author  oheimb 
Fri, 11 Jul 2003 14:12:06 +0200  
changeset 14100  804be4c4b642 
parent 14033  bc723de8ec95 
child 14134  0fdf5708c7a8 
permissions  rwrr 
3981  1 
(* Title: HOL/Map.thy 
2 
ID: $Id$ 

3 
Author: Tobias Nipkow, based on a theory by David von Oheimb 

13908  4 
Copyright 19972003 TU Muenchen 
3981  5 

6 
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. 

7 
*) 

8 

13914  9 
header {* Maps *} 
10 

13908  11 
theory Map = List: 
3981  12 

13908  13 
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0) 
14100  14 
translations (type) "a ~=> b " <= (type) "a => b option" 
3981  15 

16 
consts 

5300  17 
chg_map :: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)" 
14100  18 
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) 
19 
map_image::"('b => 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixr "`>" 90) 

20 
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_'__" [90, 91] 90) 

5300  21 
dom :: "('a ~=> 'b) => 'a set" 
22 
ran :: "('a ~=> 'b) => 'b set" 

23 
map_of :: "('a * 'b)list => 'a ~=> 'b" 

24 
map_upds:: "('a ~=> 'b) => 'a list => 'b list => 

13910  25 
('a ~=> 'b)" ("_/'(_[>]_/')" [900,0,0]900) 
14100  26 
map_upd_s::"('a ~=> 'b) => 'a set => 'b => 
27 
('a ~=> 'b)" ("_/'(_{>}_/')" [900,0,0]900) 

28 
map_subst::"('a ~=> 'b) => 'b => 'b => 

29 
('a ~=> 'b)" ("_/'(_~>_/')" [900,0,0]900) 

13910  30 
map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) 
31 

5300  32 
syntax 
13890  33 
empty :: "'a ~=> 'b" 
5300  34 
map_upd :: "('a ~=> 'b) => 'a => 'b => ('a ~=> 'b)" 
13910  35 
("_/'(_/>_')" [900,0,0]900) 
3981  36 

12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset

37 
syntax (xsymbols) 
13908  38 
"~=>" :: "[type, type] => type" (infixr "\<leadsto>" 0) 
14100  39 
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<lfloor>_" [90, 91] 90) 
5300  40 
map_upd :: "('a ~=> 'b) => 'a => 'b => ('a ~=> 'b)" 
13908  41 
("_/'(_/\<mapsto>/_')" [900,0,0]900) 
5300  42 
map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)" 
13908  43 
("_/'(_/[\<mapsto>]/_')" [900,0,0]900) 
14100  44 
map_upd_s :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)" 
45 
("_/'(_/{\<mapsto>}/_')" [900,0,0]900) 

46 
map_subst :: "('a ~=> 'b) => 'b => 'b => 

47 
('a ~=> 'b)" ("_/'(_\<leadsto>_/')" [900,0,0]900) 

48 
"@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)" 

49 
("_/'(_/\<mapsto>\<lambda>_. _')" [900,0,0,0] 900) 

5300  50 

51 
translations 

13890  52 
"empty" => "_K None" 
53 
"empty" <= "%x. None" 

5300  54 

55 
"m(a>b)" == "m(a:=Some b)" 

14100  56 
"m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m" 
3981  57 

58 
defs 

13908  59 
chg_map_def: "chg_map f a m == case m a of None => m  Some b => m(a>f b)" 
3981  60 

14100  61 
map_add_def: "m1++m2 == %x. case m2 x of None => m1 x  Some y => Some y" 
62 
map_image_def: "f`>m == option_map f o m" 

63 
restrict_map_def: "m_A == %x. if x : A then m x else None" 

14025  64 

65 
map_upds_def: "m(xs [>] ys) == m ++ map_of (rev(zip xs ys))" 

14100  66 
map_upd_s_def: "m(as{>}b) == %x. if x : as then Some b else m x" 
67 
map_subst_def: "m(a~>b) == %x. if m x = Some a then Some b else m x" 

