src/HOL/Fields.thy
author haftmann
Tue, 27 Apr 2010 11:52:41 +0200
changeset 36423 63fc238a7430
parent 36414 a19ba9bbc8dc
child 36425 a0297b98728c
permissions -rw-r--r--
got rid of [simplified]
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
35050
9f841f20dca6 renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents: 35043
diff changeset
     1
(*  Title:      HOL/Fields.thy
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     2
    Author:     Gertrud Bauer
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     3
    Author:     Steven Obua
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     4
    Author:     Tobias Nipkow
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     5
    Author:     Lawrence C Paulson
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     6
    Author:     Markus Wenzel
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     7
    Author:     Jeremy Avigad
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     8
*)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     9
35050
9f841f20dca6 renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents: 35043
diff changeset
    10
header {* Fields *}
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    11
35050
9f841f20dca6 renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents: 35043
diff changeset
    12
theory Fields
9f841f20dca6 renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents: 35043
diff changeset
    13
imports Rings
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    14
begin
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
    15
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
    16
class field = comm_ring_1 + inverse +
35084
e25eedfc15ce moved constants inverse and divide to Ring.thy
haftmann
parents: 35050
diff changeset
    17
  assumes field_inverse: "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
e25eedfc15ce moved constants inverse and divide to Ring.thy
haftmann
parents: 35050
diff changeset
    18
  assumes field_divide_inverse: "a / b = a * inverse b"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
    19
begin
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
    20
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
    21
subclass division_ring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
    22
proof
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
    23
  fix a :: 'a
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
    24
  assume "a \<noteq> 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
    25
  thus "inverse a * a = 1" by (rule field_inverse)
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
    26
  thus "a * inverse a = 1" by (simp only: mult_commute)
35084
e25eedfc15ce moved constants inverse and divide to Ring.thy
haftmann
parents: 35050
diff changeset
    27
next
e25eedfc15ce moved constants inverse and divide to Ring.thy
haftmann
parents: 35050
diff changeset
    28
  fix a b :: 'a
e25eedfc15ce moved constants inverse and divide to Ring.thy
haftmann
parents: 35050
diff changeset
    29
  show "a / b = a * inverse b" by (rule field_divide_inverse)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    30
qed
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
    31
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
    32
subclass idom ..
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
    33
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    34
text{*There is no slick version using division by zero.*}
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    35
lemma inverse_add:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    36
  "[| a \<noteq> 0;  b \<noteq> 0 |]
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    37
   ==> inverse a + inverse b = (a + b) * inverse a * inverse b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    38
by (simp add: division_ring_inverse_add mult_ac)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    39
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
    40
lemma nonzero_mult_divide_mult_cancel_left [simp, no_atp]:
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    41
assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" shows "(c*a)/(c*b) = a/b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    42
proof -
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    43
  have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    44
    by (simp add: divide_inverse nonzero_inverse_mult_distrib)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    45
  also have "... =  a * inverse b * (inverse c * c)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    46
    by (simp only: mult_ac)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    47
  also have "... =  a * inverse b" by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    48
    finally show ?thesis by (simp add: divide_inverse)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    49
qed
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    50
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
    51
lemma nonzero_mult_divide_mult_cancel_right [simp, no_atp]:
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    52
  "\<lbrakk>b \<noteq> 0; c \<noteq> 0\<rbrakk> \<Longrightarrow> (a * c) / (b * c) = a / b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    53
by (simp add: mult_commute [of _ c])
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    54
36304
6984744e6b34 less special treatment of times_divide_eq [simp]
haftmann
parents: 36301
diff changeset
    55
lemma times_divide_eq_left [simp]: "(b / c) * a = (b * a) / c"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
    56
  by (simp add: divide_inverse mult_ac)
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    57
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    58
text {* These are later declared as simp rules. *}
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
    59
lemmas times_divide_eq [no_atp] = times_divide_eq_right times_divide_eq_left
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    60
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    61
lemma add_frac_eq:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    62
  assumes "y \<noteq> 0" and "z \<noteq> 0"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    63
  shows "x / y + w / z = (x * z + w * y) / (y * z)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    64
proof -
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    65
  have "x / y + w / z = (x * z) / (y * z) + (y * w) / (y * z)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    66
    using assms by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    67
  also have "\<dots> = (x * z + y * w) / (y * z)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    68
    by (simp only: add_divide_distrib)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    69
  finally show ?thesis
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    70
    by (simp only: mult_commute)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    71
qed
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    72
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    73
text{*Special Cancellation Simprules for Division*}
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    74
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
    75
lemma nonzero_mult_divide_cancel_right [simp, no_atp]:
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    76
  "b \<noteq> 0 \<Longrightarrow> a * b / b = a"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
    77
  using nonzero_mult_divide_mult_cancel_right [of 1 b a] by simp
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    78
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
    79
lemma nonzero_mult_divide_cancel_left [simp, no_atp]:
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    80
  "a \<noteq> 0 \<Longrightarrow> a * b / a = b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    81
using nonzero_mult_divide_mult_cancel_left [of 1 a b] by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    82
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
    83
lemma nonzero_divide_mult_cancel_right [simp, no_atp]:
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    84
  "\<lbrakk>a \<noteq> 0; b \<noteq> 0\<rbrakk> \<Longrightarrow> b / (a * b) = 1 / a"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    85
using nonzero_mult_divide_mult_cancel_right [of a b 1] by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    86
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
    87
lemma nonzero_divide_mult_cancel_left [simp, no_atp]:
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    88
  "\<lbrakk>a \<noteq> 0; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / (a * b) = 1 / b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    89
using nonzero_mult_divide_mult_cancel_left [of b a 1] by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    90
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
    91
lemma nonzero_mult_divide_mult_cancel_left2 [simp, no_atp]:
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    92
  "\<lbrakk>b \<noteq> 0; c \<noteq> 0\<rbrakk> \<Longrightarrow> (c * a) / (b * c) = a / b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    93
using nonzero_mult_divide_mult_cancel_left [of b c a] by (simp add: mult_ac)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    94
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
    95
lemma nonzero_mult_divide_mult_cancel_right2 [simp, no_atp]:
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    96
  "\<lbrakk>b \<noteq> 0; c \<noteq> 0\<rbrakk> \<Longrightarrow> (a * c) / (c * b) = a / b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    97
using nonzero_mult_divide_mult_cancel_right [of b c a] by (simp add: mult_ac)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
    98
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
    99
lemma add_divide_eq_iff [field_simps]:
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   100
  "z \<noteq> 0 \<Longrightarrow> x + y / z = (z * x + y) / z"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   101
