| author | wenzelm | 
| Tue, 22 Oct 2019 20:55:13 +0200 | |
| changeset 70923 | 98d9b78b7f47 | 
| parent 70817 | dd675800469d | 
| child 71544 | 66bc4b668d6e | 
| permissions | -rw-r--r-- | 
| 51524 | 1 | (* Title: HOL/Real_Vector_Spaces.thy | 
| 27552 
15cf4ed9c2a1
re-removed subclass relation real_field < field_char_0: coregularity violation in NSA/HyperDef
 haftmann parents: 
27515diff
changeset | 2 | Author: Brian Huffman | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 3 | Author: Johannes Hölzl | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 4 | *) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 5 | |
| 60758 | 6 | section \<open>Vector Spaces and Algebras over the Reals\<close> | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 7 | |
| 70630 | 8 | theory Real_Vector_Spaces | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 9 | imports Real Topological_Spaces Vector_Spaces | 
| 70630 | 10 | begin | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 11 | |
| 60758 | 12 | subsection \<open>Real vector spaces\<close> | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 13 | |
| 29608 | 14 | class scaleR = | 
| 25062 | 15 | fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75) | 
| 24748 | 16 | begin | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 17 | |
| 63545 | 18 | abbreviation divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "'/\<^sub>R" 70) | 
| 70630 | 19 | where "x /\<^sub>R r \<equiv> inverse r *\<^sub>R x" | 
| 24748 | 20 | |
| 21 | end | |
| 22 | ||
| 24588 | 23 | class real_vector = scaleR + ab_group_add + | 
| 70630 | 24 | assumes scaleR_add_right: "a *\<^sub>R (x + y) = a *\<^sub>R x + a *\<^sub>R y" | 
| 25 | and scaleR_add_left: "(a + b) *\<^sub>R x = a *\<^sub>R x + b *\<^sub>R x" | |
| 26 | and scaleR_scaleR: "a *\<^sub>R b *\<^sub>R x = (a * b) *\<^sub>R x" | |
| 27 | and scaleR_one: "1 *\<^sub>R x = x" | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 28 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 29 | class real_algebra = real_vector + ring + | 
| 70630 | 30 | assumes mult_scaleR_left [simp]: "a *\<^sub>R x * y = a *\<^sub>R (x * y)" | 
| 31 | and mult_scaleR_right [simp]: "x * a *\<^sub>R y = a *\<^sub>R (x * y)" | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 32 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 33 | class real_algebra_1 = real_algebra + ring_1 | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 34 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 35 | class real_div_algebra = real_algebra_1 + division_ring | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 36 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 37 | class real_field = real_div_algebra + field | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 38 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 39 | instantiation real :: real_field | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 40 | begin | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 41 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 42 | definition real_scaleR_def [simp]: "scaleR a x = a * x" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 43 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 44 | instance | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 45 | by standard (simp_all add: algebra_simps) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 46 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 47 | end | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 48 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 49 | locale linear = Vector_Spaces.linear "scaleR::_\<Rightarrow>_\<Rightarrow>'a::real_vector" "scaleR::_\<Rightarrow>_\<Rightarrow>'b::real_vector" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 50 | begin | 
| 70630 | 51 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 52 | lemmas scaleR = scale | 
| 70630 | 53 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 54 | end | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 55 | |
| 70630 | 56 | global_interpretation real_vector?: vector_space "scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a :: real_vector" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 57 | rewrites "Vector_Spaces.linear (*\<^sub>R) (*\<^sub>R) = linear" | 
| 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 58 | and "Vector_Spaces.linear (*) (*\<^sub>R) = linear" | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 59 | defines dependent_raw_def: dependent = real_vector.dependent | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 60 | and representation_raw_def: representation = real_vector.representation | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 61 | and subspace_raw_def: subspace = real_vector.subspace | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 62 | and span_raw_def: span = real_vector.span | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 63 | and extend_basis_raw_def: extend_basis = real_vector.extend_basis | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 64 | and dim_raw_def: dim = real_vector.dim | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 65 | apply unfold_locales | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 66 | apply (rule scaleR_add_right) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 67 | apply (rule scaleR_add_left) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 68 | apply (rule scaleR_scaleR) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 69 | apply (rule scaleR_one) | 
| 68594 | 70 | apply (force simp: linear_def) | 
| 71 | apply (force simp: linear_def real_scaleR_def[abs_def]) | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 72 | done | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 73 | |
| 68397 | 74 | hide_const (open)\<comment> \<open>locale constants\<close> | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 75 | real_vector.dependent | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 76 | real_vector.independent | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 77 | real_vector.representation | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 78 | real_vector.subspace | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 79 | real_vector.span | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 80 | real_vector.extend_basis | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 81 | real_vector.dim | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 82 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 83 | abbreviation "independent x \<equiv> \<not> dependent x" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 84 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 85 | global_interpretation real_vector?: vector_space_pair "scaleR::_\<Rightarrow>_\<Rightarrow>'a::real_vector" "scaleR::_\<Rightarrow>_\<Rightarrow>'b::real_vector" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 86 | rewrites "Vector_Spaces.linear (*\<^sub>R) (*\<^sub>R) = linear" | 
| 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 87 | and "Vector_Spaces.linear (*) (*\<^sub>R) = linear" | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 88 | defines construct_raw_def: construct = real_vector.construct | 
| 63545 | 89 | apply unfold_locales | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 90 | unfolding linear_def real_scaleR_def | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 91 | by (rule refl)+ | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 92 | |
| 68397 | 93 | hide_const (open)\<comment> \<open>locale constants\<close> | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 94 | real_vector.construct | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 95 | |
| 68594 | 96 | lemma linear_compose: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (g \<circ> f)" | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 97 | unfolding linear_def by (rule Vector_Spaces.linear_compose) | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 98 | |
| 60758 | 99 | text \<open>Recover original theorem names\<close> | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 100 | |
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 101 | lemmas scaleR_left_commute = real_vector.scale_left_commute | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 102 | lemmas scaleR_zero_left = real_vector.scale_zero_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 103 | lemmas scaleR_minus_left = real_vector.scale_minus_left | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 104 | lemmas scaleR_diff_left = real_vector.scale_left_diff_distrib | 
| 64267 | 105 | lemmas scaleR_sum_left = real_vector.scale_sum_left | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 106 | lemmas scaleR_zero_right = real_vector.scale_zero_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 107 | lemmas scaleR_minus_right = real_vector.scale_minus_right | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 108 | lemmas scaleR_diff_right = real_vector.scale_right_diff_distrib | 
| 64267 | 109 | lemmas scaleR_sum_right = real_vector.scale_sum_right | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 110 | lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 111 | lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 112 | lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 113 | lemmas scaleR_cancel_left = real_vector.scale_cancel_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 114 | lemmas scaleR_cancel_right = real_vector.scale_cancel_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 115 | |
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 116 | lemma [field_simps]: | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 117 | "c \<noteq> 0 \<Longrightarrow> a = b /\<^sub>R c \<longleftrightarrow> c *\<^sub>R a = b" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 118 | "c \<noteq> 0 \<Longrightarrow> b /\<^sub>R c = a \<longleftrightarrow> b = c *\<^sub>R a" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 119 | "c \<noteq> 0 \<Longrightarrow> a + b /\<^sub>R c = (c *\<^sub>R a + b) /\<^sub>R c" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 120 | "c \<noteq> 0 \<Longrightarrow> a /\<^sub>R c + b = (a + c *\<^sub>R b) /\<^sub>R c" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 121 | "c \<noteq> 0 \<Longrightarrow> a - b /\<^sub>R c = (c *\<^sub>R a - b) /\<^sub>R c" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 122 | "c \<noteq> 0 \<Longrightarrow> a /\<^sub>R c - b = (a - c *\<^sub>R b) /\<^sub>R c" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 123 | "c \<noteq> 0 \<Longrightarrow> - (a /\<^sub>R c) + b = (- a + c *\<^sub>R b) /\<^sub>R c" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 124 | "c \<noteq> 0 \<Longrightarrow> - (a /\<^sub>R c) - b = (- a - c *\<^sub>R b) /\<^sub>R c" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 125 | for a b :: "'a :: real_vector" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 126 | by (auto simp add: scaleR_add_right scaleR_add_left scaleR_diff_right scaleR_diff_left) | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 127 | |
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 128 | |
| 60758 | 129 | text \<open>Legacy names\<close> | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 130 | |
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 131 | lemmas scaleR_left_distrib = scaleR_add_left | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 132 | lemmas scaleR_right_distrib = scaleR_add_right | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 133 | lemmas scaleR_left_diff_distrib = scaleR_diff_left | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 134 | lemmas scaleR_right_diff_distrib = scaleR_diff_right | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 135 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 136 | lemmas linear_injective_0 = linear_inj_iff_eq_0 | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 137 | and linear_injective_on_subspace_0 = linear_inj_on_iff_eq_0 | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 138 | and linear_cmul = linear_scale | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 139 | and linear_scaleR = linear_scale_self | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 140 | and subspace_mul = subspace_scale | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 141 | and span_linear_image = linear_span_image | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 142 | and span_0 = span_zero | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 143 | and span_mul = span_scale | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 144 | and injective_scaleR = injective_scale | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 145 | |
| 63545 | 146 | lemma scaleR_minus1_left [simp]: "scaleR (-1) x = - x" | 
| 147 | for x :: "'a::real_vector" | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 148 | using scaleR_minus_left [of 1 x] by simp | 
| 62101 | 149 | |
| 64788 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 150 | lemma scaleR_2: | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 151 | fixes x :: "'a::real_vector" | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 152 | shows "scaleR 2 x = x + x" | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 153 | unfolding one_add_one [symmetric] scaleR_left_distrib by simp | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 154 | |
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 155 | lemma scaleR_half_double [simp]: | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 156 | fixes a :: "'a::real_vector" | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 157 | shows "(1 / 2) *\<^sub>R (a + a) = a" | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 158 | proof - | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 159 | have "\<And>r. r *\<^sub>R (a + a) = (r * 2) *\<^sub>R a" | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 160 | by (metis scaleR_2 scaleR_scaleR) | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 161 | then show ?thesis | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 162 | by simp | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 163 | qed | 
| 
19f3d4af7a7d
New material about path connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 164 | |
| 70019 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 165 | lemma linear_scale_real: | 
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 166 | fixes r::real shows "linear f \<Longrightarrow> f (r * b) = r * f b" | 
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 167 | using linear_scale by fastforce | 
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69700diff
changeset | 168 | |
| 63545 | 169 | interpretation scaleR_left: additive "(\<lambda>a. scaleR a x :: 'a::real_vector)" | 
| 170 | by standard (rule scaleR_left_distrib) | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 171 | |
| 63545 | 172 | interpretation scaleR_right: additive "(\<lambda>x. scaleR a x :: 'a::real_vector)" | 
| 173 | by standard (rule scaleR_right_distrib) | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 174 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 175 | lemma nonzero_inverse_scaleR_distrib: | 
| 63545 | 176 | "a \<noteq> 0 \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)" | 
| 177 | for x :: "'a::real_div_algebra" | |
| 178 | by (rule inverse_unique) simp | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 179 | |
| 63545 | 180 | lemma inverse_scaleR_distrib: "inverse (scaleR a x) = scaleR (inverse a) (inverse x)" | 
| 181 |   for x :: "'a::{real_div_algebra,division_ring}"
 | |
| 68594 | 182 | by (metis inverse_zero nonzero_inverse_scaleR_distrib scale_eq_0_iff) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 183 | |
| 68397 | 184 | lemmas sum_constant_scaleR = real_vector.sum_constant_scale\<comment> \<open>legacy name\<close> | 
| 63545 | 185 | |
| 63927 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 186 | named_theorems vector_add_divide_simps "to simplify sums of scaled vectors" | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 187 | |
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 188 | lemma [vector_add_divide_simps]: | 
| 63545 | 189 | "v + (b / z) *\<^sub>R w = (if z = 0 then v else (z *\<^sub>R v + b *\<^sub>R w) /\<^sub>R z)" | 
| 190 | "a *\<^sub>R v + (b / z) *\<^sub>R w = (if z = 0 then a *\<^sub>R v else ((a * z) *\<^sub>R v + b *\<^sub>R w) /\<^sub>R z)" | |
| 191 | "(a / z) *\<^sub>R v + w = (if z = 0 then w else (a *\<^sub>R v + z *\<^sub>R w) /\<^sub>R z)" | |
| 192 | "(a / z) *\<^sub>R v + b *\<^sub>R w = (if z = 0 then b *\<^sub>R w else (a *\<^sub>R v + (b * z) *\<^sub>R w) /\<^sub>R z)" | |
| 193 | "v - (b / z) *\<^sub>R w = (if z = 0 then v else (z *\<^sub>R v - b *\<^sub>R w) /\<^sub>R z)" | |
| 194 | "a *\<^sub>R v - (b / z) *\<^sub>R w = (if z = 0 then a *\<^sub>R v else ((a * z) *\<^sub>R v - b *\<^sub>R w) /\<^sub>R z)" | |
| 195 | "(a / z) *\<^sub>R v - w = (if z = 0 then -w else (a *\<^sub>R v - z *\<^sub>R w) /\<^sub>R z)" | |
| 196 | "(a / z) *\<^sub>R v - b *\<^sub>R w = (if z = 0 then -b *\<^sub>R w else (a *\<^sub>R v - (b * z) *\<^sub>R w) /\<^sub>R z)" | |
| 197 | for v :: "'a :: real_vector" | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 198 | by (simp_all add: divide_inverse_commute scaleR_add_right scaleR_diff_right) | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 199 | |
| 63927 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 200 | |
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 201 | lemma eq_vector_fraction_iff [vector_add_divide_simps]: | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 202 | fixes x :: "'a :: real_vector" | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 203 | shows "(x = (u / v) *\<^sub>R a) \<longleftrightarrow> (if v=0 then x = 0 else v *\<^sub>R x = u *\<^sub>R a)" | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 204 | by auto (metis (no_types) divide_eq_1_iff divide_inverse_commute scaleR_one scaleR_scaleR) | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 205 | |
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 206 | lemma vector_fraction_eq_iff [vector_add_divide_simps]: | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 207 | fixes x :: "'a :: real_vector" | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 208 | shows "((u / v) *\<^sub>R a = x) \<longleftrightarrow> (if v=0 then x = 0 else u *\<^sub>R a = v *\<^sub>R x)" | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 209 | by (metis eq_vector_fraction_iff) | 
| 
0efb482beb84
vector_add_divide_simps now a "named theorems" bundle
 paulson <lp15@cam.ac.uk> parents: 
63915diff
changeset | 210 | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 211 | lemma real_vector_affinity_eq: | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 212 | fixes x :: "'a :: real_vector" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 213 | assumes m0: "m \<noteq> 0" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 214 | shows "m *\<^sub>R x + c = y \<longleftrightarrow> x = inverse m *\<^sub>R y - (inverse m *\<^sub>R c)" | 
| 63545 | 215 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 216 | proof | 
| 63545 | 217 | assume ?lhs | 
| 218 | then have "m *\<^sub>R x = y - c" by (simp add: field_simps) | |
| 219 | then have "inverse m *\<^sub>R (m *\<^sub>R x) = inverse m *\<^sub>R (y - c)" by simp | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 220 | then show "x = inverse m *\<^sub>R y - (inverse m *\<^sub>R c)" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 221 | using m0 | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 222 | by (simp add: scaleR_diff_right) | 
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 223 | next | 
| 63545 | 224 | assume ?rhs | 
| 225 | with m0 show "m *\<^sub>R x + c = y" | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 226 | by (simp add: scaleR_diff_right) | 
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 227 | qed | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 228 | |
| 63545 | 229 | lemma real_vector_eq_affinity: "m \<noteq> 0 \<Longrightarrow> y = m *\<^sub>R x + c \<longleftrightarrow> inverse m *\<^sub>R y - (inverse m *\<^sub>R c) = x" | 
| 230 | for x :: "'a::real_vector" | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 231 | using real_vector_affinity_eq[where m=m and x=x and y=y and c=c] | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 232 | by metis | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 233 | |
| 63545 | 234 | lemma scaleR_eq_iff [simp]: "b + u *\<^sub>R a = a + u *\<^sub>R b \<longleftrightarrow> a = b \<or> u = 1" | 
| 235 | for a :: "'a::real_vector" | |
| 236 | proof (cases "u = 1") | |
| 237 | case True | |
| 238 | then show ?thesis by auto | |
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 239 | next | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 240 | case False | 
| 63545 | 241 | have "a = b" if "b + u *\<^sub>R a = a + u *\<^sub>R b" | 
| 242 | proof - | |
| 243 | from that have "(u - 1) *\<^sub>R a = (u - 1) *\<^sub>R b" | |
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 244 | by (simp add: algebra_simps) | 
| 63545 | 245 | with False show ?thesis | 
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 246 | by auto | 
| 63545 | 247 | qed | 
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 248 | then show ?thesis by auto | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 249 | qed | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 250 | |
| 63545 | 251 | lemma scaleR_collapse [simp]: "(1 - u) *\<^sub>R a + u *\<^sub>R a = a" | 
| 252 | for a :: "'a::real_vector" | |
| 253 | by (simp add: algebra_simps) | |
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 254 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 255 | |
| 63545 | 256 | subsection \<open>Embedding of the Reals into any \<open>real_algebra_1\<close>: \<open>of_real\<close>\<close> | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 257 | |
| 63545 | 258 | definition of_real :: "real \<Rightarrow> 'a::real_algebra_1" | 
| 259 | where "of_real r = scaleR r 1" | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 260 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 261 | lemma scaleR_conv_of_real: "scaleR r x = of_real r * x" | 
| 63545 | 262 | by (simp add: of_real_def) | 
| 20763 | 263 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 264 | lemma of_real_0 [simp]: "of_real 0 = 0" | 
| 63545 | 265 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 266 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 267 | lemma of_real_1 [simp]: "of_real 1 = 1" | 
| 63545 | 268 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 269 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 270 | lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y" | 
| 63545 | 271 | by (simp add: of_real_def scaleR_left_distrib) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 272 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 273 | lemma of_real_minus [simp]: "of_real (- x) = - of_real x" | 
| 63545 | 274 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 275 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 276 | lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y" | 
