src/HOL/Limits.thy
author wenzelm
Fri, 06 Dec 2019 11:43:29 +0100
changeset 71247 6e0ff949073e
parent 71167 b4d409c65a76
child 71827 5e315defb038
permissions -rw-r--r--
clarified modules;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
52265
bb907eba5902 tuned headers;
wenzelm
parents: 51642
diff changeset
     1
(*  Title:      HOL/Limits.thy
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     2
    Author:     Brian Huffman
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     3
    Author:     Jacques D. Fleuriot, University of Cambridge
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     4
    Author:     Lawrence C Paulson
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     5
    Author:     Jeremy Avigad
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     6
*)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     7
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
     8
section \<open>Limits on Real Vector Spaces\<close>
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     9
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    10
theory Limits
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    11
  imports Real_Vector_Spaces
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    12
begin
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    13
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    14
subsection \<open>Filter going to infinity norm\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
    15
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    16
definition at_infinity :: "'a::real_normed_vector filter"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    17
  where "at_infinity = (INF r. principal {x. r \<le> norm x})"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    18
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    19
lemma eventually_at_infinity: "eventually P at_infinity \<longleftrightarrow> (\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> P x)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    20
  unfolding at_infinity_def
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    21
  by (subst eventually_INF_base)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    22
     (auto simp: subset_eq eventually_principal intro!: exI[of _ "max a b" for a b])
31392
69570155ddf8 replace filters with filter bases
huffman
parents: 31357
diff changeset
    23
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    24
corollary eventually_at_infinity_pos:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    25
  "eventually p at_infinity \<longleftrightarrow> (\<exists>b. 0 < b \<and> (\<forall>x. norm x \<ge> b \<longrightarrow> p x))"
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    26
  unfolding eventually_at_infinity
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    27
  by (meson le_less_trans norm_ge_zero not_le zero_less_one)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    28
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    29
lemma at_infinity_eq_at_top_bot: "(at_infinity :: real filter) = sup at_top at_bot"
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    30
proof -
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    31
  have 1: "\<lbrakk>\<forall>n\<ge>u. A n; \<forall>n\<le>v. A n\<rbrakk>
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    32
       \<Longrightarrow> \<exists>b. \<forall>x. b \<le> \<bar>x\<bar> \<longrightarrow> A x" for A and u v::real
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    33
    by (rule_tac x="max (- v) u" in exI) (auto simp: abs_real_def)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    34
  have 2: "\<forall>x. u \<le> \<bar>x\<bar> \<longrightarrow> A x \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. A n" for A and u::real
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    35
    by (meson abs_less_iff le_cases less_le_not_le)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    36
  have 3: "\<forall>x. u \<le> \<bar>x\<bar> \<longrightarrow> A x \<Longrightarrow> \<exists>N. \<forall>n\<le>N. A n" for A and u::real
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    37
    by (metis (full_types) abs_ge_self abs_minus_cancel le_minus_iff order_trans)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    38
  show ?thesis
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
    39
    by (auto simp: filter_eq_iff eventually_sup eventually_at_infinity
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    40
      eventually_at_top_linorder eventually_at_bot_linorder intro: 1 2 3)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    41
qed
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    42
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    43
lemma at_top_le_at_infinity: "at_top \<le> (at_infinity :: real filter)"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    44
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    45
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    46
lemma at_bot_le_at_infinity: "at_bot \<le> (at_infinity :: real filter)"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    47
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    48
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    49
lemma filterlim_at_top_imp_at_infinity: "filterlim f at_top F \<Longrightarrow> filterlim f at_infinity F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    50
  for f :: "_ \<Rightarrow> real"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    51
  by (rule filterlim_mono[OF _ at_top_le_at_infinity order_refl])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    52
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
    53
lemma filterlim_real_at_infinity_sequentially: "filterlim real at_infinity sequentially"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
    54
  by (simp add: filterlim_at_top_imp_at_infinity filterlim_real_sequentially)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
    55
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    56
lemma lim_infinity_imp_sequentially: "(f \<longlongrightarrow> l) at_infinity \<Longrightarrow> ((\<lambda>n. f(n)) \<longlongrightarrow> l) sequentially"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    57
  by (simp add: filterlim_at_top_imp_at_infinity filterlim_compose filterlim_real_sequentially)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    58
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    59
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    60
subsubsection \<open>Boundedness\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    61
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    62
definition Bfun :: "('a \<Rightarrow> 'b::metric_space) \<Rightarrow> 'a filter \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    63
  where Bfun_metric_def: "Bfun f F = (\<exists>y. \<exists>K>0. eventually (\<lambda>x. dist (f x) y \<le> K) F)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    64
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    65
abbreviation Bseq :: "(nat \<Rightarrow> 'a::metric_space) \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    66
  where "Bseq X \<equiv> Bfun X sequentially"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    67
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    68
lemma Bseq_conv_Bfun: "Bseq X \<longleftrightarrow> Bfun X sequentially" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    69
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    70
lemma Bseq_ignore_initial_segment: "Bseq X \<Longrightarrow> Bseq (\<lambda>n. X (n + k))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    71
  unfolding Bfun_metric_def by (subst eventually_sequentially_seg)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    72
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    73
lemma Bseq_offset: "Bseq (\<lambda>n. X (n + k)) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    74
  unfolding Bfun_metric_def by (subst (asm) eventually_sequentially_seg)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    75
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    76
lemma Bfun_def: "Bfun f F \<longleftrightarrow> (\<exists>K>0. eventually (\<lambda>x. norm (f x) \<le> K) F)"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    77
  unfolding Bfun_metric_def norm_conv_dist
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    78
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    79
  fix y K
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    80
  assume K: "0 < K" and *: "eventually (\<lambda>x. dist (f x) y \<le> K) F"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    81
  moreover have "eventually (\<lambda>x. dist (f x) 0 \<le> dist (f x) y + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    82
    by (intro always_eventually) (metis dist_commute dist_triangle)
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    83
  with * have "eventually (\<lambda>x. dist (f x) 0 \<le> K + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    84
    by eventually_elim auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    85
  with \<open>0 < K\<close> show "\<exists>K>0. eventually (\<lambda>x. dist (f x) 0 \<le> K) F"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    86
    by (intro exI[of _ "K + dist 0 y"] add_pos_nonneg conjI zero_le_dist) auto
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    87
qed (force simp del: norm_conv_dist [symmetric])
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    88
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
    89
lemma BfunI:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    90
  assumes K: "eventually (\<lambda>x. norm (f x) \<le> K) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    91
  shows "Bfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    92
  unfolding Bfun_def
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    93
proof (intro exI conjI allI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    94
  show "0 < max K 1" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    95
  show "eventually (\<lambda>x. norm (f x) \<le> max K 1) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    96
    using K by (rule eventually_mono) simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    97
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    98
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    99
lemma BfunE:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   100
  assumes "Bfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   101
  obtains B where "0 < B" and "eventually (\<lambda>x. norm (f x) \<le> B) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   102
  using assms unfolding Bfun_def by blast
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   103
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   104
lemma Cauchy_Bseq:
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   105
  assumes "Cauchy X" shows "Bseq X"
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   106
proof -
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   107
  have "\<exists>y K. 0 < K \<and> (\<exists>N. \<forall>n\<ge>N. dist (X n) y \<le> K)"
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   108
    if "\<And>m n. \<lbrakk>m \<ge> M; n \<ge> M\<rbrakk> \<Longrightarrow> dist (X m) (X n) < 1" for M
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   109
    by (meson order.order_iff_strict that zero_less_one)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   110
  with assms show ?thesis
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   111
    by (force simp: Cauchy_def Bfun_metric_def eventually_sequentially)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   112
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   113
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   114
subsubsection \<open>Bounded Sequences\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   115
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   116
lemma BseqI': "(\<And>n. norm (X n) \<le> K) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   117
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   118
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   119
lemma BseqI2': "\<forall>n\<ge>N. norm (X n) \<le> K \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   120
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   121
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   122
lemma Bseq_def: "Bseq X \<longleftrightarrow> (\<exists>K>0. \<forall>n. norm (X n) \<le> K)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   123
  unfolding Bfun_def eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   124
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   125
  fix N K
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   126
  assume "0 < K" "\<forall>n\<ge>N. norm (X n) \<le> K"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   127
  then show "\<exists>K>0. \<forall>n. norm (X n) \<le> K"
54863
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 54263
diff changeset
   128
    by (intro exI[of _ "max (Max (norm ` X ` {..N})) K"] max.strict_coboundedI2)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   129
       (auto intro!: imageI not_less[where 'a=nat, THEN iffD1] Max_ge simp: le_max_iff_disj)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   130
qed auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   131
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   132
lemma BseqE: "Bseq X \<Longrightarrow> (\<And>K. 0 < K \<Longrightarrow> \<forall>n. norm (X n) \<le> K \<Longrightarrow> Q) \<Longrightarrow> Q"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   133
  unfolding Bseq_def by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   134
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   135
lemma BseqD: "Bseq X \<Longrightarrow> \<exists>K. 0 < K \<and> (\<forall>n. norm (X n) \<le> K)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   136
  by (simp add: Bseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   137
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   138
lemma BseqI: "0 < K \<Longrightarrow> \<forall>n. norm (X n) \<le> K \<Longrightarrow> Bseq X"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
   139
  by (auto simp: Bseq_def)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   140
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   141
lemma Bseq_bdd_above: "Bseq X \<Longrightarrow> bdd_above (range X)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   142
  for X :: "nat \<Rightarrow> real"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   143
proof (elim BseqE, intro bdd_aboveI2)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   144
  fix K n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   145
  assume "0 < K" "\<forall>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   146
  then show "X n \<le> K"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   147
    by (auto elim!: allE[of _ n])
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   148
qed
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   149
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   150
lemma Bseq_bdd_above': "Bseq X \<Longrightarrow> bdd_above (range (\<lambda>n. norm (X n)))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   151
  for X :: "nat \<Rightarrow> 'a :: real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   152
proof (elim BseqE, intro bdd_aboveI2)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   153
  fix K n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   154
  assume "0 < K" "\<forall>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   155
  then show "norm (X n) \<le> K"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   156
    by (auto elim!: allE[of _ n])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   157
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   158
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   159
lemma Bseq_bdd_below: "Bseq X \<Longrightarrow> bdd_below (range X)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   160
  for X :: "nat \<Rightarrow> real"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   161
proof (elim BseqE, intro bdd_belowI2)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   162
  fix K n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   163
  assume "0 < K" "\<forall>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   164
  then show "- K \<le> X n"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   165
    by (auto elim!: allE[of _ n])
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   166
qed
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   167
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   168
lemma Bseq_eventually_mono:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   169
  assumes "eventually (\<lambda>n. norm (f n) \<le> norm (g n)) sequentially" "Bseq g"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   170
  shows "Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   171
proof -
67958
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   172
  from assms(2) obtain K where "0 < K" and "eventually (\<lambda>n. norm (g n) \<le> K) sequentially"
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   173
    unfolding Bfun_def by fast
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   174
  with assms(1) have "eventually (\<lambda>n. norm (f n) \<le> K) sequentially"
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   175
    by (fast elim: eventually_elim2 order_trans)
69272
15e9ed5b28fb isabelle update_cartouches -t;
wenzelm
parents: 69064
diff changeset
   176
  with \<open>0 < K\<close> show "Bseq f"
67958
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   177
    unfolding Bfun_def by fast
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   178
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   179
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   180
lemma lemma_NBseq_def: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   181
proof safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   182
  fix K :: real
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   183
  from reals_Archimedean2 obtain n :: nat where "K < real n" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   184
  then have "K \<le> real (Suc n)" by auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   185
  moreover assume "\<forall>m. norm (X m) \<le> K"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   186
  ultimately have "\<forall>m. norm (X m) \<le> real (Suc n)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   187
    by (blast intro: order_trans)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   188
  then show "\<exists>N. \<forall>n. norm (X n) \<le> real (Suc N)" ..
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   189
next
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   190
  show "\<And>N. \<forall>n. norm (X n) \<le> real (Suc N) \<Longrightarrow> \<exists>K>0. \<forall>n. norm (X n) \<le> K"
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   191
    using of_nat_0_less_iff by blast
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   192
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   193
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   194
text \<open>Alternative definition for \<open>Bseq\<close>.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   195
lemma Bseq_iff: "Bseq X \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   196
  by (simp add: Bseq_def) (simp add: lemma_NBseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   197
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   198
lemma lemma_NBseq_def2: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   199
proof -
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   200
  have *: "\<And>N. \<forall>n. norm (X n) \<le> 1 + real N \<Longrightarrow>
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   201
         \<exists>N. \<forall>n. norm (X n) < 1 + real N"
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   202
    by (metis add.commute le_less_trans less_add_one of_nat_Suc)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   203
  then show ?thesis
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   204
    unfolding lemma_NBseq_def
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   205
    by (metis less_le_not_le not_less_iff_gr_or_eq of_nat_Suc)
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   206
qed
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   207
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   208
text \<open>Yet another definition for Bseq.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   209
lemma Bseq_iff1a: "Bseq X \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) < real (Suc N))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   210
  by (simp add: Bseq_def lemma_NBseq_def2)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   211
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   212
subsubsection \<open>A Few More Equivalence Theorems for Boundedness\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   213
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   214
text \<open>Alternative formulation for boundedness.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   215
lemma Bseq_iff2: "Bseq X \<longleftrightarrow> (\<exists>k > 0. \<exists>x. \<forall>n. norm (X n + - x) \<le> k)"
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   216
  by (metis BseqE BseqI' add.commute add_cancel_right_left add_uminus_conv_diff norm_add_leD
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   217
            norm_minus_cancel norm_minus_commute)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   218
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   219
text \<open>Alternative formulation for boundedness.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   220
lemma Bseq_iff3: "Bseq X \<longleftrightarrow> (\<exists>k>0. \<exists>N. \<forall>n. norm (X n + - X N) \<le> k)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   221
  (is "?P \<longleftrightarrow> ?Q")
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   222
proof
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   223
  assume ?P
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   224
  then obtain K where *: "0 < K" and **: "\<And>n. norm (X n) \<le> K"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
   225
    by (auto simp: Bseq_def)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   226
  from * have "0 < K + norm (X 0)" by (rule order_less_le_trans) simp
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   227
  from ** have "\<forall>n. norm (X n - X 0) \<le> K + norm (X 0)"
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   228
    by (auto intro: order_trans norm_triangle_ineq4)
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   229
  then have "\<forall>n. norm (X n + - X 0) \<le> K + norm (X 0)"
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   230
    by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   231
  with \<open>0 < K + norm (X 0)\<close> show ?Q by blast
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   232
next
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   233
  assume ?Q
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
   234
  then show ?P by (auto simp: Bseq_iff2)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   235
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   236
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   237
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   238
subsubsection \<open>Upper Bounds and Lubs of Bounded Sequences\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   239
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   240
lemma Bseq_minus_iff: "Bseq (\<lambda>n. - (X n) :: 'a::real_normed_vector) \<longleftrightarrow> Bseq X"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   241
  by (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   242
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   243
lemma Bseq_add:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   244
  fixes f :: "nat \<Rightarrow> 'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   245
  assumes "Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   246
  shows "Bseq (\<lambda>x. f x + c)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   247
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   248
  from assms obtain K where K: "\<And>x. norm (f x) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   249
    unfolding Bseq_def by blast
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   250
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   251
    fix x :: nat
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   252
    have "norm (f x + c) \<le> norm (f x) + norm c" by (rule norm_triangle_ineq)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   253
    also have "norm (f x) \<le> K" by (rule K)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   254
    finally have "norm (f x + c) \<le> K + norm c" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   255
  }
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   256
  then show ?thesis by (rule BseqI')
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   257
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   258
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   259
lemma Bseq_add_iff: "Bseq (\<lambda>x. f x + c) \<longleftrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   260
  for f :: "nat \<Rightarrow> 'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   261
  using Bseq_add[of f c] Bseq_add[of "\<lambda>x. f x + c" "-c"] by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   262
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   263
lemma Bseq_mult:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   264
  fixes f g :: "nat \<Rightarrow> 'a::real_normed_field"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   265
  assumes "Bseq f" and "Bseq g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   266
  shows "Bseq (\<lambda>x. f x * g x)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   267
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   268
  from assms obtain K1 K2 where K: "norm (f x) \<le> K1" "K1 > 0" "norm (g x) \<le> K2" "K2 > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   269
    for x
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   270
    unfolding Bseq_def by blast
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   271
  then have "norm (f x * g x) \<le> K1 * K2" for x
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   272
    by (auto simp: norm_mult intro!: mult_mono)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   273
  then show ?thesis by (rule BseqI')
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   274
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   275
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   276
lemma Bfun_const [simp]: "Bfun (\<lambda>_. c) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   277
  unfolding Bfun_metric_def by (auto intro!: exI[of _ c] exI[of _ "1::real"])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   278
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   279
lemma Bseq_cmult_iff:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   280
  fixes c :: "'a::real_normed_field"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   281
  assumes "c \<noteq> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   282
  shows "Bseq (\<lambda>x. c * f x) \<longleftrightarrow> Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   283
proof
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   284
  assume "Bseq (\<lambda>x. c * f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   285
  with Bfun_const have "Bseq (\<lambda>x. inverse c * (c * f x))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   286
    by (rule Bseq_mult)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   287
  with \<open>c \<noteq> 0\<close> show "Bseq f"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70804
diff changeset
   288
    by (simp add: field_split_simps)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   289
qed (intro Bseq_mult Bfun_const)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   290
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   291
lemma Bseq_subseq: "Bseq f \<Longrightarrow> Bseq (\<lambda>x. f (g x))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   292
  for f :: "nat \<Rightarrow> 'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   293
  unfolding Bseq_def by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   294
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   295
lemma Bseq_Suc_iff: "Bseq (\<lambda>n. f (Suc n)) \<longleftrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   296
  for f :: "nat \<Rightarrow> 'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   297
  using Bseq_offset[of f 1] by (auto intro: Bseq_subseq)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   298
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   299
lemma increasing_Bseq_subseq_iff:
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
   300
  assumes "\<And>x y. x \<le> y \<Longrightarrow> norm (f x :: 'a::real_normed_vector) \<le> norm (f y)" "strict_mono g"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   301
  shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   302
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   303
  assume "Bseq (\<lambda>x. f (g x))"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   304
  then obtain K where K: "\<And>x. norm (f (g x)) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   305
    unfolding Bseq_def by auto
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   306
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   307
    fix x :: nat
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   308
    from filterlim_subseq[OF assms(2)] obtain y where "g y \<ge> x"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   309
      by (auto simp: filterlim_at_top eventually_at_top_linorder)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   310
    then have "norm (f x) \<le> norm (f (g y))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   311
      using assms(1) by blast
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   312
    also have "norm (f (g y)) \<le> K" by (rule K)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   313
    finally have "norm (f x) \<le> K" .
