author | oheimb |
Fri, 11 Jul 2003 14:12:06 +0200 | |
changeset 14100 | 804be4c4b642 |
parent 14033 | bc723de8ec95 |
child 14134 | 0fdf5708c7a8 |
permissions | -rw-r--r-- |
3981 | 1 |
(* Title: HOL/Map.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, based on a theory by David von Oheimb |
|
13908 | 4 |
Copyright 1997-2003 TU Muenchen |
3981 | 5 |
|
6 |
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. |
|
7 |
*) |
|
8 |
||
13914 | 9 |
header {* Maps *} |
10 |
||
13908 | 11 |
theory Map = List: |
3981 | 12 |
|
13908 | 13 |
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0) |
14100 | 14 |
translations (type) "a ~=> b " <= (type) "a => b option" |
3981 | 15 |
|
16 |
consts |
|
5300 | 17 |
chg_map :: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)" |
14100 | 18 |
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) |
19 |
map_image::"('b => 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixr "`>" 90) |
|
20 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_|'__" [90, 91] 90) |
|
5300 | 21 |
dom :: "('a ~=> 'b) => 'a set" |
22 |
ran :: "('a ~=> 'b) => 'b set" |
|
23 |
map_of :: "('a * 'b)list => 'a ~=> 'b" |
|
24 |
map_upds:: "('a ~=> 'b) => 'a list => 'b list => |
|
13910 | 25 |
('a ~=> 'b)" ("_/'(_[|->]_/')" [900,0,0]900) |
14100 | 26 |
map_upd_s::"('a ~=> 'b) => 'a set => 'b => |
27 |
('a ~=> 'b)" ("_/'(_{|->}_/')" [900,0,0]900) |
|
28 |
map_subst::"('a ~=> 'b) => 'b => 'b => |
|
29 |
('a ~=> 'b)" ("_/'(_~>_/')" [900,0,0]900) |
|
13910 | 30 |
map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) |
31 |
||
5300 | 32 |
syntax |
13890 | 33 |
empty :: "'a ~=> 'b" |
5300 | 34 |
map_upd :: "('a ~=> 'b) => 'a => 'b => ('a ~=> 'b)" |
13910 | 35 |
("_/'(_/|->_')" [900,0,0]900) |
3981 | 36 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset
|
37 |
syntax (xsymbols) |
13908 | 38 |
"~=>" :: "[type, type] => type" (infixr "\<leadsto>" 0) |
14100 | 39 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<lfloor>_" [90, 91] 90) |
5300 | 40 |
map_upd :: "('a ~=> 'b) => 'a => 'b => ('a ~=> 'b)" |
13908 | 41 |
("_/'(_/\<mapsto>/_')" [900,0,0]900) |
5300 | 42 |
map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)" |
13908 | 43 |
("_/'(_/[\<mapsto>]/_')" [900,0,0]900) |
14100 | 44 |
map_upd_s :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)" |
45 |
("_/'(_/{\<mapsto>}/_')" [900,0,0]900) |
|
46 |
map_subst :: "('a ~=> 'b) => 'b => 'b => |
|
47 |
('a ~=> 'b)" ("_/'(_\<leadsto>_/')" [900,0,0]900) |
|
48 |
"@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)" |
|
49 |
("_/'(_/\<mapsto>\<lambda>_. _')" [900,0,0,0] 900) |
|
5300 | 50 |
|
51 |
translations |
|
13890 | 52 |
"empty" => "_K None" |
53 |
"empty" <= "%x. None" |
|
5300 | 54 |
|
55 |
"m(a|->b)" == "m(a:=Some b)" |
|
14100 | 56 |
"m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m" |
3981 | 57 |
|
58 |
defs |
|
13908 | 59 |
chg_map_def: "chg_map f a m == case m a of None => m | Some b => m(a|->f b)" |
3981 | 60 |
|
14100 | 61 |
map_add_def: "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y" |
62 |
map_image_def: "f`>m == option_map f o m" |
|
63 |
restrict_map_def: "m|_A == %x. if x : A then m x else None" |
|
14025 | 64 |
|
65 |
map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" |
|
14100 | 66 |
map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x" |
67 |
map_subst_def: "m(a~>b) == %x. if m x = Some a then Some b else m x" |
|
3981 | 68 |
|
13908 | 69 |
dom_def: "dom(m) == {a. m a ~= None}" |
14025 | 70 |
