doc-src/TutorialI/CTL/CTL.thy
author paulson
Fri, 12 Jan 2001 16:32:01 +0100
changeset 10885 90695f46440b
parent 10867 bda1701848cd
child 10895 79194f07d356
permissions -rw-r--r--
lcp's pass over the book, chapters 1-8
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
     1
(*<*)theory CTL = Base:;(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     2
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
     3
subsection{*Computation Tree Logic---CTL*};
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     4
10212
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
     5
text{*\label{sec:CTL}
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
     6
The semantics of PDL only needs reflexive transitive closure.
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
     7
Let us be adventurous and introduce a more expressive temporal operator.
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
     8
We extend the datatype
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
     9
@{text formula} by a new constructor
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    10
*};
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    11
(*<*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    12
datatype formula = Atom atom
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    13
                  | Neg formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    14
                  | And formula formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    15
                  | AX formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    16
                  | EF formula(*>*)
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    17
                  | AF formula;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    18
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    19
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    20
which stands for "always in the future":
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    21
on all paths, at some point the formula holds. Formalizing the notion of an infinite path is easy
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    22
in HOL: it is simply a function from @{typ nat} to @{typ state}.
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    23
*};
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    24
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    25
constdefs Paths :: "state \<Rightarrow> (nat \<Rightarrow> state)set"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    26
         "Paths s \<equiv> {p. s = p 0 \<and> (\<forall>i. (p i, p(i+1)) \<in> M)}";
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    27
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    28
text{*\noindent
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    29
This definition allows a very succinct statement of the semantics of @{term AF}:
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
    30
\footnote{Do not be misled: neither datatypes nor recursive functions can be
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    31
extended by new constructors or equations. This is just a trick of the
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    32
presentation. In reality one has to define a new datatype and a new function.}
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    33
*};
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    34
(*<*)
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    35
consts valid :: "state \<Rightarrow> formula \<Rightarrow> bool" ("(_ \<Turnstile> _)" [80,80] 80);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    36
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    37
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10000
diff changeset
    38
"s \<Turnstile> Atom a  =  (a \<in> L s)"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    39
"s \<Turnstile> Neg f   = (~(s \<Turnstile> f))"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    40
"s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    41
"s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
10801
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
    42
"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    43
(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    44
"s \<Turnstile> AF f    = (\<forall>p \<in> Paths s. \<exists>i. p i \<Turnstile> f)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    45
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    46
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    47
Model checking @{term AF} involves a function which
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    48
is just complicated enough to warrant a separate definition:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    49
*};
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    50
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    51
constdefs af :: "state set \<Rightarrow> state set \<Rightarrow> state set"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    52
         "af A T \<equiv> A \<union> {s. \<forall>t. (s, t) \<in> M \<longrightarrow> t \<in> T}";
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    53
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    54
text{*\noindent
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
    55
Now we define @{term "mc(AF f)"} as the least set @{term T} that includes
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    56
@{term"mc f"} and all states all of whose direct successors are in @{term T}:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    57
*};
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    58
(*<*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    59
consts mc :: "formula \<Rightarrow> state set";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    60
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10000
diff changeset
    61
"mc(Atom a)  = {s. a \<in> L s}"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    62
"mc(Neg f)   = -mc f"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    63
"mc(And f g) = mc f \<inter> mc g"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    64
"mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    65
"mc(EF f)    = lfp(\<lambda>T. mc f \<union> M\<inverse> `` T)"(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    66
"mc(AF f)    = lfp(af(mc f))";
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    67
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    68
text{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    69
Because @{term af} is monotone in its second argument (and also its first, but
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    70
that is irrelevant) @{term"af A"} has a least fixed point:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    71
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    72
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    73
lemma mono_af: "mono(af A)";
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    74
apply(simp add: mono_def af_def);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    75
apply blast;
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    76
done
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    77
(*<*)
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    78
lemma mono_ef: "mono(\<lambda>T. A \<union> M\<inverse> `` T)";
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    79
apply(rule monoI);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    80
by(blast);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    81
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    82
lemma EF_lemma:
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    83
  "lfp(\<lambda>T. A \<union> M\<inverse> `` T) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    84
