| author | haftmann | 
| Thu, 23 Sep 2010 10:39:25 +0200 | |
| changeset 39647 | 7bf0c7f0f24c | 
| parent 36774 | 9e444b09fbef | 
| child 42904 | 4aedcff42de6 | 
| permissions | -rw-r--r-- | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1 | (* Title: HOL/Fields.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 2 | Author: Gertrud Bauer | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 3 | Author: Steven Obua | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 4 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 5 | Author: Lawrence C Paulson | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 6 | Author: Markus Wenzel | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 7 | Author: Jeremy Avigad | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 8 | *) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 9 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 10 | header {* Fields *}
 | 
| 25152 | 11 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 12 | theory Fields | 
| 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 13 | imports Rings | 
| 25186 | 14 | begin | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 15 | |
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 16 | class field = comm_ring_1 + inverse + | 
| 35084 | 17 | assumes field_inverse: "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1" | 
| 18 | assumes field_divide_inverse: "a / b = a * inverse b" | |
| 25267 | 19 | begin | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 20 | |
| 25267 | 21 | subclass division_ring | 
| 28823 | 22 | proof | 
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 23 | fix a :: 'a | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 24 | assume "a \<noteq> 0" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 25 | thus "inverse a * a = 1" by (rule field_inverse) | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 26 | thus "a * inverse a = 1" by (simp only: mult_commute) | 
| 35084 | 27 | next | 
| 28 | fix a b :: 'a | |
| 29 | show "a / b = a * inverse b" by (rule field_divide_inverse) | |
| 14738 | 30 | qed | 
| 25230 | 31 | |
| 27516 | 32 | subclass idom .. | 
| 25230 | 33 | |
| 30630 | 34 | text{*There is no slick version using division by zero.*}
 | 
| 35 | lemma inverse_add: | |
| 36 | "[| a \<noteq> 0; b \<noteq> 0 |] | |
| 37 | ==> inverse a + inverse b = (a + b) * inverse a * inverse b" | |
| 38 | by (simp add: division_ring_inverse_add mult_ac) | |
| 39 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 40 | lemma nonzero_mult_divide_mult_cancel_left [simp, no_atp]: | 
| 30630 | 41 | assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" shows "(c*a)/(c*b) = a/b" | 
| 42 | proof - | |
| 43 | have "(c*a)/(c*b) = c * a * (inverse b * inverse c)" | |
| 44 | by (simp add: divide_inverse nonzero_inverse_mult_distrib) | |
| 45 | also have "... = a * inverse b * (inverse c * c)" | |
| 46 | by (simp only: mult_ac) | |
| 47 | also have "... = a * inverse b" by simp | |
| 48 | finally show ?thesis by (simp add: divide_inverse) | |
| 49 | qed | |
| 50 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 51 | lemma nonzero_mult_divide_mult_cancel_right [simp, no_atp]: | 
| 30630 | 52 | "\<lbrakk>b \<noteq> 0; c \<noteq> 0\<rbrakk> \<Longrightarrow> (a * c) / (b * c) = a / b" | 
| 53 | by (simp add: mult_commute [of _ c]) | |
| 54 | ||
| 36304 
6984744e6b34
less special treatment of times_divide_eq [simp]
 haftmann parents: 
36301diff
changeset | 55 | lemma times_divide_eq_left [simp]: "(b / c) * a = (b * a) / c" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 56 | by (simp add: divide_inverse mult_ac) | 
| 30630 | 57 | |
| 58 | text {* These are later declared as simp rules. *}
 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 59 | lemmas times_divide_eq [no_atp] = times_divide_eq_right times_divide_eq_left | 
| 30630 | 60 | |
| 61 | lemma add_frac_eq: | |
| 62 | assumes "y \<noteq> 0" and "z \<noteq> 0" | |
| 63 | shows "x / y + w / z = (x * z + w * y) / (y * z)" | |
| 64 | proof - | |
| 65 | have "x / y + w / z = (x * z) / (y * z) + (y * w) / (y * z)" | |
| 66 | using assms by simp | |
| 67 | also have "\<dots> = (x * z + y * w) / (y * z)" | |
| 68 | by (simp only: add_divide_distrib) | |
| 69 | finally show ?thesis | |
| 70 | by (simp only: mult_commute) | |
| 71 | qed | |
| 72 | ||
| 73 | text{*Special Cancellation Simprules for Division*}
 | |
| 74 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 75 | lemma nonzero_mult_divide_cancel_right [simp, no_atp]: | 
| 30630 | 76 | "b \<noteq> 0 \<Longrightarrow> a * b / b = a" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 77 | using nonzero_mult_divide_mult_cancel_right [of 1 b a] by simp | 
| 30630 | 78 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 79 | lemma nonzero_mult_divide_cancel_left [simp, no_atp]: | 
| 30630 | 80 | "a \<noteq> 0 \<Longrightarrow> a * b / a = b" | 
| 81 | using nonzero_mult_divide_mult_cancel_left [of 1 a b] by simp | |
| 82 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 83 | lemma nonzero_divide_mult_cancel_right [simp, no_atp]: | 
| 30630 | 84 | "\<lbrakk>a \<noteq> 0; b \<noteq> 0\<rbrakk> \<Longrightarrow> b / (a * b) = 1 / a" | 
| 85 | using nonzero_mult_divide_mult_cancel_right [of a b 1] by simp | |
| 86 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 87 | lemma nonzero_divide_mult_cancel_left [simp, no_atp]: | 
| 30630 | 88 | "\<lbrakk>a \<noteq> 0; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / (a * b) = 1 / b" | 
| 89 | using nonzero_mult_divide_mult_cancel_left [of b a 1] by simp | |
| 90 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 91 | lemma nonzero_mult_divide_mult_cancel_left2 [simp, no_atp]: | 
| 30630 | 92 | "\<lbrakk>b \<noteq> 0; c \<noteq> 0\<rbrakk> \<Longrightarrow> (c * a) / (b * c) = a / b" | 
| 93 | using nonzero_mult_divide_mult_cancel_left [of b c a] by (simp add: mult_ac) | |
| 94 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 95 | lemma nonzero_mult_divide_mult_cancel_right2 [simp, no_atp]: | 
| 30630 | 96 | "\<lbrakk>b \<noteq> 0; c \<noteq> 0\<rbrakk> \<Longrightarrow> (a * c) / (c * b) = a / b" | 
| 97 | using nonzero_mult_divide_mult_cancel_right [of b c a] by (simp add: mult_ac) | |
| 98 | ||
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 99 | lemma add_divide_eq_iff [field_simps]: | 
| 30630 | 100 | "z \<noteq> 0 \<Longrightarrow> x + y / z = (z * x + y) / z" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 101 | by (simp add: add_divide_distrib) | 
| 30630 | 102 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 103 | lemma divide_add_eq_iff [field_simps]: | 
| 30630 | 104 | "z \<noteq> 0 \<Longrightarrow> x / z + y = (x + z * y) / z" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 105 | by (simp add: add_divide_distrib) | 
| 30630 | 106 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 107 | lemma diff_divide_eq_iff [field_simps]: | 
| 30630 | 108 | "z \<noteq> 0 \<Longrightarrow> x - y / z = (z * x - y) / z" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 109 | by (simp add: diff_divide_distrib) | 
| 30630 | 110 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 111 | lemma divide_diff_eq_iff [field_simps]: | 
| 30630 | 112 | "z \<noteq> 0 \<Longrightarrow> x / z - y = (x - z * y) / z" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 113 | by (simp add: diff_divide_distrib) | 
| 30630 | 114 | |
| 115 | lemma diff_frac_eq: | |
| 116 | "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> x / y - w / z = (x * z - w * y) / (y * z)" | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 117 | by (simp add: field_simps) | 
| 30630 | 118 | |
| 119 | lemma frac_eq_eq: | |
| 120 | "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> (x / y = w / z) = (x * z = w * y)" | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 121 | by (simp add: field_simps) | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 122 | |
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 123 | end | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 124 | |
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 125 | class field_inverse_zero = field + | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 126 | assumes field_inverse_zero: "inverse 0 = 0" | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 127 | begin | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 128 | |
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 129 | subclass division_ring_inverse_zero proof | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 130 | qed (fact field_inverse_zero) | 
| 25230 | 131 | |
| 14270 | 132 | text{*This version builds in division by zero while also re-orienting
 | 
| 133 | the right-hand side.*} | |
