273ea8f added length_unique operation for code generation
haftmann
parents: 28708
diff changeset
  3713
primrec
5a404273ea8f added length_unique operation for code generation
haftmann
parents: 28708
diff changeset
  3714
  length_unique :: "'a list \<Rightarrow> nat"
5a404273ea8f added length_unique operation for code generation
haftmann
parents: 28708
diff changeset
  3715
where
5a404273ea8f added length_unique operation for code generation
haftmann
parents: 28708
diff changeset
  3716
  "length_unique [] = 0"
5a404273ea8f added length_unique operation for code generation
haftmann
parents: 28708
diff changeset
  3717
  | "length_unique (x#xs) =
5a404273ea8f added length_unique operation for code generation
haftmann
parents: 28708
diff changeset
  3718
      (if x \<in> set xs then length_unique xs else Suc (length_unique xs))"
5a404273ea8f added length_unique operation for code generation
haftmann
parents: 28708
diff changeset
  3719
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3720
text {*
21754
6316163ae934 moved char/string syntax to Tools/string_syntax.ML;
wenzelm
parents: 21548
diff changeset
  3721
  Only use @{text mem} for generating executable code.  Otherwise use
6316163ae934 moved char/string syntax to Tools/string_syntax.ML;
wenzelm
parents: 21548
diff changeset
  3722
  @{prop "x : set xs"} instead --- it is much easier to reason about.
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3723
  The same is true for @{const list_all} and @{const list_ex}: write
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3724
  @{text "\<forall>x\<in>set xs"} and @{text "\<exists>x\<in>set xs"} instead because the HOL
21754
6316163ae934 moved char/string syntax to Tools/string_syntax.ML;
wenzelm
parents: 21548
diff changeset
  3725
  quantifiers are aleady known to the automatic provers. In fact, the
6316163ae934 moved char/string syntax to Tools/string_syntax.ML;
wenzelm
parents: 21548
diff changeset
  3726
  declarations in the code subsection make sure that @{text "\<in>"},
6316163ae934 moved char/string syntax to Tools/string_syntax.ML;
wenzelm
parents: 21548
diff changeset
  3727
  @{text "\<forall>x\<in>set xs"} and @{text "\<exists>x\<in>set xs"} are implemented
6316163ae934 moved char/string syntax to Tools/string_syntax.ML;
wenzelm
parents: 21548
diff changeset
  3728
  efficiently.
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3729
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3730
  Efficient emptyness check is implemented by @{const null}.
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3731
23060
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3732
  The functions @{const filtermap} and @{const map_filter} are just
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3733
  there to generate efficient code. Do not use
21754
6316163ae934 moved char/string syntax to Tools/string_syntax.ML;
wenzelm
parents: 21548
diff changeset
  3734
  them for modelling and proving.
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3735
*}
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3736
23060
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3737
lemma rev_foldl_cons [code]:
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3738
  "rev xs = foldl (\<lambda>xs x. x # xs) [] xs"
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3739
proof (induct xs)
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3740
  case Nil then show ?case by simp
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3741
next
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3742
  case Cons
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3743
  {
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3744
    fix x xs ys
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3745
    have "foldl (\<lambda>xs x. x # xs) ys xs @ [x]
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3746
      = foldl (\<lambda>xs x. x # xs) (ys @ [x]) xs"
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3747
    by (induct xs arbitrary: ys) auto
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3748
  }
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3749
  note aux = this
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3750
  show ?case by (induct xs) (auto simp add: Cons aux)
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3751
qed
0c0b03d0ec7e improved code for rev
haftmann
parents: 23029
diff changeset
  3752
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3753
lemma mem_iff [code_post]:
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3754
  "x mem xs \<longleftrightarrow> x \<in> set xs"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3755
by (induct xs) auto
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3756
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3757
lemmas in_set_code [code_unfold] = mem_iff [symmetric]
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3758
31154
f919b8e67413 preprocessing must consider eq
haftmann
parents: 31080
diff changeset
  3759
lemma empty_null:
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3760
  "xs = [] \<longleftrightarrow> null xs"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3761
by (cases xs) simp_all
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3762
32069
6d28bbd33e2c prefer code_inline over code_unfold; use code_unfold_post where appropriate
haftmann
parents: 31998
diff changeset
  3763
lemma [code_unfold]:
31154
f919b8e67413 preprocessing must consider eq
haftmann
parents: 31080
diff changeset
  3764
  "eq_class.eq xs [] \<longleftrightarrow> null xs"
f919b8e67413 preprocessing must consider eq
haftmann
parents: 31080
diff changeset
  3765
by (simp add: eq empty_null)
f919b8e67413 preprocessing must consider eq
haftmann
parents: 31080
diff changeset
  3766
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3767
lemmas null_empty [code_post] =
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3768
  empty_null [symmetric]
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3769
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3770
lemma list_inter_conv:
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3771
