| 17914 |      1 | (*<*)theory PDL imports Base begin(*>*)
 | 
| 9958 |      2 | 
 | 
| 10971 |      3 | subsection{*Propositional Dynamic Logic --- PDL*}
 | 
| 9958 |      4 | 
 | 
| 10178 |      5 | text{*\index{PDL|(}
 | 
| 11458 |      6 | The formulae of PDL are built up from atomic propositions via
 | 
|  |      7 | negation and conjunction and the two temporal
 | 
|  |      8 | connectives @{text AX} and @{text EF}\@. Since formulae are essentially
 | 
|  |      9 | syntax trees, they are naturally modelled as a datatype:%
 | 
|  |     10 | \footnote{The customary definition of PDL
 | 
| 11207 |     11 | \cite{HarelKT-DL} looks quite different from ours, but the two are easily
 | 
| 11458 |     12 | shown to be equivalent.}
 | 
| 10133 |     13 | *}
 | 
| 9958 |     14 | 
 | 
| 18724 |     15 | datatype formula = Atom "atom"
 | 
| 10149 |     16 |                   | Neg formula
 | 
|  |     17 |                   | And formula formula
 | 
|  |     18 |                   | AX formula
 | 
|  |     19 |                   | EF formula
 | 
| 10133 |     20 | 
 | 
|  |     21 | text{*\noindent
 | 
| 11458 |     22 | This resembles the boolean expression case study in
 | 
| 10867 |     23 | \S\ref{sec:boolex}.
 | 
| 27015 |     24 | A validity relation between states and formulae specifies the semantics.
 | 
|  |     25 | The syntax annotation allows us to write @{text"s \<Turnstile> f"} instead of
 | 
|  |     26 | \hbox{@{text"valid s f"}}. The definition is by recursion over the syntax:
 | 
| 10133 |     27 | *}
 | 
|  |     28 | 
 | 
| 27015 |     29 | primrec valid :: "state \<Rightarrow> formula \<Rightarrow> bool"   ("(_ \<Turnstile> _)" [80,80] 80)
 | 
|  |     30 | where
 | 
|  |     31 | "s \<Turnstile> Atom a  = (a \<in> L s)" |
 | 
|  |     32 | "s \<Turnstile> Neg f   = (\<not>(s \<Turnstile> f))" |
 | 
|  |     33 | "s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)" |
 | 
|  |     34 | "s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)" |
 | 
| 12631 |     35 | "s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)"
 | 
| 9958 |     36 | 
 | 
| 10149 |     37 | text{*\noindent
 | 
|  |     38 | The first three equations should be self-explanatory. The temporal formula
 | 
| 10983 |     39 | @{term"AX f"} means that @{term f} is true in \emph{A}ll ne\emph{X}t states whereas
 | 
|  |     40 | @{term"EF f"} means that there \emph{E}xists some \emph{F}uture state in which @{term f} is
 | 
| 10867 |     41 | true. The future is expressed via @{text"\<^sup>*"}, the reflexive transitive
 | 
| 10149 |     42 | closure. Because of reflexivity, the future includes the present.
 | 
|  |     43 | 
 | 
| 27015 |     44 | Now we come to the model checker itself. It maps a formula into the
 | 
|  |     45 | set of states where the formula is true.  It too is defined by
 | 
|  |     46 | recursion over the syntax: *}
 | 
| 10133 |     47 | 
 | 
| 27015 |     48 | primrec mc :: "formula \<Rightarrow> state set" where
 | 
|  |     49 | "mc(Atom a)  = {s. a \<in> L s}" |
 | 
|  |     50 | "mc(Neg f)   = -mc f" |
 | 
|  |     51 | "mc(And f g) = mc f \<inter> mc g" |
 | 
|  |     52 | "mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}" |
 | 
| 10867 |     53 | "mc(EF f)    = lfp(\<lambda>T. mc f \<union> (M\<inverse> `` T))"
 | 
| 10133 |     54 | 
 | 
| 10149 |     55 | text{*\noindent
 | 
|  |     56 | Only the equation for @{term EF} deserves some comments. Remember that the
 | 
| 10839 |     57 | postfix @{text"\<inverse>"} and the infix @{text"``"} are predefined and denote the
 | 
| 10867 |     58 | converse of a relation and the image of a set under a relation.  Thus
 | 
| 10839 |     59 | @{term "M\<inverse> `` T"} is the set of all predecessors of @{term T} and the least
 | 
|  |     60 | fixed point (@{term lfp}) of @{term"\<lambda>T. mc f \<union> M\<inverse> `` T"} is the least set
 | 
| 10149 |     61 | @{term T} containing @{term"mc f"} and all predecessors of @{term T}. If you
 | 
|  |     62 | find it hard to see that @{term"mc(EF f)"} contains exactly those states from
 | 
| 10983 |     63 | which there is a path to a state where @{term f} is true, do not worry --- this
 | 
| 10149 |     64 | will be proved in a moment.
