doc-src/TutorialI/CTL/PDL.thy
author wenzelm
Wed, 19 Oct 2005 21:52:07 +0200
changeset 17914 99ead7a7eb42
parent 12815 1f073030b97a
child 18724 cb6e0064c88c
permissions -rw-r--r--
fix headers;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
17914
99ead7a7eb42 fix headers;
wenzelm
parents: 12815
diff changeset
     1
(*<*)theory PDL imports Base begin(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     2
10971
6852682eaf16 *** empty log message ***
nipkow
parents: 10895
diff changeset
     3
subsection{*Propositional Dynamic Logic --- PDL*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     4
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
     5
text{*\index{PDL|(}
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
     6
The formulae of PDL are built up from atomic propositions via
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
     7
negation and conjunction and the two temporal
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
     8
connectives @{text AX} and @{text EF}\@. Since formulae are essentially
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
     9
syntax trees, they are naturally modelled as a datatype:%
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    10
\footnote{The customary definition of PDL
11207
08188224c24e *** empty log message ***
nipkow
parents: 10983
diff changeset
    11
\cite{HarelKT-DL} looks quite different from ours, but the two are easily
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    12
shown to be equivalent.}
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    13
*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    14
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    15
datatype formula = Atom atom
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    16
                  | Neg formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    17
                  | And formula formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    18
                  | AX formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    19
                  | EF formula
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    20
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    21
text{*\noindent
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    22
This resembles the boolean expression case study in
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    23
\S\ref{sec:boolex}.
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    24
A validity relation between
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    25
states and formulae specifies the semantics:
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    26
*}
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    27
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    28
consts valid :: "state \<Rightarrow> formula \<Rightarrow> bool"   ("(_ \<Turnstile> _)" [80,80] 80)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    29
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    30
text{*\noindent
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    31
The syntax annotation allows us to write @{term"s \<Turnstile> f"} instead of
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    32
\hbox{@{text"valid s f"}}.
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    33
The definition of @{text"\<Turnstile>"} is by recursion over the syntax:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    34
*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    35
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    36
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    37
"s \<Turnstile> Atom a  = (a \<in> L s)"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    38
"s \<Turnstile> Neg f   = (\<not>(s \<Turnstile> f))"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    39
"s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    40
"s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
12631
wenzelm
parents: 11458
diff changeset
    41
"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    42
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    43
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    44
The first three equations should be self-explanatory. The temporal formula
10983
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
    45
@{term"AX f"} means that @{term f} is true in \emph{A}ll ne\emph{X}t states whereas
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
    46
@{term"EF f"} means that there \emph{E}xists some \emph{F}uture state in which @{term f} is
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    47
true. The future is expressed via @{text"\<^sup>*"}, the reflexive transitive
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    48
closure. Because of reflexivity, the future includes the present.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    49
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    50
Now we come to the model checker itself. It maps a formula into the set of
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    51
states where the formula is true.  It too is defined by recursion over the syntax:
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    52
*}
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    53
12631
wenzelm
parents: 11458
diff changeset
    54
consts mc :: "formula \<Rightarrow> state set"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    55
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    56
"mc(Atom a)  = {s. a \<in> L s}"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    57
"mc(Neg f)   = -mc f"
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    58
"mc(And f g) = mc f \<inter> mc g"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    59
"mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    60
"mc(EF f)    = lfp(\<lambda>T. mc f \<union> (M\<inverse> `` T))"
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    61
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    62
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    63
Only the equation for @{term EF} deserves some comments. Remember that the
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    64
postfix @{text"\<inverse>"} and the infix @{text"``"} are predefined and denote the
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    65
converse of a relation and the image of a set under a relation.  Thus
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    66
@{term "M\<inverse> `` T"} is the set of all predecessors of @{term T} and the least
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    67
fixed point (@{term lfp}) of @{term"\<lambda>T. mc f \<union> M\<inverse> `` T"} is the least set
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    68
@{term T} containing @{term"mc f"} and all predecessors of @{term T}. If you
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    69
find it hard to see that @{term"mc(EF f)"} contains exactly those states from
10983
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
    70
which there is a path to a state where @{term f} is true, do not worry --- this
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    71
will be proved in a moment.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    72
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    73
First we prove monotonicity of the function inside @{term lfp}
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    74
in order to make sure it really has a least fixed point.
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    75
*}
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    76
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    77
lemma mono_ef: "mono(\<lambda>T. A \<union> (M\<inverse> `` T))"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    78
apply(rule monoI)
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    79
apply blast
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    80
done
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    81
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    82
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    83
Now we can relate model checking and semantics. For the @{text EF} case we need
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    84
a separate lemma:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    85
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    86
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    87
lemma EF_lemma:
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    88
  "lfp(\<lambda>T. A \<union> (M\<inverse> `` T)) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    89
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    90
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    91
The equality is proved in the canonical fashion by proving that each set
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    92
includes the other; the inclusion is shown pointwise:
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    93
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    94
12631
wenzelm
parents: 11458
diff changeset
    95
apply(rule equalityI)
wenzelm
parents: 11458
diff changeset
    96
 apply(rule subsetI)
10524
270b285d48ee *** empty log message ***
nipkow
parents: 10363
diff changeset
    97
 apply(simp)(*<*)apply(rename_tac s)(*>*)
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
    98
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    99
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   100
Simplification leaves us with the following first subgoal
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   101
@{subgoals[display,indent=0,goals_limit=1]}
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   102
which is proved by @{term lfp}-induction:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   103
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   104
10210
e8aa81362f41 induct -> lfp_induct;
wenzelm
parents: 10186
diff changeset
   105
 apply(erule lfp_induct)
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   106
  apply(rule mono_ef)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   107
 apply(simp)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   108
(*pr(latex xsymbols symbols);*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   109
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   110
Having disposed of the monotonicity subgoal,
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   111
simplification leaves us with the following goal:
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   112
\begin{isabelle}
10801
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
   113
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymor}\isanewline
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10867
diff changeset
   114
\ \ \ \ \ \ \ \ \ x\ {\isasymin}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ {\isacharparenleft}lfp\ {\isacharparenleft}\dots{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
10801
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
   115
\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   116
\end{isabelle}
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   117
It is proved by @{text blast}, using the transitivity of 
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   118
\isa{M\isactrlsup {\isacharasterisk}}.