apply(rule equalityI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    85
 apply(rule subsetI);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    86
 apply(simp);
10210
e8aa81362f41 induct -> lfp_induct;
wenzelm
parents: 10192
diff changeset
    87
 apply(erule lfp_induct);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    88
  apply(rule mono_ef);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    89
 apply(simp);
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
    90
 apply(blast intro: rtrancl_trans);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    91
apply(rule subsetI);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    92
apply(simp, clarify);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    93
apply(erule converse_rtrancl_induct);
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
    94
 apply(rule ssubst[OF lfp_unfold[OF mono_ef]]);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    95
 apply(blast);
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
    96
apply(rule ssubst[OF lfp_unfold[OF mono_ef]]);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    97
by(blast);
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    98
(*>*)
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    99
text{*
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   100
All we need to prove now is  @{prop"mc(AF f) = {s. s \<Turnstile> AF f}"}, which states
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   101
that @{term mc} and @{text"\<Turnstile>"} agree for @{term AF}\@.
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   102
This time we prove the two inclusions separately, starting
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   103
with the easy one:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   104
*};
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   105
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   106
theorem AF_lemma1:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   107
  "lfp(af A) \<subseteq> {s. \<forall> p \<in> Paths s. \<exists> i. p i \<in> A}";
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   108
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   109
txt{*\noindent
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
   110
In contrast to the analogous property for @{term EF}, and just
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   111
for a change, we do not use fixed point induction but a weaker theorem,
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
   112
@{thm[source]lfp_lowerbound}:
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
   113
@{thm[display]lfp_lowerbound[of _ "S",no_vars]}
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
   114
The instance of the premise @{prop"f S \<subseteq> S"} is proved pointwise,
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   115
a decision that clarification takes for us:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   116
*};
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
   117
apply(rule lfp_lowerbound);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   118
apply(clarsimp simp add: af_def Paths_def);
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   119
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
   120
txt{*
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   121
@{subgoals[display,indent=0,margin=70,goals_limit=1]}
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   122
Now we eliminate the disjunction. The case @{prop"p 0 \<in> A"} is trivial:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   123
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   124
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   125
apply(erule disjE);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   126
 apply(blast);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   127
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   128
txt{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   129
In the other case we set @{term t} to @{term"p 1"} and simplify matters:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   130
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   131
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   132
apply(erule_tac x = "p 1" in allE);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   133
apply(clarsimp);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   134
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   135
txt{*
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   136
@{subgoals[display,indent=0,margin=70,goals_limit=1]}
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   137
It merely remains to set @{term pa} to @{term"\<lambda>i. p(i+1)"}, i.e.\ @{term p} without its
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   138
first element. The rest is practically automatic:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   139
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   140
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   141
apply(erule_tac x = "\<lambda>i. p(i+1)" in allE);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   142
apply simp;
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   143
apply blast;
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   144
done;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   145
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
   146
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   147
text{*
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   148
The opposite inclusion is proved by contradiction: if some state
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   149
@{term s} is not in @{term"lfp(af A)"}, then we can construct an
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   150
infinite @{term A}-avoiding path starting from @{term s}. The reason is
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   151
that by unfolding @{term lfp} we find that if @{term s} is not in
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   152
@{term"lfp(af A)"}, then @{term s} is not in @{term A} and there is a
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   153
direct successor of @{term s} that is again not in @{term"lfp(af
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   154
A)"}. Iterating this argument yields the promised infinite
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   155
@{term A}-avoiding path. Let us formalize this sketch.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   156
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   157
The one-step argument in the sketch above
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   158
is proved by a variant of contraposition:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   159
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   160
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   161
lemma not_in_lfp_afD:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   162
 "s \<notin> lfp(af A) \<Longrightarrow> s \<notin> A \<and> (\<exists> t. (s,t)\<in>M \<and> t \<notin> lfp(af A))";
10235
20cf817f3b4a renaming of contrapos rules
paulson
parents: 10225
diff changeset
   163
apply(erule contrapos_np);
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   164
apply(rule ssubst[OF lfp_unfold[OF mono_af]]);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   165
apply(simp add:af_def);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   166
done;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   167
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   168
text{*\noindent
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   169
We assume the negation of the conclusion and prove @{term"s : lfp(af A)"}.