3981  68 

13908  69 
dom_def: "dom(m) == {a. m a ~= None}" 
14025  70 
ran_def: "ran(m) == {b. EX a. m a = Some b}" 
3981  71 

13910  72 
map_le_def: "m1 \<subseteq>\<^sub>m m2 == ALL a : dom m1. m1 a = m2 a" 
73 

5183  74 
primrec 
75 
"map_of [] = empty" 

5300  76 
"map_of (p#ps) = (map_of ps)(fst p > snd p)" 
77 

13908  78 

14100  79 
subsection {* @{term empty} *} 
13908  80 

13910  81 
lemma empty_upd_none[simp]: "empty(x := None) = empty" 
13908  82 
apply (rule ext) 
83 
apply (simp (no_asm)) 

84 
done 

13910  85 

13908  86 

87 
(* FIXME: what is this sum_case nonsense?? *) 

13910  88 
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty" 
13908  89 
apply (rule ext) 
90 
apply (simp (no_asm) split add: sum.split) 

91 
done 

92 

14100  93 
subsection {* @{term map_upd} *} 
13908  94 

95 
lemma map_upd_triv: "t k = Some x ==> t(k>x) = t" 

96 
apply (rule ext) 

97 
apply (simp (no_asm_simp)) 

98 
done 

99 

13910  100 
lemma map_upd_nonempty[simp]: "t(k>x) ~= empty" 
13908  101 
apply safe 
102 
apply (drule_tac x = "k" in fun_cong) 

103 
apply (simp (no_asm_use)) 

104 
done 

105 

14100  106 
lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y" 
107 
by (drule fun_cong [of _ _ a], auto) 

108 

109 
lemma map_upd_Some_unfold: 

110 
"((m(a>b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" 

111 
by auto 

112 

13908  113 
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a>b)))" 
114 
apply (unfold image_def) 

115 
apply (simp (no_asm_use) add: full_SetCompr_eq) 

116 
apply (rule finite_subset) 

117 
prefer 2 apply (assumption) 

118 
apply auto 

119 
done 

120 

121 

122 
(* FIXME: what is this sum_case nonsense?? *) 

14100  123 
subsection {* @{term sum_case} and @{term empty}/@{term map_upd} *} 
13908  124 

13910  125 
lemma sum_case_map_upd_empty[simp]: 
126 
"sum_case (m(k>y)) empty = (sum_case m empty)(Inl k>y)" 

13908  127 
apply (rule ext) 
128 
apply (simp (no_asm) split add: sum.split) 

129 
done 

130 

13910  131 
lemma sum_case_empty_map_upd[simp]: 
132 
"sum_case empty (m(k>y)) = (sum_case empty m)(Inr k>y)" 

13908  133 
apply (rule ext) 
134 
apply (simp (no_asm) split add: sum.split) 

135 
done 

136 

13910  137 
lemma sum_case_map_upd_map_upd[simp]: 
138 
"sum_case (m1(k1>y1)) (m2(k2>y2)) = (sum_case (m1(k1>y1)) m2)(Inr k2>y2)" 

13908  139 
apply (rule ext) 
140 
apply (simp (no_asm) split add: sum.split) 

141 
done 

142 

143 

14100  144 
subsection {* @{term chg_map} *} 
13908  145 

13910  146 
lemma chg_map_new[simp]: "m a = None ==> chg_map f a m = m" 
13908  147 
apply (unfold chg_map_def) 
148 
apply auto 

149 
done 

150 

13910  151 
lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a>f b)" 
13908  152 
apply (unfold chg_map_def) 
153 
apply auto 

154 
done 

155 

156 

14100  157 
subsection {* @{term map_of} *} 
13908  158 

159 
lemma map_of_SomeD [rule_format (no_asm)]: "map_of xs k = Some y > (k,y):set xs" 

160 
apply (induct_tac "xs") 

161 
apply auto 

162 
done 

163 

164 
lemma map_of_mapk_SomeI [rule_format (no_asm)]: "inj f ==> map_of t k = Some x > 