  by (simp add: add_divide_distrib)
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   102
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   103
lemma divide_add_eq_iff [field_simps]:
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   104
  "z \<noteq> 0 \<Longrightarrow> x / z + y = (x + z * y) / z"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   105
  by (simp add: add_divide_distrib)
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   106
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   107
lemma diff_divide_eq_iff [field_simps]:
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   108
  "z \<noteq> 0 \<Longrightarrow> x - y / z = (z * x - y) / z"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   109
  by (simp add: diff_divide_distrib)
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   110
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   111
lemma divide_diff_eq_iff [field_simps]:
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   112
  "z \<noteq> 0 \<Longrightarrow> x / z - y = (x - z * y) / z"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   113
  by (simp add: diff_divide_distrib)
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   114
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   115
lemma diff_frac_eq:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   116
  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> x / y - w / z = (x * z - w * y) / (y * z)"
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   117
  by (simp add: field_simps)
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   118
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   119
lemma frac_eq_eq:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   120
  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> (x / y = w / z) = (x * z = w * y)"
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   121
  by (simp add: field_simps)
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   122
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   123
end
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   124
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   125
class field_inverse_zero = field +
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   126
  assumes field_inverse_zero: "inverse 0 = 0"
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   127
begin
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   128
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   129
subclass division_ring_inverse_zero proof
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   130
qed (fact field_inverse_zero)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   131
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   132
text{*This version builds in division by zero while also re-orienting
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   133
      the right-hand side.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   134
lemma inverse_mult_distrib [simp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   135
  "inverse (a * b) = inverse a * inverse b"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   136
proof cases
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   137
  assume "a \<noteq> 0 & b \<noteq> 0" 
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   138
  thus ?thesis by (simp add: nonzero_inverse_mult_distrib mult_ac)
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   139
next
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   140
  assume "~ (a \<noteq> 0 & b \<noteq> 0)" 
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   141
  thus ?thesis by force
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   142
qed
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   143
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   144
lemma inverse_divide [simp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   145
  "inverse (a / b) = b / a"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   146
  by (simp add: divide_inverse mult_commute)
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   147
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   148
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   149
text {* Calculations with fractions *}
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   150
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
   151
text{* There is a whole bunch of simp-rules just for class @{text
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
   152
field} but none for class @{text field} and @{text nonzero_divides}
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
   153
because the latter are covered by a simproc. *}
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
   154
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
   155
lemma mult_divide_mult_cancel_left:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   156
  "c \<noteq> 0 \<Longrightarrow> (c * a) / (c * b) = a / b"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   157
apply (cases "b = 0")
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35090
diff changeset
   158
apply simp_all
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   159
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   160
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
   161
lemma mult_divide_mult_cancel_right:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   162
  "c \<noteq> 0 \<Longrightarrow> (a * c) / (b * c) = a / b"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   163
apply (cases "b = 0")
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35090
diff changeset
   164
apply simp_all
14321
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   165
done
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
   166
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   167
lemma divide_divide_eq_right [simp, no_atp]:
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   168
  "a / (b / c) = (a * c) / b"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   169
  by (simp add: divide_inverse mult_ac)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   170
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   171
lemma divide_divide_eq_left [simp, no_atp]:
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   172
  "(a / b) / c = a / (b * c)"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   173
  by (simp add: divide_inverse mult_assoc)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   174
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   175
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   176
text {*Special Cancellation Simprules for Division*}
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   177
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   178
lemma mult_divide_mult_cancel_left_if [simp,no_atp]:
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   179
  shows "(c * a) / (c * b) = (if c = 0 then 0 else a / b)"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   180
  by (simp add: mult_divide_mult_cancel_left)
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
   181
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   182
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   183
text {* Division and Unary Minus *}
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   184
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   185
lemma minus_divide_right:
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   186
  "- (a / b) = a / - b"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   187
  by (simp add: divide_inverse)
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   188
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   189
lemma divide_minus_right [simp, no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   190
  "a / - b = - (a / b)"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   191
  by (simp add: divide_inverse)
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   192
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   193
lemma minus_divide_divide:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   194
  "(- a) / (- b) = a / b"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   195
apply (cases "b=0", simp) 
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   196
apply (simp add: nonzero_minus_divide_divide) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   197
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   198
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   199
lemma eq_divide_eq:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   200
  "a = b / c \<longleftrightarrow> (if c \<noteq> 0 then a * c = b else a = 0)"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   201
  by (simp add: nonzero_eq_divide_eq)
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   202
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   203
lemma divide_eq_eq:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   204
  "b / c = a \<longleftrightarrow> (if c \<noteq> 0 then b = a * c else a = 0)"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   205
  by (force simp add: nonzero_divide_eq_eq)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   206
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   207
lemma inverse_eq_1_iff [simp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   208
  "inverse x = 1 \<longleftrightarrow> x = 1"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   209
  by (insert inverse_eq_iff_eq [of x 1], simp) 
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   210
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   211
lemma divide_eq_0_iff [simp, no_atp]:
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   212
  "a / b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   213
  by (simp add: divide_inverse)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   214
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   215
lemma divide_cancel_right [simp, no_atp]:
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   216
  "a / c = b / c \<longleftrightarrow> c = 0 \<or> a = b"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   217