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   314
  }
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   315
  then show "Bseq f" by (rule BseqI')
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   316
qed (use Bseq_subseq[of f g] in simp_all)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   317
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   318
lemma nonneg_incseq_Bseq_subseq_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   319
  fixes f :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   320
    and g :: "nat \<Rightarrow> nat"
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
   321
  assumes "\<And>x. f x \<ge> 0" "incseq f" "strict_mono g"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   322
  shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   323
  using assms by (intro increasing_Bseq_subseq_iff) (auto simp: incseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   324
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   325
lemma Bseq_eq_bounded: "range f \<subseteq> {a..b} \<Longrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   326
  for a b :: real
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   327
proof (rule BseqI'[where K="max (norm a) (norm b)"])
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   328
  fix n assume "range f \<subseteq> {a..b}"
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   329
  then have "f n \<in> {a..b}"
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   330
    by blast
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   331
  then show "norm (f n) \<le> max (norm a) (norm b)"
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   332
    by auto
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   333
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   334
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   335
lemma incseq_bounded: "incseq X \<Longrightarrow> \<forall>i. X i \<le> B \<Longrightarrow> Bseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   336
  for B :: real
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   337
  by (intro Bseq_eq_bounded[of X "X 0" B]) (auto simp: incseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   338
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   339
lemma decseq_bounded: "decseq X \<Longrightarrow> \<forall>i. B \<le> X i \<Longrightarrow> Bseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   340
  for B :: real
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   341
  by (intro Bseq_eq_bounded[of X B "X 0"]) (auto simp: decseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   342
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   343
71167
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   344
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Polynomal function extremal theorem, from HOL Light\<close>
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   345
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   346
lemma polyfun_extremal_lemma: (*COMPLEX_POLYFUN_EXTREMAL_LEMMA in HOL Light*)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   347
    fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   348
  assumes "0 < e"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   349
    shows "\<exists>M. \<forall>z. M \<le> norm(z) \<longrightarrow> norm (\<Sum>i\<le>n. c(i) * z^i) \<le> e * norm(z) ^ (Suc n)"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   350
proof (induct n)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   351
  case 0 with assms
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   352
  show ?case
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   353
    apply (rule_tac x="norm (c 0) / e" in exI)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   354
    apply (auto simp: field_simps)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   355
    done
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   356
next
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   357
  case (Suc n)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   358
  obtain M where M: "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   359
    using Suc assms by blast
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   360
  show ?case
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   361
  proof (rule exI [where x= "max M (1 + norm(c(Suc n)) / e)"], clarsimp simp del: power_Suc)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   362
    fix z::'a
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   363
    assume z1: "M \<le> norm z" and "1 + norm (c (Suc n)) / e \<le> norm z"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   364
    then have z2: "e + norm (c (Suc n)) \<le> e * norm z"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   365
      using assms by (simp add: field_simps)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   366
    have "norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   367
      using M [OF z1] by simp
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   368
    then have "norm (\<Sum>i\<le>n. c i * z^i) + norm (c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   369
      by simp
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   370
    then have "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   371
      by (blast intro: norm_triangle_le elim: )
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   372
    also have "... \<le> (e + norm (c (Suc n))) * norm z ^ Suc n"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   373
      by (simp add: norm_power norm_mult algebra_simps)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   374
    also have "... \<le> (e * norm z) * norm z ^ Suc n"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   375
      by (metis z2 mult.commute mult_left_mono norm_ge_zero norm_power)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   376
    finally show "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc (Suc n)"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   377
      by simp
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   378
  qed
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   379
qed
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   380
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   381
lemma polyfun_extremal: (*COMPLEX_POLYFUN_EXTREMAL in HOL Light*)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   382
    fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   383
  assumes k: "c k \<noteq> 0" "1\<le>k" and kn: "k\<le>n"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   384
    shows "eventually (\<lambda>z. norm (\<Sum>i\<le>n. c(i) * z^i) \<ge> B) at_infinity"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   385
using kn
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   386
proof (induction n)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   387
  case 0
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   388
  then show ?case
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   389
    using k  by simp
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   390
next
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   391
  case (Suc m)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   392
  let ?even = ?case
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   393
  show ?even
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   394
  proof (cases "c (Suc m) = 0")
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   395
    case True
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   396
    then show ?even using Suc k
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   397
      by auto (metis antisym_conv less_eq_Suc_le not_le)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   398
  next
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   399
    case False
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   400
    then obtain M where M:
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   401
          "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>m. c i * z^i) \<le> norm (c (Suc m)) / 2 * norm z ^ Suc m"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   402
      using polyfun_extremal_lemma [of "norm(c (Suc m)) / 2" c m] Suc
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   403
      by auto
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   404
    have "\<exists>b. \<forall>z. b \<le> norm z \<longrightarrow> B \<le> norm (\<Sum>i\<le>Suc m. c i * z^i)"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   405
    proof (rule exI [where x="max M (max 1 (\<bar>B\<bar> / (norm(c (Suc m)) / 2)))"], clarsimp simp del: power_Suc)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   406
      fix z::'a
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   407
      assume z1: "M \<le> norm z" "1 \<le> norm z"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   408
         and "\<bar>B\<bar> * 2 / norm (c (Suc m)) \<le> norm z"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   409
      then have z2: "\<bar>B\<bar> \<le> norm (c (Suc m)) * norm z / 2"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   410
        using False by (simp add: field_simps)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   411
      have nz: "norm z \<le> norm z ^ Suc m"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   412
        by (metis \<open>1 \<le> norm z\<close> One_nat_def less_eq_Suc_le power_increasing power_one_right zero_less_Suc)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   413
      have *: "\<And>y x. norm (c (Suc m)) * norm z / 2 \<le> norm y - norm x \<Longrightarrow> B \<le> norm (x + y)"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   414
        by (metis abs_le_iff add.commute norm_diff_ineq order_trans z2)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   415
      have "norm z * norm (c (Suc m)) + 2 * norm (\<Sum>i\<le>m. c i * z^i)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   416
            \<le> norm (c (Suc m)) * norm z + norm (c (Suc m)) * norm z ^ Suc m"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   417
        using M [of z] Suc z1  by auto
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   418
      also have "... \<le> 2 * (norm (c (Suc m)) * norm z ^ Suc m)"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   419
        using nz by (simp add: mult_mono del: power_Suc)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   420
      finally show "B \<le> norm ((\<Sum>i\<le>m. c i * z^i) + c (Suc m) * z ^ Suc m)"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   421
        using Suc.IH
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   422
        apply (auto simp: eventually_at_infinity)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   423
        apply (rule *)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   424
        apply (simp add: field_simps norm_mult norm_power)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   425
        done
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   426
    qed
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   427
    then show ?even
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   428
      by (simp add: eventually_at_infinity)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   429
  qed
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   430
qed
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   431
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   432
subsection \<open>Convergence to Zero\<close>
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   433
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   434
definition Zfun :: "('a \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   435
  where "Zfun f F = (\<forall>r>0. eventually (\<lambda>x. norm (f x) < r) F)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   436
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   437
lemma ZfunI: "(\<And>r. 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F) \<Longrightarrow> Zfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   438
  by (simp add: Zfun_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   439
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   440
lemma ZfunD: "Zfun f F \<Longrightarrow> 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   441
  by (simp add: Zfun_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   442
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   443
lemma Zfun_ssubst: "eventually (\<lambda>x. f x = g x) F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun f F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   444
  unfolding Zfun_def by (auto elim!: eventually_rev_mp)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   445
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   446
lemma Zfun_zero: "Zfun (\<lambda>x. 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   447
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   448
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   449
lemma Zfun_norm_iff: "Zfun (\<lambda>x. norm (f x)) F = Zfun (\<lambda>x. f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   450
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   451
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   452
lemma Zfun_imp_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   453
  assumes f: "Zfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   454
    and g: "eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   455
  shows "Zfun (\<lambda>x. g x) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   456
proof (cases "0 < K")
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   457
  case K: True
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   458
  show ?thesis
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   459
  proof (rule ZfunI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   460
    fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   461
    assume "0 < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   462
    then have "0 < r / K" using K by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   463
    then have "eventually (\<lambda>x. norm (f x) < r / K) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   464
      using ZfunD [OF f] by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   465
    with g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   466
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   467
      case (elim x)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   468
      then have "norm (f x) * K < r"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   469
        by (simp add: pos_less_divide_eq K)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   470
      then show ?case
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   471
        by (simp add: order_le_less_trans [OF elim(1)])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   472
    qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   473
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   474
next
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   475
  case False
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   476
  then have K: "K \<le> 0" by (simp only: not_less)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   477
  show ?thesis
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   478
  proof (rule ZfunI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   479
    fix r :: real
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   480
    assume "0 < r"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   481
    from g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   482
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   483
      case (elim x)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   484
      also have "norm (f x) * K \<le> norm (f x) * 0"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   485
        using K norm_ge_zero by (rule mult_left_mono)
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   486
      finally show ?case
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   487
        using \<open>0 < r\<close> by simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   488
    qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   489
  qed
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   490
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   491
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   492
lemma Zfun_le: "Zfun g F \<Longrightarrow> \<forall>x. norm (f x) \<le> norm (g x) \<Longrightarrow> Zfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   493
  by (erule Zfun_imp_Zfun [where K = 1]) simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   494
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   495
lemma Zfun_add:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   496
  assumes f: "Zfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   497
    and g: "Zfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   498
  shows "Zfun (\<lambda>x. f x + g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   499
proof (rule ZfunI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   500
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   501
  assume "0 < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   502
  then have r: "0 < r / 2" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   503
  have "eventually (\<lambda>x. norm (f x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   504
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   505
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   506
  have "eventually (\<lambda>x. norm (g x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   507
    using g r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   508
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   509
  show "eventually (\<lambda>x. norm (f x + g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   510
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   511
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   512
    have "norm (f x + g x) \<le> norm (f x) + norm (g x)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   513
      by (rule norm_triangle_ineq)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   514
    also have "\<dots> < r/2 + r/2"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   515
      using elim by (rule add_strict_mono)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   516
    finally show ?case
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   517
      by simp
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   518
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   519
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   520
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   521
lemma Zfun_minus: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. - f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   522
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   523
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   524
lemma Zfun_diff: "Zfun f F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun (\<lambda>x. f x - g x) F"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   525
  using Zfun_add [of f F "\<lambda>x. - g x"] by (simp add: Zfun_minus)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   526
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   527
lemma (in bounded_linear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   528
  assumes g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   529
  shows "Zfun (\<lambda>x. f (g x)) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   530
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   531
  obtain K where "norm (f x) \<le> norm x * K" for x
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   532
    using bounded by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   533
  then have "eventually (\<lambda>x. norm (f (g x)) \<le> norm (g x) * K) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   534
    by simp
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   535
  with g show ?thesis
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   536
    by (rule Zfun_imp_Zfun)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   537
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   538
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   539
lemma (in bounded_bilinear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   540
  assumes f: "Zfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   541
    and g: "Zfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   542
  shows "Zfun (\<lambda>x. f x ** g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   543
proof (rule ZfunI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   544
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   545
  assume r: "0 < r"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   546
  obtain K where K: "0 < K"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   547
    and norm_le: "norm (x ** y) \<le> norm x * norm y * K" for x y
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   548
    using pos_bounded by blast
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   549
  from K have K': "0 < inverse K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   550
    by (rule positive_imp_inverse_positive)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   551
  have "eventually (\<lambda>x. norm (f x) < r) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   552
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   553
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   554
  have "eventually (\<lambda>x. norm (g x) < inverse K) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   555
    using g K' by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   556
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   557
  show "eventually (\<lambda>x. norm (f x ** g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   558
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   559
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   560
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   561
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   562
    also have "norm (f x) * norm (g x) * K < r * inverse K * K"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   563
      by (intro mult_strict_right_mono mult_strict_mono' norm_ge_zero elim K)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   564
    also from K have "r * inverse K * K = r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   565
      by simp
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   566
    finally show ?case .
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   567
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   568
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   569
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   570
lemma (in bounded_bilinear) Zfun_left: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. f x ** a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   571
  by (rule bounded_linear_left [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   572
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   573
lemma (in bounded_bilinear) Zfun_right: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. a ** f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   574
  by (rule bounded_linear_right [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   575
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   576
lemmas Zfun_mult = bounded_bilinear.Zfun [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   577
lemmas Zfun_mult_right = bounded_bilinear.Zfun_right [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   578
lemmas Zfun_mult_left = bounded_bilinear.Zfun_left [OF bounded_bilinear_mult]
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   579
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   580
lemma tendsto_Zfun_iff: "(f \<longlongrightarrow> a) F = Zfun (\<lambda>x. f x - a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   581
  by (simp only: tendsto_iff Zfun_def dist_norm)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   582
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   583
lemma tendsto_0_le:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   584
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F \<Longrightarrow> (g \<longlongrightarrow> 0) F"
56366
0362c3bb4d02 new theorem about zero limits
paulson <lp15@cam.ac.uk>
parents: 56330
diff changeset
   585
  by (simp add: Zfun_imp_Zfun tendsto_Zfun_iff)
0362c3bb4d02 new theorem about zero limits
paulson <lp15@cam.ac.uk>
parents: 56330
diff changeset
   586
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   587
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   588
subsubsection \<open>Distance and norms\<close>
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   589
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   590
lemma tendsto_dist [tendsto_intros]:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   591
  fixes l m :: "'a::metric_space"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   592
  assumes f: "(f \<longlongrightarrow> l) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   593
    and g: "(g \<longlongrightarrow> m) F"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   594
  shows "((\<lambda>x. dist (f x) (g x)) \<longlongrightarrow> dist l m) F"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   595
proof (rule tendstoI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   596
  fix e :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   597
  assume "0 < e"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   598
  then have e2: "0 < e/2" by simp
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   599
  from tendstoD [OF f e2] tendstoD [OF g e2]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   600
  show "eventually (\<lambda>x. dist (dist (f x) (g x)) (dist l m) < e) F"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   601
  proof (eventually_elim)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   602
    case (elim x)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   603
    then show "dist (dist (f x) (g x)) (dist l m) < e"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   604
      unfolding dist_real_def
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   605
      using dist_triangle2 [of "f x" "g x" "l"]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   606
        and dist_triangle2 [of "g x" "l" "m"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   607
        and dist_triangle3 [of "l" "m" "f x"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   608
        and dist_triangle [of "f x" "m" "g x"]
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   609
      by arith
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   610
  qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   611
qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   612
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   613
lemma continuous_dist[continuous_intros]:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   614
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   615
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   616
  unfolding continuous_def by (rule tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   617
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   618
lemma continuous_on_dist[continuous_intros]:
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   619
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   620
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   621
  unfolding continuous_on_def by (auto intro: tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   622
69918
eddcc7c726f3 new material;' strengthened material; moved proofs out of Function_Topology in order to lessen its dependencies
paulson <lp15@cam.ac.uk>
parents: 69593
diff changeset
   623
lemma continuous_at_dist: "isCont (dist a) b"
eddcc7c726f3 new material;' strengthened material; moved proofs out of Function_Topology in order to lessen its dependencies
paulson <lp15@cam.ac.uk>
parents: 69593
diff changeset
   624
  using continuous_on_dist [OF continuous_on_const continuous_on_id] continuous_on_eq_continuous_within by blast
eddcc7c726f3 new material;' strengthened material; moved proofs out of Function_Topology in order to lessen its dependencies
paulson <lp15@cam.ac.uk>
parents: 69593
diff changeset
   625
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   626
lemma tendsto_norm [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> norm a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   627
  unfolding norm_conv_dist by (intro tendsto_intros)
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   628
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   629
lemma continuous_norm [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. norm (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   630
  unfolding continuous_def by (rule tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   631
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   632
lemma continuous_on_norm [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   633
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. norm (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   634
  unfolding continuous_on_def by (auto intro: tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   635
71167
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   636
lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   637
  by (intro continuous_on_id continuous_on_norm)
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   638
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   639
lemma tendsto_norm_zero: "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   640
  by (drule tendsto_norm) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   641
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   642
lemma tendsto_norm_zero_cancel: "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   643
  unfolding tendsto_iff dist_norm by simp
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   644
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   645
lemma tendsto_norm_zero_iff: "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   646
  unfolding tendsto_iff dist_norm by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   647
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   648
lemma tendsto_rabs [tendsto_intros]: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> \<bar>l\<bar>) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   649
  for l :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   650
  by (fold real_norm_def) (rule tendsto_norm)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   651
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   652
lemma continuous_rabs [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   653
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   654
  unfolding real_norm_def[symmetric] by (rule continuous_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   655
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   656
lemma continuous_on_rabs [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   657
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   658
  unfolding real_norm_def[symmetric] by (rule continuous_on_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   659
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   660
lemma tendsto_rabs_zero: "(f \<longlongrightarrow> (0::real)) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   661
  by (fold real_norm_def) (rule tendsto_norm_zero)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   662
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   663
lemma tendsto_rabs_zero_cancel: "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<Longrightarrow> (f \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   664
  by (fold real_norm_def) (rule tendsto_norm_zero_cancel)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   665
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   666
lemma tendsto_rabs_zero_iff: "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   667
  by (fold real_norm_def) (rule tendsto_norm_zero_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   668
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   669
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   670
subsection \<open>Topological Monoid\<close>
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   671
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   672
class topological_monoid_add = topological_space + monoid_add +
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   673
  assumes tendsto_add_Pair: "LIM x (nhds a \<times>\<^sub>F nhds b). fst x + snd x :> nhds (a + b)"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   674
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   675
class topological_comm_monoid_add = topological_monoid_add + comm_monoid_add
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   676
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   677
lemma tendsto_add [tendsto_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   678
  fixes a b :: "'a::topological_monoid_add"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   679
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> a + b) F"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   680
  using filterlim_compose[OF tendsto_add_Pair, of "\<lambda>x. (f x, g x)" a b F]
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   681
  by (simp add: nhds_prod[symmetric] tendsto_Pair)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   682
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   683
lemma continuous_add [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   684
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   685
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   686
  unfolding continuous_def by (rule tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   687
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   688
lemma continuous_on_add [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   689
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   690
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   691
  unfolding continuous_on_def by (auto intro: tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   692
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   693
lemma tendsto_add_zero:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   694
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   695
  shows "(f \<longlongrightarrow> 0) F \<Longrightarrow> (g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   696
  by (drule (1) tendsto_add) simp
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   697
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   698
lemma tendsto_sum [tendsto_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   699
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   700
  shows "(\<And>i. i \<in> I \<Longrightarrow> (f i \<longlongrightarrow> a i) F) \<Longrightarrow> ((\<lambda>x. \<Sum>i\<in>I. f i x) \<longlongrightarrow> (\<Sum>i\<in>I. a i)) F"
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   701
  by (induct I rule: infinite_finite_induct) (simp_all add: tendsto_add)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   702
67673
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   703
lemma tendsto_null_sum:
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   704
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add"
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   705
  assumes "\<And>i. i \<in> I \<Longrightarrow> ((\<lambda>x. f x i) \<longlongrightarrow> 0) F"
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   706
  shows "((\<lambda>i. sum (f i) I) \<longlongrightarrow> 0) F"
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   707
  using tendsto_sum [of I "\<lambda>x y. f y x" "\<lambda>x. 0"] assms by simp
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   708
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   709
lemma continuous_sum [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   710
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add"
63301
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   711
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Sum>i\<in>I. f i x)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   712
  unfolding continuous_def by (rule tendsto_sum)
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   713
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   714
lemma continuous_on_sum [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   715
  fixes f :: "'a \<Rightarrow> 'b::topological_space \<Rightarrow> 'c::topological_comm_monoid_add"
63301
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   716
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous_on S (f i)) \<Longrightarrow> continuous_on S (\<lambda>x. \<Sum>i\<in>I. f i x)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   717
  unfolding continuous_on_def by (auto intro: tendsto_sum)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   718
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   719
instance nat :: topological_comm_monoid_add
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   720
  by standard
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   721
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   722
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   723
instance int :: topological_comm_monoid_add
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   724
  by standard
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   725
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   726
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   727
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   728
subsubsection \<open>Topological group\<close>
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   729
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   730
class topological_group_add = topological_monoid_add + group_add +
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   731
  assumes tendsto_uminus_nhds: "(uminus \<longlongrightarrow> - a) (nhds a)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   732
begin
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   733
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   734
lemma tendsto_minus [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> - a) F"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   735
  by (rule filterlim_compose[OF tendsto_uminus_nhds])
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   736
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   737
end
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   738
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   739
class topological_ab_group_add = topological_group_add + ab_group_add
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   740
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   741
instance topological_ab_group_add < topological_comm_monoid_add ..
