| author | wenzelm | 
| Sat, 18 Jan 2025 11:03:18 +0100 | |
| changeset 81904 | aa28d82d6b66 | 
| parent 81134 | d23f5a898084 | 
| child 82248 | e8c96013ea8a | 
| permissions | -rw-r--r-- | 
| 10358 | 1 | (* Title: HOL/Relation.thy | 
| 63612 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 3 | Author: Stefan Berghofer, TU Muenchen | |
| 76559 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 4 | Author: Martin Desharnais, MPI-INF Saarbruecken | 
| 1128 
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
 nipkow parents: diff
changeset | 5 | *) | 
| 
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
 nipkow parents: diff
changeset | 6 | |
| 60758 | 7 | section \<open>Relations -- as sets of pairs, and binary predicates\<close> | 
| 12905 | 8 | |
| 15131 | 9 | theory Relation | 
| 77695 
93531ba2c784
reversed import dependency between Relation and Finite_Set; and move theorems around
 desharna parents: 
77048diff
changeset | 10 | imports Product_Type Sum_Type Fields | 
| 15131 | 11 | begin | 
| 5978 
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
 paulson parents: 
5608diff
changeset | 12 | |
| 60758 | 13 | text \<open>A preliminary: classical rules for reasoning on predicates\<close> | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 14 | |
| 46882 | 15 | declare predicate1I [Pure.intro!, intro!] | 
| 16 | declare predicate1D [Pure.dest, dest] | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 17 | declare predicate2I [Pure.intro!, intro!] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 18 | declare predicate2D [Pure.dest, dest] | 
| 63404 | 19 | declare bot1E [elim!] | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 20 | declare bot2E [elim!] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 21 | declare top1I [intro!] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 22 | declare top2I [intro!] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 23 | declare inf1I [intro!] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 24 | declare inf2I [intro!] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 25 | declare inf1E [elim!] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 26 | declare inf2E [elim!] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 27 | declare sup1I1 [intro?] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 28 | declare sup2I1 [intro?] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 29 | declare sup1I2 [intro?] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 30 | declare sup2I2 [intro?] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 31 | declare sup1E [elim!] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 32 | declare sup2E [elim!] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 33 | declare sup1CI [intro!] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 34 | declare sup2CI [intro!] | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56545diff
changeset | 35 | declare Inf1_I [intro!] | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 36 | declare INF1_I [intro!] | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56545diff
changeset | 37 | declare Inf2_I [intro!] | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 38 | declare INF2_I [intro!] | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56545diff
changeset | 39 | declare Inf1_D [elim] | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 40 | declare INF1_D [elim] | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56545diff
changeset | 41 | declare Inf2_D [elim] | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 42 | declare INF2_D [elim] | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56545diff
changeset | 43 | declare Inf1_E [elim] | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 44 | declare INF1_E [elim] | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56545diff
changeset | 45 | declare Inf2_E [elim] | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 46 | declare INF2_E [elim] | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56545diff
changeset | 47 | declare Sup1_I [intro] | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 48 | declare SUP1_I [intro] | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56545diff
changeset | 49 | declare Sup2_I [intro] | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 50 | declare SUP2_I [intro] | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56545diff
changeset | 51 | declare Sup1_E [elim!] | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 52 | declare SUP1_E [elim!] | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56545diff
changeset | 53 | declare Sup2_E [elim!] | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 54 | declare SUP2_E [elim!] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 55 | |
| 63376 
4c0cc2b356f0
default one-step rules for predicates on relations;
 haftmann parents: 
62343diff
changeset | 56 | |
| 60758 | 57 | subsection \<open>Fundamental\<close> | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 58 | |
| 60758 | 59 | subsubsection \<open>Relations as sets of pairs\<close> | 
| 46694 | 60 | |
| 63404 | 61 | type_synonym 'a rel = "('a \<times> 'a) set"
 | 
| 46694 | 62 | |
| 63404 | 63 | lemma subrelI: "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (x, y) \<in> s) \<Longrightarrow> r \<subseteq> s" | 
| 64 |   \<comment> \<open>Version of @{thm [source] subsetI} for binary relations\<close>
 | |
| 46694 | 65 | by auto | 
| 66 | ||
| 63404 | 67 | lemma lfp_induct2: | 
| 46694 | 68 | "(a, b) \<in> lfp f \<Longrightarrow> mono f \<Longrightarrow> | 
| 69 |     (\<And>a b. (a, b) \<in> f (lfp f \<inter> {(x, y). P x y}) \<Longrightarrow> P a b) \<Longrightarrow> P a b"
 | |
| 63404 | 70 |   \<comment> \<open>Version of @{thm [source] lfp_induct} for binary relations\<close>
 | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
55096diff
changeset | 71 | using lfp_induct_set [of "(a, b)" f "case_prod P"] by auto | 
| 46694 | 72 | |
| 73 | ||
| 60758 | 74 | subsubsection \<open>Conversions between set and predicate relations\<close> | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 75 | |
| 46833 | 76 | lemma pred_equals_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) = (\<lambda>x. x \<in> S) \<longleftrightarrow> R = S" | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 77 | by (simp add: set_eq_iff fun_eq_iff) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 78 | |
