author | wenzelm |
Sat, 04 Nov 2017 19:44:28 +0100 | |
changeset 67007 | 978c584609de |
parent 61798 | 27f3c10b0b50 |
child 67443 | 3abf6a722518 |
permissions | -rw-r--r-- |
13165 | 1 |
(* Title: ZF/WF.thy |
1478 | 2 |
Author: Tobias Nipkow and Lawrence C Paulson |
435 | 3 |
Copyright 1994 University of Cambridge |
0 | 4 |
|
13165 | 5 |
Derived first for transitive relations, and finally for arbitrary WF relations |
6 |
via wf_trancl and trans_trancl. |
|
7 |
||
8 |
It is difficult to derive this general case directly, using r^+ instead of |
|
9 |
r. In is_recfun, the two occurrences of the relation must have the same |
|
10 |
form. Inserting r^+ in the_recfun or wftrec yields a recursion rule with |
|
11 |
r^+ -`` {a} instead of r-``{a}. This recursion rule is stronger in |
|
12 |
principle, but harder to use, especially to prove wfrec_eclose_eq in |
|
13 |
epsilon.ML. Expanding out the definition of wftrec in wfrec would yield |
|
14 |
a mess. |
|
0 | 15 |
*) |
16 |
||
60770 | 17 |
section\<open>Well-Founded Recursion\<close> |
13356 | 18 |
|
16417 | 19 |
theory WF imports Trancl begin |
13165 | 20 |
|
24893 | 21 |
definition |
22 |
wf :: "i=>o" where |
|
13165 | 23 |
(*r is a well-founded relation*) |
46953 | 24 |
"wf(r) == \<forall>Z. Z=0 | (\<exists>x\<in>Z. \<forall>y. <y,x>:r \<longrightarrow> ~ y \<in> Z)" |
13165 | 25 |
|
24893 | 26 |
definition |
27 |
wf_on :: "[i,i]=>o" ("wf[_]'(_')") where |
|
13165 | 28 |
(*r is well-founded on A*) |
46820 | 29 |
"wf_on(A,r) == wf(r \<inter> A*A)" |
13165 | 30 |
|
24893 | 31 |
definition |
32 |
is_recfun :: "[i, i, [i,i]=>i, i] =>o" where |
|
46820 | 33 |
"is_recfun(r,a,H,f) == (f = (\<lambda>x\<in>r-``{a}. H(x, restrict(f, r-``{x}))))" |
13165 | 34 |
|
24893 | 35 |
definition |
36 |
the_recfun :: "[i, i, [i,i]=>i] =>i" where |
|
13165 | 37 |
"the_recfun(r,a,H) == (THE f. is_recfun(r,a,H,f))" |
38 |
||
24893 | 39 |
definition |
40 |
wftrec :: "[i, i, [i,i]=>i] =>i" where |
|
13165 | 41 |
"wftrec(r,a,H) == H(a, the_recfun(r,a,H))" |
42 |
||
24893 | 43 |
definition |
44 |
wfrec :: "[i, i, [i,i]=>i] =>i" where |
|
13165 | 45 |
(*public version. Does not require r to be transitive*) |
46 |
"wfrec(r,a,H) == wftrec(r^+, a, %x f. H(x, restrict(f,r-``{x})))" |
|
47 |
||
24893 | 48 |
definition |
49 |
wfrec_on :: "[i, i, i, [i,i]=>i] =>i" ("wfrec[_]'(_,_,_')") where |
|
46820 | 50 |
"wfrec[A](r,a,H) == wfrec(r \<inter> A*A, a, H)" |
13165 | 51 |
|
52 |
||
60770 | 53 |
subsection\<open>Well-Founded Relations\<close> |
13165 | 54 |
|
60770 | 55 |
subsubsection\<open>Equivalences between @{term wf} and @{term wf_on}\<close> |
13165 | 56 |
|
57 |
lemma wf_imp_wf_on: "wf(r) ==> wf[A](r)" |
|
46820 | 58 |
by (unfold wf_def wf_on_def, force) |
13165 | 59 |
|
46993 | 60 |
lemma wf_on_imp_wf: "[|wf[A](r); r \<subseteq> A*A|] ==> wf(r)" |
13248 | 61 |
by (simp add: wf_on_def subset_Int_iff) |
62 |
||
13165 | 63 |
