src/HOL/Multivariate_Analysis/Linear_Algebra.thy
author paulson <lp15@cam.ac.uk>
Tue, 31 Mar 2015 16:48:48 +0100
changeset 59865 8a20dd967385
parent 59557 ebd8ecacfba6
child 60150 bd773c47ad0b
permissions -rw-r--r--
rationalised and generalised some theorems concerning abs and x^2.
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     1
(*  Title:      HOL/Multivariate_Analysis/Linear_Algebra.thy
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     2
    Author:     Amine Chaieb, University of Cambridge
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     3
*)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     4
58877
262572d90bc6 modernized header;
wenzelm
parents: 57514
diff changeset
     5
section {* Elementary linear algebra on Euclidean spaces *}
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     6
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     7
theory Linear_Algebra
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     8
imports
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     9
  Euclidean_Space
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    10
  "~~/src/HOL/Library/Infinite_Set"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    11
begin
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    12
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    13
lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    14
  by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    15
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    16
notation inner (infix "\<bullet>" 70)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    17
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
    18
lemma square_bound_lemma:
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
    19
  fixes x :: real
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
    20
  shows "x < (1 + x) * (1 + x)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
    21
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    22
  have "(x + 1/2)\<^sup>2 + 3/4 > 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    23
    using zero_le_power2[of "x+1/2"] by arith
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    24
  then show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    25
    by (simp add: field_simps power2_eq_square)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    26
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    27
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    28
lemma square_continuous:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    29
  fixes e :: real
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
    30
  shows "e > 0 \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> \<bar>y * y - x * x\<bar> < e)"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51475
diff changeset
    31
  using isCont_power[OF isCont_ident, of x, unfolded isCont_def LIM_eq, rule_format, of e 2]
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
    32
  apply (auto simp add: power2_eq_square)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    33
  apply (rule_tac x="s" in exI)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    34
  apply auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    35
  apply (erule_tac x=y in allE)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    36
  apply auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    37
  done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    38
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    39
text{* Hence derive more interesting properties of the norm. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    40
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    41
lemma norm_eq_0_dot: "norm x = 0 \<longleftrightarrow> x \<bullet> x = (0::real)"
44666
8670a39d4420 remove more duplicate lemmas
huffman
parents: 44646
diff changeset
    42
  by simp (* TODO: delete *)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    43
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    44
lemma norm_triangle_sub:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    45
  fixes x y :: "'a::real_normed_vector"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    46
  shows "norm x \<le> norm y + norm (x - y)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    47
  using norm_triangle_ineq[of "y" "x - y"] by (simp add: field_simps)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    48
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    49
lemma norm_le: "norm x \<le> norm y \<longleftrightarrow> x \<bullet> x \<le> y \<bullet> y"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    50
  by (simp add: norm_eq_sqrt_inner)
44666
8670a39d4420 remove more duplicate lemmas
huffman
parents: 44646
diff changeset
    51
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    52
lemma norm_lt: "norm x < norm y \<longleftrightarrow> x \<bullet> x < y \<bullet> y"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    53
  by (simp add: norm_eq_sqrt_inner)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    54
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    55
lemma norm_eq: "norm x = norm y \<longleftrightarrow> x \<bullet> x = y \<bullet> y"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
    56
  apply (subst order_eq_iff)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
    57
  apply (auto simp: norm_le)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
    58
  done
44666
8670a39d4420 remove more duplicate lemmas
huffman
parents: 44646
diff changeset
    59
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    60
lemma norm_eq_1: "norm x = 1 \<longleftrightarrow> x \<bullet> x = 1"
44666
8670a39d4420 remove more duplicate lemmas
huffman
parents: 44646
diff changeset
    61
  by (simp add: norm_eq_sqrt_inner)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    62
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    63
text{* Squaring equations and inequalities involving norms.  *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    64
53077
a1b3784f8129 more symbols;
wenzelm
parents: 53015
diff changeset
    65
lemma dot_square_norm: "x \<bullet> x = (norm x)\<^sup>2"
44666
8670a39d4420 remove more duplicate lemmas
huffman
parents: 44646
diff changeset
    66
  by (simp only: power2_norm_eq_inner) (* TODO: move? *)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    67
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    68
lemma norm_eq_square: "norm x = a \<longleftrightarrow> 0 \<le> a \<and> x \<bullet> x = a\<^sup>2"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    69
  by (auto simp add: norm_eq_sqrt_inner)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    70
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    71
lemma norm_le_square: "norm x \<le> a \<longleftrightarrow> 0 \<le> a \<and> x \<bullet> x \<le> a\<^sup>2"
59865
8a20dd967385 rationalised and generalised some theorems concerning abs and x^2.
paulson <lp15@cam.ac.uk>
parents: 59557
diff changeset
    72
  apply (simp add: dot_square_norm abs_le_square_iff[symmetric])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    73
  using norm_ge_zero[of x]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    74
  apply arith
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    75
  done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    76
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    77
lemma norm_ge_square: "norm x \<ge> a \<longleftrightarrow> a \<le> 0 \<or> x \<bullet> x \<ge> a\<^sup>2"
59865
8a20dd967385 rationalised and generalised some theorems concerning abs and x^2.
paulson <lp15@cam.ac.uk>
parents: 59557
diff changeset
    78
  apply (simp add: dot_square_norm abs_le_square_iff[symmetric])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    79
  using norm_ge_zero[of x]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    80
  apply arith
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    81
  done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    82
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
    83
lemma norm_lt_square: "norm x < a \<longleftrightarrow> 0 < a \<and> x \<bullet> x < a\<^sup>2"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    84
  by (metis not_le norm_ge_square)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    85
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
    86
lemma norm_gt_square: "norm x > a \<longleftrightarrow> a < 0 \<or> x \<bullet> x > a\<^sup>2"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    87
  by (metis norm_le_square not_less)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    88
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    89
text{* Dot product in terms of the norm rather than conversely. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    90
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    91
lemmas inner_simps = inner_add_left inner_add_right inner_diff_right inner_diff_left
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
    92
  inner_scaleR_left inner_scaleR_right
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    93
53077
a1b3784f8129 more symbols;
wenzelm
parents: 53015
diff changeset
    94
lemma dot_norm: "x \<bullet> y = ((norm (x + y))\<^sup>2 - (norm x)\<^sup>2 - (norm y)\<^sup>2) / 2"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
    95
  unfolding power2_norm_eq_inner inner_simps inner_commute by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    96
53077
a1b3784f8129 more symbols;
wenzelm
parents: 53015
diff changeset
    97
lemma dot_norm_neg: "x \<bullet> y = (((norm x)\<^sup>2 + (norm y)\<^sup>2) - (norm (x - y))\<^sup>2) / 2"
49525
e87b42a26991 misc tuning;
wenzelm
parents: 49522
diff changeset
    98
  unfolding power2_norm_eq_inner inner_simps inner_commute
e87b42a26991 misc tuning;
wenzelm
parents: 49522
diff changeset
    99
  by (auto simp add: algebra_simps)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   100
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   101
text{* Equality of vectors in terms of @{term "op \<bullet>"} products.    *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   102
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   103
lemma vector_eq: "x = y \<longleftrightarrow> x \<bullet> x = x \<bullet> y \<and> y \<bullet> y = x \<bullet> x"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   104
  (is "?lhs \<longleftrightarrow> ?rhs")
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   105
proof
49652
2b82d495b586 tuned proofs;
wenzelm
parents: 49525
diff changeset
   106
  assume ?lhs
2b82d495b586 tuned proofs;
wenzelm
parents: 49525
diff changeset
   107
  then show ?rhs by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   108
next
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   109
  assume ?rhs
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   110
  then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y \<bullet> y = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   111
    by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   112
  then have "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   113
    by (simp add: inner_diff inner_commute)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   114
  then have "(x - y) \<bullet> (x - y) = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   115
    by (simp add: field_simps inner_diff inner_commute)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   116
  then show "x = y" by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   117
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   118
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   119
lemma norm_triangle_half_r:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   120
  "norm (y - x1) < e / 2 \<Longrightarrow> norm (y - x2) < e / 2 \<Longrightarrow> norm (x1 - x2) < e"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   121
  using dist_triangle_half_r unfolding dist_norm[symmetric] by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   122
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   123
lemma norm_triangle_half_l:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   124
  assumes "norm (x - y) < e / 2"
53842
b98c6cd90230 tuned proofs;
wenzelm
parents: 53716
diff changeset
   125
    and "norm (x' - y) < e / 2"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   126
  shows "norm (x - x') < e"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   127
  using dist_triangle_half_l[OF assms[unfolded dist_norm[symmetric]]]
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   128
  unfolding dist_norm[symmetric] .
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   129
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   130
lemma norm_triangle_le: "norm x + norm y \<le> e \<Longrightarrow> norm (x + y) \<le> e"
44666
8670a39d4420 remove more duplicate lemmas
huffman
parents: 44646
diff changeset
   131
  by (rule norm_triangle_ineq [THEN order_trans])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   132
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   133
lemma norm_triangle_lt: "norm x + norm y < e \<Longrightarrow> norm (x + y) < e"
44666
8670a39d4420 remove more duplicate lemmas
huffman
parents: 44646
diff changeset
   134
  by (rule norm_triangle_ineq [THEN le_less_trans])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   135
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   136
lemma setsum_clauses:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   137
  shows "setsum f {} = 0"
49525
e87b42a26991 misc tuning;
wenzelm
parents: 49522
diff changeset
   138
    and "finite S \<Longrightarrow> setsum f (insert x S) = (if x \<in> S then setsum f S else f x + setsum f S)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   139
  by (auto simp add: insert_absorb)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   140
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   141
lemma setsum_norm_le:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   142
  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
44176
eda112e9cdee remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents: 44170
diff changeset
   143
  assumes fg: "\<forall>x \<in> S. norm (f x) \<le> g x"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   144
  shows "norm (setsum f S) \<le> setsum g S"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   145
  by (rule order_trans [OF norm_setsum setsum_mono]) (simp add: fg)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   146
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   147
lemma setsum_norm_bound:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   148
  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
56196
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   149
  assumes K: "\<forall>x \<in> S. norm (f x) \<le> K"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   150
  shows "norm (setsum f S) \<le> of_nat (card S) * K"
44176
eda112e9cdee remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents: 44170
diff changeset
   151
  using setsum_norm_le[OF K] setsum_constant[symmetric]
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   152
  by simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   153
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   154
lemma setsum_group:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   155
  assumes fS: "finite S" and fT: "finite T" and fST: "f ` S \<subseteq> T"
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   156
  shows "setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) T = setsum g S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   157
  apply (subst setsum_image_gen[OF fS, of g f])
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
   158
  apply (rule setsum.mono_neutral_right[OF fT fST])
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
   159
  apply (auto intro: setsum.neutral)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   160
  done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   161
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   162
lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = z"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   163
proof
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   164
  assume "\<forall>x. x \<bullet> y = x \<bullet> z"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   165
  then have "\<forall>x. x \<bullet> (y - z) = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   166
    by (simp add: inner_diff)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   167
  then have "(y - z) \<bullet> (y - z) = 0" ..
49652
2b82d495b586 tuned proofs;
wenzelm
parents: 49525
diff changeset
   168
  then show "y = z" by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   169
qed simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   170
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   171
lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = y"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   172
proof
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   173
  assume "\<forall>z. x \<bullet> z = y \<bullet> z"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   174
  then have "\<forall>z. (x - y) \<bullet> z = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   175
    by (simp add: inner_diff)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   176
  then have "(x - y) \<bullet> (x - y) = 0" ..
49652
2b82d495b586 tuned proofs;
wenzelm
parents: 49525
diff changeset
   177
  then show "x = y" by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   178
qed simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   179
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   180
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   181
subsection {* Orthogonality. *}
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   182
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   183
context real_inner
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   184
begin
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   185
53842
b98c6cd90230 tuned proofs;
wenzelm
parents: 53716
diff changeset
   186
definition "orthogonal x y \<longleftrightarrow> x \<bullet> y = 0"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   187
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   188
lemma orthogonal_clauses:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   189
  "orthogonal a 0"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   190
  "orthogonal a x \<Longrightarrow> orthogonal a (c *\<^sub>R x)"
53842
b98c6cd90230 tuned proofs;
wenzelm
parents: 53716
diff changeset
   191
  "orthogonal a x \<Longrightarrow> orthogonal a (- x)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   192
  "orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x + y)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   193
  "orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x - y)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   194
  "orthogonal 0 a"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   195
  "orthogonal x a \<Longrightarrow> orthogonal (c *\<^sub>R x) a"
53842
b98c6cd90230 tuned proofs;
wenzelm
parents: 53716
diff changeset
   196
  "orthogonal x a \<Longrightarrow> orthogonal (- x) a"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   197
  "orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x + y) a"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   198
  "orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x - y) a"
44666
8670a39d4420 remove more duplicate lemmas
huffman
parents: 44646
diff changeset
   199
  unfolding orthogonal_def inner_add inner_diff by auto
8670a39d4420 remove more duplicate lemmas
huffman
parents: 44646
diff changeset
   200
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   201
end
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   202
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   203
lemma orthogonal_commute: "orthogonal x y \<longleftrightarrow> orthogonal y x"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   204
  by (simp add: orthogonal_def inner_commute)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   205
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   206
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   207
subsection {* Linear functions. *}
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   208
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   209
lemma linear_iff:
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
   210
  "linear f \<longleftrightarrow> (\<forall>x y. f (x + y) = f x + f y) \<and> (\<forall>c x. f (c *\<^sub>R x) = c *\<^sub>R f x)"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   211
  (is "linear f \<longleftrightarrow> ?rhs")
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   212
proof
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   213
  assume "linear f"
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   214
  then interpret f: linear f .
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   215
  show "?rhs" by (simp add: f.add f.scaleR)
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   216
next
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   217
  assume "?rhs"
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   218
  then show "linear f" by unfold_locales simp_all
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   219
qed
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   220
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   221
lemma linear_compose_cmul: "linear f \<Longrightarrow> linear (\<lambda>x. c *\<^sub>R f x)"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   222
  by (simp add: linear_iff algebra_simps)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   223
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   224
lemma linear_compose_neg: "linear f \<Longrightarrow> linear (\<lambda>x. - f x)"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   225
  by (simp add: linear_iff)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   226
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   227
lemma linear_compose_add: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (\<lambda>x. f x + g x)"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   228
  by (simp add: linear_iff algebra_simps)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   229
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   230
lemma linear_compose_sub: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (\<lambda>x. f x - g x)"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   231
  by (simp add: linear_iff algebra_simps)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   232
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   233
lemma linear_compose: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (g \<circ> f)"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   234
  by (simp add: linear_iff)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   235
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   236
lemma linear_id: "linear id"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   237
  by (simp add: linear_iff id_def)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   238
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   239
lemma linear_zero: "linear (\<lambda>x. 0)"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   240
  by (simp add: linear_iff)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   241
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   242
lemma linear_compose_setsum:
56196
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   243
  assumes lS: "\<forall>a \<in> S. linear (f a)"
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
   244
  shows "linear (\<lambda>x. setsum (\<lambda>a. f a x) S)"
56196
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   245
proof (cases "finite S")
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   246
  case True
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   247
  then show ?thesis
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   248
    using lS by induct (simp_all add: linear_zero linear_compose_add)
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   249
next
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   250
  case False
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   251
  then show ?thesis
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   252
    by (simp add: linear_zero)
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   253
qed
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   254
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   255
lemma linear_0: "linear f \<Longrightarrow> f 0 = 0"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   256
  unfolding linear_iff
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   257
  apply clarsimp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   258
  apply (erule allE[where x="0::'a"])
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   259
  apply simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   260
  done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   261
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   262
lemma linear_cmul: "linear f \<Longrightarrow> f (c *\<^sub>R x) = c *\<^sub>R f x"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   263
  by (simp add: linear_iff)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   264
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   265
lemma linear_neg: "linear f \<Longrightarrow> f (- x) = - f x"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   266
  using linear_cmul [where c="-1"] by simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   267
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
   268
lemma linear_add: "linear f \<Longrightarrow> f (x + y) = f x + f y"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   269
  by (metis linear_iff)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   270
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
   271
lemma linear_sub: "linear f \<Longrightarrow> f (x - y) = f x - f y"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53939
diff changeset
   272
  using linear_add [of f x "- y"] by (simp add: linear_neg)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   273
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   274
lemma linear_setsum:
56196
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   275
  assumes f: "linear f"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   276
  shows "f (setsum g S) = setsum (f \<circ> g) S"
56196
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   277
proof (cases "finite S")
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   278
  case True
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   279
  then show ?thesis
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   280
    by induct (simp_all add: linear_0 [OF f] linear_add [OF f])
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   281
next
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   282
  case False
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   283
  then show ?thesis
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   284
    by (simp add: linear_0 [OF f])
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   285
qed
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   286
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   287
lemma linear_setsum_mul:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   288
  assumes lin: "linear f"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   289
  shows "f (setsum (\<lambda>i. c i *\<^sub>R v i) S) = setsum (\<lambda>i. c i *\<^sub>R f (v i)) S"
56196
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   290
  using linear_setsum[OF lin, of "\<lambda>i. c i *\<^sub>R v i" , unfolded o_def] linear_cmul[OF lin]
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   291
  by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   292
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   293
lemma linear_injective_0:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   294
  assumes lin: "linear f"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   295
  shows "inj f \<longleftrightarrow> (\<forall>x. f x = 0 \<longrightarrow> x = 0)"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   296
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   297
  have "inj f \<longleftrightarrow> (\<forall> x y. f x = f y \<longrightarrow> x = y)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   298
    by (simp add: inj_on_def)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   299
  also have "\<dots> \<longleftrightarrow> (\<forall> x y. f x - f y = 0 \<longrightarrow> x - y = 0)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   300
    by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   301
  also have "\<dots> \<longleftrightarrow> (\<forall> x y. f (x - y) = 0 \<longrightarrow> x - y = 0)"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   302
    by (simp add: linear_sub[OF lin])
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   303
  also have "\<dots> \<longleftrightarrow> (\<forall> x. f x = 0 \<longrightarrow> x = 0)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   304
    by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   305
  finally show ?thesis .
