| author | wenzelm | 
| Sun, 27 Oct 2024 12:32:40 +0100 | |
| changeset 81275 | 5ed639c16ce7 | 
| parent 80932 | 261cd8722677 | 
| child 82080 | 0aa2d1c132b2 | 
| permissions | -rw-r--r-- | 
| 51524 | 1 | (* Title: HOL/Real_Vector_Spaces.thy | 
| 27552 
15cf4ed9c2a1
re-removed subclass relation real_field < field_char_0: coregularity violation in NSA/HyperDef
 haftmann parents: 
27515diff
changeset | 2 | Author: Brian Huffman | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 3 | Author: Johannes Hölzl | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 4 | *) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 5 | |
| 60758 | 6 | section \<open>Vector Spaces and Algebras over the Reals\<close> | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 7 | |
| 70630 | 8 | theory Real_Vector_Spaces | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 9 | imports Real Topological_Spaces Vector_Spaces | 
| 70630 | 10 | begin | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 11 | |
| 60758 | 12 | subsection \<open>Real vector spaces\<close> | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 13 | |
| 29608 | 14 | class scaleR = | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
79945diff
changeset | 15 | fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr \<open>*\<^sub>R\<close> 75) | 
| 24748 | 16 | begin | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 17 | |
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
79945diff
changeset | 18 | abbreviation divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl \<open>'/\<^sub>R\<close> 70) | 
| 70630 | 19 | where "x /\<^sub>R r \<equiv> inverse r *\<^sub>R x" | 
| 24748 | 20 | |
| 21 | end | |
| 22 | ||
| 24588 | 23 | class real_vector = scaleR + ab_group_add + | 
| 70630 | 24 | assumes scaleR_add_right: "a *\<^sub>R (x + y) = a *\<^sub>R x + a *\<^sub>R y" | 
| 25 | and scaleR_add_left: "(a + b) *\<^sub>R x = a *\<^sub>R x + b *\<^sub>R x" | |
| 26 | and scaleR_scaleR: "a *\<^sub>R b *\<^sub>R x = (a * b) *\<^sub>R x" | |
| 27 | and scaleR_one: "1 *\<^sub>R x = x" | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 28 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 29 | class real_algebra = real_vector + ring + | 
| 70630 | 30 | assumes mult_scaleR_left [simp]: "a *\<^sub>R x * y = a *\<^sub>R (x * y)" | 
| 31 | and mult_scaleR_right [simp]: "x * a *\<^sub>R y = a *\<^sub>R (x * y)" | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 32 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 33 | class real_algebra_1 = real_algebra + ring_1 | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 34 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 35 | class real_div_algebra = real_algebra_1 + division_ring | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 36 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 37 | class real_field = real_div_algebra + field | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 38 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 39 | instantiation real :: real_field | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 40 | begin | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 41 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 42 | definition real_scaleR_def [simp]: "scaleR a x = a * x" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 43 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 44 | instance | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 45 | by standard (simp_all add: algebra_simps) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 46 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 47 | end | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 48 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 49 | locale linear = Vector_Spaces.linear "scaleR::_\<Rightarrow>_\<Rightarrow>'a::real_vector" "scaleR::_\<Rightarrow>_\<Rightarrow>'b::real_vector" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 50 | begin | 
| 70630 | 51 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 52 | lemmas scaleR = scale | 
| 70630 | 53 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 54 | end | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 55 | |
| 70630 | 56 | global_interpretation real_vector?: vector_space "scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a :: real_vector" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 57 | rewrites "Vector_Spaces.linear (*\<^sub>R) (*\<^sub>R) = linear" | 
| 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 58 | and "Vector_Spaces.linear (*) (*\<^sub>R) = linear" | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 59 | defines dependent_raw_def: dependent = real_vector.dependent | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 60 | and representation_raw_def: representation = real_vector.representation | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 61 | and subspace_raw_def: subspace = real_vector.subspace | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 62 | and span_raw_def: span = real_vector.span | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 63 | and extend_basis_raw_def: extend_basis = real_vector.extend_basis | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 64 | and dim_raw_def: dim = real_vector.dim | 
| 71720 | 65 | proof unfold_locales | 
| 66 | show "Vector_Spaces.linear (*\<^sub>R) (*\<^sub>R) = linear" "Vector_Spaces.linear (*) (*\<^sub>R) = linear" | |
| 67 | by (force simp: linear_def real_scaleR_def[abs_def])+ | |
| 68 | qed (use scaleR_add_right scaleR_add_left scaleR_scaleR scaleR_one in auto) | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 69 | |
| 68397 | 70 | hide_const (open)\<comment> \<open>locale constants\<close> | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 71 | real_vector.dependent | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 72 | real_vector.independent | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 73 | real_vector.representation | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 74 | real_vector.subspace | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 75 | real_vector.span | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 76 | real_vector.extend_basis | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 77 | real_vector.dim | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 78 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 79 | abbreviation "independent x \<equiv> \<not> dependent x" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 80 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 81 | global_interpretation real_vector?: vector_space_pair "scaleR::_\<Rightarrow>_\<Rightarrow>'a::real_vector" "scaleR::_\<Rightarrow>_\<Rightarrow>'b::real_vector" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 82 | rewrites "Vector_Spaces.linear (*\<^sub>R) (*\<^sub>R) = linear" | 
| 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 83 | and "Vector_Spaces.linear (*) (*\<^sub>R) = linear" | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 84 | defines construct_raw_def: construct = real_vector.construct | 
| 71720 | 85 | proof unfold_locales | 
| 86 | show "Vector_Spaces.linear (*) (*\<^sub>R) = linear" | |
| 87 | unfolding linear_def real_scaleR_def by auto | |
| 88 | qed (auto simp: linear_def) | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 89 | |
| 68397 | 90 | hide_const (open)\<comment> \<open>locale constants\<close> | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 91 | real_vector.construct | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 92 | |
| 68594 | 93 | lemma linear_compose: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (g \<circ> f)" | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 94 | unfolding linear_def by (rule Vector_Spaces.linear_compose) | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 95 | |
| 60758 | 96 | text \<open>Recover original theorem names\<close> | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 97 | |
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 98 | lemmas scaleR_left_commute = real_vector.scale_left_commute | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 99 | lemmas scaleR_zero_left = real_vector.scale_zero_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 100 | lemmas scaleR_minus_left = real_vector.scale_minus_left | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 101 | lemmas scaleR_diff_left = real_vector.scale_left_diff_distrib | 
| 64267 | 102 | lemmas scaleR_sum_left = real_vector.scale_sum_left | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 103 | lemmas scaleR_zero_right = real_vector.scale_zero_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 104 | lemmas scaleR_minus_right = real_vector.scale_minus_right | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 105 | lemmas scaleR_diff_right = real_vector.scale_right_diff_distrib | 
| 64267 | 106 | lemmas scaleR_sum_right = real_vector.scale_sum_right | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 107 | lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 108 | lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 109 | lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 110 | lemmas scaleR_cancel_left = real_vector.scale_cancel_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 111 | lemmas scaleR_cancel_right = real_vector.scale_cancel_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 112 | |
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 113 | lemma [field_simps]: | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 114 | "c \<noteq> 0 \<Longrightarrow> a = b /\<^sub>R c \<longleftrightarrow> c *\<^sub>R a = b" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 115 | "c \<noteq> 0 \<Longrightarrow> b /\<^sub>R c = a \<longleftrightarrow> b = c *\<^sub>R a" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 116 | "c \<noteq> 0 \<Longrightarrow> a + b /\<^sub>R c = (c *\<^sub>R a + b) /\<^sub>R c" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 117 | "c \<noteq> 0 \<Longrightarrow> a /\<^sub>R c + b = (a + c *\<^sub>R b) /\<^sub>R c" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 118 | "c \<noteq> 0 \<Longrightarrow> a - b /\<^sub>R c = (c *\<^sub>R a - b) /\<^sub>R c" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 119 | "c \<noteq> 0 \<Longrightarrow> a /\<^sub>R c - b = (a - c *\<^sub>R b) /\<^sub>R c" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 120 | "c \<noteq> 0 \<Longrightarrow> - (a /\<^sub>R c) + b = (- a + c *\<^sub>R b) /\<^sub>R c" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 121 | "c \<noteq> 0 \<Longrightarrow> - (a /\<^sub>R c) - b = (- a - c *\<^sub>R b) /\<^sub>R c" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 122 | for a b :: "'a :: real_vector" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 123 | by (auto simp add: scaleR_add_right scaleR_add_left scaleR_diff_right scaleR_diff_left) | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 124 | |
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 125 | |
| 60758 | 126 | text \<open>Legacy names\<close> | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 127 | |
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 128 | lemmas scaleR_left_distrib = scaleR_add_left | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 129 | lemmas scaleR_right_distrib = scaleR_add_right | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 130 | lemmas scaleR_left_diff_distrib = scaleR_diff_left | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 131 | lemmas scaleR_right_diff_distrib = scaleR_diff_right | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 132 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 133 | lemmas linear_injective_0 = linear_inj_iff_eq_0 | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 134 | and linear_injective_on_subspace_0 = linear_inj_on_iff_eq_0 | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 135 | and linear_cmul = linear_scale | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 136 | and linear_scaleR = linear_scale_self | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 137 | and subspace_mul = subspace_scale | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 138 | and span_linear_image = linear_span_image | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 139 | and span_0 = span_zero | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 140 | and span_mul = span_scale | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 141 | and injective_scaleR = injective_scale | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 142 | |
| 63545 | 143 | lemma scaleR_minus1_left [simp]: "scaleR (-1) x = - x" | 
| 144 | for x :: "'a::real_vector" | |
| 78656 
4da1e18a9633
Loads of new material related to porting the Euler Polyhedron Formula from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 145 | by simp | 
| 62101 | 146 | |
| 64788 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 147 | lemma scaleR_2: | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 148 | fixes x :: "'a::real_vector" | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 149 | shows "scaleR 2 x = x + x" | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 150 | unfolding one_add_one [symmetric] scaleR_left_distrib by simp | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 151 | |
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 152 | lemma scaleR_half_double [simp]: | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 153 | fixes a :: "'a::real_vector" | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 154 | shows "(1 / 2) *\<^sub>R (a + a) = a" | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 155 | proof - | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 156 | have "\<And>r. r *\<^sub>R (a + a) = (r * 2) *\<^sub>R a" | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 157 | by (metis scaleR_2 scaleR_scaleR) | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 158 | then show ?thesis | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 159 | by simp | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 160 | qed | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 161 | |
| 77138 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76055diff
changeset | 162 | lemma shift_zero_ident [simp]: | 
| 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76055diff
changeset | 163 | fixes f :: "'a \<Rightarrow> 'b::real_vector" | 
| 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76055diff
changeset | 164 | shows "(+)0 \<circ> f = f" | 
| 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76055diff
changeset | 165 | by force | 
| 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76055diff
changeset | 166 | |
| 70019 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 167 | lemma linear_scale_real: | 
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 168 | fixes r::real shows "linear f \<Longrightarrow> f (r * b) = r * f b" | 
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 169 | using linear_scale by fastforce | 
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 170 | |
| 63545 | 171 | interpretation scaleR_left: additive "(\<lambda>a. scaleR a x :: 'a::real_vector)" | 
| 172 | by standard (rule scaleR_left_distrib) | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 173 | |
| 63545 | 174 | interpretation scaleR_right: additive "(\<lambda>x. scaleR a x :: 'a::real_vector)" | 
| 175 | by standard (rule scaleR_right_distrib) | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 176 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 177 | lemma nonzero_inverse_scaleR_distrib: | 
| 63545 | 178 | "a \<noteq> 0 \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)" | 
| 179 | for x :: "'a::real_div_algebra" | |
| 180 | by (rule inverse_unique) simp | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 181 | |
| 63545 | 182 | lemma inverse_scaleR_distrib: "inverse (scaleR a x) = scaleR (inverse a) (inverse x)" | 
| 183 |   for x :: "'a::{real_div_algebra,division_ring}"
 | |
| 68594 | 184 | by (metis inverse_zero nonzero_inverse_scaleR_distrib scale_eq_0_iff) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 185 | |
| 68397 | 186 | lemmas sum_constant_scaleR = real_vector.sum_constant_scale\<comment> \<open>legacy name\<close> | 
| 63545 | 187 | |
| 63927 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 188 | named_theorems vector_add_divide_simps "to simplify sums of scaled vectors" | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 189 | |
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 190 | lemma [vector_add_divide_simps]: | 
| 63545 | 191 | "v + (b / z) *\<^sub>R w = (if z = 0 then v else (z *\<^sub>R v + b *\<^sub>R w) /\<^sub>R z)" | 
| 192 | "a *\<^sub>R v + (b / z) *\<^sub>R w = (if z = 0 then a *\<^sub>R v else ((a * z) *\<^sub>R v + b *\<^sub>R w) /\<^sub>R z)" | |
| 193 | "(a / z) *\<^sub>R v + w = (if z = 0 then w else (a *\<^sub>R v + z *\<^sub>R w) /\<^sub>R z)" | |
| 194 | "(a / z) *\<^sub>R v + b *\<^sub>R w = (if z = 0 then b *\<^sub>R w else (a *\<^sub>R v + (b * z) *\<^sub>R w) /\<^sub>R z)" | |
| 195 | "v - (b / z) *\<^sub>R w = (if z = 0 then v else (z *\<^sub>R v - b *\<^sub>R w) /\<^sub>R z)" | |
| 196 | "a *\<^sub>R v - (b / z) *\<^sub>R w = (if z = 0 then a *\<^sub>R v else ((a * z) *\<^sub>R v - b *\<^sub>R w) /\<^sub>R z)" | |
| 197 | "(a / z) *\<^sub>R v - w = (if z = 0 then -w else (a *\<^sub>R v - z *\<^sub>R w) /\<^sub>R z)" | |
| 198 | "(a / z) *\<^sub>R v - b *\<^sub>R w = (if z = 0 then -b *\<^sub>R w else (a *\<^sub>R v - (b * z) *\<^sub>R w) /\<^sub>R z)" | |
| 199 | for v :: "'a :: real_vector" | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 200 | by (simp_all add: divide_inverse_commute scaleR_add_right scaleR_diff_right) | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 201 | |
| 63927 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 202 | |
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 203 | lemma eq_vector_fraction_iff [vector_add_divide_simps]: | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 204 | fixes x :: "'a :: real_vector" | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 205 | shows "(x = (u / v) *\<^sub>R a) \<longleftrightarrow> (if v=0 then x = 0 else v *\<^sub>R x = u *\<^sub>R a)" | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 206 | by auto (metis (no_types) divide_eq_1_iff divide_inverse_commute scaleR_one scaleR_scaleR) | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 207 | |
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 208 | lemma vector_fraction_eq_iff [vector_add_divide_simps]: | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 209 | fixes x :: "'a :: real_vector" | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 210 | shows "((u / v) *\<^sub>R a = x) \<longleftrightarrow> (if v=0 then x = 0 else u *\<^sub>R a = v *\<^sub>R x)" | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 211 | by (metis eq_vector_fraction_iff) | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 212 | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 213 | lemma real_vector_affinity_eq: | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 214 | fixes x :: "'a :: real_vector" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 215 | assumes m0: "m \<noteq> 0" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 216 | shows "m *\<^sub>R x + c = y \<longleftrightarrow> x = inverse m *\<^sub>R y - (inverse m *\<^sub>R c)" | 
| 63545 | 217 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 218 | proof | 
| 63545 | 219 | assume ?lhs | 
| 220 | then have "m *\<^sub>R x = y - c" by (simp add: field_simps) | |
| 221 | then have "inverse m *\<^sub>R (m *\<^sub>R x) = inverse m *\<^sub>R (y - c)" by simp | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 222 | then show "x = inverse m *\<^sub>R y - (inverse m *\<^sub>R c)" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 223 | using m0 | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 224 | by (simp add: scaleR_diff_right) | 
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 225 | next | 
| 63545 | 226 | assume ?rhs | 
| 227 | with m0 show "m *\<^sub>R x + c = y" | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 228 | by (simp add: scaleR_diff_right) | 
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 229 | qed | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 230 | |
| 63545 | 231 | lemma real_vector_eq_affinity: "m \<noteq> 0 \<Longrightarrow> y = m *\<^sub>R x + c \<longleftrightarrow> inverse m *\<^sub>R y - (inverse m *\<^sub>R c) = x" | 
| 232 | for x :: "'a::real_vector" | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 233 | using real_vector_affinity_eq[where m=m and x=x and y=y and c=c] | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 234 | by metis | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 235 | |
| 63545 | 236 | lemma scaleR_eq_iff [simp]: "b + u *\<^sub>R a = a + u *\<^sub>R b \<longleftrightarrow> a = b \<or> u = 1" | 
| 237 | for a :: "'a::real_vector" | |
| 238 | proof (cases "u = 1") | |
| 239 | case True | |
| 240 | then show ?thesis by auto | |
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 241 | next | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 242 | case False | 
| 63545 | 243 | have "a = b" if "b + u *\<^sub>R a = a + u *\<^sub>R b" | 
| 244 | proof - | |
| 245 | from that have "(u - 1) *\<^sub>R a = (u - 1) *\<^sub>R b" | |
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 246 | by (simp add: algebra_simps) | 
| 63545 | 247 | with False show ?thesis | 
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 248 | by auto | 
| 63545 | 249 | qed | 
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 250 | then show ?thesis by auto | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 251 | qed | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 252 | |
| 63545 | 253 | lemma scaleR_collapse [simp]: "(1 - u) *\<^sub>R a + u *\<^sub>R a = a" | 
| 254 | for a :: "'a::real_vector" | |
| 255 | by (simp add: algebra_simps) | |
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 256 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 257 | |
| 63545 | 258 | subsection \<open>Embedding of the Reals into any \<open>real_algebra_1\<close>: \<open>of_real\<close>\<close> | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 259 | |
| 63545 | 260 | definition of_real :: "real \<Rightarrow> 'a::real_algebra_1" | 
| 261 | where "of_real r = scaleR r 1" | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 262 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 263 | lemma scaleR_conv_of_real: "scaleR r x = of_real r * x" | 
| 63545 | 264 | by (simp add: of_real_def) | 
| 20763 | 265 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 266 | lemma of_real_0 [simp]: "of_real 0 = 0" | 
| 63545 | 267 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 268 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 269 | lemma of_real_1 [simp]: "of_real 1 = 1" | 
| 63545 | 270 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 271 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 272 | lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y" | 
| 63545 | 273 | by (simp add: of_real_def scaleR_left_distrib) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 274 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 275 | lemma of_real_minus [simp]: "of_real (- x) = - of_real x" | 
| 63545 | 276 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 277 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 278 | lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y" | 
| 63545 | 279 | by (simp add: of_real_def scaleR_left_diff_distrib) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 280 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 281 | lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y" | 
| 71544 | 282 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 283 | |
| 64267 | 284 | lemma of_real_sum[simp]: "of_real (sum f s) = (\<Sum>x\<in>s. of_real (f x))" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 285 | by (induct s rule: infinite_finite_induct) auto | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 286 | |