| 134 | lemma inverse_mult_distrib [simp]: | |
| 36409 | 135 | "inverse (a * b) = inverse a * inverse b" | 
| 136 | proof cases | |
| 137 | assume "a \<noteq> 0 & b \<noteq> 0" | |
| 138 | thus ?thesis by (simp add: nonzero_inverse_mult_distrib mult_ac) | |
| 139 | next | |
| 140 | assume "~ (a \<noteq> 0 & b \<noteq> 0)" | |
| 141 | thus ?thesis by force | |
| 142 | qed | |
| 14270 | 143 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 144 | lemma inverse_divide [simp]: | 
| 36409 | 145 | "inverse (a / b) = b / a" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 146 | by (simp add: divide_inverse mult_commute) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 147 | |
| 23389 | 148 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 149 | text {* Calculations with fractions *}
 | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 150 | |
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 151 | text{* There is a whole bunch of simp-rules just for class @{text
 | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 152 | field} but none for class @{text field} and @{text nonzero_divides}
 | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 153 | because the latter are covered by a simproc. *} | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 154 | |
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 155 | lemma mult_divide_mult_cancel_left: | 
| 36409 | 156 | "c \<noteq> 0 \<Longrightarrow> (c * a) / (c * b) = a / b" | 
| 21328 | 157 | apply (cases "b = 0") | 
| 35216 | 158 | apply simp_all | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 159 | done | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 160 | |
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 161 | lemma mult_divide_mult_cancel_right: | 
| 36409 | 162 | "c \<noteq> 0 \<Longrightarrow> (a * c) / (b * c) = a / b" | 
| 21328 | 163 | apply (cases "b = 0") | 
| 35216 | 164 | apply simp_all | 
| 14321 | 165 | done | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 166 | |
| 36409 | 167 | lemma divide_divide_eq_right [simp, no_atp]: | 
| 168 | "a / (b / c) = (a * c) / b" | |
| 169 | by (simp add: divide_inverse mult_ac) | |
| 14288 | 170 | |
| 36409 | 171 | lemma divide_divide_eq_left [simp, no_atp]: | 
| 172 | "(a / b) / c = a / (b * c)" | |
| 173 | by (simp add: divide_inverse mult_assoc) | |
| 14288 | 174 | |
| 23389 | 175 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 176 | text {*Special Cancellation Simprules for Division*}
 | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 177 | |
| 36409 | 178 | lemma mult_divide_mult_cancel_left_if [simp,no_atp]: | 
| 179 | shows "(c * a) / (c * b) = (if c = 0 then 0 else a / b)" | |
| 180 | by (simp add: mult_divide_mult_cancel_left) | |
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 181 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 182 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 183 | text {* Division and Unary Minus *}
 | 
| 14293 | 184 | |
| 36409 | 185 | lemma minus_divide_right: | 
| 186 | "- (a / b) = a / - b" | |
| 187 | by (simp add: divide_inverse) | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 188 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 189 | lemma divide_minus_right [simp, no_atp]: | 
| 36409 | 190 | "a / - b = - (a / b)" | 
| 191 | by (simp add: divide_inverse) | |
| 30630 | 192 | |
| 193 | lemma minus_divide_divide: | |
| 36409 | 194 | "(- a) / (- b) = a / b" | 
| 21328 | 195 | apply (cases "b=0", simp) | 
| 14293 | 196 | apply (simp add: nonzero_minus_divide_divide) | 
| 197 | done | |
| 198 | ||
| 23482 | 199 | lemma eq_divide_eq: | 
| 36409 | 200 | "a = b / c \<longleftrightarrow> (if c \<noteq> 0 then a * c = b else a = 0)" | 
| 201 | by (simp add: nonzero_eq_divide_eq) | |
| 23482 | 202 | |
| 203 | lemma divide_eq_eq: | |
| 36409 | 204 | "b / c = a \<longleftrightarrow> (if c \<noteq> 0 then b = a * c else a = 0)" | 
| 205 | by (force simp add: nonzero_divide_eq_eq) | |
| 14293 | 206 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 207 | lemma inverse_eq_1_iff [simp]: | 
| 36409 | 208 | "inverse x = 1 \<longleftrightarrow> x = 1" | 
| 209 | by (insert inverse_eq_iff_eq [of x 1], simp) | |
| 23389 | 210 | |
| 36409 | 211 | lemma divide_eq_0_iff [simp, no_atp]: | 
| 212 | "a / b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | |
| 213 | by (simp add: divide_inverse) | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 214 | |
| 36409 | 215 | lemma divide_cancel_right [simp, no_atp]: | 
| 216 | "a / c = b / c \<longleftrightarrow> c = 0 \<or> a = b" | |
| 217 | apply (cases "c=0", simp) | |
| 218 | apply (simp add: divide_inverse) | |
| 219 | done | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 220 | |
| 36409 | 221 | lemma divide_cancel_left [simp, no_atp]: | 
| 222 | "c / a = c / b \<longleftrightarrow> c = 0 \<or> a = b" | |
| 223 | apply (cases "c=0", simp) | |
| 224 | apply (simp add: divide_inverse) | |
| 225 | done | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 226 | |
| 36409 | 227 | lemma divide_eq_1_iff [simp, no_atp]: | 
| 228 | "a / b = 1 \<longleftrightarrow> b \<noteq> 0 \<and> a = b" | |
| 229 | apply (cases "b=0", simp) | |
| 230 | apply (simp add: right_inverse_eq) | |
| 231 | done | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 232 | |
| 36409 | 233 | lemma one_eq_divide_iff [simp, no_atp]: | 
| 234 | "1 = a / b \<longleftrightarrow> b \<noteq> 0 \<and> a = b" | |
| 235 | by (simp add: eq_commute [of 1]) | |
| 236 | ||
| 36719 | 237 | lemma times_divide_times_eq: | 
| 238 | "(x / y) * (z / w) = (x * z) / (y * w)" | |
| 239 | by simp | |
| 240 | ||
| 241 | lemma add_frac_num: | |
| 242 | "y \<noteq> 0 \<Longrightarrow> x / y + z = (x + z * y) / y" | |
| 243 | by (simp add: add_divide_distrib) | |
| 244 | ||
| 245 | lemma add_num_frac: | |
| 246 | "y \<noteq> 0 \<Longrightarrow> z + x / y = (x + z * y) / y" | |
| 247 | by (simp add: add_divide_distrib add.commute) | |
| 248 | ||
| 36409 | 249 | end | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 250 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 251 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 252 | text {* Ordered Fields *}
 | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 253 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 254 | class linordered_field = field + linordered_idom | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 255 | begin | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 256 | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 257 | lemma positive_imp_inverse_positive: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 258 | assumes a_gt_0: "0 < a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 259 | shows "0 < inverse a" | 
| 23482 | 260 | proof - | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 261 | have "0 < a * inverse a" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 262 | by (simp add: a_gt_0 [THEN less_imp_not_eq2]) | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 263 | thus "0 < inverse a" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 264 | by (simp add: a_gt_0 [THEN less_not_sym] zero_less_mult_iff) | 
| 23482 | 265 | qed | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 266 | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 267 | lemma negative_imp_inverse_negative: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 268 | "a < 0 \<Longrightarrow> inverse a < 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 269 | by (insert positive_imp_inverse_positive [of "-a"], | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 270 | simp add: nonzero_inverse_minus_eq less_imp_not_eq) | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 271 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 272 | lemma inverse_le_imp_le: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 273 | assumes invle: "inverse a \<le> inverse b" and apos: "0 < a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 274 | shows "b \<le> a" | 
| 23482 | 275 | proof (rule classical) | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 276 | assume "~ b \<le> a" | 
| 23482 | 277 | hence "a < b" by (simp add: linorder_not_le) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 278 | hence bpos: "0 < b" by (blast intro: apos less_trans) | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 279 | hence "a * inverse a \<le> a * inverse b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 280 | by (simp add: apos invle less_imp_le mult_left_mono) | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 281 | hence "(a * inverse a) * b \<le> (a * inverse b) * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 282 | by (simp add: bpos less_imp_le mult_right_mono) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 283 | thus "b \<le> a" by (simp add: mult_assoc apos bpos less_imp_not_eq2) | 