165 
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" 

166 
apply (induct_tac "t") 

167 
apply (auto simp add: inj_eq) 

168 
done 

169 

170 
lemma weak_map_of_SomeI [rule_format (no_asm)]: "(k, x) : set l > (? x. map_of l k = Some x)" 

171 
apply (induct_tac "l") 

172 
apply auto 

173 
done 

174 

175 
lemma map_of_filter_in: 

176 
"[ map_of xs k = Some z; P k z ] ==> map_of (filter (split P) xs) k = Some z" 

177 
apply (rule mp) 

178 
prefer 2 apply (assumption) 

179 
apply (erule thin_rl) 

180 
apply (induct_tac "xs") 

181 
apply auto 

182 
done 

183 

184 
lemma finite_range_map_of: "finite (range (map_of l))" 

185 
apply (induct_tac "l") 

186 
apply (simp_all (no_asm) add: image_constant) 

187 
apply (rule finite_subset) 

188 
prefer 2 apply (assumption) 

189 
apply auto 

190 
done 

191 

192 
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" 

193 
apply (induct_tac "xs") 

194 
apply auto 

195 
done 

196 

197 

14100  198 
subsection {* @{term option_map} related *} 
13908  199 

13910  200 
lemma option_map_o_empty[simp]: "option_map f o empty = empty" 
13908  201 
apply (rule ext) 
202 
apply (simp (no_asm)) 

203 
done 

204 

13910  205 
lemma option_map_o_map_upd[simp]: 
206 
"option_map f o m(a>b) = (option_map f o m)(a>f b)" 

13908  207 
apply (rule ext) 
208 
apply (simp (no_asm)) 

209 
done 

210 

211 

14100  212 
subsection {* @{text "++"} *} 
13908  213 

14025  214 
lemma map_add_empty[simp]: "m ++ empty = m" 
215 
apply (unfold map_add_def) 

13908  216 
apply (simp (no_asm)) 
217 
done 

218 

14025  219 
lemma empty_map_add[simp]: "empty ++ m = m" 
220 
apply (unfold map_add_def) 

13908  221 
apply (rule ext) 
222 
apply (simp split add: option.split) 

223 
done 

224 

14025  225 
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" 
226 
apply(rule ext) 

227 
apply(simp add: map_add_def split:option.split) 

228 
done 

229 

230 
lemma map_add_Some_iff: 

13908  231 
"((m ++ n) k = Some x) = (n k = Some x  n k = None & m k = Some x)" 
14025  232 
apply (unfold map_add_def) 
13908  233 
apply (simp (no_asm) split add: option.split) 
234 
done 

235 

14025  236 
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard] 
237 
declare map_add_SomeD [dest!] 

13908  238 

14025  239 
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" 
240 
apply (subst map_add_Some_iff) 

13908  241 
apply fast 
242 
done 

243 

14025  244 
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" 
245 
apply (unfold map_add_def) 

13908  246 
apply (simp (no_asm) split add: option.split) 
247 
done 

248 

14025  249 
lemma map_add_upd[simp]: "f ++ g(x>y) = (f ++ g)(x>y)" 
250 
apply (unfold map_add_def) 

13908  251 
apply (rule ext) 
252 
apply auto 

253 
done 

254 

14025  255 
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs" 
256 
apply (unfold map_add_def) 

13908  257 
apply (induct_tac "xs") 
258 
apply (simp (no_asm)) 

259 
apply (rule ext) 

260 
apply (simp (no_asm_simp) split add: option.split) 

261 
done 

262 

263 
declare fun_upd_apply [simp del] 

14025  264 
lemma finite_range_map_of_map_add: 
265 
"finite (range f) ==> finite (range (f ++ map_of l))" 

13908  266 
apply (induct_tac "l") 
267 
apply auto 

268 
apply (erule finite_range_updI) 

269 
done 

270 
declare fun_upd_apply [simp] 

