src/FOL/FOL.thy
author wenzelm
Fri Apr 22 13:58:13 2011 +0200 (2011-04-22)
changeset 42455 6702c984bf5a
parent 42453 cd5005020f4e
child 42456 13b4b6ba3593
permissions -rw-r--r--
modernized Quantifier1 simproc setup;
wenzelm@9487
     1
(*  Title:      FOL/FOL.thy
wenzelm@9487
     2
    Author:     Lawrence C Paulson and Markus Wenzel
wenzelm@11678
     3
*)
wenzelm@9487
     4
wenzelm@11678
     5
header {* Classical first-order logic *}
wenzelm@4093
     6
wenzelm@18456
     7
theory FOL
paulson@15481
     8
imports IFOL
wenzelm@23154
     9
uses
wenzelm@24097
    10
  "~~/src/Provers/classical.ML"
wenzelm@24097
    11
  "~~/src/Provers/blast.ML"
wenzelm@24097
    12
  "~~/src/Provers/clasimp.ML"
wenzelm@24830
    13
  "~~/src/Tools/induct.ML"
noschinl@41827
    14
  "~~/src/Tools/case_product.ML"
wenzelm@23154
    15
  ("cladata.ML")
wenzelm@23154
    16
  ("simpdata.ML")
wenzelm@18456
    17
begin
wenzelm@9487
    18
wenzelm@9487
    19
wenzelm@9487
    20
subsection {* The classical axiom *}
wenzelm@4093
    21
wenzelm@41779
    22
axiomatization where
wenzelm@7355
    23
  classical: "(~P ==> P) ==> P"
wenzelm@4093
    24
wenzelm@9487
    25
wenzelm@11678
    26
subsection {* Lemmas and proof tools *}
wenzelm@9487
    27
wenzelm@21539
    28
lemma ccontr: "(\<not> P \<Longrightarrow> False) \<Longrightarrow> P"
wenzelm@21539
    29
  by (erule FalseE [THEN classical])
wenzelm@21539
    30
wenzelm@21539
    31
(*** Classical introduction rules for | and EX ***)
wenzelm@21539
    32
wenzelm@21539
    33
lemma disjCI: "(~Q ==> P) ==> P|Q"
wenzelm@21539
    34
  apply (rule classical)
wenzelm@21539
    35
  apply (assumption | erule meta_mp | rule disjI1 notI)+
wenzelm@21539
    36
  apply (erule notE disjI2)+
wenzelm@21539
    37
  done
wenzelm@21539
    38
wenzelm@21539
    39
(*introduction rule involving only EX*)
wenzelm@21539
    40
lemma ex_classical:
wenzelm@21539
    41
  assumes r: "~(EX x. P(x)) ==> P(a)"
wenzelm@21539
    42
  shows "EX x. P(x)"
wenzelm@21539
    43
  apply (rule classical)
wenzelm@21539
    44
  apply (rule exI, erule r)
wenzelm@21539
    45
  done
wenzelm@21539
    46
wenzelm@21539
    47
(*version of above, simplifying ~EX to ALL~ *)
wenzelm@21539
    48
lemma exCI:
wenzelm@21539
    49
  assumes r: "ALL x. ~P(x) ==> P(a)"
wenzelm@21539
    50
  shows "EX x. P(x)"
wenzelm@21539
    51
  apply (rule ex_classical)
wenzelm@21539
    52
  apply (rule notI [THEN allI, THEN r])
wenzelm@21539
    53
  apply (erule notE)
wenzelm@21539
    54
  apply (erule exI)
wenzelm@21539
    55
  done
wenzelm@21539
    56
wenzelm@21539
    57
lemma excluded_middle: "~P | P"
wenzelm@21539
    58
  apply (rule disjCI)
wenzelm@21539
    59
  apply assumption
wenzelm@21539
    60
  done
wenzelm@21539
    61
wenzelm@27115
    62
lemma case_split [case_names True False]:
wenzelm@21539
    63
  assumes r1: "P ==> Q"
wenzelm@21539
    64
    and r2: "~P ==> Q"
wenzelm@21539
    65
  shows Q
wenzelm@21539
    66
  apply (rule excluded_middle [THEN disjE])
wenzelm@21539
    67
  apply (erule r2)
wenzelm@21539
    68
  apply (erule r1)
wenzelm@21539
    69
  done
wenzelm@21539
    70
wenzelm@21539
    71
ML {*
wenzelm@27239
    72
  fun case_tac ctxt a = res_inst_tac ctxt [(("P", 0), a)] @{thm case_split}
wenzelm@21539
    73
*}
wenzelm@21539
    74
wenzelm@30549
    75
method_setup case_tac = {*
wenzelm@30549
    76
  Args.goal_spec -- Scan.lift Args.name_source >>
wenzelm@30549
    77
  (fn (quant, s) => fn ctxt => SIMPLE_METHOD'' quant (case_tac ctxt s))
wenzelm@30549
    78
*} "case_tac emulation (dynamic instantiation!)"