| 23482 | 284 | qed | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 285 | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 286 | lemma inverse_positive_imp_positive: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 287 | assumes inv_gt_0: "0 < inverse a" and nz: "a \<noteq> 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 288 | shows "0 < a" | 
| 23389 | 289 | proof - | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 290 | have "0 < inverse (inverse a)" | 
| 23389 | 291 | using inv_gt_0 by (rule positive_imp_inverse_positive) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 292 | thus "0 < a" | 
| 23389 | 293 | using nz by (simp add: nonzero_inverse_inverse_eq) | 
| 294 | qed | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 295 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 296 | lemma inverse_negative_imp_negative: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 297 | assumes inv_less_0: "inverse a < 0" and nz: "a \<noteq> 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 298 | shows "a < 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 299 | proof - | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 300 | have "inverse (inverse a) < 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 301 | using inv_less_0 by (rule negative_imp_inverse_negative) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 302 | thus "a < 0" using nz by (simp add: nonzero_inverse_inverse_eq) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 303 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 304 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 305 | lemma linordered_field_no_lb: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 306 | "\<forall>x. \<exists>y. y < x" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 307 | proof | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 308 | fix x::'a | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 309 | have m1: "- (1::'a) < 0" by simp | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 310 | from add_strict_right_mono[OF m1, where c=x] | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 311 | have "(- 1) + x < x" by simp | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 312 | thus "\<exists>y. y < x" by blast | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 313 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 314 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 315 | lemma linordered_field_no_ub: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 316 | "\<forall> x. \<exists>y. y > x" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 317 | proof | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 318 | fix x::'a | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 319 | have m1: " (1::'a) > 0" by simp | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 320 | from add_strict_right_mono[OF m1, where c=x] | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 321 | have "1 + x > x" by simp | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 322 | thus "\<exists>y. y > x" by blast | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 323 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 324 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 325 | lemma less_imp_inverse_less: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 326 | assumes less: "a < b" and apos: "0 < a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 327 | shows "inverse b < inverse a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 328 | proof (rule ccontr) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 329 | assume "~ inverse b < inverse a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 330 | hence "inverse a \<le> inverse b" by simp | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 331 | hence "~ (a < b)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 332 | by (simp add: not_less inverse_le_imp_le [OF _ apos]) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 333 | thus False by (rule notE [OF _ less]) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 334 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 335 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 336 | lemma inverse_less_imp_less: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 337 | "inverse a < inverse b \<Longrightarrow> 0 < a \<Longrightarrow> b < a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 338 | apply (simp add: less_le [of "inverse a"] less_le [of "b"]) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 339 | apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 340 | done | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 341 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 342 | text{*Both premises are essential. Consider -1 and 1.*}
 | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 343 | lemma inverse_less_iff_less [simp,no_atp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 344 | "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> inverse a < inverse b \<longleftrightarrow> b < a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 345 | by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 346 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 347 | lemma le_imp_inverse_le: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 348 | "a \<le> b \<Longrightarrow> 0 < a \<Longrightarrow> inverse b \<le> inverse a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 349 | by (force simp add: le_less less_imp_inverse_less) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 350 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 351 | lemma inverse_le_iff_le [simp,no_atp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 352 | "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> inverse a \<le> inverse b \<longleftrightarrow> b \<le> a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 353 | by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 354 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 355 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 356 | text{*These results refer to both operands being negative.  The opposite-sign
 | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 357 | case is trivial, since inverse preserves signs.*} | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 358 | lemma inverse_le_imp_le_neg: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 359 | "inverse a \<le> inverse b \<Longrightarrow> b < 0 \<Longrightarrow> b \<le> a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 360 | apply (rule classical) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 361 | apply (subgoal_tac "a < 0") | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 362 | prefer 2 apply force | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 363 | apply (insert inverse_le_imp_le [of "-b" "-a"]) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 364 | apply (simp add: nonzero_inverse_minus_eq) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 365 | done | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 366 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 367 | lemma less_imp_inverse_less_neg: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 368 | "a < b \<Longrightarrow> b < 0 \<Longrightarrow> inverse b < inverse a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 369 | apply (subgoal_tac "a < 0") | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 370 | prefer 2 apply (blast intro: less_trans) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 371 | apply (insert less_imp_inverse_less [of "-b" "-a"]) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 372 | apply (simp add: nonzero_inverse_minus_eq) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 373 | done | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 374 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 375 | lemma inverse_less_imp_less_neg: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 376 | "inverse a < inverse b \<Longrightarrow> b < 0 \<Longrightarrow> b < a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 377 | apply (rule classical) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 378 | apply (subgoal_tac "a < 0") | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 379 | prefer 2 | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 380 | apply force | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 381 | apply (insert inverse_less_imp_less [of "-b" "-a"]) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 382 | apply (simp add: nonzero_inverse_minus_eq) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 