  apply (cases "c=0", simp)
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   218
  apply (simp add: divide_inverse)
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   219
  done
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   220
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   221
lemma divide_cancel_left [simp, no_atp]:
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   222
  "c / a = c / b \<longleftrightarrow> c = 0 \<or> a = b" 
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   223
  apply (cases "c=0", simp)
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   224
  apply (simp add: divide_inverse)
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   225
  done
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   226
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   227
lemma divide_eq_1_iff [simp, no_atp]:
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   228
  "a / b = 1 \<longleftrightarrow> b \<noteq> 0 \<and> a = b"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   229
  apply (cases "b=0", simp)
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   230
  apply (simp add: right_inverse_eq)
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   231
  done
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   232
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   233
lemma one_eq_divide_iff [simp, no_atp]:
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   234
  "1 = a / b \<longleftrightarrow> b \<noteq> 0 \<and> a = b"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   235
  by (simp add: eq_commute [of 1])
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   236
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   237
end
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   238
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   239
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   240
text {* Ordered Fields *}
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   241
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   242
class linordered_field = field + linordered_idom
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   243
begin
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   244
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   245
lemma positive_imp_inverse_positive: 
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   246
  assumes a_gt_0: "0 < a" 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   247
  shows "0 < inverse a"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   248
proof -
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   249
  have "0 < a * inverse a" 
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   250
    by (simp add: a_gt_0 [THEN less_imp_not_eq2])
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   251
  thus "0 < inverse a" 
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   252
    by (simp add: a_gt_0 [THEN less_not_sym] zero_less_mult_iff)
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   253
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   254
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   255
lemma negative_imp_inverse_negative:
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   256
  "a < 0 \<Longrightarrow> inverse a < 0"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   257
  by (insert positive_imp_inverse_positive [of "-a"], 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   258
    simp add: nonzero_inverse_minus_eq less_imp_not_eq)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   259
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   260
lemma inverse_le_imp_le:
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   261
  assumes invle: "inverse a \<le> inverse b" and apos: "0 < a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   262
  shows "b \<le> a"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   263
proof (rule classical)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   264
  assume "~ b \<le> a"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   265
  hence "a < b"  by (simp add: linorder_not_le)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   266
  hence bpos: "0 < b"  by (blast intro: apos less_trans)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   267
  hence "a * inverse a \<le> a * inverse b"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   268
    by (simp add: apos invle less_imp_le mult_left_mono)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   269
  hence "(a * inverse a) * b \<le> (a * inverse b) * b"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   270
    by (simp add: bpos less_imp_le mult_right_mono)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   271
  thus "b \<le> a"  by (simp add: mult_assoc apos bpos less_imp_not_eq2)
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   272
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   273
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   274
lemma inverse_positive_imp_positive:
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   275
  assumes inv_gt_0: "0 < inverse a" and nz: "a \<noteq> 0"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   276
  shows "0 < a"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   277
proof -
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   278
  have "0 < inverse (inverse a)"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   279
    using inv_gt_0 by (rule positive_imp_inverse_positive)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   280
  thus "0 < a"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   281
    using nz by (simp add: nonzero_inverse_inverse_eq)
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   282
qed
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   283
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   284
lemma inverse_negative_imp_negative:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   285
  assumes inv_less_0: "inverse a < 0" and nz: "a \<noteq> 0"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   286
  shows "a < 0"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   287
proof -
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   288
  have "inverse (inverse a) < 0"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   289
    using inv_less_0 by (rule negative_imp_inverse_negative)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   290
  thus "a < 0" using nz by (simp add: nonzero_inverse_inverse_eq)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   291
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   292
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   293
lemma linordered_field_no_lb:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   294
  "\<forall>x. \<exists>y. y < x"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   295
proof
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   296
  fix x::'a
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   297
  have m1: "- (1::'a) < 0" by simp
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   298
  from add_strict_right_mono[OF m1, where c=x] 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   299
  have "(- 1) + x < x" by simp
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   300
  thus "\<exists>y. y < x" by blast
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   301
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   302
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   303
lemma linordered_field_no_ub:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   304
  "\<forall> x. \<exists>y. y > x"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   305
proof
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   306
  fix x::'a
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   307
  have m1: " (1::'a) > 0" by simp
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   308
  from add_strict_right_mono[OF m1, where c=x] 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   309
  have "1 + x > x" by simp
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   310
  thus "\<exists>y. y > x" by blast
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   311
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   312
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   313
lemma less_imp_inverse_less:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   314
  assumes less: "a < b" and apos:  "0 < a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   315
  shows "inverse b < inverse a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   316
proof (rule ccontr)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   317
  assume "~ inverse b < inverse a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   318
  hence "inverse a \<le> inverse b" by simp
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   319
  hence "~ (a < b)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   320
    by (simp add: not_less inverse_le_imp_le [OF _ apos])
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   321
  thus False by (rule notE [OF _ less])
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   322
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   323
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   324
lemma inverse_less_imp_less:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   325
  "inverse a < inverse b \<Longrightarrow> 0 < a \<Longrightarrow> b < a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   326
apply (simp add: less_le [of "inverse a"] less_le [of "b"])
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   327
apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   328
done
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   329
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   330
text{*Both premises are essential. Consider -1 and 1.*}
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   331
lemma inverse_less_iff_less [simp,no_atp]:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   332