| 63545 | 277 | by (simp add: of_real_def scaleR_left_diff_distrib) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 278 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 279 | lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y" | 
| 63545 | 280 | by (simp add: of_real_def mult.commute) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 281 | |
| 64267 | 282 | lemma of_real_sum[simp]: "of_real (sum f s) = (\<Sum>x\<in>s. of_real (f x))" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 283 | by (induct s rule: infinite_finite_induct) auto | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 284 | |
| 64272 | 285 | lemma of_real_prod[simp]: "of_real (prod f s) = (\<Prod>x\<in>s. of_real (f x))" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 286 | by (induct s rule: infinite_finite_induct) auto | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 287 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 288 | lemma nonzero_of_real_inverse: | 
| 63545 | 289 | "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) = inverse (of_real x :: 'a::real_div_algebra)" | 
| 290 | by (simp add: of_real_def nonzero_inverse_scaleR_distrib) | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 291 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 292 | lemma of_real_inverse [simp]: | 
| 63545 | 293 |   "of_real (inverse x) = inverse (of_real x :: 'a::{real_div_algebra,division_ring})"
 | 
| 294 | by (simp add: of_real_def inverse_scaleR_distrib) | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 295 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 296 | lemma nonzero_of_real_divide: | 
| 63545 | 297 | "y \<noteq> 0 \<Longrightarrow> of_real (x / y) = (of_real x / of_real y :: 'a::real_field)" | 
| 298 | by (simp add: divide_inverse nonzero_of_real_inverse) | |
| 20722 | 299 | |
| 300 | lemma of_real_divide [simp]: | |
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62102diff
changeset | 301 | "of_real (x / y) = (of_real x / of_real y :: 'a::real_div_algebra)" | 
| 63545 | 302 | by (simp add: divide_inverse) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 303 | |
| 20722 | 304 | lemma of_real_power [simp]: | 
| 31017 | 305 |   "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n"
 | 
| 63545 | 306 | by (induct n) simp_all | 
| 20722 | 307 | |
| 63545 | 308 | lemma of_real_eq_iff [simp]: "of_real x = of_real y \<longleftrightarrow> x = y" | 
| 309 | by (simp add: of_real_def) | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 310 | |
| 63545 | 311 | lemma inj_of_real: "inj of_real" | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 312 | by (auto intro: injI) | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 313 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 314 | lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified] | 
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65036diff
changeset | 315 | lemmas of_real_eq_1_iff [simp] = of_real_eq_iff [of _ 1, simplified] | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 316 | |
| 67135 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66793diff
changeset | 317 | lemma minus_of_real_eq_of_real_iff [simp]: "-of_real x = of_real y \<longleftrightarrow> -x = y" | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66793diff
changeset | 318 | using of_real_eq_iff[of "-x" y] by (simp only: of_real_minus) | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66793diff
changeset | 319 | |
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66793diff
changeset | 320 | lemma of_real_eq_minus_of_real_iff [simp]: "of_real x = -of_real y \<longleftrightarrow> x = -y" | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66793diff
changeset | 321 | using of_real_eq_iff[of x "-y"] by (simp only: of_real_minus) | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66793diff
changeset | 322 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 323 | lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)" | 
| 63545 | 324 | by (rule ext) (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 325 | |
| 63545 | 326 | text \<open>Collapse nested embeddings.\<close> | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 327 | lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n" | 
| 63545 | 328 | by (induct n) auto | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 329 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 330 | lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z" | 
| 63545 | 331 | by (cases z rule: int_diff_cases) simp | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 332 | |
| 60155 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
60026diff
changeset | 333 | lemma of_real_numeral [simp]: "of_real (numeral w) = numeral w" | 
| 63545 | 334 | using of_real_of_int_eq [of "numeral w"] by simp | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 335 | |
| 60155 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
60026diff
changeset | 336 | lemma of_real_neg_numeral [simp]: "of_real (- numeral w) = - numeral w" | 
| 63545 | 337 | using of_real_of_int_eq [of "- numeral w"] by simp | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 338 | |
| 63545 | 339 | text \<open>Every real algebra has characteristic zero.\<close> | 
| 22912 | 340 | instance real_algebra_1 < ring_char_0 | 
| 341 | proof | |
| 63545 | 342 | from inj_of_real inj_of_nat have "inj (of_real \<circ> of_nat)" | 
| 69700 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 343 | by (rule inj_compose) | 
| 63545 | 344 | then show "inj (of_nat :: nat \<Rightarrow> 'a)" | 
| 345 | by (simp add: comp_def) | |
| 22912 | 346 | qed | 
| 347 | ||
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 348 | lemma fraction_scaleR_times [simp]: | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 349 | fixes a :: "'a::real_algebra_1" | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 350 | shows "(numeral u / numeral v) *\<^sub>R (numeral w * a) = (numeral u * numeral w / numeral v) *\<^sub>R a" | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 351 | by (metis (no_types, lifting) of_real_numeral scaleR_conv_of_real scaleR_scaleR times_divide_eq_left) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 352 | |
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 353 | lemma inverse_scaleR_times [simp]: | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 354 | fixes a :: "'a::real_algebra_1" | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 355 | shows "(1 / numeral v) *\<^sub>R (numeral w * a) = (numeral w / numeral v) *\<^sub>R a" | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 356 | by (metis divide_inverse_commute inverse_eq_divide of_real_numeral scaleR_conv_of_real scaleR_scaleR) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 357 | |
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 358 | lemma scaleR_times [simp]: | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 359 | fixes a :: "'a::real_algebra_1" | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 360 | shows "(numeral u) *\<^sub>R (numeral w * a) = (numeral u * numeral w) *\<^sub>R a" | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 361 | by (simp add: scaleR_conv_of_real) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63927diff
changeset | 362 | |
| 27553 | 363 | instance real_field < field_char_0 .. | 
| 364 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 365 | |
| 60758 | 366 | subsection \<open>The Set of Real Numbers\<close> | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 367 | |
| 61070 | 368 | definition Reals :: "'a::real_algebra_1 set"  ("\<real>")
 | 
| 369 | where "\<real> = range of_real" | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 370 | |
| 61070 | 371 | lemma Reals_of_real [simp]: "of_real r \<in> \<real>" | 
| 63545 | 372 | by (simp add: Reals_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 373 | |
| 61070 | 374 | lemma Reals_of_int [simp]: "of_int z \<in> \<real>" | 
| 63545 | 375 | by (subst of_real_of_int_eq [symmetric], rule Reals_of_real) | 
| 20718 | 376 | |
| 61070 | 377 | lemma Reals_of_nat [simp]: "of_nat n \<in> \<real>" | 
| 63545 | 378 | by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real) | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 379 | |
| 61070 | 380 | lemma Reals_numeral [simp]: "numeral w \<in> \<real>" | 
| 63545 | 381 | by (subst of_real_numeral [symmetric], rule Reals_of_real) | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 382 | |
| 68594 | 383 | lemma Reals_0 [simp]: "0 \<in> \<real>" and Reals_1 [simp]: "1 \<in> \<real>" | 
| 384 | by (simp_all add: Reals_def) | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 385 | |
| 63545 | 386 | lemma Reals_add [simp]: "a \<in> \<real> \<Longrightarrow> b \<in> \<real> \<Longrightarrow> a + b \<in> \<real>" | 
| 68594 | 387 | by (metis (no_types, hide_lams) Reals_def Reals_of_real imageE of_real_add) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 388 | |
| 61070 | 389 | lemma Reals_minus [simp]: "a \<in> \<real> \<Longrightarrow> - a \<in> \<real>" | 
| 68594 | 390 | by (auto simp: Reals_def) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 391 | |
| 68499 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
68465diff
changeset | 392 | lemma Reals_minus_iff [simp]: "- a \<in> \<real> \<longleftrightarrow> a \<in> \<real>" | 
| 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
68465diff
changeset | 393 | apply (auto simp: Reals_def) | 
| 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
68465diff
changeset | 394 | by (metis add.inverse_inverse of_real_minus rangeI) | 
| 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
68465diff
changeset | 395 | |
| 63545 | 396 | lemma Reals_diff [simp]: "a \<in> \<real> \<Longrightarrow> b \<in> \<real> \<Longrightarrow> a - b \<in> \<real>" | 
| 68594 | 397 | by (metis Reals_add Reals_minus_iff add_uminus_conv_diff) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 398 | |
| 63545 | 399 | lemma Reals_mult [simp]: "a \<in> \<real> \<Longrightarrow> b \<in> \<real> \<Longrightarrow> a * b \<in> \<real>" | 
| 68594 | 400 | by (metis (no_types, lifting) Reals_def Reals_of_real imageE of_real_mult) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 401 | |
| 63545 | 402 | lemma nonzero_Reals_inverse: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> inverse a \<in> \<real>" | 
| 403 | for a :: "'a::real_div_algebra" | |
| 68594 | 404 | by (metis Reals_def Reals_of_real imageE of_real_inverse) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 405 | |
| 63545 | 406 | lemma Reals_inverse: "a \<in> \<real> \<Longrightarrow> inverse a \<in> \<real>" | 
| 407 |   for a :: "'a::{real_div_algebra,division_ring}"
 | |
| 68594 | 408 | using nonzero_Reals_inverse by fastforce | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 409 | |
| 63545 | 410 | lemma Reals_inverse_iff [simp]: "inverse x \<in> \<real> \<longleftrightarrow> x \<in> \<real>" | 
| 411 |   for x :: "'a::{real_div_algebra,division_ring}"
 | |
| 412 | by (metis Reals_inverse inverse_inverse_eq) | |
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 413 | |
| 63545 | 414 | lemma nonzero_Reals_divide: "a \<in> \<real> \<Longrightarrow> b \<in> \<real> \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a / b \<in> \<real>" | 
| 415 | for a b :: "'a::real_field" | |
| 68594 | 416 | by (simp add: divide_inverse) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 417 | |
| 63545 | 418 | lemma Reals_divide [simp]: "a \<in> \<real> \<Longrightarrow> b \<in> \<real> \<Longrightarrow> a / b \<in> \<real>" | 
| 419 |   for a b :: "'a::{real_field,field}"
 | |
| 68594 | 420 | using nonzero_Reals_divide by fastforce | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 421 | |
| 63545 | 422 | lemma Reals_power [simp]: "a \<in> \<real> \<Longrightarrow> a ^ n \<in> \<real>" | 
| 423 | for a :: "'a::real_algebra_1" | |
| 68594 | 424 | by (metis Reals_def Reals_of_real imageE of_real_power) | 
| 20722 | 425 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 426 | lemma Reals_cases [cases set: Reals]: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 427 | assumes "q \<in> \<real>" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 428 | obtains (of_real) r where "q = of_real r" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 429 | unfolding Reals_def | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 430 | proof - | 
| 60758 | 431 | from \<open>q \<in> \<real>\<close> have "q \<in> range of_real" unfolding Reals_def . | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 432 | then obtain r where "q = of_real r" .. | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 433 | then show thesis .. | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 434 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 435 | |
| 64267 | 436 | lemma sum_in_Reals [intro,simp]: "(\<And>i. i \<in> s \<Longrightarrow> f i \<in> \<real>) \<Longrightarrow> sum f s \<in> \<real>" | 
| 63915 | 437 | proof (induct s rule: infinite_finite_induct) | 
| 438 | case infinite | |
| 64267 | 439 | then show ?case by (metis Reals_0 sum.infinite) | 
| 63915 | 440 | qed simp_all | 
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 441 | |
| 64272 | 442 | lemma prod_in_Reals [intro,simp]: "(\<And>i. i \<in> s \<Longrightarrow> f i \<in> \<real>) \<Longrightarrow> prod f s \<in> \<real>" | 
| 63915 | 443 | proof (induct s rule: infinite_finite_induct) | 
| 444 | case infinite | |
| 64272 | 445 | then show ?case by (metis Reals_1 prod.infinite) | 
| 63915 | 446 | qed simp_all | 
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 447 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 448 | lemma Reals_induct [case_names of_real, induct set: Reals]: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 449 | "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 450 | by (rule Reals_cases) auto | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 451 | |
| 63545 | 452 | |
| 60758 | 453 | subsection \<open>Ordered real vector spaces\<close> | 
| 54778 | 454 | |
| 455 | class ordered_real_vector = real_vector + ordered_ab_group_add + | |
| 456 | assumes scaleR_left_mono: "x \<le> y \<Longrightarrow> 0 \<le> a \<Longrightarrow> a *\<^sub>R x \<le> a *\<^sub>R y" | |
| 63545 | 457 | and scaleR_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> x \<Longrightarrow> a *\<^sub>R x \<le> b *\<^sub>R x" | 
| 54778 | 458 | begin | 
| 459 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 460 | lemma scaleR_mono: | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 461 | "a \<le> b \<Longrightarrow> x \<le> y \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> x \<Longrightarrow> a *\<^sub>R x \<le> b *\<^sub>R y" | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 462 | by (meson order_trans scaleR_left_mono scaleR_right_mono) | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 463 | |
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 464 | lemma scaleR_mono': | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 465 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a *\<^sub>R c \<le> b *\<^sub>R d" | 
| 54778 | 466 | by (rule scaleR_mono) (auto intro: order.trans) | 
| 467 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 468 | lemma pos_le_divideR_eq [field_simps]: | 
| 70630 | 469 | "a \<le> b /\<^sub>R c \<longleftrightarrow> c *\<^sub>R a \<le> b" (is "?P \<longleftrightarrow> ?Q") if "0 < c" | 
| 470 | proof | |
| 471 | assume ?P | |
| 472 | with scaleR_left_mono that have "c *\<^sub>R a \<le> c *\<^sub>R (b /\<^sub>R c)" | |
| 54785 | 473 | by simp | 
| 70630 | 474 | with that show ?Q | 
| 475 | by (simp add: scaleR_one scaleR_scaleR inverse_eq_divide) | |
| 476 | next | |
| 477 | assume ?Q | |
| 478 | with scaleR_left_mono that have "c *\<^sub>R a /\<^sub>R c \<le> b /\<^sub>R c" | |
| 479 | by simp | |
| 480 | with that show ?P | |
| 54785 | 481 | by (simp add: scaleR_one scaleR_scaleR inverse_eq_divide) | 
| 482 | qed | |
| 483 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 484 | lemma pos_less_divideR_eq [field_simps]: | 
| 70630 | 485 | "a < b /\<^sub>R c \<longleftrightarrow> c *\<^sub>R a < b" if "c > 0" | 
| 486 | using that pos_le_divideR_eq [of c a b] | |
| 487 | by (auto simp add: le_less scaleR_scaleR scaleR_one) | |
| 488 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 489 | lemma pos_divideR_le_eq [field_simps]: | 
| 70630 | 490 | "b /\<^sub>R c \<le> a \<longleftrightarrow> b \<le> c *\<^sub>R a" if "c > 0" | 
| 491 | using that pos_le_divideR_eq [of "inverse c" b a] by simp | |
| 492 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 493 | lemma pos_divideR_less_eq [field_simps]: | 
| 70630 | 494 | "b /\<^sub>R c < a \<longleftrightarrow> b < c *\<^sub>R a" if "c > 0" | 
| 495 | using that pos_less_divideR_eq [of "inverse c" b a] by simp | |
| 496 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 497 | lemma pos_le_minus_divideR_eq [field_simps]: | 
| 70630 | 498 | "a \<le> - (b /\<^sub>R c) \<longleftrightarrow> c *\<^sub>R a \<le> - b" if "c > 0" | 
| 499 | using that by (metis add_minus_cancel diff_0 left_minus minus_minus neg_le_iff_le | |
| 500 | scaleR_add_right uminus_add_conv_diff pos_le_divideR_eq) | |
| 501 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 502 | lemma pos_less_minus_divideR_eq [field_simps]: | 
| 70630 | 503 | "a < - (b /\<^sub>R c) \<longleftrightarrow> c *\<^sub>R a < - b" if "c > 0" | 
| 504 | using that by (metis le_less less_le_not_le pos_divideR_le_eq | |
| 505 | pos_divideR_less_eq pos_le_minus_divideR_eq) | |
| 506 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 507 | lemma pos_minus_divideR_le_eq [field_simps]: | 
| 70630 | 508 | "- (b /\<^sub>R c) \<le> a \<longleftrightarrow> - b \<le> c *\<^sub>R a" if "c > 0" | 
| 509 | using that by (metis pos_divideR_le_eq pos_le_minus_divideR_eq that | |
| 510 | inverse_positive_iff_positive le_imp_neg_le minus_minus) | |
| 511 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 512 | lemma pos_minus_divideR_less_eq [field_simps]: | 
| 70630 | 513 | "- (b /\<^sub>R c) < a \<longleftrightarrow> - b < c *\<^sub>R a" if "c > 0" | 
| 514 | using that by (simp add: less_le_not_le pos_le_minus_divideR_eq pos_minus_divideR_le_eq) | |
| 54785 | 515 | |
| 63545 | 516 | lemma scaleR_image_atLeastAtMost: "c > 0 \<Longrightarrow> scaleR c ` {x..y} = {c *\<^sub>R x..c *\<^sub>R y}"
 | 
| 54785 | 517 | apply (auto intro!: scaleR_left_mono) | 
| 518 | apply (rule_tac x = "inverse c *\<^sub>R xa" in image_eqI) | |
| 63545 | 519 | apply (simp_all add: pos_le_divideR_eq[symmetric] scaleR_scaleR scaleR_one) | 
| 54785 | 520 | done | 
| 521 | ||
| 54778 | 522 | end | 
| 523 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 524 | lemma neg_le_divideR_eq [field_simps]: | 
| 70630 | 525 | "a \<le> b /\<^sub>R c \<longleftrightarrow> b \<le> c *\<^sub>R a" (is "?P \<longleftrightarrow> ?Q") if "c < 0" | 
| 526 | for a b :: "'a :: ordered_real_vector" | |
| 527 | using that pos_le_divideR_eq [of "- c" a "- b"] by simp | |
| 528 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 529 | lemma neg_less_divideR_eq [field_simps]: | 
| 70630 | 530 | "a < b /\<^sub>R c \<longleftrightarrow> b < c *\<^sub>R a" if "c < 0" | 
| 531 | for a b :: "'a :: ordered_real_vector" | |
| 532 | using that neg_le_divideR_eq [of c a b] by (auto simp add: le_less) | |
| 533 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 534 | lemma neg_divideR_le_eq [field_simps]: | 
| 70630 | 535 | "b /\<^sub>R c \<le> a \<longleftrightarrow> c *\<^sub>R a \<le> b" if "c < 0" | 
| 536 | for a b :: "'a :: ordered_real_vector" | |
| 537 | using that pos_divideR_le_eq [of "- c" "- b" a] by simp | |
| 538 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 539 | lemma neg_divideR_less_eq [field_simps]: | 
| 70630 | 540 | "b /\<^sub>R c < a \<longleftrightarrow> c *\<^sub>R a < b" if "c < 0" | 
| 541 | for a b :: "'a :: ordered_real_vector" | |
| 542 | using that neg_divideR_le_eq [of c b a] by (auto simp add: le_less) | |
| 543 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 544 | lemma neg_le_minus_divideR_eq [field_simps]: | 
| 70630 | 545 | "a \<le> - (b /\<^sub>R c) \<longleftrightarrow> - b \<le> c *\<^sub>R a" if "c < 0" | 
| 546 | for a b :: "'a :: ordered_real_vector" | |
| 547 | using that pos_le_minus_divideR_eq [of "- c" a "- b"] by (simp add: minus_le_iff) | |
| 548 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 549 | lemma neg_less_minus_divideR_eq [field_simps]: | 
| 70630 | 550 | "a < - (b /\<^sub>R c) \<longleftrightarrow> - b < c *\<^sub>R a" if "c < 0" | 
| 551 | for a b :: "'a :: ordered_real_vector" | |
| 552 | proof - | |
| 553 | have *: "- b = c *\<^sub>R a \<longleftrightarrow> b = - (c *\<^sub>R a)" | |
| 554 | by (metis add.inverse_inverse) | |
| 555 | from that neg_le_minus_divideR_eq [of c a b] | |
| 556 | show ?thesis by (auto simp add: le_less *) | |
| 557 | qed | |
| 558 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 559 | lemma neg_minus_divideR_le_eq [field_simps]: | 
| 70630 | 560 | "- (b /\<^sub>R c) \<le> a \<longleftrightarrow> c *\<^sub>R a \<le> - b" if "c < 0" | 
| 561 | for a b :: "'a :: ordered_real_vector" | |
| 562 | using that pos_minus_divideR_le_eq [of "- c" "- b" a] by (simp add: le_minus_iff) | |
| 563 | ||
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70723diff
changeset | 564 | lemma neg_minus_divideR_less_eq [field_simps]: | 
| 70630 | 565 | "- (b /\<^sub>R c) < a \<longleftrightarrow> c *\<^sub>R a < - b" if "c < 0" | 
| 566 | for a b :: "'a :: ordered_real_vector" | |
| 567 | using that by (simp add: less_le_not_le neg_le_minus_divideR_eq neg_minus_divideR_le_eq) | |
| 60303 | 568 | |
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 569 | lemma [field_split_simps]: | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 570 | "a = b /\<^sub>R c \<longleftrightarrow> (if c = 0 then a = 0 else c *\<^sub>R a = b)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 571 | "b /\<^sub>R c = a \<longleftrightarrow> (if c = 0 then a = 0 else b = c *\<^sub>R a)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 572 | "a + b /\<^sub>R c = (if c = 0 then a else (c *\<^sub>R a + b) /\<^sub>R c)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 573 | "a /\<^sub>R c + b = (if c = 0 then b else (a + c *\<^sub>R b) /\<^sub>R c)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 574 | "a - b /\<^sub>R c = (if c = 0 then a else (c *\<^sub>R a - b) /\<^sub>R c)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 575 | "a /\<^sub>R c - b = (if c = 0 then - b else (a - c *\<^sub>R b) /\<^sub>R c)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 576 | "- (a /\<^sub>R c) + b = (if c = 0 then b else (- a + c *\<^sub>R b) /\<^sub>R c)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 577 | "- (a /\<^sub>R c) - b = (if c = 0 then - b else (- a - c *\<^sub>R b) /\<^sub>R c)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 578 | for a b :: "'a :: real_vector" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 579 | by (auto simp add: field_simps) | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 580 | |