 | 
|  |     65 | 
 | 
|  |     66 | First we prove monotonicity of the function inside @{term lfp}
 | 
| 10867 |     67 | in order to make sure it really has a least fixed point.
 | 
| 10133 |     68 | *}
 | 
|  |     69 | 
 | 
| 10867 |     70 | lemma mono_ef: "mono(\<lambda>T. A \<union> (M\<inverse> `` T))"
 | 
| 10149 |     71 | apply(rule monoI)
 | 
| 10159 |     72 | apply blast
 | 
|  |     73 | done
 | 
| 10149 |     74 | 
 | 
|  |     75 | text{*\noindent
 | 
|  |     76 | Now we can relate model checking and semantics. For the @{text EF} case we need
 | 
|  |     77 | a separate lemma:
 | 
|  |     78 | *}
 | 
|  |     79 | 
 | 
|  |     80 | lemma EF_lemma:
 | 
| 10867 |     81 |   "lfp(\<lambda>T. A \<union> (M\<inverse> `` T)) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
 | 
| 10149 |     82 | 
 | 
|  |     83 | txt{*\noindent
 | 
|  |     84 | The equality is proved in the canonical fashion by proving that each set
 | 
| 10867 |     85 | includes the other; the inclusion is shown pointwise:
 | 
| 10149 |     86 | *}
 | 
|  |     87 | 
 | 
| 12631 |     88 | apply(rule equalityI)
 | 
|  |     89 |  apply(rule subsetI)
 | 
| 10524 |     90 |  apply(simp)(*<*)apply(rename_tac s)(*>*)
 | 
| 10363 |     91 | 
 | 
| 10149 |     92 | txt{*\noindent
 | 
|  |     93 | Simplification leaves us with the following first subgoal
 | 
| 10363 |     94 | @{subgoals[display,indent=0,goals_limit=1]}
 | 
| 10149 |     95 | which is proved by @{term lfp}-induction:
 | 
|  |     96 | *}
 | 
|  |     97 | 
 | 
| 21202 |     98 |  apply(erule lfp_induct_set)
 | 
| 10149 |     99 |   apply(rule mono_ef)
 | 
|  |    100 |  apply(simp)
 | 
|  |    101 | (*pr(latex xsymbols symbols);*)
 | 
|  |    102 | txt{*\noindent
 | 
|  |    103 | Having disposed of the monotonicity subgoal,
 | 
| 11458 |    104 | simplification leaves us with the following goal:
 | 
| 10149 |    105 | \begin{isabelle}
 | 
| 10801 |    106 | \ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymor}\isanewline
 | 
| 10895 |    107 | \ \ \ \ \ \ \ \ \ x\ {\isasymin}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ {\isacharparenleft}lfp\ {\isacharparenleft}\dots{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
 | 
| 10801 |    108 | \ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
 | 
| 10149 |    109 | \end{isabelle}
 | 
| 11458 |    110 | It is proved by @{text blast}, using the transitivity of 
 | 
|  |    111 | \isa{M\isactrlsup {\isacharasterisk}}.
 | 
| 10149 |    112 | *}
 | 
|  |    113 | 
 | 
| 12631 |    114 |  apply(blast intro: rtrancl_trans)
 | 
| 10149 |    115 | 
 | 
|  |    116 | txt{*
 | 
| 10867 |    117 | We now return to the second set inclusion subgoal, which is again proved
 | 
| 10149 |    118 | pointwise:
 | 
|  |    119 | *}
 | 
|  |    120 | 
 | 
|  |    121 | apply(rule subsetI)
 | 
|  |    122 | apply(simp, clarify)
 | 
| 10363 |    123 | 
 | 
| 10149 |    124 | txt{*\noindent
 | 
|  |    125 | After simplification and clarification we are left with
 | 
| 10363 |    126 | @{subgoals[display,indent=0,goals_limit=1]}
 | 
| 10801 |    127 | This goal is proved by induction on @{term"(s,t)\<in>M\<^sup>*"}. But since the model
 | 
| 10149 |    128 | checker works backwards (from @{term t} to @{term s}), we cannot use the
 | 
| 11458 |    129 | induction theorem @{thm[source]rtrancl_induct}: it works in the
 | 
| 10149 |    130 | forward direction. Fortunately the converse induction theorem
 | 
|  |    131 | @{thm[source]converse_rtrancl_induct} already exists:
 | 
|  |    132 | @{thm[display,margin=60]converse_rtrancl_induct[no_vars]}
 | 
| 10801 |    133 | It says that if @{prop"(a,b):r\<^sup>*"} and we know @{prop"P b"} then we can infer
 | 
| 10149 |    134 | @{prop"P a"} provided each step backwards from a predecessor @{term z} of
 | 
|  |    135 | @{term b} preserves @{term P}.