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10235
diff changeset
   170
Unfolding @{term lfp} once and
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   171
simplifying with the definition of @{term af} finishes the proof.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   172
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   173
Now we iterate this process. The following construction of the desired
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   174
path is parameterized by a predicate @{term P} that should hold along the path:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   175
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   176
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   177
consts path :: "state \<Rightarrow> (state \<Rightarrow> bool) \<Rightarrow> (nat \<Rightarrow> state)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   178
primrec
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   179
"path s P 0 = s"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   180
"path s P (Suc n) = (SOME t. (path s P n,t) \<in> M \<and> P t)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   181
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   182
text{*\noindent
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   183
Element @{term"n+1"} on this path is some arbitrary successor
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   184
@{term t} of element @{term n} such that @{term"P t"} holds.  Remember that @{text"SOME t. R t"}
10654
458068404143 *** empty log message ***
nipkow
parents: 10363
diff changeset
   185
is some arbitrary but fixed @{term t} such that @{prop"R t"} holds (see \S\ref{sec:SOME}). Of
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   186
course, such a @{term t} need not exist, but that is of no
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   187
concern to us since we will only use @{term path} when a
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   188
suitable @{term t} does exist.
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   189
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   190
Let us show that if each state @{term s} that satisfies @{term P}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   191
has a successor that again satisfies @{term P}, then there exists an infinite @{term P}-path:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   192
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   193
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   194
lemma infinity_lemma:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   195
  "\<lbrakk> P s; \<forall>s. P s \<longrightarrow> (\<exists> t. (s,t) \<in> M \<and> P t) \<rbrakk> \<Longrightarrow>
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   196
   \<exists>p\<in>Paths s. \<forall>i. P(p i)";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   197
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   198
txt{*\noindent
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   199
First we rephrase the conclusion slightly because we need to prove both the path property
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   200
and the fact that @{term P} holds simultaneously:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   201
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   202
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   203
apply(subgoal_tac "\<exists>p. s = p 0 \<and> (\<forall>i. (p i,p(i+1)) \<in> M \<and> P(p i))");
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   204
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   205
txt{*\noindent
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   206
From this proposition the original goal follows easily:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   207
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   208
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   209
 apply(simp add:Paths_def, blast);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   210
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   211
txt{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   212
The new subgoal is proved by providing the witness @{term "path s P"} for @{term p}:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   213
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   214
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   215
apply(rule_tac x = "path s P" in exI);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   216
apply(clarsimp);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   217
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   218
txt{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   219
After simplification and clarification the subgoal has the following compact form
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   220
@{subgoals[display,indent=0,margin=70,goals_limit=1]}
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   221
and invites a proof by induction on @{term i}:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   222
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   223
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   224
apply(induct_tac i);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   225
 apply(simp);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   226
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   227
txt{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   228
After simplification the base case boils down to
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   229
@{subgoals[display,indent=0,margin=70,goals_limit=1]}
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   230
The conclusion looks exceedingly trivial: after all, @{term t} is chosen such that @{prop"(s,t):M"}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   231
holds. However, we first have to show that such a @{term t} actually exists! This reasoning
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   232
is embodied in the theorem @{thm[source]someI2_ex}:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   233
@{thm[display,eta_contract=false]someI2_ex}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   234
When we apply this theorem as an introduction rule, @{text"?P x"} becomes
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   235
@{prop"(s, x) : M & P x"} and @{text"?Q x"} becomes @{prop"(s,x) : M"} and we have to prove
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   236
two subgoals: @{prop"EX a. (s, a) : M & P a"}, which follows from the assumptions, and
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   237
@{prop"(s, x) : M & P x ==> (s,x) : M"}, which is trivial. Thus it is not surprising that
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   238
@{text fast} can prove the base case quickly:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   239
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   240
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   241
 apply(fast intro:someI2_ex);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   242
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   243
txt{*\noindent
10212
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   244
What is worth noting here is that we have used @{text fast} rather than
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   245
@{text blast}.  The reason is that @{text blast} would fail because it cannot
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   246
cope with @{thm[source]someI2_ex}: unifying its conclusion with the current
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   247
subgoal is nontrivial because of the nested schematic variables. For
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   248
efficiency reasons @{text blast} does not even attempt such unifications.