| 46833 | 79 | lemma pred_equals_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) = (\<lambda>x y. (x, y) \<in> S) \<longleftrightarrow> R = S" | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 80 | by (simp add: set_eq_iff fun_eq_iff) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 81 | |
| 46833 | 82 | lemma pred_subset_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<le> (\<lambda>x. x \<in> S) \<longleftrightarrow> R \<subseteq> S" | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 83 | by (simp add: subset_iff le_fun_def) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 84 | |
| 46833 | 85 | lemma pred_subset_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<le> (\<lambda>x y. (x, y) \<in> S) \<longleftrightarrow> R \<subseteq> S" | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 86 | by (simp add: subset_iff le_fun_def) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 87 | |
| 46883 
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
 noschinl parents: 
46882diff
changeset | 88 | lemma bot_empty_eq [pred_set_conv]: "\<bottom> = (\<lambda>x. x \<in> {})"
 | 
| 46689 | 89 | by (auto simp add: fun_eq_iff) | 
| 90 | ||
| 46883 
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
 noschinl parents: 
46882diff
changeset | 91 | lemma bot_empty_eq2 [pred_set_conv]: "\<bottom> = (\<lambda>x y. (x, y) \<in> {})"
 | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 92 | by (auto simp add: fun_eq_iff) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 93 | |
| 76554 
a7d9e34c85e6
removed prod_set_conv attribute from top_empty_eq and top_empty_eq2
 desharna parents: 
76522diff
changeset | 94 | lemma top_empty_eq: "\<top> = (\<lambda>x. x \<in> UNIV)" | 
| 46883 
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
 noschinl parents: 
46882diff
changeset | 95 | by (auto simp add: fun_eq_iff) | 
| 46689 | 96 | |
| 76554 
a7d9e34c85e6
removed prod_set_conv attribute from top_empty_eq and top_empty_eq2
 desharna parents: 
76522diff
changeset | 97 | lemma top_empty_eq2: "\<top> = (\<lambda>x y. (x, y) \<in> UNIV)" | 
| 46883 
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
 noschinl parents: 
46882diff
changeset | 98 | by (auto simp add: fun_eq_iff) | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 99 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 100 | lemma inf_Int_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<sqinter> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 101 | by (simp add: inf_fun_def) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 102 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 103 | lemma inf_Int_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<sqinter> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 104 | by (simp add: inf_fun_def) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 105 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 106 | lemma sup_Un_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<squnion> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 107 | by (simp add: sup_fun_def) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 108 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 109 | lemma sup_Un_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<squnion> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 110 | by (simp add: sup_fun_def) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 111 | |
| 46981 | 112 | lemma INF_INT_eq [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Inter>i\<in>S. r i))" | 
| 113 | by (simp add: fun_eq_iff) | |
| 114 | ||
| 115 | lemma INF_INT_eq2 [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Inter>i\<in>S. r i))" | |
| 116 | by (simp add: fun_eq_iff) | |
| 117 | ||
| 118 | lemma SUP_UN_eq [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Union>i\<in>S. r i))" | |
| 119 | by (simp add: fun_eq_iff) | |
| 120 | ||
| 121 | lemma SUP_UN_eq2 [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Union>i\<in>S. r i))" | |
| 122 | by (simp add: fun_eq_iff) | |
| 123 | ||
| 69275 | 124 | lemma Inf_INT_eq [pred_set_conv]: "\<Sqinter>S = (\<lambda>x. x \<in> (\<Inter>(Collect ` S)))" | 
| 46884 | 125 | by (simp add: fun_eq_iff) | 
| 46833 | 126 | |
| 127 | lemma INF_Int_eq [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x. x \<in> i)) = (\<lambda>x. x \<in> \<Inter>S)" | |
| 46884 | 128 | by (simp add: fun_eq_iff) | 
| 46833 | 129 | |
| 69275 | 130 | lemma Inf_INT_eq2 [pred_set_conv]: "\<Sqinter>S = (\<lambda>x y. (x, y) \<in> (\<Inter>(Collect ` case_prod ` S)))" | 
| 46884 | 131 | by (simp add: fun_eq_iff) | 
| 46833 | 132 | |
| 133 | lemma INF_Int_eq2 [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x y. (x, y) \<in> i)) = (\<lambda>x y. (x, y) \<in> \<Inter>S)" | |
| 46884 | 134 | by (simp add: fun_eq_iff) | 
| 46833 | 135 | |
| 69275 | 136 | lemma Sup_SUP_eq [pred_set_conv]: "\<Squnion>S = (\<lambda>x. x \<in> \<Union>(Collect ` S))" | 
| 46884 | 137 | by (simp add: fun_eq_iff) | 
| 46833 | 138 | |
| 139 | lemma SUP_Sup_eq [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x. x \<in> i)) = (\<lambda>x. x \<in> \<Union>S)" | |
| 46884 | 140 | by (simp add: fun_eq_iff) | 
| 46833 | 141 | |
| 69275 | 142 | lemma Sup_SUP_eq2 [pred_set_conv]: "\<Squnion>S = (\<lambda>x y. (x, y) \<in> (\<Union>(Collect ` case_prod ` S)))" | 
| 46884 | 143 | by (simp add: fun_eq_iff) | 
| 46833 | 144 | |
| 145 | lemma SUP_Sup_eq2 [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x y. (x, y) \<in> i)) = (\<lambda>x y. (x, y) \<in> \<Union>S)" | |
| 46884 | 146 | by (simp add: fun_eq_iff) | 
| 46833 | 147 | |
| 63376 
4c0cc2b356f0
default one-step rules for predicates on relations;
 haftmann parents: 
62343diff
changeset | 148 | |
| 60758 | 149 | subsection \<open>Properties of relations\<close> | 
| 5978 
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
 paulson parents: 
5608diff
changeset | 150 | |
| 60758 | 151 | subsubsection \<open>Reflexivity\<close> | 
| 10786 | 152 | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 153 | definition refl_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool" | 
| 63404 | 154 | where "refl_on A r \<longleftrightarrow> r \<subseteq> A \<times> A \<and> (\<forall>x\<in>A. (x, x) \<in> r)" | 
| 6806 
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
 paulson parents: 
5978diff
changeset | 155 | |
| 63404 | 156 | abbreviation refl :: "'a rel \<Rightarrow> bool" \<comment> \<open>reflexivity over a type\<close> | 