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   742
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   743
lemma continuous_minus [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. - f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   744
  for f :: "'a::t2_space \<Rightarrow> 'b::topological_group_add"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   745
  unfolding continuous_def by (rule tendsto_minus)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   746
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   747
lemma continuous_on_minus [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. - f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   748
  for f :: "_ \<Rightarrow> 'b::topological_group_add"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   749
  unfolding continuous_on_def by (auto intro: tendsto_minus)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   750
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   751
lemma tendsto_minus_cancel: "((\<lambda>x. - f x) \<longlongrightarrow> - a) F \<Longrightarrow> (f \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   752
  for a :: "'a::topological_group_add"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   753
  by (drule tendsto_minus) simp
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   754
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   755
lemma tendsto_minus_cancel_left:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   756
  "(f \<longlongrightarrow> - (y::_::topological_group_add)) F \<longleftrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> y) F"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   757
  using tendsto_minus_cancel[of f "- y" F]  tendsto_minus[of f "- y" F]
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   758
  by auto
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   759
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   760
lemma tendsto_diff [tendsto_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   761
  fixes a b :: "'a::topological_group_add"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   762
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> a - b) F"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   763
  using tendsto_add [of f a F "\<lambda>x. - g x" "- b"] by (simp add: tendsto_minus)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   764
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   765
lemma continuous_diff [continuous_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   766
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   767
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x - g x)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   768
  unfolding continuous_def by (rule tendsto_diff)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   769
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   770
lemma continuous_on_diff [continuous_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   771
  fixes f g :: "_ \<Rightarrow> 'b::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   772
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x - g x)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   773
  unfolding continuous_on_def by (auto intro: tendsto_diff)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   774
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67371
diff changeset
   775
lemma continuous_on_op_minus: "continuous_on (s::'a::topological_group_add set) ((-) x)"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   776
  by (rule continuous_intros | simp)+
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   777
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   778
instance real_normed_vector < topological_ab_group_add
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   779
proof
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   780
  fix a b :: 'a
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   781
  show "((\<lambda>x. fst x + snd x) \<longlongrightarrow> a + b) (nhds a \<times>\<^sub>F nhds b)"
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   782
    unfolding tendsto_Zfun_iff add_diff_add
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   783
    using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"]
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   784
    by (intro Zfun_add)
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
   785
       (auto simp: tendsto_Zfun_iff[symmetric] nhds_prod[symmetric] intro!: tendsto_fst)
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   786
  show "(uminus \<longlongrightarrow> - a) (nhds a)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   787
    unfolding tendsto_Zfun_iff minus_diff_minus
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   788
    using filterlim_ident[of "nhds a"]
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   789
    by (intro Zfun_minus) (simp add: tendsto_Zfun_iff)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   790
qed
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   791
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65036
diff changeset
   792
lemmas real_tendsto_sandwich = tendsto_sandwich[where 'a=real]
50999
3de230ed0547 introduce order topology
hoelzl
parents: 50880
diff changeset
   793
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   794
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   795
subsubsection \<open>Linear operators and multiplication\<close>
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   796
70999
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   797
lemma linear_times [simp]: "linear (\<lambda>x. c * x)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   798
  for c :: "'a::real_algebra"
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   799
  by (auto simp: linearI distrib_left)
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   800
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   801
lemma (in bounded_linear) tendsto: "(g \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> f a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   802
  by (simp only: tendsto_Zfun_iff diff [symmetric] Zfun)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   803
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   804
lemma (in bounded_linear) continuous: "continuous F g \<Longrightarrow> continuous F (\<lambda>x. f (g x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   805
  using tendsto[of g _ F] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   806
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   807
lemma (in bounded_linear) continuous_on: "continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f (g x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   808
  using tendsto[of g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   809
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   810
lemma (in bounded_linear) tendsto_zero: "(g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   811
  by (drule tendsto) (simp only: zero)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   812
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   813
lemma (in bounded_bilinear) tendsto:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   814
  "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x ** g x) \<longlongrightarrow> a ** b) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   815
  by (simp only: tendsto_Zfun_iff prod_diff_prod Zfun_add Zfun Zfun_left Zfun_right)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   816
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   817
lemma (in bounded_bilinear) continuous:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   818
  "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   819
  using tendsto[of f _ F g] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   820
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   821
lemma (in bounded_bilinear) continuous_on:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   822
  "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   823
  using tendsto[of f _ _ g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   824
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   825
lemma (in bounded_bilinear) tendsto_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   826
  assumes f: "(f \<longlongrightarrow> 0) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   827
    and g: "(g \<longlongrightarrow> 0) F"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   828
  shows "((\<lambda>x. f x ** g x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   829
  using tendsto [OF f g] by (simp add: zero_left)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   830
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   831
lemma (in bounded_bilinear) tendsto_left_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   832
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x ** c) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   833
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_left])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   834
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   835
lemma (in bounded_bilinear) tendsto_right_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   836
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. c ** f x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   837
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_right])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   838
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   839
lemmas tendsto_of_real [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   840
  bounded_linear.tendsto [OF bounded_linear_of_real]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   841
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   842
lemmas tendsto_scaleR [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   843
  bounded_bilinear.tendsto [OF bounded_bilinear_scaleR]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   844
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   845
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   846
text\<open>Analogous type class for multiplication\<close>
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   847
class topological_semigroup_mult = topological_space + semigroup_mult +
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   848
  assumes tendsto_mult_Pair: "LIM x (nhds a \<times>\<^sub>F nhds b). fst x * snd x :> nhds (a * b)"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   849
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   850
instance real_normed_algebra < topological_semigroup_mult
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   851
proof
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   852
  fix a b :: 'a
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   853
  show "((\<lambda>x. fst x * snd x) \<longlongrightarrow> a * b) (nhds a \<times>\<^sub>F nhds b)"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   854
    unfolding nhds_prod[symmetric]
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   855
    using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"]
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   856
    by (simp add: bounded_bilinear.tendsto [OF bounded_bilinear_mult])
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   857
qed
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   858
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   859
lemma tendsto_mult [tendsto_intros]:
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   860
  fixes a b :: "'a::topological_semigroup_mult"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   861
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x * g x) \<longlongrightarrow> a * b) F"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   862
  using filterlim_compose[OF tendsto_mult_Pair, of "\<lambda>x. (f x, g x)" a b F]
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   863
  by (simp add: nhds_prod[symmetric] tendsto_Pair)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   864
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   865
lemma tendsto_mult_left: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. c * (f x)) \<longlongrightarrow> c * l) F"
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   866
  for c :: "'a::topological_semigroup_mult"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   867
  by (rule tendsto_mult [OF tendsto_const])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   868
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   869
lemma tendsto_mult_right: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. (f x) * c) \<longlongrightarrow> l * c) F"
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   870
  for c :: "'a::topological_semigroup_mult"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   871
  by (rule tendsto_mult [OF _ tendsto_const])
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   872
70804
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   873
lemma tendsto_mult_left_iff [simp]:
70803
2d658afa1fc0 Generalised two results concerning limits from the real numbers to type classes
paulson <lp15@cam.ac.uk>
parents: 70723
diff changeset
   874
   "c \<noteq> 0 \<Longrightarrow> tendsto(\<lambda>x. c * f x) (c * l) F \<longleftrightarrow> tendsto f l F" for c :: "'a::{topological_semigroup_mult,field}"
70688
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
   875
  by (auto simp: tendsto_mult_left dest: tendsto_mult_left [where c = "1/c"])
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
   876
70804
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   877
lemma tendsto_mult_right_iff [simp]:
70803
2d658afa1fc0 Generalised two results concerning limits from the real numbers to type classes
paulson <lp15@cam.ac.uk>
parents: 70723
diff changeset
   878
   "c \<noteq> 0 \<Longrightarrow> tendsto(\<lambda>x. f x * c) (l * c) F \<longleftrightarrow> tendsto f l F" for c :: "'a::{topological_semigroup_mult,field}"
2d658afa1fc0 Generalised two results concerning limits from the real numbers to type classes
paulson <lp15@cam.ac.uk>
parents: 70723
diff changeset
   879
  by (auto simp: tendsto_mult_right dest: tendsto_mult_left [where c = "1/c"])
70688
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
   880
70804
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   881
lemma tendsto_zero_mult_left_iff [simp]:
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   882
  fixes c::"'a::{topological_semigroup_mult,field}" assumes "c \<noteq> 0" shows "(\<lambda>n. c * a n)\<longlonglongrightarrow> 0 \<longleftrightarrow> a \<longlonglongrightarrow> 0"
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   883
  using assms tendsto_mult_left tendsto_mult_left_iff by fastforce
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   884
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   885
lemma tendsto_zero_mult_right_iff [simp]:
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   886
  fixes c::"'a::{topological_semigroup_mult,field}" assumes "c \<noteq> 0" shows "(\<lambda>n. a n * c)\<longlonglongrightarrow> 0 \<longleftrightarrow> a \<longlonglongrightarrow> 0"
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   887
  using assms tendsto_mult_right tendsto_mult_right_iff by fastforce
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   888
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   889
lemma tendsto_zero_divide_iff [simp]:
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   890
  fixes c::"'a::{topological_semigroup_mult,field}" assumes "c \<noteq> 0" shows "(\<lambda>n. a n / c)\<longlonglongrightarrow> 0 \<longleftrightarrow> a \<longlonglongrightarrow> 0"
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   891
  using tendsto_zero_mult_right_iff [of "1/c" a] assms by (simp add: field_simps)
4eef7c6ef7bf More theorems about limits, including cancellation simprules
paulson <lp15@cam.ac.uk>
parents: 70803
diff changeset
   892
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 69918
diff changeset
   893
lemma lim_const_over_n [tendsto_intros]:
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 69918
diff changeset
   894
  fixes a :: "'a::real_normed_field"
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 69918
diff changeset
   895
  shows "(\<lambda>n. a / of_nat n) \<longlonglongrightarrow> 0"
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 69918
diff changeset
   896
  using tendsto_mult [OF tendsto_const [of a] lim_1_over_n] by simp
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 69918
diff changeset
   897
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   898
lemmas continuous_of_real [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   899
  bounded_linear.continuous [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   900
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   901
lemmas continuous_scaleR [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   902
  bounded_bilinear.continuous [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   903
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   904
lemmas continuous_mult [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   905
  bounded_bilinear.continuous [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   906
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   907
lemmas continuous_on_of_real [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   908
  bounded_linear.continuous_on [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   909
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   910
lemmas continuous_on_scaleR [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   911
  bounded_bilinear.continuous_on [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   912
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   913
lemmas continuous_on_mult [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   914
  bounded_bilinear.continuous_on [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   915
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   916
lemmas tendsto_mult_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   917
  bounded_bilinear.tendsto_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   918
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   919
lemmas tendsto_mult_left_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   920
  bounded_bilinear.tendsto_left_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   921
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   922
lemmas tendsto_mult_right_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   923
  bounded_bilinear.tendsto_right_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   924
68296
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   925
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   926
lemma continuous_mult_left:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   927
  fixes c::"'a::real_normed_algebra"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   928
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   929
by (rule continuous_mult [OF continuous_const])
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   930
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   931
lemma continuous_mult_right:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   932
  fixes c::"'a::real_normed_algebra"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   933
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   934
by (rule continuous_mult [OF _ continuous_const])
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   935
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   936
lemma continuous_on_mult_left:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   937
  fixes c::"'a::real_normed_algebra"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   938
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   939
by (rule continuous_on_mult [OF continuous_on_const])
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   940
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   941
lemma continuous_on_mult_right:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   942
  fixes c::"'a::real_normed_algebra"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   943
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   944
by (rule continuous_on_mult [OF _ continuous_on_const])
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   945
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   946
lemma continuous_on_mult_const [simp]:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   947
  fixes c::"'a::real_normed_algebra"
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 68860
diff changeset
   948
  shows "continuous_on s ((*) c)"
68296
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   949
  by (intro continuous_on_mult_left continuous_on_id)
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   950
66793
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   951
lemma tendsto_divide_zero:
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   952
  fixes c :: "'a::real_normed_field"
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   953
  shows "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x / c) \<longlongrightarrow> 0) F"
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   954
  by (cases "c=0") (simp_all add: divide_inverse tendsto_mult_left_zero)
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   955
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   956
lemma tendsto_power [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> a ^ n) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   957
  for f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra}"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57512
diff changeset
   958
  by (induct n) (simp_all add: tendsto_mult)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   959
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   960
lemma tendsto_null_power: "\<lbrakk>(f \<longlongrightarrow> 0) F; 0 < n\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> 0) F"
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   961
    for f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra_1}"
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   962
  using tendsto_power [of f 0 F n] by (simp add: power_0_left)
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   963
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   964
lemma continuous_power [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. (f x)^n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   965
  for f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   966
  unfolding continuous_def by (rule tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   967
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   968
lemma continuous_on_power [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   969
  fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   970
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. (f x)^n)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   971
  unfolding continuous_on_def by (auto intro: tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   972
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   973
lemma tendsto_prod [tendsto_intros]:
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   974
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   975
  shows "(\<And>i. i \<in> S \<Longrightarrow> (f i \<longlongrightarrow> L i) F) \<Longrightarrow> ((\<lambda>x. \<Prod>i\<in>S. f i x) \<longlongrightarrow> (\<Prod>i\<in>S. L i)) F"
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   976
  by (induct S rule: infinite_finite_induct) (simp_all add: tendsto_mult)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   977
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   978
lemma continuous_prod [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   979
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   980
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Prod>i\<in>S. f i x)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   981
  unfolding continuous_def by (rule tendsto_prod)
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   982
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   983
lemma continuous_on_prod [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   984
  fixes f :: "'a \<Rightarrow> _ \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   985
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous_on s (f i)) \<Longrightarrow> continuous_on s (\<lambda>x. \<Prod>i\<in>S. f i x)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   986
  unfolding continuous_on_def by (auto intro: tendsto_prod)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   987
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   988
lemma tendsto_of_real_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   989
  "((\<lambda>x. of_real (f x) :: 'a::real_normed_div_algebra) \<longlongrightarrow> of_real c) F \<longleftrightarrow> (f \<longlongrightarrow> c) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   990
  unfolding tendsto_iff by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   991
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   992
lemma tendsto_add_const_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   993
  "((\<lambda>x. c + f x :: 'a::real_normed_vector) \<longlongrightarrow> c + d) F \<longleftrightarrow> (f \<longlongrightarrow> d) F"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   994
  using tendsto_add[OF tendsto_const[of c], of f d]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   995
    and tendsto_add[OF tendsto_const[of "-c"], of "\<lambda>x. c + f x" "c + d"] by auto
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   996
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   997
68860
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   998
class topological_monoid_mult = topological_semigroup_mult + monoid_mult
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
   999
class topological_comm_monoid_mult = topological_monoid_mult + comm_monoid_mult
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1000
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1001
lemma tendsto_power_strong [tendsto_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1002
  fixes f :: "_ \<Rightarrow> 'b :: topological_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1003
  assumes "(f \<longlongrightarrow> a) F" "(g \<longlongrightarrow> b) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1004
  shows   "((\<lambda>x. f x ^ g x) \<longlongrightarrow> a ^ b) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1005
proof -
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1006
  have "((\<lambda>x. f x ^ b) \<longlongrightarrow> a ^ b) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1007
    by (induction b) (auto intro: tendsto_intros assms)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1008
  also from assms(2) have "eventually (\<lambda>x. g x = b) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1009
    by (simp add: nhds_discrete filterlim_principal)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1010
  hence "eventually (\<lambda>x. f x ^ b = f x ^ g x) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1011
    by eventually_elim simp
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1012
  hence "((\<lambda>x. f x ^ b) \<longlongrightarrow> a ^ b) F \<longleftrightarrow> ((\<lambda>x. f x ^ g x) \<longlongrightarrow> a ^ b) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1013
    by (intro filterlim_cong refl)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1014
  finally show ?thesis .
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1015
qed
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1016
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1017
lemma continuous_mult' [continuous_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1018
  fixes f g :: "_ \<Rightarrow> 'b::topological_semigroup_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1019
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x * g x)"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1020
  unfolding continuous_def by (rule tendsto_mult)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1021
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1022
lemma continuous_power' [continuous_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1023
  fixes f :: "_ \<Rightarrow> 'b::topological_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1024
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x ^ g x)"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1025
  unfolding continuous_def by (rule tendsto_power_strong) auto
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1026
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1027
lemma continuous_on_mult' [continuous_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1028
  fixes f g :: "_ \<Rightarrow> 'b::topological_semigroup_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1029
  shows "continuous_on A f \<Longrightarrow> continuous_on A g \<Longrightarrow> continuous_on A (\<lambda>x. f x * g x)"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1030
  unfolding continuous_on_def by (auto intro: tendsto_mult)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1031
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1032
lemma continuous_on_power' [continuous_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1033
  fixes f :: "_ \<Rightarrow> 'b::topological_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1034
  shows "continuous_on A f \<Longrightarrow> continuous_on A g \<Longrightarrow> continuous_on A (\<lambda>x. f x ^ g x)"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1035
  unfolding continuous_on_def by (auto intro: tendsto_power_strong)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1036
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1037
lemma tendsto_mult_one:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1038
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1039
  shows "(f \<longlongrightarrow> 1) F \<Longrightarrow> (g \<longlongrightarrow> 1) F \<Longrightarrow> ((\<lambda>x. f x * g x) \<longlongrightarrow> 1) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1040
  by (drule (1) tendsto_mult) simp
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1041
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1042
lemma tendsto_prod' [tendsto_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1043
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1044
  shows "(\<And>i. i \<in> I \<Longrightarrow> (f i \<longlongrightarrow> a i) F) \<Longrightarrow> ((\<lambda>x. \<Prod>i\<in>I. f i x) \<longlongrightarrow> (\<Prod>i\<in>I. a i)) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1045
  by (induct I rule: infinite_finite_induct) (simp_all add: tendsto_mult)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1046
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1047
lemma tendsto_one_prod':
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1048
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1049
  assumes "\<And>i. i \<in> I \<Longrightarrow> ((\<lambda>x. f x i) \<longlongrightarrow> 1) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1050
  shows "((\<lambda>i. prod (f i) I) \<longlongrightarrow> 1) F"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1051
  using tendsto_prod' [of I "\<lambda>x y. f y x" "\<lambda>x. 1"] assms by simp
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1052
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1053
lemma continuous_prod' [continuous_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1054
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1055
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Prod>i\<in>I. f i x)"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1056
  unfolding continuous_def by (rule tendsto_prod')
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1057
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1058
lemma continuous_on_prod' [continuous_intros]:
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1059
  fixes f :: "'a \<Rightarrow> 'b::topological_space \<Rightarrow> 'c::topological_comm_monoid_mult"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1060
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous_on S (f i)) \<Longrightarrow> continuous_on S (\<lambda>x. \<Prod>i\<in>I. f i x)"
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1061
  unfolding continuous_on_def by (auto intro: tendsto_prod')
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1062
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1063
instance nat :: topological_comm_monoid_mult
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1064
  by standard
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1065
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1066
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1067
instance int :: topological_comm_monoid_mult
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1068
  by standard
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1069
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1070
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1071
class comm_real_normed_algebra_1 = real_normed_algebra_1 + comm_monoid_mult
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1072
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1073
context real_normed_field
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1074
begin
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1075
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1076
subclass comm_real_normed_algebra_1
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1077
proof
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1078
  from norm_mult[of "1 :: 'a" 1] show "norm 1 = 1" by simp 
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1079
qed (simp_all add: norm_mult)
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1080
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1081
end
f443ec10447d Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents: 68721
diff changeset
  1082
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1083
subsubsection \<open>Inverse and division\<close>
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1084
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1085
lemma (in bounded_bilinear) Zfun_prod_Bfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1086
  assumes f: "Zfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1087
    and g: "Bfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1088
  shows "Zfun (\<lambda>x. f x ** g x) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1089
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1090
  obtain K where K: "0 \<le> K"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1091
    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1092
    using nonneg_bounded by blast
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1093
  obtain B where B: "0 < B"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1094
    and norm_g: "eventually (\<lambda>x. norm (g x) \<le> B) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1095
    using g by (rule BfunE)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1096
  have "eventually (\<lambda>x. norm (f x ** g x) \<le> norm (f x) * (B * K)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
  1097
  using norm_g proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
  1098
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1099
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1100
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1101
    also have "\<dots> \<le> norm (f x) * B * K"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1102
      by (intro mult_mono' order_refl norm_g norm_ge_zero mult_nonneg_nonneg K elim)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1103
    also have "\<dots> = norm (f x) * (B * K)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
  1104
      by (rule mult.assoc)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1105
    finally show "norm (f x ** g x) \<le> norm (f x) * (B * K)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1106
  qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1107
  with f show ?thesis
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1108
    by (rule Zfun_imp_Zfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1109
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1110
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1111
lemma (in bounded_bilinear) Bfun_prod_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1112
  assumes f: "Bfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1113
    and g: "Zfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1114
  shows "Zfun (\<lambda>x. f x ** g x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
  1115
  using flip g f by (rule bounded_bilinear.Zfun_prod_Bfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1116
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1117
lemma Bfun_inverse:
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1118
  fixes a :: "'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1119
  assumes f: "(f \<longlongrightarrow> a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1120
  assumes a: "a \<noteq> 0"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1121
  shows "Bfun (\<lambda>x. inverse (f x)) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1122
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1123
  from a have "0 < norm a" by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1124
  then have "\<exists>r>0. r < norm a" by (rule dense)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1125
  then obtain r where r1: "0 < r" and r2: "r < norm a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1126
    by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1127
  have "eventually (\<lambda>x. dist (f x) a < r) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1128
    using tendstoD [OF f r1] by blast
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1129
  then have "eventually (\<lambda>x. norm (inverse (f x)) \<le> inverse (norm a - r)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
  1130
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
  1131
    case (elim x)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1132
    then have 1: "norm (f x - a) < r"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1133
      by (simp add: dist_norm)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1134
    then have 2: "f x \<noteq> 0" using r2 by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1135
    then have "norm (inverse (f x)) = inverse (norm (f x))"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1136
      by (rule nonzero_norm_inverse)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1137
    also have "\<dots> \<le> inverse (norm a - r)"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1138
    proof (rule le_imp_inverse_le)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1139
      show "0 < norm a - r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1140
        using r2 by simp
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1141
      have "norm a - norm (f x) \<le> norm (a - f x)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1142
        by (rule norm_triangle_ineq2)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1143
      also have "\<dots> = norm (f x - a)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1144
        by (rule norm_minus_commute)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1145
      also have "\<dots> < r" using 1 .