271 

14100  272 
subsection {* @{term map_image} *} 
13908  273 

14100  274 
lemma map_image_empty [simp]: "f`>empty = empty" 
275 
by (auto simp: map_image_def empty_def) 

276 

277 
lemma map_image_upd [simp]: "f`>m(a>b) = (f`>m)(a>f b)" 

278 
apply (auto simp: map_image_def fun_upd_def) 

279 
by (rule ext, auto) 

280 

281 
subsection {* @{term restrict_map} *} 

282 

283 
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m\<lfloor>A) x = m x" 

284 
by (auto simp: restrict_map_def) 

285 

286 
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m\<lfloor>A) x = None" 

287 
by (auto simp: restrict_map_def) 

288 

289 
lemma ran_restrictD: "y \<in> ran (m\<lfloor>A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" 

290 
by (auto simp: restrict_map_def ran_def split: split_if_asm) 

291 

292 
lemma dom_valF_restrict [simp]: "dom (m\<lfloor>A) = dom m \<inter> A" 

293 
by (auto simp: restrict_map_def dom_def split: split_if_asm) 

294 

295 
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)\<lfloor>({x}) = m\<lfloor>({x})" 

296 
by (rule ext, auto simp: restrict_map_def) 

297 

298 
lemma restrict_restrict [simp]: "m\<lfloor>A\<lfloor>B = m\<lfloor>(A\<inter>B)" 

299 
by (rule ext, auto simp: restrict_map_def) 

300 

301 

302 
subsection {* @{term map_upds} *} 

14025  303 

304 
lemma map_upds_Nil1[simp]: "m([] [>] bs) = m" 

305 
by(simp add:map_upds_def) 

306 

307 
lemma map_upds_Nil2[simp]: "m(as [>] []) = m" 

308 
by(simp add:map_upds_def) 

309 

310 
lemma map_upds_Cons[simp]: "m(a#as [>] b#bs) = (m(a>b))(as[>]bs)" 

311 
by(simp add:map_upds_def) 

312 

313 

314 
lemma map_upd_upds_conv_if: "!!x y ys f. 

315 
(f(x>y))(xs [>] ys) = 

316 
(if x : set(take (length ys) xs) then f(xs [>] ys) 

317 
else (f(xs [>] ys))(x>y))" 

318 
apply(induct xs) 

319 
apply simp 

320 
apply(case_tac ys) 

321 
apply(auto split:split_if simp:fun_upd_twist) 

322 
done 

323 

324 
lemma map_upds_twist [simp]: 

325 
"a ~: set as ==> m(a>b)(as[>]bs) = m(as[>]bs)(a>b)" 

326 
apply(insert set_take_subset) 

327 
apply (fastsimp simp add: map_upd_upds_conv_if) 

328 
done 

329 

330 
lemma map_upds_apply_nontin[simp]: 

331 
"!!ys. x ~: set xs ==> (f(xs[>]ys)) x = f x" 

332 
apply(induct xs) 

333 
apply simp 

334 
apply(case_tac ys) 

335 
apply(auto simp: map_upd_upds_conv_if) 

336 
done 

337 

14100  338 
subsection {* @{term map_upd_s} *} 
339 

340 
lemma map_upd_s_apply [simp]: 

341 
"(m(as{>}b)) x = (if x : as then Some b else m x)" 

342 
by (simp add: map_upd_s_def) 

343 

344 
lemma map_subst_apply [simp]: 

345 
"(m(a~>b)) x = (if m x = Some a then Some b else m x)" 

346 
by (simp add: map_subst_def) 

347 

348 
subsection {* @{term dom} *} 

13908  349 

350 
lemma domI: "m a = Some b ==> a : dom m" 

351 
apply (unfold dom_def) 

352 
apply auto 

353 
done 

14100  354 
(* declare domI [intro]? *) 
13908  355 

356 
lemma domD: "a : dom m ==> ? b. m a = Some b" 

357 
apply (unfold dom_def) 