383 | done | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 384 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 385 | lemma inverse_less_iff_less_neg [simp,no_atp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 386 | "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> inverse a < inverse b \<longleftrightarrow> b < a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 387 | apply (insert inverse_less_iff_less [of "-b" "-a"]) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 388 | apply (simp del: inverse_less_iff_less | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 389 | add: nonzero_inverse_minus_eq) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 390 | done | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 391 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 392 | lemma le_imp_inverse_le_neg: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 393 | "a \<le> b \<Longrightarrow> b < 0 ==> inverse b \<le> inverse a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 394 | by (force simp add: le_less less_imp_inverse_less_neg) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 395 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 396 | lemma inverse_le_iff_le_neg [simp,no_atp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 397 | "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> inverse a \<le> inverse b \<longleftrightarrow> b \<le> a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 398 | by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 399 | |
| 36774 | 400 | lemma one_less_inverse: | 
| 401 | "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> 1 < inverse a" | |
| 402 | using less_imp_inverse_less [of a 1, unfolded inverse_1] . | |
| 403 | ||
| 404 | lemma one_le_inverse: | |
| 405 | "0 < a \<Longrightarrow> a \<le> 1 \<Longrightarrow> 1 \<le> inverse a" | |
| 406 | using le_imp_inverse_le [of a 1, unfolded inverse_1] . | |
| 407 | ||
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 408 | lemma pos_le_divide_eq [field_simps]: "0 < c ==> (a \<le> b/c) = (a*c \<le> b)" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 409 | proof - | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 410 | assume less: "0<c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 411 | hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)" | 
| 36304 
6984744e6b34
less special treatment of times_divide_eq [simp]
 haftmann parents: 
36301diff
changeset | 412 | by (simp add: mult_le_cancel_right less_not_sym [OF less] del: times_divide_eq) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 413 | also have "... = (a*c \<le> b)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 414 | by (simp add: less_imp_not_eq2 [OF less] divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 415 | finally show ?thesis . | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 416 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 417 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 418 | lemma neg_le_divide_eq [field_simps]: "c < 0 ==> (a \<le> b/c) = (b \<le> a*c)" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 419 | proof - | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 420 | assume less: "c<0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 421 | hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)" | 
| 36304 
6984744e6b34
less special treatment of times_divide_eq [simp]
 haftmann parents: 
36301diff
changeset | 422 | by (simp add: mult_le_cancel_right less_not_sym [OF less] del: times_divide_eq) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 423 | also have "... = (b \<le> a*c)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 424 | by (simp add: less_imp_not_eq [OF less] divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 425 | finally show ?thesis . | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 426 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 427 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 428 | lemma pos_less_divide_eq [field_simps]: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 429 | "0 < c ==> (a < b/c) = (a*c < b)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 430 | proof - | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 431 | assume less: "0<c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 432 | hence "(a < b/c) = (a*c < (b/c)*c)" | 
| 36304 
6984744e6b34
less special treatment of times_divide_eq [simp]
 haftmann parents: 
36301diff
changeset | 433 | by (simp add: mult_less_cancel_right_disj less_not_sym [OF less] del: times_divide_eq) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 434 | also have "... = (a*c < b)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 435 | by (simp add: less_imp_not_eq2 [OF less] divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 436 | finally show ?thesis . | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 437 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 438 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 439 | lemma neg_less_divide_eq [field_simps]: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 440 | "c < 0 ==> (a < b/c) = (b < a*c)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 441 | proof - | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 442 | assume less: "c<0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 443 | hence "(a < b/c) = ((b/c)*c < a*c)" | 
| 36304 
6984744e6b34
less special treatment of times_divide_eq [simp]
 haftmann parents: 
36301diff
changeset | 444 | by (simp add: mult_less_cancel_right_disj less_not_sym [OF less] del: times_divide_eq) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 445 | also have "... = (b < a*c)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 446 | by (simp add: less_imp_not_eq [OF less] divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 447 | finally show ?thesis . | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 448 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 449 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 450 | lemma pos_divide_less_eq [field_simps]: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 451 | "0 < c ==> (b/c < a) = (b < a*c)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 452 | proof - | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 453 | assume less: "0<c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 454 | hence "(b/c < a) = ((b/c)*c < a*c)" | 
| 36304 
6984744e6b34
less special treatment of times_divide_eq [simp]
 haftmann parents: 
36301diff
changeset | 455 | by (simp add: mult_less_cancel_right_disj less_not_sym [OF less] del: times_divide_eq) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 456 | also have "... = (b < a*c)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 457 | by (simp add: less_imp_not_eq2 [OF less] divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 458 | finally show ?thesis . | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 459 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 460 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 461 | lemma neg_divide_less_eq [field_simps]: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 462 | "c < 0 ==> (b/c < a) = (a*c < b)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 463 | proof - | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 464 | assume less: "c<0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 465 | hence "(b/c < a) = (a*c < (b/c)*c)" | 
| 36304 
6984744e6b34
less special treatment of times_divide_eq [simp]
 haftmann parents: 
36301diff
changeset | 466 | by (simp add: mult_less_cancel_right_disj less_not_sym [OF less] del: times_divide_eq) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 467 | also have "... = (a*c < b)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 468 | by (simp add: less_imp_not_eq [OF less] divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 469 | finally show ?thesis . | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 470 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 471 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 472 | lemma pos_divide_le_eq [field_simps]: "0 < c ==> (b/c \<le> a) = (b \<le> a*c)" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 473 | proof - | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 474 | assume less: "0<c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 475 | hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)" | 
| 36304 
6984744e6b34
less special treatment of times_divide_eq [simp]
 haftmann parents: 
36301diff