wenzelm@27211
    79
wenzelm@21539
    80
wenzelm@21539
    81
(*** Special elimination rules *)
wenzelm@21539
    82
wenzelm@21539
    83
wenzelm@21539
    84
(*Classical implies (-->) elimination. *)
wenzelm@21539
    85
lemma impCE:
wenzelm@21539
    86
  assumes major: "P-->Q"
wenzelm@21539
    87
    and r1: "~P ==> R"
wenzelm@21539
    88
    and r2: "Q ==> R"
wenzelm@21539
    89
  shows R
wenzelm@21539
    90
  apply (rule excluded_middle [THEN disjE])
wenzelm@21539
    91
   apply (erule r1)
wenzelm@21539
    92
  apply (rule r2)
wenzelm@21539
    93
  apply (erule major [THEN mp])
wenzelm@21539
    94
  done
wenzelm@21539
    95
wenzelm@21539
    96
(*This version of --> elimination works on Q before P.  It works best for
wenzelm@21539
    97
  those cases in which P holds "almost everywhere".  Can't install as
wenzelm@21539
    98
  default: would break old proofs.*)
wenzelm@21539
    99
lemma impCE':
wenzelm@21539
   100
  assumes major: "P-->Q"
wenzelm@21539
   101
    and r1: "Q ==> R"
wenzelm@21539
   102
    and r2: "~P ==> R"
wenzelm@21539
   103
  shows R
wenzelm@21539
   104
  apply (rule excluded_middle [THEN disjE])
wenzelm@21539
   105
   apply (erule r2)
wenzelm@21539
   106
  apply (rule r1)
wenzelm@21539
   107
  apply (erule major [THEN mp])
wenzelm@21539
   108
  done
wenzelm@21539
   109
wenzelm@21539
   110
(*Double negation law*)
wenzelm@21539
   111
lemma notnotD: "~~P ==> P"
wenzelm@21539
   112
  apply (rule classical)
wenzelm@21539
   113
  apply (erule notE)
wenzelm@21539
   114
  apply assumption
wenzelm@21539
   115
  done
wenzelm@21539
   116
wenzelm@21539
   117
lemma contrapos2:  "[| Q; ~ P ==> ~ Q |] ==> P"
wenzelm@21539
   118
  apply (rule classical)
wenzelm@21539
   119
  apply (drule (1) meta_mp)
wenzelm@21539
   120
  apply (erule (1) notE)
wenzelm@21539
   121
  done
wenzelm@21539
   122
wenzelm@21539
   123
(*** Tactics for implication and contradiction ***)
wenzelm@21539
   124
wenzelm@42453
   125
(*Classical <-> elimination.  Proof substitutes P=Q in
wenzelm@21539
   126
    ~P ==> ~Q    and    P ==> Q  *)
wenzelm@21539
   127
lemma iffCE:
wenzelm@21539
   128
  assumes major: "P<->Q"
wenzelm@21539
   129
    and r1: "[| P; Q |] ==> R"
wenzelm@21539
   130
    and r2: "[| ~P; ~Q |] ==> R"
wenzelm@21539
   131
  shows R
wenzelm@21539
   132
  apply (rule major [unfolded iff_def, THEN conjE])
wenzelm@21539
   133
  apply (elim impCE)
wenzelm@21539
   134
     apply (erule (1) r2)
wenzelm@21539
   135
    apply (erule (1) notE)+
wenzelm@21539
   136
  apply (erule (1) r1)
wenzelm@21539
   137
  done
wenzelm@21539
   138
wenzelm@21539
   139
wenzelm@21539
   140
(*Better for fast_tac: needs no quantifier duplication!*)
wenzelm@21539
   141
lemma alt_ex1E:
wenzelm@21539
   142
  assumes major: "EX! x. P(x)"
wenzelm@21539
   143