  "set (list_inter xs ys) = set xs \<inter> set ys"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3772
by (induct xs) auto
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3773
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3774
lemma list_all_iff [code_post]:
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3775
  "list_all P xs \<longleftrightarrow> (\<forall>x \<in> set xs. P x)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3776
by (induct xs) auto
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3777
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3778
lemmas list_ball_code [code_unfold] = list_all_iff [symmetric]
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3779
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3780
lemma list_all_append [simp]:
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3781
  "list_all P (xs @ ys) \<longleftrightarrow> (list_all P xs \<and> list_all P ys)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3782
by (induct xs) auto
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3783
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3784
lemma list_all_rev [simp]:
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3785
  "list_all P (rev xs) \<longleftrightarrow> list_all P xs"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3786
by (simp add: list_all_iff)
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3787
22506
c78f1d924bfe two further properties about lists
haftmann
parents: 22493
diff changeset
  3788
lemma list_all_length:
c78f1d924bfe two further properties about lists
haftmann
parents: 22493
diff changeset
  3789
  "list_all P xs \<longleftrightarrow> (\<forall>n < length xs. P (xs ! n))"
c78f1d924bfe two further properties about lists
haftmann
parents: 22493
diff changeset
  3790
  unfolding list_all_iff by (auto intro: all_nth_imp_all_set)
c78f1d924bfe two further properties about lists
haftmann
parents: 22493
diff changeset
  3791
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3792
lemma list_ex_iff [code_post]:
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22262
diff changeset
  3793
  "list_ex P xs \<longleftrightarrow> (\<exists>x \<in> set xs. P x)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3794
by (induct xs) simp_all
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3795
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3796
lemmas list_bex_code [code_unfold] =
22799
ed7d53db2170 moved code generation pretty integers and characters to separate theories
haftmann
parents: 22793
diff changeset
  3797
  list_ex_iff [symmetric]
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3798
22506
c78f1d924bfe two further properties about lists
haftmann
parents: 22493
diff changeset
  3799
lemma list_ex_length:
c78f1d924bfe two further properties about lists
haftmann
parents: 22493
diff changeset
  3800
  "list_ex P xs \<longleftrightarrow> (\<exists>n < length xs. P (xs ! n))"
c78f1d924bfe two further properties about lists
haftmann
parents: 22493
diff changeset
  3801
  unfolding list_ex_iff set_conv_nth by auto
c78f1d924bfe two further properties about lists
haftmann
parents: 22493
diff changeset
  3802
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3803
lemma filtermap_conv:
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3804
   "filtermap f xs = map (\<lambda>x. the (f x)) (filter (\<lambda>x. f x \<noteq> None) xs)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3805
by (induct xs) (simp_all split: option.split) 
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3806
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3807
lemma map_filter_conv [simp]:
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3808
  "map_filter f P xs = map f (filter P xs)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3809
by (induct xs) auto
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  3810
32069
6d28bbd33e2c prefer code_inline over code_unfold; use code_unfold_post where appropriate
haftmann
parents: 31998
diff changeset
  3811
lemma length_remdups_length_unique [code_unfold]:
28789
5a404273ea8f added length_unique operation for code generation
haftmann
parents: 28708
diff changeset
  3812
  "length (remdups xs) = length_unique xs"
5a404273ea8f added length_unique operation for code generation
haftmann
parents: 28708
diff changeset
  3813
  by (induct xs) simp_all
5a404273ea8f added length_unique operation for code generation
haftmann
parents: 28708
diff changeset
  3814
5a404273ea8f added length_unique operation for code generation
haftmann
parents: 28708
diff changeset
  3815
hide (open) const length_unique
5a404273ea8f added length_unique operation for code generation
haftmann
parents: 28708
diff changeset
  3816
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  3817
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  3818
text {* Code for bounded quantification and summation over nats. *}
21891
b4e4ea3db161 added code lemmas for quantification over bounded nats
haftmann
parents: 21871
diff changeset
  3819
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3820
lemma atMost_upto [code_unfold]:
28072
a45e8c872dc1 It appears that the code generator (Stefan's) needs some laws that appear superfluous: {..n} = set ...
nipkow
parents: 28068
diff changeset
  3821
  "{..n} = set [0..<Suc n]"
a45e8c872dc1 It appears that the code generator (Stefan's) needs some laws that appear superfluous: {..n} = set ...
nipkow
parents: 28068
diff changeset
  3822
by auto
a45e8c872dc1 It appears that the code generator (Stefan's) needs some laws that appear superfluous: {..n} = set ...
nipkow
parents: 28068
diff changeset
  3823
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3824
lemma atLeast_upt [code_unfold]:
28072
a45e8c872dc1 It appears that the code generator (Stefan's) needs some laws that appear superfluous: {..n} = set ...
nipkow
parents: 28068
diff changeset
  3825
  "{..<n} = set [0..<n]"
a45e8c872dc1 It appears that the code generator (Stefan's) needs some laws that appear superfluous: {..n} = set ...
nipkow
parents: 28068
diff changeset
  3826
by auto
a45e8c872dc1 It appears that the code generator (Stefan's) needs some laws that appear superfluous: {..n} = set ...