| 157 | where "refl \<equiv> refl_on UNIV" | |
| 26297 | 158 | |
| 75503 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 159 | definition reflp_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 160 | where "reflp_on A R \<longleftrightarrow> (\<forall>x\<in>A. R x x)" | 
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 161 | |
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 162 | abbreviation reflp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 163 | where "reflp \<equiv> reflp_on UNIV" | 
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 164 | |
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 165 | lemma reflp_def[no_atp]: "reflp R \<longleftrightarrow> (\<forall>x. R x x)" | 
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 166 | by (simp add: reflp_on_def) | 
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 167 | |
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 168 | text \<open>@{thm [source] reflp_def} is for backward compatibility.\<close>
 | 
| 46694 | 169 | |
| 63404 | 170 | lemma reflp_refl_eq [pred_set_conv]: "reflp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> refl r" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 171 | by (simp add: refl_on_def reflp_def) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 172 | |
| 63404 | 173 | lemma refl_onI [intro?]: "r \<subseteq> A \<times> A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> (x, x) \<in> r) \<Longrightarrow> refl_on A r" | 
| 174 | unfolding refl_on_def by (iprover intro!: ballI) | |
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 175 | |
| 76697 | 176 | lemma reflI: "(\<And>x. (x, x) \<in> r) \<Longrightarrow> refl r" | 
| 177 | by (auto intro: refl_onI) | |
| 178 | ||
| 75503 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 179 | lemma reflp_onI: | 
| 76256 
207b6fcfc47d
removed unused universal variable from lemma reflp_onI
 desharna parents: 
76255diff
changeset | 180 | "(\<And>x. x \<in> A \<Longrightarrow> R x x) \<Longrightarrow> reflp_on A R" | 
| 75503 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 181 | by (simp add: reflp_on_def) | 
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 182 | |
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 183 | lemma reflpI[intro?]: "(\<And>x. R x x) \<Longrightarrow> reflp R" | 
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 184 | by (rule reflp_onI) | 
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 185 | |
| 63404 | 186 | lemma refl_onD: "refl_on A r \<Longrightarrow> a \<in> A \<Longrightarrow> (a, a) \<in> r" | 
| 187 | unfolding refl_on_def by blast | |
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 188 | |
| 63404 | 189 | lemma refl_onD1: "refl_on A r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> x \<in> A" | 
| 190 | unfolding refl_on_def by blast | |
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 191 | |
| 63404 | 192 | lemma refl_onD2: "refl_on A r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> y \<in> A" | 
| 193 | unfolding refl_on_def by blast | |
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 194 | |
| 76697 | 195 | lemma reflD: "refl r \<Longrightarrow> (a, a) \<in> r" | 
| 196 | unfolding refl_on_def by blast | |
| 197 | ||
| 75503 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 198 | lemma reflp_onD: | 
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 199 | "reflp_on A R \<Longrightarrow> x \<in> A \<Longrightarrow> R x x" | 
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 200 | by (simp add: reflp_on_def) | 
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 201 | |
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 202 | lemma reflpD[dest?]: "reflp R \<Longrightarrow> R x x" | 
| 
e5d88927e017
introduced predicate reflp_on and redefined reflp to be an abbreviation
 desharna parents: 
75466diff
changeset | 203 | by (simp add: reflp_onD) | 
| 46694 | 204 | |
| 205 | lemma reflpE: | |
| 206 | assumes "reflp r" | |
| 207 | obtains "r x x" | |
| 208 | using assms by (auto dest: refl_onD simp add: reflp_def) | |
| 209 | ||
| 75504 
75e1b94396c6
added lemmas reflp_on_subset, totalp_on_subset, and total_on_subset
 desharna parents: 
75503diff
changeset | 210 | lemma reflp_on_subset: "reflp_on A R \<Longrightarrow> B \<subseteq> A \<Longrightarrow> reflp_on B R" | 
| 
75e1b94396c6
added lemmas reflp_on_subset, totalp_on_subset, and total_on_subset
 desharna parents: 
75503diff
changeset | 211 | by (auto intro: reflp_onI dest: reflp_onD) | 
| 
75e1b94396c6
added lemmas reflp_on_subset, totalp_on_subset, and total_on_subset
 desharna parents: 
75503diff
changeset | 212 | |
| 79905 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 213 | lemma reflp_on_image: "reflp_on (f ` A) R \<longleftrightarrow> reflp_on A (\<lambda>a b. R (f a) (f b))" | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 214 | by (simp add: reflp_on_def) | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 215 | |
| 63404 | 216 | lemma refl_on_Int: "refl_on A r \<Longrightarrow> refl_on B s \<Longrightarrow> refl_on (A \<inter> B) (r \<inter> s)" | 
| 217 | unfolding refl_on_def by blast | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 218 | |
| 75530 
6bd264ff410f
added lemmas reflp_on_inf, reflp_on_sup, and reflp_on_mono
 desharna parents: 
75504diff
changeset | 219 | lemma reflp_on_inf: "reflp_on A R \<Longrightarrow> reflp_on B S \<Longrightarrow> reflp_on (A \<inter> B) (R \<sqinter> S)" | 
| 
6bd264ff410f
added lemmas reflp_on_inf, reflp_on_sup, and reflp_on_mono
 desharna parents: 
75504diff
changeset | 220 | by (auto intro: reflp_onI dest: reflp_onD) | 
| 
6bd264ff410f
added lemmas reflp_on_inf, reflp_on_sup, and reflp_on_mono
 desharna parents: 
75504diff
changeset | 221 | |
| 63404 | 222 | lemma reflp_inf: "reflp r \<Longrightarrow> reflp s \<Longrightarrow> reflp (r \<sqinter> s)" | 
| 75530 
6bd264ff410f
added lemmas reflp_on_inf, reflp_on_sup, and reflp_on_mono
 desharna parents: 
75504diff
changeset | 223 | by (rule reflp_on_inf[of UNIV _ UNIV, unfolded Int_absorb]) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 224 | |
| 63404 | 225 | lemma refl_on_Un: "refl_on A r \<Longrightarrow> refl_on B s \<Longrightarrow> refl_on (A \<union> B) (r \<union> s)" | 
| 226 | unfolding refl_on_def by blast | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 227 | |
| 75530 
6bd264ff410f
added lemmas reflp_on_inf, reflp_on_sup, and reflp_on_mono