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 581 | lemma [field_split_simps]: | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 582 | "0 < c \<Longrightarrow> a \<le> b /\<^sub>R c \<longleftrightarrow> (if c > 0 then c *\<^sub>R a \<le> b else if c < 0 then b \<le> c *\<^sub>R a else a \<le> 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 583 | "0 < c \<Longrightarrow> a < b /\<^sub>R c \<longleftrightarrow> (if c > 0 then c *\<^sub>R a < b else if c < 0 then b < c *\<^sub>R a else a < 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 584 | "0 < c \<Longrightarrow> b /\<^sub>R c \<le> a \<longleftrightarrow> (if c > 0 then b \<le> c *\<^sub>R a else if c < 0 then c *\<^sub>R a \<le> b else a \<ge> 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 585 | "0 < c \<Longrightarrow> b /\<^sub>R c < a \<longleftrightarrow> (if c > 0 then b < c *\<^sub>R a else if c < 0 then c *\<^sub>R a < b else a > 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 586 | "0 < c \<Longrightarrow> a \<le> - (b /\<^sub>R c) \<longleftrightarrow> (if c > 0 then c *\<^sub>R a \<le> - b else if c < 0 then - b \<le> c *\<^sub>R a else a \<le> 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 587 | "0 < c \<Longrightarrow> a < - (b /\<^sub>R c) \<longleftrightarrow> (if c > 0 then c *\<^sub>R a < - b else if c < 0 then - b < c *\<^sub>R a else a < 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 588 | "0 < c \<Longrightarrow> - (b /\<^sub>R c) \<le> a \<longleftrightarrow> (if c > 0 then - b \<le> c *\<^sub>R a else if c < 0 then c *\<^sub>R a \<le> - b else a \<ge> 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 589 | "0 < c \<Longrightarrow> - (b /\<^sub>R c) < a \<longleftrightarrow> (if c > 0 then - b < c *\<^sub>R a else if c < 0 then c *\<^sub>R a < - b else a > 0)" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 590 | for a b :: "'a :: ordered_real_vector" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 591 | by (clarsimp intro!: field_simps)+ | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 592 | |
| 63545 | 593 | lemma scaleR_nonneg_nonneg: "0 \<le> a \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> a *\<^sub>R x" | 
| 594 | for x :: "'a::ordered_real_vector" | |
| 595 | using scaleR_left_mono [of 0 x a] by simp | |
| 54778 | 596 | |
| 63545 | 597 | lemma scaleR_nonneg_nonpos: "0 \<le> a \<Longrightarrow> x \<le> 0 \<Longrightarrow> a *\<^sub>R x \<le> 0" | 
| 598 | for x :: "'a::ordered_real_vector" | |
| 54778 | 599 | using scaleR_left_mono [of x 0 a] by simp | 
| 600 | ||
| 63545 | 601 | lemma scaleR_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> x \<Longrightarrow> a *\<^sub>R x \<le> 0" | 
| 602 | for x :: "'a::ordered_real_vector" | |
| 54778 | 603 | using scaleR_right_mono [of a 0 x] by simp | 
| 604 | ||
| 63545 | 605 | lemma split_scaleR_neg_le: "(0 \<le> a \<and> x \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> x) \<Longrightarrow> a *\<^sub>R x \<le> 0" | 
| 606 | for x :: "'a::ordered_real_vector" | |
| 68594 | 607 | by (auto simp: scaleR_nonneg_nonpos scaleR_nonpos_nonneg) | 
| 54778 | 608 | |
| 63545 | 609 | lemma le_add_iff1: "a *\<^sub>R e + c \<le> b *\<^sub>R e + d \<longleftrightarrow> (a - b) *\<^sub>R e + c \<le> d" | 
| 610 | for c d e :: "'a::ordered_real_vector" | |
| 54778 | 611 | by (simp add: algebra_simps) | 
| 612 | ||
| 63545 | 613 | lemma le_add_iff2: "a *\<^sub>R e + c \<le> b *\<^sub>R e + d \<longleftrightarrow> c \<le> (b - a) *\<^sub>R e + d" | 
| 614 | for c d e :: "'a::ordered_real_vector" | |
| 54778 | 615 | by (simp add: algebra_simps) | 
| 616 | ||
| 63545 | 617 | lemma scaleR_left_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c *\<^sub>R a \<le> c *\<^sub>R b" | 
| 618 | for a b :: "'a::ordered_real_vector" | |
| 68669 | 619 | by (drule scaleR_left_mono [of _ _ "- c"], simp_all) | 
| 54778 | 620 | |
| 63545 | 621 | lemma scaleR_right_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a *\<^sub>R c \<le> b *\<^sub>R c" | 
| 622 | for c :: "'a::ordered_real_vector" | |
| 68669 | 623 | by (drule scaleR_right_mono [of _ _ "- c"], simp_all) | 
| 54778 | 624 | |
| 63545 | 625 | lemma scaleR_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a *\<^sub>R b" | 
| 626 | for b :: "'a::ordered_real_vector" | |
| 627 | using scaleR_right_mono_neg [of a 0 b] by simp | |
| 54778 | 628 | |
| 63545 | 629 | lemma split_scaleR_pos_le: "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a *\<^sub>R b" | 
| 630 | for b :: "'a::ordered_real_vector" | |
| 68594 | 631 | by (auto simp: scaleR_nonneg_nonneg scaleR_nonpos_nonpos) | 
| 54778 | 632 | |
| 633 | lemma zero_le_scaleR_iff: | |
| 63545 | 634 | fixes b :: "'a::ordered_real_vector" | 
| 635 | shows "0 \<le> a *\<^sub>R b \<longleftrightarrow> 0 < a \<and> 0 \<le> b \<or> a < 0 \<and> b \<le> 0 \<or> a = 0" | |
| 636 | (is "?lhs = ?rhs") | |
| 637 | proof (cases "a = 0") | |
| 638 | case True | |
| 639 | then show ?thesis by simp | |
| 640 | next | |
| 641 | case False | |
| 54778 | 642 | show ?thesis | 
| 643 | proof | |
| 63545 | 644 | assume ?lhs | 
| 645 | from \<open>a \<noteq> 0\<close> consider "a > 0" | "a < 0" by arith | |
| 646 | then show ?rhs | |
| 647 | proof cases | |
| 648 | case 1 | |
| 649 | with \<open>?lhs\<close> have "inverse a *\<^sub>R 0 \<le> inverse a *\<^sub>R (a *\<^sub>R b)" | |
| 54778 | 650 | by (intro scaleR_mono) auto | 
| 63545 | 651 | with 1 show ?thesis | 
| 54778 | 652 | by simp | 
| 63545 | 653 | next | 
| 654 | case 2 | |
| 655 | with \<open>?lhs\<close> have "- inverse a *\<^sub>R 0 \<le> - inverse a *\<^sub>R (a *\<^sub>R b)" | |
| 54778 | 656 | by (intro scaleR_mono) auto | 
| 63545 | 657 | with 2 show ?thesis | 
| 54778 | 658 | by simp | 
| 63545 | 659 | qed | 
| 660 | next | |
| 661 | assume ?rhs | |
| 662 | then show ?lhs | |
| 663 | by (auto simp: not_le \<open>a \<noteq> 0\<close> intro!: split_scaleR_pos_le) | |
| 664 | qed | |
| 665 | qed | |
| 54778 | 666 | |
| 63545 | 667 | lemma scaleR_le_0_iff: "a *\<^sub>R b \<le> 0 \<longleftrightarrow> 0 < a \<and> b \<le> 0 \<or> a < 0 \<and> 0 \<le> b \<or> a = 0" | 
| 668 | for b::"'a::ordered_real_vector" | |
| 54778 | 669 | by (insert zero_le_scaleR_iff [of "-a" b]) force | 
| 670 | ||
| 63545 | 671 | lemma scaleR_le_cancel_left: "c *\<^sub>R a \<le> c *\<^sub>R b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | 
| 672 | for b :: "'a::ordered_real_vector" | |
| 68594 | 673 | by (auto simp: neq_iff scaleR_left_mono scaleR_left_mono_neg | 
| 63545 | 674 | dest: scaleR_left_mono[where a="inverse c"] scaleR_left_mono_neg[where c="inverse c"]) | 
| 54778 | 675 | |
| 63545 | 676 | lemma scaleR_le_cancel_left_pos: "0 < c \<Longrightarrow> c *\<^sub>R a \<le> c *\<^sub>R b \<longleftrightarrow> a \<le> b" | 
| 677 | for b :: "'a::ordered_real_vector" | |
| 54778 | 678 | by (auto simp: scaleR_le_cancel_left) | 
| 679 | ||
| 63545 | 680 | lemma scaleR_le_cancel_left_neg: "c < 0 \<Longrightarrow> c *\<^sub>R a \<le> c *\<^sub>R b \<longleftrightarrow> b \<le> a" | 
| 681 | for b :: "'a::ordered_real_vector" | |
| 54778 | 682 | by (auto simp: scaleR_le_cancel_left) | 
| 683 | ||
| 63545 | 684 | lemma scaleR_left_le_one_le: "0 \<le> x \<Longrightarrow> a \<le> 1 \<Longrightarrow> a *\<^sub>R x \<le> x" | 
| 685 | for x :: "'a::ordered_real_vector" and a :: real | |
| 54778 | 686 | using scaleR_right_mono[of a 1 x] by simp | 
| 687 | ||
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 688 | |
| 60758 | 689 | subsection \<open>Real normed vector spaces\<close> | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 690 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 691 | class dist = | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 692 | fixes dist :: "'a \<Rightarrow> 'a \<Rightarrow> real" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 693 | |
| 29608 | 694 | class norm = | 
| 22636 | 695 | fixes norm :: "'a \<Rightarrow> real" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 696 | |
| 24520 | 697 | class sgn_div_norm = scaleR + norm + sgn + | 
| 25062 | 698 | assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x" | 
| 24506 | 699 | |
| 31289 | 700 | class dist_norm = dist + norm + minus + | 
| 701 | assumes dist_norm: "dist x y = norm (x - y)" | |
| 702 | ||
| 62101 | 703 | class uniformity_dist = dist + uniformity + | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69064diff
changeset | 704 |   assumes uniformity_dist: "uniformity = (INF e\<in>{0 <..}. principal {(x, y). dist x y < e})"
 | 
| 62101 | 705 | begin | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 706 | |
| 62101 | 707 | lemma eventually_uniformity_metric: | 
| 708 | "eventually P uniformity \<longleftrightarrow> (\<exists>e>0. \<forall>x y. dist x y < e \<longrightarrow> P (x, y))" | |
| 709 | unfolding uniformity_dist | |
| 710 | by (subst eventually_INF_base) | |
| 711 | (auto simp: eventually_principal subset_eq intro: bexI[of _ "min _ _"]) | |
| 712 | ||
| 713 | end | |
| 714 | ||
| 715 | class real_normed_vector = real_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity + | |
| 51002 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 716 | assumes norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0" | 
| 63545 | 717 | and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y" | 
| 718 | and norm_scaleR [simp]: "norm (scaleR a x) = \<bar>a\<bar> * norm x" | |
| 51002 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 719 | begin | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 720 | |
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 721 | lemma norm_ge_zero [simp]: "0 \<le> norm x" | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 722 | proof - | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 723 | have "0 = norm (x + -1 *\<^sub>R x)" | 
| 51002 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 724 | using scaleR_add_left[of 1 "-1" x] norm_scaleR[of 0 x] by (simp add: scaleR_one) | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 725 | also have "\<dots> \<le> norm x + norm (-1 *\<^sub>R x)" by (rule norm_triangle_ineq) | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 726 | finally show ?thesis by simp | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 727 | qed | 
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 728 | |
| 
496013a6eb38
remove unnecessary assumption from real_normed_vector
 hoelzl parents: 
50999diff
changeset | 729 | end | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 730 | |
| 24588 | 731 | class real_normed_algebra = real_algebra + real_normed_vector + | 
| 25062 | 732 | assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 733 | |
| 24588 | 734 | class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra + | 
| 25062 | 735 | assumes norm_one [simp]: "norm 1 = 1" | 
| 62101 | 736 | |
| 63545 | 737 | lemma (in real_normed_algebra_1) scaleR_power [simp]: "(scaleR x y) ^ n = scaleR (x^n) (y^n)" | 
| 738 | by (induct n) (simp_all add: scaleR_one scaleR_scaleR mult_ac) | |
| 22852 | 739 | |
| 24588 | 740 | class real_normed_div_algebra = real_div_algebra + real_normed_vector + | 
| 25062 | 741 | assumes norm_mult: "norm (x * y) = norm x * norm y" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 742 | |
| 24588 | 743 | class real_normed_field = real_field + real_normed_div_algebra | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 744 | |
| 22852 | 745 | instance real_normed_div_algebra < real_normed_algebra_1 | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 746 | proof | 
| 63545 | 747 | show "norm (x * y) \<le> norm x * norm y" for x y :: 'a | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 748 | by (simp add: norm_mult) | 
| 22852 | 749 | next | 
| 750 | have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)" | |
| 751 | by (rule norm_mult) | |
| 63545 | 752 | then show "norm (1::'a) = 1" by simp | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 753 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 754 | |
| 69512 | 755 | context real_normed_vector begin | 
| 756 | ||
| 757 | lemma norm_zero [simp]: "norm (0::'a) = 0" | |
| 63545 | 758 | by simp | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 759 | |
| 63545 | 760 | lemma zero_less_norm_iff [simp]: "norm x > 0 \<longleftrightarrow> x \<noteq> 0" | 
| 761 | by (simp add: order_less_le) | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 762 | |
| 63545 | 763 | lemma norm_not_less_zero [simp]: "\<not> norm x < 0" | 
| 764 | by (simp add: linorder_not_less) | |
| 20828 | 765 | |
| 63545 | 766 | lemma norm_le_zero_iff [simp]: "norm x \<le> 0 \<longleftrightarrow> x = 0" | 
| 767 | by (simp add: order_le_less) | |
| 20828 | 768 | |
| 63545 | 769 | lemma norm_minus_cancel [simp]: "norm (- x) = norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 770 | proof - | 
| 69512 | 771 | have "- 1 *\<^sub>R x = - (1 *\<^sub>R x)" | 
| 772 | unfolding add_eq_0_iff2[symmetric] scaleR_add_left[symmetric] | |
| 773 | using norm_eq_zero | |
| 774 | by fastforce | |
| 775 | then have "norm (- x) = norm (scaleR (- 1) x)" | |
| 776 | by (simp only: scaleR_one) | |
| 20533 | 777 | also have "\<dots> = \<bar>- 1\<bar> * norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 778 | by (rule norm_scaleR) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 779 | finally show ?thesis by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 780 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 781 | |
| 63545 | 782 | lemma norm_minus_commute: "norm (a - b) = norm (b - a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 783 | proof - | 
| 22898 | 784 | have "norm (- (b - a)) = norm (b - a)" | 
| 785 | by (rule norm_minus_cancel) | |
| 63545 | 786 | then show ?thesis by simp | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 787 | qed | 
| 63545 | 788 | |
| 789 | lemma dist_add_cancel [simp]: "dist (a + b) (a + c) = dist b c" | |
| 790 | by (simp add: dist_norm) | |
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 791 | |
| 63545 | 792 | lemma dist_add_cancel2 [simp]: "dist (b + a) (c + a) = dist b c" | 
| 793 | by (simp add: dist_norm) | |
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 794 | |
| 69512 | 795 | lemma norm_uminus_minus: "norm (- x - y) = norm (x + y)" | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 796 | by (subst (2) norm_minus_cancel[symmetric], subst minus_add_distrib) simp | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 797 | |
| 63545 | 798 | lemma norm_triangle_ineq2: "norm a - norm b \<le> norm (a - b)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 799 | proof - | 
| 20533 | 800 | have "norm (a - b + b) \<le> norm (a - b) + norm b" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 801 | by (rule norm_triangle_ineq) | 
| 63545 | 802 | then show ?thesis by simp | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 803 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 804 | |
| 63545 | 805 | lemma norm_triangle_ineq3: "\<bar>norm a - norm b\<bar> \<le> norm (a - b)" | 
| 68594 | 806 | proof - | 
| 807 | have "norm a - norm b \<le> norm (a - b)" | |
| 808 | by (simp add: norm_triangle_ineq2) | |
| 809 | moreover have "norm b - norm a \<le> norm (a - b)" | |
| 810 | by (metis norm_minus_commute norm_triangle_ineq2) | |
| 811 | ultimately show ?thesis | |
| 812 | by (simp add: abs_le_iff) | |
| 813 | qed | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 814 | |
| 63545 | 815 | lemma norm_triangle_ineq4: "norm (a - b) \<le> norm a + norm b" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 816 | proof - | 
| 22898 | 817 | have "norm (a + - b) \<le> norm a + norm (- b)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 818 | by (rule norm_triangle_ineq) | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53600diff
changeset | 819 | then show ?thesis by simp | 
| 22898 | 820 | qed | 
| 821 | ||
| 69512 | 822 | lemma norm_triangle_le_diff: "norm x + norm y \<le> e \<Longrightarrow> norm (x - y) \<le> e" | 
| 66422 | 823 | by (meson norm_triangle_ineq4 order_trans) | 
| 66420 | 824 | |
| 63545 | 825 | lemma norm_diff_ineq: "norm a - norm b \<le> norm (a + b)" | 
| 22898 | 826 | proof - | 
| 827 | have "norm a - norm (- b) \<le> norm (a - - b)" | |
| 828 | by (rule norm_triangle_ineq2) | |
| 63545 | 829 | then show ?thesis by simp | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 830 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 831 | |
| 69513 | 832 | lemma norm_triangle_sub: "norm x \<le> norm y + norm (x - y)" | 
| 833 | using norm_triangle_ineq[of "y" "x - y"] by (simp add: field_simps) | |
| 834 | ||
| 835 | lemma norm_triangle_le: "norm x + norm y \<le> e \<Longrightarrow> norm (x + y) \<le> e" | |
| 836 | by (rule norm_triangle_ineq [THEN order_trans]) | |
| 837 | ||
| 838 | lemma norm_triangle_lt: "norm x + norm y < e \<Longrightarrow> norm (x + y) < e" | |
| 839 | by (rule norm_triangle_ineq [THEN le_less_trans]) | |
| 840 | ||
| 63545 | 841 | lemma norm_add_leD: "norm (a + b) \<le> c \<Longrightarrow> norm b \<le> norm a + c" | 
| 69512 | 842 | by (metis ab_semigroup_add_class.add.commute add_commute diff_le_eq norm_diff_ineq order_trans) | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 843 | |
| 63545 | 844 | lemma norm_diff_triangle_ineq: "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)" | 
| 20551 | 845 | proof - | 
| 846 | have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53600diff
changeset | 847 | by (simp add: algebra_simps) | 
| 20551 | 848 | also have "\<dots> \<le> norm (a - c) + norm (b - d)" | 
| 849 | by (rule norm_triangle_ineq) | |
| 850 | finally show ?thesis . | |
| 851 | qed | |
| 852 | ||
| 69512 | 853 | lemma norm_diff_triangle_le: "norm (x - z) \<le> e1 + e2" | 
| 854 | if "norm (x - y) \<le> e1" "norm (y - z) \<le> e2" | |
| 855 | proof - | |
| 856 | have "norm (x - (y + z - y)) \<le> norm (x - y) + norm (y - z)" | |
| 857 | using norm_diff_triangle_ineq that diff_diff_eq2 by presburger | |
| 858 | with that show ?thesis by simp | |
| 859 | qed | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 860 | |
| 69512 | 861 | lemma norm_diff_triangle_less: "norm (x - z) < e1 + e2" | 
| 862 | if "norm (x - y) < e1" "norm (y - z) < e2" | |
| 863 | proof - | |
| 864 | have "norm (x - z) \<le> norm (x - y) + norm (y - z)" | |
| 865 | by (metis norm_diff_triangle_ineq add_diff_cancel_left' diff_diff_eq2) | |
| 866 | with that show ?thesis by auto | |
| 867 | qed | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 868 | |
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 869 | lemma norm_triangle_mono: | 
| 69512 | 870 | "norm a \<le> r \<Longrightarrow> norm b \<le> s \<Longrightarrow> norm (a + b) \<le> r + s" | 
| 871 | by (metis (mono_tags) add_mono_thms_linordered_semiring(1) norm_triangle_ineq order.trans) | |
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 872 | |
| 69512 | 873 | lemma norm_sum: "norm (sum f A) \<le> (\<Sum>i\<in>A. norm (f i))" | 
| 874 | for f::"'b \<Rightarrow> 'a" | |
| 56194 | 875 | by (induct A rule: infinite_finite_induct) (auto intro: norm_triangle_mono) | 
| 876 | ||
| 69512 | 877 | lemma sum_norm_le: "norm (sum f S) \<le> sum g S" | 
| 878 | if "\<And>x. x \<in> S \<Longrightarrow> norm (f x) \<le> g x" | |
| 879 | for f::"'b \<Rightarrow> 'a" | |
| 880 | by (rule order_trans [OF norm_sum sum_mono]) (simp add: that) | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56194diff
changeset | 881 | |
| 63545 | 882 | lemma abs_norm_cancel [simp]: "\<bar>norm a\<bar> = norm a" | 
| 883 | by (rule abs_of_nonneg [OF norm_ge_zero]) | |
| 22857 | 884 | |
| 69513 | 885 | lemma sum_norm_bound: | 
| 886 | "norm (sum f S) \<le> of_nat (card S)*K" | |
| 887 | if "\<And>x. x \<in> S \<Longrightarrow> norm (f x) \<le> K" | |
| 888 | for f :: "'b \<Rightarrow> 'a" | |
| 889 | using sum_norm_le[OF that] sum_constant[symmetric] | |
| 890 | by simp | |
| 891 | ||
| 63545 | 892 | lemma norm_add_less: "norm x < r \<Longrightarrow> norm y < s \<Longrightarrow> norm (x + y) < r + s" | 
| 893 | by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono]) | |
| 22880 | 894 | |
| 69512 | 895 | end | 
| 896 | ||
| 897 | lemma dist_scaleR [simp]: "dist (x *\<^sub>R a) (y *\<^sub>R a) = \<bar>x - y\<bar> * norm a" | |
| 898 | for a :: "'a::real_normed_vector" | |
| 899 | by (metis dist_norm norm_scaleR scaleR_left.diff) | |
| 900 | ||
| 63545 | 901 | lemma norm_mult_less: "norm x < r \<Longrightarrow> norm y < s \<Longrightarrow> norm (x * y) < r * s" | 
| 902 | for x y :: "'a::real_normed_algebra" | |
| 903 | by (rule order_le_less_trans [OF norm_mult_ineq]) (simp add: mult_strict_mono') | |
| 22880 | 904 | |
| 63545 | 905 | lemma norm_of_real [simp]: "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>" | 
| 906 | by (simp add: of_real_def) | |
| 20560 | 907 | |
| 63545 | 908 | lemma norm_numeral [simp]: "norm (numeral w::'a::real_normed_algebra_1) = numeral w" | 
| 909 | by (subst of_real_numeral [symmetric], subst norm_of_real, simp) | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 910 | |
| 63545 | 911 | lemma norm_neg_numeral [simp]: "norm (- numeral w::'a::real_normed_algebra_1) = numeral w" | 
| 912 | by (subst of_real_neg_numeral [symmetric], subst norm_of_real, simp) | |
| 22876 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 913 | |
| 63545 | 914 | lemma norm_of_real_add1 [simp]: "norm (of_real x + 1 :: 'a :: real_normed_div_algebra) = \<bar>x + 1\<bar>" | 
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 915 | by (metis norm_of_real of_real_1 of_real_add) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 916 | |
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 917 | lemma norm_of_real_addn [simp]: | 
| 63545 | 918 | "norm (of_real x + numeral b :: 'a :: real_normed_div_algebra) = \<bar>x + numeral b\<bar>" | 
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 919 | by (metis norm_of_real of_real_add of_real_numeral) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 920 | |
| 63545 | 921 | lemma norm_of_int [simp]: "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>" | 
| 922 | by (subst of_real_of_int_eq [symmetric], rule norm_of_real) | |
| 22876 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 923 | |
| 63545 | 924 | lemma norm_of_nat [simp]: "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n" | 
| 68594 | 925 | by (metis abs_of_nat norm_of_real of_real_of_nat_eq) | 
| 22876 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 926 | |
| 63545 | 927 | lemma nonzero_norm_inverse: "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)" | 
| 928 | for a :: "'a::real_normed_div_algebra" | |
| 68594 | 929 | by (metis inverse_unique norm_mult norm_one right_inverse) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 930 | |
| 63545 | 931 | lemma norm_inverse: "norm (inverse a) = inverse (norm a)" | 
| 932 |   for a :: "'a::{real_normed_div_algebra,division_ring}"
 | |
| 68594 | 933 | by (metis inverse_zero nonzero_norm_inverse norm_zero) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 934 | |
| 63545 | 935 | lemma nonzero_norm_divide: "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b" | 
| 936 | for a b :: "'a::real_normed_field" | |
| 937 | by (simp add: divide_inverse norm_mult nonzero_norm_inverse) | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 938 | |