lemma wf_on_field_imp_wf: "wf[field(r)](r) ==> wf(r)" |
64 |
by (unfold wf_def wf_on_def, fast) |
|
65 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
66 |
lemma wf_iff_wf_on_field: "wf(r) \<longleftrightarrow> wf[field(r)](r)" |
13165 | 67 |
by (blast intro: wf_imp_wf_on wf_on_field_imp_wf) |
68 |
||
69 |
lemma wf_on_subset_A: "[| wf[A](r); B<=A |] ==> wf[B](r)" |
|
70 |
by (unfold wf_on_def wf_def, fast) |
|
71 |
||
72 |
lemma wf_on_subset_r: "[| wf[A](r); s<=r |] ==> wf[A](s)" |
|
73 |
by (unfold wf_on_def wf_def, fast) |
|
74 |
||
13217 | 75 |
lemma wf_subset: "[|wf(s); r<=s|] ==> wf(r)" |
76 |
by (simp add: wf_def, fast) |
|
77 |
||
60770 | 78 |
subsubsection\<open>Introduction Rules for @{term wf_on}\<close> |
13165 | 79 |
|
60770 | 80 |
text\<open>If every non-empty subset of @{term A} has an @{term r}-minimal element |
81 |
then we have @{term "wf[A](r)"}.\<close> |
|
13165 | 82 |
lemma wf_onI: |
46953 | 83 |
assumes prem: "!!Z u. [| Z<=A; u \<in> Z; \<forall>x\<in>Z. \<exists>y\<in>Z. <y,x>:r |] ==> False" |
13165 | 84 |
shows "wf[A](r)" |
85 |
apply (unfold wf_on_def wf_def) |
|
86 |
apply (rule equals0I [THEN disjCI, THEN allI]) |
|
13784 | 87 |
apply (rule_tac Z = Z in prem, blast+) |
13165 | 88 |
done |
89 |
||
60770 | 90 |
text\<open>If @{term r} allows well-founded induction over @{term A} |
13634 | 91 |
then we have @{term "wf[A](r)"}. Premise is equivalent to |
60770 | 92 |
@{prop "!!B. \<forall>x\<in>A. (\<forall>y. <y,x>: r \<longrightarrow> y \<in> B) \<longrightarrow> x \<in> B ==> A<=B"}\<close> |
13165 | 93 |
lemma wf_onI2: |
46953 | 94 |
assumes prem: "!!y B. [| \<forall>x\<in>A. (\<forall>y\<in>A. <y,x>:r \<longrightarrow> y \<in> B) \<longrightarrow> x \<in> B; y \<in> A |] |
95 |
==> y \<in> B" |
|
13165 | 96 |
shows "wf[A](r)" |
97 |
apply (rule wf_onI) |
|
98 |
apply (rule_tac c=u in prem [THEN DiffE]) |
|
46820 | 99 |
prefer 3 apply blast |
13165 | 100 |
apply fast+ |
101 |
done |
|
102 |
||
103 |
||
60770 | 104 |
subsubsection\<open>Well-founded Induction\<close> |
13165 | 105 |
|
60770 | 106 |
text\<open>Consider the least @{term z} in @{term "domain(r)"} such that |
107 |
@{term "P(z)"} does not hold...\<close> |
|
46993 | 108 |
lemma wf_induct_raw: |
13165 | 109 |
"[| wf(r); |
46820 | 110 |
!!x.[| \<forall>y. <y,x>: r \<longrightarrow> P(y) |] ==> P(x) |] |
13634 | 111 |
==> P(a)" |
46820 | 112 |
apply (unfold wf_def) |
113 |
apply (erule_tac x = "{z \<in> domain(r). ~ P(z)}" in allE) |
|
114 |
apply blast |
|
13165 | 115 |
done |
435 | 116 |
|
46993 | 117 |
lemmas wf_induct = wf_induct_raw [rule_format, consumes 1, case_names step, induct set: wf] |
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13175
diff
changeset
|
118 |
|
61798 | 119 |
text\<open>The form of this rule is designed to match \<open>wfI\<close>\<close> |
13165 | 120 |
lemma wf_induct2: |
46953 | 121 |