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1146
      finally show "norm a - r \<le> norm (f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1147
        by simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1148
    qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
  1149
    finally show "norm (inverse (f x)) \<le> inverse (norm a - r)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1150
  qed
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1151
  then show ?thesis by (rule BfunI)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1152
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1153
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
  1154
lemma tendsto_inverse [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1155
  fixes a :: "'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1156
  assumes f: "(f \<longlongrightarrow> a) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1157
    and a: "a \<noteq> 0"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1158
  shows "((\<lambda>x. inverse (f x)) \<longlongrightarrow> inverse a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1159
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1160
  from a have "0 < norm a" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1161
  with f have "eventually (\<lambda>x. dist (f x) a < norm a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1162
    by (rule tendstoD)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1163
  then have "eventually (\<lambda>x. f x \<noteq> 0) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1164
    unfolding dist_norm by (auto elim!: eventually_mono)
44627
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1165
  with a have "eventually (\<lambda>x. inverse (f x) - inverse a =
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1166
    - (inverse (f x) * (f x - a) * inverse a)) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1167
    by (auto elim!: eventually_mono simp: inverse_diff_inverse)
44627
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1168
  moreover have "Zfun (\<lambda>x. - (inverse (f x) * (f x - a) * inverse a)) F"
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1169
    by (intro Zfun_minus Zfun_mult_left
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1170
      bounded_bilinear.Bfun_prod_Zfun [OF bounded_bilinear_mult]
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1171
      Bfun_inverse [OF f a] f [unfolded tendsto_Zfun_iff])
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1172
  ultimately show ?thesis
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1173
    unfolding tendsto_Zfun_iff by (rule Zfun_ssubst)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1174
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1175
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1176
lemma continuous_inverse:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1177
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1178
  assumes "continuous F f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1179
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1180
  shows "continuous F (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1181
  using assms unfolding continuous_def by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1182
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1183
lemma continuous_at_within_inverse[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1184
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1185
  assumes "continuous (at a within s) f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1186
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1187
  shows "continuous (at a within s) (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1188
  using assms unfolding continuous_within by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1189
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1190
lemma continuous_on_inverse[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1191
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1192
  assumes "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1193
    and "\<forall>x\<in>s. f x \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1194
  shows "continuous_on s (\<lambda>x. inverse (f x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1195
  using assms unfolding continuous_on_def by (blast intro: tendsto_inverse)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1196
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
  1197
lemma tendsto_divide [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1198
  fixes a b :: "'a::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1199
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> ((\<lambda>x. f x / g x) \<longlongrightarrow> a / b) F"
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
  1200
  by (simp add: tendsto_mult tendsto_inverse divide_inverse)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1201
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1202
lemma continuous_divide:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1203
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1204
  assumes "continuous F f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1205
    and "continuous F g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1206
    and "g (Lim F (\<lambda>x. x)) \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1207
  shows "continuous F (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1208
  using assms unfolding continuous_def by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1209
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1210
lemma continuous_at_within_divide[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1211
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1212
  assumes "continuous (at a within s) f" "continuous (at a within s) g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1213
    and "g a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1214
  shows "continuous (at a within s) (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1215
  using assms unfolding continuous_within by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1216
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1217
lemma isCont_divide[continuous_intros, simp]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1218
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1219
  assumes "isCont f a" "isCont g a" "g a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1220
  shows "isCont (\<lambda>x. (f x) / g x) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1221
  using assms unfolding continuous_at by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1222
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1223
lemma continuous_on_divide[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1224
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1225
  assumes "continuous_on s f" "continuous_on s g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1226
    and "\<forall>x\<in>s. g x \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1227
  shows "continuous_on s (\<lambda>x. (f x) / (g x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1228
  using assms unfolding continuous_on_def by (blast intro: tendsto_divide)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1229
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1230
lemma tendsto_sgn [tendsto_intros]: "(f \<longlongrightarrow> l) F \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> ((\<lambda>x. sgn (f x)) \<longlongrightarrow> sgn l) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1231
  for l :: "'a::real_normed_vector"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
  1232
  unfolding sgn_div_norm by (simp add: tendsto_intros)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
  1233
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1234
lemma continuous_sgn:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1235
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1236
  assumes "continuous F f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1237
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1238
  shows "continuous F (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1239
  using assms unfolding continuous_def by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1240
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1241
lemma continuous_at_within_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1242
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1243
  assumes "continuous (at a within s) f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1244
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1245
  shows "continuous (at a within s) (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1246
  using assms unfolding continuous_within by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1247
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1248
lemma isCont_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1249
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1250
  assumes "isCont f a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1251
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1252
  shows "isCont (\<lambda>x. sgn (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1253
  using assms unfolding continuous_at by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1254
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1255
lemma continuous_on_sgn[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1256
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1257
  assumes "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1258
    and "\<forall>x\<in>s. f x \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1259
  shows "continuous_on s (\<lambda>x. sgn (f x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1260
  using assms unfolding continuous_on_def by (blast intro: tendsto_sgn)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1261
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1262
lemma filterlim_at_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1263
  fixes f :: "_ \<Rightarrow> 'a::real_normed_vector"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1264
  assumes "0 \<le> c"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1265
  shows "(LIM x F. f x :> at_infinity) \<longleftrightarrow> (\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1266
  unfolding filterlim_iff eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1267
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1268
  fix P :: "'a \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1269
  fix b
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1270
  assume *: "\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1271
  assume P: "\<forall>x. b \<le> norm x \<longrightarrow> P x"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1272
  have "max b (c + 1) > c" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1273
  with * have "eventually (\<lambda>x. max b (c + 1) \<le> norm (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1274
    by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1275
  then show "eventually (\<lambda>x. P (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1276
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1277
    case (elim x)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1278
    with P show "P (f x)" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1279
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1280
qed force
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1281
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1282
lemma filterlim_at_infinity_imp_norm_at_top:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1283
  fixes F
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1284
  assumes "filterlim f at_infinity F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1285
  shows   "filterlim (\<lambda>x. norm (f x)) at_top F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1286
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1287
  {
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1288
    fix r :: real
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1289
    have "\<forall>\<^sub>F x in F. r \<le> norm (f x)" using filterlim_at_infinity[of 0 f F] assms
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1290
      by (cases "r > 0")
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1291
         (auto simp: not_less intro: always_eventually order.trans[OF _ norm_ge_zero])
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1292
  }
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1293
  thus ?thesis by (auto simp: filterlim_at_top)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1294
qed
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1295
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1296
lemma filterlim_norm_at_top_imp_at_infinity:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1297
  fixes F
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1298
  assumes "filterlim (\<lambda>x. norm (f x)) at_top F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1299
  shows   "filterlim f at_infinity F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1300
  using filterlim_at_infinity[of 0 f F] assms by (auto simp: filterlim_at_top)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1301
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1302
lemma filterlim_norm_at_top: "filterlim norm at_top at_infinity"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1303
  by (rule filterlim_at_infinity_imp_norm_at_top) (rule filterlim_ident)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1304
67950
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1305
lemma filterlim_at_infinity_conv_norm_at_top:
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1306
  "filterlim f at_infinity G \<longleftrightarrow> filterlim (\<lambda>x. norm (f x)) at_top G"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1307
  by (auto simp: filterlim_at_infinity[OF order.refl] filterlim_at_top_gt[of _ _ 0])
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1308
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1309
lemma eventually_not_equal_at_infinity:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1310
  "eventually (\<lambda>x. x \<noteq> (a :: 'a :: {real_normed_vector})) at_infinity"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1311
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1312
  from filterlim_norm_at_top[where 'a = 'a]
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1313
    have "\<forall>\<^sub>F x in at_infinity. norm a < norm (x::'a)" by (auto simp: filterlim_at_top_dense)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1314
  thus ?thesis by eventually_elim auto
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1315
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1316
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1317
lemma filterlim_int_of_nat_at_topD:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1318
  fixes F
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1319
  assumes "filterlim (\<lambda>x. f (int x)) F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1320
  shows   "filterlim f F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1321
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1322
  have "filterlim (\<lambda>x. f (int (nat x))) F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1323
    by (rule filterlim_compose[OF assms filterlim_nat_sequentially])
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1324
  also have "?this \<longleftrightarrow> filterlim f F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1325
    by (intro filterlim_cong refl eventually_mono [OF eventually_ge_at_top[of "0::int"]]) auto
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1326
  finally show ?thesis .
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1327
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1328
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1329
lemma filterlim_int_sequentially [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1330
  "filterlim int at_top sequentially"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1331
  unfolding filterlim_at_top
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1332
proof
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1333
  fix C :: int
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1334
  show "eventually (\<lambda>n. int n \<ge> C) at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1335
    using eventually_ge_at_top[of "nat \<lceil>C\<rceil>"] by eventually_elim linarith
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1336
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1337
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1338
lemma filterlim_real_of_int_at_top [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1339
  "filterlim real_of_int at_top at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1340
  unfolding filterlim_at_top
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1341
proof
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1342
  fix C :: real
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1343
  show "eventually (\<lambda>n. real_of_int n \<ge> C) at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1344
    using eventually_ge_at_top[of "\<lceil>C\<rceil>"] by eventually_elim linarith
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1345
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1346
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1347
lemma filterlim_abs_real: "filterlim (abs::real \<Rightarrow> real) at_top at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1348
proof (subst filterlim_cong[OF refl refl])
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1349
  from eventually_ge_at_top[of "0::real"] show "eventually (\<lambda>x::real. \<bar>x\<bar> = x) at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1350
    by eventually_elim simp
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1351
qed (simp_all add: filterlim_ident)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1352
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1353
lemma filterlim_of_real_at_infinity [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1354
  "filterlim (of_real :: real \<Rightarrow> 'a :: real_normed_algebra_1) at_infinity at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1355
  by (intro filterlim_norm_at_top_imp_at_infinity) (auto simp: filterlim_abs_real)
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1356
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1357
lemma not_tendsto_and_filterlim_at_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1358
  fixes c :: "'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1359
  assumes "F \<noteq> bot"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1360
    and "(f \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1361
    and "filterlim f at_infinity F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1362
  shows False
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1363
proof -
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1364
  from tendstoD[OF assms(2), of "1/2"]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1365
  have "eventually (\<lambda>x. dist (f x) c < 1/2) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1366
    by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1367
  moreover
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1368
  from filterlim_at_infinity[of "norm c" f F] assms(3)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1369
  have "eventually (\<lambda>x. norm (f x) \<ge> norm c + 1) F" by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1370
  ultimately have "eventually (\<lambda>x. False) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1371
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1372
    fix x
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1373
    assume A: "dist (f x) c < 1/2"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1374
    assume "norm (f x) \<ge> norm c + 1"
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1375
    also have "norm (f x) = dist (f x) 0" by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1376
    also have "\<dots> \<le> dist (f x) c + dist c 0" by (rule dist_triangle)
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1377
    finally show False using A by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1378
  qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1379
  with assms show False by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1380
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1381
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1382
lemma filterlim_at_infinity_imp_not_convergent:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1383
  assumes "filterlim f at_infinity sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1384
  shows "\<not> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1385
  by (rule notI, rule not_tendsto_and_filterlim_at_infinity[OF _ _ assms])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1386
     (simp_all add: convergent_LIMSEQ_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1387
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1388
lemma filterlim_at_infinity_imp_eventually_ne:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1389
  assumes "filterlim f at_infinity F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1390
  shows "eventually (\<lambda>z. f z \<noteq> c) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1391
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1392
  have "norm c + 1 > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1393
    by (intro add_nonneg_pos) simp_all
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1394
  with filterlim_at_infinity[OF order.refl, of f F] assms
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1395
  have "eventually (\<lambda>z. norm (f z) \<ge> norm c + 1) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1396
    by blast
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1397
  then show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1398
    by eventually_elim auto
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1399
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1400
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1401
lemma tendsto_of_nat [tendsto_intros]:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1402
  "filterlim (of_nat :: nat \<Rightarrow> 'a::real_normed_algebra_1) at_infinity sequentially"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1403
proof (subst filterlim_at_infinity[OF order.refl], intro allI impI)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1404
  fix r :: real
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1405
  assume r: "r > 0"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1406
  define n where "n = nat \<lceil>r\<rceil>"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1407
  from r have n: "\<forall>m\<ge>n. of_nat m \<ge> r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1408
    unfolding n_def by linarith
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1409
  from eventually_ge_at_top[of n] show "eventually (\<lambda>m. norm (of_nat m :: 'a) \<ge> r) sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1410
    by eventually_elim (use n in simp_all)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1411
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1412
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1413
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  1414
subsection \<open>Relate \<^const>\<open>at\<close>, \<^const>\<open>at_left\<close> and \<^const>\<open>at_right\<close>\<close>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1415
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1416
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  1417
  This lemmas are useful for conversion between \<^term>\<open>at x\<close> to \<^term>\<open>at_left x\<close> and
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  1418
  \<^term>\<open>at_right x\<close> and also \<^term>\<open>at_right 0\<close>.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1419
\<close>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1420
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1421
lemmas filterlim_split_at_real = filterlim_split_at[where 'a=real]
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1422
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1423
lemma filtermap_nhds_shift: "filtermap (\<lambda>x. x - d) (nhds a) = nhds (a - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1424
  for a d :: "'a::real_normed_vector"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1425
  by (rule filtermap_fun_inverse[where g="\<lambda>x. x + d"])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1426
    (auto intro!: tendsto_eq_intros filterlim_ident)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1427
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1428
lemma filtermap_nhds_minus: "filtermap (\<lambda>x. - x) (nhds a) = nhds (- a)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1429
  for a :: "'a::real_normed_vector"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1430
  by (rule filtermap_fun_inverse[where g=uminus])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1431
    (auto intro!: tendsto_eq_intros filterlim_ident)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1432
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1433
lemma filtermap_at_shift: "filtermap (\<lambda>x. x - d) (at a) = at (a - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1434
  for a d :: "'a::real_normed_vector"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1435
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1436
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1437
lemma filtermap_at_right_shift: "filtermap (\<lambda>x. x - d) (at_right a) = at_right (a - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1438
  for a d :: "real"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1439
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1440
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1441
lemma at_right_to_0: "at_right a = filtermap (\<lambda>x. x + a) (at_right 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1442
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1443
  using filtermap_at_right_shift[of "-a" 0] by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1444
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1445
lemma filterlim_at_right_to_0:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1446
  "filterlim f F (at_right a) \<longleftrightarrow> filterlim (\<lambda>x. f (x + a)) F (at_right 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1447
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1448
  unfolding filterlim_def filtermap_filtermap at_right_to_0[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1449
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1450
lemma eventually_at_right_to_0:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1451
  "eventually P (at_right a) \<longleftrightarrow> eventually (\<lambda>x. P (x + a)) (at_right 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1452
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1453
  unfolding at_right_to_0[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1454
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1455
lemma at_to_0: "at a = filtermap (\<lambda>x. x + a) (at 0)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1456
  for a :: "'a::real_normed_vector"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1457
  using filtermap_at_shift[of "-a" 0] by simp
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1458
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1459
lemma filterlim_at_to_0:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1460
  "filterlim f F (at a) \<longleftrightarrow> filterlim (\<lambda>x. f (x + a)) F (at 0)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1461
  for a :: "'a::real_normed_vector"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1462
  unfolding filterlim_def filtermap_filtermap at_to_0[of a] ..