 desharna parents: 
75504diff
changeset | 228 | lemma reflp_on_sup: "reflp_on A R \<Longrightarrow> reflp_on B S \<Longrightarrow> reflp_on (A \<union> B) (R \<squnion> S)" | 
| 
6bd264ff410f
added lemmas reflp_on_inf, reflp_on_sup, and reflp_on_mono
 desharna parents: 
75504diff
changeset | 229 | by (auto intro: reflp_onI dest: reflp_onD) | 
| 
6bd264ff410f
added lemmas reflp_on_inf, reflp_on_sup, and reflp_on_mono
 desharna parents: 
75504diff
changeset | 230 | |
| 63404 | 231 | lemma reflp_sup: "reflp r \<Longrightarrow> reflp s \<Longrightarrow> reflp (r \<squnion> s)" | 
| 75530 
6bd264ff410f
added lemmas reflp_on_inf, reflp_on_sup, and reflp_on_mono
 desharna parents: 
75504diff
changeset | 232 | by (rule reflp_on_sup[of UNIV _ UNIV, unfolded Un_absorb]) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 233 | |
| 69275 | 234 | lemma refl_on_INTER: "\<forall>x\<in>S. refl_on (A x) (r x) \<Longrightarrow> refl_on (\<Inter>(A ` S)) (\<Inter>(r ` S))" | 
| 63404 | 235 | unfolding refl_on_def by fast | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 236 | |
| 75532 | 237 | lemma reflp_on_Inf: "\<forall>x\<in>S. reflp_on (A x) (R x) \<Longrightarrow> reflp_on (\<Inter>(A ` S)) (\<Sqinter>(R ` S))" | 
| 238 | by (auto intro: reflp_onI dest: reflp_onD) | |
| 239 | ||
| 69275 | 240 | lemma refl_on_UNION: "\<forall>x\<in>S. refl_on (A x) (r x) \<Longrightarrow> refl_on (\<Union>(A ` S)) (\<Union>(r ` S))" | 
| 63404 | 241 | unfolding refl_on_def by blast | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 242 | |
| 75532 | 243 | lemma reflp_on_Sup: "\<forall>x\<in>S. reflp_on (A x) (R x) \<Longrightarrow> reflp_on (\<Union>(A ` S)) (\<Squnion>(R ` S))" | 
| 244 | by (auto intro: reflp_onI dest: reflp_onD) | |
| 245 | ||
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 246 | lemma refl_on_empty [simp]: "refl_on {} {}"
 | 
| 63404 | 247 | by (simp add: refl_on_def) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 248 | |
| 75540 
02719bd7b4e6
added lemma reflp_on_empty[simp] and totalp_on_empty[simp]
 desharna parents: 
75532diff
changeset | 249 | lemma reflp_on_empty [simp]: "reflp_on {} R"
 | 
| 
02719bd7b4e6
added lemma reflp_on_empty[simp] and totalp_on_empty[simp]
 desharna parents: 
75532diff
changeset | 250 | by (auto intro: reflp_onI) | 
| 
02719bd7b4e6
added lemma reflp_on_empty[simp] and totalp_on_empty[simp]
 desharna parents: 
75532diff
changeset | 251 | |
| 63563 
0bcd79da075b
prefer [simp] over [iff] as [iff] break HOL-UNITY
 Andreas Lochbihler parents: 
63561diff
changeset | 252 | lemma refl_on_singleton [simp]: "refl_on {x} {(x, x)}"
 | 
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63404diff
changeset | 253 | by (blast intro: refl_onI) | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63404diff
changeset | 254 | |
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 255 | lemma refl_on_def' [nitpick_unfold, code]: | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 256 | "refl_on A r \<longleftrightarrow> (\<forall>(x, y) \<in> r. x \<in> A \<and> y \<in> A) \<and> (\<forall>x \<in> A. (x, x) \<in> r)" | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 257 | by (auto intro: refl_onI dest: refl_onD refl_onD1 refl_onD2) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 258 | |
| 76522 
3fc92362fbb5
strengthened and renamed lemma reflp_on_equality
 desharna parents: 
76521diff
changeset | 259 | lemma reflp_on_equality [simp]: "reflp_on A (=)" | 
| 
3fc92362fbb5
strengthened and renamed lemma reflp_on_equality
 desharna parents: 
76521diff
changeset | 260 | by (simp add: reflp_on_def) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 261 | |
| 75530 
6bd264ff410f
added lemmas reflp_on_inf, reflp_on_sup, and reflp_on_mono
 desharna parents: 
75504diff
changeset | 262 | lemma reflp_on_mono: | 
| 
6bd264ff410f
added lemmas reflp_on_inf, reflp_on_sup, and reflp_on_mono
 desharna parents: 
75504diff
changeset | 263 | "reflp_on A R \<Longrightarrow> (\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> R x y \<Longrightarrow> Q x y) \<Longrightarrow> reflp_on A Q" | 
| 
6bd264ff410f
added lemmas reflp_on_inf, reflp_on_sup, and reflp_on_mono
 desharna parents: 
75504diff
changeset | 264 | by (auto intro: reflp_onI dest: reflp_onD) | 
| 
6bd264ff410f
added lemmas reflp_on_inf, reflp_on_sup, and reflp_on_mono
 desharna parents: 
75504diff
changeset | 265 | |
| 75531 
4e3e55aedd7f
replaced HOL.implies by Pure.imp in reflp_mono for consistency with other lemmas
 desharna parents: 
75530diff
changeset | 266 | lemma reflp_mono: "reflp R \<Longrightarrow> (\<And>x y. R x y \<Longrightarrow> Q x y) \<Longrightarrow> reflp Q" | 
| 75530 
6bd264ff410f
added lemmas reflp_on_inf, reflp_on_sup, and reflp_on_mono
 desharna parents: 
75504diff
changeset | 267 | by (rule reflp_on_mono[of UNIV R Q]) simp_all | 
| 61630 | 268 | |
| 76521 
15f868460de9
renamed lemmas linorder.totalp_on_(ge|greater|le|less) and preorder.reflp_(ge|le)
 desharna parents: 
76499diff
changeset | 269 | lemma (in preorder) reflp_on_le[simp]: "reflp_on A (\<le>)" | 
| 76286 
a00c80314b06
strengthened lemmas preorder.reflp_ge[simp] and preorder.reflp_le[simp]
 desharna parents: 
76285diff
changeset | 270 | by (simp add: reflp_onI) | 
| 76257 | 271 | |
| 76521 
15f868460de9
renamed lemmas linorder.totalp_on_(ge|greater|le|less) and preorder.reflp_(ge|le)
 desharna parents: 
76499diff
changeset | 272 | lemma (in preorder) reflp_on_ge[simp]: "reflp_on A (\<ge>)" | 
| 76286 
a00c80314b06
strengthened lemmas preorder.reflp_ge[simp] and preorder.reflp_le[simp]
 desharna parents: 
76285diff
changeset | 273 | by (simp add: reflp_onI) | 
| 76257 | 274 | |
| 63376 
4c0cc2b356f0
default one-step rules for predicates on relations;
 haftmann parents: 
62343diff
changeset | 275 | |
| 60758 | 276 | subsubsection \<open>Irreflexivity\<close> | 
| 6806 
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
 paulson parents: 
5978diff
changeset | 277 | |
| 76559 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 278 | definition irrefl_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool" where | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 279 | "irrefl_on A r \<longleftrightarrow> (\<forall>a \<in> A. (a, a) \<notin> r)" | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 280 | |
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 281 | abbreviation irrefl :: "'a rel \<Rightarrow> bool" where | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 282 | "irrefl \<equiv> irrefl_on UNIV" | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 283 | |