  "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> inverse a < inverse b \<longleftrightarrow> b < a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   333
  by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   334
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   335
lemma le_imp_inverse_le:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   336
  "a \<le> b \<Longrightarrow> 0 < a \<Longrightarrow> inverse b \<le> inverse a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   337
  by (force simp add: le_less less_imp_inverse_less)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   338
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   339
lemma inverse_le_iff_le [simp,no_atp]:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   340
  "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> inverse a \<le> inverse b \<longleftrightarrow> b \<le> a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   341
  by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   342
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   343
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   344
text{*These results refer to both operands being negative.  The opposite-sign
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   345
case is trivial, since inverse preserves signs.*}
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   346
lemma inverse_le_imp_le_neg:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   347
  "inverse a \<le> inverse b \<Longrightarrow> b < 0 \<Longrightarrow> b \<le> a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   348
apply (rule classical) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   349
apply (subgoal_tac "a < 0") 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   350
 prefer 2 apply force
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   351
apply (insert inverse_le_imp_le [of "-b" "-a"])
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   352
apply (simp add: nonzero_inverse_minus_eq) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   353
done
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   354
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   355
lemma less_imp_inverse_less_neg:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   356
   "a < b \<Longrightarrow> b < 0 \<Longrightarrow> inverse b < inverse a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   357
apply (subgoal_tac "a < 0") 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   358
 prefer 2 apply (blast intro: less_trans) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   359
apply (insert less_imp_inverse_less [of "-b" "-a"])
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   360
apply (simp add: nonzero_inverse_minus_eq) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   361
done
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   362
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   363
lemma inverse_less_imp_less_neg:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   364
   "inverse a < inverse b \<Longrightarrow> b < 0 \<Longrightarrow> b < a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   365
apply (rule classical) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   366
apply (subgoal_tac "a < 0") 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   367
 prefer 2
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   368
 apply force
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   369
apply (insert inverse_less_imp_less [of "-b" "-a"])
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   370
apply (simp add: nonzero_inverse_minus_eq) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   371
done
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   372
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   373
lemma inverse_less_iff_less_neg [simp,no_atp]:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   374
  "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> inverse a < inverse b \<longleftrightarrow> b < a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   375
apply (insert inverse_less_iff_less [of "-b" "-a"])
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   376
apply (simp del: inverse_less_iff_less 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   377
            add: nonzero_inverse_minus_eq)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   378
done
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   379
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   380
lemma le_imp_inverse_le_neg:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   381
  "a \<le> b \<Longrightarrow> b < 0 ==> inverse b \<le> inverse a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   382
  by (force simp add: le_less less_imp_inverse_less_neg)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   383
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   384
lemma inverse_le_iff_le_neg [simp,no_atp]:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   385
  "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> inverse a \<le> inverse b \<longleftrightarrow> b \<le> a"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   386
  by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   387
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   388
lemma pos_le_divide_eq [field_simps]: "0 < c ==> (a \<le> b/c) = (a*c \<le> b)"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   389
proof -
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   390
  assume less: "0<c"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   391
  hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)"
36304
6984744e6b34 less special treatment of times_divide_eq [simp]
haftmann
parents: 36301
diff changeset
   392
    by (simp add: mult_le_cancel_right less_not_sym [OF less] del: times_divide_eq)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   393
  also have "... = (a*c \<le> b)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   394
    by (simp add: less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   395
  finally show ?thesis .
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   396
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   397
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   398
lemma neg_le_divide_eq [field_simps]: "c < 0 ==> (a \<le> b/c) = (b \<le> a*c)"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   399
proof -
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   400
  assume less: "c<0"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   401
  hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)"
36304
6984744e6b34 less special treatment of times_divide_eq [simp]
haftmann
parents: 36301
diff changeset
   402
    by (simp add: mult_le_cancel_right less_not_sym [OF less] del: times_divide_eq)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   403
  also have "... = (b \<le> a*c)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   404
    by (simp add: less_imp_not_eq [OF less] divide_inverse mult_assoc) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   405
  finally show ?thesis .
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   406
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   407
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   408
lemma pos_less_divide_eq [field_simps]:
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   409
     "0 < c ==> (a < b/c) = (a*c < b)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   410
proof -
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   411
  assume less: "0<c"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   412
  hence "(a < b/c) = (a*c < (b/c)*c)"
36304
6984744e6b34 less special treatment of times_divide_eq [simp]
haftmann
parents: 36301
diff changeset
   413
    by (simp add: mult_less_cancel_right_disj less_not_sym [OF less] del: times_divide_eq)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   414
  also have "... = (a*c < b)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   415
    by (simp add: less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   416
  finally show ?thesis .
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   417
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   418
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   419
lemma neg_less_divide_eq [field_simps]:
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   420
 "c < 0 ==> (a < b/c) = (b < a*c)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   421
proof -
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   422
  assume less: "c<0"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   423
  hence "(a < b/c) = ((b/c)*c < a*c)"
36304
6984744e6b34 less special treatment of times_divide_eq [simp]
haftmann
parents: 36301
diff changeset
   424
    by (simp add: mult_less_cancel_right_disj less_not_sym [OF less] del: times_divide_eq)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   425
  also have "... = (b < a*c)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   426
    by (simp add: less_imp_not_eq [OF less] divide_inverse mult_assoc) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   427
  finally show ?thesis .
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   428
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   429
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   430
lemma pos_divide_less_eq [field_simps]:
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   431
     "0 < c ==> (b/c < a) = (b < a*c)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   432
proof -
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   433
  assume less: "0<c"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   434
  hence "(b/c < a) = ((b/c)*c < a*c)"
36304
6984744e6b34 less special treatment of times_divide_eq [simp]
haftmann
parents: 36301
diff changeset
   435
    by (simp add: mult_less_cancel_right_disj less_not_sym [OF less] del: times_divide_eq)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   436
  also have "... = (b < a*c)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   437
    by (simp add: less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   438
  finally show ?thesis .