| 64272 | 287 | lemma of_real_prod[simp]: "of_real (prod f s) = (\<Prod>x\<in>s. of_real (f x))" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 288 | by (induct s rule: infinite_finite_induct) auto | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 289 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 290 | lemma nonzero_of_real_inverse: | 
| 63545 | 291 | "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) = inverse (of_real x :: 'a::real_div_algebra)" | 
| 292 | by (simp add: of_real_def nonzero_inverse_scaleR_distrib) | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 293 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 294 | lemma of_real_inverse [simp]: | 
| 63545 | 295 |   "of_real (inverse x) = inverse (of_real x :: 'a::{real_div_algebra,division_ring})"
 | 
| 296 | by (simp add: of_real_def inverse_scaleR_distrib) | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 297 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 298 | lemma nonzero_of_real_divide: | 
| 63545 | 299 | "y \<noteq> 0 \<Longrightarrow> of_real (x / y) = (of_real x / of_real y :: 'a::real_field)" | 
| 300 | by (simp add: divide_inverse nonzero_of_real_inverse) | |
| 20722 | 301 | |
| 302 | lemma of_real_divide [simp]: | |
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62102diff
changeset | 303 | "of_real (x / y) = (of_real x / of_real y :: 'a::real_div_algebra)" | 
| 63545 | 304 | by (simp add: divide_inverse) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 305 | |
| 20722 | 306 | lemma of_real_power [simp]: | 
| 31017 | 307 |   "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n"
 | 
| 63545 | 308 | by (induct n) simp_all | 
| 20722 | 309 | |
| 71837 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 310 | lemma of_real_power_int [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 311 |   "of_real (power_int x n) = power_int (of_real x :: 'a :: {real_div_algebra,division_ring}) n"
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 312 | by (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 313 | |
| 63545 | 314 | lemma of_real_eq_iff [simp]: "of_real x = of_real y \<longleftrightarrow> x = y" | 
| 315 | by (simp add: of_real_def) | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 316 | |
| 63545 | 317 | lemma inj_of_real: "inj of_real" | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 318 | by (auto intro: injI) | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 319 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 320 | lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified] | 
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65036diff
changeset | 321 | lemmas of_real_eq_1_iff [simp] = of_real_eq_iff [of _ 1, simplified] | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 322 | |
| 67135 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66793diff
changeset | 323 | lemma minus_of_real_eq_of_real_iff [simp]: "-of_real x = of_real y \<longleftrightarrow> -x = y" | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66793diff
changeset | 324 | using of_real_eq_iff[of "-x" y] by (simp only: of_real_minus) | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66793diff
changeset | 325 | |
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66793diff
changeset | 326 | lemma of_real_eq_minus_of_real_iff [simp]: "of_real x = -of_real y \<longleftrightarrow> x = -y" | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66793diff
changeset | 327 | using of_real_eq_iff[of x "-y"] by (simp only: of_real_minus) | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66793diff
changeset | 328 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 329 | lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)" | 
| 63545 | 330 | by (rule ext) (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 331 | |
| 63545 | 332 | text \<open>Collapse nested embeddings.\<close> | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 333 | lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n" | 
| 63545 | 334 | by (induct n) auto | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 335 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 336 | lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z" | 
| 63545 | 337 | by (cases z rule: int_diff_cases) simp | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 338 | |
| 60155 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
60026diff
changeset | 339 | lemma of_real_numeral [simp]: "of_real (numeral w) = numeral w" | 
| 63545 | 340 | using of_real_of_int_eq [of "numeral w"] by simp | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 341 | |
| 60155 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
60026diff
changeset | 342 | lemma of_real_neg_numeral [simp]: "of_real (- numeral w) = - numeral w" | 
| 63545 | 343 | using of_real_of_int_eq [of "- numeral w"] by simp | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 344 | |
| 71837 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 345 | lemma numeral_power_int_eq_of_real_cancel_iff [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 346 |   "power_int (numeral x) n = (of_real y :: 'a :: {real_div_algebra, division_ring}) \<longleftrightarrow>
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 347 | power_int (numeral x) n = y" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 348 | proof - | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 349 | have "power_int (numeral x) n = (of_real (power_int (numeral x) n) :: 'a)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 350 | by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 351 | also have "\<dots> = of_real y \<longleftrightarrow> power_int (numeral x) n = y" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 352 | by (subst of_real_eq_iff) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 353 | finally show ?thesis . | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 354 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 355 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 356 | lemma of_real_eq_numeral_power_int_cancel_iff [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 357 |   "(of_real y :: 'a :: {real_div_algebra, division_ring}) = power_int (numeral x) n \<longleftrightarrow>
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 358 | y = power_int (numeral x) n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 359 | by (subst (1 2) eq_commute) simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 360 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 361 | lemma of_real_eq_of_real_power_int_cancel_iff [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 362 |   "power_int (of_real b :: 'a :: {real_div_algebra, division_ring}) w = of_real x \<longleftrightarrow>
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 363 | power_int b w = x" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 364 | by (metis of_real_power_int of_real_eq_iff) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 365 | |
| 73109 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 366 | lemma of_real_in_Ints_iff [simp]: "of_real x \<in> \<int> \<longleftrightarrow> x \<in> \<int>" | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 367 | proof safe | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 368 | fix x assume "(of_real x :: 'a) \<in> \<int>" | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 369 | then obtain n where "(of_real x :: 'a) = of_int n" | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 370 | by (auto simp: Ints_def) | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 371 | also have "of_int n = of_real (real_of_int n)" | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 372 | by simp | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 373 | finally have "x = real_of_int n" | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 374 | by (subst (asm) of_real_eq_iff) | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 375 | thus "x \<in> \<int>" | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 376 | by auto | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 377 | qed (auto simp: Ints_def) | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 378 | |
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 379 | lemma Ints_of_real [intro]: "x \<in> \<int> \<Longrightarrow> of_real x \<in> \<int>" | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 380 | by simp | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 381 | |
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
71837diff
changeset | 382 | |
| 63545 | 383 | text \<open>Every real algebra has characteristic zero.\<close> | 
| 22912 | 384 | instance real_algebra_1 < ring_char_0 | 
| 385 | proof | |
| 63545 | 386 | from inj_of_real inj_of_nat have "inj (of_real \<circ> of_nat)" | 
| 69700 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 387 | by (rule inj_compose) | 
| 63545 | 388 | then show "inj (of_nat :: nat \<Rightarrow> 'a)" | 
| 389 | by (simp add: comp_def) | |
| 22912 | 390 | qed | 
| 391 | ||
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 392 | lemma fraction_scaleR_times [simp]: | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 393 | fixes a :: "'a::real_algebra_1" | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 394 | shows "(numeral u / numeral v) *\<^sub>R (numeral w * a) = (numeral u * numeral w / numeral v) *\<^sub>R a" | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 395 | by (metis (no_types, lifting) of_real_numeral scaleR_conv_of_real scaleR_scaleR times_divide_eq_left) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 396 | |
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 397 | lemma inverse_scaleR_times [simp]: | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 398 | fixes a :: "'a::real_algebra_1" | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 399 | shows "(1 / numeral v) *\<^sub>R (numeral w * a) = (numeral w / numeral v) *\<^sub>R a" | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 400 | by (metis divide_inverse_commute inverse_eq_divide of_real_numeral scaleR_conv_of_real scaleR_scaleR) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 401 | |
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 402 | lemma scaleR_times [simp]: | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 403 | fixes a :: "'a::real_algebra_1" | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 404 | shows "(numeral u) *\<^sub>R (numeral w * a) = (numeral u * numeral w) *\<^sub>R a" | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 405 | by (simp add: scaleR_conv_of_real) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 406 | |
| 27553 | 407 | instance real_field < field_char_0 .. | 
| 408 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 409 | |
| 60758 | 410 | subsection \<open>The Set of Real Numbers\<close> | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 411 | |
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
79945diff
changeset | 412 | definition Reals :: "'a::real_algebra_1 set" (\<open>\<real>\<close>) | 
| 61070 | 413 | where "\<real> = range of_real" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 414 | |
| 61070 | 415 | lemma Reals_of_real [simp]: "of_real r \<in> \<real>" | 
| 63545 | 416 | by (simp add: Reals_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 417 | |
| 61070 | 418 | lemma Reals_of_int [simp]: "of_int z \<in> \<real>" | 
| 63545 | 419 | by (subst of_real_of_int_eq [symmetric], rule Reals_of_real) | 
| 20718 | 420 | |
| 61070 | 421 | lemma Reals_of_nat [simp]: "of_nat n \<in> \<real>" | 
| 63545 | 422 | by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real) | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 423 | |
| 61070 | 424 | lemma Reals_numeral [simp]: "numeral w \<in> \<real>" | 
| 63545 | 425 | by (subst of_real_numeral [symmetric], rule Reals_of_real) | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 426 | |
| 68594 | 427 | lemma Reals_0 [simp]: "0 \<in> \<real>" and Reals_1 [simp]: "1 \<in> \<real>" | 
| 428 | by (simp_all add: Reals_def) | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 429 | |
| 63545 | 430 | lemma Reals_add [simp]: "a \<in> \<real> \<Longrightarrow> b \<in> \<real> \<Longrightarrow> a + b \<in> \<real>" | 
| 73932 
fd21b4a93043
added opaque_combs and renamed hide_lams to opaque_lifting
 desharna parents: 
73411diff
changeset | 431 | by (metis (no_types, opaque_lifting) Reals_def Reals_of_real imageE of_real_add) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 432 | |
| 61070 | 433 | lemma Reals_minus [simp]: "a \<in> \<real> \<Longrightarrow> - a \<in> \<real>" | 
| 68594 | 434 | by (auto simp: Reals_def) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 435 | |
| 68499 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
68465diff
changeset | 436 | lemma Reals_minus_iff [simp]: "- a \<in> \<real> \<longleftrightarrow> a \<in> \<real>" | 
| 71720 | 437 | using Reals_minus by fastforce | 
| 68499 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
68465diff
changeset | 438 | |
| 63545 | 439 | lemma Reals_diff [simp]: "a \<in> \<real> \<Longrightarrow> b \<in> \<real> \<Longrightarrow> a - b \<in> \<real>" | 
| 68594 | 440 | by (metis Reals_add Reals_minus_iff add_uminus_conv_diff) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 441 | |
| 63545 | 442 | lemma Reals_mult [simp]: "a \<in> \<real> \<Longrightarrow> b \<in> \<real> \<Longrightarrow> a * b \<in> \<real>" | 
| 68594 | 443 | by (metis (no_types, lifting) Reals_def Reals_of_real imageE of_real_mult) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 444 | |
| 63545 | 445 | lemma nonzero_Reals_inverse: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> inverse a \<in> \<real>" | 
| 446 | for a :: "'a::real_div_algebra" | |
| 68594 | 447 | by (metis Reals_def Reals_of_real imageE of_real_inverse) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 448 | |
| 63545 | 449 | lemma Reals_inverse: "a \<in> \<real> \<Longrightarrow> inverse a \<in> \<real>" | 
| 450 |   for a :: "'a::{real_div_algebra,division_ring}"
 | |
| 68594 | 451 | using nonzero_Reals_inverse by fastforce | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 452 | |
| 63545 | 453 | lemma Reals_inverse_iff [simp]: "inverse x \<in> \<real> \<longleftrightarrow> x \<in> \<real>" | 
| 454 |   for x :: "'a::{real_div_algebra,division_ring}"
 | |
| 455 | by (metis Reals_inverse inverse_inverse_eq) | |
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 456 | |
| 63545 | 457 | lemma nonzero_Reals_divide: "a \<in> \<real> \<Longrightarrow> b \<in> \<real> \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a / b \<in> \<real>" | 
| 458 | for a b :: "'a::real_field" | |
| 68594 | 459 | by (simp add: divide_inverse) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 460 | |
| 63545 | 461 | lemma Reals_divide [simp]: "a \<in> \<real> \<Longrightarrow> b \<in> \<real> \<Longrightarrow> a / b \<in> \<real>" | 
| 462 |   for a b :: "'a::{real_field,field}"
 | |
| 68594 | 463 | using nonzero_Reals_divide by fastforce | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 464 | |
| 63545 | 465 | lemma Reals_power [simp]: "a \<in> \<real> \<Longrightarrow> a ^ n \<in> \<real>" | 
| 466 | for a :: "'a::real_algebra_1" | |
| 68594 | 467 | by (metis Reals_def Reals_of_real imageE of_real_power) | 
| 20722 | 468 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 469 | lemma Reals_cases [cases set: Reals]: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 470 | assumes "q \<in> \<real>" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 471 | obtains (of_real) r where "q = of_real r" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 472 | unfolding Reals_def | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 473 | proof - | 
| 60758 | 474 | from \<open>q \<in> \<real>\<close> have "q \<in> range of_real" unfolding Reals_def . | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 475 | then obtain r where "q = of_real r" .. | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 476 | then show thesis .. | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 477 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 478 | |
| 64267 | 479 | lemma sum_in_Reals [intro,simp]: "(\<And>i. i \<in> s \<Longrightarrow> f i \<in> \<real>) \<Longrightarrow> sum f s \<in> \<real>" | 
| 63915 | 480 | proof (induct s rule: infinite_finite_induct) | 
| 481 | case infinite | |
| 64267 | 482 | then show ?case by (metis Reals_0 sum.infinite) | 
| 63915 | 483 | qed simp_all | 
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 484 | |
| 64272 | 485 | lemma prod_in_Reals [intro,simp]: "(\<And>i. i \<in> s \<Longrightarrow> f i \<in> \<real>) \<Longrightarrow> prod f s \<in> \<real>" | 
| 63915 | 486 | proof (induct s rule: infinite_finite_induct) | 
| 487 | case infinite | |
| 64272 | 488 | then show ?case by (metis Reals_1 prod.infinite) | 
| 63915 | 489 | qed simp_all | 
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 490 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 491 | lemma Reals_induct [case_names of_real, induct set: Reals]: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 492 | "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 493 | by (rule Reals_cases) auto | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 494 | |
| 63545 | 495 | |
| 60758 | 496 | subsection \<open>Ordered real vector spaces\<close> | 
| 54778 | 497 | |
| 498 | class ordered_real_vector = real_vector + ordered_ab_group_add + | |
| 499 | assumes scaleR_left_mono: "x \<le> y \<Longrightarrow> 0 \<le> a \<Longrightarrow> a *\<^sub>R x \<le> a *\<^sub>R y" | |
| 63545 | 500 | and scaleR_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> x \<Longrightarrow> a *\<^sub>R x \<le> b *\<^sub>R x" | 
| 54778 | 501 | begin | 
| 502 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 503 | lemma scaleR_mono: | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 504 | "a \<le> b \<Longrightarrow> x \<le> y \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> x \<Longrightarrow> a *\<^sub>R x \<le> b *\<^sub>R y" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 505 | by (meson order_trans scaleR_left_mono scaleR_right_mono) | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 506 | |
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 507 | lemma scaleR_mono': | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 508 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a *\<^sub>R c \<le> b *\<^sub>R d" | 
| 54778 | 509 | by (rule scaleR_mono) (auto intro: order.trans) | 
| 510 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 511 | lemma pos_le_divideR_eq [field_simps]: | 
| 70630 | 512 | "a \<le> b /\<^sub>R c \<longleftrightarrow> c *\<^sub>R a \<le> b" (is "?P \<longleftrightarrow> ?Q") if "0 < c" | 
| 513 | proof | |
| 514 | assume ?P | |
| 515 | with scaleR_left_mono that have "c *\<^sub>R a \<le> c *\<^sub>R (b /\<^sub>R c)" | |
| 54785 | 516 | by simp | 
| 70630 | 517 | with that show ?Q | 
| 518 | by (simp add: scaleR_one scaleR_scaleR inverse_eq_divide) | |
| 519 | next | |
| 520 | assume ?Q | |
| 521 | with scaleR_left_mono that have "c *\<^sub>R a /\<^sub>R c \<le> b /\<^sub>R c" | |
| 522 | by simp | |
| 523 | with that show ?P | |
| 54785 | 524 | by (simp add: scaleR_one scaleR_scaleR inverse_eq_divide) | 
| 525 | qed | |
| 526 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 527 | lemma pos_less_divideR_eq [field_simps]: | 
| 70630 | 528 | "a < b /\<^sub>R c \<longleftrightarrow> c *\<^sub>R a < b" if "c > 0" | 
| 529 | using that pos_le_divideR_eq [of c a b] | |
| 530 | by (auto simp add: le_less scaleR_scaleR scaleR_one) | |
| 531 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 532 | lemma pos_divideR_le_eq [field_simps]: | 
| 70630 | 533 | "b /\<^sub>R c \<le> a \<longleftrightarrow> b \<le> c *\<^sub>R a" if "c > 0" | 
| 534 | using that pos_le_divideR_eq [of "inverse c" b a] by simp | |
| 535 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 536 | lemma pos_divideR_less_eq [field_simps]: | 
| 70630 | 537 | "b /\<^sub>R c < a \<longleftrightarrow> b < c *\<^sub>R a" if "c > 0" | 
| 538 | using that pos_less_divideR_eq [of "inverse c" b a] by simp | |
| 539 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 540 | lemma pos_le_minus_divideR_eq [field_simps]: | 
| 70630 | 541 | "a \<le> - (b /\<^sub>R c) \<longleftrightarrow> c *\<^sub>R a \<le> - b" if "c > 0" | 
| 542 | using that by (metis add_minus_cancel diff_0 left_minus minus_minus neg_le_iff_le | |
| 543 | scaleR_add_right uminus_add_conv_diff pos_le_divideR_eq) | |
| 544 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 545 | lemma pos_less_minus_divideR_eq [field_simps]: | 
| 70630 | 546 | "a < - (b /\<^sub>R c) \<longleftrightarrow> c *\<^sub>R a < - b" if "c > 0" | 
| 547 | using that by (metis le_less less_le_not_le pos_divideR_le_eq | |
| 548 | pos_divideR_less_eq pos_le_minus_divideR_eq) | |
| 549 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 550 | lemma pos_minus_divideR_le_eq [field_simps]: | 
| 70630 | 551 | "- (b /\<^sub>R c) \<le> a \<longleftrightarrow> - b \<le> c *\<^sub>R a" if "c > 0" | 
| 552 | using that by (metis pos_divideR_le_eq pos_le_minus_divideR_eq that | |
| 553 | inverse_positive_iff_positive le_imp_neg_le minus_minus) | |
| 554 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 555 | lemma pos_minus_divideR_less_eq [field_simps]: | 
| 70630 | 556 | "- (b /\<^sub>R c) < a \<longleftrightarrow> - b < c *\<^sub>R a" if "c > 0" | 
| 557 | using that by (simp add: less_le_not_le pos_le_minus_divideR_eq pos_minus_divideR_le_eq) | |
| 54785 | 558 | |
| 63545 | 559 | lemma scaleR_image_atLeastAtMost: "c > 0 \<Longrightarrow> scaleR c ` {x..y} = {c *\<^sub>R x..c *\<^sub>R y}"
 | 
| 71720 | 560 | apply (auto intro!: scaleR_left_mono simp: image_iff Bex_def) | 
| 73411 | 561 | using pos_divideR_le_eq [of c] pos_le_divideR_eq [of c] | 
| 562 | apply (meson local.order_eq_iff) | |
| 563 | done | |
| 54785 | 564 | |
| 54778 | 565 | end | 
| 566 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 567 | lemma neg_le_divideR_eq [field_simps]: | 
| 70630 | 568 | "a \<le> b /\<^sub>R c \<longleftrightarrow> b \<le> c *\<^sub>R a" (is "?P \<longleftrightarrow> ?Q") if "c < 0" | 
| 569 | for a b :: "'a :: ordered_real_vector" | |
| 570 | using that pos_le_divideR_eq [of "- c" a "- b"] by simp | |
| 571 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 572 | lemma neg_less_divideR_eq [field_simps]: | 
| 70630 | 573 | "a < b /\<^sub>R c \<longleftrightarrow> b < c *\<^sub>R a" if "c < 0" | 
| 574 | for a b :: "'a :: ordered_real_vector" | |
| 575 | using that neg_le_divideR_eq [of c a b] by (auto simp add: le_less) | |
| 576 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 577 | lemma neg_divideR_le_eq [field_simps]: | 
| 70630 | 578 | "b /\<^sub>R c \<le> a \<longleftrightarrow> c *\<^sub>R a \<le> b" if "c < 0" | 
| 579 | for a b :: "'a :: ordered_real_vector" | |
| 580 | using that pos_divideR_le_eq [of "- c" "- b" a] by simp | |
| 581 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 582 | lemma neg_divideR_less_eq [field_simps]: | 
| 70630 | 583 | "b /\<^sub>R c < a \<longleftrightarrow> c *\<^sub>R a < b" if "c < 0" | 
| 584 | for a b :: "'a :: ordered_real_vector" | |
| 585 | using that neg_divideR_le_eq [of c b a] by (auto simp add: le_less) | |
| 586 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 587 | lemma neg_le_minus_divideR_eq [field_simps]: | 
| 70630 | 588 | "a \<le> - (b /\<^sub>R c) \<longleftrightarrow> - b \<le> c *\<^sub>R a" if "c < 0" | 
| 589 | for a b :: "'a :: ordered_real_vector" | |
| 590 | using that pos_le_minus_divideR_eq [of "- c" a "- b"] by (simp add: minus_le_iff) | |
| 591 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 592 | lemma neg_less_minus_divideR_eq [field_simps]: | 
| 70630 | 593 | "a < - (b /\<^sub>R c) \<longleftrightarrow> - b < c *\<^sub>R a" if "c < 0" | 
| 594 | for a b :: "'a :: ordered_real_vector" | |
| 595 | proof - | |
| 596 | have *: "- b = c *\<^sub>R a \<longleftrightarrow> b = - (c *\<^sub>R a)" | |
| 597 | by (metis add.inverse_inverse) | |
| 598 | from that neg_le_minus_divideR_eq [of c a b] | |
| 599 | show ?thesis by (auto simp add: le_less *) | |
| 600 | qed | |