    and r: "!!x. [| P(x);  ALL y y'. P(y) & P(y') --> y=y' |] ==> R"
wenzelm@21539
   144
  shows R
wenzelm@21539
   145
  using major
wenzelm@21539
   146
proof (rule ex1E)
wenzelm@21539
   147
  fix x
wenzelm@21539
   148
  assume * : "\<forall>y. P(y) \<longrightarrow> y = x"
wenzelm@21539
   149
  assume "P(x)"
wenzelm@21539
   150
  then show R
wenzelm@21539
   151
  proof (rule r)
wenzelm@21539
   152
    { fix y y'
wenzelm@21539
   153
      assume "P(y)" and "P(y')"
wenzelm@21539
   154
      with * have "x = y" and "x = y'" by - (tactic "IntPr.fast_tac 1")+
wenzelm@21539
   155
      then have "y = y'" by (rule subst)
wenzelm@21539
   156
    } note r' = this
wenzelm@21539
   157
    show "\<forall>y y'. P(y) \<and> P(y') \<longrightarrow> y = y'" by (intro strip, elim conjE) (rule r')
wenzelm@21539
   158
  qed
wenzelm@21539
   159
qed
wenzelm@9525
   160
wenzelm@26411
   161
lemma imp_elim: "P --> Q ==> (~ R ==> P) ==> (Q ==> R) ==> R"
wenzelm@26411
   162
  by (rule classical) iprover
wenzelm@26411
   163
wenzelm@26411
   164
lemma swap: "~ P ==> (~ R ==> P) ==> R"
wenzelm@26411
   165
  by (rule classical) iprover
wenzelm@26411
   166
wenzelm@27849
   167
wenzelm@27849
   168
section {* Classical Reasoner *}
wenzelm@27849
   169
wenzelm@10383
   170
use "cladata.ML"
wenzelm@10383
   171
setup Cla.setup
wenzelm@32261
   172
ML {* Context.>> (Cla.map_cs (K FOL_cs)) *}
wenzelm@10383
   173
wenzelm@32176
   174
ML {*
wenzelm@32176
   175
  structure Blast = Blast
wenzelm@32176
   176
  (
wenzelm@32176
   177
    val thy = @{theory}
wenzelm@32960
   178
    type claset = Cla.claset
wenzelm@41310
   179
    val equality_name = @{const_name eq}
wenzelm@32176
   180
    val not_name = @{const_name Not}
wenzelm@32960
   181
    val notE = @{thm notE}
wenzelm@32960
   182
    val ccontr = @{thm ccontr}
wenzelm@32176
   183
    val contr_tac = Cla.contr_tac
wenzelm@32960
   184
    val dup_intr = Cla.dup_intr
wenzelm@32176
   185
    val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac
wenzelm@32176
   186
    val rep_cs = Cla.rep_cs
wenzelm@32176
   187
    val cla_modifiers = Cla.cla_modifiers
wenzelm@32176
   188
    val cla_meth' = Cla.cla_meth'
wenzelm@32176
   189
  );
wenzelm@32176
   190
  val blast_tac = Blast.blast_tac;
wenzelm@32176
   191
*}
wenzelm@32176
   192
wenzelm@9487
   193
setup Blast.setup
paulson@13550
   194
paulson@13550
   195
paulson@13550
   196
lemma ex1_functional: "[| EX! z. P(a,z);  P(a,b);  P(a,c) |] ==> b = c"
wenzelm@21539
   197
  by blast
wenzelm@20223
   198
wenzelm@20223
   199
(* Elimination of True from asumptions: *)
wenzelm@20223
   200
lemma True_implies_equals: "(True ==> PROP P) == PROP P"
wenzelm@20223
   201
proof
wenzelm@20223
   202
  assume "True \<Longrightarrow> PROP P"
wenzelm@20223
   203
  from this and TrueI show "PROP P" .