nipkow
parents: 28068
diff changeset
  3827
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3828
lemma greaterThanLessThan_upt [code_unfold]:
21891
b4e4ea3db161 added code lemmas for quantification over bounded nats
haftmann
parents: 21871
diff changeset
  3829
  "{n<..<m} = set [Suc n..<m]"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3830
by auto
22799
ed7d53db2170 moved code generation pretty integers and characters to separate theories
haftmann
parents: 22793
diff changeset
  3831
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3832
lemma atLeastLessThan_upt [code_unfold]:
21891
b4e4ea3db161 added code lemmas for quantification over bounded nats
haftmann
parents: 21871
diff changeset
  3833
  "{n..<m} = set [n..<m]"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3834
by auto
22799
ed7d53db2170 moved code generation pretty integers and characters to separate theories
haftmann
parents: 22793
diff changeset
  3835
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3836
lemma greaterThanAtMost_upt [code_unfold]:
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3837
  "{n<..m} = set [Suc n..<Suc m]"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3838
by auto
22799
ed7d53db2170 moved code generation pretty integers and characters to separate theories
haftmann
parents: 22793
diff changeset
  3839
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3840
lemma atLeastAtMost_upt [code_unfold]:
24645
1af302128da2 Generalized [_.._] from nat to linear orders
nipkow
parents: 24640
diff changeset
  3841
  "{n..m} = set [n..<Suc m]"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3842
by auto
22799
ed7d53db2170 moved code generation pretty integers and characters to separate theories
haftmann
parents: 22793
diff changeset
  3843
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3844
lemma all_nat_less_eq [code_unfold]:
21891
b4e4ea3db161 added code lemmas for quantification over bounded nats
haftmann
parents: 21871
diff changeset
  3845
  "(\<forall>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..<n}. P m)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3846
by auto
22799
ed7d53db2170 moved code generation pretty integers and characters to separate theories
haftmann
parents: 22793
diff changeset
  3847
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3848
lemma ex_nat_less_eq [code_unfold]:
21891
b4e4ea3db161 added code lemmas for quantification over bounded nats
haftmann
parents: 21871
diff changeset
  3849
  "(\<exists>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..<n}. P m)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3850
by auto
22799
ed7d53db2170 moved code generation pretty integers and characters to separate theories
haftmann
parents: 22793
diff changeset
  3851
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3852
lemma all_nat_less [code_unfold]:
21891
b4e4ea3db161 added code lemmas for quantification over bounded nats
haftmann
parents: 21871
diff changeset
  3853
  "(\<forall>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..n}. P m)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3854
by auto
22799
ed7d53db2170 moved code generation pretty integers and characters to separate theories
haftmann
parents: 22793
diff changeset
  3855
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3856
lemma ex_nat_less [code_unfold]:
21891
b4e4ea3db161 added code lemmas for quantification over bounded nats
haftmann
parents: 21871
diff changeset
  3857
  "(\<exists>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..n}. P m)"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
  3858
by auto
22799
ed7d53db2170 moved code generation pretty integers and characters to separate theories
haftmann
parents: 22793
diff changeset
  3859
27715
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3860
lemma setsum_set_distinct_conv_listsum:
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3861
  "distinct xs \<Longrightarrow> setsum f (set xs) = listsum (map f xs)"
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3862
by (induct xs) simp_all
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3863
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3864
lemma setsum_set_upt_conv_listsum [code_unfold]:
27715
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3865
  "setsum f (set [m..<n]) = listsum (map f [m..<n])"
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3866
by (rule setsum_set_distinct_conv_listsum) simp
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3867
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3868
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3869
text {* Code for summation over ints. *}
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3870
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3871
lemma greaterThanLessThan_upto [code_unfold]:
27715
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3872
  "{i<..<j::int} = set [i+1..j - 1]"
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3873
by auto
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3874
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3875
lemma atLeastLessThan_upto [code_unfold]:
27715
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3876
  "{i..<j::int} = set [i..j - 1]"
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3877
by auto
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3878
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3879
lemma greaterThanAtMost_upto [code_unfold]:
27715
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3880
  "{i<..j::int} = set [i+1..j]"
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3881
by auto
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3882
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3883
lemma atLeastAtMost_upto [code_unfold]:
27715
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3884
  "{i..j::int} = set [i..j]"
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3885
by auto
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3886
31998
2c7a24f74db9 code attributes use common underscore convention
haftmann
parents: 31930
diff changeset
  3887
lemma setsum_set_upto_conv_listsum [code_unfold]:
27715
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3888
  "setsum f (set [i..j::int]) = listsum (map f [i..j])"
087db5aacac3 made setsum executable on int.
nipkow
parents: 27693
diff changeset
  3889
by (rule setsum_set_distinct_conv_listsum) simp
24449
2f05cb7fed85 added (code) lemmas for setsum and foldl
nipkow
parents: 24349
diff changeset
  3890
23388
77645da0db85 tuned proofs: avoid implicit prems;
wenzelm
parents: 23279
diff changeset
  3891
end