changeset | 476 | by (simp add: mult_le_cancel_right less_not_sym [OF less] del: times_divide_eq) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 477 | also have "... = (b \<le> a*c)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 478 | by (simp add: less_imp_not_eq2 [OF less] divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 479 | finally show ?thesis . | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 480 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 481 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 482 | lemma neg_divide_le_eq [field_simps]: "c < 0 ==> (b/c \<le> a) = (a*c \<le> b)" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 483 | proof - | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 484 | assume less: "c<0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 485 | hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)" | 
| 36304 
6984744e6b34
less special treatment of times_divide_eq [simp]
 haftmann parents: 
36301diff
changeset | 486 | by (simp add: mult_le_cancel_right less_not_sym [OF less] del: times_divide_eq) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 487 | also have "... = (a*c \<le> b)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 488 | by (simp add: less_imp_not_eq [OF less] divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 489 | finally show ?thesis . | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 490 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 491 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 492 | text{* Lemmas @{text sign_simps} is a first attempt to automate proofs
 | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 493 | of positivity/negativity needed for @{text field_simps}. Have not added @{text
 | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 494 | sign_simps} to @{text field_simps} because the former can lead to case
 | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 495 | explosions. *} | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 496 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 497 | lemmas sign_simps [no_atp] = algebra_simps | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 498 | zero_less_mult_iff mult_less_0_iff | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 499 | |
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 500 | lemmas (in -) sign_simps [no_atp] = algebra_simps | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 501 | zero_less_mult_iff mult_less_0_iff | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 502 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 503 | (* Only works once linear arithmetic is installed: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 504 | text{*An example:*}
 | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 505 | lemma fixes a b c d e f :: "'a::linordered_field" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 506 | shows "\<lbrakk>a>b; c<d; e<f; 0 < u \<rbrakk> \<Longrightarrow> | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 507 | ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) < | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 508 | ((e-f)*(a-b)*(c-d))/((e-f)*(a-b)*(c-d)) + u" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 509 | apply(subgoal_tac "(c-d)*(e-f)*(a-b) > 0") | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 510 | prefer 2 apply(simp add:sign_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 511 | apply(subgoal_tac "(c-d)*(e-f)*(a-b)*u > 0") | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 512 | prefer 2 apply(simp add:sign_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 513 | apply(simp add:field_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 514 | done | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 515 | *) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 516 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 517 | lemma divide_pos_pos: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 518 | "0 < x ==> 0 < y ==> 0 < x / y" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 519 | by(simp add:field_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 520 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 521 | lemma divide_nonneg_pos: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 522 | "0 <= x ==> 0 < y ==> 0 <= x / y" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 523 | by(simp add:field_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 524 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 525 | lemma divide_neg_pos: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 526 | "x < 0 ==> 0 < y ==> x / y < 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 527 | by(simp add:field_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 528 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 529 | lemma divide_nonpos_pos: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 530 | "x <= 0 ==> 0 < y ==> x / y <= 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 531 | by(simp add:field_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 532 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 533 | lemma divide_pos_neg: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 534 | "0 < x ==> y < 0 ==> x / y < 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 535 | by(simp add:field_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 536 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 537 | lemma divide_nonneg_neg: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 538 | "0 <= x ==> y < 0 ==> x / y <= 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 539 | by(simp add:field_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 540 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 541 | lemma divide_neg_neg: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 542 | "x < 0 ==> y < 0 ==> 0 < x / y" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 543 | by(simp add:field_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 544 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 545 | lemma divide_nonpos_neg: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 546 | "x <= 0 ==> y < 0 ==> 0 <= x / y" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 547 | by(simp add:field_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 548 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 549 | lemma divide_strict_right_mono: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 550 | "[|a < b; 0 < c|] ==> a / c < b / c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 551 | by (simp add: less_imp_not_eq2 divide_inverse mult_strict_right_mono | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 552 | positive_imp_inverse_positive) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 553 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 554 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 555 | lemma divide_strict_right_mono_neg: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 556 | "[|b < a; c < 0|] ==> a / c < b / c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 557 | apply (drule divide_strict_right_mono [of _ _ "-c"], simp) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 558 | apply (simp add: less_imp_not_eq nonzero_minus_divide_right [symmetric]) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 559 | done | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 560 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 561 | text{*The last premise ensures that @{term a} and @{term b} 
 | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 562 | have the same sign*} | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 563 | lemma divide_strict_left_mono: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 564 | "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 565 | by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 566 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 567 | lemma divide_left_mono: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 568 | "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 569 | by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_right_mono) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 570 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 571 | lemma divide_strict_left_mono_neg: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 572 | "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 573 | by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono_neg) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 574 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 575 | lemma mult_imp_div_pos_le: "0 < y ==> x <= z * y ==> | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 576 | x / y <= z" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 577 | by (subst pos_divide_le_eq, assumption+) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 