| 601 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 602 | lemma neg_minus_divideR_le_eq [field_simps]: | 
| 70630 | 603 | "- (b /\<^sub>R c) \<le> a \<longleftrightarrow> c *\<^sub>R a \<le> - b" if "c < 0" | 
| 604 | for a b :: "'a :: ordered_real_vector" | |
| 605 | using that pos_minus_divideR_le_eq [of "- c" "- b" a] by (simp add: le_minus_iff) | |
| 606 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 607 | lemma neg_minus_divideR_less_eq [field_simps]: | 
| 70630 | 608 | "- (b /\<^sub>R c) < a \<longleftrightarrow> c *\<^sub>R a < - b" if "c < 0" | 
| 609 | for a b :: "'a :: ordered_real_vector" | |
| 610 | using that by (simp add: less_le_not_le neg_le_minus_divideR_eq neg_minus_divideR_le_eq) | |
| 60303 | 611 | |
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 612 | lemma [field_split_simps]: | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 613 | "a = b /\<^sub>R c \<longleftrightarrow> (if c = 0 then a = 0 else c *\<^sub>R a = b)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 614 | "b /\<^sub>R c = a \<longleftrightarrow> (if c = 0 then a = 0 else b = c *\<^sub>R a)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 615 | "a + b /\<^sub>R c = (if c = 0 then a else (c *\<^sub>R a + b) /\<^sub>R c)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 616 | "a /\<^sub>R c + b = (if c = 0 then b else (a + c *\<^sub>R b) /\<^sub>R c)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 617 | "a - b /\<^sub>R c = (if c = 0 then a else (c *\<^sub>R a - b) /\<^sub>R c)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 618 | "a /\<^sub>R c - b = (if c = 0 then - b else (a - c *\<^sub>R b) /\<^sub>R c)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 619 | "- (a /\<^sub>R c) + b = (if c = 0 then b else (- a + c *\<^sub>R b) /\<^sub>R c)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 620 | "- (a /\<^sub>R c) - b = (if c = 0 then - b else (- a - c *\<^sub>R b) /\<^sub>R c)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 621 | for a b :: "'a :: real_vector" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 622 | by (auto simp add: field_simps) | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 623 | |
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 624 | lemma [field_split_simps]: | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 625 | "0 < c \<Longrightarrow> a \<le> b /\<^sub>R c \<longleftrightarrow> (if c > 0 then c *\<^sub>R a \<le> b else if c < 0 then b \<le> c *\<^sub>R a else a \<le> 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 626 | "0 < c \<Longrightarrow> a < b /\<^sub>R c \<longleftrightarrow> (if c > 0 then c *\<^sub>R a < b else if c < 0 then b < c *\<^sub>R a else a < 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 627 | "0 < c \<Longrightarrow> b /\<^sub>R c \<le> a \<longleftrightarrow> (if c > 0 then b \<le> c *\<^sub>R a else if c < 0 then c *\<^sub>R a \<le> b else a \<ge> 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 628 | "0 < c \<Longrightarrow> b /\<^sub>R c < a \<longleftrightarrow> (if c > 0 then b < c *\<^sub>R a else if c < 0 then c *\<^sub>R a < b else a > 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 629 | "0 < c \<Longrightarrow> a \<le> - (b /\<^sub>R c) \<longleftrightarrow> (if c > 0 then c *\<^sub>R a \<le> - b else if c < 0 then - b \<le> c *\<^sub>R a else a \<le> 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 630 | "0 < c \<Longrightarrow> a < - (b /\<^sub>R c) \<longleftrightarrow> (if c > 0 then c *\<^sub>R a < - b else if c < 0 then - b < c *\<^sub>R a else a < 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 631 | "0 < c \<Longrightarrow> - (b /\<^sub>R c) \<le> a \<longleftrightarrow> (if c > 0 then - b \<le> c *\<^sub>R a else if c < 0 then c *\<^sub>R a \<le> - b else a \<ge> 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 632 | "0 < c \<Longrightarrow> - (b /\<^sub>R c) < a \<longleftrightarrow> (if c > 0 then - b < c *\<^sub>R a else if c < 0 then c *\<^sub>R a < - b else a > 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 633 | for a b :: "'a :: ordered_real_vector" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 634 | by (clarsimp intro!: field_simps)+ | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 635 | |
| 63545 | 636 | lemma scaleR_nonneg_nonneg: "0 \<le> a \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> a *\<^sub>R x" | 
| 637 | for x :: "'a::ordered_real_vector" | |
| 638 | using scaleR_left_mono [of 0 x a] by simp | |
| 54778 | 639 | |
| 63545 | 640 | lemma scaleR_nonneg_nonpos: "0 \<le> a \<Longrightarrow> x \<le> 0 \<Longrightarrow> a *\<^sub>R x \<le> 0" | 
| 641 | for x :: "'a::ordered_real_vector" | |
| 54778 | 642 | using scaleR_left_mono [of x 0 a] by simp | 
| 643 | ||
| 63545 | 644 | lemma scaleR_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> x \<Longrightarrow> a *\<^sub>R x \<le> 0" | 
| 645 | for x :: "'a::ordered_real_vector" | |
| 54778 | 646 | using scaleR_right_mono [of a 0 x] by simp | 
| 647 | ||
| 63545 | 648 | lemma split_scaleR_neg_le: "(0 \<le> a \<and> x \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> x) \<Longrightarrow> a *\<^sub>R x \<le> 0" | 
| 649 | for x :: "'a::ordered_real_vector" | |
| 68594 | 650 | by (auto simp: scaleR_nonneg_nonpos scaleR_nonpos_nonneg) | 
| 54778 | 651 | |
| 63545 | 652 | lemma le_add_iff1: "a *\<^sub>R e + c \<le> b *\<^sub>R e + d \<longleftrightarrow> (a - b) *\<^sub>R e + c \<le> d" | 
| 653 | for c d e :: "'a::ordered_real_vector" | |
| 54778 | 654 | by (simp add: algebra_simps) | 
| 655 | ||
| 63545 | 656 | lemma le_add_iff2: "a *\<^sub>R e + c \<le> b *\<^sub>R e + d \<longleftrightarrow> c \<le> (b - a) *\<^sub>R e + d" | 
| 657 | for c d e :: "'a::ordered_real_vector" | |
| 54778 | 658 | by (simp add: algebra_simps) | 
| 659 | ||
| 63545 | 660 | lemma scaleR_left_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c *\<^sub>R a \<le> c *\<^sub>R b" | 
| 661 | for a b :: "'a::ordered_real_vector" | |
| 68669 | 662 | by (drule scaleR_left_mono [of _ _ "- c"], simp_all) | 
| 54778 | 663 | |
| 63545 | 664 | lemma scaleR_right_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a *\<^sub>R c \<le> b *\<^sub>R c" | 
| 665 | for c :: "'a::ordered_real_vector" | |
| 68669 | 666 | by (drule scaleR_right_mono [of _ _ "- c"], simp_all) | 
| 54778 | 667 | |
| 63545 | 668 | lemma scaleR_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a *\<^sub>R b" | 
| 669 | for b :: "'a::ordered_real_vector" | |
| 670 | using scaleR_right_mono_neg [of a 0 b] by simp | |
| 54778 | 671 | |
| 63545 | 672 | lemma split_scaleR_pos_le: "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a *\<^sub>R b" | 
| 673 | for b :: "'a::ordered_real_vector" | |
| 68594 | 674 | by (auto simp: scaleR_nonneg_nonneg scaleR_nonpos_nonpos) | 
| 54778 | 675 | |
| 676 | lemma zero_le_scaleR_iff: | |
| 63545 | 677 | fixes b :: "'a::ordered_real_vector" | 
| 678 | shows "0 \<le> a *\<^sub>R b \<longleftrightarrow> 0 < a \<and> 0 \<le> b \<or> a < 0 \<and> b \<le> 0 \<or> a = 0" | |
| 679 | (is "?lhs = ?rhs") | |
| 680 | proof (cases "a = 0") | |
| 681 | case True | |
| 682 | then show ?thesis by simp | |
| 683 | next | |
| 684 | case False | |
| 54778 | 685 | show ?thesis | 
| 686 | proof | |
| 63545 | 687 | assume ?lhs | 
| 688 | from \<open>a \<noteq> 0\<close> consider "a > 0" | "a < 0" by arith | |
| 689 | then show ?rhs | |
| 690 | proof cases | |
| 691 | case 1 | |
| 692 | with \<open>?lhs\<close> have "inverse a *\<^sub>R 0 \<le> inverse a *\<^sub>R (a *\<^sub>R b)" | |
| 54778 | 693 | by (intro scaleR_mono) auto | 
| 63545 | 694 | with 1 show ?thesis | 
| 54778 | 695 | by simp | 
| 63545 | 696 | next | 
| 697 | case 2 | |
| 698 | with \<open>?lhs\<close> have "- inverse a *\<^sub>R 0 \<le> - inverse a *\<^sub>R (a *\<^sub>R b)" | |
| 54778 | 699 | by (intro scaleR_mono) auto | 
| 63545 | 700 | with 2 show ?thesis | 
| 54778 | 701 | by simp | 
| 63545 | 702 | qed | 
| 703 | next | |
| 704 | assume ?rhs | |
| 705 | then show ?lhs | |
| 706 | by (auto simp: not_le \<open>a \<noteq> 0\<close> intro!: split_scaleR_pos_le) | |
| 707 | qed | |
| 708 | qed | |
| 54778 | 709 | |
| 63545 | 710 | lemma scaleR_le_0_iff: "a *\<^sub>R b \<le> 0 \<longleftrightarrow> 0 < a \<and> b \<le> 0 \<or> a < 0 \<and> 0 \<le> b \<or> a = 0" | 
| 711 | for b::"'a::ordered_real_vector" | |
| 54778 | 712 | by (insert zero_le_scaleR_iff [of "-a" b]) force | 
| 713 | ||
| 63545 | 714 | lemma scaleR_le_cancel_left: "c *\<^sub>R a \<le> c *\<^sub>R b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | 
| 715 | for b :: "'a::ordered_real_vector" | |
| 68594 | 716 | by (auto simp: neq_iff scaleR_left_mono scaleR_left_mono_neg | 
| 63545 | 717 | dest: scaleR_left_mono[where a="inverse c"] scaleR_left_mono_neg[where c="inverse c"]) | 
| 54778 | 718 | |
| 63545 | 719 | lemma scaleR_le_cancel_left_pos: "0 < c \<Longrightarrow> c *\<^sub>R a \<le> c *\<^sub>R b \<longleftrightarrow> a \<le> b" | 
| 720 | for b :: "'a::ordered_real_vector" | |
| 54778 | 721 | by (auto simp: scaleR_le_cancel_left) | 
| 722 | ||
| 63545 | 723 | lemma scaleR_le_cancel_left_neg: "c < 0 \<Longrightarrow> c *\<^sub>R a \<le> c *\<^sub>R b \<longleftrightarrow> b \<le> a" | 
| 724 | for b :: "'a::ordered_real_vector" | |
| 54778 | 725 | by (auto simp: scaleR_le_cancel_left) | 
| 726 | ||
| 63545 | 727 | lemma scaleR_left_le_one_le: "0 \<le> x \<Longrightarrow> a \<le> 1 \<Longrightarrow> a *\<^sub>R x \<le> x" | 
| 728 | for x :: "'a::ordered_real_vector" and a :: real | |
| 54778 | 729 | using scaleR_right_mono[of a 1 x] by simp | 
| 730 | ||
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 731 | |
| 60758 | 732 | subsection \<open>Real normed vector spaces\<close> | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 733 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 734 | class dist = | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 735 | fixes dist :: "'a \<Rightarrow> 'a \<Rightarrow> real" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 736 | |
| 29608 | 737 | class norm = | 
| 22636 | 738 | fixes norm :: "'a \<Rightarrow> real" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 739 | |
| 24520 | 740 | class sgn_div_norm = scaleR + norm + sgn + | 
| 25062 | 741 | assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x" | 
| 24506 | 742 | |
| 31289 | 743 | class dist_norm = dist + norm + minus + | 
| 744 | assumes dist_norm: "dist x y = norm (x - y)" | |
| 745 | ||
| 62101 | 746 | class uniformity_dist = dist + uniformity + | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69064diff
changeset | 747 |   assumes uniformity_dist: "uniformity = (INF e\<in>{0 <..}. principal {(x, y). dist x y < e})"
 | 
| 62101 | 748 | begin | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 749 | |
| 62101 | 750 | lemma eventually_uniformity_metric: | 
| 751 | "eventually P uniformity \<longleftrightarrow> (\<exists>e>0. \<forall>x y. dist x y < e \<longrightarrow> P (x, y))" | |
| 752 | unfolding uniformity_dist | |
| 753 | by (subst eventually_INF_base) | |
| 754 | (auto simp: eventually_principal subset_eq intro: bexI[of _ "min _ _"]) | |
| 755 | ||
| 756 | end | |
| 757 | ||
| 758 | class real_normed_vector = real_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity + | |
| 51002 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 759 | assumes norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0" | 
| 63545 | 760 | and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y" | 
| 761 | and norm_scaleR [simp]: "norm (scaleR a x) = \<bar>a\<bar> * norm x" | |
| 51002 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 762 | begin | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 763 | |
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 764 | lemma norm_ge_zero [simp]: "0 \<le> norm x" | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 765 | proof - | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 766 | have "0 = norm (x + -1 *\<^sub>R x)" | 
| 51002 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 767 | using scaleR_add_left[of 1 "-1" x] norm_scaleR[of 0 x] by (simp add: scaleR_one) | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 768 | also have "\<dots> \<le> norm x + norm (-1 *\<^sub>R x)" by (rule norm_triangle_ineq) | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 769 | finally show ?thesis by simp | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 770 | qed | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 771 | |
| 74007 
df976eefcba0
A few new lemmas and simplifications
 paulson <lp15@cam.ac.uk> parents: 
73932diff
changeset | 772 | lemma bdd_below_norm_image: "bdd_below (norm ` A)" | 
| 
df976eefcba0
A few new lemmas and simplifications
 paulson <lp15@cam.ac.uk> parents: 
73932diff
changeset | 773 | by (meson bdd_belowI2 norm_ge_zero) | 
| 
df976eefcba0
A few new lemmas and simplifications
 paulson <lp15@cam.ac.uk> parents: 
73932diff
changeset | 774 | |
| 51002 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 775 | end | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 776 | |
| 24588 | 777 | class real_normed_algebra = real_algebra + real_normed_vector + | 
| 25062 | 778 | assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 779 | |
| 24588 | 780 | class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra + | 
| 25062 | 781 | assumes norm_one [simp]: "norm 1 = 1" | 
| 62101 | 782 | |
| 63545 | 783 | lemma (in real_normed_algebra_1) scaleR_power [simp]: "(scaleR x y) ^ n = scaleR (x^n) (y^n)" | 
| 784 | by (induct n) (simp_all add: scaleR_one scaleR_scaleR mult_ac) | |
| 22852 | 785 | |
| 24588 | 786 | class real_normed_div_algebra = real_div_algebra + real_normed_vector + | 
| 25062 | 787 | assumes norm_mult: "norm (x * y) = norm x * norm y" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 788 | |
| 78656 
4da1e18a9633
Loads of new material related to porting the Euler Polyhedron Formula from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 789 | lemma divideR_right: | 
| 
4da1e18a9633
Loads of new material related to porting the Euler Polyhedron Formula from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 790 | fixes x y :: "'a::real_normed_vector" | 
| 
4da1e18a9633
Loads of new material related to porting the Euler Polyhedron Formula from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 791 | shows "r \<noteq> 0 \<Longrightarrow> y = x /\<^sub>R r \<longleftrightarrow> r *\<^sub>R y = x" | 
| 
4da1e18a9633
Loads of new material related to porting the Euler Polyhedron Formula from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 792 | by auto | 
| 
4da1e18a9633
Loads of new material related to porting the Euler Polyhedron Formula from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 793 | |
| 24588 | 794 | class real_normed_field = real_field + real_normed_div_algebra | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 795 | |
| 22852 | 796 | instance real_normed_div_algebra < real_normed_algebra_1 | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 797 | proof | 
| 63545 | 798 | show "norm (x * y) \<le> norm x * norm y" for x y :: 'a | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 799 | by (simp add: norm_mult) | 
| 22852 | 800 | next | 
| 801 | have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)" | |
| 802 | by (rule norm_mult) | |
| 63545 | 803 | then show "norm (1::'a) = 1" by simp | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 804 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 805 | |
| 69512 | 806 | context real_normed_vector begin | 
| 807 | ||
| 808 | lemma norm_zero [simp]: "norm (0::'a) = 0" | |
| 63545 | 809 | by simp | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 810 | |
| 63545 | 811 | lemma zero_less_norm_iff [simp]: "norm x > 0 \<longleftrightarrow> x \<noteq> 0" | 
| 812 | by (simp add: order_less_le) | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 813 | |
| 63545 | 814 | lemma norm_not_less_zero [simp]: "\<not> norm x < 0" | 
| 815 | by (simp add: linorder_not_less) | |
| 20828 | 816 | |
| 63545 | 817 | lemma norm_le_zero_iff [simp]: "norm x \<le> 0 \<longleftrightarrow> x = 0" | 
| 818 | by (simp add: order_le_less) | |
| 20828 | 819 | |
| 63545 | 820 | lemma norm_minus_cancel [simp]: "norm (- x) = norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 821 | proof - | 
| 69512 | 822 | have "- 1 *\<^sub>R x = - (1 *\<^sub>R x)" | 
| 823 | unfolding add_eq_0_iff2[symmetric] scaleR_add_left[symmetric] | |
| 824 | using norm_eq_zero | |
| 825 | by fastforce | |
| 826 | then have "norm (- x) = norm (scaleR (- 1) x)" | |
| 827 | by (simp only: scaleR_one) | |
| 20533 | 828 | also have "\<dots> = \<bar>- 1\<bar> * norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 829 | by (rule norm_scaleR) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 830 | finally show ?thesis by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 831 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 832 | |
| 63545 | 833 | lemma norm_minus_commute: "norm (a - b) = norm (b - a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 834 | proof - | 
| 22898 | 835 | have "norm (- (b - a)) = norm (b - a)" | 
| 836 | by (rule norm_minus_cancel) | |
| 63545 | 837 | then show ?thesis by simp | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 838 | qed | 
| 63545 | 839 | |
| 840 | lemma dist_add_cancel [simp]: "dist (a + b) (a + c) = dist b c" | |
| 841 | by (simp add: dist_norm) | |
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 842 | |
| 63545 | 843 | lemma dist_add_cancel2 [simp]: "dist (b + a) (c + a) = dist b c" | 
| 844 | by (simp add: dist_norm) | |
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 845 | |
| 69512 | 846 | lemma norm_uminus_minus: "norm (- x - y) = norm (x + y)" | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 847 | by (subst (2) norm_minus_cancel[symmetric], subst minus_add_distrib) simp | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 848 | |
| 63545 | 849 | lemma norm_triangle_ineq2: "norm a - norm b \<le> norm (a - b)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 850 | proof - | 
| 20533 | 851 | have "norm (a - b + b) \<le> norm (a - b) + norm b" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 852 | by (rule norm_triangle_ineq) | 
| 63545 | 853 | then show ?thesis by simp | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 854 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 855 | |
| 63545 | 856 | lemma norm_triangle_ineq3: "\<bar>norm a - norm b\<bar> \<le> norm (a - b)" | 
| 68594 | 857 | proof - | 
| 858 | have "norm a - norm b \<le> norm (a - b)" | |
| 859 | by (simp add: norm_triangle_ineq2) | |
| 860 | moreover have "norm b - norm a \<le> norm (a - b)" | |
| 861 | by (metis norm_minus_commute norm_triangle_ineq2) | |
| 862 | ultimately show ?thesis | |
| 863 | by (simp add: abs_le_iff) | |
| 864 | qed | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 865 | |
| 63545 | 866 | lemma norm_triangle_ineq4: "norm (a - b) \<le> norm a + norm b" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 867 | proof - | 
| 22898 | 868 | have "norm (a + - b) \<le> norm a + norm (- b)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 869 | by (rule norm_triangle_ineq) | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53600diff
changeset | 870 | then show ?thesis by simp | 
| 22898 | 871 | qed | 
| 872 | ||
| 69512 | 873 | lemma norm_triangle_le_diff: "norm x + norm y \<le> e \<Longrightarrow> norm (x - y) \<le> e" | 
| 66422 | 874 | by (meson norm_triangle_ineq4 order_trans) | 
| 66420 | 875 | |
| 63545 | 876 | lemma norm_diff_ineq: "norm a - norm b \<le> norm (a + b)" | 
| 22898 | 877 | proof - | 
| 878 | have "norm a - norm (- b) \<le> norm (a - - b)" | |
| 879 | by (rule norm_triangle_ineq2) | |
| 63545 | 880 | then show ?thesis by simp | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 881 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 882 | |
| 69513 | 883 | lemma norm_triangle_sub: "norm x \<le> norm y + norm (x - y)" | 
| 884 | using norm_triangle_ineq[of "y" "x - y"] by (simp add: field_simps) | |
| 885 | ||
| 886 | lemma norm_triangle_le: "norm x + norm y \<le> e \<Longrightarrow> norm (x + y) \<le> e" | |
| 887 | by (rule norm_triangle_ineq [THEN order_trans]) | |
| 888 | ||
| 889 | lemma norm_triangle_lt: "norm x + norm y < e \<Longrightarrow> norm (x + y) < e" | |
| 890 | by (rule norm_triangle_ineq [THEN le_less_trans]) | |
| 891 | ||
| 63545 | 892 | lemma norm_add_leD: "norm (a + b) \<le> c \<Longrightarrow> norm b \<le> norm a + c" | 
| 69512 | 893 | by (metis ab_semigroup_add_class.add.commute add_commute diff_le_eq norm_diff_ineq order_trans) | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 894 | |
| 63545 | 895 | lemma norm_diff_triangle_ineq: "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)" | 
| 20551 | 896 | proof - | 
| 897 | have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53600diff
changeset | 898 | by (simp add: algebra_simps) | 
| 20551 | 899 | also have "\<dots> \<le> norm (a - c) + norm (b - d)" | 
| 900 | by (rule norm_triangle_ineq) | |
| 901 | finally show ?thesis . | |
| 902 | qed | |
| 903 | ||
| 69512 | 904 | lemma norm_diff_triangle_le: "norm (x - z) \<le> e1 + e2" | 
| 905 | if "norm (x - y) \<le> e1" "norm (y - z) \<le> e2" | |
| 906 | proof - | |
| 907 | have "norm (x - (y + z - y)) \<le> norm (x - y) + norm (y - z)" | |
| 908 | using norm_diff_triangle_ineq that diff_diff_eq2 by presburger | |
| 909 | with that show ?thesis by simp | |
| 910 | qed | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 911 | |
| 69512 | 912 | lemma norm_diff_triangle_less: "norm (x - z) < e1 + e2" | 
| 913 | if "norm (x - y) < e1" "norm (y - z) < e2" | |
| 914 | proof - | |
| 915 | have "norm (x - z) \<le> norm (x - y) + norm (y - z)" | |
| 916 | by (metis norm_diff_triangle_ineq add_diff_cancel_left' diff_diff_eq2) | |
| 917 | with that show ?thesis by auto | |
| 918 | qed | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 919 | |
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 920 | lemma norm_triangle_mono: | 
| 69512 | 921 | "norm a \<le> r \<Longrightarrow> norm b \<le> s \<Longrightarrow> norm (a + b) \<le> r + s" | 
| 922 | by (metis (mono_tags) add_mono_thms_linordered_semiring(1) norm_triangle_ineq order.trans) | |
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 923 | |
| 69512 | 924 | lemma norm_sum: "norm (sum f A) \<le> (\<Sum>i\<in>A. norm (f i))" | 
| 925 | for f::"'b \<Rightarrow> 'a" | |
| 56194 | 926 | by (induct A rule: infinite_finite_induct) (auto intro: norm_triangle_mono) | 
| 927 | ||
| 69512 | 928 | lemma sum_norm_le: "norm (sum f S) \<le> sum g S" | 
| 929 | if "\<And>x. x \<in> S \<Longrightarrow> norm (f x) \<le> g x" | |
| 930 | for f::"'b \<Rightarrow> 'a" | |
| 931 | by (rule order_trans [OF norm_sum sum_mono]) (simp add: that) | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56194diff
changeset | 932 | |
| 63545 | 933 | lemma abs_norm_cancel [simp]: "\<bar>norm a\<bar> = norm a" | 
| 934 | by (rule abs_of_nonneg [OF norm_ge_zero]) | |
| 22857 | 935 | |
| 69513 | 936 | lemma sum_norm_bound: | 
| 937 | "norm (sum f S) \<le> of_nat (card S)*K" | |
| 938 | if "\<And>x. x \<in> S \<Longrightarrow> norm (f x) \<le> K" | |
| 939 | for f :: "'b \<Rightarrow> 'a" | |
| 940 | using sum_norm_le[OF that] sum_constant[symmetric] | |
| 941 | by simp | |
| 942 | ||
| 63545 | 943 | lemma norm_add_less: "norm x < r \<Longrightarrow> norm y < s \<Longrightarrow> norm (x + y) < r + s" | 
| 944 | by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono]) | |
| 22880 | 945 | |
| 69512 | 946 | end | 
| 947 | ||
| 948 | lemma dist_scaleR [simp]: "dist (x *\<^sub>R a) (y *\<^sub>R a) = \<bar>x - y\<bar> * norm a" | |
| 949 | for a :: "'a::real_normed_vector" | |
| 950 | by (metis dist_norm norm_scaleR scaleR_left.diff) | |
| 951 | ||
| 63545 | 952 | lemma norm_mult_less: "norm x < r \<Longrightarrow> norm y < s \<Longrightarrow> norm (x * y) < r * s" | 
| 953 | for x y :: "'a::real_normed_algebra" | |
| 954 | by (rule order_le_less_trans [OF norm_mult_ineq]) (simp add: mult_strict_mono') | |
| 22880 | 955 | |
| 63545 | 956 | lemma norm_of_real [simp]: "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>" | 
| 957 | by (simp add: of_real_def) | |