ran_def: "ran(m) == {b. EX a. m a = Some b}" |
3981 | 71 |
|
13910 | 72 |
map_le_def: "m1 \<subseteq>\<^sub>m m2 == ALL a : dom m1. m1 a = m2 a" |
73 |
||
5183 | 74 |
primrec |
75 |
"map_of [] = empty" |
|
5300 | 76 |
"map_of (p#ps) = (map_of ps)(fst p |-> snd p)" |
77 |
||
13908 | 78 |
|
14100 | 79 |
subsection {* @{term empty} *} |
13908 | 80 |
|
13910 | 81 |
lemma empty_upd_none[simp]: "empty(x := None) = empty" |
13908 | 82 |
apply (rule ext) |
83 |
apply (simp (no_asm)) |
|
84 |
done |
|
13910 | 85 |
|
13908 | 86 |
|
87 |
(* FIXME: what is this sum_case nonsense?? *) |
|
13910 | 88 |
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty" |
13908 | 89 |
apply (rule ext) |
90 |
apply (simp (no_asm) split add: sum.split) |
|
91 |
done |
|
92 |
||
14100 | 93 |
subsection {* @{term map_upd} *} |
13908 | 94 |
|
95 |
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" |
|
96 |
apply (rule ext) |
|
97 |
apply (simp (no_asm_simp)) |
|
98 |
done |
|
99 |
||
13910 | 100 |
lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty" |
13908 | 101 |
apply safe |
102 |
apply (drule_tac x = "k" in fun_cong) |
|
103 |
apply (simp (no_asm_use)) |
|
104 |
done |
|
105 |
||
14100 | 106 |
lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y" |
107 |
by (drule fun_cong [of _ _ a], auto) |
|
108 |
||
109 |
lemma map_upd_Some_unfold: |
|
110 |
"((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" |
|
111 |
by auto |
|
112 |
||
13908 | 113 |
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" |
114 |
apply (unfold image_def) |
|
115 |
apply (simp (no_asm_use) add: full_SetCompr_eq) |
|
116 |
apply (rule finite_subset) |
|
117 |
prefer 2 apply (assumption) |
|
118 |
apply auto |
|
119 |
done |
|
120 |
||
121 |
||
122 |
(* FIXME: what is this sum_case nonsense?? *) |
|
14100 | 123 |
subsection {* @{term sum_case} and @{term empty}/@{term map_upd} *} |
13908 | 124 |
|
13910 | 125 |
lemma sum_case_map_upd_empty[simp]: |
126 |
"sum_case (m(k|->y)) empty = (sum_case m empty)(Inl k|->y)" |
|
13908 | 127 |
apply (rule ext) |
128 |
apply (simp (no_asm) split add: sum.split) |
|
129 |
done |
|
130 |
||
13910 | 131 |
lemma sum_case_empty_map_upd[simp]: |
132 |
"sum_case empty (m(k|->y)) = (sum_case empty m)(Inr k|->y)" |
|
13908 | 133 |
apply (rule ext) |
134 |
apply (simp (no_asm) split add: sum.split) |
|
135 |
done |
|
136 |
||
13910 | 137 |
lemma sum_case_map_upd_map_upd[simp]: |
138 |
"sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)" |
|
13908 | 139 |
apply (rule ext) |
140 |
apply (simp (no_asm) split add: sum.split) |
|
141 |
done |
|
142 |
||
143 |
||
14100 | 144 |
subsection {* @{term chg_map} *} |
13908 | 145 |
|
13910 | 146 |
lemma chg_map_new[simp]: "m a = None ==> chg_map f a m = m" |
13908 | 147 |
apply (unfold chg_map_def) |
148 |
apply auto |
|
149 |
done |
|
150 |
||
13910 | 151 |
lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a|->f b)" |
13908 | 152 |
apply (unfold chg_map_def) |
153 |
apply auto |
|
154 |
done |
|
155 |
||
156 |
||
14100 | 157 |
subsection {* @{term map_of} *} |
13908 | 158 |
|
159 |
lemma map_of_SomeD [rule_format (no_asm)]: "map_of xs k = Some y --> (k,y):set xs" |
|
160 |
apply (induct_tac "xs") |
|
161 |
apply auto |
|
162 |
done |
|
163 |
||
164 |
lemma map_of_mapk_SomeI [rule_format (no_asm)]: "inj f ==> map_of t k = Some x --> |
|
165 |
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" |
|
166 |
apply (induct_tac "t") |
|
167 |
apply (auto simp add: inj_eq) |
|
168 |
done |
|
169 |
||
170 |