wenzelm@20223
   204
next
wenzelm@20223
   205
  assume "PROP P"
wenzelm@20223
   206
  then show "PROP P" .
wenzelm@20223
   207
qed
wenzelm@9487
   208
wenzelm@21539
   209
lemma uncurry: "P --> Q --> R ==> P & Q --> R"
wenzelm@21539
   210
  by blast
wenzelm@21539
   211
wenzelm@21539
   212
lemma iff_allI: "(!!x. P(x) <-> Q(x)) ==> (ALL x. P(x)) <-> (ALL x. Q(x))"
wenzelm@21539
   213
  by blast
wenzelm@21539
   214
wenzelm@21539
   215
lemma iff_exI: "(!!x. P(x) <-> Q(x)) ==> (EX x. P(x)) <-> (EX x. Q(x))"
wenzelm@21539
   216
  by blast
wenzelm@21539
   217
wenzelm@21539
   218
lemma all_comm: "(ALL x y. P(x,y)) <-> (ALL y x. P(x,y))" by blast
wenzelm@21539
   219
wenzelm@21539
   220
lemma ex_comm: "(EX x y. P(x,y)) <-> (EX y x. P(x,y))" by blast
wenzelm@21539
   221
wenzelm@26286
   222
wenzelm@26286
   223
wenzelm@26286
   224
(*** Classical simplification rules ***)
wenzelm@26286
   225
wenzelm@26286
   226
(*Avoids duplication of subgoals after expand_if, when the true and false
wenzelm@26286
   227
  cases boil down to the same thing.*)
wenzelm@26286
   228
lemma cases_simp: "(P --> Q) & (~P --> Q) <-> Q" by blast
wenzelm@26286
   229
wenzelm@26286
   230
wenzelm@26286
   231
(*** Miniscoping: pushing quantifiers in
wenzelm@26286
   232
     We do NOT distribute of ALL over &, or dually that of EX over |
wenzelm@26286
   233
     Baaz and Leitsch, On Skolemization and Proof Complexity (1994)
wenzelm@26286
   234
     show that this step can increase proof length!
