doc-src/TutorialI/CTL/PDL.thy
author paulson
Thu, 11 Jan 2001 12:12:01 +0100
changeset 10867 bda1701848cd
parent 10839 1f93f5a27de6
child 10895 79194f07d356
permissions -rw-r--r--
lcp's suggestions for CTL
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10122
194c7349b6c0 *** empty log message ***
nipkow
parents: 9958
diff changeset
     1
(*<*)theory PDL = Base:(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     2
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
     3
subsection{*Propositional Dynamic Logic---PDL*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     4
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
     5
text{*\index{PDL|(}
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
     6
The formulae of PDL are built up from atomic propositions via the customary
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
     7
propositional connectives of negation and conjunction and the two temporal
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
     8
connectives @{text AX} and @{text EF}. Since formulae are essentially
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
     9
syntax trees, they are naturally modelled as a datatype:
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    10
*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    11
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    12
datatype formula = Atom atom
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    13
                  | Neg formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    14
                  | And formula formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    15
                  | AX formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    16
                  | EF formula
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    17
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    18
text{*\noindent
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    19
This is almost the same as in the boolean expression case study in
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    20
\S\ref{sec:boolex}.
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    21
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    22
The meaning of these formulae is given by saying which formula is true in
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    23
which state:
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    24
*}
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    25
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    26
consts valid :: "state \<Rightarrow> formula \<Rightarrow> bool"   ("(_ \<Turnstile> _)" [80,80] 80)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    27
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    28
text{*\noindent
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    29
The syntax annotation allows us to write @{term"s \<Turnstile> f"} instead of
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    30
\hbox{@{text"valid s f"}}.
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    31
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    32
\smallskip
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    33
The definition of @{text"\<Turnstile>"} is by recursion over the syntax:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    34
*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    35
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    36
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    37
"s \<Turnstile> Atom a  = (a \<in> L s)"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    38
"s \<Turnstile> Neg f   = (\<not>(s \<Turnstile> f))"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    39
"s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    40
"s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
10801
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
    41
"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    42
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    43
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    44
The first three equations should be self-explanatory. The temporal formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    45
@{term"AX f"} means that @{term f} is true in all next states whereas
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    46
@{term"EF f"} means that there exists some future state in which @{term f} is
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    47
true. The future is expressed via @{text"\<^sup>*"}, the reflexive transitive
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    48
closure. Because of reflexivity, the future includes the present.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    49
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    50
Now we come to the model checker itself. It maps a formula into the set of
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    51
states where the formula is true and is defined by recursion over the syntax,
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    52
too:
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    53
*}
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    54
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    55
consts mc :: "formula \<Rightarrow> state set";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    56
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    57
"mc(Atom a)  = {s. a \<in> L s}"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    58
"mc(Neg f)   = -mc f"
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    59
"mc(And f g) = mc f \<inter> mc g"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    60
"mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    61
"mc(EF f)    = lfp(\<lambda>T. mc f \<union> (M\<inverse> `` T))"
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    62
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    63
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    64
Only the equation for @{term EF} deserves some comments. Remember that the
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    65
postfix @{text"\<inverse>"} and the infix @{text"``"} are predefined and denote the
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    66
converse of a relation and the image of a set under a relation.  Thus
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    67
@{term "M\<inverse> `` T"} is the set of all predecessors of @{term T} and the least
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    68
fixed point (@{term lfp}) of @{term"\<lambda>T. mc f \<union> M\<inverse> `` T"} is the least set
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    69
@{term T} containing @{term"mc f"} and all predecessors of @{term T}. If you
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    70
find it hard to see that @{term"mc(EF f)"} contains exactly those states from
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    71
which there is a path to a state where @{term f} is true, do not worry---that
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    72
will be proved in a moment.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    73
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    74
First we prove monotonicity of the function inside @{term lfp}
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    75
in order to make sure it really has a least fixed point.