"[| wf(r); a \<in> A; field(r)<=A; |
122 |
!!x.[| x \<in> A; \<forall>y. <y,x>: r \<longrightarrow> P(y) |] ==> P(x) |] |
|
13165 | 123 |
==> P(a)" |
46953 | 124 |
apply (erule_tac P="a \<in> A" in rev_mp) |
46820 | 125 |
apply (erule_tac a=a in wf_induct, blast) |
13165 | 126 |
done |
127 |
||
46820 | 128 |
lemma field_Int_square: "field(r \<inter> A*A) \<subseteq> A" |
13165 | 129 |
by blast |
130 |
||
46993 | 131 |
lemma wf_on_induct_raw [consumes 2, induct set: wf_on]: |
46953 | 132 |
"[| wf[A](r); a \<in> A; |
133 |
!!x.[| x \<in> A; \<forall>y\<in>A. <y,x>: r \<longrightarrow> P(y) |] ==> P(x) |
|
13165 | 134 |
|] ==> P(a)" |
46820 | 135 |
apply (unfold wf_on_def) |
13165 | 136 |
apply (erule wf_induct2, assumption) |
137 |
apply (rule field_Int_square, blast) |
|
138 |
done |
|
139 |
||
46993 | 140 |
lemmas wf_on_induct = |
141 |
wf_on_induct_raw [rule_format, consumes 2, case_names step, induct set: wf_on] |
|
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13175
diff
changeset
|
142 |
|
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13175
diff
changeset
|
143 |
|
60770 | 144 |
text\<open>If @{term r} allows well-founded induction |
145 |
then we have @{term "wf(r)"}.\<close> |
|
13165 | 146 |
lemma wfI: |
147 |
"[| field(r)<=A; |
|
46953 | 148 |
!!y B. [| \<forall>x\<in>A. (\<forall>y\<in>A. <y,x>:r \<longrightarrow> y \<in> B) \<longrightarrow> x \<in> B; y \<in> A|] |
149 |
==> y \<in> B |] |
|
13165 | 150 |
==> wf(r)" |
151 |
apply (rule wf_on_subset_A [THEN wf_on_field_imp_wf]) |
|
152 |
apply (rule wf_onI2) |
|
46820 | 153 |
prefer 2 apply blast |
154 |
apply blast |
|
13165 | 155 |
done |
156 |
||
157 |
||
60770 | 158 |
subsection\<open>Basic Properties of Well-Founded Relations\<close> |
13165 | 159 |
|
46820 | 160 |
lemma wf_not_refl: "wf(r) ==> <a,a> \<notin> r" |
13165 | 161 |
by (erule_tac a=a in wf_induct, blast) |
162 |
||
46820 | 163 |
lemma wf_not_sym [rule_format]: "wf(r) ==> \<forall>x. <a,x>:r \<longrightarrow> <x,a> \<notin> r" |
13165 | 164 |
by (erule_tac a=a in wf_induct, blast) |
165 |
||
46820 | 166 |
(* @{term"[| wf(r); <a,x> \<in> r; ~P ==> <x,a> \<in> r |] ==> P"} *) |
45602 | 167 |
lemmas wf_asym = wf_not_sym [THEN swap] |
13165 | 168 |
|
46953 | 169 |
lemma wf_on_not_refl: "[| wf[A](r); a \<in> A |] ==> <a,a> \<notin> r" |
13269 | 170 |
by (erule_tac a=a in wf_on_induct, assumption, blast) |
0 | 171 |
|
13165 | 172 |
lemma wf_on_not_sym [rule_format]: |
46953 | 173 |
"[| wf[A](r); a \<in> A |] ==> \<forall>b\<in>A. <a,b>:r \<longrightarrow> <b,a>\<notin>r" |
13269 | 174 |
apply (erule_tac a=a in wf_on_induct, assumption, blast) |
13165 | 175 |
done |
176 |
||
177 |
lemma wf_on_asym: |
|
46820 | 178 |
"[| wf[A](r); ~Z ==> <a,b> \<in> r; |
179 |
<b,a> \<notin> r ==> Z; ~Z ==> a \<in> A; ~Z ==> b \<in> A |] ==> Z" |
|
180 |
by (blast dest: wf_on_not_sym) |
|
13165 | 181 |
|
182 |
||
183 |