358 
apply auto 

359 
done 

360 

13910  361 
lemma domIff[iff]: "(a : dom m) = (m a ~= None)" 
13908  362 
apply (unfold dom_def) 
363 
apply auto 

364 
done 

365 
declare domIff [simp del] 

366 

13910  367 
lemma dom_empty[simp]: "dom empty = {}" 
13908  368 
apply (unfold dom_def) 
369 
apply (simp (no_asm)) 

370 
done 

371 

13910  372 
lemma dom_fun_upd[simp]: 
373 
"dom(f(x := y)) = (if y=None then dom f  {x} else insert x (dom f))" 

374 
by (simp add:dom_def) blast 

13908  375 

13937  376 
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}" 
377 
apply(induct xys) 

378 
apply(auto simp del:fun_upd_apply) 

379 
done 

380 

13908  381 
lemma finite_dom_map_of: "finite (dom (map_of l))" 
382 
apply (unfold dom_def) 

383 
apply (induct_tac "l") 

384 
apply (auto simp add: insert_Collect [symmetric]) 

385 
done 

386 

14025  387 
lemma dom_map_upds[simp]: 
388 
"!!m ys. dom(m(xs[>]ys)) = set(take (length ys) xs) Un dom m" 

389 
apply(induct xs) 

390 
apply simp 

391 
apply(case_tac ys) 

392 
apply auto 

393 
done 

13910  394 

14025  395 
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m" 
13908  396 
apply (unfold dom_def) 
397 
apply auto 

398 
done 

13910  399 

400 
lemma dom_overwrite[simp]: 

401 
"dom(f(gA)) = (dom f  {a. a : A  dom g}) Un {a. a : A Int dom g}" 

402 
by(auto simp add: dom_def overwrite_def) 

13908  403 

14027  404 
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1" 
405 
apply(rule ext) 

406 
apply(fastsimp simp:map_add_def split:option.split) 

407 
done 

408 

14100  409 
subsection {* @{term ran} *} 
410 

411 
lemma ranI: "m a = Some b ==> b : ran m" 

412 
by (auto simp add: ran_def) 

413 
(* declare ranI [intro]? *) 

13908  414 

13910  415 
lemma ran_empty[simp]: "ran empty = {}" 
13908  416 
apply (unfold ran_def) 
417 
apply (simp (no_asm)) 

418 
done 

419 

13910  420 
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a>b)) = insert b (ran m)" 
13908  421 
apply (unfold ran_def) 
422 
apply auto 

423 
apply (subgoal_tac "~ (aa = a) ") 

424 
apply auto 

425 
done 

13910  426 

14100  427 
subsection {* @{text "map_le"} *} 
13910  428 

13912  429 
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" 
13910  430 
by(simp add:map_le_def) 
431 

432 
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" 

433 
by(fastsimp simp add:map_le_def) 

434 

435 
lemma map_le_upds[simp]: 

436 
"!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [>] bs) \<subseteq>\<^sub>m g(as [>] bs)" 

14025  437 
apply(induct as) 
438 
apply simp 

439 
apply(case_tac bs) 

440 
apply auto 

441 
done 

13908  442 

14033  443 
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" 
444 
by (fastsimp simp add: map_le_def dom_def) 

445 

446 
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" 

447 
by (simp add: map_le_def) 

448 

449 
lemma map_le_trans: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m h \<rbrakk> \<Longrightarrow> f \<subseteq>\<^sub>m h" 

450 
apply (clarsimp simp add: map_le_def) 

451 
apply (drule_tac x="a" in bspec, fastsimp)+ 

452 
apply assumption 

453 
done 

454 

455 
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" 

456 
apply (unfold map_le_def) 

457 
apply (rule ext) 

458 
apply (case_tac "x \<in> dom f") 

459 
apply simp 

460 
apply (case_tac "x \<in> dom g") 

461 
apply simp 

462 
apply fastsimp 

463 
done 

464 

465 
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" 

466 
by (fastsimp simp add: map_le_def) 

467 

3981  468 
end 