wenzelm@26286
   235
***)
wenzelm@26286
   236
wenzelm@26286
   237
(*existential miniscoping*)
wenzelm@26286
   238
lemma int_ex_simps:
wenzelm@26286
   239
  "!!P Q. (EX x. P(x) & Q) <-> (EX x. P(x)) & Q"
wenzelm@26286
   240
  "!!P Q. (EX x. P & Q(x)) <-> P & (EX x. Q(x))"
wenzelm@26286
   241
  "!!P Q. (EX x. P(x) | Q) <-> (EX x. P(x)) | Q"
wenzelm@26286
   242
  "!!P Q. (EX x. P | Q(x)) <-> P | (EX x. Q(x))"
wenzelm@26286
   243
  by iprover+
wenzelm@26286
   244
wenzelm@26286
   245
(*classical rules*)
wenzelm@26286
   246
lemma cla_ex_simps:
wenzelm@26286
   247
  "!!P Q. (EX x. P(x) --> Q) <-> (ALL x. P(x)) --> Q"
wenzelm@26286
   248
  "!!P Q. (EX x. P --> Q(x)) <-> P --> (EX x. Q(x))"
wenzelm@26286
   249
  by blast+
wenzelm@26286
   250
wenzelm@26286
   251
lemmas ex_simps = int_ex_simps cla_ex_simps
wenzelm@26286
   252
wenzelm@26286
   253
(*universal miniscoping*)
wenzelm@26286
   254
lemma int_all_simps:
wenzelm@26286
   255
  "!!P Q. (ALL x. P(x) & Q) <-> (ALL x. P(x)) & Q"
wenzelm@26286
   256
  "!!P Q. (ALL x. P & Q(x)) <-> P & (ALL x. Q(x))"
wenzelm@26286
   257
  "!!P Q. (ALL x. P(x) --> Q) <-> (EX x. P(x)) --> Q"
wenzelm@26286
   258
  "!!P Q. (ALL x. P --> Q(x)) <-> P --> (ALL x. Q(x))"
wenzelm@26286
   259
  by iprover+
wenzelm@26286
   260
wenzelm@26286
   261
(*classical rules*)
wenzelm@26286
   262
lemma cla_all_simps:
wenzelm@26286
   263
  "!!P Q. (ALL x. P(x) | Q) <-> (ALL x. P(x)) | Q"
wenzelm@26286
   264
  "!!P Q. (ALL x. P | Q(x)) <-> P | (ALL x. Q(x))"
wenzelm@26286
   265
  by blast+
wenzelm@26286
   266
wenzelm@26286
   267
lemmas all_simps = int_all_simps cla_all_simps
wenzelm@26286
   268
wenzelm@26286
   269
wenzelm@26286
   270
(*** Named rewrite rules proved for IFOL ***)
wenzelm@26286
   271
wenzelm@26286
   272
lemma imp_disj1: "(P-->Q) | R <-> (P-->Q | R)" by blast
wenzelm@26286
   273
lemma imp_disj2: "Q | (P-->R) <-> (P-->Q | R)" by blast
wenzelm@26286
   274
wenzelm@26286
   275
lemma de_Morgan_conj: "(~(P & Q)) <-> (~P | ~Q)" by blast
wenzelm@26286
   276
wenzelm@26286
   277
lemma not_imp: "~(P --> Q) <-> (P & ~Q)" by blast
wenzelm@26286
   278
lemma not_iff: "~(P <-> Q) <-> (P <-> ~Q)" by blast
wenzelm@26286
   279
wenzelm@26286
   280
lemma not_all: "(~ (ALL x. P(x))) <-> (EX x.~P(x))" by blast
wenzelm@26286
   281
lemma imp_all: "((ALL x. P(x)) --> Q) <-> (EX x. P(x) --> Q)" by blast
wenzelm@26286
   282
wenzelm@26286
   283
wenzelm@26286
   284
lemmas meta_simps =
wenzelm@26286
   285
  triv_forall_equality (* prunes params *)
wenzelm@26286
   286
  True_implies_equals  (* prune asms `True' *)
wenzelm@26286
   287
wenzelm@26286
   288
lemmas IFOL_simps =
wenzelm@26286
   289
  refl [THEN P_iff_T] conj_simps disj_simps not_simps
wenzelm@26286
   290
  imp_simps iff_simps quant_simps
wenzelm@26286
   291
wenzelm@26286
   292
lemma notFalseI: "~False" by iprover
wenzelm@26286
   293
wenzelm@26286
   294
lemma cla_simps_misc:
wenzelm@26286
   295
  "~(P&Q) <-> ~P | ~Q"
wenzelm@26286
   296
  "P | ~P"
wenzelm@26286