(*Needed to prove well_ordI. Could also reason that wf[A](r) means |
|
46820 | 184 |
wf(r \<inter> A*A); thus wf( (r \<inter> A*A)^+ ) and use wf_not_refl *) |
13165 | 185 |
lemma wf_on_chain3: |
46953 | 186 |
"[| wf[A](r); <a,b>:r; <b,c>:r; <c,a>:r; a \<in> A; b \<in> A; c \<in> A |] ==> P" |
46820 | 187 |
apply (subgoal_tac "\<forall>y\<in>A. \<forall>z\<in>A. <a,y>:r \<longrightarrow> <y,z>:r \<longrightarrow> <z,a>:r \<longrightarrow> P", |
188 |
blast) |
|
13269 | 189 |
apply (erule_tac a=a in wf_on_induct, assumption, blast) |
13165 | 190 |
done |
191 |
||
192 |
||
193 |
||
60770 | 194 |
text\<open>transitive closure of a WF relation is WF provided |
195 |
@{term A} is downward closed\<close> |
|
13165 | 196 |
lemma wf_on_trancl: |
46820 | 197 |
"[| wf[A](r); r-``A \<subseteq> A |] ==> wf[A](r^+)" |
13165 | 198 |
apply (rule wf_onI2) |
199 |
apply (frule bspec [THEN mp], assumption+) |
|
13784 | 200 |
apply (erule_tac a = y in wf_on_induct, assumption) |
46820 | 201 |
apply (blast elim: tranclE, blast) |
13165 | 202 |
done |
203 |
||
204 |
lemma wf_trancl: "wf(r) ==> wf(r^+)" |
|
205 |
apply (simp add: wf_iff_wf_on_field) |
|
46820 | 206 |
apply (rule wf_on_subset_A) |
13165 | 207 |
apply (erule wf_on_trancl) |
46820 | 208 |
apply blast |
13165 | 209 |
apply (rule trancl_type [THEN field_rel_subset]) |
210 |
done |
|
211 |
||
212 |
||
60770 | 213 |
text\<open>@{term "r-``{a}"} is the set of everything under @{term a} in @{term r}\<close> |
13165 | 214 |
|
45602 | 215 |
lemmas underI = vimage_singleton_iff [THEN iffD2] |
216 |
lemmas underD = vimage_singleton_iff [THEN iffD1] |
|
13165 | 217 |
|
13634 | 218 |
|
60770 | 219 |
subsection\<open>The Predicate @{term is_recfun}\<close> |
0 | 220 |
|
46953 | 221 |
lemma is_recfun_type: "is_recfun(r,a,H,f) ==> f \<in> r-``{a} -> range(f)" |
13165 | 222 |
apply (unfold is_recfun_def) |
223 |
apply (erule ssubst) |
|
224 |
apply (rule lamI [THEN rangeI, THEN lam_type], assumption) |
|
225 |
done |
|
226 |
||
13269 | 227 |
lemmas is_recfun_imp_function = is_recfun_type [THEN fun_is_function] |
228 |
||
13165 | 229 |
lemma apply_recfun: |
230 |
"[| is_recfun(r,a,H,f); <x,a>:r |] ==> f`x = H(x, restrict(f,r-``{x}))" |
|
46820 | 231 |
apply (unfold is_recfun_def) |
60770 | 232 |
txt\<open>replace f only on the left-hand side\<close> |
59788 | 233 |
apply (erule_tac P = "%x. t(x) = u" for t u in ssubst) |
46820 | 234 |
apply (simp add: underI) |
13165 | 235 |
done |
236 |
||
237 |
lemma is_recfun_equal [rule_format]: |
|
238 |
"[| wf(r); trans(r); is_recfun(r,a,H,f); is_recfun(r,b,H,g) |] |
|
46820 | 239 |
==> <x,a>:r \<longrightarrow> <x,b>:r \<longrightarrow> f`x=g`x" |
13784 | 240 |
apply (frule_tac f = f in is_recfun_type) |
241 |
apply (frule_tac f = g in is_recfun_type) |
|
13165 | 242 |
apply (simp add: is_recfun_def) |
243 |
apply (erule_tac a=x in wf_induct) |
|
244 |
apply (intro impI) |
|
245 |