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   306
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   307
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   308
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   309
subsection {* Bilinear functions. *}
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   310
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   311
definition "bilinear f \<longleftrightarrow> (\<forall>x. linear (\<lambda>y. f x y)) \<and> (\<forall>y. linear (\<lambda>x. f x y))"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   312
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   313
lemma bilinear_ladd: "bilinear h \<Longrightarrow> h (x + y) z = h x z + h y z"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   314
  by (simp add: bilinear_def linear_iff)
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   315
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   316
lemma bilinear_radd: "bilinear h \<Longrightarrow> h x (y + z) = h x y + h x z"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   317
  by (simp add: bilinear_def linear_iff)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   318
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   319
lemma bilinear_lmul: "bilinear h \<Longrightarrow> h (c *\<^sub>R x) y = c *\<^sub>R h x y"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   320
  by (simp add: bilinear_def linear_iff)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   321
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   322
lemma bilinear_rmul: "bilinear h \<Longrightarrow> h x (c *\<^sub>R y) = c *\<^sub>R h x y"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   323
  by (simp add: bilinear_def linear_iff)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   324
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   325
lemma bilinear_lneg: "bilinear h \<Longrightarrow> h (- x) y = - h x y"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54413
diff changeset
   326
  by (drule bilinear_lmul [of _ "- 1"]) simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   327
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   328
lemma bilinear_rneg: "bilinear h \<Longrightarrow> h x (- y) = - h x y"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54413
diff changeset
   329
  by (drule bilinear_rmul [of _ _ "- 1"]) simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   330
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   331
lemma (in ab_group_add) eq_add_iff: "x = x + y \<longleftrightarrow> y = 0"
59557
ebd8ecacfba6 establish unique preferred fact names
haftmann
parents: 58877
diff changeset
   332
  using add_left_imp_eq[of x y 0] by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   333
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   334
lemma bilinear_lzero:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   335
  assumes "bilinear h"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   336
  shows "h 0 x = 0"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   337
  using bilinear_ladd [OF assms, of 0 0 x] by (simp add: eq_add_iff field_simps)
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   338
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   339
lemma bilinear_rzero:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   340
  assumes "bilinear h"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   341
  shows "h x 0 = 0"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   342
  using bilinear_radd [OF assms, of x 0 0 ] by (simp add: eq_add_iff field_simps)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   343
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   344
lemma bilinear_lsub: "bilinear h \<Longrightarrow> h (x - y) z = h x z - h y z"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53939
diff changeset
   345
  using bilinear_ladd [of h x "- y"] by (simp add: bilinear_lneg)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   346
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   347
lemma bilinear_rsub: "bilinear h \<Longrightarrow> h z (x - y) = h z x - h z y"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53939
diff changeset
   348
  using bilinear_radd [of h _ x "- y"] by (simp add: bilinear_rneg)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   349
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   350
lemma bilinear_setsum:
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   351
  assumes bh: "bilinear h"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   352
    and fS: "finite S"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   353
    and fT: "finite T"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   354
  shows "h (setsum f S) (setsum g T) = setsum (\<lambda>(i,j). h (f i) (g j)) (S \<times> T) "
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   355
proof -
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   356
  have "h (setsum f S) (setsum g T) = setsum (\<lambda>x. h (f x) (setsum g T)) S"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   357
    apply (rule linear_setsum[unfolded o_def])
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   358
    using bh fS
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   359
    apply (auto simp add: bilinear_def)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   360
    done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   361
  also have "\<dots> = setsum (\<lambda>x. setsum (\<lambda>y. h (f x) (g y)) T) S"
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
   362
    apply (rule setsum.cong, simp)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   363
    apply (rule linear_setsum[unfolded o_def])
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   364
    using bh fT
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   365
    apply (auto simp add: bilinear_def)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   366
    done
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   367
  finally show ?thesis
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
   368
    unfolding setsum.cartesian_product .
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   369
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   370
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   371
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   372
subsection {* Adjoints. *}
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   373
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   374
definition "adjoint f = (SOME f'. \<forall>x y. f x \<bullet> y = x \<bullet> f' y)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   375
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   376
lemma adjoint_unique:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   377
  assumes "\<forall>x y. inner (f x) y = inner x (g y)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   378
  shows "adjoint f = g"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   379
  unfolding adjoint_def
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   380
proof (rule some_equality)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   381
  show "\<forall>x y. inner (f x) y = inner x (g y)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   382
    by (rule assms)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   383
next
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   384
  fix h
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   385
  assume "\<forall>x y. inner (f x) y = inner x (h y)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   386
  then have "\<forall>x y. inner x (g y) = inner x (h y)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   387
    using assms by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   388
  then have "\<forall>x y. inner x (g y - h y) = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   389
    by (simp add: inner_diff_right)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   390
  then have "\<forall>y. inner (g y - h y) (g y - h y) = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   391
    by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   392
  then have "\<forall>y. h y = g y"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   393
    by simp
49652
2b82d495b586 tuned proofs;
wenzelm
parents: 49525
diff changeset
   394
  then show "h = g" by (simp add: ext)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   395
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   396
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   397
text {* TODO: The following lemmas about adjoints should hold for any
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   398
Hilbert space (i.e. complete inner product space).
54703
499f92dc6e45 more antiquotations;
wenzelm
parents: 54489
diff changeset
   399
(see @{url "http://en.wikipedia.org/wiki/Hermitian_adjoint"})
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   400
*}
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   401
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   402
lemma adjoint_works:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   403
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   404
  assumes lf: "linear f"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   405
  shows "x \<bullet> adjoint f y = f x \<bullet> y"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   406
proof -
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   407
  have "\<forall>y. \<exists>w. \<forall>x. f x \<bullet> y = x \<bullet> w"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   408
  proof (intro allI exI)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   409
    fix y :: "'m" and x
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   410
    let ?w = "(\<Sum>i\<in>Basis. (f i \<bullet> y) *\<^sub>R i) :: 'n"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   411
    have "f x \<bullet> y = f (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R i) \<bullet> y"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   412
      by (simp add: euclidean_representation)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   413
    also have "\<dots> = (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R f i) \<bullet> y"
56196
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   414
      unfolding linear_setsum[OF lf]
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   415
      by (simp add: linear_cmul[OF lf])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   416
    finally show "f x \<bullet> y = x \<bullet> ?w"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   417
      by (simp add: inner_setsum_left inner_setsum_right mult.commute)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   418
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   419
  then show ?thesis
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   420
    unfolding adjoint_def choice_iff
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   421
    by (intro someI2_ex[where Q="\<lambda>f'. x \<bullet> f' y = f x \<bullet> y"]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   422
qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   423
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   424
lemma adjoint_clauses:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   425
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   426
  assumes lf: "linear f"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   427
  shows "x \<bullet> adjoint f y = f x \<bullet> y"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   428
    and "adjoint f y \<bullet> x = y \<bullet> f x"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   429
  by (simp_all add: adjoint_works[OF lf] inner_commute)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   430
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   431
lemma adjoint_linear:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   432
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   433
  assumes lf: "linear f"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   434
  shows "linear (adjoint f)"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   435
  by (simp add: lf linear_iff euclidean_eq_iff[where 'a='n] euclidean_eq_iff[where 'a='m]
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   436
    adjoint_clauses[OF lf] inner_distrib)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   437
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   438
lemma adjoint_adjoint:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   439
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   440
  assumes lf: "linear f"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   441
  shows "adjoint (adjoint f) = f"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   442
  by (rule adjoint_unique, simp add: adjoint_clauses [OF lf])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   443
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   444
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   445
subsection {* Interlude: Some properties of real sets *}
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   446
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   447
lemma seq_mono_lemma:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   448
  assumes "\<forall>(n::nat) \<ge> m. (d n :: real) < e n"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   449
    and "\<forall>n \<ge> m. e n \<le> e m"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   450
  shows "\<forall>n \<ge> m. d n < e m"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   451
  using assms
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   452
  apply auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   453
  apply (erule_tac x="n" in allE)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   454
  apply (erule_tac x="n" in allE)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   455
  apply auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   456
  done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   457
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   458
lemma infinite_enumerate:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   459
  assumes fS: "infinite S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   460
  shows "\<exists>r. subseq r \<and> (\<forall>n. r n \<in> S)"
49525
e87b42a26991 misc tuning;
wenzelm
parents: 49522
diff changeset
   461
  unfolding subseq_def
e87b42a26991 misc tuning;
wenzelm
parents: 49522
diff changeset
   462
  using enumerate_in_set[OF fS] enumerate_mono[of _ _ S] fS by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   463
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   464
lemma approachable_lt_le: "(\<exists>(d::real) > 0. \<forall>x. f x < d \<longrightarrow> P x) \<longleftrightarrow> (\<exists>d>0. \<forall>x. f x \<le> d \<longrightarrow> P x)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   465
  apply auto
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   466
  apply (rule_tac x="d/2" in exI)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   467
  apply auto
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   468
  done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   469
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   470
lemma triangle_lemma:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   471
  fixes x y z :: real
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   472
  assumes x: "0 \<le> x"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   473
    and y: "0 \<le> y"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   474
    and z: "0 \<le> z"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   475
    and xy: "x\<^sup>2 \<le> y\<^sup>2 + z\<^sup>2"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   476
  shows "x \<le> y + z"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   477
proof -
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   478
  have "y\<^sup>2 + z\<^sup>2 \<le> y\<^sup>2 + 2 * y * z + z\<^sup>2"
56536
aefb4a8da31f made mult_nonneg_nonneg a simp rule
nipkow
parents: 56480
diff changeset
   479
    using z y by simp
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   480
  with xy have th: "x\<^sup>2 \<le> (y + z)\<^sup>2"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   481
    by (simp add: power2_eq_square field_simps)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   482
  from y z have yz: "y + z \<ge> 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   483
    by arith
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   484
  from power2_le_imp_le[OF th yz] show ?thesis .
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   485
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   486
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   487
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   488
subsection {* A generic notion of "hull" (convex, affine, conic hull and closure). *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   489
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   490
definition hull :: "('a set \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "hull" 75)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   491
  where "S hull s = \<Inter>{t. S t \<and> s \<subseteq> t}"
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
   492
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
   493
lemma hull_same: "S s \<Longrightarrow> S hull s = s"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   494
  unfolding hull_def by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   495
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   496
lemma hull_in: "(\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)) \<Longrightarrow> S (S hull s)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   497
  unfolding hull_def Ball_def by auto
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
   498
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   499
lemma hull_eq: "(\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)) \<Longrightarrow> (S hull s) = s \<longleftrightarrow> S s"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   500
  using hull_same[of S s] hull_in[of S s] by metis
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   501
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   502
lemma hull_hull: "S hull (S hull s) = S hull s"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   503
  unfolding hull_def by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   504
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   505
lemma hull_subset[intro]: "s \<subseteq> (S hull s)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   506
  unfolding hull_def by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   507
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   508
lemma hull_mono: "s \<subseteq> t \<Longrightarrow> (S hull s) \<subseteq> (S hull t)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   509
  unfolding hull_def by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   510
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   511
lemma hull_antimono: "\<forall>x. S x \<longrightarrow> T x \<Longrightarrow> (T hull s) \<subseteq> (S hull s)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   512
  unfolding hull_def by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   513
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   514
lemma hull_minimal: "s \<subseteq> t \<Longrightarrow> S t \<Longrightarrow> (S hull s) \<subseteq> t"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   515
  unfolding hull_def by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   516
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   517
lemma subset_hull: "S t \<Longrightarrow> S hull s \<subseteq> t \<longleftrightarrow> s \<subseteq> t"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   518
  unfolding hull_def by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   519
53596
d29d63460d84 new lemmas
huffman
parents: 53595
diff changeset
   520
lemma hull_UNIV: "S hull UNIV = UNIV"
d29d63460d84 new lemmas
huffman
parents: 53595
diff changeset
   521
  unfolding hull_def by auto
d29d63460d84 new lemmas
huffman
parents: 53595
diff changeset
   522
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   523
lemma hull_unique: "s \<subseteq> t \<Longrightarrow> S t \<Longrightarrow> (\<And>t'. s \<subseteq> t' \<Longrightarrow> S t' \<Longrightarrow> t \<subseteq> t') \<Longrightarrow> (S hull s = t)"
49652
2b82d495b586 tuned proofs;
wenzelm
parents: 49525
diff changeset
   524
  unfolding hull_def by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   525
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   526
lemma hull_induct: "(\<And>x. x\<in> S \<Longrightarrow> P x) \<Longrightarrow> Q {x. P x} \<Longrightarrow> \<forall>x\<in> Q hull S. P x"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   527
  using hull_minimal[of S "{x. P x}" Q]
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
   528
  by (auto simp add: subset_eq)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   529
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   530
lemma hull_inc: "x \<in> S \<Longrightarrow> x \<in> P hull S"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   531
  by (metis hull_subset subset_eq)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   532
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   533
lemma hull_union_subset: "(S hull s) \<union> (S hull t) \<subseteq> (S hull (s \<union> t))"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   534
  unfolding Un_subset_iff by (metis hull_mono Un_upper1 Un_upper2)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   535
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   536
lemma hull_union:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   537
  assumes T: "\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   538
  shows "S hull (s \<union> t) = S hull (S hull s \<union> S hull t)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   539
  apply rule
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   540
  apply (rule hull_mono)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   541
  unfolding Un_subset_iff
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   542
  apply (metis hull_subset Un_upper1 Un_upper2 subset_trans)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   543
  apply (rule hull_minimal)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   544
  apply (metis hull_union_subset)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   545
  apply (metis hull_in T)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   546
  done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   547
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   548
lemma hull_redundant_eq: "a \<in> (S hull s) \<longleftrightarrow> S hull (insert a s) = S hull s"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   549
  unfolding hull_def by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   550
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   551
lemma hull_redundant: "a \<in> (S hull s) \<Longrightarrow> S hull (insert a s) = S hull s"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   552
  by (metis hull_redundant_eq)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   553
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   554
44666
8670a39d4420 remove more duplicate lemmas
huffman
parents: 44646
diff changeset
   555
subsection {* Archimedean properties and useful consequences *}
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   556
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   557
lemma real_arch_simple: "\<exists>n::nat. x \<le> real n"
44666
8670a39d4420 remove more duplicate lemmas
huffman
parents: 44646
diff changeset
   558
  unfolding real_of_nat_def by (rule ex_le_of_nat)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   559
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   560
lemma real_arch_inv: "0 < e \<longleftrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)"
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56479
diff changeset
   561
  using reals_Archimedean[of e] less_trans[of 0 "1 / real n" e for n::nat]
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56479
diff changeset
   562
  by (auto simp add: field_simps cong: conj_cong)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   563
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   564
lemma real_pow_lbound: "0 \<le> x \<Longrightarrow> 1 + real n * x \<le> (1 + x) ^ n"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   565
proof (induct n)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   566
  case 0
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   567
  then show ?case by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   568
next
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   569
  case (Suc n)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   570
  then have h: "1 + real n * x \<le> (1 + x) ^ n"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   571
    by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   572
  from h have p: "1 \<le> (1 + x) ^ n"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   573
    using Suc.prems by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   574
  from h have "1 + real n * x + x \<le> (1 + x) ^ n + x"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   575
    by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   576
  also have "\<dots> \<le> (1 + x) ^ Suc n"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   577
    apply (subst diff_le_0_iff_le[symmetric])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   578
    apply (simp add: field_simps)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   579
    using mult_left_mono[OF p Suc.prems]
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   580
    apply simp
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   581
    done
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   582
  finally show ?case
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   583
    by (simp add: real_of_nat_Suc field_simps)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   584
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   585
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   586
lemma real_arch_pow:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   587
  fixes x :: real
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   588
  assumes x: "1 < x"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   589
  shows "\<exists>n. y < x^n"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   590
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   591
  from x have x0: "x - 1 > 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   592
    by arith
44666
8670a39d4420 remove more duplicate lemmas
huffman
parents: 44646
diff changeset
   593
  from reals_Archimedean3[OF x0, rule_format, of y]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   594
  obtain n :: nat where n: "y < real n * (x - 1)" by metis
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   595
  from x0 have x00: "x- 1 \<ge> 0" by arith
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   596
  from real_pow_lbound[OF x00, of n] n
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   597
  have "y < x^n" by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   598
  then show ?thesis by metis
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   599
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   600
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   601
lemma real_arch_pow2:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   602
  fixes x :: real
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   603
  shows "\<exists>n. x < 2^ n"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   604
  using real_arch_pow[of 2 x] by simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   605
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   606
lemma real_arch_pow_inv:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   607
  fixes x y :: real
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   608
  assumes y: "y > 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   609
    and x1: "x < 1"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   610
  shows "\<exists>n. x^n < y"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   611
proof (cases "x > 0")
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   612
  case True
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   613
  with x1 have ix: "1 < 1/x" by (simp add: field_simps)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   614
  from real_arch_pow[OF ix, of "1/y"]
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   615
  obtain n where n: "1/y < (1/x)^n" by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   616
  then show ?thesis using y `x > 0`
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56479
diff changeset
   617
    by (auto simp add: field_simps)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   618
next
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   619
  case False
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   620
  with y x1 show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   621
    apply auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   622
    apply (rule exI[where x=1])
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   623
    apply auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   624
    done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   625
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   626
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   627
lemma forall_pos_mono:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   628
  "(\<And>d e::real. d < e \<Longrightarrow> P d \<Longrightarrow> P e) \<Longrightarrow>
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   629
    (\<And>n::nat. n \<noteq> 0 \<Longrightarrow> P (inverse (real n))) \<Longrightarrow> (\<And>e. 0 < e \<Longrightarrow> P e)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   630
  by (metis real_arch_inv)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   631
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   632
lemma forall_pos_mono_1:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   633
  "(\<And>d e::real. d < e \<Longrightarrow> P d \<Longrightarrow> P e) \<Longrightarrow>
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
   634
    (\<And>n. P (inverse (real (Suc n)))) \<Longrightarrow> 0 < e \<Longrightarrow> P e"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   635
  apply (rule forall_pos_mono)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   636
  apply auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   637
  apply (atomize)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   638
  apply (erule_tac x="n - 1" in allE)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   639
  apply auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   640
  done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   641
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   642
lemma real_archimedian_rdiv_eq_0:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   643
  assumes x0: "x \<ge> 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   644
    and c: "c \<ge> 0"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   645
    and xc: "\<forall>(m::nat) > 0. real m * x \<le> c"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   646
  shows "x = 0"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   647
proof (rule ccontr)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   648
  assume "x \<noteq> 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   649
  with x0 have xp: "x > 0" by arith
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   650
  from reals_Archimedean3[OF xp, rule_format, of c]
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   651
  obtain n :: nat where n: "c < real n * x"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   652
    by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   653
  with xc[rule_format, of n] have "n = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   654
    by arith
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   655
  with n c show False
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   656
    by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   657
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   658
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   659
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   660
subsection{* A bit of linear algebra. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   661
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   662
definition (in real_vector) subspace :: "'a set \<Rightarrow> bool"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   663
  where "subspace S \<longleftrightarrow> 0 \<in> S \<and> (\<forall>x \<in> S. \<forall>y \<in> S. x + y \<in> S) \<and> (\<forall>c. \<forall>x \<in> S. c *\<^sub>R x \<in> S)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   664
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   665
definition (in real_vector) "span S = (subspace hull S)"
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
   666
definition (in real_vector) "dependent S \<longleftrightarrow> (\<exists>a \<in> S. a \<in> span (S - {a}))"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   667
abbreviation (in real_vector) "independent s \<equiv> \<not> dependent s"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   668
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   669
text {* Closure properties of subspaces. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   670
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   671
lemma subspace_UNIV[simp]: "subspace UNIV"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   672
  by (simp add: subspace_def)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   673
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   674
lemma (in real_vector) subspace_0: "subspace S \<Longrightarrow> 0 \<in> S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   675
  by (metis subspace_def)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   676
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   677
lemma (in real_vector) subspace_add: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x + y \<in> S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   678
  by (metis subspace_def)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   679
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   680
lemma (in real_vector) subspace_mul: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> c *\<^sub>R x \<in> S"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   681
  by (metis subspace_def)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   682
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   683
lemma subspace_neg: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> - x \<in> S"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   684
  by (metis scaleR_minus1_left subspace_mul)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   685
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   686
lemma subspace_sub: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x - y \<in> S"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53939
diff changeset
   687
  using subspace_add [of S x "- y"] by (simp add: subspace_neg)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   688
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   689
lemma (in real_vector) subspace_setsum:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   690