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   439
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   440
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   441
lemma neg_divide_less_eq [field_simps]:
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   442
 "c < 0 ==> (b/c < a) = (a*c < b)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   443
proof -
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   444
  assume less: "c<0"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   445
  hence "(b/c < a) = (a*c < (b/c)*c)"
36304
6984744e6b34 less special treatment of times_divide_eq [simp]
haftmann
parents: 36301
diff changeset
   446
    by (simp add: mult_less_cancel_right_disj less_not_sym [OF less] del: times_divide_eq)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   447
  also have "... = (a*c < b)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   448
    by (simp add: less_imp_not_eq [OF less] divide_inverse mult_assoc) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   449
  finally show ?thesis .
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   450
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   451
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   452
lemma pos_divide_le_eq [field_simps]: "0 < c ==> (b/c \<le> a) = (b \<le> a*c)"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   453
proof -
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   454
  assume less: "0<c"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   455
  hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)"
36304
6984744e6b34 less special treatment of times_divide_eq [simp]
haftmann
parents: 36301
diff changeset
   456
    by (simp add: mult_le_cancel_right less_not_sym [OF less] del: times_divide_eq)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   457
  also have "... = (b \<le> a*c)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   458
    by (simp add: less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   459
  finally show ?thesis .
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   460
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   461
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   462
lemma neg_divide_le_eq [field_simps]: "c < 0 ==> (b/c \<le> a) = (a*c \<le> b)"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   463
proof -
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   464
  assume less: "c<0"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   465
  hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)"
36304
6984744e6b34 less special treatment of times_divide_eq [simp]
haftmann
parents: 36301
diff changeset
   466
    by (simp add: mult_le_cancel_right less_not_sym [OF less] del: times_divide_eq)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   467
  also have "... = (a*c \<le> b)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   468
    by (simp add: less_imp_not_eq [OF less] divide_inverse mult_assoc) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   469
  finally show ?thesis .
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   470
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   471
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   472
text{* Lemmas @{text sign_simps} is a first attempt to automate proofs
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   473
of positivity/negativity needed for @{text field_simps}. Have not added @{text
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   474
sign_simps} to @{text field_simps} because the former can lead to case
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   475
explosions. *}
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   476
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   477
lemmas sign_simps [no_atp] = algebra_simps
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   478
  zero_less_mult_iff mult_less_0_iff
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   479
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   480
lemmas (in -) sign_simps [no_atp] = algebra_simps
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   481
  zero_less_mult_iff mult_less_0_iff
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   482
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   483
(* Only works once linear arithmetic is installed:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   484
text{*An example:*}
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   485
lemma fixes a b c d e f :: "'a::linordered_field"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   486
shows "\<lbrakk>a>b; c<d; e<f; 0 < u \<rbrakk> \<Longrightarrow>
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   487
 ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) <
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   488
 ((e-f)*(a-b)*(c-d))/((e-f)*(a-b)*(c-d)) + u"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   489
apply(subgoal_tac "(c-d)*(e-f)*(a-b) > 0")
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   490
 prefer 2 apply(simp add:sign_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   491
apply(subgoal_tac "(c-d)*(e-f)*(a-b)*u > 0")
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   492
 prefer 2 apply(simp add:sign_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   493
apply(simp add:field_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   494
done
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   495
*)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   496
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   497
lemma divide_pos_pos:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   498
  "0 < x ==> 0 < y ==> 0 < x / y"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   499
by(simp add:field_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   500
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   501
lemma divide_nonneg_pos:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   502
  "0 <= x ==> 0 < y ==> 0 <= x / y"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   503
by(simp add:field_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   504
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   505
lemma divide_neg_pos:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   506
  "x < 0 ==> 0 < y ==> x / y < 0"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   507
by(simp add:field_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   508
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   509
lemma divide_nonpos_pos:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   510
  "x <= 0 ==> 0 < y ==> x / y <= 0"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   511
by(simp add:field_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   512
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   513
lemma divide_pos_neg:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   514
  "0 < x ==> y < 0 ==> x / y < 0"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   515
by(simp add:field_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   516
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   517
lemma divide_nonneg_neg:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   518
  "0 <= x ==> y < 0 ==> x / y <= 0" 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   519
by(simp add:field_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   520
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   521
lemma divide_neg_neg:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   522
  "x < 0 ==> y < 0 ==> 0 < x / y"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   523
by(simp add:field_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   524
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   525
lemma divide_nonpos_neg:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   526
  "x <= 0 ==> y < 0 ==> 0 <= x / y"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   527
by(simp add:field_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   528
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   529
lemma divide_strict_right_mono:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   530
     "[|a < b; 0 < c|] ==> a / c < b / c"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   531
by (simp add: less_imp_not_eq2 divide_inverse mult_strict_right_mono 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   532
              positive_imp_inverse_positive)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   533
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   534
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   535
lemma divide_strict_right_mono_neg:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   536
     "[|b < a; c < 0|] ==> a / c < b / c"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   537
apply (drule divide_strict_right_mono [of _ _ "-c"], simp)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   538
apply (simp add: less_imp_not_eq nonzero_minus_divide_right [symmetric])
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   539
done
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   540
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   541
text{*The last premise ensures that @{term a} and @{term b} 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   542
      have the same sign*}
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   543
lemma divide_strict_left_mono:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   544
  "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / b"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   545
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   546
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   547
lemma divide_left_mono:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   548
  "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / b"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   549
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_right_mono)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   550
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   551
lemma divide_strict_left_mono_neg:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   552
  "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / b"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   553
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono_neg)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   554
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   555
lemma mult_imp_div_pos_le: "0 < y ==> x <= z * y ==>