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 284 | definition irreflp_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 285 | "irreflp_on A R \<longleftrightarrow> (\<forall>a \<in> A. \<not> R a a)" | 
| 56545 | 286 | |
| 76559 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 287 | abbreviation irreflp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 288 | "irreflp \<equiv> irreflp_on UNIV" | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 289 | |
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 290 | lemma irrefl_def[no_atp]: "irrefl r \<longleftrightarrow> (\<forall>a. (a, a) \<notin> r)" | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 291 | by (simp add: irrefl_on_def) | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 292 | |
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 293 | lemma irreflp_def[no_atp]: "irreflp R \<longleftrightarrow> (\<forall>a. \<not> R a a)" | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 294 | by (simp add: irreflp_on_def) | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 295 | |
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 296 | text \<open>@{thm [source] irrefl_def} and @{thm [source] irreflp_def} are for backward compatibility.\<close>
 | 
| 56545 | 297 | |
| 76559 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 298 | lemma irreflp_on_irrefl_on_eq [pred_set_conv]: "irreflp_on A (\<lambda>a b. (a, b) \<in> r) \<longleftrightarrow> irrefl_on A r" | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 299 | by (simp add: irrefl_on_def irreflp_on_def) | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 300 | |
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 301 | lemmas irreflp_irrefl_eq = irreflp_on_irrefl_on_eq[of UNIV] | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 302 | |
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 303 | lemma irrefl_onI: "(\<And>a. a \<in> A \<Longrightarrow> (a, a) \<notin> r) \<Longrightarrow> irrefl_on A r" | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 304 | by (simp add: irrefl_on_def) | 
| 56545 | 305 | |
| 76559 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 306 | lemma irreflI[intro?]: "(\<And>a. (a, a) \<notin> r) \<Longrightarrow> irrefl r" | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 307 | by (rule irrefl_onI[of UNIV, simplified]) | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 308 | |
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 309 | lemma irreflp_onI: "(\<And>a. a \<in> A \<Longrightarrow> \<not> R a a) \<Longrightarrow> irreflp_on A R" | 
| 76588 
82a36e3d1b55
rewrite proofs using to_pred attribute on existing lemmas
 desharna parents: 
76574diff
changeset | 310 | by (rule irrefl_onI[to_pred]) | 
| 56545 | 311 | |
| 76559 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 312 | lemma irreflpI[intro?]: "(\<And>a. \<not> R a a) \<Longrightarrow> irreflp R" | 
| 76588 
82a36e3d1b55
rewrite proofs using to_pred attribute on existing lemmas
 desharna parents: 
76574diff
changeset | 313 | by (rule irreflI[to_pred]) | 
| 76559 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 314 | |
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 315 | lemma irrefl_onD: "irrefl_on A r \<Longrightarrow> a \<in> A \<Longrightarrow> (a, a) \<notin> r" | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 316 | by (simp add: irrefl_on_def) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 317 | |
| 76255 | 318 | lemma irreflD: "irrefl r \<Longrightarrow> (x, x) \<notin> r" | 
| 76559 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 319 | by (rule irrefl_onD[of UNIV, simplified]) | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 320 | |
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 321 | lemma irreflp_onD: "irreflp_on A R \<Longrightarrow> a \<in> A \<Longrightarrow> \<not> R a a" | 
| 76588 
82a36e3d1b55
rewrite proofs using to_pred attribute on existing lemmas
 desharna parents: 
76574diff
changeset | 322 | by (rule irrefl_onD[to_pred]) | 
| 76255 | 323 | |
| 324 | lemma irreflpD: "irreflp R \<Longrightarrow> \<not> R x x" | |
| 76588 
82a36e3d1b55
rewrite proofs using to_pred attribute on existing lemmas
 desharna parents: 
76574diff
changeset | 325 | by (rule irreflD[to_pred]) | 
| 76255 | 326 | |
| 76559 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 327 | lemma irrefl_on_distinct [code]: "irrefl_on A r \<longleftrightarrow> (\<forall>(a, b) \<in> r. a \<in> A \<longrightarrow> b \<in> A \<longrightarrow> a \<noteq> b)" | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 328 | by (auto simp add: irrefl_on_def) | 
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 329 | |
| 
4352d0ff165a
introduced predicates irrefl_on and irreflp_on, and redefined irrefl and irreflp as abbreviations
 desharna parents: 
76554diff
changeset | 330 | lemmas irrefl_distinct = irrefl_on_distinct \<comment> \<open>For backward compatibility\<close> | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 331 | |
| 76560 
df6ba3cf7874
added lemmas irrefl_on_subset and irreflp_on_subset
 desharna parents: 
76559diff
changeset | 332 | lemma irrefl_on_subset: "irrefl_on A r \<Longrightarrow> B \<subseteq> A \<Longrightarrow> irrefl_on B r" | 
| 
df6ba3cf7874
added lemmas irrefl_on_subset and irreflp_on_subset
 desharna parents: 
76559diff
changeset | 333 | by (auto simp: irrefl_on_def) | 
| 
df6ba3cf7874
added lemmas irrefl_on_subset and irreflp_on_subset
 desharna parents: 
76559diff
changeset | 334 | |
| 
df6ba3cf7874
added lemmas irrefl_on_subset and irreflp_on_subset
 desharna parents: 
76559diff
changeset | 335 | lemma irreflp_on_subset: "irreflp_on A R \<Longrightarrow> B \<subseteq> A \<Longrightarrow> irreflp_on B R" | 
| 
df6ba3cf7874
added lemmas irrefl_on_subset and irreflp_on_subset
 desharna parents: 
76559diff
changeset | 336 | by (auto simp: irreflp_on_def) | 
| 
df6ba3cf7874
added lemmas irrefl_on_subset and irreflp_on_subset
 desharna parents: 
76559diff
changeset | 337 | |
| 79905 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 338 | lemma irreflp_on_image: "irreflp_on (f ` A) R \<longleftrightarrow> irreflp_on A (\<lambda>a b. R (f a) (f b))" | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 339 | by (simp add: irreflp_on_def) | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 340 | |