  assumes sA: "subspace A"
56196
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   691
    and f: "\<forall>x\<in>B. f x \<in> A"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   692
  shows "setsum f B \<in> A"
56196
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   693
proof (cases "finite B")
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   694
  case True
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   695
  then show ?thesis
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   696
    using f by induct (simp_all add: subspace_0 [OF sA] subspace_add [OF sA])
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   697
qed (simp add: subspace_0 [OF sA])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   698
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   699
lemma subspace_linear_image:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   700
  assumes lf: "linear f"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   701
    and sS: "subspace S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   702
  shows "subspace (f ` S)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   703
  using lf sS linear_0[OF lf]
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   704
  unfolding linear_iff subspace_def
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   705
  apply (auto simp add: image_iff)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   706
  apply (rule_tac x="x + y" in bexI)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   707
  apply auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   708
  apply (rule_tac x="c *\<^sub>R x" in bexI)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   709
  apply auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   710
  done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   711
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   712
lemma subspace_linear_vimage: "linear f \<Longrightarrow> subspace S \<Longrightarrow> subspace (f -` S)"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   713
  by (auto simp add: subspace_def linear_iff linear_0[of f])
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   714
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   715
lemma subspace_linear_preimage: "linear f \<Longrightarrow> subspace S \<Longrightarrow> subspace {x. f x \<in> S}"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   716
  by (auto simp add: subspace_def linear_iff linear_0[of f])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   717
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   718
lemma subspace_trivial: "subspace {0}"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   719
  by (simp add: subspace_def)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   720
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   721
lemma (in real_vector) subspace_inter: "subspace A \<Longrightarrow> subspace B \<Longrightarrow> subspace (A \<inter> B)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   722
  by (simp add: subspace_def)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   723
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   724
lemma subspace_Times: "subspace A \<Longrightarrow> subspace B \<Longrightarrow> subspace (A \<times> B)"
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   725
  unfolding subspace_def zero_prod_def by simp
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   726
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   727
text {* Properties of span. *}
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   728
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   729
lemma (in real_vector) span_mono: "A \<subseteq> B \<Longrightarrow> span A \<subseteq> span B"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   730
  by (metis span_def hull_mono)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   731
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   732
lemma (in real_vector) subspace_span: "subspace (span S)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   733
  unfolding span_def
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
   734
  apply (rule hull_in)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   735
  apply (simp only: subspace_def Inter_iff Int_iff subset_eq)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   736
  apply auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   737
  done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   738
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   739
lemma (in real_vector) span_clauses:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   740
  "a \<in> S \<Longrightarrow> a \<in> span S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   741
  "0 \<in> span S"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   742
  "x\<in> span S \<Longrightarrow> y \<in> span S \<Longrightarrow> x + y \<in> span S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   743
  "x \<in> span S \<Longrightarrow> c *\<^sub>R x \<in> span S"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   744
  by (metis span_def hull_subset subset_eq) (metis subspace_span subspace_def)+
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   745
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   746
lemma span_unique:
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   747
  "S \<subseteq> T \<Longrightarrow> subspace T \<Longrightarrow> (\<And>T'. S \<subseteq> T' \<Longrightarrow> subspace T' \<Longrightarrow> T \<subseteq> T') \<Longrightarrow> span S = T"
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   748
  unfolding span_def by (rule hull_unique)
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   749
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   750
lemma span_minimal: "S \<subseteq> T \<Longrightarrow> subspace T \<Longrightarrow> span S \<subseteq> T"
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   751
  unfolding span_def by (rule hull_minimal)
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   752
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   753
lemma (in real_vector) span_induct:
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   754
  assumes x: "x \<in> span S"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   755
    and P: "subspace P"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   756
    and SP: "\<And>x. x \<in> S \<Longrightarrow> x \<in> P"
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   757
  shows "x \<in> P"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   758
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   759
  from SP have SP': "S \<subseteq> P"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   760
    by (simp add: subset_eq)
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
   761
  from x hull_minimal[where S=subspace, OF SP' P, unfolded span_def[symmetric]]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   762
  show "x \<in> P"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   763
    by (metis subset_eq)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   764
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   765
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   766
lemma span_empty[simp]: "span {} = {0}"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   767
  apply (simp add: span_def)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   768
  apply (rule hull_unique)
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
   769
  apply (auto simp add: subspace_def)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   770
  done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   771
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   772
lemma (in real_vector) independent_empty[intro]: "independent {}"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   773
  by (simp add: dependent_def)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   774
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   775
lemma dependent_single[simp]: "dependent {x} \<longleftrightarrow> x = 0"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   776
  unfolding dependent_def by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   777
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   778
lemma (in real_vector) independent_mono: "independent A \<Longrightarrow> B \<subseteq> A \<Longrightarrow> independent B"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   779
  apply (clarsimp simp add: dependent_def span_mono)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   780
  apply (subgoal_tac "span (B - {a}) \<le> span (A - {a})")
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   781
  apply force
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   782
  apply (rule span_mono)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   783
  apply auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   784
  done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   785
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   786
lemma (in real_vector) span_subspace: "A \<subseteq> B \<Longrightarrow> B \<le> span A \<Longrightarrow>  subspace B \<Longrightarrow> span A = B"
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
   787
  by (metis order_antisym span_def hull_minimal)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   788
49711
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
   789
lemma (in real_vector) span_induct':
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
   790
  assumes SP: "\<forall>x \<in> S. P x"
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
   791
    and P: "subspace {x. P x}"
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
   792
  shows "\<forall>x \<in> span S. P x"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   793
  using span_induct SP P by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   794
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   795
inductive_set (in real_vector) span_induct_alt_help for S :: "'a set"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   796
where
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
   797
  span_induct_alt_help_0: "0 \<in> span_induct_alt_help S"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   798
| span_induct_alt_help_S:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   799
    "x \<in> S \<Longrightarrow> z \<in> span_induct_alt_help S \<Longrightarrow>
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   800
      (c *\<^sub>R x + z) \<in> span_induct_alt_help S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   801
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   802
lemma span_induct_alt':
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   803
  assumes h0: "h 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   804
    and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c *\<^sub>R x + y)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   805
  shows "\<forall>x \<in> span S. h x"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   806
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   807
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   808
    fix x :: 'a
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   809
    assume x: "x \<in> span_induct_alt_help S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   810
    have "h x"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   811
      apply (rule span_induct_alt_help.induct[OF x])
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   812
      apply (rule h0)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   813
      apply (rule hS)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   814
      apply assumption
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   815
      apply assumption
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   816
      done
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   817
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   818
  note th0 = this
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   819
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   820
    fix x
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   821
    assume x: "x \<in> span S"
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
   822
    have "x \<in> span_induct_alt_help S"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   823
    proof (rule span_induct[where x=x and S=S])
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   824
      show "x \<in> span S" by (rule x)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   825
    next
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   826
      fix x
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   827
      assume xS: "x \<in> S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   828
      from span_induct_alt_help_S[OF xS span_induct_alt_help_0, of 1]
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   829
      show "x \<in> span_induct_alt_help S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   830
        by simp
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   831
    next
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   832
      have "0 \<in> span_induct_alt_help S" by (rule span_induct_alt_help_0)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   833
      moreover
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   834
      {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   835
        fix x y
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   836
        assume h: "x \<in> span_induct_alt_help S" "y \<in> span_induct_alt_help S"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   837
        from h have "(x + y) \<in> span_induct_alt_help S"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   838
          apply (induct rule: span_induct_alt_help.induct)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   839
          apply simp
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   840
          unfolding add.assoc
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   841
          apply (rule span_induct_alt_help_S)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   842
          apply assumption
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   843
          apply simp
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   844
          done
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   845
      }
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   846
      moreover
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   847
      {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   848
        fix c x
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   849
        assume xt: "x \<in> span_induct_alt_help S"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   850
        then have "(c *\<^sub>R x) \<in> span_induct_alt_help S"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   851
          apply (induct rule: span_induct_alt_help.induct)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   852
          apply (simp add: span_induct_alt_help_0)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   853
          apply (simp add: scaleR_right_distrib)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   854
          apply (rule span_induct_alt_help_S)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   855
          apply assumption
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   856
          apply simp
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   857
          done }
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   858
      ultimately show "subspace (span_induct_alt_help S)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   859
        unfolding subspace_def Ball_def by blast
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   860
    qed
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   861
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   862
  with th0 show ?thesis by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   863
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   864
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   865
lemma span_induct_alt:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   866
  assumes h0: "h 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   867
    and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c *\<^sub>R x + y)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   868
    and x: "x \<in> span S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   869
  shows "h x"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   870
  using span_induct_alt'[of h S] h0 hS x by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   871
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   872
text {* Individual closure properties. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   873
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   874
lemma span_span: "span (span A) = span A"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   875
  unfolding span_def hull_hull ..
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   876
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   877
lemma (in real_vector) span_superset: "x \<in> S \<Longrightarrow> x \<in> span S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   878
  by (metis span_clauses(1))
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   879
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   880
lemma (in real_vector) span_0: "0 \<in> span S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   881
  by (metis subspace_span subspace_0)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   882
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   883
lemma span_inc: "S \<subseteq> span S"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   884
  by (metis subset_eq span_superset)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   885
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   886
lemma (in real_vector) dependent_0:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   887
  assumes "0 \<in> A"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   888
  shows "dependent A"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   889
  unfolding dependent_def
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   890
  apply (rule_tac x=0 in bexI)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   891
  using assms span_0
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   892
  apply auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   893
  done
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   894
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   895
lemma (in real_vector) span_add: "x \<in> span S \<Longrightarrow> y \<in> span S \<Longrightarrow> x + y \<in> span S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   896
  by (metis subspace_add subspace_span)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   897
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   898
lemma (in real_vector) span_mul: "x \<in> span S \<Longrightarrow> c *\<^sub>R x \<in> span S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   899
  by (metis subspace_span subspace_mul)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   900
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   901
lemma span_neg: "x \<in> span S \<Longrightarrow> - x \<in> span S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   902
  by (metis subspace_neg subspace_span)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   903
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   904
lemma span_sub: "x \<in> span S \<Longrightarrow> y \<in> span S \<Longrightarrow> x - y \<in> span S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   905
  by (metis subspace_span subspace_sub)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   906
56196
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   907
lemma (in real_vector) span_setsum: "\<forall>x\<in>A. f x \<in> span S \<Longrightarrow> setsum f A \<in> span S"
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
   908
  by (rule subspace_setsum [OF subspace_span])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   909
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   910
lemma span_add_eq: "x \<in> span S \<Longrightarrow> x + y \<in> span S \<longleftrightarrow> y \<in> span S"
55775
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55136
diff changeset
   911
  by (metis add_minus_cancel scaleR_minus1_left subspace_def subspace_span)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   912
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   913
text {* Mapping under linear image. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   914
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   915
lemma span_linear_image:
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   916
  assumes lf: "linear f"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   917
  shows "span (f ` S) = f ` span S"
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   918
proof (rule span_unique)
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   919
  show "f ` S \<subseteq> f ` span S"
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   920
    by (intro image_mono span_inc)
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   921
  show "subspace (f ` span S)"
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   922
    using lf subspace_span by (rule subspace_linear_image)
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   923
next
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   924
  fix T
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   925
  assume "f ` S \<subseteq> T" and "subspace T"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   926
  then show "f ` span S \<subseteq> T"
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   927
    unfolding image_subset_iff_subset_vimage
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   928
    by (intro span_minimal subspace_linear_vimage lf)
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   929
qed
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   930
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   931
lemma span_union: "span (A \<union> B) = (\<lambda>(a, b). a + b) ` (span A \<times> span B)"
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   932
proof (rule span_unique)
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   933
  show "A \<union> B \<subseteq> (\<lambda>(a, b). a + b) ` (span A \<times> span B)"
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   934
    by safe (force intro: span_clauses)+
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   935
next
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   936
  have "linear (\<lambda>(a, b). a + b)"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   937
    by (simp add: linear_iff scaleR_add_right)
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   938
  moreover have "subspace (span A \<times> span B)"
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   939
    by (intro subspace_Times subspace_span)
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   940
  ultimately show "subspace ((\<lambda>(a, b). a + b) ` (span A \<times> span B))"
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   941
    by (rule subspace_linear_image)
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   942
next
49711
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
   943
  fix T
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
   944
  assume "A \<union> B \<subseteq> T" and "subspace T"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   945
  then show "(\<lambda>(a, b). a + b) ` (span A \<times> span B) \<subseteq> T"
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   946
    by (auto intro!: subspace_add elim: span_induct)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   947
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   948
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   949
text {* The key breakdown property. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   950
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   951
lemma span_singleton: "span {x} = range (\<lambda>k. k *\<^sub>R x)"
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   952
proof (rule span_unique)
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   953
  show "{x} \<subseteq> range (\<lambda>k. k *\<^sub>R x)"
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   954
    by (fast intro: scaleR_one [symmetric])
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   955
  show "subspace (range (\<lambda>k. k *\<^sub>R x))"
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   956
    unfolding subspace_def
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   957
    by (auto intro: scaleR_add_left [symmetric])
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   958
next
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   959
  fix T
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   960
  assume "{x} \<subseteq> T" and "subspace T"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   961
  then show "range (\<lambda>k. k *\<^sub>R x) \<subseteq> T"
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   962
    unfolding subspace_def by auto
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   963
qed
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   964
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   965
lemma span_insert: "span (insert a S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}"
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   966
proof -
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   967
  have "span ({a} \<union> S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}"
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   968
    unfolding span_union span_singleton
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   969
    apply safe
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   970
    apply (rule_tac x=k in exI, simp)
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   971
    apply (erule rev_image_eqI [OF SigmaI [OF rangeI]])
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53939
diff changeset
   972
    apply auto
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   973
    done
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   974
  then show ?thesis by simp
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   975
qed
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   976
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   977
lemma span_breakdown:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   978
  assumes bS: "b \<in> S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   979
    and aS: "a \<in> span S"
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   980
  shows "\<exists>k. a - k *\<^sub>R b \<in> span (S - {b})"
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   981
  using assms span_insert [of b "S - {b}"]
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   982
  by (simp add: insert_absorb)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   983
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   984
lemma span_breakdown_eq: "x \<in> span (insert a S) \<longleftrightarrow> (\<exists>k. x - k *\<^sub>R a \<in> span S)"
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
   985
  by (simp add: span_insert)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   986
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   987
text {* Hence some "reversal" results. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   988
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   989
lemma in_span_insert:
49711
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
   990
  assumes a: "a \<in> span (insert b S)"
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
   991
    and na: "a \<notin> span S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   992
  shows "b \<in> span (insert a S)"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   993
proof -
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
   994
  from a obtain k where k: "a - k *\<^sub>R b \<in> span S"
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
   995
    unfolding span_insert by fast
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   996
  show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   997
  proof (cases "k = 0")
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   998
    case True
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
   999
    with k have "a \<in> span S" by simp
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1000
    with na show ?thesis by simp
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1001
  next
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1002
    case False
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1003
    from k have "(- inverse k) *\<^sub>R (a - k *\<^sub>R b) \<in> span S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1004
      by (rule span_mul)
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1005
    then have "b - inverse k *\<^sub>R a \<in> span S"
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1006
      using `k \<noteq> 0` by (simp add: scaleR_diff_right)
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1007
    then show ?thesis
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1008
      unfolding span_insert by fast
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1009
  qed
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1010
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1011
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1012
lemma in_span_delete:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1013
  assumes a: "a \<in> span S"
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1014
    and na: "a \<notin> span (S - {b})"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1015
  shows "b \<in> span (insert a (S - {b}))"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1016
  apply (rule in_span_insert)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1017
  apply (rule set_rev_mp)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1018
  apply (rule a)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1019
  apply (rule span_mono)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1020
  apply blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1021
  apply (rule na)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1022
  done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1023
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1024
text {* Transitivity property. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1025
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
  1026
lemma span_redundant: "x \<in> span S \<Longrightarrow> span (insert x S) = span S"
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
  1027
  unfolding span_def by (rule hull_redundant)
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
  1028
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1029
lemma span_trans:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1030
  assumes x: "x \<in> span S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1031
    and y: "y \<in> span (insert x S)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1032
  shows "y \<in> span S"
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
  1033
  using assms by (simp only: span_redundant)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1034
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1035
lemma span_insert_0[simp]: "span (insert 0 S) = span S"
44521
083eedb37a37 simplify many proofs about subspace and span;
huffman
parents: 44517
diff changeset
  1036
  by (simp only: span_redundant span_0)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1037
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1038
text {* An explicit expansion is sometimes needed. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1039
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1040
lemma span_explicit:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1041
  "span P = {y. \<exists>S u. finite S \<and> S \<subseteq> P \<and> setsum (\<lambda>v. u v *\<^sub>R v) S = y}"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1042
  (is "_ = ?E" is "_ = {y. ?h y}" is "_ = {y. \<exists>S u. ?Q S u y}")
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1043
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1044
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1045
    fix x
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1046
    assume "?h x"
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1047
    then obtain S u where "finite S" and "S \<subseteq> P" and "setsum (\<lambda>v. u v *\<^sub>R v) S = x"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1048
      by blast
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1049
    then have "x \<in> span P"
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1050
      by (auto intro: span_setsum span_mul span_superset)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1051
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1052
  moreover
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1053
  have "\<forall>x \<in> span P. ?h x"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1054
  proof (rule span_induct_alt')
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1055
    show "?h 0"
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1056
      by (rule exI[where x="{}"], simp)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1057
  next
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1058
    fix c x y
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1059
    assume x: "x \<in> P"
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1060
    assume hy: "?h y"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1061
    from hy obtain S u where fS: "finite S" and SP: "S\<subseteq>P"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1062
      and u: "setsum (\<lambda>v. u v *\<^sub>R v) S = y" by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1063
    let ?S = "insert x S"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1064
    let ?u = "\<lambda>y. if y = x then (if x \<in> S then u y + c else c) else u y"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1065
    from fS SP x have th0: "finite (insert x S)" "insert x S \<subseteq> P"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1066
      by blast+
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1067
    have "?Q ?S ?u (c*\<^sub>R x + y)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1068
    proof cases
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1069
      assume xS: "x \<in> S"
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1070
      have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = (\<Sum>v\<in>S - {x}. u v *\<^sub>R v) + (u x + c) *\<^sub>R x"
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1071
        using xS by (simp add: setsum.remove [OF fS xS] insert_absorb)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1072
      also have "\<dots> = (\<Sum>v\<in>S. u v *\<^sub>R v) + c *\<^sub>R x"
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1073
        by (simp add: setsum.remove [OF fS xS] algebra_simps)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1074
      also have "\<dots> = c*\<^sub>R x + y"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
  1075
        by (simp add: add.commute u)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1076
      finally have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = c*\<^sub>R x + y" .