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    76
*}
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    77
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    78
lemma mono_ef: "mono(\<lambda>T. A \<union> (M\<inverse> `` T))"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    79
apply(rule monoI)
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    80
apply blast
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    81
done
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    82
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    83
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    84
Now we can relate model checking and semantics. For the @{text EF} case we need
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    85
a separate lemma:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    86
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    87
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    88
lemma EF_lemma:
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    89
  "lfp(\<lambda>T. A \<union> (M\<inverse> `` T)) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    90
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    91
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    92
The equality is proved in the canonical fashion by proving that each set
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    93
includes the other; the inclusion is shown pointwise:
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    94
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    95
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    96
apply(rule equalityI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    97
 apply(rule subsetI);
10524
270b285d48ee *** empty log message ***
nipkow
parents: 10363
diff changeset
    98
 apply(simp)(*<*)apply(rename_tac s)(*>*)
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
    99
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   100
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   101
Simplification leaves us with the following first subgoal
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   102
@{subgoals[display,indent=0,goals_limit=1]}
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   103
which is proved by @{term lfp}-induction:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   104
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   105
10210
e8aa81362f41 induct -> lfp_induct;
wenzelm
parents: 10186
diff changeset
   106
 apply(erule lfp_induct)
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   107
  apply(rule mono_ef)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   108
 apply(simp)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   109
(*pr(latex xsymbols symbols);*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   110
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   111
Having disposed of the monotonicity subgoal,
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   112
simplification leaves us with the following main goal
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   113
\begin{isabelle}
10801
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
   114
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymor}\isanewline
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
   115
\ \ \ \ \ \ \ \ \ x\ {\isasymin}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ {\isacharparenleft}lfp\ {\isacharparenleft}\dots{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
   116
\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   117
\end{isabelle}
10801
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
   118
which is proved by @{text blast} with the help of transitivity of @{text"\<^sup>*"}:
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   119
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   120
10212
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   121
 apply(blast intro: rtrancl_trans);
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   122
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   123
txt{*
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
   124
We now return to the second set inclusion subgoal, which is again proved
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   125
pointwise:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   126
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   127
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   128
apply(rule subsetI)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   129
apply(simp, clarify)
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   130
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   131
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   132
After simplification and clarification we are left with
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   133
@{subgoals[display,indent=0,goals_limit=1]}
10801
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
   134
This goal is proved by induction on @{term"(s,t)\<in>M\<^sup>*"}. But since the model
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   135
checker works backwards (from @{term t} to @{term s}), we cannot use the
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   136
induction theorem @{thm[source]rtrancl_induct} because it works in the
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   137
forward direction. Fortunately the converse induction theorem
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   138
@{thm[source]converse_rtrancl_induct} already exists:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   139
@{thm[display,margin=60]converse_rtrancl_induct[no_vars]}
10801
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
   140
It says that if @{prop"(a,b):r\<^sup>*"} and we know @{prop"P b"} then we can infer
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   141
@{prop"P a"} provided each step backwards from a predecessor @{term z} of
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   142
@{term b} preserves @{term P}.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   143
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   144
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   145
apply(erule converse_rtrancl_induct)
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   146
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   147
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   148
The base case
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   149
@{subgoals[display,indent=0,goals_limit=1]}
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   150
is solved by unrolling @{term lfp} once
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   151
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   152
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   153
 apply(rule ssubst[OF lfp_unfold[OF mono_ef]])
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   154
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   155
txt{*
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   156
@{subgoals[display,indent=0,goals_limit=1]}
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   157
and disposing of the resulting trivial subgoal automatically:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   158
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   159
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   160
 apply(blast)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   161
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   162
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   163
The proof of the induction step is identical to the one for the base case:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   164
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   165
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   166
apply(rule ssubst[OF lfp_unfold[OF mono_ef]])
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   167
apply(blast)
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   168
done
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   169
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   170
text{*
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   171
The main theorem is proved in the familiar manner: induction followed by
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   172
@{text auto} augmented with the lemma as a simplification rule.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   173
*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   174
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   175
theorem "mc f = {s. s \<Turnstile> f}";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   176
apply(induct_tac f);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   177
apply(auto simp add:EF_lemma);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   178
done;
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   179
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   180
text{*
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   181
\begin{exercise}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   182
@{term AX} has a dual operator @{term EN}\footnote{We cannot use the customary @{text EX}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   183
as that is the ASCII equivalent of @{text"\<exists>"}}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   184
(``there exists a next state such that'') with the intended semantics
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   185
@{prop[display]"(s \<Turnstile> EN f) = (EX t. (s,t) : M & t \<Turnstile> f)"}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   186
Fortunately, @{term"EN f"} can already be expressed as a PDL formula. How?
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   187
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   188
Show that the semantics for @{term EF} satisfies the following recursion equation:
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   189
@{prop[display]"(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> EN(EF f))"}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   190
\end{exercise}
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
   191
\index{PDL|)}
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   192
*}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   193
(*<*)
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   194
theorem main: "mc f = {s. s \<Turnstile> f}";
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   195
apply(induct_tac f);
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   196
apply(auto simp add:EF_lemma);
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   197
done;
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   198
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   199
lemma aux: "s \<Turnstile> f = (s : mc f)";
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   200
apply(simp add:main);
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   201
done;
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   202
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   203
lemma "(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> Neg(AX(Neg(EF f))))";
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   204
apply(simp only:aux);
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   205
apply(simp);
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   206
apply(rule ssubst[OF lfp_unfold[OF mono_ef]], fast);
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   207
done
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   208
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   209
end
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   210
(*>*)