   297
  "~P | P"
wenzelm@26286
   298
  "~ ~ P <-> P"
wenzelm@26286
   299
  "(~P --> P) <-> P"
wenzelm@26286
   300
  "(~P <-> ~Q) <-> (P<->Q)" by blast+
wenzelm@26286
   301
wenzelm@26286
   302
lemmas cla_simps =
wenzelm@26286
   303
  de_Morgan_conj de_Morgan_disj imp_disj1 imp_disj2
wenzelm@26286
   304
  not_imp not_all not_ex cases_simp cla_simps_misc
wenzelm@26286
   305
wenzelm@26286
   306
wenzelm@9487
   307
use "simpdata.ML"
wenzelm@42455
   308
wenzelm@42455
   309
simproc_setup defined_Ex ("EX x. P(x)") = {*
wenzelm@42455
   310
  fn _ => fn ss => fn ct => Quantifier1.rearrange_ex (theory_of_cterm ct) ss (term_of ct)
wenzelm@42455
   311
*}
wenzelm@42455
   312
wenzelm@42455
   313
simproc_setup defined_All ("ALL x. P(x)") = {*
wenzelm@42455
   314
  fn _ => fn ss => fn ct => Quantifier1.rearrange_all (theory_of_cterm ct) ss (term_of ct)
wenzelm@42455
   315
*}
wenzelm@42455
   316
wenzelm@42453
   317
ML {*
wenzelm@42453
   318
(*intuitionistic simprules only*)
wenzelm@42453
   319
val IFOL_ss =
wenzelm@42453
   320
  FOL_basic_ss
wenzelm@42453
   321
  addsimps (@{thms meta_simps} @ @{thms IFOL_simps} @ @{thms int_ex_simps} @ @{thms int_all_simps})
wenzelm@42455
   322
  addsimprocs [@{simproc defined_All}, @{simproc defined_Ex}]
wenzelm@42453
   323
  addcongs [@{thm imp_cong}];
wenzelm@42453
   324
wenzelm@42453
   325
(*classical simprules too*)
wenzelm@42453
   326
val FOL_ss = IFOL_ss addsimps (@{thms cla_simps} @ @{thms cla_ex_simps} @ @{thms cla_all_simps});
wenzelm@42453
   327
*}
wenzelm@42453
   328
wenzelm@42453
   329
setup {* Simplifier.map_simpset (K FOL_ss) *}
wenzelm@42455
   330
wenzelm@9487
   331
setup "Simplifier.method_setup Splitter.split_modifiers"
wenzelm@9487
   332
setup Splitter.setup
wenzelm@26496
   333
setup clasimp_setup
wenzelm@18591
   334
setup EqSubst.setup
paulson@15481
   335
paulson@15481
   336
paulson@14085
   337
subsection {* Other simple lemmas *}
paulson@14085
   338
paulson@14085
   339
lemma [simp]: "((P-->R) <-> (Q-->R)) <-> ((P<->Q) | R)"
paulson@14085
   340
by blast
paulson@14085
   341
paulson@14085
   342
lemma [simp]: "((P-->Q) <-> (P-->R)) <-> (P --> (Q<->R))"
paulson@14085
   343
by blast
paulson@14085
   344
paulson@14085
   345
lemma not_disj_iff_imp: "~P | Q <-> (P-->Q)"
paulson@14085
   346
by blast
paulson@14085
   347
paulson@14085
   348
(** Monotonicity of implications **)
paulson@14085
   349
paulson@14085
   350
lemma conj_mono: "[| P1-->Q1; P2-->Q2 |] ==> (P1&P2) --> (Q1&Q2)"
paulson@14085
   351
by fast (*or (IntPr.fast_tac 1)*)
paulson@14085
   352
paulson@14085
   353
lemma disj_mono: "[| P1-->Q1; P2-->Q2 |] ==> (P1|P2) --> (Q1|Q2)"
paulson@14085
   354
by fast (*or (IntPr.fast_tac 1)*)
paulson@14085
   355
paulson@14085
   356
lemma imp_mono: "[| Q1-->P1; P2-->Q2 |] ==> (P1-->P2)-->(Q1-->Q2)"
paulson@14085
   357
by fast (*or (IntPr.fast_tac 1)*)
paulson@14085
   358
paulson@14085
   359
lemma imp_refl: "P-->P"
paulson@14085
   360
by (rule impI, assumption)
paulson@14085
   361