lemma weak_map_of_SomeI [rule_format (no_asm)]: "(k, x) : set l --> (? x. map_of l k = Some x)" |
|
171 |
apply (induct_tac "l") |
|
172 |
apply auto |
|
173 |
done |
|
174 |
||
175 |
lemma map_of_filter_in: |
|
176 |
"[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z" |
|
177 |
apply (rule mp) |
|
178 |
prefer 2 apply (assumption) |
|
179 |
apply (erule thin_rl) |
|
180 |
apply (induct_tac "xs") |
|
181 |
apply auto |
|
182 |
done |
|
183 |
||
184 |
lemma finite_range_map_of: "finite (range (map_of l))" |
|
185 |
apply (induct_tac "l") |
|
186 |
apply (simp_all (no_asm) add: image_constant) |
|
187 |
apply (rule finite_subset) |
|
188 |
prefer 2 apply (assumption) |
|
189 |
apply auto |
|
190 |
done |
|
191 |
||
192 |
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" |
|
193 |
apply (induct_tac "xs") |
|
194 |
apply auto |
|
195 |
done |
|
196 |
||
197 |
||
14100 | 198 |
subsection {* @{term option_map} related *} |
13908 | 199 |
|
13910 | 200 |
lemma option_map_o_empty[simp]: "option_map f o empty = empty" |
13908 | 201 |
apply (rule ext) |
202 |
apply (simp (no_asm)) |
|
203 |
done |
|
204 |
||
13910 | 205 |
lemma option_map_o_map_upd[simp]: |
206 |
"option_map f o m(a|->b) = (option_map f o m)(a|->f b)" |
|
13908 | 207 |
apply (rule ext) |
208 |
apply (simp (no_asm)) |
|
209 |
done |
|
210 |
||
211 |
||
14100 | 212 |
subsection {* @{text "++"} *} |
13908 | 213 |
|
14025 | 214 |
lemma map_add_empty[simp]: "m ++ empty = m" |
215 |
apply (unfold map_add_def) |
|
13908 | 216 |
apply (simp (no_asm)) |
217 |
done |
|
218 |
||
14025 | 219 |
lemma empty_map_add[simp]: "empty ++ m = m" |
220 |
apply (unfold map_add_def) |
|
13908 | 221 |
apply (rule ext) |
222 |
apply (simp split add: option.split) |
|
223 |
done |
|
224 |
||
14025 | 225 |
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" |
226 |
apply(rule ext) |
|
227 |
apply(simp add: map_add_def split:option.split) |
|
228 |
done |
|
229 |
||
230 |
lemma map_add_Some_iff: |
|
13908 | 231 |
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" |
14025 | 232 |
apply (unfold map_add_def) |
13908 | 233 |
apply (simp (no_asm) split add: option.split) |
234 |
done |
|
235 |
||
14025 | 236 |
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard] |
237 |
declare map_add_SomeD [dest!] |
|
13908 | 238 |
|
14025 | 239 |
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" |
240 |
apply (subst map_add_Some_iff) |
|
13908 | 241 |
apply fast |
242 |
done |
|
243 |
||
14025 | 244 |
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" |
245 |
apply (unfold map_add_def) |
|
13908 | 246 |
apply (simp (no_asm) split add: option.split) |
247 |
done |
|
248 |
||
14025 | 249 |
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" |
250 |
apply (unfold map_add_def) |
|
13908 | 251 |
apply (rule ext) |
252 |
apply auto |
|
253 |
done |
|
254 |
||
14025 | 255 |
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs" |
256 |
apply (unfold map_add_def) |
|
13908 | 257 |
apply (induct_tac "xs") |
258 |
apply (simp (no_asm)) |
|
259 |
apply (rule ext) |
|
260 |
apply (simp (no_asm_simp) split add: option.split) |
|
261 |
done |
|
262 |
||
263 |
declare fun_upd_apply [simp del] |
|
14025 | 264 |
lemma finite_range_map_of_map_add: |
265 |
"finite (range f) ==> finite (range (f ++ map_of l))" |
|
13908 | 266 |
apply (induct_tac "l") |
267 |
apply auto |
|
268 |
apply (erule finite_range_updI) |
|
269 |
done |
|
270 |
declare fun_upd_apply [simp] |
|
271 |
||
14100 | 272 |
subsection {* @{term map_image} *} |
13908 | 273 |
|