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1077
      then show ?thesis using th0 by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1078
    next
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1079
      assume xS: "x \<notin> S"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1080
      have th00: "(\<Sum>v\<in>S. (if v = x then c else u v) *\<^sub>R v) = y"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1081
        unfolding u[symmetric]
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
  1082
        apply (rule setsum.cong)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1083
        using xS
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1084
        apply auto
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1085
        done
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1086
      show ?thesis using fS xS th0
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
  1087
        by (simp add: th00 add.commute cong del: if_weak_cong)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1088
    qed
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1089
    then show "?h (c*\<^sub>R x + y)"
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1090
      by fast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1091
  qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1092
  ultimately show ?thesis by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1093
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1094
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1095
lemma dependent_explicit:
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1096
  "dependent P \<longleftrightarrow> (\<exists>S u. finite S \<and> S \<subseteq> P \<and> (\<exists>v\<in>S. u v \<noteq> 0 \<and> setsum (\<lambda>v. u v *\<^sub>R v) S = 0))"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1097
  (is "?lhs = ?rhs")
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1098
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1099
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1100
    assume dP: "dependent P"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1101
    then obtain a S u where aP: "a \<in> P" and fS: "finite S"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1102
      and SP: "S \<subseteq> P - {a}" and ua: "setsum (\<lambda>v. u v *\<^sub>R v) S = a"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1103
      unfolding dependent_def span_explicit by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1104
    let ?S = "insert a S"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1105
    let ?u = "\<lambda>y. if y = a then - 1 else u y"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1106
    let ?v = a
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1107
    from aP SP have aS: "a \<notin> S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1108
      by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1109
    from fS SP aP have th0: "finite ?S" "?S \<subseteq> P" "?v \<in> ?S" "?u ?v \<noteq> 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1110
      by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1111
    have s0: "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = 0"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1112
      using fS aS
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1113
      apply simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1114
      apply (subst (2) ua[symmetric])
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
  1115
      apply (rule setsum.cong)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1116
      apply auto
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1117
      done
55910
0a756571c7a4 tuned proof
huffman
parents: 55775
diff changeset
  1118
    with th0 have ?rhs by fast
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1119
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1120
  moreover
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1121
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1122
    fix S u v
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1123
    assume fS: "finite S"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1124
      and SP: "S \<subseteq> P"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1125
      and vS: "v \<in> S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1126
      and uv: "u v \<noteq> 0"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1127
      and u: "setsum (\<lambda>v. u v *\<^sub>R v) S = 0"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1128
    let ?a = v
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1129
    let ?S = "S - {v}"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1130
    let ?u = "\<lambda>i. (- u i) / u v"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1131
    have th0: "?a \<in> P" "finite ?S" "?S \<subseteq> P"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1132
      using fS SP vS by auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1133
    have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S =
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1134
      setsum (\<lambda>v. (- (inverse (u ?a))) *\<^sub>R (u v *\<^sub>R v)) S - ?u v *\<^sub>R v"
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56479
diff changeset
  1135
      using fS vS uv by (simp add: setsum_diff1 field_simps)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1136
    also have "\<dots> = ?a"
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56444
diff changeset
  1137
      unfolding scaleR_right.setsum [symmetric] u using uv by simp
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1138
    finally have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = ?a" .
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1139
    with th0 have ?lhs
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1140
      unfolding dependent_def span_explicit
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1141
      apply -
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1142
      apply (rule bexI[where x= "?a"])
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1143
      apply (simp_all del: scaleR_minus_left)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1144
      apply (rule exI[where x= "?S"])
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1145
      apply (auto simp del: scaleR_minus_left)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1146
      done
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1147
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1148
  ultimately show ?thesis by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1149
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1150
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1151
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1152
lemma span_finite:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1153
  assumes fS: "finite S"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1154
  shows "span S = {y. \<exists>u. setsum (\<lambda>v. u v *\<^sub>R v) S = y}"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1155
  (is "_ = ?rhs")
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1156
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1157
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1158
    fix y
49711
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
  1159
    assume y: "y \<in> span S"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1160
    from y obtain S' u where fS': "finite S'"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1161
      and SS': "S' \<subseteq> S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1162
      and u: "setsum (\<lambda>v. u v *\<^sub>R v) S' = y"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1163
      unfolding span_explicit by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1164
    let ?u = "\<lambda>x. if x \<in> S' then u x else 0"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1165
    have "setsum (\<lambda>v. ?u v *\<^sub>R v) S = setsum (\<lambda>v. u v *\<^sub>R v) S'"
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
  1166
      using SS' fS by (auto intro!: setsum.mono_neutral_cong_right)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1167
    then have "setsum (\<lambda>v. ?u v *\<^sub>R v) S = y" by (metis u)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1168
    then have "y \<in> ?rhs" by auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1169
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1170
  moreover
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1171
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1172
    fix y u
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1173
    assume u: "setsum (\<lambda>v. u v *\<^sub>R v) S = y"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1174
    then have "y \<in> span S" using fS unfolding span_explicit by auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1175
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1176
  ultimately show ?thesis by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1177
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1178
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1179
text {* This is useful for building a basis step-by-step. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1180
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1181
lemma independent_insert:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1182
  "independent (insert a S) \<longleftrightarrow>
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1183
    (if a \<in> S then independent S else independent S \<and> a \<notin> span S)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1184
  (is "?lhs \<longleftrightarrow> ?rhs")
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1185
proof (cases "a \<in> S")
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1186
  case True
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1187
  then show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1188
    using insert_absorb[OF True] by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1189
next
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1190
  case False
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1191
  show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1192
  proof
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1193
    assume i: ?lhs
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1194
    then show ?rhs
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1195
      using False
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1196
      apply simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1197
      apply (rule conjI)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1198
      apply (rule independent_mono)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1199
      apply assumption
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1200
      apply blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1201
      apply (simp add: dependent_def)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1202
      done
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1203
  next
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1204
    assume i: ?rhs
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1205
    show ?lhs
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1206
      using i False
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1207
      apply (auto simp add: dependent_def)
55775
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55136
diff changeset
  1208
      by (metis in_span_insert insert_Diff insert_Diff_if insert_iff)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1209
  qed
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1210
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1211
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1212
text {* The degenerate case of the Exchange Lemma. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1213
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1214
lemma spanning_subset_independent:
49711
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
  1215
  assumes BA: "B \<subseteq> A"
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
  1216
    and iA: "independent A"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1217
    and AsB: "A \<subseteq> span B"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1218
  shows "A = B"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1219
proof
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1220
  show "B \<subseteq> A" by (rule BA)
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1221
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1222
  from span_mono[OF BA] span_mono[OF AsB]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1223
  have sAB: "span A = span B" unfolding span_span by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1224
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1225
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1226
    fix x
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1227
    assume x: "x \<in> A"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1228
    from iA have th0: "x \<notin> span (A - {x})"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1229
      unfolding dependent_def using x by blast
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1230
    from x have xsA: "x \<in> span A"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1231
      by (blast intro: span_superset)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1232
    have "A - {x} \<subseteq> A" by blast
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1233
    then have th1: "span (A - {x}) \<subseteq> span A"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1234
      by (metis span_mono)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1235
    {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1236
      assume xB: "x \<notin> B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1237
      from xB BA have "B \<subseteq> A - {x}"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1238
        by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1239
      then have "span B \<subseteq> span (A - {x})"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1240
        by (metis span_mono)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1241
      with th1 th0 sAB have "x \<notin> span A"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1242
        by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1243
      with x have False
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1244
        by (metis span_superset)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1245
    }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1246
    then have "x \<in> B" by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1247
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1248
  then show "A \<subseteq> B" by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1249
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1250
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1251
text {* The general case of the Exchange Lemma, the key to what follows. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1252
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1253
lemma exchange_lemma:
49711
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
  1254
  assumes f:"finite t"
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
  1255
    and i: "independent s"
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
  1256
    and sp: "s \<subseteq> span t"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1257
  shows "\<exists>t'. card t' = card t \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1258
  using f i sp
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1259
proof (induct "card (t - s)" arbitrary: s t rule: less_induct)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1260
  case less
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1261
  note ft = `finite t` and s = `independent s` and sp = `s \<subseteq> span t`
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1262
  let ?P = "\<lambda>t'. card t' = card t \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1263
  let ?ths = "\<exists>t'. ?P t'"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1264
  {
55775
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55136
diff changeset
  1265
    assume "s \<subseteq> t"
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55136
diff changeset
  1266
    then have ?ths
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55136
diff changeset
  1267
      by (metis ft Un_commute sp sup_ge1)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1268
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1269
  moreover
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1270
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1271
    assume st: "t \<subseteq> s"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1272
    from spanning_subset_independent[OF st s sp] st ft span_mono[OF st]
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1273
    have ?ths
55775
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55136
diff changeset
  1274
      by (metis Un_absorb sp)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1275
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1276
  moreover
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1277
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1278
    assume st: "\<not> s \<subseteq> t" "\<not> t \<subseteq> s"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1279
    from st(2) obtain b where b: "b \<in> t" "b \<notin> s"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1280
      by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1281
    from b have "t - {b} - s \<subset> t - s"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1282
      by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1283
    then have cardlt: "card (t - {b} - s) < card (t - s)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1284
      using ft by (auto intro: psubset_card_mono)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1285
    from b ft have ct0: "card t \<noteq> 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1286
      by auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1287
    have ?ths
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1288
    proof cases
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1289
      assume stb: "s \<subseteq> span (t - {b})"
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1290
      from ft have ftb: "finite (t - {b})"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1291
        by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1292
      from less(1)[OF cardlt ftb s stb]
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1293
      obtain u where u: "card u = card (t - {b})" "s \<subseteq> u" "u \<subseteq> s \<union> (t - {b})" "s \<subseteq> span u"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1294
        and fu: "finite u" by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1295
      let ?w = "insert b u"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1296
      have th0: "s \<subseteq> insert b u"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1297
        using u by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1298
      from u(3) b have "u \<subseteq> s \<union> t"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1299
        by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1300
      then have th1: "insert b u \<subseteq> s \<union> t"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1301
        using u b by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1302
      have bu: "b \<notin> u"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1303
        using b u by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1304
      from u(1) ft b have "card u = (card t - 1)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1305
        by auto
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1306
      then have th2: "card (insert b u) = card t"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1307
        using card_insert_disjoint[OF fu bu] ct0 by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1308
      from u(4) have "s \<subseteq> span u" .
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1309
      also have "\<dots> \<subseteq> span (insert b u)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1310
        by (rule span_mono) blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1311
      finally have th3: "s \<subseteq> span (insert b u)" .
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1312
      from th0 th1 th2 th3 fu have th: "?P ?w"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1313
        by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1314
      from th show ?thesis by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1315
    next
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1316
      assume stb: "\<not> s \<subseteq> span (t - {b})"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1317
      from stb obtain a where a: "a \<in> s" "a \<notin> span (t - {b})"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1318
        by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1319
      have ab: "a \<noteq> b"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1320
        using a b by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1321
      have at: "a \<notin> t"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1322
        using a ab span_superset[of a "t- {b}"] by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1323
      have mlt: "card ((insert a (t - {b})) - s) < card (t - s)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1324
        using cardlt ft a b by auto
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1325
      have ft': "finite (insert a (t - {b}))"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1326
        using ft by auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1327
      {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1328
        fix x
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1329
        assume xs: "x \<in> s"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1330
        have t: "t \<subseteq> insert b (insert a (t - {b}))"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1331
          using b by auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1332
        from b(1) have "b \<in> span t"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1333
          by (simp add: span_superset)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1334
        have bs: "b \<in> span (insert a (t - {b}))"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1335
          apply (rule in_span_delete)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1336
          using a sp unfolding subset_eq
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1337
          apply auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1338
          done
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1339
        from xs sp have "x \<in> span t"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1340
          by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1341
        with span_mono[OF t] have x: "x \<in> span (insert b (insert a (t - {b})))" ..
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1342
        from span_trans[OF bs x] have "x \<in> span (insert a (t - {b}))" .
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1343
      }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1344
      then have sp': "s \<subseteq> span (insert a (t - {b}))"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1345
        by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1346
      from less(1)[OF mlt ft' s sp'] obtain u where u:
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1347
        "card u = card (insert a (t - {b}))"
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1348
        "finite u" "s \<subseteq> u" "u \<subseteq> s \<union> insert a (t - {b})"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1349
        "s \<subseteq> span u" by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1350
      from u a b ft at ct0 have "?P u"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1351
        by auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1352
      then show ?thesis by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1353
    qed
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1354
  }
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1355
  ultimately show ?ths by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1356
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1357
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1358
text {* This implies corresponding size bounds. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1359
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1360
lemma independent_span_bound:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1361
  assumes f: "finite t"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1362
    and i: "independent s"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1363
    and sp: "s \<subseteq> span t"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1364
  shows "finite s \<and> card s \<le> card t"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1365
  by (metis exchange_lemma[OF f i sp] finite_subset card_mono)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1366
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1367
lemma finite_Atleast_Atmost_nat[simp]: "finite {f x |x. x\<in> (UNIV::'a::finite set)}"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1368
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1369
  have eq: "{f x |x. x\<in> UNIV} = f ` UNIV"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1370
    by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1371
  show ?thesis unfolding eq
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1372
    apply (rule finite_imageI)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1373
    apply (rule finite)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1374
    done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1375
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1376
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1377
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1378
subsection {* Euclidean Spaces as Typeclass *}
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1379
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1380
lemma independent_Basis: "independent Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1381
  unfolding dependent_def
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1382
  apply (subst span_finite)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1383
  apply simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1384
  apply clarify
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1385
  apply (drule_tac f="inner a" in arg_cong)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1386
  apply (simp add: inner_Basis inner_setsum_right eq_commute)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1387
  done
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1388
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1389
lemma span_Basis [simp]: "span Basis = UNIV"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1390
  unfolding span_finite [OF finite_Basis]
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1391
  by (fast intro: euclidean_representation)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1392
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1393
lemma in_span_Basis: "x \<in> span Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1394
  unfolding span_Basis ..
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1395
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1396
lemma Basis_le_norm: "b \<in> Basis \<Longrightarrow> \<bar>x \<bullet> b\<bar> \<le> norm x"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1397
  by (rule order_trans [OF Cauchy_Schwarz_ineq2]) simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1398
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1399
lemma norm_bound_Basis_le: "b \<in> Basis \<Longrightarrow> norm x \<le> e \<Longrightarrow> \<bar>x \<bullet> b\<bar> \<le> e"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1400
  by (metis Basis_le_norm order_trans)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1401
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1402
lemma norm_bound_Basis_lt: "b \<in> Basis \<Longrightarrow> norm x < e \<Longrightarrow> \<bar>x \<bullet> b\<bar> < e"
53595
5078034ade16 prefer theorem name over 'long_thm_list(n)'
huffman
parents: 53406
diff changeset
  1403
  by (metis Basis_le_norm le_less_trans)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1404
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1405
lemma norm_le_l1: "norm x \<le> (\<Sum>b\<in>Basis. \<bar>x \<bullet> b\<bar>)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1406
  apply (subst euclidean_representation[of x, symmetric])
44176
eda112e9cdee remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents: 44170
diff changeset
  1407
  apply (rule order_trans[OF norm_setsum])
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1408
  apply (auto intro!: setsum_mono)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1409
  done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1410
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1411
lemma setsum_norm_allsubsets_bound:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1412
  fixes f :: "'a \<Rightarrow> 'n::euclidean_space"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1413
  assumes fP: "finite P"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1414
    and fPs: "\<And>Q. Q \<subseteq> P \<Longrightarrow> norm (setsum f Q) \<le> e"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1415
  shows "(\<Sum>x\<in>P. norm (f x)) \<le> 2 * real DIM('n) * e"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1416
proof -
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1417
  have "(\<Sum>x\<in>P. norm (f x)) \<le> (\<Sum>x\<in>P. \<Sum>b\<in>Basis. \<bar>f x \<bullet> b\<bar>)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1418
    by (rule setsum_mono) (rule norm_le_l1)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1419
  also have "(\<Sum>x\<in>P. \<Sum>b\<in>Basis. \<bar>f x \<bullet> b\<bar>) = (\<Sum>b\<in>Basis. \<Sum>x\<in>P. \<bar>f x \<bullet> b\<bar>)"
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
  1420
    by (rule setsum.commute)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1421
  also have "\<dots> \<le> of_nat (card (Basis :: 'n set)) * (2 * e)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1422
  proof (rule setsum_bounded)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1423
    fix i :: 'n
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1424
    assume i: "i \<in> Basis"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1425
    have "norm (\<Sum>x\<in>P. \<bar>f x \<bullet> i\<bar>) \<le>
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1426
      norm ((\<Sum>x\<in>P \<inter> - {x. f x \<bullet> i < 0}. f x) \<bullet> i) + norm ((\<Sum>x\<in>P \<inter> {x. f x \<bullet> i < 0}. f x) \<bullet> i)"
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
  1427
      by (simp add: abs_real_def setsum.If_cases[OF fP] setsum_negf norm_triangle_ineq4 inner_setsum_left
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1428
        del: real_norm_def)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1429
    also have "\<dots> \<le> e + e"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1430
      unfolding real_norm_def
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1431
      by (intro add_mono norm_bound_Basis_le i fPs) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1432
    finally show "(\<Sum>x\<in>P. \<bar>f x \<bullet> i\<bar>) \<le> 2*e" by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1433
  qed
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1434
  also have "\<dots> = 2 * real DIM('n) * e"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1435
    by (simp add: real_of_nat_def)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1436
  finally show ?thesis .