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   249
Although @{text fast} can in principle cope with complicated unification
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   250
problems, in practice the number of unifiers arising is often prohibitive and
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   251
the offending rule may need to be applied explicitly rather than
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   252
automatically. This is what happens in the step case.
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   253
10212
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   254
The induction step is similar, but more involved, because now we face nested
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   255
occurrences of @{text SOME}. As a result, @{text fast} is no longer able to
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   256
solve the subgoal and we apply @{thm[source]someI2_ex} by hand.  We merely
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   257
show the proof commands but do not describe the details:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   258
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   259
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   260
apply(simp);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   261
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   262
 apply(blast);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   263
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   264
 apply(blast);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   265
apply(blast);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   266
done;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   267
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   268
text{*
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   269
Function @{term path} has fulfilled its purpose now and can be forgotten.
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   270
It was merely defined to provide the witness in the proof of the
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   271
@{thm[source]infinity_lemma}. Aficionados of minimal proofs might like to know
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   272
that we could have given the witness without having to define a new function:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   273
the term
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   274
@{term[display]"nat_rec s (\<lambda>n t. SOME u. (t,u)\<in>M \<and> P u)"}
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   275
is extensionally equal to @{term"path s P"},
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   276
where @{term nat_rec} is the predefined primitive recursor on @{typ nat}.
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   277
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   278
(*<*)
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   279
lemma infinity_lemma:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   280
"\<lbrakk> P s; \<forall> s. P s \<longrightarrow> (\<exists> t. (s,t)\<in>M \<and> P t) \<rbrakk> \<Longrightarrow>
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   281
 \<exists> p\<in>Paths s. \<forall> i. P(p i)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   282
apply(subgoal_tac
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   283
 "\<exists> p. s = p 0 \<and> (\<forall> i. (p i,p(Suc i))\<in>M \<and> P(p i))");
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   284
 apply(simp add:Paths_def);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   285
 apply(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   286
apply(rule_tac x = "nat_rec s (\<lambda>n t. SOME u. (t,u)\<in>M \<and> P u)" in exI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   287
apply(simp);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   288
apply(intro strip);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   289
apply(induct_tac i);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   290
 apply(simp);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   291
 apply(fast intro:someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   292
apply(simp);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   293
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   294
 apply(blast);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   295
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   296
 apply(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   297
by(blast);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   298
(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   299
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   300
text{*
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   301
At last we can prove the opposite direction of @{thm[source]AF_lemma1}:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   302
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   303
10866
cf8956f49499 *** empty log message ***
nipkow
parents: 10839
diff changeset
   304
theorem AF_lemma2: "{s. \<forall> p \<in> Paths s. \<exists> i. p i \<in> A} \<subseteq> lfp(af A)";
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   305
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   306
txt{*\noindent
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10235
diff changeset
   307
The proof is again pointwise and then by contraposition:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   308
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   309
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   310
apply(rule subsetI);
10235
20cf817f3b4a renaming of contrapos rules
paulson
parents: 10225
diff changeset
   311
apply(erule contrapos_pp);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   312
apply simp;
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   313
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   314
txt{*
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   315
@{subgoals[display,indent=0,goals_limit=1]}
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   316
Applying the @{thm[source]infinity_lemma} as a destruction rule leaves two subgoals, the second
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   317
premise of @{thm[source]infinity_lemma} and the original subgoal:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   318
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   319
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   320
apply(drule infinity_lemma);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   321
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   322
txt{*
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   323
@{subgoals[display,indent=0,margin=65]}
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   324
Both are solved automatically:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   325
*};
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   326
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   327
 apply(auto dest:not_in_lfp_afD);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   328
done;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   329
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   330
text{*
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   331
If you find these proofs too complicated, we recommend that you read
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   332
\S\ref{sec:CTL-revisited}, where we show how inductive definitions lead to
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10212
diff changeset
   333
simpler arguments.