| 20560 | 958 | |
| 63545 | 959 | lemma norm_numeral [simp]: "norm (numeral w::'a::real_normed_algebra_1) = numeral w" | 
| 960 | by (subst of_real_numeral [symmetric], subst norm_of_real, simp) | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 961 | |
| 63545 | 962 | lemma norm_neg_numeral [simp]: "norm (- numeral w::'a::real_normed_algebra_1) = numeral w" | 
| 963 | by (subst of_real_neg_numeral [symmetric], subst norm_of_real, simp) | |
| 22876 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 964 | |
| 63545 | 965 | lemma norm_of_real_add1 [simp]: "norm (of_real x + 1 :: 'a :: real_normed_div_algebra) = \<bar>x + 1\<bar>" | 
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 966 | by (metis norm_of_real of_real_1 of_real_add) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 967 | |
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 968 | lemma norm_of_real_addn [simp]: | 
| 63545 | 969 | "norm (of_real x + numeral b :: 'a :: real_normed_div_algebra) = \<bar>x + numeral b\<bar>" | 
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 970 | by (metis norm_of_real of_real_add of_real_numeral) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 971 | |
| 63545 | 972 | lemma norm_of_int [simp]: "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>" | 
| 973 | by (subst of_real_of_int_eq [symmetric], rule norm_of_real) | |
| 22876 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 974 | |
| 63545 | 975 | lemma norm_of_nat [simp]: "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n" | 
| 68594 | 976 | by (metis abs_of_nat norm_of_real of_real_of_nat_eq) | 
| 22876 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 977 | |
| 63545 | 978 | lemma nonzero_norm_inverse: "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)" | 
| 979 | for a :: "'a::real_normed_div_algebra" | |
| 68594 | 980 | by (metis inverse_unique norm_mult norm_one right_inverse) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 981 | |
| 63545 | 982 | lemma norm_inverse: "norm (inverse a) = inverse (norm a)" | 
| 983 |   for a :: "'a::{real_normed_div_algebra,division_ring}"
 | |
| 68594 | 984 | by (metis inverse_zero nonzero_norm_inverse norm_zero) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 985 | |
| 63545 | 986 | lemma nonzero_norm_divide: "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b" | 
| 987 | for a b :: "'a::real_normed_field" | |
| 988 | by (simp add: divide_inverse norm_mult nonzero_norm_inverse) | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 989 | |
| 63545 | 990 | lemma norm_divide: "norm (a / b) = norm a / norm b" | 
| 991 |   for a b :: "'a::{real_normed_field,field}"
 | |
| 992 | by (simp add: divide_inverse norm_mult norm_inverse) | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 993 | |
| 77221 
0cdb384bf56a
More new theorems from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
77138diff
changeset | 994 | lemma dist_divide_right: "dist (a/c) (b/c) = dist a b / norm c" for c :: "'a :: real_normed_field" | 
| 
0cdb384bf56a
More new theorems from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
77138diff
changeset | 995 | by (metis diff_divide_distrib dist_norm norm_divide) | 
| 
0cdb384bf56a
More new theorems from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
77138diff
changeset | 996 | |
| 68615 | 997 | lemma norm_inverse_le_norm: | 
| 998 | fixes x :: "'a::real_normed_div_algebra" | |
| 999 | shows "r \<le> norm x \<Longrightarrow> 0 < r \<Longrightarrow> norm (inverse x) \<le> inverse r" | |
| 1000 | by (simp add: le_imp_inverse_le norm_inverse) | |
| 1001 | ||
| 63545 | 1002 | lemma norm_power_ineq: "norm (x ^ n) \<le> norm x ^ n" | 
| 1003 | for x :: "'a::real_normed_algebra_1" | |
| 22852 | 1004 | proof (induct n) | 
| 63545 | 1005 | case 0 | 
| 1006 | show "norm (x ^ 0) \<le> norm x ^ 0" by simp | |
| 22852 | 1007 | next | 
| 1008 | case (Suc n) | |
| 1009 | have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)" | |
| 1010 | by (rule norm_mult_ineq) | |
| 1011 | also from Suc have "\<dots> \<le> norm x * norm x ^ n" | |
| 1012 | using norm_ge_zero by (rule mult_left_mono) | |
| 1013 | finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 1014 | by simp | 
| 22852 | 1015 | qed | 
| 1016 | ||
| 63545 | 1017 | lemma norm_power: "norm (x ^ n) = norm x ^ n" | 
| 1018 | for x :: "'a::real_normed_div_algebra" | |
| 1019 | by (induct n) (simp_all add: norm_mult) | |
| 20684 | 1020 | |
| 71837 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 1021 | lemma norm_power_int: "norm (power_int x n) = power_int (norm x) n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 1022 | for x :: "'a::real_normed_div_algebra" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 1023 | by (cases n rule: int_cases4) (auto simp: norm_power power_int_minus norm_inverse) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71827diff
changeset | 1024 | |
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1025 | lemma power_eq_imp_eq_norm: | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1026 | fixes w :: "'a::real_normed_div_algebra" | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1027 | assumes eq: "w ^ n = z ^ n" and "n > 0" | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1028 | shows "norm w = norm z" | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1029 | proof - | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1030 | have "norm w ^ n = norm z ^ n" | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1031 | by (metis (no_types) eq norm_power) | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1032 | then show ?thesis | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1033 | using assms by (force intro: power_eq_imp_eq_base) | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1034 | qed | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1035 | |
| 68465 
e699ca8e22b7
New material in support of quaternions
 paulson <lp15@cam.ac.uk> parents: 
68397diff
changeset | 1036 | lemma power_eq_1_iff: | 
| 
e699ca8e22b7
New material in support of quaternions
 paulson <lp15@cam.ac.uk> parents: 
68397diff
changeset | 1037 | fixes w :: "'a::real_normed_div_algebra" | 
| 
e699ca8e22b7
New material in support of quaternions
 paulson <lp15@cam.ac.uk> parents: 
68397diff
changeset | 1038 | shows "w ^ n = 1 \<Longrightarrow> norm w = 1 \<or> n = 0" | 
| 
e699ca8e22b7
New material in support of quaternions
 paulson <lp15@cam.ac.uk> parents: 
68397diff
changeset | 1039 | by (metis norm_one power_0_left power_eq_0_iff power_eq_imp_eq_norm power_one) | 
| 
e699ca8e22b7
New material in support of quaternions
 paulson <lp15@cam.ac.uk> parents: 
68397diff
changeset | 1040 | |
| 63545 | 1041 | lemma norm_mult_numeral1 [simp]: "norm (numeral w * a) = numeral w * norm a" | 
| 1042 |   for a b :: "'a::{real_normed_field,field}"
 | |
| 1043 | by (simp add: norm_mult) | |
| 60762 | 1044 | |
| 63545 | 1045 | lemma norm_mult_numeral2 [simp]: "norm (a * numeral w) = norm a * numeral w" | 
| 1046 |   for a b :: "'a::{real_normed_field,field}"
 | |
| 1047 | by (simp add: norm_mult) | |
| 60762 | 1048 | |
| 63545 | 1049 | lemma norm_divide_numeral [simp]: "norm (a / numeral w) = norm a / numeral w" | 
| 1050 |   for a b :: "'a::{real_normed_field,field}"
 | |
| 1051 | by (simp add: norm_divide) | |
| 60762 | 1052 | |
| 1053 | lemma norm_of_real_diff [simp]: | |
| 63545 | 1054 | "norm (of_real b - of_real a :: 'a::real_normed_algebra_1) \<le> \<bar>b - a\<bar>" | 
| 60762 | 1055 | by (metis norm_of_real of_real_diff order_refl) | 
| 1056 | ||
| 63545 | 1057 | text \<open>Despite a superficial resemblance, \<open>norm_eq_1\<close> is not relevant.\<close> | 
| 59613 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59587diff
changeset | 1058 | lemma square_norm_one: | 
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59587diff
changeset | 1059 | fixes x :: "'a::real_normed_div_algebra" | 
| 63545 | 1060 | assumes "x\<^sup>2 = 1" | 
| 1061 | shows "norm x = 1" | |
| 59613 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59587diff
changeset | 1062 | by (metis assms norm_minus_cancel norm_one power2_eq_1_iff) | 
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59587diff
changeset | 1063 | |
| 63545 | 1064 | lemma norm_less_p1: "norm x < norm (of_real (norm x) + 1 :: 'a)" | 
| 1065 | for x :: "'a::real_normed_algebra_1" | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1066 | proof - | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1067 | have "norm x < norm (of_real (norm x + 1) :: 'a)" | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1068 | by (simp add: of_real_def) | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1069 | then show ?thesis | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1070 | by simp | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1071 | qed | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1072 | |
| 64272 | 1073 | lemma prod_norm: "prod (\<lambda>x. norm (f x)) A = norm (prod f A)" | 
| 63545 | 1074 |   for f :: "'a \<Rightarrow> 'b::{comm_semiring_1,real_normed_div_algebra}"
 | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1075 | by (induct A rule: infinite_finite_induct) (auto simp: norm_mult) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1076 | |
| 64272 | 1077 | lemma norm_prod_le: | 
| 1078 |   "norm (prod f A) \<le> (\<Prod>a\<in>A. norm (f a :: 'a :: {real_normed_algebra_1,comm_monoid_mult}))"
 | |
| 63545 | 1079 | proof (induct A rule: infinite_finite_induct) | 
| 1080 | case empty | |
| 1081 | then show ?case by simp | |
| 1082 | next | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1083 | case (insert a A) | 
| 64272 | 1084 | then have "norm (prod f (insert a A)) \<le> norm (f a) * norm (prod f A)" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1085 | by (simp add: norm_mult_ineq) | 
| 64272 | 1086 | also have "norm (prod f A) \<le> (\<Prod>a\<in>A. norm (f a))" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1087 | by (rule insert) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1088 | finally show ?case | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1089 | by (simp add: insert mult_left_mono) | 
| 63545 | 1090 | next | 
| 1091 | case infinite | |
| 1092 | then show ?case by simp | |
| 1093 | qed | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1094 | |
| 64272 | 1095 | lemma norm_prod_diff: | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1096 |   fixes z w :: "'i \<Rightarrow> 'a::{real_normed_algebra_1, comm_monoid_mult}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1097 | shows "(\<And>i. i \<in> I \<Longrightarrow> norm (z i) \<le> 1) \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> norm (w i) \<le> 1) \<Longrightarrow> | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1098 | norm ((\<Prod>i\<in>I. z i) - (\<Prod>i\<in>I. w i)) \<le> (\<Sum>i\<in>I. norm (z i - w i))" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1099 | proof (induction I rule: infinite_finite_induct) | 
| 63545 | 1100 | case empty | 
| 1101 | then show ?case by simp | |
| 1102 | next | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1103 | case (insert i I) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1104 | note insert.hyps[simp] | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1105 | |
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1106 | have "norm ((\<Prod>i\<in>insert i I. z i) - (\<Prod>i\<in>insert i I. w i)) = | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1107 | norm ((\<Prod>i\<in>I. z i) * (z i - w i) + ((\<Prod>i\<in>I. z i) - (\<Prod>i\<in>I. w i)) * w i)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1108 | (is "_ = norm (?t1 + ?t2)") | 
| 68594 | 1109 | by (auto simp: field_simps) | 
| 63545 | 1110 | also have "\<dots> \<le> norm ?t1 + norm ?t2" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1111 | by (rule norm_triangle_ineq) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1112 | also have "norm ?t1 \<le> norm (\<Prod>i\<in>I. z i) * norm (z i - w i)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1113 | by (rule norm_mult_ineq) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1114 | also have "\<dots> \<le> (\<Prod>i\<in>I. norm (z i)) * norm(z i - w i)" | 
| 64272 | 1115 | by (rule mult_right_mono) (auto intro: norm_prod_le) | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1116 | also have "(\<Prod>i\<in>I. norm (z i)) \<le> (\<Prod>i\<in>I. 1)" | 
| 64272 | 1117 | by (intro prod_mono) (auto intro!: insert) | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1118 | also have "norm ?t2 \<le> norm ((\<Prod>i\<in>I. z i) - (\<Prod>i\<in>I. w i)) * norm (w i)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1119 | by (rule norm_mult_ineq) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1120 | also have "norm (w i) \<le> 1" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1121 | by (auto intro: insert) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1122 | also have "norm ((\<Prod>i\<in>I. z i) - (\<Prod>i\<in>I. w i)) \<le> (\<Sum>i\<in>I. norm (z i - w i))" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1123 | using insert by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1124 | finally show ?case | 
| 68594 | 1125 | by (auto simp: ac_simps mult_right_mono mult_left_mono) | 
| 63545 | 1126 | next | 
| 1127 | case infinite | |
| 1128 | then show ?case by simp | |
| 1129 | qed | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1130 | |
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1131 | lemma norm_power_diff: | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1132 |   fixes z w :: "'a::{real_normed_algebra_1, comm_monoid_mult}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1133 | assumes "norm z \<le> 1" "norm w \<le> 1" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1134 | shows "norm (z^m - w^m) \<le> m * norm (z - w)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1135 | proof - | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1136 | have "norm (z^m - w^m) = norm ((\<Prod> i < m. z) - (\<Prod> i < m. w))" | 
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 1137 | by simp | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1138 | also have "\<dots> \<le> (\<Sum>i<m. norm (z - w))" | 
| 68594 | 1139 | by (intro norm_prod_diff) (auto simp: assms) | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1140 | also have "\<dots> = m * norm (z - w)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1141 | by simp | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1142 | finally show ?thesis . | 
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 1143 | qed | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 1144 | |
| 60758 | 1145 | subsection \<open>Metric spaces\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1146 | |
| 62101 | 1147 | class metric_space = uniformity_dist + open_uniformity + | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1148 | assumes dist_eq_0_iff [simp]: "dist x y = 0 \<longleftrightarrow> x = y" | 
| 63545 | 1149 | and dist_triangle2: "dist x y \<le> dist x z + dist y z" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1150 | begin | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1151 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1152 | lemma dist_self [simp]: "dist x x = 0" | 
| 63545 | 1153 | by simp | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1154 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1155 | lemma zero_le_dist [simp]: "0 \<le> dist x y" | 
| 63545 | 1156 | using dist_triangle2 [of x x y] by simp | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1157 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1158 | lemma zero_less_dist_iff: "0 < dist x y \<longleftrightarrow> x \<noteq> y" | 
| 63545 | 1159 | by (simp add: less_le) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1160 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1161 | lemma dist_not_less_zero [simp]: "\<not> dist x y < 0" | 
| 63545 | 1162 | by (simp add: not_less) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1163 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1164 | lemma dist_le_zero_iff [simp]: "dist x y \<le> 0 \<longleftrightarrow> x = y" | 
| 63545 | 1165 | by (simp add: le_less) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1166 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1167 | lemma dist_commute: "dist x y = dist y x" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1168 | proof (rule order_antisym) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1169 | show "dist x y \<le> dist y x" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1170 | using dist_triangle2 [of x y x] by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1171 | show "dist y x \<le> dist x y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1172 | using dist_triangle2 [of y x y] by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1173 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1174 | |
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1175 | lemma dist_commute_lessI: "dist y x < e \<Longrightarrow> dist x y < e" | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1176 | by (simp add: dist_commute) | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1177 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1178 | lemma dist_triangle: "dist x z \<le> dist x y + dist y z" | 
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1179 | using dist_triangle2 [of x z y] by (simp add: dist_commute) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1180 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1181 | lemma dist_triangle3: "dist x y \<le> dist a x + dist a y" | 
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1182 | using dist_triangle2 [of x y a] by (simp add: dist_commute) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1183 | |
| 68721 | 1184 | lemma abs_dist_diff_le: "\<bar>dist a b - dist b c\<bar> \<le> dist a c" | 
| 1185 | using dist_triangle3[of b c a] dist_triangle2[of a b c] by simp | |
| 1186 | ||
| 63545 | 1187 | lemma dist_pos_lt: "x \<noteq> y \<Longrightarrow> 0 < dist x y" | 
| 1188 | by (simp add: zero_less_dist_iff) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1189 | |
| 63545 | 1190 | lemma dist_nz: "x \<noteq> y \<longleftrightarrow> 0 < dist x y" | 
| 1191 | by (simp add: zero_less_dist_iff) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1192 | |
| 62087 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
62049diff
changeset | 1193 | declare dist_nz [symmetric, simp] | 
| 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
62049diff
changeset | 1194 | |
| 63545 | 1195 | lemma dist_triangle_le: "dist x z + dist y z \<le> e \<Longrightarrow> dist x y \<le> e" | 
| 1196 | by (rule order_trans [OF dist_triangle2]) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1197 | |
| 63545 | 1198 | lemma dist_triangle_lt: "dist x z + dist y z < e \<Longrightarrow> dist x y < e" | 
| 1199 | by (rule le_less_trans [OF dist_triangle2]) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1200 | |
| 63545 | 1201 | lemma dist_triangle_less_add: "dist x1 y < e1 \<Longrightarrow> dist x2 y < e2 \<Longrightarrow> dist x1 x2 < e1 + e2" | 
| 1202 | by (rule dist_triangle_lt [where z=y]) simp | |
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1203 | |
| 63545 | 1204 | lemma dist_triangle_half_l: "dist x1 y < e / 2 \<Longrightarrow> dist x2 y < e / 2 \<Longrightarrow> dist x1 x2 < e" | 
| 1205 | by (rule dist_triangle_lt [where z=y]) simp | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1206 | |
| 63545 | 1207 | lemma dist_triangle_half_r: "dist y x1 < e / 2 \<Longrightarrow> dist y x2 < e / 2 \<Longrightarrow> dist x1 x2 < e" | 
| 1208 | by (rule dist_triangle_half_l) (simp_all add: dist_commute) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1209 | |
| 65036 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1210 | lemma dist_triangle_third: | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1211 | assumes "dist x1 x2 < e/3" "dist x2 x3 < e/3" "dist x3 x4 < e/3" | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1212 | shows "dist x1 x4 < e" | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1213 | proof - | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1214 | have "dist x1 x3 < e/3 + e/3" | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1215 | by (metis assms(1) assms(2) dist_commute dist_triangle_less_add) | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1216 | then have "dist x1 x4 < (e/3 + e/3) + e/3" | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1217 | by (metis assms(3) dist_commute dist_triangle_less_add) | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1218 | then show ?thesis | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1219 | by simp | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1220 | qed | 
| 68532 
f8b98d31ad45
Incorporating new/strengthened proofs from Library and AFP entries
 paulson <lp15@cam.ac.uk> parents: 
68499diff
changeset | 1221 | |
| 62101 | 1222 | subclass uniform_space | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1223 | proof | 
| 63545 | 1224 | fix E x | 
| 1225 | assume "eventually E uniformity" | |
| 62101 | 1226 | then obtain e where E: "0 < e" "\<And>x y. dist x y < e \<Longrightarrow> E (x, y)" | 
| 63545 | 1227 | by (auto simp: eventually_uniformity_metric) | 
| 62101 | 1228 | then show "E (x, x)" "\<forall>\<^sub>F (x, y) in uniformity. E (y, x)" | 
| 63545 | 1229 | by (auto simp: eventually_uniformity_metric dist_commute) | 
| 62101 | 1230 | show "\<exists>D. eventually D uniformity \<and> (\<forall>x y z. D (x, y) \<longrightarrow> D (y, z) \<longrightarrow> E (x, z))" | 
| 63545 | 1231 | using E dist_triangle_half_l[where e=e] | 
| 1232 | unfolding eventually_uniformity_metric | |
| 62101 | 1233 | by (intro exI[of _ "\<lambda>(x, y). dist x y < e / 2"] exI[of _ "e/2"] conjI) | 
| 63545 | 1234 | (auto simp: dist_commute) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1235 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1236 | |
| 62101 | 1237 | lemma open_dist: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)" | 
| 63545 | 1238 | by (simp add: dist_commute open_uniformity eventually_uniformity_metric) | 
| 62101 | 1239 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1240 | lemma open_ball: "open {y. dist x y < d}"
 | 
| 63545 | 1241 | unfolding open_dist | 
| 1242 | proof (intro ballI) | |
| 1243 | fix y | |
| 1244 |   assume *: "y \<in> {y. dist x y < d}"
 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1245 |   then show "\<exists>e>0. \<forall>z. dist z y < e \<longrightarrow> z \<in> {y. dist x y < d}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1246 | by (auto intro!: exI[of _ "d - dist x y"] simp: field_simps dist_triangle_lt) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1247 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1248 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1249 | subclass first_countable_topology | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1250 | proof | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1251 | fix x | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1252 | show "\<exists>A::nat \<Rightarrow> 'a set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1253 |   proof (safe intro!: exI[of _ "\<lambda>n. {y. dist x y < inverse (Suc n)}"])
 | 
| 63545 | 1254 | fix S | 
| 1255 | assume "open S" "x \<in> S" | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52381diff
changeset | 1256 |     then obtain e where e: "0 < e" and "{y. dist x y < e} \<subseteq> S"
 | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1257 | by (auto simp: open_dist subset_eq dist_commute) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1258 | moreover | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52381diff