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   556
    x / y <= z"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   557
by (subst pos_divide_le_eq, assumption+)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   558
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   559
lemma mult_imp_le_div_pos: "0 < y ==> z * y <= x ==>
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   560
    z <= x / y"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   561
by(simp add:field_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   562
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   563
lemma mult_imp_div_pos_less: "0 < y ==> x < z * y ==>
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   564
    x / y < z"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   565
by(simp add:field_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   566
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   567
lemma mult_imp_less_div_pos: "0 < y ==> z * y < x ==>
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   568
    z < x / y"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   569
by(simp add:field_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   570
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   571
lemma frac_le: "0 <= x ==> 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   572
    x <= y ==> 0 < w ==> w <= z  ==> x / z <= y / w"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   573
  apply (rule mult_imp_div_pos_le)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   574
  apply simp
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   575
  apply (subst times_divide_eq_left)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   576
  apply (rule mult_imp_le_div_pos, assumption)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   577
  apply (rule mult_mono)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   578
  apply simp_all
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   579
done
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   580
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   581
lemma frac_less: "0 <= x ==> 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   582
    x < y ==> 0 < w ==> w <= z  ==> x / z < y / w"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   583
  apply (rule mult_imp_div_pos_less)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   584
  apply simp
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   585
  apply (subst times_divide_eq_left)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   586
  apply (rule mult_imp_less_div_pos, assumption)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   587
  apply (erule mult_less_le_imp_less)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   588
  apply simp_all
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   589
done
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   590
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   591
lemma frac_less2: "0 < x ==> 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   592
    x <= y ==> 0 < w ==> w < z  ==> x / z < y / w"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   593
  apply (rule mult_imp_div_pos_less)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   594
  apply simp_all
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   595
  apply (rule mult_imp_less_div_pos, assumption)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   596
  apply (erule mult_le_less_imp_less)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   597
  apply simp_all
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   598
done
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   599
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   600
text{*It's not obvious whether these should be simprules or not. 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   601
  Their effect is to gather terms into one big fraction, like
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   602
  a*b*c / x*y*z. The rationale for that is unclear, but many proofs 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   603
  seem to need them.*}
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   604
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   605
lemma less_half_sum: "a < b ==> a < (a+b) / (1+1)"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   606
by (simp add: field_simps zero_less_two)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   607
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   608
lemma gt_half_sum: "a < b ==> (a+b)/(1+1) < b"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   609
by (simp add: field_simps zero_less_two)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   610
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   611
subclass dense_linorder
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   612
proof
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   613
  fix x y :: 'a
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   614
  from less_add_one show "\<exists>y. x < y" .. 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   615
  from less_add_one have "x + (- 1) < (x + 1) + (- 1)" by (rule add_strict_right_mono)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   616
  then have "x - 1 < x + 1 - 1" by (simp only: diff_minus [symmetric])
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   617
  then have "x - 1 < x" by (simp add: algebra_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   618
  then show "\<exists>y. y < x" ..
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   619
  show "x < y \<Longrightarrow> \<exists>z>x. z < y" by (blast intro!: less_half_sum gt_half_sum)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   620
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   621
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   622
lemma nonzero_abs_inverse:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   623
     "a \<noteq> 0 ==> \<bar>inverse a\<bar> = inverse \<bar>a\<bar>"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   624
apply (auto simp add: neq_iff abs_if nonzero_inverse_minus_eq 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   625
                      negative_imp_inverse_negative)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   626
apply (blast intro: positive_imp_inverse_positive elim: less_asym) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   627
done
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   628
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   629
lemma nonzero_abs_divide:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   630
     "b \<noteq> 0 ==> \<bar>a / b\<bar> = \<bar>a\<bar> / \<bar>b\<bar>"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   631
  by (simp add: divide_inverse abs_mult nonzero_abs_inverse) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   632
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   633
lemma field_le_epsilon:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   634
  assumes e: "\<And>e. 0 < e \<Longrightarrow> x \<le> y + e"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   635
  shows "x \<le> y"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   636
proof (rule dense_le)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   637
  fix t assume "t < x"
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   638
  hence "0 < x - t" by (simp add: less_diff_eq)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   639
  from e [OF this] have "x + 0 \<le> x + (y - t)" by (simp add: algebra_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   640
  then have "0 \<le> y - t" by (simp only: add_le_cancel_left)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   641
  then show "t \<le> y" by (simp add: algebra_simps)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   642
qed
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   643
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   644
end
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   645
36414
a19ba9bbc8dc tuned class linordered_field_inverse_zero
haftmann
parents: 36409
diff changeset
   646
class linordered_field_inverse_zero = linordered_field + field_inverse_zero
36348
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   647
begin
89c54f51f55a dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents: 36343
diff changeset
   648
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   649
lemma le_divide_eq:
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   650
  "(a \<le> b/c) = 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   651
   (if 0 < c then a*c \<le> b
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   652
             else if c < 0 then b \<le> a*c
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   653
             else  a \<le> 0)"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   654
apply (cases "c=0", simp) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   655
apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) 
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   656
done
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   657
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   658
lemma inverse_positive_iff_positive [simp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   659
  "(0 < inverse a) = (0 < a)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   660
apply (cases "a = 0", simp)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   661
apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   662
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   663
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   664
lemma inverse_negative_iff_negative [simp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   665
  "(inverse a < 0) = (a < 0)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   666
apply (cases "a = 0", simp)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   667
apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   668
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   669
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   670
lemma inverse_nonnegative_iff_nonnegative [simp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   671
  "0 \<le> inverse a \<longleftrightarrow> 0 \<le> a"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   672
  by (simp add: not_less [symmetric])
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   673
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   674