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10212
diff changeset
   334
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10212
diff changeset
   335
The main theorem is proved as for PDL, except that we also derive the
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10212
diff changeset
   336
necessary equality @{text"lfp(af A) = ..."} by combining
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10212
diff changeset
   337
@{thm[source]AF_lemma1} and @{thm[source]AF_lemma2} on the spot:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   338
*}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   339
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   340
theorem "mc f = {s. s \<Turnstile> f}";
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   341
apply(induct_tac f);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   342
apply(auto simp add: EF_lemma equalityI[OF AF_lemma1 AF_lemma2]);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   343
done
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   344
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   345
text{*
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   346
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   347
The language defined above is not quite CTL\@. The latter also includes an
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   348
until-operator @{term"EU f g"} with semantics ``there exists a path
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   349
where @{term f} is true until @{term g} becomes true''. With the help
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   350
of an auxiliary function
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   351
*}
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   352
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   353
consts until:: "state set \<Rightarrow> state set \<Rightarrow> state \<Rightarrow> state list \<Rightarrow> bool"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   354
primrec
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   355
"until A B s []    = (s \<in> B)"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   356
"until A B s (t#p) = (s \<in> A \<and> (s,t) \<in> M \<and> until A B t p)"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   357
(*<*)constdefs
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   358
 eusem :: "state set \<Rightarrow> state set \<Rightarrow> state set"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   359
"eusem A B \<equiv> {s. \<exists>p. until A B s p}"(*>*)
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   360
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   361
text{*\noindent
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   362
the semantics of @{term EU} is straightforward:
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   363
@{text[display]"s \<Turnstile> EU f g = (\<exists>p. until A B s p)"}
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   364
Note that @{term EU} is not definable in terms of the other operators!
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   365
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   366
Model checking @{term EU} is again a least fixed point construction:
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
   367
@{text[display]"mc(EU f g) = lfp(\<lambda>T. mc g \<union> mc f \<inter> (M\<inverse> `` T))"}
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   368
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   369
\begin{exercise}
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   370
Extend the datatype of formulae by the above until operator
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   371
and prove the equivalence between semantics and model checking, i.e.\ that
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   372
@{prop[display]"mc(EU f g) = {s. s \<Turnstile> EU f g}"}
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   373
%For readability you may want to annotate {term EU} with its customary syntax
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   374
%{text[display]"| EU formula formula    E[_ U _]"}
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   375
%which enables you to read and write {text"E[f U g]"} instead of {term"EU f g"}.
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   376
\end{exercise}
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   377
For more CTL exercises see, for example, Huth and Ryan \cite{Huth-Ryan-book}.