changeset | 1259 | from e obtain i where "inverse (Suc i) < e" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1260 | by (auto dest!: reals_Archimedean) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1261 |     then have "{y. dist x y < inverse (Suc i)} \<subseteq> {y. dist x y < e}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1262 | by auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1263 |     ultimately show "\<exists>i. {y. dist x y < inverse (Suc i)} \<subseteq> S"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1264 | by blast | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1265 | qed (auto intro: open_ball) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1266 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1267 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1268 | end | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1269 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1270 | instance metric_space \<subseteq> t2_space | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1271 | proof | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1272 | fix x y :: "'a::metric_space" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1273 | assume xy: "x \<noteq> y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1274 |   let ?U = "{y'. dist x y' < dist x y / 2}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1275 |   let ?V = "{x'. dist y x' < dist x y / 2}"
 | 
| 63545 | 1276 | have *: "d x z \<le> d x y + d y z \<Longrightarrow> d y z = d z y \<Longrightarrow> \<not> (d x y * 2 < d x z \<and> d z y * 2 < d x z)" | 
| 1277 | for d :: "'a \<Rightarrow> 'a \<Rightarrow> real" and x y z :: 'a | |
| 1278 | by arith | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1279 |   have "open ?U \<and> open ?V \<and> x \<in> ?U \<and> y \<in> ?V \<and> ?U \<inter> ?V = {}"
 | 
| 63545 | 1280 | using dist_pos_lt[OF xy] *[of dist, OF dist_triangle dist_commute] | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1281 | using open_ball[of _ "dist x y / 2"] by auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1282 |   then show "\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1283 | by blast | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1284 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1285 | |
| 60758 | 1286 | text \<open>Every normed vector space is a metric space.\<close> | 
| 31289 | 1287 | instance real_normed_vector < metric_space | 
| 1288 | proof | |
| 63545 | 1289 | fix x y z :: 'a | 
| 1290 | show "dist x y = 0 \<longleftrightarrow> x = y" | |
| 1291 | by (simp add: dist_norm) | |
| 1292 | show "dist x y \<le> dist x z + dist y z" | |
| 1293 | using norm_triangle_ineq4 [of "x - z" "y - z"] by (simp add: dist_norm) | |
| 31289 | 1294 | qed | 
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 1295 | |
| 63545 | 1296 | |
| 60758 | 1297 | subsection \<open>Class instances for real numbers\<close> | 
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1298 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1299 | instantiation real :: real_normed_field | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1300 | begin | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1301 | |
| 63545 | 1302 | definition dist_real_def: "dist x y = \<bar>x - y\<bar>" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1303 | |
| 62101 | 1304 | definition uniformity_real_def [code del]: | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69064diff
changeset | 1305 |   "(uniformity :: (real \<times> real) filter) = (INF e\<in>{0 <..}. principal {(x, y). dist x y < e})"
 | 
| 62101 | 1306 | |
| 52381 
63eec9cea2c7
pragmatic executability for instance real :: open
 haftmann parents: 
51775diff
changeset | 1307 | definition open_real_def [code del]: | 
| 62101 | 1308 | "open (U :: real set) \<longleftrightarrow> (\<forall>x\<in>U. eventually (\<lambda>(x', y). x' = x \<longrightarrow> y \<in> U) uniformity)" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1309 | |
| 63545 | 1310 | definition real_norm_def [simp]: "norm r = \<bar>r\<bar>" | 
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1311 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1312 | instance | 
| 68594 | 1313 | by intro_classes (auto simp: abs_mult open_real_def dist_real_def sgn_real_def uniformity_real_def) | 
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1314 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1315 | end | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1316 | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1317 | declare uniformity_Abort[where 'a=real, code] | 
| 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1318 | |
| 63545 | 1319 | lemma dist_of_real [simp]: "dist (of_real x :: 'a) (of_real y) = dist x y" | 
| 1320 | for a :: "'a::real_normed_div_algebra" | |
| 1321 | by (metis dist_norm norm_of_real of_real_diff real_norm_def) | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1322 | |
| 54890 
cb892d835803
fundamental treatment of undefined vs. universally partial replaces code_abort
 haftmann parents: 
54863diff
changeset | 1323 | declare [[code abort: "open :: real set \<Rightarrow> bool"]] | 
| 52381 
63eec9cea2c7
pragmatic executability for instance real :: open
 haftmann parents: 
51775diff
changeset | 1324 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1325 | instance real :: linorder_topology | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1326 | proof | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1327 | show "(open :: real set \<Rightarrow> bool) = generate_topology (range lessThan \<union> range greaterThan)" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1328 | proof (rule ext, safe) | 
| 63545 | 1329 | fix S :: "real set" | 
| 1330 | assume "open S" | |
| 53381 | 1331 | then obtain f where "\<forall>x\<in>S. 0 < f x \<and> (\<forall>y. dist y x < f x \<longrightarrow> y \<in> S)" | 
| 62101 | 1332 | unfolding open_dist bchoice_iff .. | 
| 71720 | 1333 |     then have *: "(\<Union>x\<in>S. {x - f x <..} \<inter> {..< x + f x}) = S" (is "?S = S")
 | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1334 | by (fastforce simp: dist_real_def) | 
| 71720 | 1335 | moreover have "generate_topology (range lessThan \<union> range greaterThan) ?S" | 
| 1336 | by (force intro: generate_topology.Basis generate_topology_Union generate_topology.Int) | |
| 1337 | ultimately show "generate_topology (range lessThan \<union> range greaterThan) S" | |
| 1338 | by simp | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1339 | next | 
| 63545 | 1340 | fix S :: "real set" | 
| 1341 | assume "generate_topology (range lessThan \<union> range greaterThan) S" | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1342 |     moreover have "\<And>a::real. open {..<a}"
 | 
| 62101 | 1343 | unfolding open_dist dist_real_def | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1344 | proof clarify | 
| 63545 | 1345 | fix x a :: real | 
| 1346 | assume "x < a" | |
| 1347 |       then have "0 < a - x \<and> (\<forall>y. \<bar>y - x\<bar> < a - x \<longrightarrow> y \<in> {..<a})" by auto
 | |
| 1348 |       then show "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {..<a}" ..
 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1349 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1350 |     moreover have "\<And>a::real. open {a <..}"
 | 
| 62101 | 1351 | unfolding open_dist dist_real_def | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1352 | proof clarify | 
| 63545 | 1353 | fix x a :: real | 
| 1354 | assume "a < x" | |
| 1355 |       then have "0 < x - a \<and> (\<forall>y. \<bar>y - x\<bar> < x - a \<longrightarrow> y \<in> {a<..})" by auto
 | |
| 1356 |       then show "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {a<..}" ..
 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1357 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1358 | ultimately show "open S" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1359 | by induct auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1360 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1361 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1362 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1363 | instance real :: linear_continuum_topology .. | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 1364 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1365 | lemmas open_real_greaterThan = open_greaterThan[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1366 | lemmas open_real_lessThan = open_lessThan[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1367 | lemmas open_real_greaterThanLessThan = open_greaterThanLessThan[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1368 | lemmas closed_real_atMost = closed_atMost[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1369 | lemmas closed_real_atLeast = closed_atLeast[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1370 | lemmas closed_real_atLeastAtMost = closed_atLeastAtMost[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1371 | |
| 70616 
6bc397bc8e8a
explicit instance real::ordered_real_vector before subclass in ordered_euclidean_space
 immler parents: 
70019diff
changeset | 1372 | instance real :: ordered_real_vector | 
| 
6bc397bc8e8a
explicit instance real::ordered_real_vector before subclass in ordered_euclidean_space
 immler parents: 
70019diff
changeset | 1373 | by standard (auto intro: mult_left_mono mult_right_mono) | 
| 
6bc397bc8e8a
explicit instance real::ordered_real_vector before subclass in ordered_euclidean_space
 immler parents: 
70019diff
changeset | 1374 | |
| 63545 | 1375 | |
| 60758 | 1376 | subsection \<open>Extra type constraints\<close> | 
| 31446 | 1377 | |
| 69593 | 1378 | text \<open>Only allow \<^term>\<open>open\<close> in class \<open>topological_space\<close>.\<close> | 
| 60758 | 1379 | setup \<open>Sign.add_const_constraint | 
| 69593 | 1380 | (\<^const_name>\<open>open\<close>, SOME \<^typ>\<open>'a::topological_space set \<Rightarrow> bool\<close>)\<close> | 
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 1381 | |
| 69593 | 1382 | text \<open>Only allow \<^term>\<open>uniformity\<close> in class \<open>uniform_space\<close>.\<close> | 
| 62101 | 1383 | setup \<open>Sign.add_const_constraint | 
| 69593 | 1384 |   (\<^const_name>\<open>uniformity\<close>, SOME \<^typ>\<open>('a::uniformity \<times> 'a) filter\<close>)\<close>
 | 
| 62101 | 1385 | |
| 69593 | 1386 | text \<open>Only allow \<^term>\<open>dist\<close> in class \<open>metric_space\<close>.\<close> | 
| 60758 | 1387 | setup \<open>Sign.add_const_constraint | 
| 69593 | 1388 | (\<^const_name>\<open>dist\<close>, SOME \<^typ>\<open>'a::metric_space \<Rightarrow> 'a \<Rightarrow> real\<close>)\<close> | 
| 31446 | 1389 | |
| 69593 | 1390 | text \<open>Only allow \<^term>\<open>norm\<close> in class \<open>real_normed_vector\<close>.\<close> | 
| 60758 | 1391 | setup \<open>Sign.add_const_constraint | 
| 69593 | 1392 | (\<^const_name>\<open>norm\<close>, SOME \<^typ>\<open>'a::real_normed_vector \<Rightarrow> real\<close>)\<close> | 
| 31446 | 1393 | |
| 63545 | 1394 | |
| 60758 | 1395 | subsection \<open>Sign function\<close> | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1396 | |
| 63545 | 1397 | lemma norm_sgn: "norm (sgn x) = (if x = 0 then 0 else 1)" | 
| 1398 | for x :: "'a::real_normed_vector" | |
| 1399 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1400 | |
| 63545 | 1401 | lemma sgn_zero [simp]: "sgn (0::'a::real_normed_vector) = 0" | 
| 1402 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1403 | |
| 63545 | 1404 | lemma sgn_zero_iff: "sgn x = 0 \<longleftrightarrow> x = 0" | 
| 1405 | for x :: "'a::real_normed_vector" | |
| 1406 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1407 | |
| 63545 | 1408 | lemma sgn_minus: "sgn (- x) = - sgn x" | 
| 1409 | for x :: "'a::real_normed_vector" | |
| 1410 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1411 | |
| 63545 | 1412 | lemma sgn_scaleR: "sgn (scaleR r x) = scaleR (sgn r) (sgn x)" | 
| 1413 | for x :: "'a::real_normed_vector" | |
| 1414 | by (simp add: sgn_div_norm ac_simps) | |
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 1415 | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1416 | lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1" | 
| 63545 | 1417 | by (simp add: sgn_div_norm) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1418 | |
| 63545 | 1419 | lemma sgn_of_real: "sgn (of_real r :: 'a::real_normed_algebra_1) = of_real (sgn r)" | 
| 1420 | unfolding of_real_def by (simp only: sgn_scaleR sgn_one) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1421 | |
| 63545 | 1422 | lemma sgn_mult: "sgn (x * y) = sgn x * sgn y" | 
| 1423 | for x y :: "'a::real_normed_div_algebra" | |
| 71544 | 1424 | by (simp add: sgn_div_norm norm_mult) | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 1425 | |
| 64240 | 1426 | hide_fact (open) sgn_mult | 
| 1427 | ||
| 63545 | 1428 | lemma real_sgn_eq: "sgn x = x / \<bar>x\<bar>" | 
| 1429 | for x :: real | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1430 | by (simp add: sgn_div_norm divide_inverse) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1431 | |
| 63545 | 1432 | lemma zero_le_sgn_iff [simp]: "0 \<le> sgn x \<longleftrightarrow> 0 \<le> x" | 
| 1433 | for x :: real | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1434 | by (cases "0::real" x rule: linorder_cases) simp_all | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1435 | |
| 63545 | 1436 | lemma sgn_le_0_iff [simp]: "sgn x \<le> 0 \<longleftrightarrow> x \<le> 0" | 
| 1437 | for x :: real | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1438 | by (cases "0::real" x rule: linorder_cases) simp_all | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1439 | |
| 51474 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51472diff
changeset | 1440 | lemma norm_conv_dist: "norm x = dist x 0" | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51472diff
changeset | 1441 | unfolding dist_norm by simp | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1442 | |
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 1443 | declare norm_conv_dist [symmetric, simp] | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 1444 | |
| 63545 | 1445 | lemma dist_0_norm [simp]: "dist 0 x = norm x" | 
| 1446 | for x :: "'a::real_normed_vector" | |
| 1447 | by (simp add: dist_norm) | |
| 62397 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62379diff
changeset | 1448 | |
| 60307 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60303diff
changeset | 1449 | lemma dist_diff [simp]: "dist a (a - b) = norm b" "dist (a - b) a = norm b" | 
| 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60303diff
changeset | 1450 | by (simp_all add: dist_norm) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1451 | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1452 | lemma dist_of_int: "dist (of_int m) (of_int n :: 'a :: real_normed_algebra_1) = of_int \<bar>m - n\<bar>" | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1453 | proof - | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1454 | have "dist (of_int m) (of_int n :: 'a) = dist (of_int m :: 'a) (of_int m - (of_int (m - n)))" | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1455 | by simp | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1456 | also have "\<dots> = of_int \<bar>m - n\<bar>" by (subst dist_diff, subst norm_of_int) simp | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1457 | finally show ?thesis . | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1458 | qed | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1459 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1460 | lemma dist_of_nat: | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1461 | "dist (of_nat m) (of_nat n :: 'a :: real_normed_algebra_1) = of_int \<bar>int m - int n\<bar>" | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1462 | by (subst (1 2) of_int_of_nat_eq [symmetric]) (rule dist_of_int) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1463 | |
| 63545 | 1464 | |
| 60758 | 1465 | subsection \<open>Bounded Linear and Bilinear Operators\<close> | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1466 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1467 | lemma linearI: "linear f" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1468 | if "\<And>b1 b2. f (b1 + b2) = f b1 + f b2" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1469 | "\<And>r b. f (r *\<^sub>R b) = r *\<^sub>R f b" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1470 | using that | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1471 | by unfold_locales (auto simp: algebra_simps) | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1472 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1473 | lemma linear_iff: | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1474 | "linear f \<longleftrightarrow> (\<forall>x y. f (x + y) = f x + f y) \<and> (\<forall>c x. f (c *\<^sub>R x) = c *\<^sub>R f x)" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1475 | (is "linear f \<longleftrightarrow> ?rhs") | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1476 | proof | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1477 | assume "linear f" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1478 | then interpret f: linear f . | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1479 | show "?rhs" by (simp add: f.add f.scale) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1480 | next | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1481 | assume "?rhs" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1482 | then show "linear f" by (intro linearI) auto | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1483 | qed | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1484 | |
| 79945 
ca004ccf2352
New material from a variety of sources (including AFP)
 paulson <lp15@cam.ac.uk> parents: 
78656diff
changeset | 1485 | lemma linear_of_real [simp]: "linear of_real" | 
| 
ca004ccf2352
New material from a variety of sources (including AFP)
 paulson <lp15@cam.ac.uk> parents: 
78656diff
changeset | 1486 | by (simp add: linear_iff scaleR_conv_of_real) | 
| 
ca004ccf2352
New material from a variety of sources (including AFP)
 paulson <lp15@cam.ac.uk> parents: 
78656diff
changeset | 1487 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1488 | lemmas linear_scaleR_left = linear_scale_left | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1489 | lemmas linear_imp_scaleR = linear_imp_scale | 
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1490 | |
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1491 | corollary real_linearD: | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1492 | fixes f :: "real \<Rightarrow> real" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 1493 | assumes "linear f" obtains c where "f = (*) c" | 
| 63545 | 1494 | by (rule linear_imp_scaleR [OF assms]) (force simp: scaleR_conv_of_real) | 
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1495 | |
| 65583 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65578diff
changeset | 1496 | lemma linear_times_of_real: "linear (\<lambda>x. a * of_real x)" | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1497 | by (auto intro!: linearI simp: distrib_left) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1498 | (metis mult_scaleR_right scaleR_conv_of_real) | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1499 | |
| 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1500 | locale bounded_linear = linear f for f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" + | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1501 | assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K" | 
| 27443 | 1502 | begin | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1503 | |
| 63545 | 1504 | lemma pos_bounded: "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1505 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1506 | obtain K where K: "\<And>x. norm (f x) \<le> norm x * K" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1507 | using bounded by blast | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1508 | show ?thesis | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1509 | proof (intro exI impI conjI allI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1510 | show "0 < max 1 K" | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54785diff
changeset | 1511 | by (rule order_less_le_trans [OF zero_less_one max.cobounded1]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1512 | next | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1513 | fix x | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1514 | have "norm (f x) \<le> norm x * K" using K . | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1515 | also have "\<dots> \<le> norm x * max 1 K" | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54785diff
changeset | 1516 | by (rule mult_left_mono [OF max.cobounded2 norm_ge_zero]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1517 | finally show "norm (f x) \<le> norm x * max 1 K" . | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1518 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1519 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1520 | |
| 63545 | 1521 | lemma nonneg_bounded: "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K" | 
| 1522 | using pos_bounded by (auto intro: order_less_imp_le) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1523 | |
| 63545 | 1524 | lemma linear: "linear f" | 
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63128diff
changeset | 1525 | by (fact local.linear_axioms) | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56194diff
changeset | 1526 | |
| 27443 | 1527 | end | 
| 1528 | ||
| 44127 | 1529 | lemma bounded_linear_intro: | 
| 1530 | assumes "\<And>x y. f (x + y) = f x + f y" | |
| 63545 | 1531 | and "\<And>r x. f (scaleR r x) = scaleR r (f x)" | 
| 1532 | and "\<And>x. norm (f x) \<le> norm x * K" | |
| 44127 | 1533 | shows "bounded_linear f" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1534 | by standard (blast intro: assms)+ | 
| 44127 | 1535 | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1536 | locale bounded_bilinear = | 
| 63545 | 1537 | fixes prod :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector \<Rightarrow> 'c::real_normed_vector" | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
79945diff
changeset | 1538 | (infixl \<open>**\<close> 70) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1539 | assumes add_left: "prod (a + a') b = prod a b + prod a' b" | 
| 63545 | 1540 | and add_right: "prod a (b + b') = prod a b + prod a b'" | 
| 1541 | and scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)" | |
| 1542 | and scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)" | |
| 1543 | and bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K" | |
| 27443 | 1544 | begin | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1545 | |
| 63545 | 1546 | lemma pos_bounded: "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 66793 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1547 | proof - | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1548 | obtain K where "\<And>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1549 | using bounded by blast | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1550 | then have "norm (a ** b) \<le> norm a * norm b * (max 1 K)" for a b | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1551 | by (rule order.trans) (simp add: mult_left_mono) | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1552 | then show ?thesis | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1553 | by force | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1554 | qed | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1555 | |
| 63545 | 1556 | lemma nonneg_bounded: "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 1557 | using pos_bounded by (auto intro: order_less_imp_le) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1558 | |
| 27443 | 1559 | lemma additive_right: "additive (\<lambda>b. prod a b)" | 
| 63545 | 1560 | by (rule additive.intro, rule add_right) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1561 | |
| 27443 | 1562 | lemma additive_left: "additive (\<lambda>a. prod a b)" | 
| 63545 | 1563 | by (rule additive.intro, rule add_left) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1564 | |
| 27443 | 1565 | lemma zero_left: "prod 0 b = 0" | 