| 63545 | 939 | lemma norm_divide: "norm (a / b) = norm a / norm b" | 
| 940 |   for a b :: "'a::{real_normed_field,field}"
 | |
| 941 | by (simp add: divide_inverse norm_mult norm_inverse) | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 942 | |
| 68615 | 943 | lemma norm_inverse_le_norm: | 
| 944 | fixes x :: "'a::real_normed_div_algebra" | |
| 945 | shows "r \<le> norm x \<Longrightarrow> 0 < r \<Longrightarrow> norm (inverse x) \<le> inverse r" | |
| 946 | by (simp add: le_imp_inverse_le norm_inverse) | |
| 947 | ||
| 63545 | 948 | lemma norm_power_ineq: "norm (x ^ n) \<le> norm x ^ n" | 
| 949 | for x :: "'a::real_normed_algebra_1" | |
| 22852 | 950 | proof (induct n) | 
| 63545 | 951 | case 0 | 
| 952 | show "norm (x ^ 0) \<le> norm x ^ 0" by simp | |
| 22852 | 953 | next | 
| 954 | case (Suc n) | |
| 955 | have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)" | |
| 956 | by (rule norm_mult_ineq) | |
| 957 | also from Suc have "\<dots> \<le> norm x * norm x ^ n" | |
| 958 | using norm_ge_zero by (rule mult_left_mono) | |
| 959 | finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 960 | by simp | 
| 22852 | 961 | qed | 
| 962 | ||
| 63545 | 963 | lemma norm_power: "norm (x ^ n) = norm x ^ n" | 
| 964 | for x :: "'a::real_normed_div_algebra" | |
| 965 | by (induct n) (simp_all add: norm_mult) | |
| 20684 | 966 | |
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 967 | lemma power_eq_imp_eq_norm: | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 968 | fixes w :: "'a::real_normed_div_algebra" | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 969 | assumes eq: "w ^ n = z ^ n" and "n > 0" | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 970 | shows "norm w = norm z" | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 971 | proof - | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 972 | have "norm w ^ n = norm z ^ n" | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 973 | by (metis (no_types) eq norm_power) | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 974 | then show ?thesis | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 975 | using assms by (force intro: power_eq_imp_eq_base) | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 976 | qed | 
| 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 977 | |
| 68465 
e699ca8e22b7
New material in support of quaternions
 paulson <lp15@cam.ac.uk> parents: 
68397diff
changeset | 978 | lemma power_eq_1_iff: | 
| 
e699ca8e22b7
New material in support of quaternions
 paulson <lp15@cam.ac.uk> parents: 
68397diff
changeset | 979 | fixes w :: "'a::real_normed_div_algebra" | 
| 
e699ca8e22b7
New material in support of quaternions
 paulson <lp15@cam.ac.uk> parents: 
68397diff
changeset | 980 | shows "w ^ n = 1 \<Longrightarrow> norm w = 1 \<or> n = 0" | 
| 
e699ca8e22b7
New material in support of quaternions
 paulson <lp15@cam.ac.uk> parents: 
68397diff
changeset | 981 | by (metis norm_one power_0_left power_eq_0_iff power_eq_imp_eq_norm power_one) | 
| 
e699ca8e22b7
New material in support of quaternions
 paulson <lp15@cam.ac.uk> parents: 
68397diff
changeset | 982 | |
| 63545 | 983 | lemma norm_mult_numeral1 [simp]: "norm (numeral w * a) = numeral w * norm a" | 
| 984 |   for a b :: "'a::{real_normed_field,field}"
 | |
| 985 | by (simp add: norm_mult) | |
| 60762 | 986 | |
| 63545 | 987 | lemma norm_mult_numeral2 [simp]: "norm (a * numeral w) = norm a * numeral w" | 
| 988 |   for a b :: "'a::{real_normed_field,field}"
 | |
| 989 | by (simp add: norm_mult) | |
| 60762 | 990 | |
| 63545 | 991 | lemma norm_divide_numeral [simp]: "norm (a / numeral w) = norm a / numeral w" | 
| 992 |   for a b :: "'a::{real_normed_field,field}"
 | |
| 993 | by (simp add: norm_divide) | |
| 60762 | 994 | |
| 995 | lemma norm_of_real_diff [simp]: | |
| 63545 | 996 | "norm (of_real b - of_real a :: 'a::real_normed_algebra_1) \<le> \<bar>b - a\<bar>" | 
| 60762 | 997 | by (metis norm_of_real of_real_diff order_refl) | 
| 998 | ||
| 63545 | 999 | text \<open>Despite a superficial resemblance, \<open>norm_eq_1\<close> is not relevant.\<close> | 
| 59613 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59587diff
changeset | 1000 | lemma square_norm_one: | 
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59587diff
changeset | 1001 | fixes x :: "'a::real_normed_div_algebra" | 
| 63545 | 1002 | assumes "x\<^sup>2 = 1" | 
| 1003 | shows "norm x = 1" | |
| 59613 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59587diff
changeset | 1004 | by (metis assms norm_minus_cancel norm_one power2_eq_1_iff) | 
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59587diff
changeset | 1005 | |
| 63545 | 1006 | lemma norm_less_p1: "norm x < norm (of_real (norm x) + 1 :: 'a)" | 
| 1007 | for x :: "'a::real_normed_algebra_1" | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1008 | proof - | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1009 | have "norm x < norm (of_real (norm x + 1) :: 'a)" | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1010 | by (simp add: of_real_def) | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1011 | then show ?thesis | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1012 | by simp | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1013 | qed | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
59613diff
changeset | 1014 | |
| 64272 | 1015 | lemma prod_norm: "prod (\<lambda>x. norm (f x)) A = norm (prod f A)" | 
| 63545 | 1016 |   for f :: "'a \<Rightarrow> 'b::{comm_semiring_1,real_normed_div_algebra}"
 | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1017 | by (induct A rule: infinite_finite_induct) (auto simp: norm_mult) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1018 | |
| 64272 | 1019 | lemma norm_prod_le: | 
| 1020 |   "norm (prod f A) \<le> (\<Prod>a\<in>A. norm (f a :: 'a :: {real_normed_algebra_1,comm_monoid_mult}))"
 | |
| 63545 | 1021 | proof (induct A rule: infinite_finite_induct) | 
| 1022 | case empty | |
| 1023 | then show ?case by simp | |
| 1024 | next | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1025 | case (insert a A) | 
| 64272 | 1026 | then have "norm (prod f (insert a A)) \<le> norm (f a) * norm (prod f A)" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1027 | by (simp add: norm_mult_ineq) | 
| 64272 | 1028 | also have "norm (prod f A) \<le> (\<Prod>a\<in>A. norm (f a))" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1029 | by (rule insert) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1030 | finally show ?case | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1031 | by (simp add: insert mult_left_mono) | 
| 63545 | 1032 | next | 
| 1033 | case infinite | |
| 1034 | then show ?case by simp | |
| 1035 | qed | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1036 | |
| 64272 | 1037 | lemma norm_prod_diff: | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1038 |   fixes z w :: "'i \<Rightarrow> 'a::{real_normed_algebra_1, comm_monoid_mult}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1039 | shows "(\<And>i. i \<in> I \<Longrightarrow> norm (z i) \<le> 1) \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> norm (w i) \<le> 1) \<Longrightarrow> | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1040 | norm ((\<Prod>i\<in>I. z i) - (\<Prod>i\<in>I. w i)) \<le> (\<Sum>i\<in>I. norm (z i - w i))" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1041 | proof (induction I rule: infinite_finite_induct) | 
| 63545 | 1042 | case empty | 
| 1043 | then show ?case by simp | |
| 1044 | next | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1045 | case (insert i I) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1046 | note insert.hyps[simp] | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1047 | |
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1048 | have "norm ((\<Prod>i\<in>insert i I. z i) - (\<Prod>i\<in>insert i I. w i)) = | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1049 | norm ((\<Prod>i\<in>I. z i) * (z i - w i) + ((\<Prod>i\<in>I. z i) - (\<Prod>i\<in>I. w i)) * w i)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1050 | (is "_ = norm (?t1 + ?t2)") | 
| 68594 | 1051 | by (auto simp: field_simps) | 
| 63545 | 1052 | also have "\<dots> \<le> norm ?t1 + norm ?t2" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1053 | by (rule norm_triangle_ineq) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1054 | also have "norm ?t1 \<le> norm (\<Prod>i\<in>I. z i) * norm (z i - w i)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1055 | by (rule norm_mult_ineq) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1056 | also have "\<dots> \<le> (\<Prod>i\<in>I. norm (z i)) * norm(z i - w i)" | 
| 64272 | 1057 | by (rule mult_right_mono) (auto intro: norm_prod_le) | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1058 | also have "(\<Prod>i\<in>I. norm (z i)) \<le> (\<Prod>i\<in>I. 1)" | 
| 64272 | 1059 | by (intro prod_mono) (auto intro!: insert) | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1060 | also have "norm ?t2 \<le> norm ((\<Prod>i\<in>I. z i) - (\<Prod>i\<in>I. w i)) * norm (w i)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1061 | by (rule norm_mult_ineq) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1062 | also have "norm (w i) \<le> 1" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1063 | by (auto intro: insert) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1064 | also have "norm ((\<Prod>i\<in>I. z i) - (\<Prod>i\<in>I. w i)) \<le> (\<Sum>i\<in>I. norm (z i - w i))" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1065 | using insert by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1066 | finally show ?case | 
| 68594 | 1067 | by (auto simp: ac_simps mult_right_mono mult_left_mono) | 
| 63545 | 1068 | next | 
| 1069 | case infinite | |
| 1070 | then show ?case by simp | |
| 1071 | qed | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1072 | |
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1073 | lemma norm_power_diff: | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1074 |   fixes z w :: "'a::{real_normed_algebra_1, comm_monoid_mult}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1075 | assumes "norm z \<le> 1" "norm w \<le> 1" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1076 | shows "norm (z^m - w^m) \<le> m * norm (z - w)" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1077 | proof - | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1078 | have "norm (z^m - w^m) = norm ((\<Prod> i < m. z) - (\<Prod> i < m. w))" | 
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 1079 | by simp | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1080 | also have "\<dots> \<le> (\<Sum>i<m. norm (z - w))" | 
| 68594 | 1081 | by (intro norm_prod_diff) (auto simp: assms) | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1082 | also have "\<dots> = m * norm (z - w)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1083 | by simp | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1084 | finally show ?thesis . | 
| 55719 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 1085 | qed | 
| 
cdddd073bff8
Lemmas about Reals, norm, etc., and cleaner variants of existing ones
 paulson <lp15@cam.ac.uk> parents: 
54890diff
changeset | 1086 | |
| 63545 | 1087 | |
| 60758 | 1088 | subsection \<open>Metric spaces\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1089 | |
| 62101 | 1090 | class metric_space = uniformity_dist + open_uniformity + | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1091 | assumes dist_eq_0_iff [simp]: "dist x y = 0 \<longleftrightarrow> x = y" | 
| 63545 | 1092 | and dist_triangle2: "dist x y \<le> dist x z + dist y z" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1093 | begin | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1094 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1095 | lemma dist_self [simp]: "dist x x = 0" | 
| 63545 | 1096 | by simp | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1097 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1098 | lemma zero_le_dist [simp]: "0 \<le> dist x y" | 
| 63545 | 1099 | using dist_triangle2 [of x x y] by simp | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1100 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1101 | lemma zero_less_dist_iff: "0 < dist x y \<longleftrightarrow> x \<noteq> y" | 
| 63545 | 1102 | by (simp add: less_le) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1103 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1104 | lemma dist_not_less_zero [simp]: "\<not> dist x y < 0" | 
| 63545 | 1105 | by (simp add: not_less) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1106 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1107 | lemma dist_le_zero_iff [simp]: "dist x y \<le> 0 \<longleftrightarrow> x = y" | 
| 63545 | 1108 | by (simp add: le_less) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1109 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1110 | lemma dist_commute: "dist x y = dist y x" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1111 | proof (rule order_antisym) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1112 | show "dist x y \<le> dist y x" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1113 | using dist_triangle2 [of x y x] by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1114 | show "dist y x \<le> dist x y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1115 | using dist_triangle2 [of y x y] by simp | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1116 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1117 | |
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1118 | lemma dist_commute_lessI: "dist y x < e \<Longrightarrow> dist x y < e" | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1119 | by (simp add: dist_commute) | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1120 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1121 | lemma dist_triangle: "dist x z \<le> dist x y + dist y z" | 
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1122 | using dist_triangle2 [of x z y] by (simp add: dist_commute) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1123 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1124 | lemma dist_triangle3: "dist x y \<le> dist a x + dist a y" | 
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1125 | using dist_triangle2 [of x y a] by (simp add: dist_commute) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1126 | |
| 68721 | 1127 | lemma abs_dist_diff_le: "\<bar>dist a b - dist b c\<bar> \<le> dist a c" | 
| 1128 | using dist_triangle3[of b c a] dist_triangle2[of a b c] by simp | |
| 1129 | ||
| 63545 | 1130 | lemma dist_pos_lt: "x \<noteq> y \<Longrightarrow> 0 < dist x y" | 
| 1131 | by (simp add: zero_less_dist_iff) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1132 | |
| 63545 | 1133 | lemma dist_nz: "x \<noteq> y \<longleftrightarrow> 0 < dist x y" | 
| 1134 | by (simp add: zero_less_dist_iff) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1135 | |
| 62087 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
62049diff
changeset | 1136 | declare dist_nz [symmetric, simp] | 
| 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
62049diff
changeset | 1137 | |
| 63545 | 1138 | lemma dist_triangle_le: "dist x z + dist y z \<le> e \<Longrightarrow> dist x y \<le> e" | 
| 1139 | by (rule order_trans [OF dist_triangle2]) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1140 | |
| 63545 | 1141 | lemma dist_triangle_lt: "dist x z + dist y z < e \<Longrightarrow> dist x y < e" | 
| 1142 | by (rule le_less_trans [OF dist_triangle2]) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1143 | |
| 63545 | 1144 | lemma dist_triangle_less_add: "dist x1 y < e1 \<Longrightarrow> dist x2 y < e2 \<Longrightarrow> dist x1 x2 < e1 + e2" | 
| 1145 | by (rule dist_triangle_lt [where z=y]) simp | |
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1146 | |
| 63545 | 1147 | lemma dist_triangle_half_l: "dist x1 y < e / 2 \<Longrightarrow> dist x2 y < e / 2 \<Longrightarrow> dist x1 x2 < e" | 
| 1148 | by (rule dist_triangle_lt [where z=y]) simp | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1149 | |
| 63545 | 1150 | lemma dist_triangle_half_r: "dist y x1 < e / 2 \<Longrightarrow> dist y x2 < e / 2 \<Longrightarrow> dist x1 x2 < e" | 
| 1151 | by (rule dist_triangle_half_l) (simp_all add: dist_commute) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1152 | |
| 65036 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1153 | lemma dist_triangle_third: | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1154 | assumes "dist x1 x2 < e/3" "dist x2 x3 < e/3" "dist x3 x4 < e/3" | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1155 | shows "dist x1 x4 < e" | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1156 | proof - | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1157 | have "dist x1 x3 < e/3 + e/3" | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1158 | by (metis assms(1) assms(2) dist_commute dist_triangle_less_add) | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1159 | then have "dist x1 x4 < (e/3 + e/3) + e/3" | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1160 | by (metis assms(3) dist_commute dist_triangle_less_add) | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1161 | then show ?thesis | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1162 | by simp | 
| 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64788diff
changeset | 1163 | qed | 
| 68532 
f8b98d31ad45
Incorporating new/strengthened proofs from Library and AFP entries
 paulson <lp15@cam.ac.uk> parents: 
68499diff
changeset | 1164 | |
| 62101 | 1165 | subclass uniform_space | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1166 | proof | 
| 63545 | 1167 | fix E x | 
| 1168 | assume "eventually E uniformity" | |
| 62101 | 1169 | then obtain e where E: "0 < e" "\<And>x y. dist x y < e \<Longrightarrow> E (x, y)" | 
| 63545 | 1170 | by (auto simp: eventually_uniformity_metric) | 
| 62101 | 1171 | then show "E (x, x)" "\<forall>\<^sub>F (x, y) in uniformity. E (y, x)" | 
| 63545 | 1172 | by (auto simp: eventually_uniformity_metric dist_commute) | 
| 62101 | 1173 | show "\<exists>D. eventually D uniformity \<and> (\<forall>x y z. D (x, y) \<longrightarrow> D (y, z) \<longrightarrow> E (x, z))" | 
| 63545 | 1174 | using E dist_triangle_half_l[where e=e] | 
| 1175 | unfolding eventually_uniformity_metric | |
| 62101 | 1176 | by (intro exI[of _ "\<lambda>(x, y). dist x y < e / 2"] exI[of _ "e/2"] conjI) | 
| 63545 | 1177 | (auto simp: dist_commute) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1178 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1179 | |
| 62101 | 1180 | lemma open_dist: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)" | 
| 63545 | 1181 | by (simp add: dist_commute open_uniformity eventually_uniformity_metric) | 
| 62101 | 1182 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1183 | lemma open_ball: "open {y. dist x y < d}"
 | 
| 63545 | 1184 | unfolding open_dist | 
| 1185 | proof (intro ballI) | |
| 1186 | fix y | |
| 1187 |   assume *: "y \<in> {y. dist x y < d}"
 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1188 |   then show "\<exists>e>0. \<forall>z. dist z y < e \<longrightarrow> z \<in> {y. dist x y < d}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1189 | by (auto intro!: exI[of _ "d - dist x y"] simp: field_simps dist_triangle_lt) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1190 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1191 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1192 | subclass first_countable_topology | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1193 | proof | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1194 | fix x | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1195 | show "\<exists>A::nat \<Rightarrow> 'a set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1196 |   proof (safe intro!: exI[of _ "\<lambda>n. {y. dist x y < inverse (Suc n)}"])
 | 
| 63545 | 1197 | fix S | 
| 1198 | assume "open S" "x \<in> S" | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52381diff
changeset | 1199 |     then obtain e where e: "0 < e" and "{y. dist x y < e} \<subseteq> S"
 | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1200 | by (auto simp: open_dist subset_eq dist_commute) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1201 | moreover | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52381diff
changeset | 1202 | from e obtain i where "inverse (Suc i) < e" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1203 | by (auto dest!: reals_Archimedean) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1204 |     then have "{y. dist x y < inverse (Suc i)} \<subseteq> {y. dist x y < e}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1205 | by auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1206 |     ultimately show "\<exists>i. {y. dist x y < inverse (Suc i)} \<subseteq> S"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1207 | by blast | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1208 | qed (auto intro: open_ball) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1209 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1210 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1211 | end | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1212 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1213 | instance metric_space \<subseteq> t2_space | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1214 | proof | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1215 | fix x y :: "'a::metric_space" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1216 | assume xy: "x \<noteq> y" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1217 |   let ?U = "{y'. dist x y' < dist x y / 2}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1218 |   let ?V = "{x'. dist y x' < dist x y / 2}"
 | 
| 63545 | 1219 | have *: "d x z \<le> d x y + d y z \<Longrightarrow> d y z = d z y \<Longrightarrow> \<not> (d x y * 2 < d x z \<and> d z y * 2 < d x z)" | 
| 1220 | for d :: "'a \<Rightarrow> 'a \<Rightarrow> real" and x y z :: 'a | |
| 1221 | by arith | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1222 |   have "open ?U \<and> open ?V \<and> x \<in> ?U \<and> y \<in> ?V \<and> ?U \<inter> ?V = {}"
 | 
| 63545 | 1223 | using dist_pos_lt[OF xy] *[of dist, OF dist_triangle dist_commute] | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1224 | using open_ball[of _ "dist x y / 2"] by auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1225 |   then show "\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1226 | by blast | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1227 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1228 | |
| 60758 | 1229 | text \<open>Every normed vector space is a metric space.\<close> | 
| 31289 | 1230 | instance real_normed_vector < metric_space | 
| 1231 | proof | |
| 63545 | 1232 | fix x y z :: 'a | 
| 1233 | show "dist x y = 0 \<longleftrightarrow> x = y" | |
| 1234 | by (simp add: dist_norm) | |
| 1235 | show "dist x y \<le> dist x z + dist y z" | |
| 1236 | using norm_triangle_ineq4 [of "x - z" "y - z"] by (simp add: dist_norm) | |