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1437
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1438
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1439
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1440
subsection {* Linearity and Bilinearity continued *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1441
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1442
lemma linear_bounded:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1443
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1444
  assumes lf: "linear f"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1445
  shows "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x"
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1446
proof
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1447
  let ?B = "\<Sum>b\<in>Basis. norm (f b)"
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1448
  show "\<forall>x. norm (f x) \<le> ?B * norm x"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1449
  proof
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1450
    fix x :: 'a
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1451
    let ?g = "\<lambda>b. (x \<bullet> b) *\<^sub>R f b"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1452
    have "norm (f x) = norm (f (\<Sum>b\<in>Basis. (x \<bullet> b) *\<^sub>R b))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1453
      unfolding euclidean_representation ..
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1454
    also have "\<dots> = norm (setsum ?g Basis)"
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1455
      by (simp add: linear_setsum [OF lf] linear_cmul [OF lf])
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1456
    finally have th0: "norm (f x) = norm (setsum ?g Basis)" .
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1457
    have th: "\<forall>b\<in>Basis. norm (?g b) \<le> norm (f b) * norm x"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1458
    proof
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1459
      fix i :: 'a
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1460
      assume i: "i \<in> Basis"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1461
      from Basis_le_norm[OF i, of x]
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1462
      show "norm (?g i) \<le> norm (f i) * norm x"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1463
        unfolding norm_scaleR
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
  1464
        apply (subst mult.commute)
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1465
        apply (rule mult_mono)
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1466
        apply (auto simp add: field_simps)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1467
        done
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1468
    qed
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1469
    from setsum_norm_le[of _ ?g, OF th]
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1470
    show "norm (f x) \<le> ?B * norm x"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1471
      unfolding th0 setsum_left_distrib by metis
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1472
  qed
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1473
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1474
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1475
lemma linear_conv_bounded_linear:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1476
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1477
  shows "linear f \<longleftrightarrow> bounded_linear f"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1478
proof
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1479
  assume "linear f"
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1480
  then interpret f: linear f .
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1481
  show "bounded_linear f"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1482
  proof
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1483
    have "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1484
      using `linear f` by (rule linear_bounded)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1485
    then show "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
  1486
      by (simp add: mult.commute)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1487
  qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1488
next
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1489
  assume "bounded_linear f"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1490
  then interpret f: bounded_linear f .
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1491
  show "linear f" ..
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1492
qed
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1493
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1494
lemma linear_bounded_pos:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1495
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1496
  assumes lf: "linear f"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1497
  shows "\<exists>B > 0. \<forall>x. norm (f x) \<le> B * norm x"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1498
proof -
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1499
  have "\<exists>B > 0. \<forall>x. norm (f x) \<le> norm x * B"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1500
    using lf unfolding linear_conv_bounded_linear
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1501
    by (rule bounded_linear.pos_bounded)
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1502
  then show ?thesis
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
  1503
    by (simp only: mult.commute)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1504
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1505
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1506
lemma bounded_linearI':
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1507
  fixes f ::"'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1508
  assumes "\<And>x y. f (x + y) = f x + f y"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1509
    and "\<And>c x. f (c *\<^sub>R x) = c *\<^sub>R f x"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1510
  shows "bounded_linear f"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1511
  unfolding linear_conv_bounded_linear[symmetric]
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1512
  by (rule linearI[OF assms])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1513
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1514
lemma bilinear_bounded:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1515
  fixes h :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space \<Rightarrow> 'k::real_normed_vector"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1516
  assumes bh: "bilinear h"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1517
  shows "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1518
proof (clarify intro!: exI[of _ "\<Sum>i\<in>Basis. \<Sum>j\<in>Basis. norm (h i j)"])
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1519
  fix x :: 'm
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1520
  fix y :: 'n
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1521
  have "norm (h x y) = norm (h (setsum (\<lambda>i. (x \<bullet> i) *\<^sub>R i) Basis) (setsum (\<lambda>i. (y \<bullet> i) *\<^sub>R i) Basis))"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1522
    apply (subst euclidean_representation[where 'a='m])
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1523
    apply (subst euclidean_representation[where 'a='n])
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1524
    apply rule
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1525
    done
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1526
  also have "\<dots> = norm (setsum (\<lambda> (i,j). h ((x \<bullet> i) *\<^sub>R i) ((y \<bullet> j) *\<^sub>R j)) (Basis \<times> Basis))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1527
    unfolding bilinear_setsum[OF bh finite_Basis finite_Basis] ..
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1528
  finally have th: "norm (h x y) = \<dots>" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1529
  show "norm (h x y) \<le> (\<Sum>i\<in>Basis. \<Sum>j\<in>Basis. norm (h i j)) * norm x * norm y"
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
  1530
    apply (auto simp add: setsum_left_distrib th setsum.cartesian_product)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1531
    apply (rule setsum_norm_le)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1532
    apply simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1533
    apply (auto simp add: bilinear_rmul[OF bh] bilinear_lmul[OF bh]
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1534
      field_simps simp del: scaleR_scaleR)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1535
    apply (rule mult_mono)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1536
    apply (auto simp add: zero_le_mult_iff Basis_le_norm)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1537
    apply (rule mult_mono)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1538
    apply (auto simp add: zero_le_mult_iff Basis_le_norm)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1539
    done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1540
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1541
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1542
lemma bilinear_conv_bounded_bilinear:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1543
  fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1544
  shows "bilinear h \<longleftrightarrow> bounded_bilinear h"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1545
proof
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1546
  assume "bilinear h"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1547
  show "bounded_bilinear h"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1548
  proof
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1549
    fix x y z
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1550
    show "h (x + y) z = h x z + h y z"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
  1551
      using `bilinear h` unfolding bilinear_def linear_iff by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1552
  next
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1553
    fix x y z
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1554
    show "h x (y + z) = h x y + h x z"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
  1555
      using `bilinear h` unfolding bilinear_def linear_iff by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1556
  next
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1557
    fix r x y
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1558
    show "h (scaleR r x) y = scaleR r (h x y)"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
  1559
      using `bilinear h` unfolding bilinear_def linear_iff
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1560
      by simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1561
  next
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1562
    fix r x y
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1563
    show "h x (scaleR r y) = scaleR r (h x y)"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
  1564
      using `bilinear h` unfolding bilinear_def linear_iff
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1565
      by simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1566
  next
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1567
    have "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1568
      using `bilinear h` by (rule bilinear_bounded)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1569
    then show "\<exists>K. \<forall>x y. norm (h x y) \<le> norm x * norm y * K"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1570
      by (simp add: ac_simps)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1571
  qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1572
next
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1573
  assume "bounded_bilinear h"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1574
  then interpret h: bounded_bilinear h .
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1575
  show "bilinear h"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1576
    unfolding bilinear_def linear_conv_bounded_linear
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1577
    using h.bounded_linear_left h.bounded_linear_right by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1578
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1579
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1580
lemma bilinear_bounded_pos:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1581
  fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector"
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1582
  assumes bh: "bilinear h"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1583
  shows "\<exists>B > 0. \<forall>x y. norm (h x y) \<le> B * norm x * norm y"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1584
proof -
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1585
  have "\<exists>B > 0. \<forall>x y. norm (h x y) \<le> norm x * norm y * B"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1586
    using bh [unfolded bilinear_conv_bounded_bilinear]
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1587
    by (rule bounded_bilinear.pos_bounded)
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1588
  then show ?thesis
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1589
    by (simp only: ac_simps)
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1590
qed
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
  1591
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1592
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1593
subsection {* We continue. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1594
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1595
lemma independent_bound:
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1596
  fixes S :: "'a::euclidean_space set"
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1597
  shows "independent S \<Longrightarrow> finite S \<and> card S \<le> DIM('a)"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1598
  using independent_span_bound[OF finite_Basis, of S] by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1599
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1600
lemma dependent_biggerset:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1601
  fixes S :: "'a::euclidean_space set"
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1602
  shows "(finite S \<Longrightarrow> card S > DIM('a)) \<Longrightarrow> dependent S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1603
  by (metis independent_bound not_less)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1604
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1605
text {* Hence we can create a maximal independent subset. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1606
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1607
lemma maximal_independent_subset_extend:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1608
  fixes S :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1609
  assumes sv: "S \<subseteq> V"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1610
    and iS: "independent S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1611
  shows "\<exists>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1612
  using sv iS
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1613
proof (induct "DIM('a) - card S" arbitrary: S rule: less_induct)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1614
  case less
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1615
  note sv = `S \<subseteq> V` and i = `independent S`
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1616
  let ?P = "\<lambda>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1617
  let ?ths = "\<exists>x. ?P x"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1618
  let ?d = "DIM('a)"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1619
  show ?ths
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1620
  proof (cases "V \<subseteq> span S")
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1621
    case True
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1622
    then show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1623
      using sv i by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1624
  next
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1625
    case False
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1626
    then obtain a where a: "a \<in> V" "a \<notin> span S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1627
      by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1628
    from a have aS: "a \<notin> S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1629
      by (auto simp add: span_superset)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1630
    have th0: "insert a S \<subseteq> V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1631
      using a sv by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1632
    from independent_insert[of a S]  i a
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1633
    have th1: "independent (insert a S)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1634
      by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1635
    have mlt: "?d - card (insert a S) < ?d - card S"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1636
      using aS a independent_bound[OF th1] by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1637
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1638
    from less(1)[OF mlt th0 th1]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1639
    obtain B where B: "insert a S \<subseteq> B" "B \<subseteq> V" "independent B" " V \<subseteq> span B"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1640
      by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1641
    from B have "?P B" by auto
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1642
    then show ?thesis by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1643
  qed
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1644
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1645
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1646
lemma maximal_independent_subset:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1647
  "\<exists>(B:: ('a::euclidean_space) set). B\<subseteq> V \<and> independent B \<and> V \<subseteq> span B"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1648
  by (metis maximal_independent_subset_extend[of "{}:: ('a::euclidean_space) set"]
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1649
    empty_subsetI independent_empty)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1650
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1651
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1652
text {* Notion of dimension. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1653
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1654
definition "dim V = (SOME n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> card B = n)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1655
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1656
lemma basis_exists:
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1657
  "\<exists>B. (B :: ('a::euclidean_space) set) \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = dim V)"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1658
  unfolding dim_def some_eq_ex[of "\<lambda>n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = n)"]
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1659
  using maximal_independent_subset[of V] independent_bound
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1660
  by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1661
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1662
text {* Consequences of independence or spanning for cardinality. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1663
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1664
lemma independent_card_le_dim:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1665
  fixes B :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1666
  assumes "B \<subseteq> V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1667
    and "independent B"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1668
  shows "card B \<le> dim V"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1669
proof -
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1670
  from basis_exists[of V] `B \<subseteq> V`
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1671
  obtain B' where "independent B'"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1672
    and "B \<subseteq> span B'"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1673
    and "card B' = dim V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1674
    by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1675
  with independent_span_bound[OF _ `independent B` `B \<subseteq> span B'`] independent_bound[of B']
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1676
  show ?thesis by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1677
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1678
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1679
lemma span_card_ge_dim:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1680
  fixes B :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1681
  shows "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> finite B \<Longrightarrow> dim V \<le> card B"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1682
  by (metis basis_exists[of V] independent_span_bound subset_trans)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1683
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1684
lemma basis_card_eq_dim:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1685
  fixes V :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1686
  shows "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> finite B \<and> card B = dim V"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1687
  by (metis order_eq_iff independent_card_le_dim span_card_ge_dim independent_bound)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1688
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1689
lemma dim_unique:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1690
  fixes B :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1691
  shows "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> card B = n \<Longrightarrow> dim V = n"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1692
  by (metis basis_card_eq_dim)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1693
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1694
text {* More lemmas about dimension. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1695
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1696
lemma dim_UNIV: "dim (UNIV :: 'a::euclidean_space set) = DIM('a)"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1697
  using independent_Basis
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1698
  by (intro dim_unique[of Basis]) auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1699
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1700
lemma dim_subset:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1701
  fixes S :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1702
  shows "S \<subseteq> T \<Longrightarrow> dim S \<le> dim T"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1703
  using basis_exists[of T] basis_exists[of S]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1704
  by (metis independent_card_le_dim subset_trans)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1705
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1706
lemma dim_subset_UNIV:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1707
  fixes S :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1708
  shows "dim S \<le> DIM('a)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1709
  by (metis dim_subset subset_UNIV dim_UNIV)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1710
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1711
text {* Converses to those. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1712
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1713
lemma card_ge_dim_independent:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1714
  fixes B :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1715
  assumes BV: "B \<subseteq> V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1716
    and iB: "independent B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1717
    and dVB: "dim V \<le> card B"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1718
  shows "V \<subseteq> span B"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1719
proof
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1720
  fix a
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1721
  assume aV: "a \<in> V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1722
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1723
    assume aB: "a \<notin> span B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1724
    then have iaB: "independent (insert a B)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1725
      using iB aV BV by (simp add: independent_insert)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1726
    from aV BV have th0: "insert a B \<subseteq> V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1727
      by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1728
    from aB have "a \<notin>B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1729
      by (auto simp add: span_superset)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1730
    with independent_card_le_dim[OF th0 iaB] dVB independent_bound[OF iB]
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1731
    have False by auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1732
  }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1733
  then show "a \<in> span B" by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1734
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1735
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1736
lemma card_le_dim_spanning:
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1737
  assumes BV: "(B:: ('a::euclidean_space) set) \<subseteq> V"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1738
    and VB: "V \<subseteq> span B"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1739
    and fB: "finite B"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1740
    and dVB: "dim V \<ge> card B"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1741
  shows "independent B"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1742
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1743
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1744
    fix a
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1745
    assume a: "a \<in> B" "a \<in> span (B - {a})"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1746
    from a fB have c0: "card B \<noteq> 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1747
      by auto
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1748
    from a fB have cb: "card (B - {a}) = card B - 1"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1749
      by auto
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1750
    from BV a have th0: "B - {a} \<subseteq> V"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1751
      by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1752
    {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1753
      fix x
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1754
      assume x: "x \<in> V"
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1755
      from a have eq: "insert a (B - {a}) = B"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1756
        by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1757
      from x VB have x': "x \<in> span B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1758
        by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1759
      from span_trans[OF a(2), unfolded eq, OF x']
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1760
      have "x \<in> span (B - {a})" .
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1761
    }
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1762
    then have th1: "V \<subseteq> span (B - {a})"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1763
      by blast
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1764
    have th2: "finite (B - {a})"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1765
      using fB by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1766
    from span_card_ge_dim[OF th0 th1 th2]
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1767
    have c: "dim V \<le> card (B - {a})" .
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1768
    from c c0 dVB cb have False by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1769
  }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1770
  then show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1771
    unfolding dependent_def by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1772
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1773
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1774
lemma card_eq_dim:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1775
  fixes B :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1776
  shows "B \<subseteq> V \<Longrightarrow> card B = dim V \<Longrightarrow> finite B \<Longrightarrow> independent B \<longleftrightarrow> V \<subseteq> span B"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1777
  by (metis order_eq_iff card_le_dim_spanning card_ge_dim_independent)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1778
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1779
text {* More general size bound lemmas. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1780
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1781
lemma independent_bound_general:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1782
  fixes S :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1783
  shows "independent S \<Longrightarrow> finite S \<and> card S \<le> dim S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1784
  by (metis independent_card_le_dim independent_bound subset_refl)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1785
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1786
lemma dependent_biggerset_general:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1787
  fixes S :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1788
  shows "(finite S \<Longrightarrow> card S > dim S) \<Longrightarrow> dependent S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1789
  using independent_bound_general[of S] by (metis linorder_not_le)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1790
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1791
lemma dim_span:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1792
  fixes S :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1793
  shows "dim (span S) = dim S"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1794
proof -
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1795
  have th0: "dim S \<le> dim (span S)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1796
    by (auto simp add: subset_eq intro: dim_subset span_superset)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1797
  from basis_exists[of S]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1798
  obtain B where B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1799
    by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1800
  from B have fB: "finite B" "card B = dim S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1801
    using independent_bound by blast+
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1802
  have bSS: "B \<subseteq> span S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1803
    using B(1) by (metis subset_eq span_inc)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1804
  have sssB: "span S \<subseteq> span B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1805
    using span_mono[OF B(3)] by (simp add: span_span)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1806
  from span_card_ge_dim[OF bSS sssB fB(1)] th0 show ?thesis
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1807
    using fB(2) by arith
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1808
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1809
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1810
lemma subset_le_dim:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1811
  fixes S :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1812
  shows "S \<subseteq> span T \<Longrightarrow> dim S \<le> dim T"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1813
  by (metis dim_span dim_subset)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1814
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1815
lemma span_eq_dim:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1816
  fixes S :: "'a::euclidean_space set"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1817
  shows "span S = span T \<Longrightarrow> dim S = dim T"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1818
  by (metis dim_span)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1819
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1820
lemma spans_image:
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1821
  assumes lf: "linear f"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1822
    and VB: "V \<subseteq> span B"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1823
  shows "f ` V \<subseteq> span (f ` B)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1824
  unfolding span_linear_image[OF lf] by (metis VB image_mono)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1825
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1826
lemma dim_image_le:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1827
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1828
  assumes lf: "linear f"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1829
  shows "dim (f ` S) \<le> dim (S)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1830
proof -
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1831
  from basis_exists[of S] obtain B where
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1832
    B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" by blast
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1833
  from B have fB: "finite B" "card B = dim S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1834
    using independent_bound by blast+
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1835
  have "dim (f ` S) \<le> card (f ` B)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1836
    apply (rule span_card_ge_dim)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1837
    using lf B fB
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1838
    apply (auto simp add: span_linear_image spans_image subset_image_iff)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1839
    done
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1840
  also have "\<dots> \<le> dim S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1841
    using card_image_le[OF fB(1)] fB by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1842
  finally show ?thesis .
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1843
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1844
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1845
text {* Relation between bases and injectivity/surjectivity of map. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1846
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1847
lemma spanning_surjective_image:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1848
  assumes us: "UNIV \<subseteq> span S"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1849
    and lf: "linear f"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1850
    and sf: "surj f"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1851
  shows "UNIV \<subseteq> span (f ` S)"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1852
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1853
  have "UNIV \<subseteq> f ` UNIV"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1854
    using sf by (auto simp add: surj_def)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1855
  also have " \<dots> \<subseteq> span (f ` S)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1856
    using spans_image[OF lf us] .