| 63545 | 1566 | by (rule additive.zero [OF additive_left]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1567 | |
| 27443 | 1568 | lemma zero_right: "prod a 0 = 0" | 
| 63545 | 1569 | by (rule additive.zero [OF additive_right]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1570 | |
| 27443 | 1571 | lemma minus_left: "prod (- a) b = - prod a b" | 
| 63545 | 1572 | by (rule additive.minus [OF additive_left]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1573 | |
| 27443 | 1574 | lemma minus_right: "prod a (- b) = - prod a b" | 
| 63545 | 1575 | by (rule additive.minus [OF additive_right]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1576 | |
| 63545 | 1577 | lemma diff_left: "prod (a - a') b = prod a b - prod a' b" | 
| 1578 | by (rule additive.diff [OF additive_left]) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1579 | |
| 63545 | 1580 | lemma diff_right: "prod a (b - b') = prod a b - prod a b'" | 
| 1581 | by (rule additive.diff [OF additive_right]) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1582 | |
| 64267 | 1583 | lemma sum_left: "prod (sum g S) x = sum ((\<lambda>i. prod (g i) x)) S" | 
| 1584 | by (rule additive.sum [OF additive_left]) | |
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1585 | |
| 64267 | 1586 | lemma sum_right: "prod x (sum g S) = sum ((\<lambda>i. (prod x (g i)))) S" | 
| 1587 | by (rule additive.sum [OF additive_right]) | |
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1588 | |
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1589 | |
| 63545 | 1590 | lemma bounded_linear_left: "bounded_linear (\<lambda>a. a ** b)" | 
| 68594 | 1591 | proof - | 
| 1592 | obtain K where "\<And>a b. norm (a ** b) \<le> norm a * norm b * K" | |
| 1593 | using pos_bounded by blast | |
| 1594 | then show ?thesis | |
| 1595 | by (rule_tac K="norm b * K" in bounded_linear_intro) (auto simp: algebra_simps scaleR_left add_left) | |
| 1596 | qed | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1597 | |
| 63545 | 1598 | lemma bounded_linear_right: "bounded_linear (\<lambda>b. a ** b)" | 
| 68594 | 1599 | proof - | 
| 1600 | obtain K where "\<And>a b. norm (a ** b) \<le> norm a * norm b * K" | |
| 1601 | using pos_bounded by blast | |
| 1602 | then show ?thesis | |
| 1603 | by (rule_tac K="norm a * K" in bounded_linear_intro) (auto simp: algebra_simps scaleR_right add_right) | |
| 1604 | qed | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1605 | |
| 63545 | 1606 | lemma prod_diff_prod: "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)" | 
| 1607 | by (simp add: diff_left diff_right) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1608 | |
| 61916 | 1609 | lemma flip: "bounded_bilinear (\<lambda>x y. y ** x)" | 
| 71720 | 1610 | proof | 
| 1611 | show "\<exists>K. \<forall>a b. norm (b ** a) \<le> norm a * norm b * K" | |
| 1612 | by (metis bounded mult.commute) | |
| 1613 | qed (simp_all add: add_right add_left scaleR_right scaleR_left) | |
| 61916 | 1614 | |
| 1615 | lemma comp1: | |
| 1616 | assumes "bounded_linear g" | |
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 1617 | shows "bounded_bilinear (\<lambda>x. (**) (g x))" | 
| 61916 | 1618 | proof unfold_locales | 
| 1619 | interpret g: bounded_linear g by fact | |
| 1620 | show "\<And>a a' b. g (a + a') ** b = g a ** b + g a' ** b" | |
| 1621 | "\<And>a b b'. g a ** (b + b') = g a ** b + g a ** b'" | |
| 1622 | "\<And>r a b. g (r *\<^sub>R a) ** b = r *\<^sub>R (g a ** b)" | |
| 1623 | "\<And>a r b. g a ** (r *\<^sub>R b) = r *\<^sub>R (g a ** b)" | |
| 1624 | by (auto simp: g.add add_left add_right g.scaleR scaleR_left scaleR_right) | |
| 63545 | 1625 | from g.nonneg_bounded nonneg_bounded obtain K L | 
| 1626 | where nn: "0 \<le> K" "0 \<le> L" | |
| 1627 | and K: "\<And>x. norm (g x) \<le> norm x * K" | |
| 1628 | and L: "\<And>a b. norm (a ** b) \<le> norm a * norm b * L" | |
| 61916 | 1629 | by auto | 
| 1630 | have "norm (g a ** b) \<le> norm a * K * norm b * L" for a b | |
| 1631 | by (auto intro!: order_trans[OF K] order_trans[OF L] mult_mono simp: nn) | |
| 1632 | then show "\<exists>K. \<forall>a b. norm (g a ** b) \<le> norm a * norm b * K" | |
| 1633 | by (auto intro!: exI[where x="K * L"] simp: ac_simps) | |
| 1634 | qed | |
| 1635 | ||
| 63545 | 1636 | lemma comp: "bounded_linear f \<Longrightarrow> bounded_linear g \<Longrightarrow> bounded_bilinear (\<lambda>x y. f x ** g y)" | 
| 61916 | 1637 | by (rule bounded_bilinear.flip[OF bounded_bilinear.comp1[OF bounded_bilinear.flip[OF comp1]]]) | 
| 1638 | ||
| 27443 | 1639 | end | 
| 1640 | ||
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1641 | lemma bounded_linear_ident[simp]: "bounded_linear (\<lambda>x. x)" | 
| 61169 | 1642 | by standard (auto intro!: exI[of _ 1]) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1643 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1644 | lemma bounded_linear_zero[simp]: "bounded_linear (\<lambda>x. 0)" | 
| 61169 | 1645 | by standard (auto intro!: exI[of _ 1]) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1646 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1647 | lemma bounded_linear_add: | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1648 | assumes "bounded_linear f" | 
| 63545 | 1649 | and "bounded_linear g" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1650 | shows "bounded_linear (\<lambda>x. f x + g x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1651 | proof - | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1652 | interpret f: bounded_linear f by fact | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1653 | interpret g: bounded_linear g by fact | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1654 | show ?thesis | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1655 | proof | 
| 63545 | 1656 | from f.bounded obtain Kf where Kf: "norm (f x) \<le> norm x * Kf" for x | 
| 1657 | by blast | |
| 1658 | from g.bounded obtain Kg where Kg: "norm (g x) \<le> norm x * Kg" for x | |
| 1659 | by blast | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1660 | show "\<exists>K. \<forall>x. norm (f x + g x) \<le> norm x * K" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1661 | using add_mono[OF Kf Kg] | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1662 | by (intro exI[of _ "Kf + Kg"]) (auto simp: field_simps intro: norm_triangle_ineq order_trans) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1663 | qed (simp_all add: f.add g.add f.scaleR g.scaleR scaleR_right_distrib) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1664 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1665 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1666 | lemma bounded_linear_minus: | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1667 | assumes "bounded_linear f" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1668 | shows "bounded_linear (\<lambda>x. - f x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1669 | proof - | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1670 | interpret f: bounded_linear f by fact | 
| 63545 | 1671 | show ?thesis | 
| 68669 | 1672 | by unfold_locales (simp_all add: f.add f.scaleR f.bounded) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1673 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1674 | |
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1675 | lemma bounded_linear_sub: "bounded_linear f \<Longrightarrow> bounded_linear g \<Longrightarrow> bounded_linear (\<lambda>x. f x - g x)" | 
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1676 | using bounded_linear_add[of f "\<lambda>x. - g x"] bounded_linear_minus[of g] | 
| 68594 | 1677 | by (auto simp: algebra_simps) | 
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1678 | |
| 64267 | 1679 | lemma bounded_linear_sum: | 
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1680 | fixes f :: "'i \<Rightarrow> 'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | 
| 63915 | 1681 | shows "(\<And>i. i \<in> I \<Longrightarrow> bounded_linear (f i)) \<Longrightarrow> bounded_linear (\<lambda>x. \<Sum>i\<in>I. f i x)" | 
| 1682 | by (induct I rule: infinite_finite_induct) (auto intro!: bounded_linear_add) | |
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1683 | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1684 | lemma bounded_linear_compose: | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1685 | assumes "bounded_linear f" | 
| 63545 | 1686 | and "bounded_linear g" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1687 | shows "bounded_linear (\<lambda>x. f (g x))" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1688 | proof - | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1689 | interpret f: bounded_linear f by fact | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1690 | interpret g: bounded_linear g by fact | 
| 63545 | 1691 | show ?thesis | 
| 1692 | proof unfold_locales | |
| 1693 | show "f (g (x + y)) = f (g x) + f (g y)" for x y | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1694 | by (simp only: f.add g.add) | 
| 63545 | 1695 | show "f (g (scaleR r x)) = scaleR r (f (g x))" for r x | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1696 | by (simp only: f.scaleR g.scaleR) | 
| 63545 | 1697 | from f.pos_bounded obtain Kf where f: "\<And>x. norm (f x) \<le> norm x * Kf" and Kf: "0 < Kf" | 
| 1698 | by blast | |
| 1699 | from g.pos_bounded obtain Kg where g: "\<And>x. norm (g x) \<le> norm x * Kg" | |
| 1700 | by blast | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1701 | show "\<exists>K. \<forall>x. norm (f (g x)) \<le> norm x * K" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1702 | proof (intro exI allI) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1703 | fix x | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1704 | have "norm (f (g x)) \<le> norm (g x) * Kf" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1705 | using f . | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1706 | also have "\<dots> \<le> (norm x * Kg) * Kf" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1707 | using g Kf [THEN order_less_imp_le] by (rule mult_right_mono) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1708 | also have "(norm x * Kg) * Kf = norm x * (Kg * Kf)" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 1709 | by (rule mult.assoc) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1710 | finally show "norm (f (g x)) \<le> norm x * (Kg * Kf)" . | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1711 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1712 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1713 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1714 | |
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 1715 | lemma bounded_bilinear_mult: "bounded_bilinear ((*) :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra)" | 
| 71720 | 1716 | proof (rule bounded_bilinear.intro) | 
| 1717 | show "\<exists>K. \<forall>a b::'a. norm (a * b) \<le> norm a * norm b * K" | |
| 1718 | by (rule_tac x=1 in exI) (simp add: norm_mult_ineq) | |
| 1719 | qed (auto simp: algebra_simps) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1720 | |
| 63545 | 1721 | lemma bounded_linear_mult_left: "bounded_linear (\<lambda>x::'a::real_normed_algebra. x * y)" | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1722 | using bounded_bilinear_mult | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1723 | by (rule bounded_bilinear.bounded_linear_left) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1724 | |
| 63545 | 1725 | lemma bounded_linear_mult_right: "bounded_linear (\<lambda>y::'a::real_normed_algebra. x * y)" | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1726 | using bounded_bilinear_mult | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1727 | by (rule bounded_bilinear.bounded_linear_right) | 
| 23127 | 1728 | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1729 | lemmas bounded_linear_mult_const = | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1730 | bounded_linear_mult_left [THEN bounded_linear_compose] | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1731 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1732 | lemmas bounded_linear_const_mult = | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1733 | bounded_linear_mult_right [THEN bounded_linear_compose] | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1734 | |
| 63545 | 1735 | lemma bounded_linear_divide: "bounded_linear (\<lambda>x. x / y)" | 
| 1736 | for y :: "'a::real_normed_field" | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1737 | unfolding divide_inverse by (rule bounded_linear_mult_left) | 
| 23120 | 1738 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1739 | lemma bounded_bilinear_scaleR: "bounded_bilinear scaleR" | 
| 71720 | 1740 | proof (rule bounded_bilinear.intro) | 
| 1741 | show "\<exists>K. \<forall>a b. norm (a *\<^sub>R b) \<le> norm a * norm b * K" | |
| 1742 | using less_eq_real_def by auto | |
| 1743 | qed (auto simp: algebra_simps) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1744 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1745 | lemma bounded_linear_scaleR_left: "bounded_linear (\<lambda>r. scaleR r x)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1746 | using bounded_bilinear_scaleR | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1747 | by (rule bounded_bilinear.bounded_linear_left) | 
| 23127 | 1748 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1749 | lemma bounded_linear_scaleR_right: "bounded_linear (\<lambda>x. scaleR r x)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1750 | using bounded_bilinear_scaleR | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1751 | by (rule bounded_bilinear.bounded_linear_right) | 
| 23127 | 1752 | |
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1753 | lemmas bounded_linear_scaleR_const = | 
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1754 | bounded_linear_scaleR_left[THEN bounded_linear_compose] | 
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1755 | |
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1756 | lemmas bounded_linear_const_scaleR = | 
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1757 | bounded_linear_scaleR_right[THEN bounded_linear_compose] | 
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1758 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1759 | lemma bounded_linear_of_real: "bounded_linear (\<lambda>r. of_real r)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1760 | unfolding of_real_def by (rule bounded_linear_scaleR_left) | 
| 22625 | 1761 | |
| 63545 | 1762 | lemma real_bounded_linear: "bounded_linear f \<longleftrightarrow> (\<exists>c::real. f = (\<lambda>x. x * c))" | 
| 1763 | for f :: "real \<Rightarrow> real" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1764 | proof - | 
| 63545 | 1765 |   {
 | 
| 1766 | fix x | |
| 1767 | assume "bounded_linear f" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1768 | then interpret bounded_linear f . | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1769 | from scaleR[of x 1] have "f x = x * f 1" | 
| 63545 | 1770 | by simp | 
| 1771 | } | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1772 | then show ?thesis | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1773 | by (auto intro: exI[of _ "f 1"] bounded_linear_mult_left) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1774 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1775 | |
| 44571 | 1776 | instance real_normed_algebra_1 \<subseteq> perfect_space | 
| 1777 | proof | |
| 71720 | 1778 | fix x::'a | 
| 1779 | have "\<And>e. 0 < e \<Longrightarrow> \<exists>y. norm (y - x) < e \<and> y \<noteq> x" | |
| 1780 | by (rule_tac x = "x + of_real (e/2)" in exI) auto | |
| 1781 |   then show "\<not> open {x}" 
 | |
| 1782 | by (clarsimp simp: open_dist dist_norm) | |
| 44571 | 1783 | qed | 
| 1784 | ||
| 63545 | 1785 | |
| 60758 | 1786 | subsection \<open>Filters and Limits on Metric Space\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1787 | |
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69064diff
changeset | 1788 | lemma (in metric_space) nhds_metric: "nhds x = (INF e\<in>{0 <..}. principal {y. dist y x < e})"
 | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1789 | unfolding nhds_def | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1790 | proof (safe intro!: INF_eq) | 
| 63545 | 1791 | fix S | 
| 1792 | assume "open S" "x \<in> S" | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1793 |   then obtain e where "{y. dist y x < e} \<subseteq> S" "0 < e"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1794 | by (auto simp: open_dist subset_eq) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1795 |   then show "\<exists>e\<in>{0<..}. principal {y. dist y x < e} \<le> principal S"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1796 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1797 | qed (auto intro!: exI[of _ "{y. dist x y < e}" for e] open_ball simp: dist_commute)
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1798 | |
| 74475 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1799 | (* Contributed by Dominique Unruh *) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1800 | lemma tendsto_iff_uniformity: | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1801 | \<comment> \<open>More general analogus of \<open>tendsto_iff\<close> below. Applies to all uniform spaces, not just metric ones.\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1802 | fixes l :: \<open>'b :: uniform_space\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1803 | shows \<open>(f \<longlongrightarrow> l) F \<longleftrightarrow> (\<forall>E. eventually E uniformity \<longrightarrow> (\<forall>\<^sub>F x in F. E (f x, l)))\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1804 | proof (intro iffI allI impI) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1805 |   fix E :: \<open>('b \<times> 'b) \<Rightarrow> bool\<close>
 | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1806 | assume \<open>(f \<longlongrightarrow> l) F\<close> and \<open>eventually E uniformity\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1807 | from \<open>eventually E uniformity\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1808 | have \<open>eventually (\<lambda>(x, y). E (y, x)) uniformity\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1809 | by (simp add: uniformity_sym) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1810 | then have \<open>\<forall>\<^sub>F (y, x) in uniformity. y = l \<longrightarrow> E (x, y)\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1811 | using eventually_mono by fastforce | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1812 | with \<open>(f \<longlongrightarrow> l) F\<close> have \<open>eventually (\<lambda>x. E (x ,l)) (filtermap f F)\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1813 | by (simp add: filterlim_def le_filter_def eventually_nhds_uniformity) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1814 | then show \<open>\<forall>\<^sub>F x in F. E (f x, l)\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1815 | by (simp add: eventually_filtermap) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1816 | next | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1817 | assume assm: \<open>\<forall>E. eventually E uniformity \<longrightarrow> (\<forall>\<^sub>F x in F. E (f x, l))\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1818 | have \<open>eventually P (filtermap f F)\<close> if \<open>\<forall>\<^sub>F (x, y) in uniformity. x = l \<longrightarrow> P y\<close> for P | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1819 | proof - | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1820 | from that have \<open>\<forall>\<^sub>F (y, x) in uniformity. x = l \<longrightarrow> P y\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1821 | using uniformity_sym[where E=\<open>\<lambda>(x,y). x=l \<longrightarrow> P y\<close>] by auto | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1822 | with assm have \<open>\<forall>\<^sub>F x in F. P (f x)\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1823 | by auto | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1824 | then show ?thesis | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1825 | by (auto simp: eventually_filtermap) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1826 | qed | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1827 | then show \<open>(f \<longlongrightarrow> l) F\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1828 | by (simp add: filterlim_def le_filter_def eventually_nhds_uniformity) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1829 | qed | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 1830 | |
| 63545 | 1831 | lemma (in metric_space) tendsto_iff: "(f \<longlongrightarrow> l) F \<longleftrightarrow> (\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) F)" | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1832 | unfolding nhds_metric filterlim_INF filterlim_principal by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1833 | |
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 1834 | lemma tendsto_dist_iff: | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 1835 | "((f \<longlongrightarrow> l) F) \<longleftrightarrow> (((\<lambda>x. dist (f x) l) \<longlongrightarrow> 0) F)" | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 1836 | unfolding tendsto_iff by simp | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 1837 | |
| 63545 | 1838 | lemma (in metric_space) tendstoI [intro?]: | 
| 1839 | "(\<And>e. 0 < e \<Longrightarrow> eventually (\<lambda>x. dist (f x) l < e) F) \<Longrightarrow> (f \<longlongrightarrow> l) F" | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1840 | by (auto simp: tendsto_iff) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1841 | |
| 61973 | 1842 | lemma (in metric_space) tendstoD: "(f \<longlongrightarrow> l) F \<Longrightarrow> 0 < e \<Longrightarrow> eventually (\<lambda>x. dist (f x) l < e) F" | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1843 | by (auto simp: tendsto_iff) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1844 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1845 | lemma (in metric_space) eventually_nhds_metric: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1846 | "eventually P (nhds a) \<longleftrightarrow> (\<exists>d>0. \<forall>x. dist x a < d \<longrightarrow> P x)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1847 | unfolding nhds_metric | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1848 | by (subst eventually_INF_base) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1849 | (auto simp: eventually_principal Bex_def subset_eq intro: exI[of _ "min a b" for a b]) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1850 | |
| 63545 | 1851 | lemma eventually_at: "eventually P (at a within S) \<longleftrightarrow> (\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<and> dist x a < d \<longrightarrow> P x)" | 
| 1852 | for a :: "'a :: metric_space" | |
| 1853 | by (auto simp: eventually_at_filter eventually_nhds_metric) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1854 | |
| 67706 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67673diff
changeset | 1855 | lemma frequently_at: "frequently P (at a within S) \<longleftrightarrow> (\<forall>d>0. \<exists>x\<in>S. x \<noteq> a \<and> dist x a < d \<and> P x)" | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67673diff
changeset | 1856 | for a :: "'a :: metric_space" | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67673diff
changeset | 1857 | unfolding frequently_def eventually_at by auto | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67673diff
changeset | 1858 | |
| 63545 | 1859 | lemma eventually_at_le: "eventually P (at a within S) \<longleftrightarrow> (\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<and> dist x a \<le> d \<longrightarrow> P x)" | 
| 1860 | for a :: "'a::metric_space" | |
| 68594 | 1861 | unfolding eventually_at_filter eventually_nhds_metric | 
| 1862 | apply safe | |