paulson@14085
   362
(*The quantifier monotonicity rules are also intuitionistically valid*)
paulson@14085
   363
lemma ex_mono: "(!!x. P(x) --> Q(x)) ==> (EX x. P(x)) --> (EX x. Q(x))"
paulson@14085
   364
by blast
paulson@14085
   365
paulson@14085
   366
lemma all_mono: "(!!x. P(x) --> Q(x)) ==> (ALL x. P(x)) --> (ALL x. Q(x))"
paulson@14085
   367
by blast
paulson@14085
   368
wenzelm@11678
   369
wenzelm@11678
   370
subsection {* Proof by cases and induction *}
wenzelm@11678
   371
wenzelm@11678
   372
text {* Proper handling of non-atomic rule statements. *}
wenzelm@11678
   373
wenzelm@36866
   374
definition "induct_forall(P) == \<forall>x. P(x)"
wenzelm@36866
   375
definition "induct_implies(A, B) == A \<longrightarrow> B"
wenzelm@36866
   376
definition "induct_equal(x, y) == x = y"
wenzelm@36866
   377
definition "induct_conj(A, B) == A \<and> B"
wenzelm@11678
   378
wenzelm@11678
   379
lemma induct_forall_eq: "(!!x. P(x)) == Trueprop(induct_forall(\<lambda>x. P(x)))"
wenzelm@18816
   380
  unfolding atomize_all induct_forall_def .
wenzelm@11678
   381
wenzelm@11678
   382
lemma induct_implies_eq: "(A ==> B) == Trueprop(induct_implies(A, B))"
wenzelm@18816
   383
  unfolding atomize_imp induct_implies_def .
wenzelm@11678
   384
wenzelm@11678
   385
lemma induct_equal_eq: "(x == y) == Trueprop(induct_equal(x, y))"
wenzelm@18816
   386
  unfolding atomize_eq induct_equal_def .
wenzelm@11678
   387
wenzelm@28856
   388
lemma induct_conj_eq: "(A &&& B) == Trueprop(induct_conj(A, B))"
wenzelm@18816
   389
  unfolding atomize_conj induct_conj_def .
wenzelm@11988
   390
wenzelm@18456
   391
lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq
wenzelm@18456
   392
lemmas induct_rulify [symmetric, standard] = induct_atomize
wenzelm@18456
   393
lemmas induct_rulify_fallback =
wenzelm@18456
   394
  induct_forall_def induct_implies_def induct_equal_def induct_conj_def
wenzelm@11678
   395
wenzelm@36176
   396
hide_const induct_forall induct_implies induct_equal induct_conj
wenzelm@11678
   397
wenzelm@11678
   398
wenzelm@11678
   399
text {* Method setup. *}
wenzelm@11678
   400
wenzelm@11678
   401
ML {*
wenzelm@32171
   402
  structure Induct = Induct
wenzelm@24830
   403
  (
wenzelm@22139
   404
    val cases_default = @{thm case_split}
wenzelm@22139
   405
    val atomize = @{thms induct_atomize}
wenzelm@22139
   406
    val rulify = @{thms induct_rulify}
wenzelm@22139
   407
    val rulify_fallback = @{thms induct_rulify_fallback}
berghofe@34989
   408
    val equal_def = @{thm induct_equal_def}
berghofe@34914
   409
    fun dest_def _ = NONE
berghofe@34914
   410
    fun trivial_tac _ = no_tac
wenzelm@24830
   411
  );
wenzelm@11678
   412
*}
wenzelm@11678
   413
wenzelm@24830
   414
setup Induct.setup
wenzelm@24830
   415
declare case_split [cases type: o]
wenzelm@11678
   416
noschinl@41827
   417
setup Case_Product.setup
noschinl@41827
   418
wenzelm@41310
   419
wenzelm@41310
   420
hide_const (open) eq
wenzelm@41310
   421
wenzelm@4854
   422
end