| 31289 | 1237 | qed | 
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 1238 | |
| 63545 | 1239 | |
| 60758 | 1240 | subsection \<open>Class instances for real numbers\<close> | 
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1241 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1242 | instantiation real :: real_normed_field | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1243 | begin | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1244 | |
| 63545 | 1245 | definition dist_real_def: "dist x y = \<bar>x - y\<bar>" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1246 | |
| 62101 | 1247 | definition uniformity_real_def [code del]: | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69064diff
changeset | 1248 |   "(uniformity :: (real \<times> real) filter) = (INF e\<in>{0 <..}. principal {(x, y). dist x y < e})"
 | 
| 62101 | 1249 | |
| 52381 
63eec9cea2c7
pragmatic executability for instance real :: open
 haftmann parents: 
51775diff
changeset | 1250 | definition open_real_def [code del]: | 
| 62101 | 1251 | "open (U :: real set) \<longleftrightarrow> (\<forall>x\<in>U. eventually (\<lambda>(x', y). x' = x \<longrightarrow> y \<in> U) uniformity)" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1252 | |
| 63545 | 1253 | definition real_norm_def [simp]: "norm r = \<bar>r\<bar>" | 
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1254 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1255 | instance | 
| 68594 | 1256 | by intro_classes (auto simp: abs_mult open_real_def dist_real_def sgn_real_def uniformity_real_def) | 
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1257 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1258 | end | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 1259 | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1260 | declare uniformity_Abort[where 'a=real, code] | 
| 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1261 | |
| 63545 | 1262 | lemma dist_of_real [simp]: "dist (of_real x :: 'a) (of_real y) = dist x y" | 
| 1263 | for a :: "'a::real_normed_div_algebra" | |
| 1264 | by (metis dist_norm norm_of_real of_real_diff real_norm_def) | |
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1265 | |
| 54890 
cb892d835803
fundamental treatment of undefined vs. universally partial replaces code_abort
 haftmann parents: 
54863diff
changeset | 1266 | declare [[code abort: "open :: real set \<Rightarrow> bool"]] | 
| 52381 
63eec9cea2c7
pragmatic executability for instance real :: open
 haftmann parents: 
51775diff
changeset | 1267 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1268 | instance real :: linorder_topology | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1269 | proof | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1270 | show "(open :: real set \<Rightarrow> bool) = generate_topology (range lessThan \<union> range greaterThan)" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1271 | proof (rule ext, safe) | 
| 63545 | 1272 | fix S :: "real set" | 
| 1273 | assume "open S" | |
| 53381 | 1274 | then obtain f where "\<forall>x\<in>S. 0 < f x \<and> (\<forall>y. dist y x < f x \<longrightarrow> y \<in> S)" | 
| 62101 | 1275 | unfolding open_dist bchoice_iff .. | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1276 |     then have *: "S = (\<Union>x\<in>S. {x - f x <..} \<inter> {..< x + f x})"
 | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1277 | by (fastforce simp: dist_real_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1278 | show "generate_topology (range lessThan \<union> range greaterThan) S" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1279 | apply (subst *) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1280 | apply (intro generate_topology_Union generate_topology.Int) | 
| 63545 | 1281 | apply (auto intro: generate_topology.Basis) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1282 | done | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1283 | next | 
| 63545 | 1284 | fix S :: "real set" | 
| 1285 | assume "generate_topology (range lessThan \<union> range greaterThan) S" | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1286 |     moreover have "\<And>a::real. open {..<a}"
 | 
| 62101 | 1287 | unfolding open_dist dist_real_def | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1288 | proof clarify | 
| 63545 | 1289 | fix x a :: real | 
| 1290 | assume "x < a" | |
| 1291 |       then have "0 < a - x \<and> (\<forall>y. \<bar>y - x\<bar> < a - x \<longrightarrow> y \<in> {..<a})" by auto
 | |
| 1292 |       then show "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {..<a}" ..
 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1293 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1294 |     moreover have "\<And>a::real. open {a <..}"
 | 
| 62101 | 1295 | unfolding open_dist dist_real_def | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1296 | proof clarify | 
| 63545 | 1297 | fix x a :: real | 
| 1298 | assume "a < x" | |
| 1299 |       then have "0 < x - a \<and> (\<forall>y. \<bar>y - x\<bar> < x - a \<longrightarrow> y \<in> {a<..})" by auto
 | |
| 1300 |       then show "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {a<..}" ..
 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1301 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1302 | ultimately show "open S" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1303 | by induct auto | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1304 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1305 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1306 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1307 | instance real :: linear_continuum_topology .. | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 1308 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1309 | lemmas open_real_greaterThan = open_greaterThan[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1310 | lemmas open_real_lessThan = open_lessThan[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1311 | lemmas open_real_greaterThanLessThan = open_greaterThanLessThan[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1312 | lemmas closed_real_atMost = closed_atMost[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1313 | lemmas closed_real_atLeast = closed_atLeast[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1314 | lemmas closed_real_atLeastAtMost = closed_atLeastAtMost[where 'a=real] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1315 | |
| 70616 
6bc397bc8e8a
explicit instance real::ordered_real_vector before subclass in ordered_euclidean_space
 immler parents: 
70019diff
changeset | 1316 | instance real :: ordered_real_vector | 
| 
6bc397bc8e8a
explicit instance real::ordered_real_vector before subclass in ordered_euclidean_space
 immler parents: 
70019diff
changeset | 1317 | by standard (auto intro: mult_left_mono mult_right_mono) | 
| 
6bc397bc8e8a
explicit instance real::ordered_real_vector before subclass in ordered_euclidean_space
 immler parents: 
70019diff
changeset | 1318 | |
| 63545 | 1319 | |
| 60758 | 1320 | subsection \<open>Extra type constraints\<close> | 
| 31446 | 1321 | |
| 69593 | 1322 | text \<open>Only allow \<^term>\<open>open\<close> in class \<open>topological_space\<close>.\<close> | 
| 60758 | 1323 | setup \<open>Sign.add_const_constraint | 
| 69593 | 1324 | (\<^const_name>\<open>open\<close>, SOME \<^typ>\<open>'a::topological_space set \<Rightarrow> bool\<close>)\<close> | 
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 1325 | |
| 69593 | 1326 | text \<open>Only allow \<^term>\<open>uniformity\<close> in class \<open>uniform_space\<close>.\<close> | 
| 62101 | 1327 | setup \<open>Sign.add_const_constraint | 
| 69593 | 1328 |   (\<^const_name>\<open>uniformity\<close>, SOME \<^typ>\<open>('a::uniformity \<times> 'a) filter\<close>)\<close>
 | 
| 62101 | 1329 | |
| 69593 | 1330 | text \<open>Only allow \<^term>\<open>dist\<close> in class \<open>metric_space\<close>.\<close> | 
| 60758 | 1331 | setup \<open>Sign.add_const_constraint | 
| 69593 | 1332 | (\<^const_name>\<open>dist\<close>, SOME \<^typ>\<open>'a::metric_space \<Rightarrow> 'a \<Rightarrow> real\<close>)\<close> | 
| 31446 | 1333 | |
| 69593 | 1334 | text \<open>Only allow \<^term>\<open>norm\<close> in class \<open>real_normed_vector\<close>.\<close> | 
| 60758 | 1335 | setup \<open>Sign.add_const_constraint | 
| 69593 | 1336 | (\<^const_name>\<open>norm\<close>, SOME \<^typ>\<open>'a::real_normed_vector \<Rightarrow> real\<close>)\<close> | 
| 31446 | 1337 | |
| 63545 | 1338 | |
| 60758 | 1339 | subsection \<open>Sign function\<close> | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1340 | |
| 63545 | 1341 | lemma norm_sgn: "norm (sgn x) = (if x = 0 then 0 else 1)" | 
| 1342 | for x :: "'a::real_normed_vector" | |
| 1343 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1344 | |
| 63545 | 1345 | lemma sgn_zero [simp]: "sgn (0::'a::real_normed_vector) = 0" | 
| 1346 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1347 | |
| 63545 | 1348 | lemma sgn_zero_iff: "sgn x = 0 \<longleftrightarrow> x = 0" | 
| 1349 | for x :: "'a::real_normed_vector" | |
| 1350 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1351 | |
| 63545 | 1352 | lemma sgn_minus: "sgn (- x) = - sgn x" | 
| 1353 | for x :: "'a::real_normed_vector" | |
| 1354 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1355 | |
| 63545 | 1356 | lemma sgn_scaleR: "sgn (scaleR r x) = scaleR (sgn r) (sgn x)" | 
| 1357 | for x :: "'a::real_normed_vector" | |
| 1358 | by (simp add: sgn_div_norm ac_simps) | |
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 1359 | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1360 | lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1" | 
| 63545 | 1361 | by (simp add: sgn_div_norm) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1362 | |
| 63545 | 1363 | lemma sgn_of_real: "sgn (of_real r :: 'a::real_normed_algebra_1) = of_real (sgn r)" | 
| 1364 | unfolding of_real_def by (simp only: sgn_scaleR sgn_one) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1365 | |
| 63545 | 1366 | lemma sgn_mult: "sgn (x * y) = sgn x * sgn y" | 
| 1367 | for x y :: "'a::real_normed_div_algebra" | |
| 1368 | by (simp add: sgn_div_norm norm_mult mult.commute) | |
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 1369 | |
| 64240 | 1370 | hide_fact (open) sgn_mult | 
| 1371 | ||
| 63545 | 1372 | lemma real_sgn_eq: "sgn x = x / \<bar>x\<bar>" | 
| 1373 | for x :: real | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1374 | by (simp add: sgn_div_norm divide_inverse) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1375 | |
| 63545 | 1376 | lemma zero_le_sgn_iff [simp]: "0 \<le> sgn x \<longleftrightarrow> 0 \<le> x" | 
| 1377 | for x :: real | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1378 | by (cases "0::real" x rule: linorder_cases) simp_all | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1379 | |
| 63545 | 1380 | lemma sgn_le_0_iff [simp]: "sgn x \<le> 0 \<longleftrightarrow> x \<le> 0" | 
| 1381 | for x :: real | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 1382 | by (cases "0::real" x rule: linorder_cases) simp_all | 
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1383 | |
| 51474 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51472diff
changeset | 1384 | lemma norm_conv_dist: "norm x = dist x 0" | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51472diff
changeset | 1385 | unfolding dist_norm by simp | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 1386 | |
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 1387 | declare norm_conv_dist [symmetric, simp] | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62368diff
changeset | 1388 | |
| 63545 | 1389 | lemma dist_0_norm [simp]: "dist 0 x = norm x" | 
| 1390 | for x :: "'a::real_normed_vector" | |
| 1391 | by (simp add: dist_norm) | |
| 62397 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62379diff
changeset | 1392 | |
| 60307 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60303diff
changeset | 1393 | lemma dist_diff [simp]: "dist a (a - b) = norm b" "dist (a - b) a = norm b" | 
| 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60303diff
changeset | 1394 | by (simp_all add: dist_norm) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1395 | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1396 | lemma dist_of_int: "dist (of_int m) (of_int n :: 'a :: real_normed_algebra_1) = of_int \<bar>m - n\<bar>" | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1397 | proof - | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1398 | have "dist (of_int m) (of_int n :: 'a) = dist (of_int m :: 'a) (of_int m - (of_int (m - n)))" | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1399 | by simp | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1400 | also have "\<dots> = of_int \<bar>m - n\<bar>" by (subst dist_diff, subst norm_of_int) simp | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1401 | finally show ?thesis . | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1402 | qed | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1403 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1404 | lemma dist_of_nat: | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1405 | "dist (of_nat m) (of_nat n :: 'a :: real_normed_algebra_1) = of_int \<bar>int m - int n\<bar>" | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61169diff
changeset | 1406 | by (subst (1 2) of_int_of_nat_eq [symmetric]) (rule dist_of_int) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1407 | |
| 63545 | 1408 | |
| 60758 | 1409 | subsection \<open>Bounded Linear and Bilinear Operators\<close> | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1410 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1411 | lemma linearI: "linear f" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1412 | if "\<And>b1 b2. f (b1 + b2) = f b1 + f b2" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1413 | "\<And>r b. f (r *\<^sub>R b) = r *\<^sub>R f b" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1414 | using that | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1415 | by unfold_locales (auto simp: algebra_simps) | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1416 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1417 | lemma linear_iff: | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1418 | "linear f \<longleftrightarrow> (\<forall>x y. f (x + y) = f x + f y) \<and> (\<forall>c x. f (c *\<^sub>R x) = c *\<^sub>R f x)" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1419 | (is "linear f \<longleftrightarrow> ?rhs") | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1420 | proof | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1421 | assume "linear f" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1422 | then interpret f: linear f . | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1423 | show "?rhs" by (simp add: f.add f.scale) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1424 | next | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1425 | assume "?rhs" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1426 | then show "linear f" by (intro linearI) auto | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1427 | qed | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1428 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1429 | lemmas linear_scaleR_left = linear_scale_left | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1430 | lemmas linear_imp_scaleR = linear_imp_scale | 
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 1431 | |
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1432 | corollary real_linearD: | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1433 | fixes f :: "real \<Rightarrow> real" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 1434 | assumes "linear f" obtains c where "f = (*) c" | 
| 63545 | 1435 | by (rule linear_imp_scaleR [OF assms]) (force simp: scaleR_conv_of_real) | 
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1436 | |
| 65583 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65578diff
changeset | 1437 | lemma linear_times_of_real: "linear (\<lambda>x. a * of_real x)" | 
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1438 | by (auto intro!: linearI simp: distrib_left) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67727diff
changeset | 1439 | (metis mult_scaleR_right scaleR_conv_of_real) | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1440 | |
| 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53381diff
changeset | 1441 | locale bounded_linear = linear f for f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" + | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1442 | assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K" | 
| 27443 | 1443 | begin | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1444 | |
| 63545 | 1445 | lemma pos_bounded: "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1446 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1447 | obtain K where K: "\<And>x. norm (f x) \<le> norm x * K" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1448 | using bounded by blast | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1449 | show ?thesis | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1450 | proof (intro exI impI conjI allI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1451 | show "0 < max 1 K" | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54785diff
changeset | 1452 | by (rule order_less_le_trans [OF zero_less_one max.cobounded1]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1453 | next | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1454 | fix x | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1455 | have "norm (f x) \<le> norm x * K" using K . | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1456 | also have "\<dots> \<le> norm x * max 1 K" | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54785diff
changeset | 1457 | by (rule mult_left_mono [OF max.cobounded2 norm_ge_zero]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1458 | finally show "norm (f x) \<le> norm x * max 1 K" . | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1459 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1460 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1461 | |
| 63545 | 1462 | lemma nonneg_bounded: "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K" | 
| 1463 | using pos_bounded by (auto intro: order_less_imp_le) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1464 | |
| 63545 | 1465 | lemma linear: "linear f" | 
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63128diff
changeset | 1466 | by (fact local.linear_axioms) | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56194diff
changeset | 1467 | |
| 27443 | 1468 | end | 
| 1469 | ||
| 44127 | 1470 | lemma bounded_linear_intro: | 
| 1471 | assumes "\<And>x y. f (x + y) = f x + f y" | |
| 63545 | 1472 | and "\<And>r x. f (scaleR r x) = scaleR r (f x)" | 
| 1473 | and "\<And>x. norm (f x) \<le> norm x * K" | |
| 44127 | 1474 | shows "bounded_linear f" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1475 | by standard (blast intro: assms)+ | 
| 44127 | 1476 | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1477 | locale bounded_bilinear = | 
| 63545 | 1478 | fixes prod :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector \<Rightarrow> 'c::real_normed_vector" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1479 | (infixl "**" 70) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1480 | assumes add_left: "prod (a + a') b = prod a b + prod a' b" | 
| 63545 | 1481 | and add_right: "prod a (b + b') = prod a b + prod a b'" | 
| 1482 | and scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)" | |
| 1483 | and scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)" | |
| 1484 | and bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K" | |
| 27443 | 1485 | begin | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1486 | |
| 63545 | 1487 | lemma pos_bounded: "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 66793 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1488 | proof - | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1489 | obtain K where "\<And>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1490 | using bounded by blast | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1491 | then have "norm (a ** b) \<le> norm a * norm b * (max 1 K)" for a b | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1492 | by (rule order.trans) (simp add: mult_left_mono) | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1493 | then show ?thesis | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1494 | by force | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
66422diff
changeset | 1495 | qed | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1496 | |
| 63545 | 1497 | lemma nonneg_bounded: "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 1498 | using pos_bounded by (auto intro: order_less_imp_le) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1499 | |
| 27443 | 1500 | lemma additive_right: "additive (\<lambda>b. prod a b)" | 
| 63545 | 1501 | by (rule additive.intro, rule add_right) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1502 | |
| 27443 | 1503 | lemma additive_left: "additive (\<lambda>a. prod a b)" | 
| 63545 | 1504 | by (rule additive.intro, rule add_left) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1505 | |
| 27443 | 1506 | lemma zero_left: "prod 0 b = 0" | 
| 63545 | 1507 | by (rule additive.zero [OF additive_left]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1508 | |
| 27443 | 1509 | lemma zero_right: "prod a 0 = 0" | 
| 63545 | 1510 | by (rule additive.zero [OF additive_right]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1511 | |
| 27443 | 1512 | lemma minus_left: "prod (- a) b = - prod a b" | 
| 63545 | 1513 | by (rule additive.minus [OF additive_left]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1514 | |
| 27443 | 1515 | lemma minus_right: "prod a (- b) = - prod a b" | 
| 63545 | 1516 | by (rule additive.minus [OF additive_right]) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1517 | |
| 63545 | 1518 | lemma diff_left: "prod (a - a') b = prod a b - prod a' b" | 
| 1519 | by (rule additive.diff [OF additive_left]) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1520 | |
| 63545 | 1521 | lemma diff_right: "prod a (b - b') = prod a b - prod a b'" | 
| 1522 | by (rule additive.diff [OF additive_right]) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1523 | |
| 64267 | 1524 | lemma sum_left: "prod (sum g S) x = sum ((\<lambda>i. prod (g i) x)) S" | 
| 1525 | by (rule additive.sum [OF additive_left]) | |
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1526 | |
| 64267 | 1527 | lemma sum_right: "prod x (sum g S) = sum ((\<lambda>i. (prod x (g i)))) S" | 
| 1528 | by (rule additive.sum [OF additive_right]) | |
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1529 | |
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1530 | |
| 63545 | 1531 | lemma bounded_linear_left: "bounded_linear (\<lambda>a. a ** b)" | 