lemma inverse_nonpositive_iff_nonpositive [simp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   675
  "inverse a \<le> 0 \<longleftrightarrow> a \<le> 0"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   676
  by (simp add: not_less [symmetric])
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   677
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   678
lemma one_less_inverse_iff:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   679
  "1 < inverse x \<longleftrightarrow> 0 < x \<and> x < 1"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   680
proof cases
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   681
  assume "0 < x"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   682
    with inverse_less_iff_less [OF zero_less_one, of x]
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   683
    show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   684
next
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   685
  assume notless: "~ (0 < x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   686
  have "~ (1 < inverse x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   687
  proof
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   688
    assume "1 < inverse x"
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   689
    also with notless have "... \<le> 0" by simp
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   690
    also have "... < 1" by (rule zero_less_one) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   691
    finally show False by auto
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   692
  qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   693
  with notless show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   694
qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   695
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   696
lemma one_le_inverse_iff:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   697
  "1 \<le> inverse x \<longleftrightarrow> 0 < x \<and> x \<le> 1"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   698
proof (cases "x = 1")
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   699
  case True then show ?thesis by simp
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   700
next
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   701
  case False then have "inverse x \<noteq> 1" by simp
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   702
  then have "1 \<noteq> inverse x" by blast
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   703
  then have "1 \<le> inverse x \<longleftrightarrow> 1 < inverse x" by (simp add: le_less)
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   704
  with False show ?thesis by (auto simp add: one_less_inverse_iff)
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   705
qed
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   706
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   707
lemma inverse_less_1_iff:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   708
  "inverse x < 1 \<longleftrightarrow> x \<le> 0 \<or> 1 < x"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   709
  by (simp add: not_le [symmetric] one_le_inverse_iff) 
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   710
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   711
lemma inverse_le_1_iff:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   712
  "inverse x \<le> 1 \<longleftrightarrow> x \<le> 0 \<or> 1 \<le> x"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   713
  by (simp add: not_less [symmetric] one_less_inverse_iff) 
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   714
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   715
lemma divide_le_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   716
  "(b/c \<le> a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   717
   (if 0 < c then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   718
             else if c < 0 then a*c \<le> b
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   719
             else 0 \<le> a)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   720
apply (cases "c=0", simp) 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   721
apply (force simp add: pos_divide_le_eq neg_divide_le_eq) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   722
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   723
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   724
lemma less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   725
  "(a < b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   726
   (if 0 < c then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   727
             else if c < 0 then b < a*c
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   728
             else  a < 0)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   729
apply (cases "c=0", simp) 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   730
apply (force simp add: pos_less_divide_eq neg_less_divide_eq) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   731
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   732
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   733
lemma divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   734
  "(b/c < a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   735
   (if 0 < c then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   736
             else if c < 0 then a*c < b
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   737
             else 0 < a)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   738
apply (cases "c=0", simp) 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   739
apply (force simp add: pos_divide_less_eq neg_divide_less_eq)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   740
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   741
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   742
text {*Division and Signs*}
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   743
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   744
lemma zero_less_divide_iff:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   745
     "(0 < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   746
by (simp add: divide_inverse zero_less_mult_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   747
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   748
lemma divide_less_0_iff:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   749
     "(a/b < 0) = 
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   750
      (0 < a & b < 0 | a < 0 & 0 < b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   751
by (simp add: divide_inverse mult_less_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   752
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   753
lemma zero_le_divide_iff:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   754
     "(0 \<le> a/b) =
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   755
      (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   756
by (simp add: divide_inverse zero_le_mult_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   757
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   758
lemma divide_le_0_iff:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   759
     "(a/b \<le> 0) =
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   760
      (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   761
by (simp add: divide_inverse mult_le_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   762
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   763
text {* Division and the Number One *}
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
   764
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
   765
text{*Simplify expressions equated with 1*}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
   766
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   767
lemma zero_eq_1_divide_iff [simp,no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   768
     "(0 = 1/a) = (a = 0)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   769
apply (cases "a=0", simp)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   770
apply (auto simp add: nonzero_eq_divide_eq)
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
   771
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
   772
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   773
lemma one_divide_eq_0_iff [simp,no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   774
     "(1/a = 0) = (a = 0)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   775
apply (cases "a=0", simp)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   776
apply (insert zero_neq_one [THEN not_sym])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   777
apply (auto simp add: nonzero_divide_eq_eq)
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
   778
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
   779
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
   780
text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
36423
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   781
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   782
lemma zero_le_divide_1_iff [simp, no_atp]:
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   783
  "0 \<le> 1 / a \<longleftrightarrow> 0 \<le> a"
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   784
  by (simp add: zero_le_divide_iff)
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
   785
36423
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   786
lemma zero_less_divide_1_iff [simp, no_atp]:
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   787
  "0 < 1 / a \<longleftrightarrow> 0 < a"
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   788
  by (simp add: zero_less_divide_iff)
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   789
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   790
lemma divide_le_0_1_iff [simp, no_atp]:
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   791
  "1 / a \<le> 0 \<longleftrightarrow> a \<le> 0"
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   792
  by (simp add: divide_le_0_iff)
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   793
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   794
lemma divide_less_0_1_iff [simp, no_atp]:
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   795
  "1 / a < 0 \<longleftrightarrow> a < 0"
63fc238a7430 got rid of [simplified]
haftmann
parents: 36414
diff changeset
   796
  by (simp add: divide_less_0_iff)
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
   797
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   798