578 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 579 | lemma mult_imp_le_div_pos: "0 < y ==> z * y <= x ==> | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 580 | z <= x / y" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 581 | by(simp add:field_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 582 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 583 | lemma mult_imp_div_pos_less: "0 < y ==> x < z * y ==> | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 584 | x / y < z" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 585 | by(simp add:field_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 586 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 587 | lemma mult_imp_less_div_pos: "0 < y ==> z * y < x ==> | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 588 | z < x / y" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 589 | by(simp add:field_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 590 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 591 | lemma frac_le: "0 <= x ==> | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 592 | x <= y ==> 0 < w ==> w <= z ==> x / z <= y / w" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 593 | apply (rule mult_imp_div_pos_le) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 594 | apply simp | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 595 | apply (subst times_divide_eq_left) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 596 | apply (rule mult_imp_le_div_pos, assumption) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 597 | apply (rule mult_mono) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 598 | apply simp_all | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 599 | done | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 600 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 601 | lemma frac_less: "0 <= x ==> | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 602 | x < y ==> 0 < w ==> w <= z ==> x / z < y / w" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 603 | apply (rule mult_imp_div_pos_less) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 604 | apply simp | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 605 | apply (subst times_divide_eq_left) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 606 | apply (rule mult_imp_less_div_pos, assumption) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 607 | apply (erule mult_less_le_imp_less) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 608 | apply simp_all | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 609 | done | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 610 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 611 | lemma frac_less2: "0 < x ==> | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 612 | x <= y ==> 0 < w ==> w < z ==> x / z < y / w" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 613 | apply (rule mult_imp_div_pos_less) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 614 | apply simp_all | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 615 | apply (rule mult_imp_less_div_pos, assumption) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 616 | apply (erule mult_le_less_imp_less) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 617 | apply simp_all | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 618 | done | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 619 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 620 | text{*It's not obvious whether these should be simprules or not. 
 | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 621 | Their effect is to gather terms into one big fraction, like | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 622 | a*b*c / x*y*z. The rationale for that is unclear, but many proofs | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 623 | seem to need them.*} | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 624 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 625 | lemma less_half_sum: "a < b ==> a < (a+b) / (1+1)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 626 | by (simp add: field_simps zero_less_two) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 627 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 628 | lemma gt_half_sum: "a < b ==> (a+b)/(1+1) < b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 629 | by (simp add: field_simps zero_less_two) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 630 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 631 | subclass dense_linorder | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 632 | proof | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 633 | fix x y :: 'a | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 634 | from less_add_one show "\<exists>y. x < y" .. | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 635 | from less_add_one have "x + (- 1) < (x + 1) + (- 1)" by (rule add_strict_right_mono) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 636 | then have "x - 1 < x + 1 - 1" by (simp only: diff_minus [symmetric]) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 637 | then have "x - 1 < x" by (simp add: algebra_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 638 | then show "\<exists>y. y < x" .. | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 639 | show "x < y \<Longrightarrow> \<exists>z>x. z < y" by (blast intro!: less_half_sum gt_half_sum) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 640 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 641 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 642 | lemma nonzero_abs_inverse: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 643 | "a \<noteq> 0 ==> \<bar>inverse a\<bar> = inverse \<bar>a\<bar>" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 644 | apply (auto simp add: neq_iff abs_if nonzero_inverse_minus_eq | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 645 | negative_imp_inverse_negative) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 646 | apply (blast intro: positive_imp_inverse_positive elim: less_asym) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 647 | done | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 648 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 649 | lemma nonzero_abs_divide: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 650 | "b \<noteq> 0 ==> \<bar>a / b\<bar> = \<bar>a\<bar> / \<bar>b\<bar>" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 651 | by (simp add: divide_inverse abs_mult nonzero_abs_inverse) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 652 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 653 | lemma field_le_epsilon: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 654 | assumes e: "\<And>e. 0 < e \<Longrightarrow> x \<le> y + e" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 655 | shows "x \<le> y" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 656 | proof (rule dense_le) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 657 | fix t assume "t < x" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 658 | hence "0 < x - t" by (simp add: less_diff_eq) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 659 | from e [OF this] have "x + 0 \<le> x + (y - t)" by (simp add: algebra_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 660 | then have "0 \<le> y - t" by (simp only: add_le_cancel_left) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 661 | then show "t \<le> y" by (simp add: algebra_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 662 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 663 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 664 | end | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 665 | |
| 36414 | 666 | class linordered_field_inverse_zero = linordered_field + field_inverse_zero | 
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 667 | begin | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 668 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 669 | lemma le_divide_eq: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 670 | "(a \<le> b/c) = | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 671 | (if 0 < c then a*c \<le> b | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 672 | else if c < 0 then b \<le> a*c | 
| 36409 | 673 | else a \<le> 0)" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 674 | apply (cases "c=0", simp) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 675 | apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 676 | done | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 677 | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 678 | lemma inverse_positive_iff_positive [simp]: | 