| 68594 | 1532 | proof - | 
| 1533 | obtain K where "\<And>a b. norm (a ** b) \<le> norm a * norm b * K" | |
| 1534 | using pos_bounded by blast | |
| 1535 | then show ?thesis | |
| 1536 | by (rule_tac K="norm b * K" in bounded_linear_intro) (auto simp: algebra_simps scaleR_left add_left) | |
| 1537 | qed | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1538 | |
| 63545 | 1539 | lemma bounded_linear_right: "bounded_linear (\<lambda>b. a ** b)" | 
| 68594 | 1540 | proof - | 
| 1541 | obtain K where "\<And>a b. norm (a ** b) \<le> norm a * norm b * K" | |
| 1542 | using pos_bounded by blast | |
| 1543 | then show ?thesis | |
| 1544 | by (rule_tac K="norm a * K" in bounded_linear_intro) (auto simp: algebra_simps scaleR_right add_right) | |
| 1545 | qed | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1546 | |
| 63545 | 1547 | lemma prod_diff_prod: "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)" | 
| 1548 | by (simp add: diff_left diff_right) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1549 | |
| 61916 | 1550 | lemma flip: "bounded_bilinear (\<lambda>x y. y ** x)" | 
| 1551 | apply standard | |
| 68669 | 1552 | apply (simp_all add: add_right add_left scaleR_right scaleR_left) | 
| 68594 | 1553 | by (metis bounded mult.commute) | 
| 61916 | 1554 | |
| 1555 | lemma comp1: | |
| 1556 | assumes "bounded_linear g" | |
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 1557 | shows "bounded_bilinear (\<lambda>x. (**) (g x))" | 
| 61916 | 1558 | proof unfold_locales | 
| 1559 | interpret g: bounded_linear g by fact | |
| 1560 | show "\<And>a a' b. g (a + a') ** b = g a ** b + g a' ** b" | |
| 1561 | "\<And>a b b'. g a ** (b + b') = g a ** b + g a ** b'" | |
| 1562 | "\<And>r a b. g (r *\<^sub>R a) ** b = r *\<^sub>R (g a ** b)" | |
| 1563 | "\<And>a r b. g a ** (r *\<^sub>R b) = r *\<^sub>R (g a ** b)" | |
| 1564 | by (auto simp: g.add add_left add_right g.scaleR scaleR_left scaleR_right) | |
| 63545 | 1565 | from g.nonneg_bounded nonneg_bounded obtain K L | 
| 1566 | where nn: "0 \<le> K" "0 \<le> L" | |
| 1567 | and K: "\<And>x. norm (g x) \<le> norm x * K" | |
| 1568 | and L: "\<And>a b. norm (a ** b) \<le> norm a * norm b * L" | |
| 61916 | 1569 | by auto | 
| 1570 | have "norm (g a ** b) \<le> norm a * K * norm b * L" for a b | |
| 1571 | by (auto intro!: order_trans[OF K] order_trans[OF L] mult_mono simp: nn) | |
| 1572 | then show "\<exists>K. \<forall>a b. norm (g a ** b) \<le> norm a * norm b * K" | |
| 1573 | by (auto intro!: exI[where x="K * L"] simp: ac_simps) | |
| 1574 | qed | |
| 1575 | ||
| 63545 | 1576 | lemma comp: "bounded_linear f \<Longrightarrow> bounded_linear g \<Longrightarrow> bounded_bilinear (\<lambda>x y. f x ** g y)" | 
| 61916 | 1577 | by (rule bounded_bilinear.flip[OF bounded_bilinear.comp1[OF bounded_bilinear.flip[OF comp1]]]) | 
| 1578 | ||
| 27443 | 1579 | end | 
| 1580 | ||
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1581 | lemma bounded_linear_ident[simp]: "bounded_linear (\<lambda>x. x)" | 
| 61169 | 1582 | by standard (auto intro!: exI[of _ 1]) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1583 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1584 | lemma bounded_linear_zero[simp]: "bounded_linear (\<lambda>x. 0)" | 
| 61169 | 1585 | by standard (auto intro!: exI[of _ 1]) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1586 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1587 | lemma bounded_linear_add: | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1588 | assumes "bounded_linear f" | 
| 63545 | 1589 | and "bounded_linear g" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1590 | shows "bounded_linear (\<lambda>x. f x + g x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1591 | proof - | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1592 | interpret f: bounded_linear f by fact | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1593 | interpret g: bounded_linear g by fact | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1594 | show ?thesis | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1595 | proof | 
| 63545 | 1596 | from f.bounded obtain Kf where Kf: "norm (f x) \<le> norm x * Kf" for x | 
| 1597 | by blast | |
| 1598 | from g.bounded obtain Kg where Kg: "norm (g x) \<le> norm x * Kg" for x | |
| 1599 | by blast | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1600 | show "\<exists>K. \<forall>x. norm (f x + g x) \<le> norm x * K" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1601 | using add_mono[OF Kf Kg] | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1602 | by (intro exI[of _ "Kf + Kg"]) (auto simp: field_simps intro: norm_triangle_ineq order_trans) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1603 | qed (simp_all add: f.add g.add f.scaleR g.scaleR scaleR_right_distrib) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1604 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1605 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1606 | lemma bounded_linear_minus: | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1607 | assumes "bounded_linear f" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1608 | shows "bounded_linear (\<lambda>x. - f x)" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1609 | proof - | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1610 | interpret f: bounded_linear f by fact | 
| 63545 | 1611 | show ?thesis | 
| 68669 | 1612 | by unfold_locales (simp_all add: f.add f.scaleR f.bounded) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1613 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1614 | |
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1615 | lemma bounded_linear_sub: "bounded_linear f \<Longrightarrow> bounded_linear g \<Longrightarrow> bounded_linear (\<lambda>x. f x - g x)" | 
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1616 | using bounded_linear_add[of f "\<lambda>x. - g x"] bounded_linear_minus[of g] | 
| 68594 | 1617 | by (auto simp: algebra_simps) | 
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1618 | |
| 64267 | 1619 | lemma bounded_linear_sum: | 
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1620 | fixes f :: "'i \<Rightarrow> 'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | 
| 63915 | 1621 | shows "(\<And>i. i \<in> I \<Longrightarrow> bounded_linear (f i)) \<Longrightarrow> bounded_linear (\<lambda>x. \<Sum>i\<in>I. f i x)" | 
| 1622 | by (induct I rule: infinite_finite_induct) (auto intro!: bounded_linear_add) | |
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1623 | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1624 | lemma bounded_linear_compose: | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1625 | assumes "bounded_linear f" | 
| 63545 | 1626 | and "bounded_linear g" | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1627 | shows "bounded_linear (\<lambda>x. f (g x))" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1628 | proof - | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1629 | interpret f: bounded_linear f by fact | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1630 | interpret g: bounded_linear g by fact | 
| 63545 | 1631 | show ?thesis | 
| 1632 | proof unfold_locales | |
| 1633 | show "f (g (x + y)) = f (g x) + f (g y)" for x y | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1634 | by (simp only: f.add g.add) | 
| 63545 | 1635 | show "f (g (scaleR r x)) = scaleR r (f (g x))" for r x | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1636 | by (simp only: f.scaleR g.scaleR) | 
| 63545 | 1637 | from f.pos_bounded obtain Kf where f: "\<And>x. norm (f x) \<le> norm x * Kf" and Kf: "0 < Kf" | 
| 1638 | by blast | |
| 1639 | from g.pos_bounded obtain Kg where g: "\<And>x. norm (g x) \<le> norm x * Kg" | |
| 1640 | by blast | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1641 | show "\<exists>K. \<forall>x. norm (f (g x)) \<le> norm x * K" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1642 | proof (intro exI allI) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1643 | fix x | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1644 | have "norm (f (g x)) \<le> norm (g x) * Kf" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1645 | using f . | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1646 | also have "\<dots> \<le> (norm x * Kg) * Kf" | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1647 | using g Kf [THEN order_less_imp_le] by (rule mult_right_mono) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1648 | also have "(norm x * Kg) * Kf = norm x * (Kg * Kf)" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 1649 | by (rule mult.assoc) | 
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1650 | finally show "norm (f (g x)) \<le> norm x * (Kg * Kf)" . | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1651 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1652 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1653 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1654 | |
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 1655 | lemma bounded_bilinear_mult: "bounded_bilinear ((*) :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra)" | 
| 63545 | 1656 | apply (rule bounded_bilinear.intro) | 
| 68594 | 1657 | apply (auto simp: algebra_simps) | 
| 1658 | apply (rule_tac x=1 in exI) | |
| 63545 | 1659 | apply (simp add: norm_mult_ineq) | 
| 1660 | done | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1661 | |
| 63545 | 1662 | lemma bounded_linear_mult_left: "bounded_linear (\<lambda>x::'a::real_normed_algebra. x * y)" | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1663 | using bounded_bilinear_mult | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1664 | by (rule bounded_bilinear.bounded_linear_left) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1665 | |
| 63545 | 1666 | lemma bounded_linear_mult_right: "bounded_linear (\<lambda>y::'a::real_normed_algebra. x * y)" | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1667 | using bounded_bilinear_mult | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1668 | by (rule bounded_bilinear.bounded_linear_right) | 
| 23127 | 1669 | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1670 | lemmas bounded_linear_mult_const = | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1671 | bounded_linear_mult_left [THEN bounded_linear_compose] | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1672 | |
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1673 | lemmas bounded_linear_const_mult = | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1674 | bounded_linear_mult_right [THEN bounded_linear_compose] | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1675 | |
| 63545 | 1676 | lemma bounded_linear_divide: "bounded_linear (\<lambda>x. x / y)" | 
| 1677 | for y :: "'a::real_normed_field" | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1678 | unfolding divide_inverse by (rule bounded_linear_mult_left) | 
| 23120 | 1679 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1680 | lemma bounded_bilinear_scaleR: "bounded_bilinear scaleR" | 
| 63545 | 1681 | apply (rule bounded_bilinear.intro) | 
| 68594 | 1682 | apply (auto simp: algebra_simps) | 
| 1683 | apply (rule_tac x=1 in exI, simp) | |
| 63545 | 1684 | done | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1685 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1686 | lemma bounded_linear_scaleR_left: "bounded_linear (\<lambda>r. scaleR r x)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1687 | using bounded_bilinear_scaleR | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1688 | by (rule bounded_bilinear.bounded_linear_left) | 
| 23127 | 1689 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1690 | lemma bounded_linear_scaleR_right: "bounded_linear (\<lambda>x. scaleR r x)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1691 | using bounded_bilinear_scaleR | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1692 | by (rule bounded_bilinear.bounded_linear_right) | 
| 23127 | 1693 | |
| 61915 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1694 | lemmas bounded_linear_scaleR_const = | 
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1695 | bounded_linear_scaleR_left[THEN bounded_linear_compose] | 
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1696 | |
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1697 | lemmas bounded_linear_const_scaleR = | 
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1698 | bounded_linear_scaleR_right[THEN bounded_linear_compose] | 
| 
e9812a95d108
theory for type of bounded linear functions; differentiation under the integral sign
 immler parents: 
61799diff
changeset | 1699 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1700 | lemma bounded_linear_of_real: "bounded_linear (\<lambda>r. of_real r)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1701 | unfolding of_real_def by (rule bounded_linear_scaleR_left) | 
| 22625 | 1702 | |
| 63545 | 1703 | lemma real_bounded_linear: "bounded_linear f \<longleftrightarrow> (\<exists>c::real. f = (\<lambda>x. x * c))" | 
| 1704 | for f :: "real \<Rightarrow> real" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1705 | proof - | 
| 63545 | 1706 |   {
 | 
| 1707 | fix x | |
| 1708 | assume "bounded_linear f" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1709 | then interpret bounded_linear f . | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1710 | from scaleR[of x 1] have "f x = x * f 1" | 
| 63545 | 1711 | by simp | 
| 1712 | } | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1713 | then show ?thesis | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1714 | by (auto intro: exI[of _ "f 1"] bounded_linear_mult_left) | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1715 | qed | 
| 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
51641diff
changeset | 1716 | |
| 44571 | 1717 | instance real_normed_algebra_1 \<subseteq> perfect_space | 
| 1718 | proof | |
| 63545 | 1719 |   show "\<not> open {x}" for x :: 'a
 | 
| 68594 | 1720 | apply (clarsimp simp: open_dist dist_norm) | 
| 63545 | 1721 | apply (rule_tac x = "x + of_real (e/2)" in exI) | 
| 1722 | apply simp | |
| 1723 | done | |
| 44571 | 1724 | qed | 
| 1725 | ||
| 63545 | 1726 | |
| 60758 | 1727 | subsection \<open>Filters and Limits on Metric Space\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1728 | |
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69064diff
changeset | 1729 | lemma (in metric_space) nhds_metric: "nhds x = (INF e\<in>{0 <..}. principal {y. dist y x < e})"
 | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1730 | unfolding nhds_def | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1731 | proof (safe intro!: INF_eq) | 
| 63545 | 1732 | fix S | 
| 1733 | assume "open S" "x \<in> S" | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1734 |   then obtain e where "{y. dist y x < e} \<subseteq> S" "0 < e"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1735 | by (auto simp: open_dist subset_eq) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1736 |   then show "\<exists>e\<in>{0<..}. principal {y. dist y x < e} \<le> principal S"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1737 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1738 | qed (auto intro!: exI[of _ "{y. dist x y < e}" for e] open_ball simp: dist_commute)
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1739 | |
| 63545 | 1740 | lemma (in metric_space) tendsto_iff: "(f \<longlongrightarrow> l) F \<longleftrightarrow> (\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) F)" | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1741 | unfolding nhds_metric filterlim_INF filterlim_principal by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1742 | |
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 1743 | lemma tendsto_dist_iff: | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 1744 | "((f \<longlongrightarrow> l) F) \<longleftrightarrow> (((\<lambda>x. dist (f x) l) \<longlongrightarrow> 0) F)" | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 1745 | unfolding tendsto_iff by simp | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 1746 | |
| 63545 | 1747 | lemma (in metric_space) tendstoI [intro?]: | 
| 1748 | "(\<And>e. 0 < e \<Longrightarrow> eventually (\<lambda>x. dist (f x) l < e) F) \<Longrightarrow> (f \<longlongrightarrow> l) F" | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1749 | by (auto simp: tendsto_iff) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1750 | |
| 61973 | 1751 | lemma (in metric_space) tendstoD: "(f \<longlongrightarrow> l) F \<Longrightarrow> 0 < e \<Longrightarrow> eventually (\<lambda>x. dist (f x) l < e) F" | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1752 | by (auto simp: tendsto_iff) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1753 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1754 | lemma (in metric_space) eventually_nhds_metric: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1755 | "eventually P (nhds a) \<longleftrightarrow> (\<exists>d>0. \<forall>x. dist x a < d \<longrightarrow> P x)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1756 | unfolding nhds_metric | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1757 | by (subst eventually_INF_base) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 1758 | (auto simp: eventually_principal Bex_def subset_eq intro: exI[of _ "min a b" for a b]) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1759 | |
| 63545 | 1760 | lemma eventually_at: "eventually P (at a within S) \<longleftrightarrow> (\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<and> dist x a < d \<longrightarrow> P x)" | 
| 1761 | for a :: "'a :: metric_space" | |
| 1762 | by (auto simp: eventually_at_filter eventually_nhds_metric) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1763 | |
| 67706 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67673diff
changeset | 1764 | lemma frequently_at: "frequently P (at a within S) \<longleftrightarrow> (\<forall>d>0. \<exists>x\<in>S. x \<noteq> a \<and> dist x a < d \<and> P x)" | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67673diff
changeset | 1765 | for a :: "'a :: metric_space" | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67673diff
changeset | 1766 | unfolding frequently_def eventually_at by auto | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67673diff
changeset | 1767 | |
| 63545 | 1768 | lemma eventually_at_le: "eventually P (at a within S) \<longleftrightarrow> (\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<and> dist x a \<le> d \<longrightarrow> P x)" | 
| 1769 | for a :: "'a::metric_space" | |
| 68594 | 1770 | unfolding eventually_at_filter eventually_nhds_metric | 
| 1771 | apply safe | |
| 1772 | apply (rule_tac x="d / 2" in exI, auto) | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1773 | done | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1774 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1775 | lemma eventually_at_left_real: "a > (b :: real) \<Longrightarrow> eventually (\<lambda>x. x \<in> {b<..<a}) (at_left a)"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1776 | by (subst eventually_at, rule exI[of _ "a - b"]) (force simp: dist_real_def) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1777 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1778 | lemma eventually_at_right_real: "a < (b :: real) \<Longrightarrow> eventually (\<lambda>x. x \<in> {a<..<b}) (at_right a)"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1779 | by (subst eventually_at, rule exI[of _ "b - a"]) (force simp: dist_real_def) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1780 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1781 | lemma metric_tendsto_imp_tendsto: | 
| 63545 | 1782 | fixes a :: "'a :: metric_space" | 
| 1783 | and b :: "'b :: metric_space" | |
| 61973 | 1784 | assumes f: "(f \<longlongrightarrow> a) F" | 
| 63545 | 1785 | and le: "eventually (\<lambda>x. dist (g x) b \<le> dist (f x) a) F" | 
| 61973 | 1786 | shows "(g \<longlongrightarrow> b) F" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1787 | proof (rule tendstoI) | 
| 63545 | 1788 | fix e :: real | 
| 1789 | assume "0 < e" | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1790 | with f have "eventually (\<lambda>x. dist (f x) a < e) F" by (rule tendstoD) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1791 | with le show "eventually (\<lambda>x. dist (g x) b < e) F" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1792 | using le_less_trans by (rule eventually_elim2) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1793 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1794 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1795 | lemma filterlim_real_sequentially: "LIM x sequentially. real x :> at_top" | 
| 68594 | 1796 | apply (clarsimp simp: filterlim_at_top) | 
| 1797 | apply (rule_tac c="nat \<lceil>Z + 1\<rceil>" in eventually_sequentiallyI, linarith) | |
| 61942 | 1798 | done | 
| 1799 | ||
| 63556 | 1800 | lemma filterlim_nat_sequentially: "filterlim nat sequentially at_top" | 
| 68594 | 1801 | proof - | 
| 1802 | have "\<forall>\<^sub>F x in at_top. Z \<le> nat x" for Z | |
| 1803 | by (auto intro!: eventually_at_top_linorderI[where c="int Z"]) | |
| 1804 | then show ?thesis | |
| 1805 | unfolding filterlim_at_top .. | |
| 1806 | qed | |
| 63556 | 1807 | |
| 1808 | lemma filterlim_floor_sequentially: "filterlim floor at_top at_top" | |
| 68594 | 1809 | proof - | 
| 1810 | have "\<forall>\<^sub>F x in at_top. Z \<le> \<lfloor>x\<rfloor>" for Z | |
| 1811 | by (auto simp: le_floor_iff intro!: eventually_at_top_linorderI[where c="of_int Z"]) | |
| 1812 | then show ?thesis | |
| 1813 | unfolding filterlim_at_top .. | |
| 1814 | qed | |
| 63556 | 1815 | |
| 1816 | lemma filterlim_sequentially_iff_filterlim_real: | |
| 1817 | "filterlim f sequentially F \<longleftrightarrow> filterlim (\<lambda>x. real (f x)) at_top F" | |
| 1818 | apply (rule iffI) | |
| 1819 | subgoal using filterlim_compose filterlim_real_sequentially by blast | |
| 1820 | subgoal premises prems | |
| 1821 | proof - | |
| 1822 | have "filterlim (\<lambda>x. nat (floor (real (f x)))) sequentially F" | |
| 1823 | by (intro filterlim_compose[OF filterlim_nat_sequentially] | |
| 1824 | filterlim_compose[OF filterlim_floor_sequentially] prems) | |
| 1825 | then show ?thesis by simp | |
| 1826 | qed | |
| 1827 | done | |
| 1828 | ||
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1829 | |
| 60758 | 1830 | subsubsection \<open>Limits of Sequences\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1831 | |
| 63545 | 1832 | lemma lim_sequentially: "X \<longlonglongrightarrow> L \<longleftrightarrow> (\<forall>r>0. \<exists>no. \<forall>n\<ge>no. dist (X n) L < r)" | 
| 1833 | for L :: "'a::metric_space" | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1834 | unfolding tendsto_iff eventually_sequentially .. | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1835 | |
| 60026 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1836 | lemmas LIMSEQ_def = lim_sequentially (*legacy binding*) | 
| 
41d81b4a0a21
Restored LIMSEQ_def as legacy binding. [The other changes are whitespace only.]