 | 
|  |    136 | *}
 | 
|  |    137 | 
 | 
|  |    138 | apply(erule converse_rtrancl_induct)
 | 
| 10363 |    139 | 
 | 
| 10149 |    140 | txt{*\noindent
 | 
|  |    141 | The base case
 | 
| 10363 |    142 | @{subgoals[display,indent=0,goals_limit=1]}
 | 
| 10149 |    143 | is solved by unrolling @{term lfp} once
 | 
|  |    144 | *}
 | 
|  |    145 | 
 | 
| 11231 |    146 |  apply(subst lfp_unfold[OF mono_ef])
 | 
| 10363 |    147 | 
 | 
| 10149 |    148 | txt{*
 | 
| 10363 |    149 | @{subgoals[display,indent=0,goals_limit=1]}
 | 
| 10149 |    150 | and disposing of the resulting trivial subgoal automatically:
 | 
|  |    151 | *}
 | 
|  |    152 | 
 | 
|  |    153 |  apply(blast)
 | 
|  |    154 | 
 | 
|  |    155 | txt{*\noindent
 | 
|  |    156 | The proof of the induction step is identical to the one for the base case:
 | 
|  |    157 | *}
 | 
|  |    158 | 
 | 
| 11231 |    159 | apply(subst lfp_unfold[OF mono_ef])
 | 
| 10159 |    160 | apply(blast)
 | 
|  |    161 | done
 | 
| 10149 |    162 | 
 | 
|  |    163 | text{*
 | 
|  |    164 | The main theorem is proved in the familiar manner: induction followed by
 | 
|  |    165 | @{text auto} augmented with the lemma as a simplification rule.
 | 
|  |    166 | *}
 | 
| 9958 |    167 | 
 | 
| 12631 |    168 | theorem "mc f = {s. s \<Turnstile> f}"
 | 
|  |    169 | apply(induct_tac f)
 | 
| 12815 |    170 | apply(auto simp add: EF_lemma)
 | 
| 12631 |    171 | done
 | 
| 10171 |    172 | 
 | 
|  |    173 | text{*
 | 
|  |    174 | \begin{exercise}
 | 
| 11458 |    175 | @{term AX} has a dual operator @{term EN} 
 | 
|  |    176 | (``there exists a next state such that'')%
 | 
|  |    177 | \footnote{We cannot use the customary @{text EX}: it is reserved
 | 
|  |    178 | as the \textsc{ascii}-equivalent of @{text"\<exists>"}.}
 | 
|  |    179 | with the intended semantics
 | 
| 10171 |    180 | @{prop[display]"(s \<Turnstile> EN f) = (EX t. (s,t) : M & t \<Turnstile> f)"}
 | 
|  |    181 | Fortunately, @{term"EN f"} can already be expressed as a PDL formula. How?
 | 
|  |    182 | 
 | 
|  |    183 | Show that the semantics for @{term EF} satisfies the following recursion equation:
 | 
|  |    184 | @{prop[display]"(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> EN(EF f))"}
 | 
|  |    185 | \end{exercise}
 | 
| 10178 |    186 | \index{PDL|)}
 | 
| 10171 |    187 | *}
 | 
|  |    188 | (*<*)
 | 
| 12631 |    189 | theorem main: "mc f = {s. s \<Turnstile> f}"
 | 
|  |    190 | apply(induct_tac f)
 | 
|  |    191 | apply(auto simp add: EF_lemma)
 | 
|  |    192 | done
 | 
| 10171 |    193 | 
 | 
| 12631 |    194 | lemma aux: "s \<Turnstile> f = (s : mc f)"
 | 
|  |    195 | apply(simp add: main)
 | 
|  |    196 | done
 | 
| 10171 |    197 | 
 | 
| 12631 |    198 | lemma "(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> Neg(AX(Neg(EF f))))"
 | 
|  |    199 | apply(simp only: aux)
 | 
|  |    200 | apply(simp)
 | 
|  |    201 | apply(subst lfp_unfold[OF mono_ef], fast)
 | 
| 10171 |    202 | done
 | 
|  |    203 | 
 | 
|  |    204 | end
 | 
|  |    205 | (*>*)
 |