| 36409 | 679 | "(0 < inverse a) = (0 < a)" | 
| 21328 | 680 | apply (cases "a = 0", simp) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 681 | apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 682 | done | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 683 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 684 | lemma inverse_negative_iff_negative [simp]: | 
| 36409 | 685 | "(inverse a < 0) = (a < 0)" | 
| 21328 | 686 | apply (cases "a = 0", simp) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 687 | apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 688 | done | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 689 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 690 | lemma inverse_nonnegative_iff_nonnegative [simp]: | 
| 36409 | 691 | "0 \<le> inverse a \<longleftrightarrow> 0 \<le> a" | 
| 692 | by (simp add: not_less [symmetric]) | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 693 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 694 | lemma inverse_nonpositive_iff_nonpositive [simp]: | 
| 36409 | 695 | "inverse a \<le> 0 \<longleftrightarrow> a \<le> 0" | 
| 696 | by (simp add: not_less [symmetric]) | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 697 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 698 | lemma one_less_inverse_iff: | 
| 36409 | 699 | "1 < inverse x \<longleftrightarrow> 0 < x \<and> x < 1" | 
| 23482 | 700 | proof cases | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 701 | assume "0 < x" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 702 | with inverse_less_iff_less [OF zero_less_one, of x] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 703 | show ?thesis by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 704 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 705 | assume notless: "~ (0 < x)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 706 | have "~ (1 < inverse x)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 707 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 708 | assume "1 < inverse x" | 
| 36409 | 709 | also with notless have "... \<le> 0" by simp | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 710 | also have "... < 1" by (rule zero_less_one) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 711 | finally show False by auto | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 712 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 713 | with notless show ?thesis by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 714 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 715 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 716 | lemma one_le_inverse_iff: | 
| 36409 | 717 | "1 \<le> inverse x \<longleftrightarrow> 0 < x \<and> x \<le> 1" | 
| 718 | proof (cases "x = 1") | |
| 719 | case True then show ?thesis by simp | |
| 720 | next | |
| 721 | case False then have "inverse x \<noteq> 1" by simp | |
| 722 | then have "1 \<noteq> inverse x" by blast | |
| 723 | then have "1 \<le> inverse x \<longleftrightarrow> 1 < inverse x" by (simp add: le_less) | |
| 724 | with False show ?thesis by (auto simp add: one_less_inverse_iff) | |
| 725 | qed | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 726 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 727 | lemma inverse_less_1_iff: | 
| 36409 | 728 | "inverse x < 1 \<longleftrightarrow> x \<le> 0 \<or> 1 < x" | 
| 729 | by (simp add: not_le [symmetric] one_le_inverse_iff) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 730 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 731 | lemma inverse_le_1_iff: | 
| 36409 | 732 | "inverse x \<le> 1 \<longleftrightarrow> x \<le> 0 \<or> 1 \<le> x" | 
| 733 | by (simp add: not_less [symmetric] one_less_inverse_iff) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 734 | |
| 14288 | 735 | lemma divide_le_eq: | 
| 736 | "(b/c \<le> a) = | |
| 737 | (if 0 < c then b \<le> a*c | |
| 738 | else if c < 0 then a*c \<le> b | |
| 36409 | 739 | else 0 \<le> a)" | 
| 21328 | 740 | apply (cases "c=0", simp) | 
| 36409 | 741 | apply (force simp add: pos_divide_le_eq neg_divide_le_eq) | 
| 14288 | 742 | done | 
| 743 | ||
| 744 | lemma less_divide_eq: | |
| 745 | "(a < b/c) = | |
| 746 | (if 0 < c then a*c < b | |
| 747 | else if c < 0 then b < a*c | |
| 36409 | 748 | else a < 0)" | 
| 21328 | 749 | apply (cases "c=0", simp) | 
| 36409 | 750 | apply (force simp add: pos_less_divide_eq neg_less_divide_eq) | 
| 14288 | 751 | done | 
| 752 | ||
| 753 | lemma divide_less_eq: | |
| 754 | "(b/c < a) = | |
| 755 | (if 0 < c then b < a*c | |
| 756 | else if c < 0 then a*c < b | |
| 36409 | 757 | else 0 < a)" | 
| 21328 | 758 | apply (cases "c=0", simp) | 
| 36409 | 759 | apply (force simp add: pos_divide_less_eq neg_divide_less_eq) | 
| 14288 | 760 | done | 
| 761 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 762 | text {*Division and Signs*}
 | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 763 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 764 | lemma zero_less_divide_iff: | 
| 36409 | 765 | "(0 < a/b) = (0 < a & 0 < b | a < 0 & b < 0)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 766 | by (simp add: divide_inverse zero_less_mult_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 767 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 768 | lemma divide_less_0_iff: | 
| 36409 | 769 | "(a/b < 0) = | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 770 | (0 < a & b < 0 | a < 0 & 0 < b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 771 | by (simp add: divide_inverse mult_less_0_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 772 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 773 | lemma zero_le_divide_iff: | 
| 36409 | 774 | "(0 \<le> a/b) = | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 775 | (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 776 | by (simp add: divide_inverse zero_le_mult_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 777 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 778 | lemma divide_le_0_iff: | 
| 36409 | 779 | "(a/b \<le> 0) = | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 780 | (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 781 | by (simp add: divide_inverse mult_le_0_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 782 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 783 | text {* Division and the Number One *}
 | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 784 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 785 | text{*Simplify expressions equated with 1*}
 | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 786 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 787 | lemma zero_eq_1_divide_iff [simp,no_atp]: | 
| 36409 | 788 | "(0 = 1/a) = (a = 0)" | 
| 23482 | 789 | apply (cases "a=0", simp) | 
| 790 | apply (auto simp add: nonzero_eq_divide_eq) | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 791 | done | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 792 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 793 | lemma one_divide_eq_0_iff [simp,no_atp]: | 
| 36409 | 794 | "(1/a = 0) = (a = 0)" | 
| 23482 | 795 | apply (cases "a=0", simp) | 
| 796 | apply (insert zero_neq_one [THEN not_sym]) | |
| 797 | apply (auto simp add: nonzero_divide_eq_eq) | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 798 | done | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 799 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 800 | text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
 | 
| 36423 | 801 | |
| 802 | lemma zero_le_divide_1_iff [simp, no_atp]: | |
| 803 | "0 \<le> 1 / a \<longleftrightarrow> 0 \<le> a" | |
| 804 | by (simp add: zero_le_divide_iff) | |
| 17085 | 805 | |
| 36423 | 806 | lemma zero_less_divide_1_iff [simp, no_atp]: | 
| 807 | "0 < 1 / a \<longleftrightarrow> 0 < a" | |
| 808 | by (simp add: zero_less_divide_iff) | |
| 809 | ||
| 810 | lemma divide_le_0_1_iff [simp, no_atp]: | |
| 811 | "1 / a \<le> 0 \<longleftrightarrow> a \<le> 0" | |
| 812 | by (simp add: divide_le_0_iff) | |
| 813 | ||
| 814 | lemma divide_less_0_1_iff [simp, no_atp]: | |
| 815 | "1 / a < 0 \<longleftrightarrow> a < 0" | |
| 816 | by (simp add: divide_less_0_iff) | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 817 | |
| 14293 | 818 | lemma divide_right_mono: | 
| 36409 | 819 | "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/c" | 
| 820 | by (force simp add: divide_strict_right_mono le_less) | |
| 14293 | 821 | |
| 36409 | 822 | lemma divide_right_mono_neg: "a <= b | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 823 | ==> c <= 0 ==> b / c <= a / c" | 
| 23482 | 824 | apply (drule divide_right_mono [of _ _ "- c"]) | 