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1857
  finally show ?thesis .
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1858
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1859
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1860
lemma independent_injective_image:
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1861
  assumes iS: "independent S"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1862
    and lf: "linear f"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1863
    and fi: "inj f"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1864
  shows "independent (f ` S)"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1865
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1866
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1867
    fix a
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1868
    assume a: "a \<in> S" "f a \<in> span (f ` S - {f a})"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1869
    have eq: "f ` S - {f a} = f ` (S - {a})"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1870
      using fi by (auto simp add: inj_on_def)
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1871
    from a have "f a \<in> f ` span (S - {a})"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1872
      unfolding eq span_linear_image[OF lf, of "S - {a}"] by blast
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1873
    then have "a \<in> span (S - {a})"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1874
      using fi by (auto simp add: inj_on_def)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1875
    with a(1) iS have False
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1876
      by (simp add: dependent_def)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1877
  }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1878
  then show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1879
    unfolding dependent_def by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1880
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1881
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1882
text {* Picking an orthogonal replacement for a spanning set. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1883
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1884
(* FIXME : Move to some general theory ?*)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1885
definition "pairwise R S \<longleftrightarrow> (\<forall>x \<in> S. \<forall>y\<in> S. x\<noteq>y \<longrightarrow> R x y)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1886
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1887
lemma vector_sub_project_orthogonal:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1888
  fixes b x :: "'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1889
  shows "b \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *\<^sub>R b) = 0"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1890
  unfolding inner_simps by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1891
44528
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
  1892
lemma pairwise_orthogonal_insert:
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
  1893
  assumes "pairwise orthogonal S"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1894
    and "\<And>y. y \<in> S \<Longrightarrow> orthogonal x y"
44528
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
  1895
  shows "pairwise orthogonal (insert x S)"
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
  1896
  using assms unfolding pairwise_def
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
  1897
  by (auto simp add: orthogonal_commute)
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
  1898
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1899
lemma basis_orthogonal:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1900
  fixes B :: "'a::real_inner set"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1901
  assumes fB: "finite B"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1902
  shows "\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1903
  (is " \<exists>C. ?P B C")
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1904
  using fB
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1905
proof (induct rule: finite_induct)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1906
  case empty
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1907
  then show ?case
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1908
    apply (rule exI[where x="{}"])
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1909
    apply (auto simp add: pairwise_def)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1910
    done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1911
next
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1912
  case (insert a B)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1913
  note fB = `finite B` and aB = `a \<notin> B`
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1914
  from `\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C`
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1915
  obtain C where C: "finite C" "card C \<le> card B"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1916
    "span C = span B" "pairwise orthogonal C" by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1917
  let ?a = "a - setsum (\<lambda>x. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x) C"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1918
  let ?C = "insert ?a C"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1919
  from C(1) have fC: "finite ?C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1920
    by simp
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1921
  from fB aB C(1,2) have cC: "card ?C \<le> card (insert a B)"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1922
    by (simp add: card_insert_if)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1923
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1924
    fix x k
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1925
    have th0: "\<And>(a::'a) b c. a - (b - c) = c + (a - b)"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1926
      by (simp add: field_simps)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1927
    have "x - k *\<^sub>R (a - (\<Sum>x\<in>C. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x)) \<in> span C \<longleftrightarrow> x - k *\<^sub>R a \<in> span C"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1928
      apply (simp only: scaleR_right_diff_distrib th0)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1929
      apply (rule span_add_eq)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1930
      apply (rule span_mul)
56196
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
  1931
      apply (rule span_setsum)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1932
      apply clarify
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1933
      apply (rule span_mul)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1934
      apply (rule span_superset)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1935
      apply assumption
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1936
      done
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1937
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1938
  then have SC: "span ?C = span (insert a B)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1939
    unfolding set_eq_iff span_breakdown_eq C(3)[symmetric] by auto
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1940
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1941
    fix y
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1942
    assume yC: "y \<in> C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1943
    then have Cy: "C = insert y (C - {y})"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1944
      by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1945
    have fth: "finite (C - {y})"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1946
      using C by simp
44528
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
  1947
    have "orthogonal ?a y"
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
  1948
      unfolding orthogonal_def
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53939
diff changeset
  1949
      unfolding inner_diff inner_setsum_left right_minus_eq
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
  1950
      unfolding setsum.remove [OF `finite C` `y \<in> C`]
44528
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
  1951
      apply (clarsimp simp add: inner_commute[of y a])
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
  1952
      apply (rule setsum.neutral)
44528
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
  1953
      apply clarsimp
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
  1954
      apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format])
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1955
      using `y \<in> C` by auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1956
  }
44528
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
  1957
  with `pairwise orthogonal C` have CPO: "pairwise orthogonal ?C"
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
  1958
    by (rule pairwise_orthogonal_insert)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1959
  from fC cC SC CPO have "?P (insert a B) ?C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1960
    by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1961
  then show ?case by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1962
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1963
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1964
lemma orthogonal_basis_exists:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1965
  fixes V :: "('a::euclidean_space) set"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1966
  shows "\<exists>B. independent B \<and> B \<subseteq> span V \<and> V \<subseteq> span B \<and> (card B = dim V) \<and> pairwise orthogonal B"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  1967
proof -
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1968
  from basis_exists[of V] obtain B where
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1969
    B: "B \<subseteq> V" "independent B" "V \<subseteq> span B" "card B = dim V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1970
    by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1971
  from B have fB: "finite B" "card B = dim V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1972
    using independent_bound by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1973
  from basis_orthogonal[OF fB(1)] obtain C where
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1974
    C: "finite C" "card C \<le> card B" "span C = span B" "pairwise orthogonal C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1975
    by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1976
  from C B have CSV: "C \<subseteq> span V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1977
    by (metis span_inc span_mono subset_trans)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1978
  from span_mono[OF B(3)] C have SVC: "span V \<subseteq> span C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1979
    by (simp add: span_span)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1980
  from card_le_dim_spanning[OF CSV SVC C(1)] C(2,3) fB
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1981
  have iC: "independent C"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1982
    by (simp add: dim_span)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1983
  from C fB have "card C \<le> dim V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1984
    by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1985
  moreover have "dim V \<le> card C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1986
    using span_card_ge_dim[OF CSV SVC C(1)]
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1987
    by (simp add: dim_span)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1988
  ultimately have CdV: "card C = dim V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1989
    using C(1) by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1990
  from C B CSV CdV iC show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1991
    by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1992
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1993
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1994
lemma span_eq: "span S = span T \<longleftrightarrow> S \<subseteq> span T \<and> T \<subseteq> span S"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1995
  using span_inc[unfolded subset_eq] using span_mono[of T "span S"] span_mono[of S "span T"]
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1996
  by (auto simp add: span_span)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1997
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1998
text {* Low-dimensional subset is in a hyperplane (weak orthogonal complement). *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1999
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2000
lemma span_not_univ_orthogonal:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2001
  fixes S :: "'a::euclidean_space set"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2002
  assumes sU: "span S \<noteq> UNIV"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2003
  shows "\<exists>a::'a. a \<noteq> 0 \<and> (\<forall>x \<in> span S. a \<bullet> x = 0)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2004
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2005
  from sU obtain a where a: "a \<notin> span S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2006
    by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2007
  from orthogonal_basis_exists obtain B where
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2008
    B: "independent B" "B \<subseteq> span S" "S \<subseteq> span B" "card B = dim S" "pairwise orthogonal B"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2009
    by blast
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2010
  from B have fB: "finite B" "card B = dim S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2011
    using independent_bound by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2012
  from span_mono[OF B(2)] span_mono[OF B(3)]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2013
  have sSB: "span S = span B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2014
    by (simp add: span_span)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2015
  let ?a = "a - setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2016
  have "setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B \<in> span S"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2017
    unfolding sSB
56196
32b7eafc5a52 remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents: 56166
diff changeset
  2018
    apply (rule span_setsum)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2019
    apply clarsimp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2020
    apply (rule span_mul)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2021
    apply (rule span_superset)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2022
    apply assumption
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2023
    done
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2024
  with a have a0:"?a  \<noteq> 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2025
    by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2026
  have "\<forall>x\<in>span B. ?a \<bullet> x = 0"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2027
  proof (rule span_induct')
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2028
    show "subspace {x. ?a \<bullet> x = 0}"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2029
      by (auto simp add: subspace_def inner_add)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2030
  next
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2031
    {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2032
      fix x
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2033
      assume x: "x \<in> B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2034
      from x have B': "B = insert x (B - {x})"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2035
        by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2036
      have fth: "finite (B - {x})"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2037
        using fB by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2038
      have "?a \<bullet> x = 0"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2039
        apply (subst B')
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2040
        using fB fth
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2041
        unfolding setsum_clauses(2)[OF fth]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2042
        apply simp unfolding inner_simps
44527
bf8014b4f933 remove dot_lsum and dot_rsum in favor of inner_setsum_{left,right}
huffman
parents: 44521
diff changeset
  2043
        apply (clarsimp simp add: inner_add inner_setsum_left)
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
  2044
        apply (rule setsum.neutral, rule ballI)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2045
        unfolding inner_commute
49711
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
  2046
        apply (auto simp add: x field_simps
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
  2047
          intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format])
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2048
        done
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2049
    }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2050
    then show "\<forall>x \<in> B. ?a \<bullet> x = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2051
      by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2052
  qed
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2053
  with a0 show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2054
    unfolding sSB by (auto intro: exI[where x="?a"])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2055
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2056
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2057
lemma span_not_univ_subset_hyperplane:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2058
  fixes S :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2059
  assumes SU: "span S \<noteq> UNIV"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2060
  shows "\<exists> a. a \<noteq>0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2061
  using span_not_univ_orthogonal[OF SU] by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2062
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2063
lemma lowdim_subset_hyperplane:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2064
  fixes S :: "'a::euclidean_space set"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2065
  assumes d: "dim S < DIM('a)"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2066
  shows "\<exists>a::'a. a \<noteq> 0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2067
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2068
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2069
    assume "span S = UNIV"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2070
    then have "dim (span S) = dim (UNIV :: ('a) set)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2071
      by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2072
    then have "dim S = DIM('a)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2073
      by (simp add: dim_span dim_UNIV)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2074
    with d have False by arith
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2075
  }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2076
  then have th: "span S \<noteq> UNIV"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2077
    by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2078
  from span_not_univ_subset_hyperplane[OF th] show ?thesis .
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2079
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2080
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2081
text {* We can extend a linear basis-basis injection to the whole set. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2082
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2083
lemma linear_indep_image_lemma:
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2084
  assumes lf: "linear f"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2085
    and fB: "finite B"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2086
    and ifB: "independent (f ` B)"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2087
    and fi: "inj_on f B"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2088
    and xsB: "x \<in> span B"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2089
    and fx: "f x = 0"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2090
  shows "x = 0"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2091
  using fB ifB fi xsB fx
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2092
proof (induct arbitrary: x rule: finite_induct[OF fB])
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2093
  case 1
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2094
  then show ?case by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2095
next
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2096
  case (2 a b x)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2097
  have fb: "finite b" using "2.prems" by simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2098
  have th0: "f ` b \<subseteq> f ` (insert a b)"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2099
    apply (rule image_mono)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2100
    apply blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2101
    done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2102
  from independent_mono[ OF "2.prems"(2) th0]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2103
  have ifb: "independent (f ` b)"  .
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2104
  have fib: "inj_on f b"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2105
    apply (rule subset_inj_on [OF "2.prems"(3)])
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2106
    apply blast
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2107
    done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2108
  from span_breakdown[of a "insert a b", simplified, OF "2.prems"(4)]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2109
  obtain k where k: "x - k*\<^sub>R a \<in> span (b - {a})"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2110
    by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2111
  have "f (x - k*\<^sub>R a) \<in> span (f ` b)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2112
    unfolding span_linear_image[OF lf]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2113
    apply (rule imageI)
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2114
    using k span_mono[of "b - {a}" b]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2115
    apply blast
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2116
    done
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2117
  then have "f x - k*\<^sub>R f a \<in> span (f ` b)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2118
    by (simp add: linear_sub[OF lf] linear_cmul[OF lf])
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2119
  then have th: "-k *\<^sub>R f a \<in> span (f ` b)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2120
    using "2.prems"(5) by simp
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2121
  have xsb: "x \<in> span b"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2122
  proof (cases "k = 0")
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2123
    case True
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2124
    with k have "x \<in> span (b - {a})" by simp
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2125
    then show ?thesis using span_mono[of "b - {a}" b]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2126
      by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2127
  next
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2128
    case False
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2129
    with span_mul[OF th, of "- 1/ k"]
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2130
    have th1: "f a \<in> span (f ` b)"
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56444
diff changeset
  2131
      by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2132
    from inj_on_image_set_diff[OF "2.prems"(3), of "insert a b " "{a}", symmetric]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2133
    have tha: "f ` insert a b - f ` {a} = f ` (insert a b - {a})" by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2134
    from "2.prems"(2) [unfolded dependent_def bex_simps(8), rule_format, of "f a"]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2135
    have "f a \<notin> span (f ` b)" using tha
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2136
      using "2.hyps"(2)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2137
      "2.prems"(3) by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2138
    with th1 have False by blast
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2139
    then show ?thesis by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2140
  qed
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2141
  from "2.hyps"(3)[OF fb ifb fib xsb "2.prems"(5)] show "x = 0" .
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2142
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2143
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2144
text {* We can extend a linear mapping from basis. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2145
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2146
lemma linear_independent_extend_lemma:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2147
  fixes f :: "'a::real_vector \<Rightarrow> 'b::real_vector"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2148
  assumes fi: "finite B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2149
    and ib: "independent B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2150
  shows "\<exists>g.
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2151
    (\<forall>x\<in> span B. \<forall>y\<in> span B. g (x + y) = g x + g y) \<and>
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2152
    (\<forall>x\<in> span B. \<forall>c. g (c*\<^sub>R x) = c *\<^sub>R g x) \<and>
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2153
    (\<forall>x\<in> B. g x = f x)"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2154
  using ib fi
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2155
proof (induct rule: finite_induct[OF fi])
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2156
  case 1
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2157
  then show ?case by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2158
next
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2159
  case (2 a b)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2160
  from "2.prems" "2.hyps" have ibf: "independent b" "finite b"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2161
    by (simp_all add: independent_insert)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2162
  from "2.hyps"(3)[OF ibf] obtain g where
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2163
    g: "\<forall>x\<in>span b. \<forall>y\<in>span b. g (x + y) = g x + g y"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2164
    "\<forall>x\<in>span b. \<forall>c. g (c *\<^sub>R x) = c *\<^sub>R g x" "\<forall>x\<in>b. g x = f x" by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2165
  let ?h = "\<lambda>z. SOME k. (z - k *\<^sub>R a) \<in> span b"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2166
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2167
    fix z
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2168
    assume z: "z \<in> span (insert a b)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2169
    have th0: "z - ?h z *\<^sub>R a \<in> span b"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2170
      apply (rule someI_ex)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2171
      unfolding span_breakdown_eq[symmetric]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2172
      apply (rule z)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2173
      done
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2174
    {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2175
      fix k
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2176
      assume k: "z - k *\<^sub>R a \<in> span b"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2177
      have eq: "z - ?h z *\<^sub>R a - (z - k*\<^sub>R a) = (k - ?h z) *\<^sub>R a"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2178
        by (simp add: field_simps scaleR_left_distrib [symmetric])
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2179
      from span_sub[OF th0 k] have khz: "(k - ?h z) *\<^sub>R a \<in> span b"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2180
        by (simp add: eq)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2181
      {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2182
        assume "k \<noteq> ?h z"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2183
        then have k0: "k - ?h z \<noteq> 0" by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2184
        from k0 span_mul[OF khz, of "1 /(k - ?h z)"]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2185
        have "a \<in> span b" by simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2186
        with "2.prems"(1) "2.hyps"(2) have False
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2187
          by (auto simp add: dependent_def)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2188
      }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2189
      then have "k = ?h z" by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2190
    }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2191
    with th0 have "z - ?h z *\<^sub>R a \<in> span b \<and> (\<forall>k. z - k *\<^sub>R a \<in> span b \<longrightarrow> k = ?h z)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2192
      by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2193
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2194
  note h = this
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2195
  let ?g = "\<lambda>z. ?h z *\<^sub>R f a + g (z - ?h z *\<^sub>R a)"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2196
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2197
    fix x y
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2198
    assume x: "x \<in> span (insert a b)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2199
      and y: "y \<in> span (insert a b)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2200
    have tha: "\<And>(x::'a) y a k l. (x + y) - (k + l) *\<^sub>R a = (x - k *\<^sub>R a) + (y - l *\<^sub>R a)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2201
      by (simp add: algebra_simps)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2202
    have addh: "?h (x + y) = ?h x + ?h y"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2203
      apply (rule conjunct2[OF h, rule_format, symmetric])
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2204
      apply (rule span_add[OF x y])
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2205
      unfolding tha
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2206
      apply (metis span_add x y conjunct1[OF h, rule_format])
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2207
      done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2208
    have "?g (x + y) = ?g x + ?g y"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2209
      unfolding addh tha
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2210
      g(1)[rule_format,OF conjunct1[OF h, OF x] conjunct1[OF h, OF y]]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2211
      by (simp add: scaleR_left_distrib)}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2212
  moreover
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2213
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2214
    fix x :: "'a"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2215
    fix c :: real
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2216
    assume x: "x \<in> span (insert a b)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2217
    have tha: "\<And>(x::'a) c k a. c *\<^sub>R x - (c * k) *\<^sub>R a = c *\<^sub>R (x - k *\<^sub>R a)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2218
      by (simp add: algebra_simps)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2219
    have hc: "?h (c *\<^sub>R x) = c * ?h x"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2220
      apply (rule conjunct2[OF h, rule_format, symmetric])
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2221
      apply (metis span_mul x)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2222
      apply (metis tha span_mul x conjunct1[OF h])
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2223
      done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2224
    have "?g (c *\<^sub>R x) = c*\<^sub>R ?g x"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2225
      unfolding hc tha g(2)[rule_format, OF conjunct1[OF h, OF x]]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2226
      by (simp add: algebra_simps)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2227
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2228
  moreover
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2229
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2230
    fix x
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2231
    assume x: "x \<in> insert a b"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2232
    {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2233
      assume xa: "x = a"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2234
      have ha1: "1 = ?h a"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2235
        apply (rule conjunct2[OF h, rule_format])
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2236
        apply (metis span_superset insertI1)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2237
        using conjunct1[OF h, OF span_superset, OF insertI1]
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2238
        apply (auto simp add: span_0)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2239
        done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2240
      from xa ha1[symmetric] have "?g x = f x"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2241
        apply simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2242
        using g(2)[rule_format, OF span_0, of 0]
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2243
        apply simp
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2244
        done
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2245
    }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2246
    moreover
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2247
    {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2248
      assume xb: "x \<in> b"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2249
      have h0: "0 = ?h x"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2250
        apply (rule conjunct2[OF h, rule_format])
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2251
        apply (metis  span_superset x)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2252
        apply simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2253
        apply (metis span_superset xb)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2254
        done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2255
      have "?g x = f x"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2256
        by (simp add: h0[symmetric] g(3)[rule_format, OF xb])
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2257
    }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2258
    ultimately have "?g x = f x"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2259
      using x by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2260
  }
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2261
  ultimately show ?case
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2262
    apply -
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2263
    apply (rule exI[where x="?g"])
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2264
    apply blast
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2265
    done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2266
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2267
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2268
lemma linear_independent_extend:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2269
  fixes B :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2270
  assumes iB: "independent B"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2271
  shows "\<exists>g. linear g \<and> (\<forall>x\<in>B. g x = f x)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2272
proof -
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2273
  from maximal_independent_subset_extend[of B UNIV] iB
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2274
  obtain C where C: "B \<subseteq> C" "independent C" "\<And>x. x \<in> span C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2275
    by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2276
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2277
  from C(2) independent_bound[of C] linear_independent_extend_lemma[of C f]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2278
  obtain g where g:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2279
    "(\<forall>x\<in> span C. \<forall>y\<in> span C. g (x + y) = g x + g y) \<and>
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2280
     (\<forall>x\<in> span C. \<forall>c. g (c*\<^sub>R x) = c *\<^sub>R g x) \<and>
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2281
     (\<forall>x\<in> C. g x = f x)" by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2282
  from g show ?thesis
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
  2283
    unfolding linear_iff
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2284
    using C
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2285
    apply clarsimp
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2286
    apply blast
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2287
    done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2288
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2289
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2290
text {* Can construct an isomorphism between spaces of same dimension. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2291
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2292
lemma subspace_isomorphism:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2293
  fixes S :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2294
    and T :: "'b::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2295
  assumes s: "subspace S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2296
    and t: "subspace T"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2297
    and d: "dim S = dim T"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2298
  shows "\<exists>f. linear f \<and> f ` S = T \<and> inj_on f S"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2299
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2300
  from basis_exists[of S] independent_bound
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2301
  obtain B where B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" and fB: "finite B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2302
    by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2303
  from basis_exists[of T] independent_bound
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2304
  obtain C where C: "C \<subseteq> T" "independent C" "T \<subseteq> span C" "card C = dim T" and fC: "finite C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2305
    by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2306
  from B(4) C(4) card_le_inj[of B C] d
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2307
  obtain f where f: "f ` B \<subseteq> C" "inj_on f B" using `finite B` `finite C`
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2308
    by auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2309
  from linear_independent_extend[OF B(2)]
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2310
  obtain g where g: "linear g" "\<forall>x\<in> B. g x = f x"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2311
    by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2312
  from inj_on_iff_eq_card[OF fB, of f] f(2) have "card (f ` B) = card B"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2313
    by simp
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2314
  with B(4) C(4) have ceq: "card (f ` B) = card C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2315
    using d by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2316
  have "g ` B = f ` B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2317
    using g(2) by (auto simp add: image_iff)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2318
  also have "\<dots> = C" using card_subset_eq[OF fC f(1) ceq] .