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   378
*}
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   379
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   380
(*<*)
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   381
constdefs
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   382
 eufix :: "state set \<Rightarrow> state set \<Rightarrow> state set \<Rightarrow> state set"
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
   383
"eufix A B T \<equiv> B \<union> A \<inter> (M\<inverse> `` T)"
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   384
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   385
lemma "lfp(eufix A B) \<subseteq> eusem A B"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   386
apply(rule lfp_lowerbound)
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   387
apply(clarsimp simp add:eusem_def eufix_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   388
apply(erule disjE);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   389
 apply(rule_tac x = "[]" in exI);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   390
 apply simp
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   391
apply(clarsimp);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   392
apply(rule_tac x = "y#xc" in exI);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   393
apply simp;
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   394
done
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   395
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   396
lemma mono_eufix: "mono(eufix A B)";
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   397
apply(simp add: mono_def eufix_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   398
apply blast;
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   399
done
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   400
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   401
lemma "eusem A B \<subseteq> lfp(eufix A B)";
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   402
apply(clarsimp simp add:eusem_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   403
apply(erule rev_mp);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   404
apply(rule_tac x = x in spec);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   405
apply(induct_tac p);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   406
 apply(rule ssubst[OF lfp_unfold[OF mono_eufix]]);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   407
 apply(simp add:eufix_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   408
apply(clarsimp);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   409
apply(rule ssubst[OF lfp_unfold[OF mono_eufix]]);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   410
apply(simp add:eufix_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   411
apply blast;
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   412
done
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
   413
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   414
(*
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   415
constdefs
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   416
 eusem :: "state set \<Rightarrow> state set \<Rightarrow> state set"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   417
"eusem A B \<equiv> {s. \<exists>p\<in>Paths s. \<exists>j. p j \<in> B \<and> (\<forall>i < j. p i \<in> A)}"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   418
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   419
axioms
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   420
M_total: "\<exists>t. (s,t) \<in> M"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   421
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   422
consts apath :: "state \<Rightarrow> (nat \<Rightarrow> state)"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   423
primrec
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   424
"apath s 0 = s"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   425
"apath s (Suc i) = (SOME t. (apath s i,t) \<in> M)"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   426
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   427
lemma [iff]: "apath s \<in> Paths s";
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   428
apply(simp add:Paths_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   429
apply(blast intro: M_total[THEN someI_ex])
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   430
done
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   431
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   432
constdefs
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   433
 pcons :: "state \<Rightarrow> (nat \<Rightarrow> state) \<Rightarrow> (nat \<Rightarrow> state)"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   434
"pcons s p == \<lambda>i. case i of 0 \<Rightarrow> s | Suc j \<Rightarrow> p j"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   435
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   436
lemma pcons_PathI: "[| (s,t) : M; p \<in> Paths t |] ==> pcons s p \<in> Paths s";
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   437
by(simp add:Paths_def pcons_def split:nat.split);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   438
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   439
lemma "lfp(eufix A B) \<subseteq> eusem A B"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   440
apply(rule lfp_lowerbound)
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   441
apply(clarsimp simp add:eusem_def eufix_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   442
apply(erule disjE);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   443
 apply(rule_tac x = "apath x" in bexI);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   444
  apply(rule_tac x = 0 in exI);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   445
  apply simp;
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   446
 apply simp;
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   447
apply(clarify);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   448
apply(rule_tac x = "pcons xb p" in bexI);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   449
 apply(rule_tac x = "j+1" in exI);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   450
 apply (simp add:pcons_def split:nat.split);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   451
apply (simp add:pcons_PathI)
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   452
done
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   453
*)
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   454
(*>*)
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   455
text{*
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   456
Let us close this section with a few words about the executability of our model checkers.
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   457
It is clear that if all sets are finite, they can be represented as lists and the usual
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   458
set operations are easily implemented. Only @{term lfp} requires a little thought.
10885
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10867
diff changeset
   459
Fortunately, the HOL Library%
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10867
diff changeset
   460
\footnote{See theory \isa{While_Combinator_Example}.}
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10867
diff changeset
   461
provides a theorem stating that 
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10867
diff changeset
   462
in the case of finite sets and a monotone function~@{term F},
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   463
the value of @{term"lfp F"} can be computed by iterated application of @{term F} to~@{term"{}"} until
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   464
a fixed point is reached. It is actually possible to generate executable functional programs
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   465
from HOL definitions, but that is beyond the scope of the tutorial.
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   466
*}
10212
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   467
(*<*)end(*>*)