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1463
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1464
lemma eventually_at_to_0:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1465
  "eventually P (at a) \<longleftrightarrow> eventually (\<lambda>x. P (x + a)) (at 0)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1466
  for a ::  "'a::real_normed_vector"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1467
  unfolding at_to_0[of a] by (simp add: eventually_filtermap)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1468
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1469
lemma filtermap_at_minus: "filtermap (\<lambda>x. - x) (at a) = at (- a)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1470
  for a :: "'a::real_normed_vector"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1471
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1472
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1473
lemma at_left_minus: "at_left a = filtermap (\<lambda>x. - x) (at_right (- a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1474
  for a :: real
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1475
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1476
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1477
lemma at_right_minus: "at_right a = filtermap (\<lambda>x. - x) (at_left (- a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1478
  for a :: real
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1479
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1480
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1481
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1482
lemma filterlim_at_left_to_right:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1483
  "filterlim f F (at_left a) \<longleftrightarrow> filterlim (\<lambda>x. f (- x)) F (at_right (-a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1484
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1485
  unfolding filterlim_def filtermap_filtermap at_left_minus[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1486
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1487
lemma eventually_at_left_to_right:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1488
  "eventually P (at_left a) \<longleftrightarrow> eventually (\<lambda>x. P (- x)) (at_right (-a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1489
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1490
  unfolding at_left_minus[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1491
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1492
lemma filterlim_uminus_at_top_at_bot: "LIM x at_bot. - x :: real :> at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1493
  unfolding filterlim_at_top eventually_at_bot_dense
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1494
  by (metis leI minus_less_iff order_less_asym)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1495
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1496
lemma filterlim_uminus_at_bot_at_top: "LIM x at_top. - x :: real :> at_bot"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1497
  unfolding filterlim_at_bot eventually_at_top_dense
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1498
  by (metis leI less_minus_iff order_less_asym)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1499
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1500
lemma at_bot_mirror :
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1501
  shows "(at_bot::('a::{ordered_ab_group_add,linorder} filter)) = filtermap uminus at_top"
68532
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68296
diff changeset
  1502
  apply (rule filtermap_fun_inverse[of uminus, symmetric])
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  1503
  subgoal unfolding filterlim_at_top filterlim_at_bot eventually_at_bot_linorder using le_minus_iff by auto
68532
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68296
diff changeset
  1504
  subgoal unfolding filterlim_at_bot eventually_at_top_linorder using minus_le_iff by auto
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68296
diff changeset
  1505
  by auto
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68296
diff changeset
  1506
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1507
lemma at_top_mirror :
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1508
  shows "(at_top::('a::{ordered_ab_group_add,linorder} filter)) = filtermap uminus at_bot"
68532
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68296
diff changeset
  1509
  apply (subst at_bot_mirror)
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  1510
  by (auto simp: filtermap_filtermap)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1511
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1512
lemma filterlim_at_top_mirror: "(LIM x at_top. f x :> F) \<longleftrightarrow> (LIM x at_bot. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1513
  unfolding filterlim_def at_top_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1514
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1515
lemma filterlim_at_bot_mirror: "(LIM x at_bot. f x :> F) \<longleftrightarrow> (LIM x at_top. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1516
  unfolding filterlim_def at_bot_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1517
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1518
lemma filterlim_uminus_at_top: "(LIM x F. f x :> at_top) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_bot)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1519
  using filterlim_compose[OF filterlim_uminus_at_bot_at_top, of f F]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1520
    and filterlim_compose[OF filterlim_uminus_at_top_at_bot, of "\<lambda>x. - f x" F]
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1521
  by auto
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1522
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1523
lemma tendsto_at_botI_sequentially:
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1524
  fixes f :: "real \<Rightarrow> 'b::first_countable_topology"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1525
  assumes *: "\<And>X. filterlim X at_bot sequentially \<Longrightarrow> (\<lambda>n. f (X n)) \<longlonglongrightarrow> y"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1526
  shows "(f \<longlongrightarrow> y) at_bot"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1527
  unfolding filterlim_at_bot_mirror
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1528
proof (rule tendsto_at_topI_sequentially)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1529
  fix X :: "nat \<Rightarrow> real" assume "filterlim X at_top sequentially"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1530
  thus "(\<lambda>n. f (-X n)) \<longlonglongrightarrow> y" by (intro *) (auto simp: filterlim_uminus_at_top)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1531
qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68615
diff changeset
  1532
67950
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1533
lemma filterlim_at_infinity_imp_filterlim_at_top:
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1534
  assumes "filterlim (f :: 'a \<Rightarrow> real) at_infinity F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1535
  assumes "eventually (\<lambda>x. f x > 0) F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1536
  shows   "filterlim f at_top F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1537
proof -
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1538
  from assms(2) have *: "eventually (\<lambda>x. norm (f x) = f x) F" by eventually_elim simp
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1539
  from assms(1) show ?thesis unfolding filterlim_at_infinity_conv_norm_at_top
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1540
    by (subst (asm) filterlim_cong[OF refl refl *])
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1541
qed
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1542
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1543
lemma filterlim_at_infinity_imp_filterlim_at_bot:
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1544
  assumes "filterlim (f :: 'a \<Rightarrow> real) at_infinity F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1545
  assumes "eventually (\<lambda>x. f x < 0) F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1546
  shows   "filterlim f at_bot F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1547
proof -
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1548
  from assms(2) have *: "eventually (\<lambda>x. norm (f x) = -f x) F" by eventually_elim simp
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1549
  from assms(1) have "filterlim (\<lambda>x. - f x) at_top F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1550
    unfolding filterlim_at_infinity_conv_norm_at_top
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1551
    by (subst (asm) filterlim_cong[OF refl refl *])
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1552
  thus ?thesis by (simp add: filterlim_uminus_at_top)
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1553
qed
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1554
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1555
lemma filterlim_uminus_at_bot: "(LIM x F. f x :> at_bot) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_top)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1556
  unfolding filterlim_uminus_at_top by simp
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1557
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1558
lemma filterlim_inverse_at_top_right: "LIM x at_right (0::real). inverse x :> at_top"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1559
  unfolding filterlim_at_top_gt[where c=0] eventually_at_filter
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1560
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1561
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1562
  assume [arith]: "0 < Z"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1563
  then have "eventually (\<lambda>x. x < inverse Z) (nhds 0)"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  1564
    by (auto simp: eventually_nhds_metric dist_real_def intro!: exI[of _ "\<bar>inverse Z\<bar>"])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1565
  then show "eventually (\<lambda>x. x \<noteq> 0 \<longrightarrow> x \<in> {0<..} \<longrightarrow> Z \<le> inverse x) (nhds 0)"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1566
    by (auto elim!: eventually_mono simp: inverse_eq_divide field_simps)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1567
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1568
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1569
lemma tendsto_inverse_0:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1570
  fixes x :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1571
  shows "(inverse \<longlongrightarrow> (0::'a)) at_infinity"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1572
  unfolding tendsto_Zfun_iff diff_0_right Zfun_def eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1573
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1574
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1575
  assume "0 < r"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1576
  show "\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> norm (inverse x :: 'a) < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1577
  proof (intro exI[of _ "inverse (r / 2)"] allI impI)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1578
    fix x :: 'a
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1579
    from \<open>0 < r\<close> have "0 < inverse (r / 2)" by simp
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1580
    also assume *: "inverse (r / 2) \<le> norm x"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1581
    finally show "norm (inverse x) < r"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1582
      using * \<open>0 < r\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1583
      by (subst nonzero_norm_inverse) (simp_all add: inverse_eq_divide field_simps)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1584
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1585
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1586
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1587
lemma tendsto_add_filterlim_at_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1588
  fixes c :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1589
    and F :: "'a filter"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1590
  assumes "(f \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1591
    and "filterlim g at_infinity F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1592
  shows "filterlim (\<lambda>x. f x + g x) at_infinity F"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1593
proof (subst filterlim_at_infinity[OF order_refl], safe)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1594
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1595
  assume r: "r > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1596
  from assms(1) have "((\<lambda>x. norm (f x)) \<longlongrightarrow> norm c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1597
    by (rule tendsto_norm)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1598
  then have "eventually (\<lambda>x. norm (f x) < norm c + 1) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1599
    by (rule order_tendstoD) simp_all
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1600
  moreover from r have "r + norm c + 1 > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1601
    by (intro add_pos_nonneg) simp_all
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1602
  with assms(2) have "eventually (\<lambda>x. norm (g x) \<ge> r + norm c + 1) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1603
    unfolding filterlim_at_infinity[OF order_refl]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1604
    by (elim allE[of _ "r + norm c + 1"]) simp_all
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1605
  ultimately show "eventually (\<lambda>x. norm (f x + g x) \<ge> r) F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1606
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1607
    fix x :: 'a
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1608
    assume A: "norm (f x) < norm c + 1" and B: "r + norm c + 1 \<le> norm (g x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1609
    from A B have "r \<le> norm (g x) - norm (f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1610
      by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1611
    also have "norm (g x) - norm (f x) \<le> norm (g x + f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1612
      by (rule norm_diff_ineq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1613
    finally show "r \<le> norm (f x + g x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1614
      by (simp add: add_ac)
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1615
  qed
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1616
qed
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1617
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1618
lemma tendsto_add_filterlim_at_infinity':
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1619
  fixes c :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1620
    and F :: "'a filter"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1621
  assumes "filterlim f at_infinity F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1622
    and "(g \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1623
  shows "filterlim (\<lambda>x. f x + g x) at_infinity F"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1624
  by (subst add.commute) (rule tendsto_add_filterlim_at_infinity assms)+
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1625
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1626
lemma filterlim_inverse_at_right_top: "LIM x at_top. inverse x :> at_right (0::real)"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1627
  unfolding filterlim_at
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1628
  by (auto simp: eventually_at_top_dense)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1629
     (metis tendsto_inverse_0 filterlim_mono at_top_le_at_infinity order_refl)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1630
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1631
lemma filterlim_inverse_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1632
  "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. 0 < f x) F \<Longrightarrow> LIM x F. inverse (f x) :> at_top"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1633
  by (intro filterlim_compose[OF filterlim_inverse_at_top_right])
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1634
     (simp add: filterlim_def eventually_filtermap eventually_mono at_within_def le_principal)
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1635
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1636
lemma filterlim_inverse_at_bot_neg:
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1637
  "LIM x (at_left (0::real)). inverse x :> at_bot"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1638
  by (simp add: filterlim_inverse_at_top_right filterlim_uminus_at_bot filterlim_at_left_to_right)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1639
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1640
lemma filterlim_inverse_at_bot:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1641
  "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. f x < 0) F \<Longrightarrow> LIM x F. inverse (f x) :> at_bot"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1642
  unfolding filterlim_uminus_at_bot inverse_minus_eq[symmetric]
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1643
  by (rule filterlim_inverse_at_top) (simp_all add: tendsto_minus_cancel_left[symmetric])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1644
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1645
lemma at_right_to_top: "(at_right (0::real)) = filtermap inverse at_top"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1646
  by (intro filtermap_fun_inverse[symmetric, where g=inverse])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1647
     (auto intro: filterlim_inverse_at_top_right filterlim_inverse_at_right_top)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1648
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1649
lemma eventually_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1650
  "eventually P (at_right (0::real)) \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1651
  unfolding at_right_to_top eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1652
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1653
lemma filterlim_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1654
  "filterlim f F (at_right (0::real)) \<longleftrightarrow> (LIM x at_top. f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1655
  unfolding filterlim_def at_right_to_top filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1656
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1657
lemma at_top_to_right: "at_top = filtermap inverse (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1658
  unfolding at_right_to_top filtermap_filtermap inverse_inverse_eq filtermap_ident ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1659
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1660
lemma eventually_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1661
  "eventually P at_top \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1662
  unfolding at_top_to_right eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1663
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1664
lemma filterlim_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1665
  "filterlim f F at_top \<longleftrightarrow> (LIM x (at_right (0::real)). f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1666
  unfolding filterlim_def at_top_to_right filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1667
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1668
lemma filterlim_inverse_at_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1669
  fixes x :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1670
  shows "filterlim inverse at_infinity (at (0::'a))"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1671
  unfolding filterlim_at_infinity[OF order_refl]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1672
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1673
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1674
  assume "0 < r"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1675
  then show "eventually (\<lambda>x::'a. r \<le> norm (inverse x)) (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1676
    unfolding eventually_at norm_inverse
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1677
    by (intro exI[of _ "inverse r"])
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1678
       (auto simp: norm_conv_dist[symmetric] field_simps inverse_eq_divide)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1679
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1680
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1681
lemma filterlim_inverse_at_iff:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1682
  fixes g :: "'a \<Rightarrow> 'b::{real_normed_div_algebra, division_ring}"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1683
  shows "(LIM x F. inverse (g x) :> at 0) \<longleftrightarrow> (LIM x F. g x :> at_infinity)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1684
  unfolding filterlim_def filtermap_filtermap[symmetric]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1685
proof
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1686
  assume "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1687
  then have "filtermap inverse (filtermap g F) \<le> filtermap inverse at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1688
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1689
  also have "\<dots> \<le> at 0"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1690
    using tendsto_inverse_0[where 'a='b]
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1691
    by (auto intro!: exI[of _ 1]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1692
        simp: le_principal eventually_filtermap filterlim_def at_within_def eventually_at_infinity)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1693
  finally show "filtermap inverse (filtermap g F) \<le> at 0" .
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1694
next
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1695
  assume "filtermap inverse (filtermap g F) \<le> at 0"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1696
  then have "filtermap inverse (filtermap inverse (filtermap g F)) \<le> filtermap inverse (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1697
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1698
  with filterlim_inverse_at_infinity show "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1699
    by (auto intro: order_trans simp: filterlim_def filtermap_filtermap)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1700
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1701
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1702
lemma tendsto_mult_filterlim_at_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1703
  fixes c :: "'a::real_normed_field"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  1704
  assumes  "(f \<longlongrightarrow> c) F" "c \<noteq> 0"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1705
  assumes "filterlim g at_infinity F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1706
  shows "filterlim (\<lambda>x. f x * g x) at_infinity F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1707
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1708
  have "((\<lambda>x. inverse (f x) * inverse (g x)) \<longlongrightarrow> inverse c * 0) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1709
    by (intro tendsto_mult tendsto_inverse assms filterlim_compose[OF tendsto_inverse_0])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1710
  then have "filterlim (\<lambda>x. inverse (f x) * inverse (g x)) (at (inverse c * 0)) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1711
    unfolding filterlim_at
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1712
    using assms
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1713
    by (auto intro: filterlim_at_infinity_imp_eventually_ne tendsto_imp_eventually_ne eventually_conj)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1714
  then show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1715
    by (subst filterlim_inverse_at_iff[symmetric]) simp_all
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1716
qed
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1717
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1718
lemma tendsto_inverse_0_at_top: "LIM x F. f x :> at_top \<Longrightarrow> ((\<lambda>x. inverse (f x) :: real) \<longlongrightarrow> 0) F"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1719
 by (metis filterlim_at filterlim_mono[OF _ at_top_le_at_infinity order_refl] filterlim_inverse_at_iff)
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1720
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1721
lemma real_tendsto_divide_at_top:
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1722
  fixes c::"real"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1723
  assumes "(f \<longlongrightarrow> c) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1724
  assumes "filterlim g at_top F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1725
  shows "((\<lambda>x. f x / g x) \<longlongrightarrow> 0) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1726
  by (auto simp: divide_inverse_commute
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1727
      intro!: tendsto_mult[THEN tendsto_eq_rhs] tendsto_inverse_0_at_top assms)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1728
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1729
lemma mult_nat_left_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. c * x) at_top sequentially"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1730
  for c :: nat
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  1731
  by (rule filterlim_subseq) (auto simp: strict_mono_def)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1732
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1733
lemma mult_nat_right_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. x * c) at_top sequentially"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1734
  for c :: nat
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  1735
  by (rule filterlim_subseq) (auto simp: strict_mono_def)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1736
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1737
lemma filterlim_times_pos:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1738
  "LIM x F1. c * f x :> at_right l"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1739
  if "filterlim f (at_right p) F1" "0 < c" "l = c * p"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1740
  for c::"'a::{linordered_field, linorder_topology}"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1741
  unfolding filterlim_iff
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1742
proof safe
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1743
  fix P
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1744
  assume "\<forall>\<^sub>F x in at_right l. P x"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1745
  then obtain d where "c * p < d" "\<And>y. y > c * p \<Longrightarrow> y < d \<Longrightarrow> P y"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1746
    unfolding \<open>l = _ \<close> eventually_at_right_field
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1747
    by auto
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1748
  then have "\<forall>\<^sub>F a in at_right p. P (c * a)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1749
    by (auto simp: eventually_at_right_field \<open>0 < c\<close> field_simps intro!: exI[where x="d/c"])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1750
  from that(1)[unfolded filterlim_iff, rule_format, OF this]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1751
  show "\<forall>\<^sub>F x in F1. P (c * f x)" .
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1752
qed
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1753
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1754
lemma filtermap_nhds_times: "c \<noteq> 0 \<Longrightarrow> filtermap (times c) (nhds a) = nhds (c * a)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1755
  for a c :: "'a::real_normed_field"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1756
  by (rule filtermap_fun_inverse[where g="\<lambda>x. inverse c * x"])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1757
    (auto intro!: tendsto_eq_intros filterlim_ident)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1758
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1759
lemma filtermap_times_pos_at_right:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1760
  fixes c::"'a::{linordered_field, linorder_topology}"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1761
  assumes "c > 0"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1762
  shows "filtermap (times c) (at_right p) = at_right (c * p)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1763
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1764
  by (intro filtermap_fun_inverse[where g="\<lambda>x. inverse c * x"])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1765
    (auto intro!: filterlim_ident filterlim_times_pos)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1766
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1767
lemma at_to_infinity: "(at (0::'a::{real_normed_field,field})) = filtermap inverse at_infinity"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1768
proof (rule antisym)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1769
  have "(inverse \<longlongrightarrow> (0::'a)) at_infinity"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1770
    by (fact tendsto_inverse_0)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1771
  then show "filtermap inverse at_infinity \<le> at (0::'a)"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  1772
    using filterlim_def filterlim_ident filterlim_inverse_at_iff by fastforce
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1773
next
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1774
  have "filtermap inverse (filtermap inverse (at (0::'a))) \<le> filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1775
    using filterlim_inverse_at_infinity unfolding filterlim_def
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1776
    by (rule filtermap_mono)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1777
  then show "at (0::'a) \<le> filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1778
    by (simp add: filtermap_ident filtermap_filtermap)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1779
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1780
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1781
lemma lim_at_infinity_0:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1782
  fixes l :: "'a::{real_normed_field,field}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1783
  shows "(f \<longlongrightarrow> l) at_infinity \<longleftrightarrow> ((f \<circ> inverse) \<longlongrightarrow> l) (at (0::'a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1784
  by (simp add: tendsto_compose_filtermap at_to_infinity filtermap_filtermap)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1785
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1786
lemma lim_zero_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1787
  fixes l :: "'a::{real_normed_field,field}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1788
  shows "((\<lambda>x. f(1 / x)) \<longlongrightarrow> l) (at (0::'a)) \<Longrightarrow> (f \<longlongrightarrow> l) at_infinity"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1789
  by (simp add: inverse_eq_divide lim_at_infinity_0 comp_def)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1790
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1791
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1792
text \<open>
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1793
  We only show rules for multiplication and addition when the functions are either against a real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1794
  value or against infinity. Further rules are easy to derive by using @{thm
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1795
  filterlim_uminus_at_top}.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1796
\<close>
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1797
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1798
lemma filterlim_tendsto_pos_mult_at_top:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1799
  assumes f: "(f \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1800
    and c: "0 < c"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1801
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1802
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1803
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1804
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1805
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1806
  assume "0 < Z"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1807
  from f \<open>0 < c\<close> have "eventually (\<lambda>x. c / 2 < f x) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1808
    by (auto dest!: tendstoD[where e="c / 2"] elim!: eventually_mono
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1809
        simp: dist_real_def abs_real_def split: if_split_asm)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1810
  moreover from g have "eventually (\<lambda>x. (Z / c * 2) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1811
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1812
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1813
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1814
    case (elim x)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1815
    with \<open>0 < Z\<close> \<open>0 < c\<close> have "c / 2 * (Z / c * 2) \<le> f x * g x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1816
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1817
    with \<open>0 < c\<close> show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1818
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1819
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1820
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1821
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1822
lemma filterlim_at_top_mult_at_top:
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1823
  assumes f: "LIM x F. f x :> at_top"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1824
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1825
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1826
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1827
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1828
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1829
  assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1830
  from f have "eventually (\<lambda>x. 1 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1831
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1832
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1833
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1834
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1835
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1836
    case (elim x)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1837
    with \<open>0 < Z\<close> have "1 * Z \<le> f x * g x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1838
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1839
    then show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1840
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1841
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1842
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1843
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1844
lemma filterlim_at_top_mult_tendsto_pos:
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1845
  assumes f: "(f \<longlongrightarrow> c) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1846
    and c: "0 < c"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1847
    and g: "LIM x F. g x :> at_top"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1848
  shows "LIM x F. (g x * f x:: real) :> at_top"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1849
  by (auto simp: mult.commute intro!: filterlim_tendsto_pos_mult_at_top f c g)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1850
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1851
lemma filterlim_tendsto_pos_mult_at_bot:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1852
  fixes c :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1853
  assumes "(f \<longlongrightarrow> c) F" "0 < c" "filterlim g at_bot F"
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1854
  shows "LIM x F. f x * g x :> at_bot"
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1855
  using filterlim_tendsto_pos_mult_at_top[OF assms(1,2), of "\<lambda>x. - g x"] assms(3)
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1856
  unfolding filterlim_uminus_at_bot by simp
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1857
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1858
lemma filterlim_tendsto_neg_mult_at_bot:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1859
  fixes c :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1860
  assumes c: "(f \<longlongrightarrow> c) F" "c < 0" and g: "filterlim g at_top F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1861
  shows "LIM x F. f x * g x :> at_bot"
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1862
  using c filterlim_tendsto_pos_mult_at_top[of "\<lambda>x. - f x" "- c" F, OF _ _ g]
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1863
  unfolding filterlim_uminus_at_bot tendsto_minus_cancel_left by simp
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1864
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1865
lemma filterlim_pow_at_top:
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63556
diff changeset
  1866
  fixes f :: "'a \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1867
  assumes "0 < n"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1868
    and f: "LIM x F. f x :> at_top"
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1869
  shows "LIM x F. (f x)^n :: real :> at_top"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1870
  using \<open>0 < n\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1871
proof (induct n)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1872
  case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1873
  then show ?case by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1874
next
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1875
  case (Suc n) with f show ?case
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1876
    by (cases "n = 0") (auto intro!: filterlim_at_top_mult_at_top)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1877
qed
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1878
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1879
lemma filterlim_pow_at_bot_even:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1880
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1881
  shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> even n \<Longrightarrow> LIM x F. (f x)^n :> at_top"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1882
  using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_top)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1883
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1884
lemma filterlim_pow_at_bot_odd:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1885
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1886
  shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> odd n \<Longrightarrow> LIM x F. (f x)^n :> at_bot"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1887
  using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_bot)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1888
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1889
lemma filterlim_power_at_infinity [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1890
  fixes F and f :: "'a \<Rightarrow> 'b :: real_normed_div_algebra"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1891
  assumes "filterlim f at_infinity F" "n > 0"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1892
  shows   "filterlim (\<lambda>x. f x ^ n) at_infinity F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1893
  by (rule filterlim_norm_at_top_imp_at_infinity)
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1894
     (auto simp: norm_power intro!: filterlim_pow_at_top assms
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1895
           intro: filterlim_at_infinity_imp_norm_at_top)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1896
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1897
lemma filterlim_tendsto_add_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1898
  assumes f: "(f \<longlongrightarrow> c) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1899
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1900
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1901
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1902
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1903
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1904
  assume "0 < Z"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1905
  from f have "eventually (\<lambda>x. c - 1 < f x) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1906
    by (auto dest!: tendstoD[where e=1] elim!: eventually_mono simp: dist_real_def)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1907
  moreover from g have "eventually (\<lambda>x. Z - (c - 1) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1908
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1909
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1910
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1911
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1912
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1913
lemma LIM_at_top_divide:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1914
  fixes f g :: "'a \<Rightarrow> real"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1915
  assumes f: "(f \<longlongrightarrow> a) F" "0 < a"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1916
    and g: "(g \<longlongrightarrow> 0) F" "eventually (\<lambda>x. 0 < g x) F"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1917
  shows "LIM x F. f x / g x :> at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1918
  unfolding divide_inverse
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1919
  by (rule filterlim_tendsto_pos_mult_at_top[OF f]) (rule filterlim_inverse_at_top[OF g])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1920
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1921
lemma filterlim_at_top_add_at_top:
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1922
  assumes f: "LIM x F. f x :> at_top"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1923
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1924
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1925
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1926
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1927
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1928
  assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1929
  from f have "eventually (\<lambda>x. 0 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1930
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1931
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1932
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1933
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1934
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1935
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1936
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1937
lemma tendsto_divide_0:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1938
  fixes f :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1939
  assumes f: "(f \<longlongrightarrow> c) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1940
    and g: "LIM x F. g x :> at_infinity"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1941
  shows "((\<lambda>x. f x / g x) \<longlongrightarrow> 0) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1942
  using tendsto_mult[OF f filterlim_compose[OF tendsto_inverse_0 g]]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1943
  by (simp add: divide_inverse)
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1944
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1945
lemma linear_plus_1_le_power:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1946
  fixes x :: real
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1947
  assumes x: "0 \<le> x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1948
  shows "real n * x + 1 \<le> (x + 1) ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1949
proof (induct n)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1950
  case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1951
  then show ?case by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1952
next
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1953
  case (Suc n)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1954
  from x have "real (Suc n) * x + 1 \<le> (x + 1) * (real n * x + 1)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1955
    by (simp add: field_simps)
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1956
  also have "\<dots> \<le> (x + 1)^Suc n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1957
    using Suc x by (simp add: mult_left_mono)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1958
  finally show ?case .