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   119
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   120
12631
wenzelm
parents: 11458
diff changeset
   121
 apply(blast intro: rtrancl_trans)
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   122
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   123
txt{*
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
   124
We now return to the second set inclusion subgoal, which is again proved
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   125
pointwise:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   126
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   127
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   128
apply(rule subsetI)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   129
apply(simp, clarify)
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   130
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   131
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   132
After simplification and clarification we are left with
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   133
@{subgoals[display,indent=0,goals_limit=1]}
10801
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
   134
This goal is proved by induction on @{term"(s,t)\<in>M\<^sup>*"}. But since the model
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   135
checker works backwards (from @{term t} to @{term s}), we cannot use the
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   136
induction theorem @{thm[source]rtrancl_induct}: it works in the
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   137
forward direction. Fortunately the converse induction theorem
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   138
@{thm[source]converse_rtrancl_induct} already exists:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   139
@{thm[display,margin=60]converse_rtrancl_induct[no_vars]}
10801
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
   140
It says that if @{prop"(a,b):r\<^sup>*"} and we know @{prop"P b"} then we can infer
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   141
@{prop"P a"} provided each step backwards from a predecessor @{term z} of
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   142
@{term b} preserves @{term P}.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   143
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   144
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   145
apply(erule converse_rtrancl_induct)
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   146
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   147
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   148
The base case
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   149
@{subgoals[display,indent=0,goals_limit=1]}
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   150
is solved by unrolling @{term lfp} once
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   151
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   152
11231
30d96882f915 *** empty log message ***
nipkow
parents: 11207
diff changeset
   153
 apply(subst lfp_unfold[OF mono_ef])
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   154
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   155
txt{*
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10242
diff changeset
   156
@{subgoals[display,indent=0,goals_limit=1]}
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   157
and disposing of the resulting trivial subgoal automatically:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   158
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   159
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   160
 apply(blast)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   161
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   162
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   163
The proof of the induction step is identical to the one for the base case:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   164
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   165
11231
30d96882f915 *** empty log message ***
nipkow
parents: 11207
diff changeset
   166
apply(subst lfp_unfold[OF mono_ef])
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   167
apply(blast)
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   168
done
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   169
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   170
text{*
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   171
The main theorem is proved in the familiar manner: induction followed by
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   172
@{text auto} augmented with the lemma as a simplification rule.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   173
*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   174
12631
wenzelm
parents: 11458
diff changeset
   175
theorem "mc f = {s. s \<Turnstile> f}"
wenzelm
parents: 11458
diff changeset
   176
apply(induct_tac f)
12815
wenzelm
parents: 12631
diff changeset
   177
apply(auto simp add: EF_lemma)
12631
wenzelm
parents: 11458
diff changeset
   178
done
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   179
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   180
text{*
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   181
\begin{exercise}
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   182
@{term AX} has a dual operator @{term EN} 
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   183
(``there exists a next state such that'')%
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   184
\footnote{We cannot use the customary @{text EX}: it is reserved
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   185
as the \textsc{ascii}-equivalent of @{text"\<exists>"}.}
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   186
with the intended semantics
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   187
@{prop[display]"(s \<Turnstile> EN f) = (EX t. (s,t) : M & t \<Turnstile> f)"}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   188
Fortunately, @{term"EN f"} can already be expressed as a PDL formula. How?
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   189
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   190
Show that the semantics for @{term EF} satisfies the following recursion equation:
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   191
@{prop[display]"(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> EN(EF f))"}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   192
\end{exercise}
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
   193
\index{PDL|)}
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   194
*}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   195
(*<*)
12631
wenzelm
parents: 11458
diff changeset
   196
theorem main: "mc f = {s. s \<Turnstile> f}"
wenzelm
parents: 11458
diff changeset
   197
apply(induct_tac f)
wenzelm
parents: 11458
diff changeset
   198
apply(auto simp add: EF_lemma)
wenzelm
parents: 11458
diff changeset
   199
done
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   200
12631
wenzelm
parents: 11458
diff changeset
   201
lemma aux: "s \<Turnstile> f = (s : mc f)"
wenzelm
parents: 11458
diff changeset
   202
apply(simp add: main)
wenzelm
parents: 11458
diff changeset
   203
done
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   204
12631
wenzelm
parents: 11458
diff changeset
   205
lemma "(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> Neg(AX(Neg(EF f))))"
wenzelm
parents: 11458
diff changeset
   206
apply(simp only: aux)
wenzelm
parents: 11458
diff changeset
   207
apply(simp)
wenzelm
parents: 11458
diff changeset
   208
apply(subst lfp_unfold[OF mono_ef], fast)
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   209
done
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   210
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   211
end
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   212
(*>*)