| 1863 | apply (rule_tac x="d / 2" in exI, auto) | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1864 | done | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1865 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1866 | lemma eventually_at_left_real: "a > (b :: real) \<Longrightarrow> eventually (\<lambda>x. x \<in> {b<..<a}) (at_left a)"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1867 | by (subst eventually_at, rule exI[of _ "a - b"]) (force simp: dist_real_def) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1868 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1869 | lemma eventually_at_right_real: "a < (b :: real) \<Longrightarrow> eventually (\<lambda>x. x \<in> {a<..<b}) (at_right a)"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1870 | by (subst eventually_at, rule exI[of _ "b - a"]) (force simp: dist_real_def) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1871 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1872 | lemma metric_tendsto_imp_tendsto: | 
| 63545 | 1873 | fixes a :: "'a :: metric_space" | 
| 1874 | and b :: "'b :: metric_space" | |
| 61973 | 1875 | assumes f: "(f \<longlongrightarrow> a) F" | 
| 63545 | 1876 | and le: "eventually (\<lambda>x. dist (g x) b \<le> dist (f x) a) F" | 
| 61973 | 1877 | shows "(g \<longlongrightarrow> b) F" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1878 | proof (rule tendstoI) | 
| 63545 | 1879 | fix e :: real | 
| 1880 | assume "0 < e" | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1881 | with f have "eventually (\<lambda>x. dist (f x) a < e) F" by (rule tendstoD) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1882 | with le show "eventually (\<lambda>x. dist (g x) b < e) F" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1883 | using le_less_trans by (rule eventually_elim2) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1884 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1885 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1886 | lemma filterlim_real_sequentially: "LIM x sequentially. real x :> at_top" | 
| 71720 | 1887 | proof (clarsimp simp: filterlim_at_top) | 
| 1888 | fix Z | |
| 1889 | show "\<forall>\<^sub>F x in sequentially. Z \<le> real x" | |
| 1890 | by (meson eventually_sequentiallyI nat_ceiling_le_eq) | |
| 1891 | qed | |
| 61942 | 1892 | |
| 63556 | 1893 | lemma filterlim_nat_sequentially: "filterlim nat sequentially at_top" | 
| 68594 | 1894 | proof - | 
| 1895 | have "\<forall>\<^sub>F x in at_top. Z \<le> nat x" for Z | |
| 1896 | by (auto intro!: eventually_at_top_linorderI[where c="int Z"]) | |
| 1897 | then show ?thesis | |
| 1898 | unfolding filterlim_at_top .. | |
| 1899 | qed | |
| 63556 | 1900 | |
| 1901 | lemma filterlim_floor_sequentially: "filterlim floor at_top at_top" | |
| 68594 | 1902 | proof - | 
| 1903 | have "\<forall>\<^sub>F x in at_top. Z \<le> \<lfloor>x\<rfloor>" for Z | |
| 1904 | by (auto simp: le_floor_iff intro!: eventually_at_top_linorderI[where c="of_int Z"]) | |
| 1905 | then show ?thesis | |
| 1906 | unfolding filterlim_at_top .. | |
| 1907 | qed | |
| 63556 | 1908 | |
| 1909 | lemma filterlim_sequentially_iff_filterlim_real: | |
| 71720 | 1910 | "filterlim f sequentially F \<longleftrightarrow> filterlim (\<lambda>x. real (f x)) at_top F" (is "?lhs = ?rhs") | 
| 1911 | proof | |
| 1912 | assume ?lhs then show ?rhs | |
| 1913 | using filterlim_compose filterlim_real_sequentially by blast | |
| 1914 | next | |
| 1915 | assume R: ?rhs | |
| 1916 | show ?lhs | |
| 63556 | 1917 | proof - | 
| 1918 | have "filterlim (\<lambda>x. nat (floor (real (f x)))) sequentially F" | |
| 1919 | by (intro filterlim_compose[OF filterlim_nat_sequentially] | |
| 71720 | 1920 | filterlim_compose[OF filterlim_floor_sequentially] R) | 
| 63556 | 1921 | then show ?thesis by simp | 
| 1922 | qed | |
| 71720 | 1923 | qed | 
| 63556 | 1924 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1925 | |
| 60758 | 1926 | subsubsection \<open>Limits of Sequences\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1927 | |
| 63545 | 1928 | lemma lim_sequentially: "X \<longlonglongrightarrow> L \<longleftrightarrow> (\<forall>r>0. \<exists>no. \<forall>n\<ge>no. dist (X n) L < r)" | 
| 1929 | for L :: "'a::metric_space" | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1930 | unfolding tendsto_iff eventually_sequentially .. | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1931 | |
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1932 | lemmas LIMSEQ_def = lim_sequentially (*legacy binding*) | 
| 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1933 | |
| 63545 | 1934 | lemma LIMSEQ_iff_nz: "X \<longlonglongrightarrow> L \<longleftrightarrow> (\<forall>r>0. \<exists>no>0. \<forall>n\<ge>no. dist (X n) L < r)" | 
| 1935 | for L :: "'a::metric_space" | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 1936 | unfolding lim_sequentially by (metis Suc_leD zero_less_Suc) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1937 | |
| 63545 | 1938 | lemma metric_LIMSEQ_I: "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. dist (X n) L < r) \<Longrightarrow> X \<longlonglongrightarrow> L" | 
| 1939 | for L :: "'a::metric_space" | |
| 1940 | by (simp add: lim_sequentially) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1941 | |
| 63545 | 1942 | lemma metric_LIMSEQ_D: "X \<longlonglongrightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. dist (X n) L < r" | 
| 1943 | for L :: "'a::metric_space" | |
| 1944 | by (simp add: lim_sequentially) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1945 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1946 | lemma LIMSEQ_norm_0: | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1947 | assumes "\<And>n::nat. norm (f n) < 1 / real (Suc n)" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1948 | shows "f \<longlonglongrightarrow> 0" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1949 | proof (rule metric_LIMSEQ_I) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1950 | fix \<epsilon> :: "real" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1951 | assume "\<epsilon> > 0" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1952 | then obtain N::nat where "\<epsilon> > inverse N" "N > 0" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1953 | by (metis neq0_conv real_arch_inverse) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1954 | then have "norm (f n) < \<epsilon>" if "n \<ge> N" for n | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1955 | proof - | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1956 | have "1 / (Suc n) \<le> 1 / N" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1957 | using \<open>0 < N\<close> inverse_of_nat_le le_SucI that by blast | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1958 | also have "\<dots> < \<epsilon>" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1959 | by (metis (no_types) \<open>inverse (real N) < \<epsilon>\<close> inverse_eq_divide) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1960 | finally show ?thesis | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1961 | by (meson assms less_eq_real_def not_le order_trans) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1962 | qed | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1963 | then show "\<exists>no. \<forall>n\<ge>no. dist (f n) 0 < \<epsilon>" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1964 | by auto | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1965 | qed | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1966 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1967 | |
| 60758 | 1968 | subsubsection \<open>Limits of Functions\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1969 | |
| 63545 | 1970 | lemma LIM_def: "f \<midarrow>a\<rightarrow> L \<longleftrightarrow> (\<forall>r > 0. \<exists>s > 0. \<forall>x. x \<noteq> a \<and> dist x a < s \<longrightarrow> dist (f x) L < r)" | 
| 1971 | for a :: "'a::metric_space" and L :: "'b::metric_space" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1972 | unfolding tendsto_iff eventually_at by simp | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1973 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1974 | lemma metric_LIM_I: | 
| 63545 | 1975 | "(\<And>r. 0 < r \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> dist x a < s \<longrightarrow> dist (f x) L < r) \<Longrightarrow> f \<midarrow>a\<rightarrow> L" | 
| 1976 | for a :: "'a::metric_space" and L :: "'b::metric_space" | |
| 1977 | by (simp add: LIM_def) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1978 | |
| 63545 | 1979 | lemma metric_LIM_D: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> dist x a < s \<longrightarrow> dist (f x) L < r" | 
| 1980 | for a :: "'a::metric_space" and L :: "'b::metric_space" | |
| 1981 | by (simp add: LIM_def) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1982 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1983 | lemma metric_LIM_imp_LIM: | 
| 63545 | 1984 | fixes l :: "'a::metric_space" | 
| 1985 | and m :: "'b::metric_space" | |
| 1986 | assumes f: "f \<midarrow>a\<rightarrow> l" | |
| 1987 | and le: "\<And>x. x \<noteq> a \<Longrightarrow> dist (g x) m \<le> dist (f x) l" | |
| 1988 | shows "g \<midarrow>a\<rightarrow> m" | |
| 68594 | 1989 | by (rule metric_tendsto_imp_tendsto [OF f]) (auto simp: eventually_at_topological le) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1990 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1991 | lemma metric_LIM_equal2: | 
| 63545 | 1992 | fixes a :: "'a::metric_space" | 
| 68594 | 1993 | assumes "g \<midarrow>a\<rightarrow> l" "0 < R" | 
| 63545 | 1994 | and "\<And>x. x \<noteq> a \<Longrightarrow> dist x a < R \<Longrightarrow> f x = g x" | 
| 68594 | 1995 | shows "f \<midarrow>a\<rightarrow> l" | 
| 1996 | proof - | |
| 1997 | have "\<And>S. \<lbrakk>open S; l \<in> S; \<forall>\<^sub>F x in at a. g x \<in> S\<rbrakk> \<Longrightarrow> \<forall>\<^sub>F x in at a. f x \<in> S" | |
| 71720 | 1998 | apply (simp add: eventually_at) | 
| 1999 | by (metis assms(2) assms(3) dual_order.strict_trans linorder_neqE_linordered_idom) | |
| 68594 | 2000 | then show ?thesis | 
| 2001 | using assms by (simp add: tendsto_def) | |
| 2002 | qed | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2003 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2004 | lemma metric_LIM_compose2: | 
| 63545 | 2005 | fixes a :: "'a::metric_space" | 
| 2006 | assumes f: "f \<midarrow>a\<rightarrow> b" | |
| 2007 | and g: "g \<midarrow>b\<rightarrow> c" | |
| 2008 | and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> dist x a < d \<longrightarrow> f x \<noteq> b" | |
| 61976 | 2009 | shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> c" | 
| 63545 | 2010 | using inj by (intro tendsto_compose_eventually[OF g f]) (auto simp: eventually_at) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2011 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2012 | lemma metric_isCont_LIM_compose2: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2013 | fixes f :: "'a :: metric_space \<Rightarrow> _" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2014 | assumes f [unfolded isCont_def]: "isCont f a" | 
| 63545 | 2015 | and g: "g \<midarrow>f a\<rightarrow> l" | 
| 2016 | and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> dist x a < d \<longrightarrow> f x \<noteq> f a" | |
| 61976 | 2017 | shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> l" | 
| 63545 | 2018 | by (rule metric_LIM_compose2 [OF f g inj]) | 
| 2019 | ||
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2020 | |
| 60758 | 2021 | subsection \<open>Complete metric spaces\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2022 | |
| 60758 | 2023 | subsection \<open>Cauchy sequences\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2024 | |
| 62101 | 2025 | lemma (in metric_space) Cauchy_def: "Cauchy X = (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e)" | 
| 2026 | proof - | |
| 63545 | 2027 |   have *: "eventually P (INF M. principal {(X m, X n) | n m. m \<ge> M \<and> n \<ge> M}) \<longleftrightarrow>
 | 
| 62101 | 2028 | (\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. P (X m, X n))" for P | 
| 63545 | 2029 | apply (subst eventually_INF_base) | 
| 2030 | subgoal by simp | |
| 2031 | subgoal for a b | |
| 62101 | 2032 | by (intro bexI[of _ "max a b"]) (auto simp: eventually_principal subset_eq) | 
| 63545 | 2033 | subgoal by (auto simp: eventually_principal, blast) | 
| 2034 | done | |
| 62101 | 2035 |   have "Cauchy X \<longleftrightarrow> (INF M. principal {(X m, X n) | n m. m \<ge> M \<and> n \<ge> M}) \<le> uniformity"
 | 
| 2036 | unfolding Cauchy_uniform_iff le_filter_def * .. | |
| 2037 | also have "\<dots> = (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e)" | |
| 2038 | unfolding uniformity_dist le_INF_iff by (auto simp: * le_principal) | |
| 2039 | finally show ?thesis . | |
| 2040 | qed | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2041 | |
| 63545 | 2042 | lemma (in metric_space) Cauchy_altdef: "Cauchy f \<longleftrightarrow> (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n>m. dist (f m) (f n) < e)" | 
| 2043 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2044 | proof | 
| 63545 | 2045 | assume ?rhs | 
| 2046 | show ?lhs | |
| 2047 | unfolding Cauchy_def | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2048 | proof (intro allI impI) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2049 | fix e :: real assume e: "e > 0" | 
| 63545 | 2050 | with \<open>?rhs\<close> obtain M where M: "m \<ge> M \<Longrightarrow> n > m \<Longrightarrow> dist (f m) (f n) < e" for m n | 
| 2051 | by blast | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2052 | have "dist (f m) (f n) < e" if "m \<ge> M" "n \<ge> M" for m n | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2053 | using M[of m n] M[of n m] e that by (cases m n rule: linorder_cases) (auto simp: dist_commute) | 
| 63545 | 2054 | then show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (f m) (f n) < e" | 
| 2055 | by blast | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2056 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2057 | next | 
| 63545 | 2058 | assume ?lhs | 
| 2059 | show ?rhs | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2060 | proof (intro allI impI) | 
| 63545 | 2061 | fix e :: real | 
| 2062 | assume e: "e > 0" | |
| 61799 | 2063 | with \<open>Cauchy f\<close> obtain M where "\<And>m n. m \<ge> M \<Longrightarrow> n \<ge> M \<Longrightarrow> dist (f m) (f n) < e" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 2064 | unfolding Cauchy_def by blast | 
| 63545 | 2065 | then show "\<exists>M. \<forall>m\<ge>M. \<forall>n>m. dist (f m) (f n) < e" | 
| 2066 | by (intro exI[of _ M]) force | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2067 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2068 | qed | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2069 | |
| 66089 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2070 | lemma (in metric_space) Cauchy_altdef2: "Cauchy s \<longleftrightarrow> (\<forall>e>0. \<exists>N::nat. \<forall>n\<ge>N. dist(s n)(s N) < e)" (is "?lhs = ?rhs") | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2071 | proof | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2072 | assume "Cauchy s" | 
| 68594 | 2073 | then show ?rhs by (force simp: Cauchy_def) | 
| 66089 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2074 | next | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2075 | assume ?rhs | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2076 |     {
 | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2077 | fix e::real | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2078 | assume "e>0" | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2079 | with \<open>?rhs\<close> obtain N where N: "\<forall>n\<ge>N. dist (s n) (s N) < e/2" | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2080 | by (erule_tac x="e/2" in allE) auto | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2081 |       {
 | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2082 | fix n m | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2083 | assume nm: "N \<le> m \<and> N \<le> n" | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2084 | then have "dist (s m) (s n) < e" using N | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2085 | using dist_triangle_half_l[of "s m" "s N" "e" "s n"] | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2086 | by blast | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2087 | } | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2088 | then have "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < e" | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2089 | by blast | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2090 | } | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2091 | then have ?lhs | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2092 | unfolding Cauchy_def by blast | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2093 | then show ?lhs | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2094 | by blast | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2095 | qed | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2096 | |
| 62101 | 2097 | lemma (in metric_space) metric_CauchyI: | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2098 | "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e) \<Longrightarrow> Cauchy X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2099 | by (simp add: Cauchy_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2100 | |
| 63545 | 2101 | lemma (in metric_space) CauchyI': | 
| 2102 | "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n>m. dist (X m) (X n) < e) \<Longrightarrow> Cauchy X" | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2103 | unfolding Cauchy_altdef by blast | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2104 | |
| 62101 | 2105 | lemma (in metric_space) metric_CauchyD: | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2106 | "Cauchy X \<Longrightarrow> 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2107 | by (simp add: Cauchy_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2108 | |
| 62101 | 2109 | lemma (in metric_space) metric_Cauchy_iff2: | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2110 | "Cauchy X = (\<forall>j. (\<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. dist (X m) (X n) < inverse(real (Suc j))))" | 
| 68594 | 2111 | apply (auto simp add: Cauchy_def) | 
| 2112 | by (metis less_trans of_nat_Suc reals_Archimedean) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2113 | |
| 63545 | 2114 | lemma Cauchy_iff2: "Cauchy X \<longleftrightarrow> (\<forall>j. (\<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. \<bar>X m - X n\<bar> < inverse (real (Suc j))))" | 
| 2115 | by (simp only: metric_Cauchy_iff2 dist_real_def) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2116 | |
| 70723 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70630diff
changeset | 2117 | lemma lim_1_over_n [tendsto_intros]: "((\<lambda>n. 1 / of_nat n) \<longlongrightarrow> (0::'a::real_normed_field)) sequentially" | 
| 62101 | 2118 | proof (subst lim_sequentially, intro allI impI exI) | 
| 70723 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70630diff
changeset | 2119 | fix e::real and n | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70630diff
changeset | 2120 | assume e: "e > 0" | 
| 62101 | 2121 | have "inverse e < of_nat (nat \<lceil>inverse e + 1\<rceil>)" by linarith | 
| 70723 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70630diff
changeset | 2122 | also assume "n \<ge> nat \<lceil>inverse e + 1\<rceil>" | 
| 63545 | 2123 | finally show "dist (1 / of_nat n :: 'a) 0 < e" | 
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 2124 | using e by (simp add: field_split_simps norm_divide) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2125 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2126 | |
| 62101 | 2127 | lemma (in metric_space) complete_def: | 
| 2128 | shows "complete S = (\<forall>f. (\<forall>n. f n \<in> S) \<and> Cauchy f \<longrightarrow> (\<exists>l\<in>S. f \<longlonglongrightarrow> l))" | |
| 2129 | unfolding complete_uniform | |
| 2130 | proof safe | |
| 63545 | 2131 | fix f :: "nat \<Rightarrow> 'a" | 
| 2132 | assume f: "\<forall>n. f n \<in> S" "Cauchy f" | |
| 62101 | 2133 | and *: "\<forall>F\<le>principal S. F \<noteq> bot \<longrightarrow> cauchy_filter F \<longrightarrow> (\<exists>x\<in>S. F \<le> nhds x)" | 
| 2134 | then show "\<exists>l\<in>S. f \<longlonglongrightarrow> l" | |
| 2135 | unfolding filterlim_def using f | |
| 2136 | by (intro *[rule_format]) | |
| 2137 | (auto simp: filtermap_sequentually_ne_bot le_principal eventually_filtermap Cauchy_uniform) | |
| 2138 | next | |
| 63545 | 2139 | fix F :: "'a filter" | 
| 2140 | assume "F \<le> principal S" "F \<noteq> bot" "cauchy_filter F" | |
| 62101 | 2141 | assume seq: "\<forall>f. (\<forall>n. f n \<in> S) \<and> Cauchy f \<longrightarrow> (\<exists>l\<in>S. f \<longlonglongrightarrow> l)" | 
| 2142 | ||
| 63545 | 2143 | from \<open>F \<le> principal S\<close> \<open>cauchy_filter F\<close> | 
| 2144 | have FF_le: "F \<times>\<^sub>F F \<le> uniformity_on S" | |
| 62101 | 2145 | by (simp add: cauchy_filter_def principal_prod_principal[symmetric] prod_filter_mono) | 
| 2146 | ||
| 2147 | let ?P = "\<lambda>P e. eventually P F \<and> (\<forall>x. P x \<longrightarrow> x \<in> S) \<and> (\<forall>x y. P x \<longrightarrow> P y \<longrightarrow> dist x y < e)" | |
| 63545 | 2148 | have P: "\<exists>P. ?P P \<epsilon>" if "0 < \<epsilon>" for \<epsilon> :: real | 
| 2149 | proof - | |
| 2150 | from that have "eventually (\<lambda>(x, y). x \<in> S \<and> y \<in> S \<and> dist x y < \<epsilon>) (uniformity_on S)" | |
| 2151 | by (auto simp: eventually_inf_principal eventually_uniformity_metric) | |
| 2152 | from filter_leD[OF FF_le this] show ?thesis | |
| 2153 | by (auto simp: eventually_prod_same) | |
| 2154 | qed | |
| 62101 | 2155 | |
| 2156 | have "\<exists>P. \<forall>n. ?P (P n) (1 / Suc n) \<and> P (Suc n) \<le> P n" | |
| 2157 | proof (rule dependent_nat_choice) | |
| 2158 | show "\<exists>P. ?P P (1 / Suc 0)" | |
| 2159 | using P[of 1] by auto | |
| 2160 | next | |
| 2161 | fix P n assume "?P P (1/Suc n)" | |
| 2162 | moreover obtain Q where "?P Q (1 / Suc (Suc n))" | |
| 2163 | using P[of "1/Suc (Suc n)"] by auto | |
| 2164 | ultimately show "\<exists>Q. ?P Q (1 / Suc (Suc n)) \<and> Q \<le> P" | |
| 2165 | by (intro exI[of _ "\<lambda>x. P x \<and> Q x"]) (auto simp: eventually_conj_iff) | |
| 2166 | qed | |
| 63545 | 2167 | then obtain P where P: "eventually (P n) F" "P n x \<Longrightarrow> x \<in> S" | 
| 2168 | "P n x \<Longrightarrow> P n y \<Longrightarrow> dist x y < 1 / Suc n" "P (Suc n) \<le> P n" | |
| 2169 | for n x y | |
| 62101 | 2170 | by metis | 
| 2171 | have "antimono P" | |
| 76055 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 desharna parents: 
74475diff
changeset | 2172 | using P(4) by (rule decseq_SucI) | 
| 62101 | 2173 | |
| 63545 | 2174 | obtain X where X: "P n (X n)" for n | 
| 62101 | 2175 | using P(1)[THEN eventually_happens'[OF \<open>F \<noteq> bot\<close>]] by metis | 
| 2176 | have "Cauchy X" | |
| 2177 | unfolding metric_Cauchy_iff2 inverse_eq_divide | |
| 2178 | proof (intro exI allI impI) | |
| 63545 | 2179 | fix j m n :: nat | 
| 2180 | assume "j \<le> m" "j \<le> n" | |
| 62101 | 2181 | with \<open>antimono P\<close> X have "P j (X m)" "P j (X n)" | 
| 2182 | by (auto simp: antimono_def) | |
| 2183 | then show "dist (X m) (X n) < 1 / Suc j" | |
| 2184 | by (rule P) | |
| 2185 | qed | |
| 2186 | moreover have "\<forall>n. X n \<in> S" | |
| 2187 | using P(2) X by auto | |
| 2188 | ultimately obtain x where "X \<longlonglongrightarrow> x" "x \<in> S" | |
| 2189 | using seq by blast | |
| 2190 | ||
| 2191 | show "\<exists>x\<in>S. F \<le> nhds x" | |
| 2192 | proof (rule bexI) | |
| 63545 | 2193 | have "eventually (\<lambda>y. dist y x < e) F" if "0 < e" for e :: real | 
| 2194 | proof - | |
| 2195 | from that have "(\<lambda>n. 1 / Suc n :: real) \<longlonglongrightarrow> 0 \<and> 0 < e / 2" | |
| 71827 | 2196 | by (subst filterlim_sequentially_Suc) (auto intro!: lim_1_over_n) | 