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2319
  finally have gBC: "g ` B = C" .
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2320
  have gi: "inj_on g B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2321
    using f(2) g(2) by (auto simp add: inj_on_def)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2322
  note g0 = linear_indep_image_lemma[OF g(1) fB, unfolded gBC, OF C(2) gi]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2323
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2324
    fix x y
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2325
    assume x: "x \<in> S" and y: "y \<in> S" and gxy: "g x = g y"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2326
    from B(3) x y have x': "x \<in> span B" and y': "y \<in> span B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2327
      by blast+
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2328
    from gxy have th0: "g (x - y) = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2329
      by (simp add: linear_sub[OF g(1)])
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2330
    have th1: "x - y \<in> span B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2331
      using x' y' by (metis span_sub)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2332
    have "x = y"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2333
      using g0[OF th1 th0] by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2334
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2335
  then have giS: "inj_on g S"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2336
    unfolding inj_on_def by blast
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2337
  from span_subspace[OF B(1,3) s] have "g ` S = span (g ` B)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2338
    by (simp add: span_linear_image[OF g(1)])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2339
  also have "\<dots> = span C" unfolding gBC ..
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2340
  also have "\<dots> = T" using span_subspace[OF C(1,3) t] .
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2341
  finally have gS: "g ` S = T" .
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2342
  from g(1) gS giS show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2343
    by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2344
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2345
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2346
text {* Linear functions are equal on a subspace if they are on a spanning set. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2347
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2348
lemma subspace_kernel:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2349
  assumes lf: "linear f"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2350
  shows "subspace {x. f x = 0}"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2351
  apply (simp add: subspace_def)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2352
  apply (simp add: linear_add[OF lf] linear_cmul[OF lf] linear_0[OF lf])
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2353
  done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2354
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2355
lemma linear_eq_0_span:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2356
  assumes lf: "linear f" and f0: "\<forall>x\<in>B. f x = 0"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2357
  shows "\<forall>x \<in> span B. f x = 0"
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
  2358
  using f0 subspace_kernel[OF lf]
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
  2359
  by (rule span_induct')
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2360
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2361
lemma linear_eq_0:
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2362
  assumes lf: "linear f"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2363
    and SB: "S \<subseteq> span B"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2364
    and f0: "\<forall>x\<in>B. f x = 0"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2365
  shows "\<forall>x \<in> S. f x = 0"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2366
  by (metis linear_eq_0_span[OF lf] subset_eq SB f0)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2367
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2368
lemma linear_eq:
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2369
  assumes lf: "linear f"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2370
    and lg: "linear g"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2371
    and S: "S \<subseteq> span B"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2372
    and fg: "\<forall> x\<in> B. f x = g x"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2373
  shows "\<forall>x\<in> S. f x = g x"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2374
proof -
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2375
  let ?h = "\<lambda>x. f x - g x"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2376
  from fg have fg': "\<forall>x\<in> B. ?h x = 0" by simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2377
  from linear_eq_0[OF linear_compose_sub[OF lf lg] S fg']
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2378
  show ?thesis by simp
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2379
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2380
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2381
lemma linear_eq_stdbasis:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2382
  fixes f :: "'a::euclidean_space \<Rightarrow> _"
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2383
  assumes lf: "linear f"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2384
    and lg: "linear g"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  2385
    and fg: "\<forall>b\<in>Basis. f b = g b"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2386
  shows "f = g"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  2387
  using linear_eq[OF lf lg, of _ Basis] fg by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2388
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2389
text {* Similar results for bilinear functions. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2390
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2391
lemma bilinear_eq:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2392
  assumes bf: "bilinear f"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2393
    and bg: "bilinear g"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2394
    and SB: "S \<subseteq> span B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2395
    and TC: "T \<subseteq> span C"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2396
    and fg: "\<forall>x\<in> B. \<forall>y\<in> C. f x y = g x y"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2397
  shows "\<forall>x\<in>S. \<forall>y\<in>T. f x y = g x y "
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2398
proof -
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
  2399
  let ?P = "{x. \<forall>y\<in> span C. f x y = g x y}"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2400
  from bf bg have sp: "subspace ?P"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
  2401
    unfolding bilinear_def linear_iff subspace_def bf bg
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2402
    by (auto simp add: span_0 bilinear_lzero[OF bf] bilinear_lzero[OF bg] span_add Ball_def
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2403
      intro: bilinear_ladd[OF bf])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2404
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2405
  have "\<forall>x \<in> span B. \<forall>y\<in> span C. f x y = g x y"
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
  2406
    apply (rule span_induct' [OF _ sp])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2407
    apply (rule ballI)
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
  2408
    apply (rule span_induct')
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
  2409
    apply (simp add: fg)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2410
    apply (auto simp add: subspace_def)
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
  2411
    using bf bg unfolding bilinear_def linear_iff
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2412
    apply (auto simp add: span_0 bilinear_rzero[OF bf] bilinear_rzero[OF bg] span_add Ball_def
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2413
      intro: bilinear_ladd[OF bf])
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2414
    done
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2415
  then show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2416
    using SB TC by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2417
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2418
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2419
lemma bilinear_eq_stdbasis:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2420
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> _"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2421
  assumes bf: "bilinear f"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2422
    and bg: "bilinear g"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  2423
    and fg: "\<forall>i\<in>Basis. \<forall>j\<in>Basis. f i j = g i j"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2424
  shows "f = g"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  2425
  using bilinear_eq[OF bf bg equalityD2[OF span_Basis] equalityD2[OF span_Basis] fg] by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2426
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2427
text {* Detailed theorems about left and right invertibility in general case. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2428
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2429
lemma linear_injective_left_inverse:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2430
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2431
  assumes lf: "linear f"
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2432
    and fi: "inj f"
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2433
  shows "\<exists>g. linear g \<and> g \<circ> f = id"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2434
proof -
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  2435
  from linear_independent_extend[OF independent_injective_image, OF independent_Basis, OF lf fi]
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2436
  obtain h :: "'b \<Rightarrow> 'a" where h: "linear h" "\<forall>x \<in> f ` Basis. h x = inv f x"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2437
    by blast
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  2438
  from h(2) have th: "\<forall>i\<in>Basis. (h \<circ> f) i = id i"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2439
    using inv_o_cancel[OF fi, unfolded fun_eq_iff id_def o_def]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2440
    by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2441
  from linear_eq_stdbasis[OF linear_compose[OF lf h(1)] linear_id th]
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2442
  have "h \<circ> f = id" .
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2443
  then show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2444
    using h(1) by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2445
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2446
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2447
lemma linear_surjective_right_inverse:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2448
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2449
  assumes lf: "linear f"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2450
    and sf: "surj f"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2451
  shows "\<exists>g. linear g \<and> f \<circ> g = id"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2452
proof -
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  2453
  from linear_independent_extend[OF independent_Basis[where 'a='b],of "inv f"]
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2454
  obtain h :: "'b \<Rightarrow> 'a" where h: "linear h" "\<forall>x\<in>Basis. h x = inv f x"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2455
    by blast
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2456
  from h(2) have th: "\<forall>i\<in>Basis. (f \<circ> h) i = id i"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  2457
    using sf by (auto simp add: surj_iff_all)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2458
  from linear_eq_stdbasis[OF linear_compose[OF h(1) lf] linear_id th]
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2459
  have "f \<circ> h = id" .
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2460
  then show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2461
    using h(1) by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2462
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2463
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2464
text {* An injective map @{typ "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"} is also surjective. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2465
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2466
lemma linear_injective_imp_surjective:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2467
  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2468
  assumes lf: "linear f"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2469
    and fi: "inj f"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2470
  shows "surj f"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2471
proof -
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2472
  let ?U = "UNIV :: 'a set"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2473
  from basis_exists[of ?U] obtain B
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2474
    where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" "card B = dim ?U"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2475
    by blast
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2476
  from B(4) have d: "dim ?U = card B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2477
    by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2478
  have th: "?U \<subseteq> span (f ` B)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2479
    apply (rule card_ge_dim_independent)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2480
    apply blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2481
    apply (rule independent_injective_image[OF B(2) lf fi])
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2482
    apply (rule order_eq_refl)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2483
    apply (rule sym)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2484
    unfolding d
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2485
    apply (rule card_image)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2486
    apply (rule subset_inj_on[OF fi])
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2487
    apply blast
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2488
    done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2489
  from th show ?thesis
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2490
    unfolding span_linear_image[OF lf] surj_def
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2491
    using B(3) by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2492
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2493
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2494
text {* And vice versa. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2495
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2496
lemma surjective_iff_injective_gen:
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2497
  assumes fS: "finite S"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2498
    and fT: "finite T"
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2499
    and c: "card S = card T"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2500
    and ST: "f ` S \<subseteq> T"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2501
  shows "(\<forall>y \<in> T. \<exists>x \<in> S. f x = y) \<longleftrightarrow> inj_on f S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2502
  (is "?lhs \<longleftrightarrow> ?rhs")
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2503
proof
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2504
  assume h: "?lhs"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2505
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2506
    fix x y
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2507
    assume x: "x \<in> S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2508
    assume y: "y \<in> S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2509
    assume f: "f x = f y"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2510
    from x fS have S0: "card S \<noteq> 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2511
      by auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2512
    have "x = y"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2513
    proof (rule ccontr)
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2514
      assume xy: "\<not> ?thesis"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2515
      have th: "card S \<le> card (f ` (S - {y}))"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2516
        unfolding c
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2517
        apply (rule card_mono)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2518
        apply (rule finite_imageI)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2519
        using fS apply simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2520
        using h xy x y f unfolding subset_eq image_iff
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2521
        apply auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2522
        apply (case_tac "xa = f x")
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2523
        apply (rule bexI[where x=x])
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2524
        apply auto
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2525
        done
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2526
      also have " \<dots> \<le> card (S - {y})"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2527
        apply (rule card_image_le)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2528
        using fS by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2529
      also have "\<dots> \<le> card S - 1" using y fS by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2530
      finally show False using S0 by arith
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2531
    qed
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2532
  }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2533
  then show ?rhs
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2534
    unfolding inj_on_def by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2535
next
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2536
  assume h: ?rhs
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2537
  have "f ` S = T"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2538
    apply (rule card_subset_eq[OF fT ST])
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2539
    unfolding card_image[OF h]
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2540
    apply (rule c)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2541
    done
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2542
  then show ?lhs by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2543
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2544
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2545
lemma linear_surjective_imp_injective:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2546
  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2547
  assumes lf: "linear f"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2548
    and sf: "surj f"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2549
  shows "inj f"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2550
proof -
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2551
  let ?U = "UNIV :: 'a set"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2552
  from basis_exists[of ?U] obtain B
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2553
    where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" and d: "card B = dim ?U"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2554
    by blast
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2555
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2556
    fix x
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2557
    assume x: "x \<in> span B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2558
    assume fx: "f x = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2559
    from B(2) have fB: "finite B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2560
      using independent_bound by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2561
    have fBi: "independent (f ` B)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2562
      apply (rule card_le_dim_spanning[of "f ` B" ?U])
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2563
      apply blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2564
      using sf B(3)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2565
      unfolding span_linear_image[OF lf] surj_def subset_eq image_iff
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2566
      apply blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2567
      using fB apply blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2568
      unfolding d[symmetric]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2569
      apply (rule card_image_le)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2570
      apply (rule fB)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2571
      done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2572
    have th0: "dim ?U \<le> card (f ` B)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2573
      apply (rule span_card_ge_dim)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2574
      apply blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2575
      unfolding span_linear_image[OF lf]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2576
      apply (rule subset_trans[where B = "f ` UNIV"])
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2577
      using sf unfolding surj_def
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2578
      apply blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2579
      apply (rule image_mono)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2580
      apply (rule B(3))
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2581
      apply (metis finite_imageI fB)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2582
      done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2583
    moreover have "card (f ` B) \<le> card B"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2584
      by (rule card_image_le, rule fB)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2585
    ultimately have th1: "card B = card (f ` B)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2586
      unfolding d by arith
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2587
    have fiB: "inj_on f B"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2588
      unfolding surjective_iff_injective_gen[OF fB finite_imageI[OF fB] th1 subset_refl, symmetric]
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2589
      by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2590
    from linear_indep_image_lemma[OF lf fB fBi fiB x] fx
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2591
    have "x = 0" by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2592
  }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2593
  then show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2594
    unfolding linear_injective_0[OF lf]
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2595
    using B(3)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2596
    by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2597
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2598
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2599
text {* Hence either is enough for isomorphism. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2600
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2601
lemma left_right_inverse_eq:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2602
  assumes fg: "f \<circ> g = id"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2603
    and gh: "g \<circ> h = id"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2604
  shows "f = h"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2605
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2606
  have "f = f \<circ> (g \<circ> h)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2607
    unfolding gh by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2608
  also have "\<dots> = (f \<circ> g) \<circ> h"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2609
    by (simp add: o_assoc)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2610
  finally show "f = h"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2611
    unfolding fg by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2612
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2613
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2614
lemma isomorphism_expand:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2615
  "f \<circ> g = id \<and> g \<circ> f = id \<longleftrightarrow> (\<forall>x. f (g x) = x) \<and> (\<forall>x. g (f x) = x)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2616
  by (simp add: fun_eq_iff o_def id_def)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2617
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2618
lemma linear_injective_isomorphism:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2619
  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2620
  assumes lf: "linear f"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2621
    and fi: "inj f"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2622
  shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2623
  unfolding isomorphism_expand[symmetric]
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2624
  using linear_surjective_right_inverse[OF lf linear_injective_imp_surjective[OF lf fi]]
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2625
    linear_injective_left_inverse[OF lf fi]
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2626
  by (metis left_right_inverse_eq)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2627
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2628
lemma linear_surjective_isomorphism:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2629
  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2630
  assumes lf: "linear f"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2631
    and sf: "surj f"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2632
  shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2633
  unfolding isomorphism_expand[symmetric]
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2634
  using linear_surjective_right_inverse[OF lf sf]
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2635
    linear_injective_left_inverse[OF lf linear_surjective_imp_injective[OF lf sf]]
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2636
  by (metis left_right_inverse_eq)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2637
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2638
text {* Left and right inverses are the same for
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2639
  @{typ "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"}. *}
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2640
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2641
lemma linear_inverse_left:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2642
  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2643
  assumes lf: "linear f"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2644
    and lf': "linear f'"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2645
  shows "f \<circ> f' = id \<longleftrightarrow> f' \<circ> f = id"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2646
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2647
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2648
    fix f f':: "'a \<Rightarrow> 'a"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2649
    assume lf: "linear f" "linear f'"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2650
    assume f: "f \<circ> f' = id"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2651
    from f have sf: "surj f"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2652
      apply (auto simp add: o_def id_def surj_def)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2653
      apply metis
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2654
      done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2655
    from linear_surjective_isomorphism[OF lf(1) sf] lf f
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2656
    have "f' \<circ> f = id"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2657
      unfolding fun_eq_iff o_def id_def by metis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2658
  }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2659
  then show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2660
    using lf lf' by metis
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2661
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2662
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2663
text {* Moreover, a one-sided inverse is automatically linear. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2664
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2665
lemma left_inverse_linear:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2666
  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2667
  assumes lf: "linear f"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2668
    and gf: "g \<circ> f = id"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2669
  shows "linear g"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2670
proof -
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2671
  from gf have fi: "inj f"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2672
    apply (auto simp add: inj_on_def o_def id_def fun_eq_iff)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2673
    apply metis
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2674
    done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2675
  from linear_injective_isomorphism[OF lf fi]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2676
  obtain h :: "'a \<Rightarrow> 'a" where h: "linear h" "\<forall>x. h (f x) = x" "\<forall>x. f (h x) = x"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2677
    by blast
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2678
  have "h = g"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2679
    apply (rule ext) using gf h(2,3)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2680
    apply (simp add: o_def id_def fun_eq_iff)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2681
    apply metis
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2682
    done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2683
  with h(1) show ?thesis by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2684
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2685
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2686
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2687
subsection {* Infinity norm *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2688
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2689
definition "infnorm (x::'a::euclidean_space) = Sup {\<bar>x \<bullet> b\<bar> |b. b \<in> Basis}"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2690
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2691
lemma infnorm_set_image:
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2692
  fixes x :: "'a::euclidean_space"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2693
  shows "{\<bar>x \<bullet> i\<bar> |i. i \<in> Basis} = (\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  2694
  by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2695
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2696
lemma infnorm_Max:
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2697
  fixes x :: "'a::euclidean_space"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2698
  shows "infnorm x = Max ((\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 55910
diff changeset
  2699
  by (simp add: infnorm_def infnorm_set_image cSup_eq_Max del: Sup_image_eq)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2700
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2701
lemma infnorm_set_lemma:
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2702
  fixes x :: "'a::euclidean_space"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2703
  shows "finite {\<bar>x \<bullet> i\<bar> |i. i \<in> Basis}"
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2704
    and "{\<bar>x \<bullet> i\<bar> |i. i \<in> Basis} \<noteq> {}"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2705
  unfolding infnorm_set_image
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2706
  by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2707
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2708
lemma infnorm_pos_le:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2709
  fixes x :: "'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2710
  shows "0 \<le> infnorm x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2711
  by (simp add: infnorm_Max Max_ge_iff ex_in_conv)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2712
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2713
lemma infnorm_triangle:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2714
  fixes x :: "'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2715
  shows "infnorm (x + y) \<le> infnorm x + infnorm y"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2716
proof -
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2717
  have *: "\<And>a b c d :: real. \<bar>a\<bar> \<le> c \<Longrightarrow> \<bar>b\<bar> \<le> d \<Longrightarrow> \<bar>a + b\<bar> \<le> c + d"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2718
    by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2719
  show ?thesis
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2720
    by (auto simp: infnorm_Max inner_add_left intro!: *)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2721
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2722
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2723
lemma infnorm_eq_0:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2724
  fixes x :: "'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2725
  shows "infnorm x = 0 \<longleftrightarrow> x = 0"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2726
proof -
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2727
  have "infnorm x \<le> 0 \<longleftrightarrow> x = 0"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2728
    unfolding infnorm_Max by (simp add: euclidean_all_zero_iff)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2729
  then show ?thesis
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2730
    using infnorm_pos_le[of x] by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2731
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2732
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2733
lemma infnorm_0: "infnorm 0 = 0"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2734
  by (simp add: infnorm_eq_0)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2735
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2736
lemma infnorm_neg: "infnorm (- x) = infnorm x"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2737
  unfolding infnorm_def
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2738
  apply (rule cong[of "Sup" "Sup"])
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2739
  apply blast
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2740
  apply auto
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2741
  done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2742
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2743
lemma infnorm_sub: "infnorm (x - y) = infnorm (y - x)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2744
proof -
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2745
  have "y - x = - (x - y)" by simp
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2746
  then show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2747
    by (metis infnorm_neg)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2748
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2749
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2750
lemma real_abs_sub_infnorm: "\<bar>infnorm x - infnorm y\<bar> \<le> infnorm (x - y)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2751
proof -
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2752
  have th: "\<And>(nx::real) n ny. nx \<le> n + ny \<Longrightarrow> ny \<le> n + nx \<Longrightarrow> \<bar>nx - ny\<bar> \<le> n"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2753
    by arith
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2754
  from infnorm_triangle[of "x - y" " y"] infnorm_triangle[of "x - y" "-x"]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2755
  have ths: "infnorm x \<le> infnorm (x - y) + infnorm y"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2756
    "infnorm y \<le> infnorm (x - y) + infnorm x"
44454
6f28f96a09bf avoid warnings
huffman
parents: 44451
diff changeset
  2757
    by (simp_all add: field_simps infnorm_neg)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2758
  from th[OF ths] show ?thesis .