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1959
qed
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1960
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1961
lemma filterlim_realpow_sequentially_gt1:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1962
  fixes x :: "'a :: real_normed_div_algebra"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1963
  assumes x[arith]: "1 < norm x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1964
  shows "LIM n sequentially. x ^ n :> at_infinity"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1965
proof (intro filterlim_at_infinity[THEN iffD2] allI impI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1966
  fix y :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1967
  assume "0 < y"
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1968
  have "0 < norm x - 1" by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1969
  then obtain N :: nat where "y < real N * (norm x - 1)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1970
    by (blast dest: reals_Archimedean3)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1971
  also have "\<dots> \<le> real N * (norm x - 1) + 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1972
    by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1973
  also have "\<dots> \<le> (norm x - 1 + 1) ^ N"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1974
    by (rule linear_plus_1_le_power) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1975
  also have "\<dots> = norm x ^ N"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1976
    by simp
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1977
  finally have "\<forall>n\<ge>N. y \<le> norm x ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1978
    by (metis order_less_le_trans power_increasing order_less_imp_le x)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1979
  then show "eventually (\<lambda>n. y \<le> norm (x ^ n)) sequentially"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1980
    unfolding eventually_sequentially
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1981
    by (auto simp: norm_power)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1982
qed simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1983
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1984
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1985
lemma filterlim_divide_at_infinity:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1986
  fixes f g :: "'a \<Rightarrow> 'a :: real_normed_field"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1987
  assumes "filterlim f (nhds c) F" "filterlim g (at 0) F" "c \<noteq> 0"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1988
  shows   "filterlim (\<lambda>x. f x / g x) at_infinity F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1989
proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1990
  have "filterlim (\<lambda>x. f x * inverse (g x)) at_infinity F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1991
    by (intro tendsto_mult_filterlim_at_infinity[OF assms(1,3)]
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1992
          filterlim_compose [OF filterlim_inverse_at_infinity assms(2)])
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1993
  thus ?thesis by (simp add: field_simps)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1994
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1995
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1996
subsection \<open>Floor and Ceiling\<close>
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1997
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1998
lemma eventually_floor_less:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1999
  fixes f :: "'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2000
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2001
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2002
  shows "\<forall>\<^sub>F x in F. of_int (floor l) < f x"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2003
  by (intro order_tendstoD[OF f]) (metis Ints_of_int antisym_conv2 floor_correct l)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2004
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2005
lemma eventually_less_ceiling:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2006
  fixes f :: "'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2007
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2008
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2009
  shows "\<forall>\<^sub>F x in F. f x < of_int (ceiling l)"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2010
  by (intro order_tendstoD[OF f]) (metis Ints_of_int l le_of_int_ceiling less_le)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2011
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2012
lemma eventually_floor_eq:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2013
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2014
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2015
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2016
  shows "\<forall>\<^sub>F x in F. floor (f x) = floor l"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2017
  using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2018
  by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2019
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2020
lemma eventually_ceiling_eq:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2021
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2022
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2023
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2024
  shows "\<forall>\<^sub>F x in F. ceiling (f x) = ceiling l"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2025
  using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2026
  by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2027
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2028
lemma tendsto_of_int_floor:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2029
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2030
  assumes "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2031
    and "l \<notin> \<int>"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2032
  shows "((\<lambda>x. of_int (floor (f x)) :: 'c::{ring_1,topological_space}) \<longlongrightarrow> of_int (floor l)) F"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2033
  using eventually_floor_eq[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2034
  by (simp add: eventually_mono topological_tendstoI)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2035
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2036
lemma tendsto_of_int_ceiling:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2037
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2038
  assumes "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2039
    and "l \<notin> \<int>"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2040
  shows "((\<lambda>x. of_int (ceiling (f x)):: 'c::{ring_1,topological_space}) \<longlongrightarrow> of_int (ceiling l)) F"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2041
  using eventually_ceiling_eq[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2042
  by (simp add: eventually_mono topological_tendstoI)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2043
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2044
lemma continuous_on_of_int_floor:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2045
  "continuous_on (UNIV - \<int>::'a::{order_topology, floor_ceiling} set)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2046
    (\<lambda>x. of_int (floor x)::'b::{ring_1, topological_space})"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2047
  unfolding continuous_on_def
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2048
  by (auto intro!: tendsto_of_int_floor)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2049
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2050
lemma continuous_on_of_int_ceiling:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2051
  "continuous_on (UNIV - \<int>::'a::{order_topology, floor_ceiling} set)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2052
    (\<lambda>x. of_int (ceiling x)::'b::{ring_1, topological_space})"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2053
  unfolding continuous_on_def
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2054
  by (auto intro!: tendsto_of_int_ceiling)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2055
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  2056
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2057
subsection \<open>Limits of Sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2058
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
  2059
lemma [trans]: "X = Y \<Longrightarrow> Y \<longlonglongrightarrow> z \<Longrightarrow> X \<longlonglongrightarrow> z"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2060
  by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2061
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2062
lemma LIMSEQ_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2063
  fixes L :: "'a::real_normed_vector"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2064
  shows "(X \<longlonglongrightarrow> L) = (\<forall>r>0. \<exists>no. \<forall>n \<ge> no. norm (X n - L) < r)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  2065
unfolding lim_sequentially dist_norm ..
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2066
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2067
lemma LIMSEQ_I: "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r) \<Longrightarrow> X \<longlonglongrightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2068
  for L :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2069
  by (simp add: LIMSEQ_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2070
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2071
lemma LIMSEQ_D: "X \<longlonglongrightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2072
  for L :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2073
  by (simp add: LIMSEQ_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2074
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2075
lemma LIMSEQ_linear: "X \<longlonglongrightarrow> x \<Longrightarrow> l > 0 \<Longrightarrow> (\<lambda> n. X (n * l)) \<longlonglongrightarrow> x"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2076
  unfolding tendsto_def eventually_sequentially
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
  2077
  by (metis div_le_dividend div_mult_self1_is_m le_trans mult.commute)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2078
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2079
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2080
text \<open>Transformation of limit.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2081
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2082
lemma Lim_transform: "(g \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2083
  for a b :: "'a::real_normed_vector"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2084
  using tendsto_add [of g a F "\<lambda>x. f x - g x" 0] by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2085
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2086
lemma Lim_transform2: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (g \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2087
  for a b :: "'a::real_normed_vector"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2088
  by (erule Lim_transform) (simp add: tendsto_minus_cancel)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2089
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2090
proposition Lim_transform_eq: "((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> a) F \<longleftrightarrow> (g \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2091
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2092
  using Lim_transform Lim_transform2 by blast
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  2093
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2094
lemma Lim_transform_eventually:
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  2095
  "\<lbrakk>(f \<longlongrightarrow> l) F; eventually (\<lambda>x. f x = g x) F\<rbrakk> \<Longrightarrow> (g \<longlongrightarrow> l) F"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2096
  using eventually_elim2 by (fastforce simp add: tendsto_def)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2097
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2098
lemma Lim_transform_within:
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2099
  assumes "(f \<longlongrightarrow> l) (at x within S)"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2100
    and "0 < d"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2101
    and "\<And>x'. x'\<in>S \<Longrightarrow> 0 < dist x' x \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x'"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2102
  shows "(g \<longlongrightarrow> l) (at x within S)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2103
proof (rule Lim_transform_eventually)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2104
  show "eventually (\<lambda>x. f x = g x) (at x within S)"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2105
    using assms by (auto simp: eventually_at)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2106
  show "(f \<longlongrightarrow> l) (at x within S)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2107
    by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2108
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2109
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2110
lemma filterlim_transform_within:
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2111
  assumes "filterlim g G (at x within S)"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2112
  assumes "G \<le> F" "0<d" "(\<And>x'. x' \<in> S \<Longrightarrow> 0 < dist x' x \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') "
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2113
  shows "filterlim f F (at x within S)"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2114
  using assms
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2115
  apply (elim filterlim_mono_eventually)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2116
  unfolding eventually_at by auto
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  2117
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2118
text \<open>Common case assuming being away from some crucial point like 0.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2119
lemma Lim_transform_away_within:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2120
  fixes a b :: "'a::t1_space"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2121
  assumes "a \<noteq> b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2122
    and "\<forall>x\<in>S. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2123
    and "(f \<longlongrightarrow> l) (at a within S)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2124
  shows "(g \<longlongrightarrow> l) (at a within S)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2125
proof (rule Lim_transform_eventually)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2126
  show "(f \<longlongrightarrow> l) (at a within S)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2127
    by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2128
  show "eventually (\<lambda>x. f x = g x) (at a within S)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2129
    unfolding eventually_at_topological
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2130
    by (rule exI [where x="- {b}"]) (simp add: open_Compl assms)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2131
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2132
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2133
lemma Lim_transform_away_at:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2134
  fixes a b :: "'a::t1_space"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2135
  assumes ab: "a \<noteq> b"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2136
    and fg: "\<forall>x. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2137
    and fl: "(f \<longlongrightarrow> l) (at a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2138
  shows "(g \<longlongrightarrow> l) (at a)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2139
  using Lim_transform_away_within[OF ab, of UNIV f g l] fg fl by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2140
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2141
text \<open>Alternatively, within an open set.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2142
lemma Lim_transform_within_open:
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2143
  assumes "(f \<longlongrightarrow> l) (at a within T)"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2144
    and "open s" and "a \<in> s"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2145
    and "\<And>x. x\<in>s \<Longrightarrow> x \<noteq> a \<Longrightarrow> f x = g x"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2146
  shows "(g \<longlongrightarrow> l) (at a within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2147
proof (rule Lim_transform_eventually)
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2148
  show "eventually (\<lambda>x. f x = g x) (at a within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2149
    unfolding eventually_at_topological
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2150
    using assms by auto
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2151
  show "(f \<longlongrightarrow> l) (at a within T)" by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2152
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2153
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2154
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2155
text \<open>A congruence rule allowing us to transform limits assuming not at point.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2156
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2157
(* FIXME: Only one congruence rule for tendsto can be used at a time! *)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2158
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2159
lemma Lim_cong_within(*[cong add]*):
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2160
  assumes "a = b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2161
    and "x = y"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2162
    and "S = T"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2163
    and "\<And>x. x \<noteq> b \<Longrightarrow> x \<in> T \<Longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2164
  shows "(f \<longlongrightarrow> x) (at a within S) \<longleftrightarrow> (g \<longlongrightarrow> y) (at b within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2165
  unfolding tendsto_def eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2166
  using assms by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2167
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2168
lemma Lim_cong_at(*[cong add]*):
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2169
  assumes "a = b" "x = y"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2170
    and "\<And>x. x \<noteq> a \<Longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2171
  shows "((\<lambda>x. f x) \<longlongrightarrow> x) (at a) \<longleftrightarrow> ((g \<longlongrightarrow> y) (at a))"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2172
  unfolding tendsto_def eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2173
  using assms by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2174
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2175
text \<open>An unbounded sequence's inverse tends to 0.\<close>
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2176
lemma LIMSEQ_inverse_zero:
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2177
  assumes "\<And>r::real. \<exists>N. \<forall>n\<ge>N. r < X n"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2178
  shows "(\<lambda>n. inverse (X n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2179
  apply (rule filterlim_compose[OF tendsto_inverse_0])
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2180
  by (metis assms eventually_at_top_linorderI filterlim_at_top_dense filterlim_at_top_imp_at_infinity)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2181
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  2182
text \<open>The sequence \<^term>\<open>1/n\<close> tends to 0 as \<^term>\<open>n\<close> tends to infinity.\<close>
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2183
lemma LIMSEQ_inverse_real_of_nat: "(\<lambda>n. inverse (real (Suc n))) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2184
  by (metis filterlim_compose tendsto_inverse_0 filterlim_mono order_refl filterlim_Suc
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2185
      filterlim_compose[OF filterlim_real_sequentially] at_top_le_at_infinity)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2186
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2187
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  2188
  The sequence \<^term>\<open>r + 1/n\<close> tends to \<^term>\<open>r\<close> as \<^term>\<open>n\<close> tends to
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2189
  infinity is now easily proved.
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2190
\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2191
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2192
lemma LIMSEQ_inverse_real_of_nat_add: "(\<lambda>n. r + inverse (real (Suc n))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2193
  using tendsto_add [OF tendsto_const LIMSEQ_inverse_real_of_nat] by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2194
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2195
lemma LIMSEQ_inverse_real_of_nat_add_minus: "(\<lambda>n. r + -inverse (real (Suc n))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2196
  using tendsto_add [OF tendsto_const tendsto_minus [OF LIMSEQ_inverse_real_of_nat]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2197
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2198
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2199
lemma LIMSEQ_inverse_real_of_nat_add_minus_mult: "(\<lambda>n. r * (1 + - inverse (real (Suc n)))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2200
  using tendsto_mult [OF tendsto_const LIMSEQ_inverse_real_of_nat_add_minus [of 1]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2201
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2202
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2203
lemma lim_inverse_n: "((\<lambda>n. inverse(of_nat n)) \<longlongrightarrow> (0::'a::real_normed_field)) sequentially"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2204
  using lim_1_over_n by (simp add: inverse_eq_divide)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2205
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  2206
lemma lim_inverse_n': "((\<lambda>n. 1 / n) \<longlongrightarrow> 0) sequentially"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  2207
  using lim_inverse_n
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  2208
  by (simp add: inverse_eq_divide)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  2209
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2210
lemma LIMSEQ_Suc_n_over_n: "(\<lambda>n. of_nat (Suc n) / of_nat n :: 'a :: real_normed_field) \<longlonglongrightarrow> 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2211
proof (rule Lim_transform_eventually)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2212
  show "eventually (\<lambda>n. 1 + inverse (of_nat n :: 'a) = of_nat (Suc n) / of_nat n) sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2213
    using eventually_gt_at_top[of "0::nat"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2214
    by eventually_elim (simp add: field_simps)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2215
  have "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1 + 0"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2216
    by (intro tendsto_add tendsto_const lim_inverse_n)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2217
  then show "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2218
    by simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2219
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2220
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2221
lemma LIMSEQ_n_over_Suc_n: "(\<lambda>n. of_nat n / of_nat (Suc n) :: 'a :: real_normed_field) \<longlonglongrightarrow> 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2222
proof (rule Lim_transform_eventually)
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2223
  show "eventually (\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a) =
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2224
      of_nat n / of_nat (Suc n)) sequentially"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2225
    using eventually_gt_at_top[of "0::nat"]
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2226
    by eventually_elim (simp add: field_simps del: of_nat_Suc)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2227
  have "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> inverse 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2228
    by (intro tendsto_inverse LIMSEQ_Suc_n_over_n) simp_all
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2229
  then show "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2230
    by simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2231
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2232
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2233
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2234
subsection \<open>Convergence on sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2235
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2236
lemma convergent_cong:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2237
  assumes "eventually (\<lambda>x. f x = g x) sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2238
  shows "convergent f \<longleftrightarrow> convergent g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2239
  unfolding convergent_def
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2240
  by (subst filterlim_cong[OF refl refl assms]) (rule refl)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2241
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2242
lemma convergent_Suc_iff: "convergent (\<lambda>n. f (Suc n)) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2243
  by (auto simp: convergent_def LIMSEQ_Suc_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2244
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2245
lemma convergent_ignore_initial_segment: "convergent (\<lambda>n. f (n + m)) = convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2246
proof (induct m arbitrary: f)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2247
  case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2248
  then show ?case by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2249
next
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2250
  case (Suc m)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2251
  have "convergent (\<lambda>n. f (n + Suc m)) \<longleftrightarrow> convergent (\<lambda>n. f (Suc n + m))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2252
    by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2253
  also have "\<dots> \<longleftrightarrow> convergent (\<lambda>n. f (n + m))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2254
    by (rule convergent_Suc_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2255
  also have "\<dots> \<longleftrightarrow> convergent f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2256
    by (rule Suc)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2257
  finally show ?case .