| 62101 | 2197 | then have "\<forall>\<^sub>F n in sequentially. dist (X n) x < e / 2 \<and> 1 / Suc n < e / 2" | 
| 63545 | 2198 | using \<open>X \<longlonglongrightarrow> x\<close> | 
| 2199 | unfolding tendsto_iff order_tendsto_iff[where 'a=real] eventually_conj_iff | |
| 2200 | by blast | |
| 62101 | 2201 | then obtain n where "dist x (X n) < e / 2" "1 / Suc n < e / 2" | 
| 2202 | by (auto simp: eventually_sequentially dist_commute) | |
| 63545 | 2203 | show ?thesis | 
| 62101 | 2204 | using \<open>eventually (P n) F\<close> | 
| 2205 | proof eventually_elim | |
| 63545 | 2206 | case (elim y) | 
| 62101 | 2207 | then have "dist y (X n) < 1 / Suc n" | 
| 2208 | by (intro X P) | |
| 2209 | also have "\<dots> < e / 2" by fact | |
| 2210 | finally show "dist y x < e" | |
| 2211 | by (rule dist_triangle_half_l) fact | |
| 63545 | 2212 | qed | 
| 2213 | qed | |
| 62101 | 2214 | then show "F \<le> nhds x" | 
| 2215 | unfolding nhds_metric le_INF_iff le_principal by auto | |
| 2216 | qed fact | |
| 2217 | qed | |
| 2218 | ||
| 68594 | 2219 | text\<open>apparently unused\<close> | 
| 62101 | 2220 | lemma (in metric_space) totally_bounded_metric: | 
| 2221 |   "totally_bounded S \<longleftrightarrow> (\<forall>e>0. \<exists>k. finite k \<and> S \<subseteq> (\<Union>x\<in>k. {y. dist x y < e}))"
 | |
| 68594 | 2222 | unfolding totally_bounded_def eventually_uniformity_metric imp_ex | 
| 62101 | 2223 | apply (subst all_comm) | 
| 68594 | 2224 | apply (intro arg_cong[where f=All] ext, safe) | 
| 62101 | 2225 | subgoal for e | 
| 2226 | apply (erule allE[of _ "\<lambda>(x, y). dist x y < e"]) | |
| 2227 | apply auto | |
| 2228 | done | |
| 2229 | subgoal for e P k | |
| 2230 | apply (intro exI[of _ k]) | |
| 2231 | apply (force simp: subset_eq) | |
| 2232 | done | |
| 2233 | done | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2234 | |
| 63545 | 2235 | |
| 74475 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2236 | setup \<open>Sign.add_const_constraint (\<^const_name>\<open>dist\<close>, SOME \<^typ>\<open>'a::dist \<Rightarrow> 'a \<Rightarrow> real\<close>)\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2237 | |
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2238 | (* Contributed by Dominique Unruh *) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2239 | lemma cauchy_filter_metric: | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2240 |   fixes F :: "'a::{uniformity_dist,uniform_space} filter"
 | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2241 | shows "cauchy_filter F \<longleftrightarrow> (\<forall>e. e>0 \<longrightarrow> (\<exists>P. eventually P F \<and> (\<forall>x y. P x \<and> P y \<longrightarrow> dist x y < e)))" | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2242 | proof (unfold cauchy_filter_def le_filter_def, auto) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2243 | assume assm: \<open>\<forall>e>0. \<exists>P. eventually P F \<and> (\<forall>x y. P x \<and> P y \<longrightarrow> dist x y < e)\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2244 | then show \<open>eventually P uniformity \<Longrightarrow> eventually P (F \<times>\<^sub>F F)\<close> for P | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2245 | apply (auto simp: eventually_uniformity_metric) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2246 | using eventually_prod_same by blast | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2247 | next | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2248 | fix e :: real | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2249 | assume \<open>e > 0\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2250 | assume asm: \<open>\<forall>P. eventually P uniformity \<longrightarrow> eventually P (F \<times>\<^sub>F F)\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2251 | |
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2252 | define P where \<open>P \<equiv> \<lambda>(x,y :: 'a). dist x y < e\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2253 | with asm \<open>e > 0\<close> have \<open>eventually P (F \<times>\<^sub>F F)\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2254 | by (metis case_prod_conv eventually_uniformity_metric) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2255 | then | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2256 | show \<open>\<exists>P. eventually P F \<and> (\<forall>x y. P x \<and> P y \<longrightarrow> dist x y < e)\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2257 | by (auto simp add: eventually_prod_same P_def) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2258 | qed | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2259 | |
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2260 | (* Contributed by Dominique Unruh *) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2261 | lemma cauchy_filter_metric_filtermap: | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2262 |   fixes f :: "'a \<Rightarrow> 'b::{uniformity_dist,uniform_space}"
 | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2263 | shows "cauchy_filter (filtermap f F) \<longleftrightarrow> (\<forall>e. e>0 \<longrightarrow> (\<exists>P. eventually P F \<and> (\<forall>x y. P x \<and> P y \<longrightarrow> dist (f x) (f y) < e)))" | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2264 | proof (subst cauchy_filter_metric, intro iffI allI impI) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2265 | assume \<open>\<forall>e>0. \<exists>P. eventually P (filtermap f F) \<and> (\<forall>x y. P x \<and> P y \<longrightarrow> dist x y < e)\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2266 | then show \<open>e>0 \<Longrightarrow> \<exists>P. eventually P F \<and> (\<forall>x y. P x \<and> P y \<longrightarrow> dist (f x) (f y) < e)\<close> for e | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2267 | unfolding eventually_filtermap by blast | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2268 | next | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2269 | assume asm: \<open>\<forall>e>0. \<exists>P. eventually P F \<and> (\<forall>x y. P x \<and> P y \<longrightarrow> dist (f x) (f y) < e)\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2270 | fix e::real assume \<open>e > 0\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2271 | then obtain P where \<open>eventually P F\<close> and PPe: \<open>P x \<and> P y \<longrightarrow> dist (f x) (f y) < e\<close> for x y | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2272 | using asm by blast | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2273 | |
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2274 | show \<open>\<exists>P. eventually P (filtermap f F) \<and> (\<forall>x y. P x \<and> P y \<longrightarrow> dist x y < e)\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2275 | apply (rule exI[of _ \<open>\<lambda>x. \<exists>y. P y \<and> x = f y\<close>]) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2276 | using PPe \<open>eventually P F\<close> apply (auto simp: eventually_filtermap) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2277 | by (smt (verit, ccfv_SIG) eventually_elim2) | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2278 | qed | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2279 | |
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2280 | setup \<open>Sign.add_const_constraint (\<^const_name>\<open>dist\<close>, SOME \<^typ>\<open>'a::metric_space \<Rightarrow> 'a \<Rightarrow> real\<close>)\<close> | 
| 
409ca22dee4c
new notion of infinite sums in HOL-Analysis, ordering on complex numbers
 eberlm <eberlm@in.tum.de> parents: 
74007diff
changeset | 2281 | |
| 60758 | 2282 | subsubsection \<open>Cauchy Sequences are Convergent\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2283 | |
| 62101 | 2284 | (* TODO: update to uniform_space *) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2285 | class complete_space = metric_space + | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2286 | assumes Cauchy_convergent: "Cauchy X \<Longrightarrow> convergent X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2287 | |
| 63545 | 2288 | lemma Cauchy_convergent_iff: "Cauchy X \<longleftrightarrow> convergent X" | 
| 2289 | for X :: "nat \<Rightarrow> 'a::complete_space" | |
| 2290 | by (blast intro: Cauchy_convergent convergent_Cauchy) | |
| 2291 | ||
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2292 | text \<open>To prove that a Cauchy sequence converges, it suffices to show that a subsequence converges.\<close> | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2293 | |
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2294 | lemma Cauchy_converges_subseq: | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2295 | fixes u::"nat \<Rightarrow> 'a::metric_space" | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2296 | assumes "Cauchy u" | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2297 | "strict_mono r" | 
| 68594 | 2298 | "(u \<circ> r) \<longlonglongrightarrow> l" | 
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2299 | shows "u \<longlonglongrightarrow> l" | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2300 | proof - | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2301 | have *: "eventually (\<lambda>n. dist (u n) l < e) sequentially" if "e > 0" for e | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2302 | proof - | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2303 | have "e/2 > 0" using that by auto | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2304 | then obtain N1 where N1: "\<And>m n. m \<ge> N1 \<Longrightarrow> n \<ge> N1 \<Longrightarrow> dist (u m) (u n) < e/2" | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2305 | using \<open>Cauchy u\<close> unfolding Cauchy_def by blast | 
| 68594 | 2306 | obtain N2 where N2: "\<And>n. n \<ge> N2 \<Longrightarrow> dist ((u \<circ> r) n) l < e / 2" | 
| 2307 | using order_tendstoD(2)[OF iffD1[OF tendsto_dist_iff \<open>(u \<circ> r) \<longlonglongrightarrow> l\<close>] \<open>e/2 > 0\<close>] | |
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2308 | unfolding eventually_sequentially by auto | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2309 | have "dist (u n) l < e" if "n \<ge> max N1 N2" for n | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2310 | proof - | 
| 68594 | 2311 | have "dist (u n) l \<le> dist (u n) ((u \<circ> r) n) + dist ((u \<circ> r) n) l" | 
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2312 | by (rule dist_triangle) | 
| 68594 | 2313 | also have "\<dots> < e/2 + e/2" | 
| 71720 | 2314 | proof (intro add_strict_mono) | 
| 2315 | show "dist (u n) ((u \<circ> r) n) < e / 2" | |
| 2316 | using N1[of n "r n"] N2[of n] that unfolding comp_def | |
| 2317 | by (meson assms(2) le_trans max.bounded_iff strict_mono_imp_increasing) | |
| 2318 | show "dist ((u \<circ> r) n) l < e / 2" | |
| 2319 | using N2 that by auto | |
| 2320 | qed | |
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2321 | finally show ?thesis by simp | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2322 | qed | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2323 | then show ?thesis unfolding eventually_sequentially by blast | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2324 | qed | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2325 | have "(\<lambda>n. dist (u n) l) \<longlonglongrightarrow> 0" | 
| 71720 | 2326 | by (simp add: less_le_trans * order_tendstoI) | 
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2327 | then show ?thesis using tendsto_dist_iff by auto | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2328 | qed | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2329 | |
| 60758 | 2330 | subsection \<open>The set of real numbers is a complete metric space\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2331 | |
| 60758 | 2332 | text \<open> | 
| 63545 | 2333 | Proof that Cauchy sequences converge based on the one from | 
| 63680 | 2334 | \<^url>\<open>http://pirate.shu.edu/~wachsmut/ira/numseq/proofs/cauconv.html\<close> | 
| 60758 | 2335 | \<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2336 | |
| 60758 | 2337 | text \<open> | 
| 69593 | 2338 | If sequence \<^term>\<open>X\<close> is Cauchy, then its limit is the lub of | 
| 2339 |   \<^term>\<open>{r::real. \<exists>N. \<forall>n\<ge>N. r < X n}\<close>
 | |
| 60758 | 2340 | \<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2341 | lemma increasing_LIMSEQ: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2342 | fixes f :: "nat \<Rightarrow> real" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2343 | assumes inc: "\<And>n. f n \<le> f (Suc n)" | 
| 63545 | 2344 | and bdd: "\<And>n. f n \<le> l" | 
| 2345 | and en: "\<And>e. 0 < e \<Longrightarrow> \<exists>n. l \<le> f n + e" | |
| 61969 | 2346 | shows "f \<longlonglongrightarrow> l" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2347 | proof (rule increasing_tendsto) | 
| 63545 | 2348 | fix x | 
| 2349 | assume "x < l" | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2350 | with dense[of 0 "l - x"] obtain e where "0 < e" "e < l - x" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2351 | by auto | 
| 60758 | 2352 | from en[OF \<open>0 < e\<close>] obtain n where "l - e \<le> f n" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2353 | by (auto simp: field_simps) | 
| 63545 | 2354 | with \<open>e < l - x\<close> \<open>0 < e\<close> have "x < f n" | 
| 2355 | by simp | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2356 | with incseq_SucI[of f, OF inc] show "eventually (\<lambda>n. x < f n) sequentially" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2357 | by (auto simp: eventually_sequentially incseq_def intro: less_le_trans) | 
| 63545 | 2358 | qed (use bdd in auto) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2359 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2360 | lemma real_Cauchy_convergent: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2361 | fixes X :: "nat \<Rightarrow> real" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2362 | assumes X: "Cauchy X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2363 | shows "convergent X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2364 | proof - | 
| 63040 | 2365 |   define S :: "real set" where "S = {x. \<exists>N. \<forall>n\<ge>N. x < X n}"
 | 
| 63545 | 2366 | then have mem_S: "\<And>N x. \<forall>n\<ge>N. x < X n \<Longrightarrow> x \<in> S" | 
| 2367 | by auto | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2368 | |
| 63545 | 2369 | have bound_isUb: "y \<le> x" if N: "\<forall>n\<ge>N. X n < x" and "y \<in> S" for N and x y :: real | 
| 2370 | proof - | |
| 2371 | from that have "\<exists>M. \<forall>n\<ge>M. y < X n" | |
| 2372 | by (simp add: S_def) | |
| 2373 | then obtain M where "\<forall>n\<ge>M. y < X n" .. | |
| 2374 | then have "y < X (max M N)" by simp | |
| 2375 | also have "\<dots> < x" using N by simp | |
| 2376 | finally show ?thesis by (rule order_less_imp_le) | |
| 2377 | qed | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2378 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2379 | obtain N where "\<forall>m\<ge>N. \<forall>n\<ge>N. dist (X m) (X n) < 1" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2380 | using X[THEN metric_CauchyD, OF zero_less_one] by auto | 
| 63545 | 2381 | then have N: "\<forall>n\<ge>N. dist (X n) (X N) < 1" by simp | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 2382 |   have [simp]: "S \<noteq> {}"
 | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 2383 | proof (intro exI ex_in_conv[THEN iffD1]) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2384 | from N have "\<forall>n\<ge>N. X N - 1 < X n" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2385 | by (simp add: abs_diff_less_iff dist_real_def) | 
| 63545 | 2386 | then show "X N - 1 \<in> S" by (rule mem_S) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2387 | qed | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 2388 | have [simp]: "bdd_above S" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2389 | proof | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2390 | from N have "\<forall>n\<ge>N. X n < X N + 1" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2391 | by (simp add: abs_diff_less_iff dist_real_def) | 
| 63545 | 2392 | then show "\<And>s. s \<in> S \<Longrightarrow> s \<le> X N + 1" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2393 | by (rule bound_isUb) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2394 | qed | 
| 61969 | 2395 | have "X \<longlonglongrightarrow> Sup S" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2396 | proof (rule metric_LIMSEQ_I) | 
| 63545 | 2397 | fix r :: real | 
| 2398 | assume "0 < r" | |
| 2399 | then have r: "0 < r/2" by simp | |
| 2400 | obtain N where "\<forall>n\<ge>N. \<forall>m\<ge>N. dist (X n) (X m) < r/2" | |
| 2401 | using metric_CauchyD [OF X r] by auto | |
| 2402 | then have "\<forall>n\<ge>N. dist (X n) (X N) < r/2" by simp | |
| 2403 | then have N: "\<forall>n\<ge>N. X N - r/2 < X n \<and> X n < X N + r/2" | |
| 2404 | by (simp only: dist_real_def abs_diff_less_iff) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2405 | |
| 63545 | 2406 | from N have "\<forall>n\<ge>N. X N - r/2 < X n" by blast | 
| 2407 | then have "X N - r/2 \<in> S" by (rule mem_S) | |
| 2408 | then have 1: "X N - r/2 \<le> Sup S" by (simp add: cSup_upper) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2409 | |
| 63545 | 2410 | from N have "\<forall>n\<ge>N. X n < X N + r/2" by blast | 
| 2411 | from bound_isUb[OF this] | |
| 2412 | have 2: "Sup S \<le> X N + r/2" | |
| 2413 | by (intro cSup_least) simp_all | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2414 | |
| 63545 | 2415 | show "\<exists>N. \<forall>n\<ge>N. dist (X n) (Sup S) < r" | 
| 2416 | proof (intro exI allI impI) | |
| 2417 | fix n | |
| 2418 | assume n: "N \<le> n" | |
| 2419 | from N n have "X n < X N + r/2" and "X N - r/2 < X n" | |
| 2420 | by simp_all | |
| 2421 | then show "dist (X n) (Sup S) < r" using 1 2 | |
| 2422 | by (simp add: abs_diff_less_iff dist_real_def) | |
| 2423 | qed | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2424 | qed | 
| 63545 | 2425 | then show ?thesis by (auto simp: convergent_def) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2426 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2427 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2428 | instance real :: complete_space | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2429 | by intro_classes (rule real_Cauchy_convergent) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2430 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2431 | class banach = real_normed_vector + complete_space | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2432 | |
| 61169 | 2433 | instance real :: banach .. | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2434 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2435 | lemma tendsto_at_topI_sequentially: | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 2436 | fixes f :: "real \<Rightarrow> 'b::first_countable_topology" | 
| 61969 | 2437 | assumes *: "\<And>X. filterlim X at_top sequentially \<Longrightarrow> (\<lambda>n. f (X n)) \<longlonglongrightarrow> y" | 
| 61973 | 2438 | shows "(f \<longlongrightarrow> y) at_top" | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2439 | proof - | 
| 63545 | 2440 | obtain A where A: "decseq A" "open (A n)" "y \<in> A n" "nhds y = (INF n. principal (A n))" for n | 
| 2441 | by (rule nhds_countable[of y]) (rule that) | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 2442 | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2443 | have "\<forall>m. \<exists>k. \<forall>x\<ge>k. f x \<in> A m" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2444 | proof (rule ccontr) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2445 | assume "\<not> (\<forall>m. \<exists>k. \<forall>x\<ge>k. f x \<in> A m)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2446 | then obtain m where "\<And>k. \<exists>x\<ge>k. f x \<notin> A m" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2447 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2448 | then have "\<exists>X. \<forall>n. (f (X n) \<notin> A m) \<and> max n (X n) + 1 \<le> X (Suc n)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2449 | by (intro dependent_nat_choice) (auto simp del: max.bounded_iff) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2450 | then obtain X where X: "\<And>n. f (X n) \<notin> A m" "\<And>n. max n (X n) + 1 \<le> X (Suc n)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2451 | by auto | 
| 63545 | 2452 | have "1 \<le> n \<Longrightarrow> real n \<le> X n" for n | 
| 2453 | using X[of "n - 1"] by auto | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2454 | then have "filterlim X at_top sequentially" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2455 | by (force intro!: filterlim_at_top_mono[OF filterlim_real_sequentially] | 
| 63545 | 2456 | simp: eventually_sequentially) | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2457 | from topological_tendstoD[OF *[OF this] A(2, 3), of m] X(1) show False | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2458 | by auto | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 2459 | qed | 
| 63545 | 2460 | then obtain k where "k m \<le> x \<Longrightarrow> f x \<in> A m" for m x | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2461 | by metis | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2462 | then show ?thesis | 
| 63545 | 2463 | unfolding at_top_def A by (intro filterlim_base[where i=k]) auto | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 2464 | qed | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 2465 | |
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 2466 | lemma tendsto_at_topI_sequentially_real: | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2467 | fixes f :: "real \<Rightarrow> real" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2468 | assumes mono: "mono f" | 
| 63545 | 2469 | and limseq: "(\<lambda>n. f (real n)) \<longlonglongrightarrow> y" | 
| 61973 | 2470 | shows "(f \<longlongrightarrow> y) at_top" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2471 | proof (rule tendstoI) | 
| 63545 | 2472 | fix e :: real | 
| 2473 | assume "0 < e" | |
| 2474 | with limseq obtain N :: nat where N: "N \<le> n \<Longrightarrow> \<bar>f (real n) - y\<bar> < e" for n | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 2475 | by (auto simp: lim_sequentially dist_real_def) | 
| 63545 | 2476 | have le: "f x \<le> y" for x :: real | 
| 2477 | proof - | |
| 53381 | 2478 | obtain n where "x \<le> real_of_nat n" | 
| 62623 
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 2479 | using real_arch_simple[of x] .. | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2480 | note monoD[OF mono this] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2481 | also have "f (real_of_nat n) \<le> y" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 2482 | by (rule LIMSEQ_le_const[OF limseq]) (auto intro!: exI[of _ n] monoD[OF mono]) | 
| 63545 | 2483 | finally show ?thesis . | 
| 2484 | qed | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2485 | have "eventually (\<lambda>x. real N \<le> x) at_top" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2486 | by (rule eventually_ge_at_top) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2487 | then show "eventually (\<lambda>x. dist (f x) y < e) at_top" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2488 | proof eventually_elim | 
| 63545 | 2489 | case (elim x) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2490 | with N[of N] le have "y - f (real N) < e" by auto | 
| 63545 | 2491 | moreover note monoD[OF mono elim] | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2492 | ultimately show "dist (f x) y < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2493 | using le[of x] by (auto simp: dist_real_def field_simps) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2494 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2495 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2496 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 2497 | end |