apply (elim ssubst) |
|
246 |
apply (simp (no_asm_simp) add: vimage_singleton_iff restrict_def) |
|
59788 | 247 |
apply (rule_tac t = "%z. H (x, z)" for x in subst_context) |
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
248 |
apply (subgoal_tac "\<forall>y\<in>r-``{x}. \<forall>z. <y,z>:f \<longleftrightarrow> <y,z>:g") |
13165 | 249 |
apply (blast dest: transD) |
250 |
apply (simp add: apply_iff) |
|
251 |
apply (blast dest: transD intro: sym) |
|
252 |
done |
|
253 |
||
254 |
lemma is_recfun_cut: |
|
255 |
"[| wf(r); trans(r); |
|
256 |
is_recfun(r,a,H,f); is_recfun(r,b,H,g); <b,a>:r |] |
|
257 |
==> restrict(f, r-``{b}) = g" |
|
13784 | 258 |
apply (frule_tac f = f in is_recfun_type) |
13165 | 259 |
apply (rule fun_extension) |
260 |
apply (blast dest: transD intro: restrict_type2) |
|
261 |
apply (erule is_recfun_type, simp) |
|
262 |
apply (blast dest: transD intro: is_recfun_equal) |
|
263 |
done |
|
264 |
||
60770 | 265 |
subsection\<open>Recursion: Main Existence Lemma\<close> |
435 | 266 |
|
13165 | 267 |
lemma is_recfun_functional: |
268 |
"[| wf(r); trans(r); is_recfun(r,a,H,f); is_recfun(r,a,H,g) |] ==> f=g" |
|
269 |
by (blast intro: fun_extension is_recfun_type is_recfun_equal) |
|
270 |
||
13248 | 271 |
lemma the_recfun_eq: |
272 |
"[| is_recfun(r,a,H,f); wf(r); trans(r) |] ==> the_recfun(r,a,H) = f" |
|
273 |
apply (unfold the_recfun_def) |
|
274 |
apply (blast intro: is_recfun_functional) |
|
275 |
done |
|
276 |
||
13165 | 277 |
(*If some f satisfies is_recfun(r,a,H,-) then so does the_recfun(r,a,H) *) |
278 |
lemma is_the_recfun: |
|
279 |
"[| is_recfun(r,a,H,f); wf(r); trans(r) |] |
|
280 |
==> is_recfun(r, a, H, the_recfun(r,a,H))" |
|
13248 | 281 |
by (simp add: the_recfun_eq) |
13165 | 282 |
|
283 |
lemma unfold_the_recfun: |
|
284 |
"[| wf(r); trans(r) |] ==> is_recfun(r, a, H, the_recfun(r,a,H))" |
|
285 |
apply (rule_tac a=a in wf_induct, assumption) |
|
46820 | 286 |
apply (rename_tac a1) |
287 |
apply (rule_tac f = "\<lambda>y\<in>r-``{a1}. wftrec (r,y,H)" in is_the_recfun) |
|
13165 | 288 |
apply typecheck |
289 |
apply (unfold is_recfun_def wftrec_def) |
|
61798 | 290 |
\<comment>\<open>Applying the substitution: must keep the quantified assumption!\<close> |
46820 | 291 |
apply (rule lam_cong [OF refl]) |
292 |
apply (drule underD) |
|
13165 | 293 |
apply (fold is_recfun_def) |
59788 | 294 |
apply (rule_tac t = "%z. H(x, z)" for x in subst_context) |
13165 | 295 |
apply (rule fun_extension) |
296 |
apply (blast intro: is_recfun_type) |
|
297 |
apply (rule lam_type [THEN restrict_type2]) |
|
298 |
apply blast |
|
299 |
apply (blast dest: transD) |
|
46993 | 300 |
apply atomize |
13165 | 301 |
apply (frule spec [THEN mp], assumption) |
46820 | 302 |
apply (subgoal_tac "<xa,a1> \<in> r") |
13784 | 303 |
apply (drule_tac x1 = xa in spec [THEN mp], assumption) |
46820 | 304 |
apply (simp add: vimage_singleton_iff |