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2258
qed
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2259
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2260
lemma convergent_add:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2261
  fixes X Y :: "nat \<Rightarrow> 'a::topological_monoid_add"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2262
  assumes "convergent (\<lambda>n. X n)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2263
    and "convergent (\<lambda>n. Y n)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2264
  shows "convergent (\<lambda>n. X n + Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2265
  using assms unfolding convergent_def by (blast intro: tendsto_add)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2266
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  2267
lemma convergent_sum:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2268
  fixes X :: "'a \<Rightarrow> nat \<Rightarrow> 'b::topological_comm_monoid_add"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
  2269
  shows "(\<And>i. i \<in> A \<Longrightarrow> convergent (\<lambda>n. X i n)) \<Longrightarrow> convergent (\<lambda>n. \<Sum>i\<in>A. X i n)"
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
  2270
  by (induct A rule: infinite_finite_induct) (simp_all add: convergent_const convergent_add)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2271
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2272
lemma (in bounded_linear) convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2273
  assumes "convergent (\<lambda>n. X n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2274
  shows "convergent (\<lambda>n. f (X n))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2275
  using assms unfolding convergent_def by (blast intro: tendsto)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2276
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2277
lemma (in bounded_bilinear) convergent:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2278
  assumes "convergent (\<lambda>n. X n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2279
    and "convergent (\<lambda>n. Y n)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2280
  shows "convergent (\<lambda>n. X n ** Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2281
  using assms unfolding convergent_def by (blast intro: tendsto)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2282
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2283
lemma convergent_minus_iff:
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2284
  fixes X :: "nat \<Rightarrow> 'a::topological_group_add"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2285
  shows "convergent X \<longleftrightarrow> convergent (\<lambda>n. - X n)"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2286
  unfolding convergent_def by (force dest: tendsto_minus)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2287
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2288
lemma convergent_diff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2289
  fixes X Y :: "nat \<Rightarrow> 'a::topological_group_add"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2290
  assumes "convergent (\<lambda>n. X n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2291
  assumes "convergent (\<lambda>n. Y n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2292
  shows "convergent (\<lambda>n. X n - Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2293
  using assms unfolding convergent_def by (blast intro: tendsto_diff)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2294
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2295
lemma convergent_norm:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2296
  assumes "convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2297
  shows "convergent (\<lambda>n. norm (f n))"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2298
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2299
  from assms have "f \<longlonglongrightarrow> lim f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2300
    by (simp add: convergent_LIMSEQ_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2301
  then have "(\<lambda>n. norm (f n)) \<longlonglongrightarrow> norm (lim f)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2302
    by (rule tendsto_norm)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2303
  then show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2304
    by (auto simp: convergent_def)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2305
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2306
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2307
lemma convergent_of_real:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2308
  "convergent f \<Longrightarrow> convergent (\<lambda>n. of_real (f n) :: 'a::real_normed_algebra_1)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2309
  unfolding convergent_def by (blast intro!: tendsto_of_real)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2310
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2311
lemma convergent_add_const_iff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2312
  "convergent (\<lambda>n. c + f n :: 'a::topological_ab_group_add) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2313
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2314
  assume "convergent (\<lambda>n. c + f n)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2315
  from convergent_diff[OF this convergent_const[of c]] show "convergent f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2316
    by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2317
next
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2318
  assume "convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2319
  from convergent_add[OF convergent_const[of c] this] show "convergent (\<lambda>n. c + f n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2320
    by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2321
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2322
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2323
lemma convergent_add_const_right_iff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2324
  "convergent (\<lambda>n. f n + c :: 'a::topological_ab_group_add) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2325
  using convergent_add_const_iff[of c f] by (simp add: add_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2326
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2327
lemma convergent_diff_const_right_iff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2328
  "convergent (\<lambda>n. f n - c :: 'a::topological_ab_group_add) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2329
  using convergent_add_const_right_iff[of f "-c"] by (simp add: add_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2330
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2331
lemma convergent_mult:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2332
  fixes X Y :: "nat \<Rightarrow> 'a::topological_semigroup_mult"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2333
  assumes "convergent (\<lambda>n. X n)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2334
    and "convergent (\<lambda>n. Y n)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2335
  shows "convergent (\<lambda>n. X n * Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2336
  using assms unfolding convergent_def by (blast intro: tendsto_mult)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2337
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2338
lemma convergent_mult_const_iff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2339
  assumes "c \<noteq> 0"
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2340
  shows "convergent (\<lambda>n. c * f n :: 'a::{field,topological_semigroup_mult}) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2341
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2342
  assume "convergent (\<lambda>n. c * f n)"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2343
  from assms convergent_mult[OF this convergent_const[of "inverse c"]]
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2344
    show "convergent f" by (simp add: field_simps)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2345
next
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2346
  assume "convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2347
  from convergent_mult[OF convergent_const[of c] this] show "convergent (\<lambda>n. c * f n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2348
    by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2349
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2350
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2351
lemma convergent_mult_const_right_iff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2352
  fixes c :: "'a::{field,topological_semigroup_mult}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2353
  assumes "c \<noteq> 0"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2354
  shows "convergent (\<lambda>n. f n * c) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2355
  using convergent_mult_const_iff[OF assms, of f] by (simp add: mult_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2356
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2357
lemma convergent_imp_Bseq: "convergent f \<Longrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2358
  by (simp add: Cauchy_Bseq convergent_Cauchy)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2359
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2360
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2361
text \<open>A monotone sequence converges to its least upper bound.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2362
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2363
lemma LIMSEQ_incseq_SUP:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2364
  fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder,linorder_topology}"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2365
  assumes u: "bdd_above (range X)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2366
    and X: "incseq X"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2367
  shows "X \<longlonglongrightarrow> (SUP i. X i)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2368
  by (rule order_tendstoI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2369
    (auto simp: eventually_sequentially u less_cSUP_iff
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2370
      intro: X[THEN incseqD] less_le_trans cSUP_lessD[OF u])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2371
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2372
lemma LIMSEQ_decseq_INF:
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2373
  fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder, linorder_topology}"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2374
  assumes u: "bdd_below (range X)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2375
    and X: "decseq X"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2376
  shows "X \<longlonglongrightarrow> (INF i. X i)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2377
  by (rule order_tendstoI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2378
     (auto simp: eventually_sequentially u cINF_less_iff
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2379
       intro: X[THEN decseqD] le_less_trans less_cINF_D[OF u])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2380
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2381
text \<open>Main monotonicity theorem.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2382
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2383
lemma Bseq_monoseq_convergent: "Bseq X \<Longrightarrow> monoseq X \<Longrightarrow> convergent X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2384
  for X :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2385
  by (auto simp: monoseq_iff convergent_def intro: LIMSEQ_decseq_INF LIMSEQ_incseq_SUP
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2386
      dest: Bseq_bdd_above Bseq_bdd_below)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2387
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2388
lemma Bseq_mono_convergent: "Bseq X \<Longrightarrow> (\<forall>m n. m \<le> n \<longrightarrow> X m \<le> X n) \<Longrightarrow> convergent X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2389
  for X :: "nat \<Rightarrow> real"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2390
  by (auto intro!: Bseq_monoseq_convergent incseq_imp_monoseq simp: incseq_def)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2391
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2392
lemma monoseq_imp_convergent_iff_Bseq: "monoseq f \<Longrightarrow> convergent f \<longleftrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2393
  for f :: "nat \<Rightarrow> real"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2394
  using Bseq_monoseq_convergent[of f] convergent_imp_Bseq[of f] by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2395
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2396
lemma Bseq_monoseq_convergent'_inc:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2397
  fixes f :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2398
  shows "Bseq (\<lambda>n. f (n + M)) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<le> f n) \<Longrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2399
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2400
     (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2401
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2402
lemma Bseq_monoseq_convergent'_dec:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2403
  fixes f :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2404
  shows "Bseq (\<lambda>n. f (n + M)) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<ge> f n) \<Longrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2405
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2406
    (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2407
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2408
lemma Cauchy_iff: "Cauchy X \<longleftrightarrow> (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2409
  for X :: "nat \<Rightarrow> 'a::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2410
  unfolding Cauchy_def dist_norm ..
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2411
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2412
lemma CauchyI: "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e) \<Longrightarrow> Cauchy X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2413
  for X :: "nat \<Rightarrow> 'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2414
  by (simp add: Cauchy_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2415
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2416
lemma CauchyD: "Cauchy X \<Longrightarrow> 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2417
  for X :: "nat \<Rightarrow> 'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2418
  by (simp add: Cauchy_iff)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2419
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2420
lemma incseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2421
  fixes X :: "nat \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2422
  assumes "incseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2423
    and "\<forall>i. X i \<le> B"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2424
  obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. X i \<le> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2425
proof atomize_elim
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2426
  from incseq_bounded[OF assms] \<open>incseq X\<close> Bseq_monoseq_convergent[of X]
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2427
  obtain L where "X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2428
    by (auto simp: convergent_def monoseq_def incseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2429
  with \<open>incseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. X i \<le> L)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2430
    by (auto intro!: exI[of _ L] incseq_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2431
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2432
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2433
lemma decseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2434
  fixes X :: "nat \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2435
  assumes "decseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2436
    and "\<forall>i. B \<le> X i"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2437
  obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. L \<le> X i"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2438
proof atomize_elim
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2439
  from decseq_bounded[OF assms] \<open>decseq X\<close> Bseq_monoseq_convergent[of X]
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2440
  obtain L where "X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2441
    by (auto simp: convergent_def monoseq_def decseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2442
  with \<open>decseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. L \<le> X i)"
68532
f8b98d31ad45 Incorporating new/strengthened proofs from Library and AFP entries
paulson <lp15@cam.ac.uk>
parents: 68296
diff changeset
  2443
    by (auto intro!: exI[of _ L] decseq_ge)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2444
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2445
70694
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2446
lemma monoseq_convergent:
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2447
  fixes X :: "nat \<Rightarrow> real"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2448
  assumes X: "monoseq X" and B: "\<And>i. \<bar>X i\<bar> \<le> B"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2449
  obtains L where "X \<longlonglongrightarrow> L"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2450
  using X unfolding monoseq_iff
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2451
proof
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2452
  assume "incseq X"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2453
  show thesis
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2454
    using abs_le_D1 [OF B] incseq_convergent [OF \<open>incseq X\<close>] that by meson
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2455
next
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2456
  assume "decseq X"
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2457
  show thesis
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2458
    using decseq_convergent [OF \<open>decseq X\<close>] that
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2459
    by (metis B abs_le_iff add.inverse_inverse neg_le_iff_le)
ae37b8fbf023 New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
  2460
qed
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2461
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2462
subsection \<open>Power Sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2463
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2464
lemma Bseq_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> Bseq (\<lambda>n. x ^ n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2465
  for x :: real
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2466
  by (metis decseq_bounded decseq_def power_decreasing zero_le_power)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2467
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2468
lemma monoseq_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> monoseq (\<lambda>n. x ^ n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2469
  for x :: real
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2470
  using monoseq_def power_decreasing by blast
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2471
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2472
lemma convergent_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> convergent (\<lambda>n. x ^ n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2473
  for x :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2474
  by (blast intro!: Bseq_monoseq_convergent Bseq_realpow monoseq_realpow)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2475
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2476
lemma LIMSEQ_inverse_realpow_zero: "1 < x \<Longrightarrow> (\<lambda>n. inverse (x ^ n)) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2477
  for x :: real
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2478
  by (rule filterlim_compose[OF tendsto_inverse_0 filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2479
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2480
lemma LIMSEQ_realpow_zero:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2481
  fixes x :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2482
  assumes "0 \<le> x" "x < 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2483
  shows "(\<lambda>n. x ^ n) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2484
proof (cases "x = 0")
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2485
  case False
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2486
  with \<open>0 \<le> x\<close> have x0: "0 < x" by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2487
  then have "1 < inverse x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2488
    using \<open>x < 1\<close> by (rule one_less_inverse)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2489
  then have "(\<lambda>n. inverse (inverse x ^ n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2490
    by (rule LIMSEQ_inverse_realpow_zero)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2491
  then show ?thesis by (simp add: power_inverse)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2492
next
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2493
  case True
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2494
  show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2495
    by (rule LIMSEQ_imp_Suc) (simp add: True)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2496
qed
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2497
70723
4e39d87c9737 imported new material mostly due to Sébastien Gouëzel
paulson <lp15@cam.ac.uk>
parents: 70694
diff changeset
  2498
lemma LIMSEQ_power_zero [tendsto_intros]: "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) \<longlonglongrightarrow> 0"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2499
  for x :: "'a::real_normed_algebra_1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2500
  apply (drule LIMSEQ_realpow_zero [OF norm_ge_zero])
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2501
  by (simp add: Zfun_le norm_power_ineq tendsto_Zfun_iff)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2502
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2503
lemma LIMSEQ_divide_realpow_zero: "1 < x \<Longrightarrow> (\<lambda>n. a / (x ^ n) :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2504
  by (rule tendsto_divide_0 [OF tendsto_const filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2505
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2506
lemma
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2507
  tendsto_power_zero:
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2508
  fixes x::"'a::real_normed_algebra_1"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2509
  assumes "filterlim f at_top F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2510
  assumes "norm x < 1"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2511
  shows "((\<lambda>y. x ^ (f y)) \<longlongrightarrow> 0) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2512
proof (rule tendstoI)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2513
  fix e::real assume "0 < e"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2514
  from tendstoD[OF LIMSEQ_power_zero[OF \<open>norm x < 1\<close>] \<open>0 < e\<close>]
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2515
  have "\<forall>\<^sub>F xa in sequentially. norm (x ^ xa) < e"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2516
    by simp
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2517
  then obtain N where N: "norm (x ^ n) < e" if "n \<ge> N" for n
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2518
    by (auto simp: eventually_sequentially)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2519
  have "\<forall>\<^sub>F i in F. f i \<ge> N"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2520
    using \<open>filterlim f sequentially F\<close>
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2521
    by (simp add: filterlim_at_top)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2522
  then show "\<forall>\<^sub>F i in F. dist (x ^ f i) 0 < e"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2523
    by eventually_elim (auto simp: N)
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2524
qed
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2525
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  2526
text \<open>Limit of \<^term>\<open>c^n\<close> for \<^term>\<open>\<bar>c\<bar> < 1\<close>.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2527
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  2528
lemma LIMSEQ_abs_realpow_zero: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. \<bar>c\<bar> ^ n :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2529
  by (rule LIMSEQ_realpow_zero [OF abs_ge_zero])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2530
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  2531
lemma LIMSEQ_abs_realpow_zero2: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. c ^ n :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2532
  by (rule LIMSEQ_power_zero) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2533
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2534
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2535
subsection \<open>Limits of Functions\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2536
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2537
lemma LIM_eq: "f \<midarrow>a\<rightarrow> L = (\<forall>r>0. \<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2538
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2539
  by (simp add: LIM_def dist_norm)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2540
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2541
lemma LIM_I:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2542
  "(\<And>r. 0 < r \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r) \<Longrightarrow> f \<midarrow>a\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2543
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2544
  by (simp add: LIM_eq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2545
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2546
lemma LIM_D: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>s>0.\<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2547
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2548
  by (simp add: LIM_eq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2549
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2550
lemma LIM_offset: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>x. f (x + k)) \<midarrow>(a - k)\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2551
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2552
  by (simp add: filtermap_at_shift[symmetric, of a k] filterlim_def filtermap_filtermap)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2553
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2554
lemma LIM_offset_zero: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2555
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2556
  by (drule LIM_offset [where k = a]) (simp add: add.commute)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2557
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2558
lemma LIM_offset_zero_cancel: "(\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L \<Longrightarrow> f \<midarrow>a\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2559
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2560
  by (drule LIM_offset [where k = "- a"]) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2561
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2562
lemma LIM_offset_zero_iff: "f \<midarrow>a\<rightarrow> L \<longleftrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2563
  for f :: "'a :: real_normed_vector \<Rightarrow> _"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  2564
  using LIM_offset_zero_cancel[of f a L] LIM_offset_zero[of f L a] by auto
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  2565
70999
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2566
lemma tendsto_offset_zero_iff:
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2567
  fixes f :: "'a :: real_normed_vector \<Rightarrow> _"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2568
  assumes "a \<in> S" "open S"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2569
  shows "(f \<longlongrightarrow> L) (at a within S) \<longleftrightarrow> ((\<lambda>h. f (a + h)) \<longlongrightarrow> L) (at 0)"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2570
  by (metis LIM_offset_zero_iff assms tendsto_within_open)
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2571
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2572
lemma LIM_zero: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. f x - l) \<longlongrightarrow> 0) F"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2573
  for f :: "'a \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2574
  unfolding tendsto_iff dist_norm by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2575
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2576
lemma LIM_zero_cancel:
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2577
  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2578
  shows "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> l) F"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2579
unfolding tendsto_iff dist_norm by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2580
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2581
lemma LIM_zero_iff: "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F = (f \<longlongrightarrow> l) F"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2582
  for f :: "'a \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2583
  unfolding tendsto_iff dist_norm by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2584
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2585
lemma LIM_imp_LIM:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2586
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2587
  fixes g :: "'a::topological_space \<Rightarrow> 'c::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2588
  assumes f: "f \<midarrow>a\<rightarrow> l"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2589
    and le: "\<And>x. x \<noteq> a \<Longrightarrow> norm (g x - m) \<le> norm (f x - l)"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2590
  shows "g \<midarrow>a\<rightarrow> m"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2591
  by (rule metric_LIM_imp_LIM [OF f]) (simp add: dist_norm le)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2592
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2593
lemma LIM_equal2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2594
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2595
  assumes "0 < R"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2596
    and "\<And>x. x \<noteq> a \<Longrightarrow> norm (x - a) < R \<Longrightarrow> f x = g x"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2597
  shows "g \<midarrow>a\<rightarrow> l \<Longrightarrow> f \<midarrow>a\<rightarrow> l"
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68532
diff changeset
  2598
  by (rule metric_LIM_equal2 [OF _ assms]) (simp_all add: dist_norm)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2599
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2600
lemma LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2601
  fixes a :: "'a::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2602
  assumes f: "f \<midarrow>a\<rightarrow> b"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2603
    and g: "g \<midarrow>b\<rightarrow> c"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2604
    and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> b"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2605
  shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> c"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2606
  by (rule metric_LIM_compose2 [OF f g inj [folded dist_norm]])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2607
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2608
lemma real_LIM_sandwich_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2609
  fixes f g :: "'a::topological_space \<Rightarrow> real"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2610
  assumes f: "f \<midarrow>a\<rightarrow> 0"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2611
    and 1: "\<And>x. x \<noteq> a \<Longrightarrow> 0 \<le> g x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2612
    and 2: "\<And>x. x \<noteq> a \<Longrightarrow> g x \<le> f x"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2613
  shows "g \<midarrow>a\<rightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2614
proof (rule LIM_imp_LIM [OF f]) (* FIXME: use tendsto_sandwich *)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2615
  fix x
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2616
  assume x: "x \<noteq> a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2617
  with 1 have "norm (g x - 0) = g x" by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2618
  also have "g x \<le> f x" by (rule 2 [OF x])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2619
  also have "f x \<le> \<bar>f x\<bar>" by (rule abs_ge_self)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2620
  also have "\<bar>f x\<bar> = norm (f x - 0)" by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2621
  finally show "norm (g x - 0) \<le> norm (f x - 0)" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2622
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2623
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2624
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2625
subsection \<open>Continuity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2626
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2627
lemma LIM_isCont_iff: "(f \<midarrow>a\<rightarrow> f a) = ((\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> f a)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2628
  for f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2629
  by (rule iffI [OF LIM_offset_zero LIM_offset_zero_cancel])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2630
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2631
lemma isCont_iff: "isCont f x = (\<lambda>h. f (x + h)) \<midarrow>0\<rightarrow> f x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2632
  for f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2633
  by (simp add: isCont_def LIM_isCont_iff)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2634
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2635
lemma isCont_LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2636
  fixes a :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2637
  assumes f [unfolded isCont_def]: "isCont f a"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2638
    and g: "g \<midarrow>f a\<rightarrow> l"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2639
    and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> f a"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2640
  shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> l"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2641
  by (rule LIM_compose2 [OF f g inj])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2642
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2643
lemma isCont_norm [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. norm (f x)) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2644
  for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2645
  by (fact continuous_norm)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2646
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2647
lemma isCont_rabs [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. \<bar>f x\<bar>) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2648