| 825 | apply auto | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 826 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 827 | |
| 36409 | 828 | lemma divide_left_mono_neg: "a <= b | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 829 | ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 830 | apply (drule divide_left_mono [of _ _ "- c"]) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 831 | apply (auto simp add: mult_commute) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 832 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 833 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 834 | text{*Simplify quotients that are compared with the value 1.*}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 835 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 836 | lemma le_divide_eq_1 [no_atp]: | 
| 36409 | 837 | "(1 \<le> b / a) = ((0 < a & a \<le> b) | (a < 0 & b \<le> a))" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 838 | by (auto simp add: le_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 839 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 840 | lemma divide_le_eq_1 [no_atp]: | 
| 36409 | 841 | "(b / a \<le> 1) = ((0 < a & b \<le> a) | (a < 0 & a \<le> b) | a=0)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 842 | by (auto simp add: divide_le_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 843 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 844 | lemma less_divide_eq_1 [no_atp]: | 
| 36409 | 845 | "(1 < b / a) = ((0 < a & a < b) | (a < 0 & b < a))" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 846 | by (auto simp add: less_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 847 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 848 | lemma divide_less_eq_1 [no_atp]: | 
| 36409 | 849 | "(b / a < 1) = ((0 < a & b < a) | (a < 0 & a < b) | a=0)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 850 | by (auto simp add: divide_less_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 851 | |
| 23389 | 852 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 853 | text {*Conditional Simplification Rules: No Case Splits*}
 | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 854 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 855 | lemma le_divide_eq_1_pos [simp,no_atp]: | 
| 36409 | 856 | "0 < a \<Longrightarrow> (1 \<le> b/a) = (a \<le> b)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 857 | by (auto simp add: le_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 858 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 859 | lemma le_divide_eq_1_neg [simp,no_atp]: | 
| 36409 | 860 | "a < 0 \<Longrightarrow> (1 \<le> b/a) = (b \<le> a)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 861 | by (auto simp add: le_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 862 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 863 | lemma divide_le_eq_1_pos [simp,no_atp]: | 
| 36409 | 864 | "0 < a \<Longrightarrow> (b/a \<le> 1) = (b \<le> a)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 865 | by (auto simp add: divide_le_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 866 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 867 | lemma divide_le_eq_1_neg [simp,no_atp]: | 
| 36409 | 868 | "a < 0 \<Longrightarrow> (b/a \<le> 1) = (a \<le> b)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 869 | by (auto simp add: divide_le_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 870 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 871 | lemma less_divide_eq_1_pos [simp,no_atp]: | 
| 36409 | 872 | "0 < a \<Longrightarrow> (1 < b/a) = (a < b)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 873 | by (auto simp add: less_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 874 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 875 | lemma less_divide_eq_1_neg [simp,no_atp]: | 
| 36409 | 876 | "a < 0 \<Longrightarrow> (1 < b/a) = (b < a)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 877 | by (auto simp add: less_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 878 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 879 | lemma divide_less_eq_1_pos [simp,no_atp]: | 
| 36409 | 880 | "0 < a \<Longrightarrow> (b/a < 1) = (b < a)" | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 881 | by (auto simp add: divide_less_eq) | 
| 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 882 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 883 | lemma divide_less_eq_1_neg [simp,no_atp]: | 
| 36409 | 884 | "a < 0 \<Longrightarrow> b/a < 1 <-> a < b" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 885 | by (auto simp add: divide_less_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 886 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 887 | lemma eq_divide_eq_1 [simp,no_atp]: | 
| 36409 | 888 | "(1 = b/a) = ((a \<noteq> 0 & a = b))" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 889 | by (auto simp add: eq_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 890 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 891 | lemma divide_eq_eq_1 [simp,no_atp]: | 
| 36409 | 892 | "(b/a = 1) = ((a \<noteq> 0 & a = b))" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 893 | by (auto simp add: divide_eq_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 894 | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 895 | lemma abs_inverse [simp]: | 
| 36409 | 896 | "\<bar>inverse a\<bar> = | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 897 | inverse \<bar>a\<bar>" | 
| 21328 | 898 | apply (cases "a=0", simp) | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 899 | apply (simp add: nonzero_abs_inverse) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 900 | done | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 901 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 902 | lemma abs_divide [simp]: | 
| 36409 | 903 | "\<bar>a / b\<bar> = \<bar>a\<bar> / \<bar>b\<bar>" | 
| 21328 | 904 | apply (cases "b=0", simp) | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 905 | apply (simp add: nonzero_abs_divide) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 906 | done | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 907 | |
| 36409 | 908 | lemma abs_div_pos: "0 < y ==> | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 909 | \<bar>x\<bar> / y = \<bar>x / y\<bar>" | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 910 | apply (subst abs_divide) | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 911 | apply (simp add: order_less_imp_le) | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 912 | done | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 913 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 914 | lemma field_le_mult_one_interval: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 915 | assumes *: "\<And>z. \<lbrakk> 0 < z ; z < 1 \<rbrakk> \<Longrightarrow> z * x \<le> y" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 916 | shows "x \<le> y" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 917 | proof (cases "0 < x") | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 918 | assume "0 < x" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 919 | thus ?thesis | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 920 | using dense_le_bounded[of 0 1 "y/x"] * | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 921 | unfolding le_divide_eq if_P[OF `0 < x`] by simp | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 922 | next | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 923 | assume "\<not>0 < x" hence "x \<le> 0" by simp | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 924 | obtain s::'a where s: "0 < s" "s < 1" using dense[of 0 "1\<Colon>'a"] by auto | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 925 | hence "x \<le> s * x" using mult_le_cancel_right[of 1 x s] `x \<le> 0` by auto | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 926 | also note *[OF s] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 927 | finally show ?thesis . | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35216diff
changeset | 928 | qed | 
| 35090 
88cc65ae046e
moved lemma field_le_epsilon from Real.thy to Fields.thy
 haftmann parents: 
35084diff
changeset | 929 | |
| 36409 | 930 | end | 
| 931 | ||
| 33364 | 932 | code_modulename SML | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 933 | Fields Arith | 
| 33364 | 934 | |
| 935 | code_modulename OCaml | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 936 | Fields Arith | 
| 33364 | 937 | |
| 938 | code_modulename Haskell | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 939 | Fields Arith | 
| 33364 | 940 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 941 | end |