lemma divide_right_mono:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   799
     "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/c"
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   800
by (force simp add: divide_strict_right_mono le_less)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   801
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   802
lemma divide_right_mono_neg: "a <= b 
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   803
    ==> c <= 0 ==> b / c <= a / c"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   804
apply (drule divide_right_mono [of _ _ "- c"])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   805
apply auto
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   806
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   807
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   808
lemma divide_left_mono_neg: "a <= b 
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   809
    ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   810
  apply (drule divide_left_mono [of _ _ "- c"])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   811
  apply (auto simp add: mult_commute)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   812
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   813
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
   814
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   815
text{*Simplify quotients that are compared with the value 1.*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   816
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   817
lemma le_divide_eq_1 [no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   818
  "(1 \<le> b / a) = ((0 < a & a \<le> b) | (a < 0 & b \<le> a))"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   819
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   820
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   821
lemma divide_le_eq_1 [no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   822
  "(b / a \<le> 1) = ((0 < a & b \<le> a) | (a < 0 & a \<le> b) | a=0)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   823
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   824
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   825
lemma less_divide_eq_1 [no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   826
  "(1 < b / a) = ((0 < a & a < b) | (a < 0 & b < a))"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   827
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   828
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   829
lemma divide_less_eq_1 [no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   830
  "(b / a < 1) = ((0 < a & b < a) | (a < 0 & a < b) | a=0)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   831
by (auto simp add: divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   832
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   833
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   834
text {*Conditional Simplification Rules: No Case Splits*}
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   835
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   836
lemma le_divide_eq_1_pos [simp,no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   837
  "0 < a \<Longrightarrow> (1 \<le> b/a) = (a \<le> b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   838
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   839
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   840
lemma le_divide_eq_1_neg [simp,no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   841
  "a < 0 \<Longrightarrow> (1 \<le> b/a) = (b \<le> a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   842
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   843
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   844
lemma divide_le_eq_1_pos [simp,no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   845
  "0 < a \<Longrightarrow> (b/a \<le> 1) = (b \<le> a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   846
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   847
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   848
lemma divide_le_eq_1_neg [simp,no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   849
  "a < 0 \<Longrightarrow> (b/a \<le> 1) = (a \<le> b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   850
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   851
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   852
lemma less_divide_eq_1_pos [simp,no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   853
  "0 < a \<Longrightarrow> (1 < b/a) = (a < b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   854
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   855
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   856
lemma less_divide_eq_1_neg [simp,no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   857
  "a < 0 \<Longrightarrow> (1 < b/a) = (b < a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   858
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   859
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   860
lemma divide_less_eq_1_pos [simp,no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   861
  "0 < a \<Longrightarrow> (b/a < 1) = (b < a)"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
   862
by (auto simp add: divide_less_eq)
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
   863
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   864
lemma divide_less_eq_1_neg [simp,no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   865
  "a < 0 \<Longrightarrow> b/a < 1 <-> a < b"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   866
by (auto simp add: divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   867
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   868
lemma eq_divide_eq_1 [simp,no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   869
  "(1 = b/a) = ((a \<noteq> 0 & a = b))"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   870
by (auto simp add: eq_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   871
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35579
diff changeset
   872
lemma divide_eq_eq_1 [simp,no_atp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   873
  "(b/a = 1) = ((a \<noteq> 0 & a = b))"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   874
by (auto simp add: divide_eq_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   875
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
   876
lemma abs_inverse [simp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   877
     "\<bar>inverse a\<bar> = 
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   878
      inverse \<bar>a\<bar>"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   879
apply (cases "a=0", simp) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
   880
apply (simp add: nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
   881
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
   882
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   883
lemma abs_divide [simp]:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   884
     "\<bar>a / b\<bar> = \<bar>a\<bar> / \<bar>b\<bar>"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   885
apply (cases "b=0", simp) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
   886
apply (simp add: nonzero_abs_divide) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
   887
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
   888
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   889
lemma abs_div_pos: "0 < y ==> 
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
   890
    \<bar>x\<bar> / y = \<bar>x / y\<bar>"
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   891
  apply (subst abs_divide)
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   892
  apply (simp add: order_less_imp_le)
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   893
done
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   894
35579
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   895
lemma field_le_mult_one_interval:
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   896
  assumes *: "\<And>z. \<lbrakk> 0 < z ; z < 1 \<rbrakk> \<Longrightarrow> z * x \<le> y"
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   897
  shows "x \<le> y"
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   898
proof (cases "0 < x")
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   899
  assume "0 < x"
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   900
  thus ?thesis
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   901
    using dense_le_bounded[of 0 1 "y/x"] *
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   902
    unfolding le_divide_eq if_P[OF `0 < x`] by simp
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   903
next
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   904
  assume "\<not>0 < x" hence "x \<le> 0" by simp
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   905
  obtain s::'a where s: "0 < s" "s < 1" using dense[of 0 "1\<Colon>'a"] by auto
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   906
  hence "x \<le> s * x" using mult_le_cancel_right[of 1 x s] `x \<le> 0` by auto
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   907
  also note *[OF s]
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   908
  finally show ?thesis .
cc9a5a0ab5ea Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents: 35216
diff changeset
   909
qed
35090
88cc65ae046e moved lemma field_le_epsilon from Real.thy to Fields.thy
haftmann
parents: 35084
diff changeset
   910
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   911
end
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36348
diff changeset
   912
33364
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
   913
code_modulename SML
35050
9f841f20dca6 renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents: 35043
diff changeset
   914
  Fields Arith
33364
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
   915
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
   916
code_modulename OCaml
35050
9f841f20dca6 renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents: 35043
diff changeset
   917
  Fields Arith
33364
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
   918
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
   919
code_modulename Haskell
35050
9f841f20dca6 renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents: 35043
diff changeset
   920
  Fields Arith
33364
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
   921
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   922
end