14100 | 274 |
lemma map_image_empty [simp]: "f`>empty = empty" |
275 |
by (auto simp: map_image_def empty_def) |
|
276 |
||
277 |
lemma map_image_upd [simp]: "f`>m(a|->b) = (f`>m)(a|->f b)" |
|
278 |
apply (auto simp: map_image_def fun_upd_def) |
|
279 |
by (rule ext, auto) |
|
280 |
||
281 |
subsection {* @{term restrict_map} *} |
|
282 |
||
283 |
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m\<lfloor>A) x = m x" |
|
284 |
by (auto simp: restrict_map_def) |
|
285 |
||
286 |
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m\<lfloor>A) x = None" |
|
287 |
by (auto simp: restrict_map_def) |
|
288 |
||
289 |
lemma ran_restrictD: "y \<in> ran (m\<lfloor>A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" |
|
290 |
by (auto simp: restrict_map_def ran_def split: split_if_asm) |
|
291 |
||
292 |
lemma dom_valF_restrict [simp]: "dom (m\<lfloor>A) = dom m \<inter> A" |
|
293 |
by (auto simp: restrict_map_def dom_def split: split_if_asm) |
|
294 |
||
295 |
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)\<lfloor>(-{x}) = m\<lfloor>(-{x})" |
|
296 |
by (rule ext, auto simp: restrict_map_def) |
|
297 |
||
298 |
lemma restrict_restrict [simp]: "m\<lfloor>A\<lfloor>B = m\<lfloor>(A\<inter>B)" |
|
299 |
by (rule ext, auto simp: restrict_map_def) |
|
300 |
||
301 |
||
302 |
subsection {* @{term map_upds} *} |
|
14025 | 303 |
|
304 |
lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m" |
|
305 |
by(simp add:map_upds_def) |
|
306 |
||
307 |
lemma map_upds_Nil2[simp]: "m(as [|->] []) = m" |
|
308 |
by(simp add:map_upds_def) |
|
309 |
||
310 |
lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" |
|
311 |
by(simp add:map_upds_def) |
|
312 |
||
313 |
||
314 |
lemma map_upd_upds_conv_if: "!!x y ys f. |
|
315 |
(f(x|->y))(xs [|->] ys) = |
|
316 |
(if x : set(take (length ys) xs) then f(xs [|->] ys) |
|
317 |
else (f(xs [|->] ys))(x|->y))" |
|
318 |
apply(induct xs) |
|
319 |
apply simp |
|
320 |
apply(case_tac ys) |
|
321 |
apply(auto split:split_if simp:fun_upd_twist) |
|
322 |
done |
|
323 |
||
324 |
lemma map_upds_twist [simp]: |
|
325 |
"a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" |
|
326 |
apply(insert set_take_subset) |
|
327 |
apply (fastsimp simp add: map_upd_upds_conv_if) |
|
328 |
done |
|
329 |
||
330 |
lemma map_upds_apply_nontin[simp]: |
|
331 |
"!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x" |
|
332 |
apply(induct xs) |
|
333 |
apply simp |
|
334 |
apply(case_tac ys) |
|
335 |
apply(auto simp: map_upd_upds_conv_if) |
|
336 |
done |
|
337 |
||
14100 | 338 |
subsection {* @{term map_upd_s} *} |
339 |
||
340 |
lemma map_upd_s_apply [simp]: |
|
341 |
"(m(as{|->}b)) x = (if x : as then Some b else m x)" |
|
342 |
by (simp add: map_upd_s_def) |
|
343 |
||
344 |
lemma map_subst_apply [simp]: |
|
345 |
"(m(a~>b)) x = (if m x = Some a then Some b else m x)" |
|
346 |
by (simp add: map_subst_def) |
|
347 |
||
348 |
subsection {* @{term dom} *} |
|
13908 | 349 |
|
350 |
lemma domI: "m a = Some b ==> a : dom m" |
|
351 |
apply (unfold dom_def) |
|
352 |
apply auto |
|
353 |
done |
|
14100 | 354 |
(* declare domI [intro]? *) |
13908 | 355 |
|
356 |
lemma domD: "a : dom m ==> ? b. m a = Some b" |
|
357 |
apply (unfold dom_def) |
|
358 |
apply auto |
|
359 |
done |
|
360 |
||
13910 | 361 |
lemma domIff[iff]: "(a : dom m) = (m a ~= None)" |
13908 | 362 |
apply (unfold dom_def) |
363 |
apply auto |
|
364 |
done |
|
365 |
declare domIff [simp del] |
|
366 |
||
13910 | 367 |
lemma dom_empty[simp]: "dom empty = {}" |