13165 | 305 |
apply_recfun is_recfun_cut) |
306 |
apply (blast dest: transD) |
|
307 |
done |
|
308 |
||
309 |
||
60770 | 310 |
subsection\<open>Unfolding @{term "wftrec(r,a,H)"}\<close> |
13165 | 311 |
|
312 |
lemma the_recfun_cut: |
|
313 |
"[| wf(r); trans(r); <b,a>:r |] |
|
314 |
==> restrict(the_recfun(r,a,H), r-``{b}) = the_recfun(r,b,H)" |
|
13269 | 315 |
by (blast intro: is_recfun_cut unfold_the_recfun) |
0 | 316 |
|
13165 | 317 |
(*NOT SUITABLE FOR REWRITING: it is recursive!*) |
318 |
lemma wftrec: |
|
319 |
"[| wf(r); trans(r) |] ==> |
|
46820 | 320 |
wftrec(r,a,H) = H(a, \<lambda>x\<in>r-``{a}. wftrec(r,x,H))" |
13165 | 321 |
apply (unfold wftrec_def) |
322 |
apply (subst unfold_the_recfun [unfolded is_recfun_def]) |
|
323 |
apply (simp_all add: vimage_singleton_iff [THEN iff_sym] the_recfun_cut) |
|
324 |
done |
|
325 |
||
13634 | 326 |
|
60770 | 327 |
subsubsection\<open>Removal of the Premise @{term "trans(r)"}\<close> |
13165 | 328 |
|
329 |
(*NOT SUITABLE FOR REWRITING: it is recursive!*) |
|
330 |
lemma wfrec: |
|
46820 | 331 |
"wf(r) ==> wfrec(r,a,H) = H(a, \<lambda>x\<in>r-``{a}. wfrec(r,x,H))" |
332 |
apply (unfold wfrec_def) |
|
13165 | 333 |
apply (erule wf_trancl [THEN wftrec, THEN ssubst]) |
334 |
apply (rule trans_trancl) |
|
335 |
apply (rule vimage_pair_mono [THEN restrict_lam_eq, THEN subst_context]) |
|
336 |
apply (erule r_into_trancl) |
|
337 |
apply (rule subset_refl) |
|
338 |
done |
|
0 | 339 |
|
13165 | 340 |
(*This form avoids giant explosions in proofs. NOTE USE OF == *) |
341 |
lemma def_wfrec: |
|
342 |
"[| !!x. h(x)==wfrec(r,x,H); wf(r) |] ==> |
|
46820 | 343 |
h(a) = H(a, \<lambda>x\<in>r-``{a}. h(x))" |
13165 | 344 |
apply simp |
46820 | 345 |
apply (elim wfrec) |
13165 | 346 |
done |
347 |
||
348 |
lemma wfrec_type: |
|
46953 | 349 |
"[| wf(r); a \<in> A; field(r)<=A; |
350 |
!!x u. [| x \<in> A; u \<in> Pi(r-``{x}, B) |] ==> H(x,u) \<in> B(x) |
|
46820 | 351 |
|] ==> wfrec(r,a,H) \<in> B(a)" |
13784 | 352 |
apply (rule_tac a = a in wf_induct2, assumption+) |
13165 | 353 |
apply (subst wfrec, assumption) |
46820 | 354 |
apply (simp add: lam_type underD) |
13165 | 355 |
done |
356 |
||
357 |
||
358 |
lemma wfrec_on: |
|
46953 | 359 |
"[| wf[A](r); a \<in> A |] ==> |
46820 | 360 |
wfrec[A](r,a,H) = H(a, \<lambda>x\<in>(r-``{a}) \<inter> A. wfrec[A](r,x,H))" |
13165 | 361 |
apply (unfold wf_on_def wfrec_on_def) |
362 |
apply (erule wfrec [THEN trans]) |
|
363 |
apply (simp add: vimage_Int_square cons_subset_iff) |
|
364 |
done |
|
0 | 365 |
|
60770 | 366 |
text\<open>Minimal-element characterization of well-foundedness\<close> |
13165 | 367 |
lemma wf_eq_minimal: |
46953 | 368 |
"wf(r) \<longleftrightarrow> (\<forall>Q x. x \<in> Q \<longrightarrow> (\<exists>z\<in>Q. \<forall>y. <y,z>:r \<longrightarrow> y\<notin>Q))" |
13634 | 369 |
by (unfold wf_def, blast) |
370 |
||
0 | 371 |
end |