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2759
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2760
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2761
lemma real_abs_infnorm: "\<bar>infnorm x\<bar> = infnorm x"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2762
  using infnorm_pos_le[of x] by arith
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2763
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  2764
lemma Basis_le_infnorm:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2765
  fixes x :: "'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2766
  shows "b \<in> Basis \<Longrightarrow> \<bar>x \<bullet> b\<bar> \<le> infnorm x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2767
  by (simp add: infnorm_Max)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2768
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2769
lemma infnorm_mul: "infnorm (a *\<^sub>R x) = \<bar>a\<bar> * infnorm x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2770
  unfolding infnorm_Max
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2771
proof (safe intro!: Max_eqI)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2772
  let ?B = "(\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2773
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2774
    fix b :: 'a
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2775
    assume "b \<in> Basis"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2776
    then show "\<bar>a *\<^sub>R x \<bullet> b\<bar> \<le> \<bar>a\<bar> * Max ?B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2777
      by (simp add: abs_mult mult_left_mono)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2778
  next
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2779
    from Max_in[of ?B] obtain b where "b \<in> Basis" "Max ?B = \<bar>x \<bullet> b\<bar>"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2780
      by (auto simp del: Max_in)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2781
    then show "\<bar>a\<bar> * Max ((\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis) \<in> (\<lambda>i. \<bar>a *\<^sub>R x \<bullet> i\<bar>) ` Basis"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2782
      by (intro image_eqI[where x=b]) (auto simp: abs_mult)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2783
  }
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2784
qed simp
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2785
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2786
lemma infnorm_mul_lemma: "infnorm (a *\<^sub>R x) \<le> \<bar>a\<bar> * infnorm x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2787
  unfolding infnorm_mul ..
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2788
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2789
lemma infnorm_pos_lt: "infnorm x > 0 \<longleftrightarrow> x \<noteq> 0"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2790
  using infnorm_pos_le[of x] infnorm_eq_0[of x] by arith
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2791
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2792
text {* Prove that it differs only up to a bound from Euclidean norm. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2793
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2794
lemma infnorm_le_norm: "infnorm x \<le> norm x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2795
  by (simp add: Basis_le_norm infnorm_Max)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  2796
54776
db890d9fc5c2 ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents: 54703
diff changeset
  2797
lemma (in euclidean_space) euclidean_inner: "inner x y = (\<Sum>b\<in>Basis. (x \<bullet> b) * (y \<bullet> b))"
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
  2798
  by (subst (1 2) euclidean_representation [symmetric])
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56536
diff changeset
  2799
    (simp add: inner_setsum_right inner_Basis ac_simps)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  2800
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2801
lemma norm_le_infnorm:
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2802
  fixes x :: "'a::euclidean_space"
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2803
  shows "norm x \<le> sqrt DIM('a) * infnorm x"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2804
proof -
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2805
  let ?d = "DIM('a)"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2806
  have "real ?d \<ge> 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2807
    by simp
53077
a1b3784f8129 more symbols;
wenzelm
parents: 53015
diff changeset
  2808
  then have d2: "(sqrt (real ?d))\<^sup>2 = real ?d"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2809
    by (auto intro: real_sqrt_pow2)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2810
  have th: "sqrt (real ?d) * infnorm x \<ge> 0"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2811
    by (simp add: zero_le_mult_iff infnorm_pos_le)
53077
a1b3784f8129 more symbols;
wenzelm
parents: 53015
diff changeset
  2812
  have th1: "x \<bullet> x \<le> (sqrt (real ?d) * infnorm x)\<^sup>2"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2813
    unfolding power_mult_distrib d2
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  2814
    unfolding real_of_nat_def
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2815
    apply (subst euclidean_inner)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2816
    apply (subst power2_abs[symmetric])
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 51478
diff changeset
  2817
    apply (rule order_trans[OF setsum_bounded[where K="\<bar>infnorm x\<bar>\<^sup>2"]])
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
  2818
    apply (auto simp add: power2_eq_square[symmetric])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2819
    apply (subst power2_abs[symmetric])
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2820
    apply (rule power_mono)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  2821
    apply (auto simp: infnorm_Max)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2822
    done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2823
  from real_le_lsqrt[OF inner_ge_zero th th1]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2824
  show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2825
    unfolding norm_eq_sqrt_inner id_def .
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2826
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2827
44646
a6047ddd9377 add lemma tendsto_infnorm
huffman
parents: 44629
diff changeset
  2828
lemma tendsto_infnorm [tendsto_intros]:
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2829
  assumes "(f ---> a) F"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2830
  shows "((\<lambda>x. infnorm (f x)) ---> infnorm a) F"
44646
a6047ddd9377 add lemma tendsto_infnorm
huffman
parents: 44629
diff changeset
  2831
proof (rule tendsto_compose [OF LIM_I assms])
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2832
  fix r :: real
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2833
  assume "r > 0"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2834
  then show "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (infnorm x - infnorm a) < r"
44646
a6047ddd9377 add lemma tendsto_infnorm
huffman
parents: 44629
diff changeset
  2835
    by (metis real_norm_def le_less_trans real_abs_sub_infnorm infnorm_le_norm)
a6047ddd9377 add lemma tendsto_infnorm
huffman
parents: 44629
diff changeset
  2836
qed
a6047ddd9377 add lemma tendsto_infnorm
huffman
parents: 44629
diff changeset
  2837
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2838
text {* Equality in Cauchy-Schwarz and triangle inequalities. *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2839
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2840
lemma norm_cauchy_schwarz_eq: "x \<bullet> y = norm x * norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2841
  (is "?lhs \<longleftrightarrow> ?rhs")
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2842
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2843
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2844
    assume h: "x = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2845
    then have ?thesis by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2846
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2847
  moreover
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2848
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2849
    assume h: "y = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2850
    then have ?thesis by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2851
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2852
  moreover
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2853
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2854
    assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2855
    from inner_eq_zero_iff[of "norm y *\<^sub>R x - norm x *\<^sub>R y"]
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2856
    have "?rhs \<longleftrightarrow>
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2857
      (norm y * (norm y * norm x * norm x - norm x * (x \<bullet> y)) -
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2858
        norm x * (norm y * (y \<bullet> x) - norm x * norm y * norm y) =  0)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2859
      using x y
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2860
      unfolding inner_simps
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53939
diff changeset
  2861
      unfolding power2_norm_eq_inner[symmetric] power2_eq_square right_minus_eq
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2862
      apply (simp add: inner_commute)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2863
      apply (simp add: field_simps)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2864
      apply metis
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2865
      done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2866
    also have "\<dots> \<longleftrightarrow> (2 * norm x * norm y * (norm x * norm y - x \<bullet> y) = 0)" using x y
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2867
      by (simp add: field_simps inner_commute)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2868
    also have "\<dots> \<longleftrightarrow> ?lhs" using x y
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2869
      apply simp
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2870
      apply metis
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2871
      done
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2872
    finally have ?thesis by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2873
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2874
  ultimately show ?thesis by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2875
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2876
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2877
lemma norm_cauchy_schwarz_abs_eq:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2878
  "\<bar>x \<bullet> y\<bar> = norm x * norm y \<longleftrightarrow>
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  2879
    norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm x *\<^sub>R y = - norm y *\<^sub>R x"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2880
  (is "?lhs \<longleftrightarrow> ?rhs")
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2881
proof -
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2882
  have th: "\<And>(x::real) a. a \<ge> 0 \<Longrightarrow> \<bar>x\<bar> = a \<longleftrightarrow> x = a \<or> x = - a"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2883
    by arith
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2884
  have "?rhs \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm (- x) *\<^sub>R y = norm y *\<^sub>R (- x)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2885
    by simp
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2886
  also have "\<dots> \<longleftrightarrow>(x \<bullet> y = norm x * norm y \<or> (- x) \<bullet> y = norm x * norm y)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2887
    unfolding norm_cauchy_schwarz_eq[symmetric]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2888
    unfolding norm_minus_cancel norm_scaleR ..
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2889
  also have "\<dots> \<longleftrightarrow> ?lhs"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2890
    unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] inner_simps
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2891
    by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2892
  finally show ?thesis ..
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2893
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2894
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2895
lemma norm_triangle_eq:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2896
  fixes x y :: "'a::real_inner"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2897
  shows "norm (x + y) = norm x + norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2898
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2899
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2900
    assume x: "x = 0 \<or> y = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2901
    then have ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2902
      by (cases "x = 0") simp_all
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2903
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2904
  moreover
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2905
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2906
    assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2907
    then have "norm x \<noteq> 0" "norm y \<noteq> 0"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2908
      by simp_all
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2909
    then have n: "norm x > 0" "norm y > 0"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2910
      using norm_ge_zero[of x] norm_ge_zero[of y] by arith+
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2911
    have th: "\<And>(a::real) b c. a + b + c \<noteq> 0 \<Longrightarrow> a = b + c \<longleftrightarrow> a\<^sup>2 = (b + c)\<^sup>2"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2912
      by algebra
53077
a1b3784f8129 more symbols;
wenzelm
parents: 53015
diff changeset
  2913
    have "norm (x + y) = norm x + norm y \<longleftrightarrow> (norm (x + y))\<^sup>2 = (norm x + norm y)\<^sup>2"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2914
      apply (rule th)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2915
      using n norm_ge_zero[of "x + y"]
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2916
      apply arith
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2917
      done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2918
    also have "\<dots> \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2919
      unfolding norm_cauchy_schwarz_eq[symmetric]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2920
      unfolding power2_norm_eq_inner inner_simps
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2921
      by (simp add: power2_norm_eq_inner[symmetric] power2_eq_square inner_commute field_simps)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2922
    finally have ?thesis .
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2923
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2924
  ultimately show ?thesis by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2925
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2926
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2927
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2928
subsection {* Collinearity *}
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2929
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2930
definition collinear :: "'a::real_vector set \<Rightarrow> bool"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2931
  where "collinear S \<longleftrightarrow> (\<exists>u. \<forall>x \<in> S. \<forall> y \<in> S. \<exists>c. x - y = c *\<^sub>R u)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2932
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2933
lemma collinear_empty: "collinear {}"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2934
  by (simp add: collinear_def)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2935
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2936
lemma collinear_sing: "collinear {x}"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2937
  by (simp add: collinear_def)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2938
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2939
lemma collinear_2: "collinear {x, y}"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2940
  apply (simp add: collinear_def)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2941
  apply (rule exI[where x="x - y"])
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2942
  apply auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2943
  apply (rule exI[where x=1], simp)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2944
  apply (rule exI[where x="- 1"], simp)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2945
  done
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2946
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2947
lemma collinear_lemma: "collinear {0, x, y} \<longleftrightarrow> x = 0 \<or> y = 0 \<or> (\<exists>c. y = c *\<^sub>R x)"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2948
  (is "?lhs \<longleftrightarrow> ?rhs")
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2949
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2950
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2951
    assume "x = 0 \<or> y = 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2952
    then have ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2953
      by (cases "x = 0") (simp_all add: collinear_2 insert_commute)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2954
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2955
  moreover
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2956
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2957
    assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2958
    have ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2959
    proof
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2960
      assume h: "?lhs"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2961
      then obtain u where u: "\<forall> x\<in> {0,x,y}. \<forall>y\<in> {0,x,y}. \<exists>c. x - y = c *\<^sub>R u"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2962
        unfolding collinear_def by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2963
      from u[rule_format, of x 0] u[rule_format, of y 0]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2964
      obtain cx and cy where
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2965
        cx: "x = cx *\<^sub>R u" and cy: "y = cy *\<^sub>R u"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2966
        by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2967
      from cx x have cx0: "cx \<noteq> 0" by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2968
      from cy y have cy0: "cy \<noteq> 0" by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2969
      let ?d = "cy / cx"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2970
      from cx cy cx0 have "y = ?d *\<^sub>R x"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2971
        by simp
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2972
      then show ?rhs using x y by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2973
    next
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2974
      assume h: "?rhs"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2975
      then obtain c where c: "y = c *\<^sub>R x"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2976
        using x y by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2977
      show ?lhs
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2978
        unfolding collinear_def c
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2979
        apply (rule exI[where x=x])
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2980
        apply auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2981
        apply (rule exI[where x="- 1"], simp)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2982
        apply (rule exI[where x= "-c"], simp)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2983
        apply (rule exI[where x=1], simp)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2984
        apply (rule exI[where x="1 - c"], simp add: scaleR_left_diff_distrib)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2985
        apply (rule exI[where x="c - 1"], simp add: scaleR_left_diff_distrib)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2986
        done
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2987
    qed
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  2988
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2989
  ultimately show ?thesis by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2990
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  2991
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  2992
lemma norm_cauchy_schwarz_equal: "\<bar>x \<bullet> y\<bar> = norm x * norm y \<longleftrightarrow> collinear {0, x, y}"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2993
  unfolding norm_cauchy_schwarz_abs_eq
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2994
  apply (cases "x=0", simp_all add: collinear_2)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2995
  apply (cases "y=0", simp_all add: collinear_2 insert_commute)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2996
  unfolding collinear_lemma
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2997
  apply simp
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2998
  apply (subgoal_tac "norm x \<noteq> 0")
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  2999
  apply (subgoal_tac "norm y \<noteq> 0")
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3000
  apply (rule iffI)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3001
  apply (cases "norm x *\<^sub>R y = norm y *\<^sub>R x")
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3002
  apply (rule exI[where x="(1/norm x) * norm y"])
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3003
  apply (drule sym)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3004
  unfolding scaleR_scaleR[symmetric]
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3005
  apply (simp add: field_simps)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3006
  apply (rule exI[where x="(1/norm x) * - norm y"])
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3007
  apply clarify
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3008
  apply (drule sym)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3009
  unfolding scaleR_scaleR[symmetric]
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3010
  apply (simp add: field_simps)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3011
  apply (erule exE)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3012
  apply (erule ssubst)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3013
  unfolding scaleR_scaleR
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3014
  unfolding norm_scaleR
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3015
  apply (subgoal_tac "norm x * c = \<bar>c\<bar> * norm x \<or> norm x * c = - \<bar>c\<bar> * norm x")
55775
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55136
diff changeset
  3016
  apply (auto simp add: field_simps)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3017
  done
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  3018
54776
db890d9fc5c2 ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents: 54703
diff changeset
  3019
end