13908 | 368 |
apply (unfold dom_def) |
369 |
apply (simp (no_asm)) |
|
370 |
done |
|
371 |
||
13910 | 372 |
lemma dom_fun_upd[simp]: |
373 |
"dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))" |
|
374 |
by (simp add:dom_def) blast |
|
13908 | 375 |
|
13937 | 376 |
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}" |
377 |
apply(induct xys) |
|
378 |
apply(auto simp del:fun_upd_apply) |
|
379 |
done |
|
380 |
||
13908 | 381 |
lemma finite_dom_map_of: "finite (dom (map_of l))" |
382 |
apply (unfold dom_def) |
|
383 |
apply (induct_tac "l") |
|
384 |
apply (auto simp add: insert_Collect [symmetric]) |
|
385 |
done |
|
386 |
||
14025 | 387 |
lemma dom_map_upds[simp]: |
388 |
"!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" |
|
389 |
apply(induct xs) |
|
390 |
apply simp |
|
391 |
apply(case_tac ys) |
|
392 |
apply auto |
|
393 |
done |
|
13910 | 394 |
|
14025 | 395 |
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m" |
13908 | 396 |
apply (unfold dom_def) |
397 |
apply auto |
|
398 |
done |
|
13910 | 399 |
|
400 |
lemma dom_overwrite[simp]: |
|
401 |
"dom(f(g|A)) = (dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}" |
|
402 |
by(auto simp add: dom_def overwrite_def) |
|
13908 | 403 |
|
14027 | 404 |
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1" |
405 |
apply(rule ext) |
|
406 |
apply(fastsimp simp:map_add_def split:option.split) |
|
407 |
done |
|
408 |
||
14100 | 409 |
subsection {* @{term ran} *} |
410 |
||
411 |
lemma ranI: "m a = Some b ==> b : ran m" |
|
412 |
by (auto simp add: ran_def) |
|
413 |
(* declare ranI [intro]? *) |
|
13908 | 414 |
|
13910 | 415 |
lemma ran_empty[simp]: "ran empty = {}" |
13908 | 416 |
apply (unfold ran_def) |
417 |
apply (simp (no_asm)) |
|
418 |
done |
|
419 |
||
13910 | 420 |
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" |
13908 | 421 |
apply (unfold ran_def) |
422 |
apply auto |
|
423 |
apply (subgoal_tac "~ (aa = a) ") |
|
424 |
apply auto |
|
425 |
done |
|
13910 | 426 |
|
14100 | 427 |
subsection {* @{text "map_le"} *} |
13910 | 428 |
|
13912 | 429 |
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" |
13910 | 430 |
by(simp add:map_le_def) |
431 |
||
432 |
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" |
|
433 |
by(fastsimp simp add:map_le_def) |
|
434 |
||
435 |
lemma map_le_upds[simp]: |
|
436 |
"!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" |
|
14025 | 437 |
apply(induct as) |
438 |
apply simp |
|
439 |
apply(case_tac bs) |
|
440 |
apply auto |
|
441 |
done |
|
13908 | 442 |
|
14033 | 443 |
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" |
444 |
by (fastsimp simp add: map_le_def dom_def) |
|
445 |
||
446 |
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" |
|
447 |
by (simp add: map_le_def) |
|
448 |
||
449 |
lemma map_le_trans: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m h \<rbrakk> \<Longrightarrow> f \<subseteq>\<^sub>m h" |
|
450 |
apply (clarsimp simp add: map_le_def) |
|
451 |
apply (drule_tac x="a" in bspec, fastsimp)+ |
|
452 |
apply assumption |
|
453 |
done |
|
454 |
||
455 |
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" |
|
456 |
apply (unfold map_le_def) |
|
457 |
apply (rule ext) |
|
458 |
apply (case_tac "x \<in> dom f") |
|
459 |
apply simp |
|
460 |
apply (case_tac "x \<in> dom g") |
|
461 |
apply simp |
|
462 |
apply fastsimp |
|
463 |
done |
|
464 |
||
465 |
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" |
|
466 |
by (fastsimp simp add: map_le_def) |
|
467 |
||
3981 | 468 |
end |