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1837 | |
| 63545 | 1838 | lemma LIMSEQ_iff_nz: "X \<longlonglongrightarrow> L \<longleftrightarrow> (\<forall>r>0. \<exists>no>0. \<forall>n\<ge>no. dist (X n) L < r)" | 
| 1839 | for L :: "'a::metric_space" | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 1840 | unfolding lim_sequentially by (metis Suc_leD zero_less_Suc) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1841 | |
| 63545 | 1842 | lemma metric_LIMSEQ_I: "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. dist (X n) L < r) \<Longrightarrow> X \<longlonglongrightarrow> L" | 
| 1843 | for L :: "'a::metric_space" | |
| 1844 | by (simp add: lim_sequentially) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1845 | |
| 63545 | 1846 | lemma metric_LIMSEQ_D: "X \<longlonglongrightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. dist (X n) L < r" | 
| 1847 | for L :: "'a::metric_space" | |
| 1848 | by (simp add: lim_sequentially) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1849 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1850 | lemma LIMSEQ_norm_0: | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1851 | assumes "\<And>n::nat. norm (f n) < 1 / real (Suc n)" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1852 | shows "f \<longlonglongrightarrow> 0" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1853 | proof (rule metric_LIMSEQ_I) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1854 | fix \<epsilon> :: "real" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1855 | assume "\<epsilon> > 0" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1856 | then obtain N::nat where "\<epsilon> > inverse N" "N > 0" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1857 | by (metis neq0_conv real_arch_inverse) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1858 | then have "norm (f n) < \<epsilon>" if "n \<ge> N" for n | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1859 | proof - | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1860 | have "1 / (Suc n) \<le> 1 / N" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1861 | using \<open>0 < N\<close> inverse_of_nat_le le_SucI that by blast | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1862 | also have "\<dots> < \<epsilon>" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1863 | by (metis (no_types) \<open>inverse (real N) < \<epsilon>\<close> inverse_eq_divide) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1864 | finally show ?thesis | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1865 | by (meson assms less_eq_real_def not_le order_trans) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1866 | qed | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1867 | then show "\<exists>no. \<forall>n\<ge>no. dist (f n) 0 < \<epsilon>" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1868 | by auto | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1869 | qed | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1870 | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1871 | |
| 60758 | 1872 | subsubsection \<open>Limits of Functions\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1873 | |
| 63545 | 1874 | lemma LIM_def: "f \<midarrow>a\<rightarrow> L \<longleftrightarrow> (\<forall>r > 0. \<exists>s > 0. \<forall>x. x \<noteq> a \<and> dist x a < s \<longrightarrow> dist (f x) L < r)" | 
| 1875 | for a :: "'a::metric_space" and L :: "'b::metric_space" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51531diff
changeset | 1876 | unfolding tendsto_iff eventually_at by simp | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1877 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1878 | lemma metric_LIM_I: | 
| 63545 | 1879 | "(\<And>r. 0 < r \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> dist x a < s \<longrightarrow> dist (f x) L < r) \<Longrightarrow> f \<midarrow>a\<rightarrow> L" | 
| 1880 | for a :: "'a::metric_space" and L :: "'b::metric_space" | |
| 1881 | by (simp add: LIM_def) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1882 | |
| 63545 | 1883 | lemma metric_LIM_D: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> dist x a < s \<longrightarrow> dist (f x) L < r" | 
| 1884 | for a :: "'a::metric_space" and L :: "'b::metric_space" | |
| 1885 | by (simp add: LIM_def) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1886 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1887 | lemma metric_LIM_imp_LIM: | 
| 63545 | 1888 | fixes l :: "'a::metric_space" | 
| 1889 | and m :: "'b::metric_space" | |
| 1890 | assumes f: "f \<midarrow>a\<rightarrow> l" | |
| 1891 | and le: "\<And>x. x \<noteq> a \<Longrightarrow> dist (g x) m \<le> dist (f x) l" | |
| 1892 | shows "g \<midarrow>a\<rightarrow> m" | |
| 68594 | 1893 | by (rule metric_tendsto_imp_tendsto [OF f]) (auto simp: eventually_at_topological le) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1894 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1895 | lemma metric_LIM_equal2: | 
| 63545 | 1896 | fixes a :: "'a::metric_space" | 
| 68594 | 1897 | assumes "g \<midarrow>a\<rightarrow> l" "0 < R" | 
| 63545 | 1898 | and "\<And>x. x \<noteq> a \<Longrightarrow> dist x a < R \<Longrightarrow> f x = g x" | 
| 68594 | 1899 | shows "f \<midarrow>a\<rightarrow> l" | 
| 1900 | proof - | |
| 1901 | have "\<And>S. \<lbrakk>open S; l \<in> S; \<forall>\<^sub>F x in at a. g x \<in> S\<rbrakk> \<Longrightarrow> \<forall>\<^sub>F x in at a. f x \<in> S" | |
| 1902 | apply (clarsimp simp add: eventually_at) | |
| 1903 | apply (rule_tac x="min d R" in exI) | |
| 1904 | apply (auto simp: assms) | |
| 1905 | done | |
| 1906 | then show ?thesis | |
| 1907 | using assms by (simp add: tendsto_def) | |
| 1908 | qed | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1909 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1910 | lemma metric_LIM_compose2: | 
| 63545 | 1911 | fixes a :: "'a::metric_space" | 
| 1912 | assumes f: "f \<midarrow>a\<rightarrow> b" | |
| 1913 | and g: "g \<midarrow>b\<rightarrow> c" | |
| 1914 | and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> dist x a < d \<longrightarrow> f x \<noteq> b" | |
| 61976 | 1915 | shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> c" | 
| 63545 | 1916 | using inj by (intro tendsto_compose_eventually[OF g f]) (auto simp: eventually_at) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1917 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1918 | lemma metric_isCont_LIM_compose2: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1919 | fixes f :: "'a :: metric_space \<Rightarrow> _" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1920 | assumes f [unfolded isCont_def]: "isCont f a" | 
| 63545 | 1921 | and g: "g \<midarrow>f a\<rightarrow> l" | 
| 1922 | and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> dist x a < d \<longrightarrow> f x \<noteq> f a" | |
| 61976 | 1923 | shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> l" | 
| 63545 | 1924 | by (rule metric_LIM_compose2 [OF f g inj]) | 
| 1925 | ||
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1926 | |
| 60758 | 1927 | subsection \<open>Complete metric spaces\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1928 | |
| 60758 | 1929 | subsection \<open>Cauchy sequences\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1930 | |
| 62101 | 1931 | lemma (in metric_space) Cauchy_def: "Cauchy X = (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e)" | 
| 1932 | proof - | |
| 63545 | 1933 |   have *: "eventually P (INF M. principal {(X m, X n) | n m. m \<ge> M \<and> n \<ge> M}) \<longleftrightarrow>
 | 
| 62101 | 1934 | (\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. P (X m, X n))" for P | 
| 63545 | 1935 | apply (subst eventually_INF_base) | 
| 1936 | subgoal by simp | |
| 1937 | subgoal for a b | |
| 62101 | 1938 | by (intro bexI[of _ "max a b"]) (auto simp: eventually_principal subset_eq) | 
| 63545 | 1939 | subgoal by (auto simp: eventually_principal, blast) | 
| 1940 | done | |
| 62101 | 1941 |   have "Cauchy X \<longleftrightarrow> (INF M. principal {(X m, X n) | n m. m \<ge> M \<and> n \<ge> M}) \<le> uniformity"
 | 
| 1942 | unfolding Cauchy_uniform_iff le_filter_def * .. | |
| 1943 | also have "\<dots> = (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e)" | |
| 1944 | unfolding uniformity_dist le_INF_iff by (auto simp: * le_principal) | |
| 1945 | finally show ?thesis . | |
| 1946 | qed | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1947 | |
| 63545 | 1948 | lemma (in metric_space) Cauchy_altdef: "Cauchy f \<longleftrightarrow> (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n>m. dist (f m) (f n) < e)" | 
| 1949 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1950 | proof | 
| 63545 | 1951 | assume ?rhs | 
| 1952 | show ?lhs | |
| 1953 | unfolding Cauchy_def | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1954 | proof (intro allI impI) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1955 | fix e :: real assume e: "e > 0" | 
| 63545 | 1956 | with \<open>?rhs\<close> obtain M where M: "m \<ge> M \<Longrightarrow> n > m \<Longrightarrow> dist (f m) (f n) < e" for m n | 
| 1957 | by blast | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1958 | have "dist (f m) (f n) < e" if "m \<ge> M" "n \<ge> M" for m n | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1959 | using M[of m n] M[of n m] e that by (cases m n rule: linorder_cases) (auto simp: dist_commute) | 
| 63545 | 1960 | then show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (f m) (f n) < e" | 
| 1961 | by blast | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1962 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1963 | next | 
| 63545 | 1964 | assume ?lhs | 
| 1965 | show ?rhs | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1966 | proof (intro allI impI) | 
| 63545 | 1967 | fix e :: real | 
| 1968 | assume e: "e > 0" | |
| 61799 | 1969 | with \<open>Cauchy f\<close> obtain M where "\<And>m n. m \<ge> M \<Longrightarrow> n \<ge> M \<Longrightarrow> dist (f m) (f n) < e" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1970 | unfolding Cauchy_def by blast | 
| 63545 | 1971 | then show "\<exists>M. \<forall>m\<ge>M. \<forall>n>m. dist (f m) (f n) < e" | 
| 1972 | by (intro exI[of _ M]) force | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1973 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 1974 | qed | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 1975 | |
| 66089 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1976 | lemma (in metric_space) Cauchy_altdef2: "Cauchy s \<longleftrightarrow> (\<forall>e>0. \<exists>N::nat. \<forall>n\<ge>N. dist(s n)(s N) < e)" (is "?lhs = ?rhs") | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1977 | proof | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1978 | assume "Cauchy s" | 
| 68594 | 1979 | then show ?rhs by (force simp: Cauchy_def) | 
| 66089 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1980 | next | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1981 | assume ?rhs | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1982 |     {
 | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1983 | fix e::real | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1984 | assume "e>0" | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1985 | with \<open>?rhs\<close> obtain N where N: "\<forall>n\<ge>N. dist (s n) (s N) < e/2" | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1986 | by (erule_tac x="e/2" in allE) auto | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1987 |       {
 | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1988 | fix n m | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1989 | assume nm: "N \<le> m \<and> N \<le> n" | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1990 | then have "dist (s m) (s n) < e" using N | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1991 | using dist_triangle_half_l[of "s m" "s N" "e" "s n"] | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1992 | by blast | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1993 | } | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1994 | then have "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < e" | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1995 | by blast | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1996 | } | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1997 | then have ?lhs | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1998 | unfolding Cauchy_def by blast | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 1999 | then show ?lhs | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2000 | by blast | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2001 | qed | 
| 
def95e0bc529
Some new material. SIMPRULE STATUS for sum/prod.delta rules!