| 76570 
608489919ecf
strengthened and renamed irreflp_greater[simp] and irreflp_less[simp]
 desharna parents: 
76560diff
changeset | 341 | lemma (in preorder) irreflp_on_less[simp]: "irreflp_on A (<)" | 
| 
608489919ecf
strengthened and renamed irreflp_greater[simp] and irreflp_less[simp]
 desharna parents: 
76560diff
changeset | 342 | by (simp add: irreflp_onI) | 
| 74865 
b5031a8f7718
added lemmas irreflp_{less,greater} to preorder and {trans,irrefl}_mult{,p} to Multiset
 desharna parents: 
74806diff
changeset | 343 | |
| 76570 
608489919ecf
strengthened and renamed irreflp_greater[simp] and irreflp_less[simp]
 desharna parents: 
76560diff
changeset | 344 | lemma (in preorder) irreflp_on_greater[simp]: "irreflp_on A (>)" | 
| 
608489919ecf
strengthened and renamed irreflp_greater[simp] and irreflp_less[simp]
 desharna parents: 
76560diff
changeset | 345 | by (simp add: irreflp_onI) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 346 | |
| 76682 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 347 | |
| 60758 | 348 | subsubsection \<open>Asymmetry\<close> | 
| 56545 | 349 | |
| 76682 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 350 | definition asym_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool" where | 
| 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 351 | "asym_on A r \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> A. (x, y) \<in> r \<longrightarrow> (y, x) \<notin> r)" | 
| 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 352 | |
| 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 353 | abbreviation asym :: "'a rel \<Rightarrow> bool" where | 
| 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 354 | "asym \<equiv> asym_on UNIV" | 
| 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 355 | |
| 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 356 | definition asymp_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 357 | "asymp_on A R \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> A. R x y \<longrightarrow> \<not> R y x)" | 
| 56545 | 358 | |
| 76682 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 359 | abbreviation asymp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 360 | "asymp \<equiv> asymp_on UNIV" | 
| 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 361 | |
| 76686 | 362 | lemma asymp_on_asym_on_eq[pred_set_conv]: "asymp_on A (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> asym_on A r" | 
| 76682 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 363 | by (simp add: asymp_on_def asym_on_def) | 
| 56545 | 364 | |
| 76686 | 365 | lemmas asymp_asym_eq = asymp_on_asym_on_eq[of UNIV] \<comment> \<open>For backward compatibility\<close> | 
| 366 | ||
| 76683 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 367 | lemma asym_onI[intro]: | 
| 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 368 | "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, x) \<notin> r) \<Longrightarrow> asym_on A r" | 
| 76682 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
76648diff
changeset | 369 | by (simp add: asym_on_def) | 
| 71935 
82b00b8f1871
fixed the utterly weird definitions of asym / asymp, and added many asym lemmas
 paulson <lp15@cam.ac.uk> parents: 
71827diff
changeset | 370 | |
| 76683 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 371 | lemma asymI[intro]: "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (y, x) \<notin> r) \<Longrightarrow> asym r" | 
| 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 372 | by (simp add: asym_onI) | 
| 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 373 | |
| 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 374 | lemma asymp_onI[intro]: | 
| 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 375 | "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> R x y \<Longrightarrow> \<not> R y x) \<Longrightarrow> asymp_on A R" | 
| 76686 | 376 | by (rule asym_onI[to_pred]) | 
| 76683 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 377 | |
| 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 378 | lemma asympI[intro]: "(\<And>x y. R x y \<Longrightarrow> \<not> R y x) \<Longrightarrow> asymp R" | 
| 76686 | 379 | by (rule asymI[to_pred]) | 
| 76683 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 380 | |
| 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 381 | lemma asym_onD: "asym_on A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, x) \<notin> r" | 
| 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 382 | by (simp add: asym_on_def) | 
| 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 383 | |
| 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 384 | lemma asymD: "asym r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, x) \<notin> r" | 
| 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 385 | by (simp add: asym_onD) | 
| 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 386 | |
| 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 387 | lemma asymp_onD: "asymp_on A R \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> R x y \<Longrightarrow> \<not> R y x" | 
| 76686 | 388 | by (rule asym_onD[to_pred]) | 
| 76683 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 389 | |
| 74975 | 390 | lemma asympD: "asymp R \<Longrightarrow> R x y \<Longrightarrow> \<not> R y x" | 
| 391 | by (rule asymD[to_pred]) | |
| 392 | ||
| 76687 | 393 | lemma asym_iff: "asym r \<longleftrightarrow> (\<forall>x y. (x,y) \<in> r \<longrightarrow> (y,x) \<notin> r)" | 
| 76683 
cca28679bdbf
added lemmas asym_onI, asymp_onI, asym_onD, and asymp_onD
 desharna parents: 
76682diff
changeset | 394 | by (blast dest: asymD) | 
| 56545 | 395 | |
| 76684 | 396 | lemma asym_on_subset: "asym_on A r \<Longrightarrow> B \<subseteq> A \<Longrightarrow> asym_on B r" | 
| 397 | by (auto simp: asym_on_def) | |
| 398 | ||
| 399 | lemma asymp_on_subset: "asymp_on A R \<Longrightarrow> B \<subseteq> A \<Longrightarrow> asymp_on B R" | |
| 400 | by (auto simp: asymp_on_def) | |
| 401 | ||
| 79905 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 402 | lemma asymp_on_image: "asymp_on (f ` A) R \<longleftrightarrow> asymp_on A (\<lambda>a b. R (f a) (f b))" | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 403 | by (simp add: asymp_on_def) | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 404 | |
| 76737 
9d9a2731a4e3
added lemmas irrefl_on_if_asym_on[simp] and irreflp_on_if_asymp_on[simp]
 desharna parents: 
76697diff