  for f :: "'a::t2_space \<Rightarrow> real"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2649
  by (fact continuous_rabs)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2650
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2651
lemma isCont_add [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x + g x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2652
  for f :: "'a::t2_space \<Rightarrow> 'b::topological_monoid_add"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2653
  by (fact continuous_add)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2654
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2655
lemma isCont_minus [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. - f x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2656
  for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2657
  by (fact continuous_minus)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2658
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2659
lemma isCont_diff [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x - g x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2660
  for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2661
  by (fact continuous_diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2662
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2663
lemma isCont_mult [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x * g x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2664
  for f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_algebra"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2665
  by (fact continuous_mult)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2666
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2667
lemma (in bounded_linear) isCont: "isCont g a \<Longrightarrow> isCont (\<lambda>x. f (g x)) a"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2668
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2669
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2670
lemma (in bounded_bilinear) isCont: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x ** g x) a"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2671
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2672
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2673
lemmas isCont_scaleR [simp] =
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2674
  bounded_bilinear.isCont [OF bounded_bilinear_scaleR]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2675
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2676
lemmas isCont_of_real [simp] =
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2677
  bounded_linear.isCont [OF bounded_linear_of_real]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2678
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2679
lemma isCont_power [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. f x ^ n) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2680
  for f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2681
  by (fact continuous_power)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2682
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  2683
lemma isCont_sum [simp]: "\<forall>i\<in>A. isCont (f i) a \<Longrightarrow> isCont (\<lambda>x. \<Sum>i\<in>A. f i x) a"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2684
  for f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  2685
  by (auto intro: continuous_sum)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2686
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2687
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2688
subsection \<open>Uniform Continuity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2689
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2690
lemma uniformly_continuous_on_def:
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2691
  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2692
  shows "uniformly_continuous_on s f \<longleftrightarrow>
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2693
    (\<forall>e>0. \<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2694
  unfolding uniformly_continuous_on_uniformity
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2695
    uniformity_dist filterlim_INF filterlim_principal eventually_inf_principal
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2696
  by (force simp: Ball_def uniformity_dist[symmetric] eventually_uniformity_metric)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2697
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2698
abbreviation isUCont :: "['a::metric_space \<Rightarrow> 'b::metric_space] \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2699
  where "isUCont f \<equiv> uniformly_continuous_on UNIV f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2700
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2701
lemma isUCont_def: "isUCont f \<longleftrightarrow> (\<forall>r>0. \<exists>s>0. \<forall>x y. dist x y < s \<longrightarrow> dist (f x) (f y) < r)"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2702
  by (auto simp: uniformly_continuous_on_def dist_commute)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2703
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2704
lemma isUCont_isCont: "isUCont f \<Longrightarrow> isCont f x"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2705
  by (drule uniformly_continuous_imp_continuous) (simp add: continuous_on_eq_continuous_at)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2706
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2707
lemma uniformly_continuous_on_Cauchy:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2708
  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2709
  assumes "uniformly_continuous_on S f" "Cauchy X" "\<And>n. X n \<in> S"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2710
  shows "Cauchy (\<lambda>n. f (X n))"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2711
  using assms
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68532
diff changeset
  2712
  unfolding uniformly_continuous_on_def  by (meson Cauchy_def)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2713
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2714
lemma isUCont_Cauchy: "isUCont f \<Longrightarrow> Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2715
  by (rule uniformly_continuous_on_Cauchy[where S=UNIV and f=f]) simp_all
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2716
64287
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2717
lemma uniformly_continuous_imp_Cauchy_continuous:
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2718
  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
67091
1393c2340eec more symbols;
wenzelm
parents: 66827
diff changeset
  2719
  shows "\<lbrakk>uniformly_continuous_on S f; Cauchy \<sigma>; \<And>n. (\<sigma> n) \<in> S\<rbrakk> \<Longrightarrow> Cauchy(f \<circ> \<sigma>)"
64287
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2720
  by (simp add: uniformly_continuous_on_def Cauchy_def) meson
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2721
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2722
lemma (in bounded_linear) isUCont: "isUCont f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2723
  unfolding isUCont_def dist_norm
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2724
proof (intro allI impI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2725
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2726
  assume r: "0 < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2727
  obtain K where K: "0 < K" and norm_le: "norm (f x) \<le> norm x * K" for x
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2728
    using pos_bounded by blast
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2729
  show "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2730
  proof (rule exI, safe)
56541
0e3abadbef39 made divide_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
  2731
    from r K show "0 < r / K" by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2732
  next
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2733
    fix x y :: 'a
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2734
    assume xy: "norm (x - y) < r / K"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2735
    have "norm (f x - f y) = norm (f (x - y))" by (simp only: diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2736
    also have "\<dots> \<le> norm (x - y) * K" by (rule norm_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2737
    also from K xy have "\<dots> < r" by (simp only: pos_less_divide_eq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2738
    finally show "norm (f x - f y) < r" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2739
  qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2740
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2741
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2742
lemma (in bounded_linear) Cauchy: "Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2743
  by (rule isUCont [THEN isUCont_Cauchy])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2744
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2745
lemma LIM_less_bound:
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2746
  fixes f :: "real \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2747
  assumes ev: "b < x" "\<forall> x' \<in> { b <..< x}. 0 \<le> f x'" and "isCont f x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2748
  shows "0 \<le> f x"
63952
354808e9f44b new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents: 63915
diff changeset
  2749
proof (rule tendsto_lowerbound)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2750
  show "(f \<longlongrightarrow> f x) (at_left x)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2751
    using \<open>isCont f x\<close> by (simp add: filterlim_at_split isCont_def)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2752
  show "eventually (\<lambda>x. 0 \<le> f x) (at_left x)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  2753
    using ev by (auto simp: eventually_at dist_real_def intro!: exI[of _ "x - b"])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2754
qed simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  2755
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2756
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2757
subsection \<open>Nested Intervals and Bisection -- Needed for Compactness\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2758
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2759
lemma nested_sequence_unique:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2760
  assumes "\<forall>n. f n \<le> f (Suc n)" "\<forall>n. g (Suc n) \<le> g n" "\<forall>n. f n \<le> g n" "(\<lambda>n. f n - g n) \<longlonglongrightarrow> 0"
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2761
  shows "\<exists>l::real. ((\<forall>n. f n \<le> l) \<and> f \<longlonglongrightarrow> l) \<and> ((\<forall>n. l \<le> g n) \<and> g \<longlonglongrightarrow> l)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2762
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2763
  have "incseq f" unfolding incseq_Suc_iff by fact
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2764
  have "decseq g" unfolding decseq_Suc_iff by fact
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2765
  have "f n \<le> g 0" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2766
  proof -
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2767
    from \<open>decseq g\<close> have "g n \<le> g 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2768
      by (rule decseqD) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2769
    with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2770
      by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2771
  qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2772
  then obtain u where "f \<longlonglongrightarrow> u" "\<forall>i. f i \<le> u"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2773
    using incseq_convergent[OF \<open>incseq f\<close>] by auto
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2774
  moreover have "f 0 \<le> g n" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2775
  proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2776
    from \<open>incseq f\<close> have "f 0 \<le> f n" by (rule incseqD) simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2777
    with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2778
      by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2779
  qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2780
  then obtain l where "g \<longlonglongrightarrow> l" "\<forall>i. l \<le> g i"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2781
    using decseq_convergent[OF \<open>decseq g\<close>] by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2782
  moreover note LIMSEQ_unique[OF assms(4) tendsto_diff[OF \<open>f \<longlonglongrightarrow> u\<close> \<open>g \<longlonglongrightarrow> l\<close>]]
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2783
  ultimately show ?thesis by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2784
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2785
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2786
lemma Bolzano[consumes 1, case_names trans local]:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2787
  fixes P :: "real \<Rightarrow> real \<Rightarrow> bool"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2788
  assumes [arith]: "a \<le> b"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2789
    and trans: "\<And>a b c. P a b \<Longrightarrow> P b c \<Longrightarrow> a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> P a c"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2790
    and local: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<exists>d>0. \<forall>a b. a \<le> x \<and> x \<le> b \<and> b - a < d \<longrightarrow> P a b"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2791
  shows "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2792
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2793
  define bisect where "bisect =
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2794
    rec_nat (a, b) (\<lambda>n (x, y). if P x ((x+y) / 2) then ((x+y)/2, y) else (x, (x+y)/2))"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2795
  define l u where "l n = fst (bisect n)" and "u n = snd (bisect n)" for n
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2796
  have l[simp]: "l 0 = a" "\<And>n. l (Suc n) = (if P (l n) ((l n + u n) / 2) then (l n + u n) / 2 else l n)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2797
    and u[simp]: "u 0 = b" "\<And>n. u (Suc n) = (if P (l n) ((l n + u n) / 2) then u n else (l n + u n) / 2)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2798
    by (simp_all add: l_def u_def bisect_def split: prod.split)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2799
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2800
  have [simp]: "l n \<le> u n" for n by (induct n) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2801
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2802
  have "\<exists>x. ((\<forall>n. l n \<le> x) \<and> l \<longlonglongrightarrow> x) \<and> ((\<forall>n. x \<le> u n) \<and> u \<longlonglongrightarrow> x)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2803
  proof (safe intro!: nested_sequence_unique)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2804
    show "l n \<le> l (Suc n)" "u (Suc n) \<le> u n" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2805
      by (induct n) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2806
  next
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2807
    have "l n - u n = (a - b) / 2^n" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2808
      by (induct n) (auto simp: field_simps)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2809
    then show "(\<lambda>n. l n - u n) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2810
      by (simp add: LIMSEQ_divide_realpow_zero)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2811
  qed fact
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2812
  then obtain x where x: "\<And>n. l n \<le> x" "\<And>n. x \<le> u n" and "l \<longlonglongrightarrow> x" "u \<longlonglongrightarrow> x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2813
    by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2814
  obtain d where "0 < d" and d: "a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> b - a < d \<Longrightarrow> P a b" for a b
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2815
    using \<open>l 0 \<le> x\<close> \<open>x \<le> u 0\<close> local[of x] by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2816
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2817
  show "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2818
  proof (rule ccontr)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2819
    assume "\<not> P a b"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2820
    have "\<not> P (l n) (u n)" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2821
    proof (induct n)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2822
      case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2823
      then show ?case
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2824
        by (simp add: \<open>\<not> P a b\<close>)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2825
    next
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2826
      case (Suc n)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2827
      with trans[of "l n" "(l n + u n) / 2" "u n"] show ?case
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2828
        by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2829
    qed
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2830
    moreover
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2831
    {
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2832
      have "eventually (\<lambda>n. x - d / 2 < l n) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2833
        using \<open>0 < d\<close> \<open>l \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2834
      moreover have "eventually (\<lambda>n. u n < x + d / 2) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2835
        using \<open>0 < d\<close> \<open>u \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2836
      ultimately have "eventually (\<lambda>n. P (l n) (u n)) sequentially"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2837
      proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2838
        case (elim n)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2839
        from add_strict_mono[OF this] have "u n - l n < d" by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2840
        with x show "P (l n) (u n)" by (rule d)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2841
      qed
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2842
    }
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2843
    ultimately show False by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2844
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2845
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2846
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2847
lemma compact_Icc[simp, intro]: "compact {a .. b::real}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2848
proof (cases "a \<le> b", rule compactI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2849
  fix C
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2850
  assume C: "a \<le> b" "\<forall>t\<in>C. open t" "{a..b} \<subseteq> \<Union>C"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2851
  define T where "T = {a .. b}"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2852
  from C(1,3) show "\<exists>C'\<subseteq>C. finite C' \<and> {a..b} \<subseteq> \<Union>C'"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2853
  proof (induct rule: Bolzano)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2854
    case (trans a b c)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2855
    then have *: "{a..c} = {a..b} \<union> {b..c}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2856
      by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2857
    with trans obtain C1 C2
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2858
      where "C1\<subseteq>C" "finite C1" "{a..b} \<subseteq> \<Union>C1" "C2\<subseteq>C" "finite C2" "{b..c} \<subseteq> \<Union>C2"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2859
      by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2860
    with trans show ?case
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2861
      unfolding * by (intro exI[of _ "C1 \<union> C2"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2862
  next
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2863
    case (local x)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2864
    with C have "x \<in> \<Union>C" by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2865
    with C(2) obtain c where "x \<in> c" "open c" "c \<in> C"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2866
      by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2867
    then obtain e where "0 < e" "{x - e <..< x + e} \<subseteq> c"
62101
26c0a70f78a3 add uniform spaces
hoelzl
parents: 62087
diff changeset
  2868
      by (auto simp: open_dist dist_real_def subset_eq Ball_def abs_less_iff)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2869
    with \<open>c \<in> C\<close> show ?case
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2870
      by (safe intro!: exI[of _ "e/2"] exI[of _ "{c}"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2871
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2872
qed simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2873
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2874
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2875
lemma continuous_image_closed_interval:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2876
  fixes a b and f :: "real \<Rightarrow> real"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2877
  defines "S \<equiv> {a..b}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2878
  assumes "a \<le> b" and f: "continuous_on S f"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2879
  shows "\<exists>c d. f`S = {c..d} \<and> c \<le> d"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2880
proof -
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2881
  have S: "compact S" "S \<noteq> {}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2882
    using \<open>a \<le> b\<close> by (auto simp: S_def)
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2883
  obtain c where "c \<in> S" "\<forall>d\<in>S. f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2884
    using continuous_attains_sup[OF S f] by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2885
  moreover obtain d where "d \<in> S" "\<forall>c\<in>S. f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2886
    using continuous_attains_inf[OF S f] by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2887
  moreover have "connected (f`S)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2888
    using connected_continuous_image[OF f] connected_Icc by (auto simp: S_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2889
  ultimately have "f ` S = {f d .. f c} \<and> f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2890
    by (auto simp: connected_iff_interval)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2891
  then show ?thesis
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2892
    by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2893
qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2894
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2895
lemma open_Collect_positive:
67958
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
  2896
  fixes f :: "'a::topological_space \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2897
  assumes f: "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2898
  shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. 0 < f x}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2899
  using continuous_on_open_invariant[THEN iffD1, OF f, rule_format, of "{0 <..}"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2900
  by (auto simp: Int_def field_simps)
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2901
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2902
lemma open_Collect_less_Int:
67958
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
  2903
  fixes f g :: "'a::topological_space \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2904
  assumes f: "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2905
    and g: "continuous_on s g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2906
  shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. f x < g x}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2907
  using open_Collect_positive[OF continuous_on_diff[OF g f]] by (simp add: field_simps)
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2908
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2909
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2910
subsection \<open>Boundedness of continuous functions\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2911
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2912
text\<open>By bisection, function continuous on closed interval is bounded above\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2913
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2914
lemma isCont_eq_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2915
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2916
  shows "a \<le> b \<Longrightarrow> \<forall>x::real. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2917
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2918
  using continuous_attains_sup[of "{a..b}" f]
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2919
  by (auto simp: continuous_at_imp_continuous_on Ball_def Bex_def)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2920
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2921
lemma isCont_eq_Lb:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2922
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2923
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2924
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> M \<le> f x) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2925
  using continuous_attains_inf[of "{a..b}" f]
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2926
  by (auto simp: continuous_at_imp_continuous_on Ball_def Bex_def)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2927
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2928
lemma isCont_bounded:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2929
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2930
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> \<exists>M. \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2931
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2932
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2933
lemma isCont_has_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2934
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2935
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2936
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<forall>N. N < M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> N < f x))"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2937
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2938
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2939
(*HOL style here: object-level formulations*)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2940
lemma IVT_objl:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2941
  "(f a \<le> y \<and> y \<le> f b \<and> a \<le> b \<and> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x)) \<longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2942
    (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2943
  for a y :: real
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2944
  by (blast intro: IVT)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2945
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2946
lemma IVT2_objl:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2947
  "(f b \<le> y \<and> y \<le> f a \<and> a \<le> b \<and> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x)) \<longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2948
    (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2949
  for b y :: real
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2950
  by (blast intro: IVT2)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2951
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2952
lemma isCont_Lb_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2953
  fixes f :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2954
  assumes "a \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2955
  shows "\<exists>L M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> L \<le> f x \<and> f x \<le> M) \<and>
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2956
    (\<forall>y. L \<le> y \<and> y \<le> M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> (f x = y)))"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2957
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2958
  obtain M where M: "a \<le> M" "M \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> f M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2959
    using isCont_eq_Ub[OF assms] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2960
  obtain L where L: "a \<le> L" "L \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f L \<le> f x"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2961
    using isCont_eq_Lb[OF assms] by auto
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2962
  have "(\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f L \<le> f x \<and> f x \<le> f M)"
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2963
    using M L by simp
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2964
  moreover
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2965
  have "(\<forall>y. f L \<le> y \<and> y \<le> f M \<longrightarrow> (\<exists>x\<ge>a. x \<le> b \<and> f x = y))"
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2966
  proof (cases "L \<le> M")
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2967
    case True then show ?thesis
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2968
    using IVT[of f L _ M] M L assms by (metis order.trans)
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2969
  next
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2970
    case False then show ?thesis
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2971
    using IVT2[of f L _ M]
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2972
    by (metis L(2) M(1) assms(2) le_cases order.trans)
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2973
qed
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2974
  ultimately show ?thesis
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2975
    by blast
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2976
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2977
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2978
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2979
text \<open>Continuity of inverse function.\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2980
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2981
lemma isCont_inverse_function:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2982
  fixes f g :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2983
  assumes d: "0 < d"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2984
    and inj: "\<And>z. \<bar>z-x\<bar> \<le> d \<Longrightarrow> g (f z) = z"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2985
    and cont: "\<And>z. \<bar>z-x\<bar> \<le> d \<Longrightarrow> isCont f z"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2986
  shows "isCont g (f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2987
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2988
  let ?A = "f (x - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2989
  let ?B = "f (x + d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2990
  let ?D = "{x - d..x + d}"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2991
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2992
  have f: "continuous_on ?D f"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2993
    using cont by (intro continuous_at_imp_continuous_on ballI) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2994
  then have g: "continuous_on (f`?D) g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2995
    using inj by (intro continuous_on_inv) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2996
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2997
  from d f have "{min ?A ?B <..< max ?A ?B} \<subseteq> f ` ?D"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2998
    by (intro connected_contains_Ioo connected_continuous_image) (auto split: split_min split_max)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2999
  with g have "continuous_on {min ?A ?B <..< max ?A ?B} g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  3000
    by (rule continuous_on_subset)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  3001
  moreover
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  3002
  have "(?A < f x \<and> f x < ?B) \<or> (?B < f x \<and> f x < ?A)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  3003
    using d inj by (intro continuous_inj_imp_mono[OF _ _ f] inj_on_imageI2[of g, OF inj_onI]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  3004
  then have "f x \<in> {min ?A ?B <..< max ?A ?B}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  3005
    by auto
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  3006
  ultimately show ?thesis
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  3007
    by (simp add: continuous_on_eq_continuous_at)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  3008
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  3009
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  3010
lemma isCont_inverse_function2:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3011
  fixes f g :: "real \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3012
  shows
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3013
    "\<lbrakk>a < x; x < b;
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3014
      \<And>z. \<lbrakk>a \<le> z; z \<le> b\<rbrakk> \<Longrightarrow> g (f z) = z;
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3015
      \<And>z. \<lbrakk>a \<le> z; z \<le> b\<rbrakk> \<Longrightarrow> isCont f z\<rbrakk> \<Longrightarrow> isCont g (f x)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3016
  apply (rule isCont_inverse_function [where f=f and d="min (x - a) (b - x)"])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3017
  apply (simp_all add: abs_le_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3018
  done
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  3019
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3020
text \<open>Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3021
lemma LIM_fun_gt_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> 0 < f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3022
  for f :: "real \<Rightarrow> real"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  3023
  by (force simp: dest: LIM_D)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3024
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3025
lemma LIM_fun_less_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x < 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3026
  for f :: "real \<Rightarrow> real"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  3027
  by (drule LIM_D [where r="-l"]) force+
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3028
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3029
lemma LIM_fun_not_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x \<noteq> 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  3030
  for f :: "real \<Rightarrow> real"
68615
3ed4ff0b7ac4 de-applying
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  3031
  using LIM_fun_gt_zero[of f l c] LIM_fun_less_zero[of f l c] by (auto simp: neq_iff)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  3032
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
  3033
end