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 2002 | |
| 62101 | 2003 | lemma (in metric_space) metric_CauchyI: | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2004 | "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e) \<Longrightarrow> Cauchy X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2005 | by (simp add: Cauchy_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2006 | |
| 63545 | 2007 | lemma (in metric_space) CauchyI': | 
| 2008 | "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n>m. dist (X m) (X n) < e) \<Longrightarrow> Cauchy X" | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2009 | unfolding Cauchy_altdef by blast | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 2010 | |
| 62101 | 2011 | lemma (in metric_space) metric_CauchyD: | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2012 | "Cauchy X \<Longrightarrow> 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2013 | by (simp add: Cauchy_def) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2014 | |
| 62101 | 2015 | lemma (in metric_space) metric_Cauchy_iff2: | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2016 | "Cauchy X = (\<forall>j. (\<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. dist (X m) (X n) < inverse(real (Suc j))))" | 
| 68594 | 2017 | apply (auto simp add: Cauchy_def) | 
| 2018 | by (metis less_trans of_nat_Suc reals_Archimedean) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2019 | |
| 63545 | 2020 | lemma Cauchy_iff2: "Cauchy X \<longleftrightarrow> (\<forall>j. (\<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. \<bar>X m - X n\<bar> < inverse (real (Suc j))))" | 
| 2021 | by (simp only: metric_Cauchy_iff2 dist_real_def) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2022 | |
| 70723 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70630diff
changeset | 2023 | lemma lim_1_over_n [tendsto_intros]: "((\<lambda>n. 1 / of_nat n) \<longlongrightarrow> (0::'a::real_normed_field)) sequentially" | 
| 62101 | 2024 | proof (subst lim_sequentially, intro allI impI exI) | 
| 70723 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70630diff
changeset | 2025 | fix e::real and n | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70630diff
changeset | 2026 | assume e: "e > 0" | 
| 62101 | 2027 | have "inverse e < of_nat (nat \<lceil>inverse e + 1\<rceil>)" by linarith | 
| 70723 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70630diff
changeset | 2028 | also assume "n \<ge> nat \<lceil>inverse e + 1\<rceil>" | 
| 63545 | 2029 | finally show "dist (1 / of_nat n :: 'a) 0 < e" | 
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70802diff
changeset | 2030 | using e by (simp add: field_split_simps norm_divide) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2031 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2032 | |
| 62101 | 2033 | lemma (in metric_space) complete_def: | 
| 2034 | shows "complete S = (\<forall>f. (\<forall>n. f n \<in> S) \<and> Cauchy f \<longrightarrow> (\<exists>l\<in>S. f \<longlonglongrightarrow> l))" | |
| 2035 | unfolding complete_uniform | |
| 2036 | proof safe | |
| 63545 | 2037 | fix f :: "nat \<Rightarrow> 'a" | 
| 2038 | assume f: "\<forall>n. f n \<in> S" "Cauchy f" | |
| 62101 | 2039 | and *: "\<forall>F\<le>principal S. F \<noteq> bot \<longrightarrow> cauchy_filter F \<longrightarrow> (\<exists>x\<in>S. F \<le> nhds x)" | 
| 2040 | then show "\<exists>l\<in>S. f \<longlonglongrightarrow> l" | |
| 2041 | unfolding filterlim_def using f | |
| 2042 | by (intro *[rule_format]) | |
| 2043 | (auto simp: filtermap_sequentually_ne_bot le_principal eventually_filtermap Cauchy_uniform) | |
| 2044 | next | |
| 63545 | 2045 | fix F :: "'a filter" | 
| 2046 | assume "F \<le> principal S" "F \<noteq> bot" "cauchy_filter F" | |
| 62101 | 2047 | assume seq: "\<forall>f. (\<forall>n. f n \<in> S) \<and> Cauchy f \<longrightarrow> (\<exists>l\<in>S. f \<longlonglongrightarrow> l)" | 
| 2048 | ||
| 63545 | 2049 | from \<open>F \<le> principal S\<close> \<open>cauchy_filter F\<close> | 
| 2050 | have FF_le: "F \<times>\<^sub>F F \<le> uniformity_on S" | |
| 62101 | 2051 | by (simp add: cauchy_filter_def principal_prod_principal[symmetric] prod_filter_mono) | 
| 2052 | ||
| 2053 | let ?P = "\<lambda>P e. eventually P F \<and> (\<forall>x. P x \<longrightarrow> x \<in> S) \<and> (\<forall>x y. P x \<longrightarrow> P y \<longrightarrow> dist x y < e)" | |
| 63545 | 2054 | have P: "\<exists>P. ?P P \<epsilon>" if "0 < \<epsilon>" for \<epsilon> :: real | 
| 2055 | proof - | |
| 2056 | from that have "eventually (\<lambda>(x, y). x \<in> S \<and> y \<in> S \<and> dist x y < \<epsilon>) (uniformity_on S)" | |
| 2057 | by (auto simp: eventually_inf_principal eventually_uniformity_metric) | |
| 2058 | from filter_leD[OF FF_le this] show ?thesis | |
| 2059 | by (auto simp: eventually_prod_same) | |
| 2060 | qed | |
| 62101 | 2061 | |
| 2062 | have "\<exists>P. \<forall>n. ?P (P n) (1 / Suc n) \<and> P (Suc n) \<le> P n" | |
| 2063 | proof (rule dependent_nat_choice) | |
| 2064 | show "\<exists>P. ?P P (1 / Suc 0)" | |
| 2065 | using P[of 1] by auto | |
| 2066 | next | |
| 2067 | fix P n assume "?P P (1/Suc n)" | |
| 2068 | moreover obtain Q where "?P Q (1 / Suc (Suc n))" | |
| 2069 | using P[of "1/Suc (Suc n)"] by auto | |
| 2070 | ultimately show "\<exists>Q. ?P Q (1 / Suc (Suc n)) \<and> Q \<le> P" | |
| 2071 | by (intro exI[of _ "\<lambda>x. P x \<and> Q x"]) (auto simp: eventually_conj_iff) | |
| 2072 | qed | |
| 63545 | 2073 | then obtain P where P: "eventually (P n) F" "P n x \<Longrightarrow> x \<in> S" | 
| 2074 | "P n x \<Longrightarrow> P n y \<Longrightarrow> dist x y < 1 / Suc n" "P (Suc n) \<le> P n" | |
| 2075 | for n x y | |
| 62101 | 2076 | by metis | 
| 2077 | have "antimono P" | |
| 2078 | using P(4) unfolding decseq_Suc_iff le_fun_def by blast | |
| 2079 | ||
| 63545 | 2080 | obtain X where X: "P n (X n)" for n | 
| 62101 | 2081 | using P(1)[THEN eventually_happens'[OF \<open>F \<noteq> bot\<close>]] by metis | 
| 2082 | have "Cauchy X" | |
| 2083 | unfolding metric_Cauchy_iff2 inverse_eq_divide | |
| 2084 | proof (intro exI allI impI) | |
| 63545 | 2085 | fix j m n :: nat | 
| 2086 | assume "j \<le> m" "j \<le> n" | |
| 62101 | 2087 | with \<open>antimono P\<close> X have "P j (X m)" "P j (X n)" | 
| 2088 | by (auto simp: antimono_def) | |
| 2089 | then show "dist (X m) (X n) < 1 / Suc j" | |
| 2090 | by (rule P) | |
| 2091 | qed | |
| 2092 | moreover have "\<forall>n. X n \<in> S" | |
| 2093 | using P(2) X by auto | |
| 2094 | ultimately obtain x where "X \<longlonglongrightarrow> x" "x \<in> S" | |
| 2095 | using seq by blast | |
| 2096 | ||
| 2097 | show "\<exists>x\<in>S. F \<le> nhds x" | |
| 2098 | proof (rule bexI) | |
| 63545 | 2099 | have "eventually (\<lambda>y. dist y x < e) F" if "0 < e" for e :: real | 
| 2100 | proof - | |
| 2101 | from that have "(\<lambda>n. 1 / Suc n :: real) \<longlonglongrightarrow> 0 \<and> 0 < e / 2" | |
| 62101 | 2102 | by (subst LIMSEQ_Suc_iff) (auto intro!: lim_1_over_n) | 
| 2103 | then have "\<forall>\<^sub>F n in sequentially. dist (X n) x < e / 2 \<and> 1 / Suc n < e / 2" | |
| 63545 | 2104 | using \<open>X \<longlonglongrightarrow> x\<close> | 
| 2105 | unfolding tendsto_iff order_tendsto_iff[where 'a=real] eventually_conj_iff | |
| 2106 | by blast | |
| 62101 | 2107 | then obtain n where "dist x (X n) < e / 2" "1 / Suc n < e / 2" | 
| 2108 | by (auto simp: eventually_sequentially dist_commute) | |
| 63545 | 2109 | show ?thesis | 
| 62101 | 2110 | using \<open>eventually (P n) F\<close> | 
| 2111 | proof eventually_elim | |
| 63545 | 2112 | case (elim y) | 
| 62101 | 2113 | then have "dist y (X n) < 1 / Suc n" | 
| 2114 | by (intro X P) | |
| 2115 | also have "\<dots> < e / 2" by fact | |
| 2116 | finally show "dist y x < e" | |
| 2117 | by (rule dist_triangle_half_l) fact | |
| 63545 | 2118 | qed | 
| 2119 | qed | |
| 62101 | 2120 | then show "F \<le> nhds x" | 
| 2121 | unfolding nhds_metric le_INF_iff le_principal by auto | |
| 2122 | qed fact | |
| 2123 | qed | |
| 2124 | ||
| 68594 | 2125 | text\<open>apparently unused\<close> | 
| 62101 | 2126 | lemma (in metric_space) totally_bounded_metric: | 
| 2127 |   "totally_bounded S \<longleftrightarrow> (\<forall>e>0. \<exists>k. finite k \<and> S \<subseteq> (\<Union>x\<in>k. {y. dist x y < e}))"
 | |
| 68594 | 2128 | unfolding totally_bounded_def eventually_uniformity_metric imp_ex | 
| 62101 | 2129 | apply (subst all_comm) | 
| 68594 | 2130 | apply (intro arg_cong[where f=All] ext, safe) | 
| 62101 | 2131 | subgoal for e | 
| 2132 | apply (erule allE[of _ "\<lambda>(x, y). dist x y < e"]) | |
| 2133 | apply auto | |
| 2134 | done | |
| 2135 | subgoal for e P k | |
| 2136 | apply (intro exI[of _ k]) | |
| 2137 | apply (force simp: subset_eq) | |
| 2138 | done | |
| 2139 | done | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2140 | |
| 63545 | 2141 | |
| 60758 | 2142 | subsubsection \<open>Cauchy Sequences are Convergent\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2143 | |
| 62101 | 2144 | (* TODO: update to uniform_space *) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2145 | class complete_space = metric_space + | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2146 | assumes Cauchy_convergent: "Cauchy X \<Longrightarrow> convergent X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2147 | |
| 63545 | 2148 | lemma Cauchy_convergent_iff: "Cauchy X \<longleftrightarrow> convergent X" | 
| 2149 | for X :: "nat \<Rightarrow> 'a::complete_space" | |
| 2150 | by (blast intro: Cauchy_convergent convergent_Cauchy) | |
| 2151 | ||
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2152 | text \<open>To prove that a Cauchy sequence converges, it suffices to show that a subsequence converges.\<close> | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2153 | |
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2154 | lemma Cauchy_converges_subseq: | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2155 | fixes u::"nat \<Rightarrow> 'a::metric_space" | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2156 | assumes "Cauchy u" | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2157 | "strict_mono r" | 
| 68594 | 2158 | "(u \<circ> r) \<longlonglongrightarrow> l" | 
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2159 | shows "u \<longlonglongrightarrow> l" | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2160 | proof - | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2161 | have *: "eventually (\<lambda>n. dist (u n) l < e) sequentially" if "e > 0" for e | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2162 | proof - | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2163 | have "e/2 > 0" using that by auto | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2164 | then obtain N1 where N1: "\<And>m n. m \<ge> N1 \<Longrightarrow> n \<ge> N1 \<Longrightarrow> dist (u m) (u n) < e/2" | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2165 | using \<open>Cauchy u\<close> unfolding Cauchy_def by blast | 
| 68594 | 2166 | obtain N2 where N2: "\<And>n. n \<ge> N2 \<Longrightarrow> dist ((u \<circ> r) n) l < e / 2" | 
| 2167 | using order_tendstoD(2)[OF iffD1[OF tendsto_dist_iff \<open>(u \<circ> r) \<longlonglongrightarrow> l\<close>] \<open>e/2 > 0\<close>] | |
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2168 | unfolding eventually_sequentially by auto | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2169 | have "dist (u n) l < e" if "n \<ge> max N1 N2" for n | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2170 | proof - | 
| 68594 | 2171 | have "dist (u n) l \<le> dist (u n) ((u \<circ> r) n) + dist ((u \<circ> r) n) l" | 
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2172 | by (rule dist_triangle) | 
| 68594 | 2173 | also have "\<dots> < e/2 + e/2" | 
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2174 | apply (intro add_strict_mono) | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2175 | using N1[of n "r n"] N2[of n] that unfolding comp_def | 
| 68594 | 2176 | by (auto simp: less_imp_le) (meson assms(2) less_imp_le order.trans seq_suble) | 
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2177 | finally show ?thesis by simp | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2178 | qed | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2179 | then show ?thesis unfolding eventually_sequentially by blast | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2180 | qed | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2181 | have "(\<lambda>n. dist (u n) l) \<longlonglongrightarrow> 0" | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2182 | apply (rule order_tendstoI) | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2183 | using * by auto (meson eventually_sequentiallyI less_le_trans zero_le_dist) | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2184 | then show ?thesis using tendsto_dist_iff by auto | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67706diff
changeset | 2185 | qed | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2186 | |
| 60758 | 2187 | subsection \<open>The set of real numbers is a complete metric space\<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2188 | |
| 60758 | 2189 | text \<open> | 
| 63545 | 2190 | Proof that Cauchy sequences converge based on the one from | 
| 63680 | 2191 | \<^url>\<open>http://pirate.shu.edu/~wachsmut/ira/numseq/proofs/cauconv.html\<close> | 
| 60758 | 2192 | \<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2193 | |
| 60758 | 2194 | text \<open> | 
| 69593 | 2195 | If sequence \<^term>\<open>X\<close> is Cauchy, then its limit is the lub of | 
| 2196 |   \<^term>\<open>{r::real. \<exists>N. \<forall>n\<ge>N. r < X n}\<close>
 | |
| 60758 | 2197 | \<close> | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2198 | lemma increasing_LIMSEQ: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2199 | fixes f :: "nat \<Rightarrow> real" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2200 | assumes inc: "\<And>n. f n \<le> f (Suc n)" | 
| 63545 | 2201 | and bdd: "\<And>n. f n \<le> l" | 
| 2202 | and en: "\<And>e. 0 < e \<Longrightarrow> \<exists>n. l \<le> f n + e" | |
| 61969 | 2203 | shows "f \<longlonglongrightarrow> l" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2204 | proof (rule increasing_tendsto) | 
| 63545 | 2205 | fix x | 
| 2206 | assume "x < l" | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2207 | with dense[of 0 "l - x"] obtain e where "0 < e" "e < l - x" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2208 | by auto | 
| 60758 | 2209 | from en[OF \<open>0 < e\<close>] obtain n where "l - e \<le> f n" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2210 | by (auto simp: field_simps) | 
| 63545 | 2211 | with \<open>e < l - x\<close> \<open>0 < e\<close> have "x < f n" | 
| 2212 | by simp | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2213 | with incseq_SucI[of f, OF inc] show "eventually (\<lambda>n. x < f n) sequentially" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2214 | by (auto simp: eventually_sequentially incseq_def intro: less_le_trans) | 
| 63545 | 2215 | qed (use bdd in auto) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2216 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2217 | lemma real_Cauchy_convergent: | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2218 | fixes X :: "nat \<Rightarrow> real" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2219 | assumes X: "Cauchy X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2220 | shows "convergent X" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2221 | proof - | 
| 63040 | 2222 |   define S :: "real set" where "S = {x. \<exists>N. \<forall>n\<ge>N. x < X n}"
 | 
| 63545 | 2223 | then have mem_S: "\<And>N x. \<forall>n\<ge>N. x < X n \<Longrightarrow> x \<in> S" | 
| 2224 | by auto | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2225 | |
| 63545 | 2226 | have bound_isUb: "y \<le> x" if N: "\<forall>n\<ge>N. X n < x" and "y \<in> S" for N and x y :: real | 
| 2227 | proof - | |
| 2228 | from that have "\<exists>M. \<forall>n\<ge>M. y < X n" | |
| 2229 | by (simp add: S_def) | |
| 2230 | then obtain M where "\<forall>n\<ge>M. y < X n" .. | |
| 2231 | then have "y < X (max M N)" by simp | |
| 2232 | also have "\<dots> < x" using N by simp | |
| 2233 | finally show ?thesis by (rule order_less_imp_le) | |
| 2234 | qed | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2235 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2236 | obtain N where "\<forall>m\<ge>N. \<forall>n\<ge>N. dist (X m) (X n) < 1" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2237 | using X[THEN metric_CauchyD, OF zero_less_one] by auto | 
| 63545 | 2238 | then have N: "\<forall>n\<ge>N. dist (X n) (X N) < 1" by simp | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 2239 |   have [simp]: "S \<noteq> {}"
 | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 2240 | proof (intro exI ex_in_conv[THEN iffD1]) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2241 | from N have "\<forall>n\<ge>N. X N - 1 < X n" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2242 | by (simp add: abs_diff_less_iff dist_real_def) | 
| 63545 | 2243 | then show "X N - 1 \<in> S" by (rule mem_S) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2244 | qed | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 2245 | have [simp]: "bdd_above S" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2246 | proof | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2247 | from N have "\<forall>n\<ge>N. X n < X N + 1" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2248 | by (simp add: abs_diff_less_iff dist_real_def) | 
| 63545 | 2249 | then show "\<And>s. s \<in> S \<Longrightarrow> s \<le> X N + 1" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2250 | by (rule bound_isUb) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2251 | qed | 
| 61969 | 2252 | have "X \<longlonglongrightarrow> Sup S" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2253 | proof (rule metric_LIMSEQ_I) | 
| 63545 | 2254 | fix r :: real | 
| 2255 | assume "0 < r" | |
| 2256 | then have r: "0 < r/2" by simp | |
| 2257 | obtain N where "\<forall>n\<ge>N. \<forall>m\<ge>N. dist (X n) (X m) < r/2" | |
| 2258 | using metric_CauchyD [OF X r] by auto | |
| 2259 | then have "\<forall>n\<ge>N. dist (X n) (X N) < r/2" by simp | |
| 2260 | then have N: "\<forall>n\<ge>N. X N - r/2 < X n \<and> X n < X N + r/2" | |
| 2261 | by (simp only: dist_real_def abs_diff_less_iff) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2262 | |
| 63545 | 2263 | from N have "\<forall>n\<ge>N. X N - r/2 < X n" by blast | 
| 2264 | then have "X N - r/2 \<in> S" by (rule mem_S) | |
| 2265 | then have 1: "X N - r/2 \<le> Sup S" by (simp add: cSup_upper) | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2266 | |
| 63545 | 2267 | from N have "\<forall>n\<ge>N. X n < X N + r/2" by blast | 
| 2268 | from bound_isUb[OF this] | |
| 2269 | have 2: "Sup S \<le> X N + r/2" | |
| 2270 | by (intro cSup_least) simp_all | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2271 | |
| 63545 | 2272 | show "\<exists>N. \<forall>n\<ge>N. dist (X n) (Sup S) < r" | 
| 2273 | proof (intro exI allI impI) | |
| 2274 | fix n | |
| 2275 | assume n: "N \<le> n" | |
| 2276 | from N n have "X n < X N + r/2" and "X N - r/2 < X n" | |
| 2277 | by simp_all | |
| 2278 | then show "dist (X n) (Sup S) < r" using 1 2 | |
| 2279 | by (simp add: abs_diff_less_iff dist_real_def) | |
| 2280 | qed | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2281 | qed | 
| 63545 | 2282 | then show ?thesis by (auto simp: convergent_def) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2283 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2284 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2285 | instance real :: complete_space | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2286 | by intro_classes (rule real_Cauchy_convergent) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2287 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2288 | class banach = real_normed_vector + complete_space | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2289 | |
| 61169 | 2290 | instance real :: banach .. | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2291 | |
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2292 | lemma tendsto_at_topI_sequentially: | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 2293 | fixes f :: "real \<Rightarrow> 'b::first_countable_topology" | 
| 61969 | 2294 | assumes *: "\<And>X. filterlim X at_top sequentially \<Longrightarrow> (\<lambda>n. f (X n)) \<longlonglongrightarrow> y" | 
| 61973 | 2295 | shows "(f \<longlongrightarrow> y) at_top" | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2296 | proof - | 
| 63545 | 2297 | obtain A where A: "decseq A" "open (A n)" "y \<in> A n" "nhds y = (INF n. principal (A n))" for n | 
| 2298 | by (rule nhds_countable[of y]) (rule that) | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 2299 | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2300 | have "\<forall>m. \<exists>k. \<forall>x\<ge>k. f x \<in> A m" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2301 | proof (rule ccontr) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2302 | assume "\<not> (\<forall>m. \<exists>k. \<forall>x\<ge>k. f x \<in> A m)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2303 | then obtain m where "\<And>k. \<exists>x\<ge>k. f x \<notin> A m" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2304 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2305 | then have "\<exists>X. \<forall>n. (f (X n) \<notin> A m) \<and> max n (X n) + 1 \<le> X (Suc n)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2306 | by (intro dependent_nat_choice) (auto simp del: max.bounded_iff) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2307 | then obtain X where X: "\<And>n. f (X n) \<notin> A m" "\<And>n. max n (X n) + 1 \<le> X (Suc n)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2308 | by auto | 
| 63545 | 2309 | have "1 \<le> n \<Longrightarrow> real n \<le> X n" for n | 
| 2310 | using X[of "n - 1"] by auto | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2311 | then have "filterlim X at_top sequentially" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2312 | by (force intro!: filterlim_at_top_mono[OF filterlim_real_sequentially] | 
| 63545 | 2313 | simp: eventually_sequentially) | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2314 | from topological_tendstoD[OF *[OF this] A(2, 3), of m] X(1) show False | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2315 | by auto | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 2316 | qed | 
| 63545 | 2317 | then obtain k where "k m \<le> x \<Longrightarrow> f x \<in> A m" for m x | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2318 | by metis | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57418diff
changeset | 2319 | then show ?thesis | 
| 63545 | 2320 | unfolding at_top_def A by (intro filterlim_base[where i=k]) auto | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 2321 | qed | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 2322 | |
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 2323 | lemma tendsto_at_topI_sequentially_real: | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2324 | fixes f :: "real \<Rightarrow> real" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2325 | assumes mono: "mono f" | 
| 63545 | 2326 | and limseq: "(\<lambda>n. f (real n)) \<longlonglongrightarrow> y" | 
| 61973 | 2327 | shows "(f \<longlongrightarrow> y) at_top" | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2328 | proof (rule tendstoI) | 
| 63545 | 2329 | fix e :: real | 
| 2330 | assume "0 < e" | |
| 2331 | with limseq obtain N :: nat where N: "N \<le> n \<Longrightarrow> \<bar>f (real n) - y\<bar> < e" for n | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 2332 | by (auto simp: lim_sequentially dist_real_def) | 
| 63545 | 2333 | have le: "f x \<le> y" for x :: real | 
| 2334 | proof - | |
| 53381 | 2335 | obtain n where "x \<le> real_of_nat n" | 
| 62623 
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 2336 | using real_arch_simple[of x] .. | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2337 | note monoD[OF mono this] | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2338 | also have "f (real_of_nat n) \<le> y" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 2339 | by (rule LIMSEQ_le_const[OF limseq]) (auto intro!: exI[of _ n] monoD[OF mono]) | 
| 63545 | 2340 | finally show ?thesis . | 
| 2341 | qed | |
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2342 | have "eventually (\<lambda>x. real N \<le> x) at_top" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2343 | by (rule eventually_ge_at_top) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2344 | then show "eventually (\<lambda>x. dist (f x) y < e) at_top" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2345 | proof eventually_elim | 
| 63545 | 2346 | case (elim x) | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2347 | with N[of N] le have "y - f (real N) < e" by auto | 
| 63545 | 2348 | moreover note monoD[OF mono elim] | 
| 51531 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2349 | ultimately show "dist (f x) y < e" | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2350 | using le[of x] by (auto simp: dist_real_def field_simps) | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2351 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2352 | qed | 
| 
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
 hoelzl parents: 
51524diff
changeset | 2353 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 2354 | end |