changeset | 405 | lemma irrefl_on_if_asym_on[simp]: "asym_on A r \<Longrightarrow> irrefl_on A r" | 
| 
9d9a2731a4e3
added lemmas irrefl_on_if_asym_on[simp] and irreflp_on_if_asymp_on[simp]
 desharna parents: 
76697diff
changeset | 406 | by (auto intro: irrefl_onI dest: asym_onD) | 
| 
9d9a2731a4e3
added lemmas irrefl_on_if_asym_on[simp] and irreflp_on_if_asymp_on[simp]
 desharna parents: 
76697diff
changeset | 407 | |
| 
9d9a2731a4e3
added lemmas irrefl_on_if_asym_on[simp] and irreflp_on_if_asymp_on[simp]
 desharna parents: 
76697diff
changeset | 408 | lemma irreflp_on_if_asymp_on[simp]: "asymp_on A r \<Longrightarrow> irreflp_on A r" | 
| 
9d9a2731a4e3
added lemmas irrefl_on_if_asym_on[simp] and irreflp_on_if_asymp_on[simp]
 desharna parents: 
76697diff
changeset | 409 | by (rule irrefl_on_if_asym_on[to_pred]) | 
| 
9d9a2731a4e3
added lemmas irrefl_on_if_asym_on[simp] and irreflp_on_if_asymp_on[simp]
 desharna parents: 
76697diff
changeset | 410 | |
| 76685 
806d0b3aebaf
strengthened and renamed asymp_less and asymp_greater
 desharna parents: 
76684diff
changeset | 411 | lemma (in preorder) asymp_on_less[simp]: "asymp_on A (<)" | 
| 
806d0b3aebaf
strengthened and renamed asymp_less and asymp_greater
 desharna parents: 
76684diff
changeset | 412 | by (auto intro: dual_order.asym) | 
| 74806 
ba59c691b3ee
added asymp_{less,greater} to preorder and moved mult1_lessE out
 desharna parents: 
73832diff
changeset | 413 | |
| 76685 
806d0b3aebaf
strengthened and renamed asymp_less and asymp_greater
 desharna parents: 
76684diff
changeset | 414 | lemma (in preorder) asymp_on_greater[simp]: "asymp_on A (>)" | 
| 
806d0b3aebaf
strengthened and renamed asymp_less and asymp_greater
 desharna parents: 
76684diff
changeset | 415 | by (auto intro: dual_order.asym) | 
| 74806 
ba59c691b3ee
added asymp_{less,greater} to preorder and moved mult1_lessE out
 desharna parents: 
73832diff
changeset | 416 | |
| 
ba59c691b3ee
added asymp_{less,greater} to preorder and moved mult1_lessE out
 desharna parents: 
73832diff
changeset | 417 | |
| 60758 | 418 | subsubsection \<open>Symmetry\<close> | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 419 | |
| 76644 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 420 | definition sym_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool" where | 
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 421 | "sym_on A r \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> A. (x, y) \<in> r \<longrightarrow> (y, x) \<in> r)" | 
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 422 | |
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 423 | abbreviation sym :: "'a rel \<Rightarrow> bool" where | 
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 424 | "sym \<equiv> sym_on UNIV" | 
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 425 | |
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 426 | definition symp_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 427 | "symp_on A R \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> A. R x y \<longrightarrow> R y x)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 428 | |
| 76644 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 429 | abbreviation symp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 430 | "symp \<equiv> symp_on UNIV" | 
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 431 | |
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 432 | lemma sym_def[no_atp]: "sym r \<longleftrightarrow> (\<forall>x y. (x, y) \<in> r \<longrightarrow> (y, x) \<in> r)" | 
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 433 | by (simp add: sym_on_def) | 
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 434 | |
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 435 | lemma symp_def[no_atp]: "symp R \<longleftrightarrow> (\<forall>x y. R x y \<longrightarrow> R y x)" | 
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 436 | by (simp add: symp_on_def) | 
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 437 | |
| 
99d6e9217586
added predicates sym_on and symp_on and redefined sym and symp to be abbreviations
 desharna parents: 
76642diff
changeset | 438 | text \<open>@{thm [source] sym_def} and @{thm [source] symp_def} are for backward compatibility.\<close>
 | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 439 | |
| 76645 | 440 | lemma symp_on_sym_on_eq[pred_set_conv]: "symp_on A (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> sym_on A r" | 
| 441 | by (simp add: sym_on_def symp_on_def) | |
| 442 | ||
| 443 | lemmas symp_sym_eq = symp_on_sym_on_eq[of UNIV] \<comment> \<open>For backward compatibility\<close> | |
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 444 | |
| 76648 | 445 | lemma sym_on_subset: "sym_on A r \<Longrightarrow> B \<subseteq> A \<Longrightarrow> sym_on B r" | 
| 446 | by (auto simp: sym_on_def) | |
| 447 | ||
| 448 | lemma symp_on_subset: "symp_on A R \<Longrightarrow> B \<subseteq> A \<Longrightarrow> symp_on B R" | |
| 449 | by (auto simp: symp_on_def) | |
| 450 | ||
| 79905 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 451 | lemma symp_on_image: "symp_on (f ` A) R \<longleftrightarrow> symp_on A (\<lambda>a b. R (f a) (f b))" | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 452 | by (simp add: symp_on_def) | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 453 | |
| 76646 | 454 | lemma sym_onI: "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, x) \<in> r) \<Longrightarrow> sym_on A r" | 
| 455 | by (simp add: sym_on_def) | |
| 456 | ||
| 457 | lemma symI [intro?]: "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (y, x) \<in> r) \<Longrightarrow> sym r" | |
| 458 | by (simp add: sym_onI) | |
| 46694 | 459 | |
| 76646 | 460 | lemma symp_onI: "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> R x y \<Longrightarrow> R y x) \<Longrightarrow> symp_on A R" | 
| 461 | by (rule sym_onI[to_pred]) | |
| 462 | ||
| 463 | lemma sympI [intro?]: "(\<And>x y. R x y \<Longrightarrow> R y x) \<Longrightarrow> symp R" | |
| 464 | by (rule symI[to_pred]) | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 465 | |
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 466 | lemma symE: | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 467 | assumes "sym r" and "(b, a) \<in> r" | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 468 | obtains "(a, b) \<in> r" | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 469 | using assms by (simp add: sym_def) | 
| 46694 | 470 | |
| 471 | lemma sympE: | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 472 | assumes "symp r" and "r b a" | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 473 | obtains "r a b" | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 474 | using assms by (rule symE [to_pred]) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 475 | |
| 76647 | 476 | lemma sym_onD: "sym_on A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, x) \<in> r" | 
| 477 | by (simp add: sym_on_def) | |
| 478 | ||
| 479 | lemma symD [dest?]: "sym r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, x) \<in> r" | |
| 480 | by (simp add: sym_onD) | |
| 46694 | 481 | |
| 76647 | 482 | lemma symp_onD: "symp_on A R \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> R x y \<Longrightarrow> R y x" | 
| 483 | by (rule sym_onD[to_pred]) | |
| 484 | ||
| 485 | lemma sympD [dest?]: "symp R \<Longrightarrow> R x y \<Longrightarrow> R y x" | |
| 486 | by (rule symD[to_pred]) | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 487 | |
| 63404 | 488 | lemma sym_Int: "sym r \<Longrightarrow> sym s \<Longrightarrow> sym (r \<inter> s)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 489 | by (fast intro: symI elim: symE) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 490 | |
| 63404 | 491 | lemma symp_inf: "symp r \<Longrightarrow> symp s \<Longrightarrow> symp (r \<sqinter> s)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 492 | by (fact sym_Int [to_pred]) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 493 | |
| 63404 | 494 | lemma sym_Un: "sym r \<Longrightarrow> sym s \<Longrightarrow> sym (r \<union> s)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 495 | by (fast intro: symI elim: symE) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 496 | |
| 63404 | 497 | lemma symp_sup: "symp r \<Longrightarrow> symp s \<Longrightarrow> symp (r \<squnion> s)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 498 | by (fact sym_Un [to_pred]) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 499 | |
| 69275 | 500 | lemma sym_INTER: "\<forall>x\<in>S. sym (r x) \<Longrightarrow> sym (\<Inter>(r ` S))" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 501 | by (fast intro: symI elim: symE) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 502 | |
| 69275 | 503 | lemma symp_INF: "\<forall>x\<in>S. symp (r x) \<Longrightarrow> symp (\<Sqinter>(r ` S))" | 
| 46982 | 504 | by (fact sym_INTER [to_pred]) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 505 | |
| 69275 | 506 | lemma sym_UNION: "\<forall>x\<in>S. sym (r x) \<Longrightarrow> sym (\<Union>(r ` S))" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 507 | by (fast intro: symI elim: symE) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 508 | |
| 69275 | 509 | lemma symp_SUP: "\<forall>x\<in>S. symp (r x) \<Longrightarrow> symp (\<Squnion>(r ` S))" | 
| 46982 | 510 | by (fact sym_UNION [to_pred]) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 511 | |
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 512 | |
| 60758 | 513 | subsubsection \<open>Antisymmetry\<close> | 
| 46694 | 514 | |
| 76636 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 515 | definition antisym_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool" where | 
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 516 | "antisym_on A r \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> A. (x, y) \<in> r \<longrightarrow> (y, x) \<in> r \<longrightarrow> x = y)" | 
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 517 | |
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 518 | abbreviation antisym :: "'a rel \<Rightarrow> bool" where | 
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 519 | "antisym \<equiv> antisym_on UNIV" | 
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 520 | |
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 521 | definition antisymp_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 522 | "antisymp_on A R \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> A. R x y \<longrightarrow> R y x \<longrightarrow> x = y)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 523 | |
| 76636 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 524 | abbreviation antisymp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 525 | "antisymp \<equiv> antisymp_on UNIV" | 
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 526 | |
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 527 | lemma antisym_def[no_atp]: "antisym r \<longleftrightarrow> (\<forall>x y. (x, y) \<in> r \<longrightarrow> (y, x) \<in> r \<longrightarrow> x = y)" | 
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 528 | by (simp add: antisym_on_def) | 
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 529 | |
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 530 | lemma antisymp_def[no_atp]: "antisymp R \<longleftrightarrow> (\<forall>x y. R x y \<longrightarrow> R y x \<longrightarrow> x = y)" | 
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 531 | by (simp add: antisymp_on_def) | 
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 532 | |
| 
e772c8e6edd0
added predicates antisym_on and antisymp_on and redefined antisym and antisymp to be abbreviations
 desharna parents: 
76588diff
changeset | 533 | text \<open>@{thm [source] antisym_def} and @{thm [source] antisymp_def} are for backward compatibility.\<close>
 | 
| 63404 | 534 | |
| 76637 | 535 | lemma antisymp_on_antisym_on_eq[pred_set_conv]: | 
| 536 | "antisymp_on A (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> antisym_on A r" | |
| 537 | by (simp add: antisym_on_def antisymp_on_def) | |
| 538 | ||
| 76642 
878ed0fcb510
added lemmas antisym_on_subset and antisymp_on_subset
 desharna parents: 
76641diff
changeset | 539 | lemmas antisymp_antisym_eq = antisymp_on_antisym_on_eq[of UNIV] \<comment> \<open>For backward compatibility\<close> | 
| 
878ed0fcb510
added lemmas antisym_on_subset and antisymp_on_subset
 desharna parents: 
76641diff
changeset | 540 | |
| 
878ed0fcb510
added lemmas antisym_on_subset and antisymp_on_subset
 desharna parents: 
76641diff
changeset | 541 | lemma antisym_on_subset: "antisym_on A r \<Longrightarrow> B \<subseteq> A \<Longrightarrow> antisym_on B r" | 
| 
878ed0fcb510
added lemmas antisym_on_subset and antisymp_on_subset
 desharna parents: 
76641diff
changeset | 542 | by (auto simp: antisym_on_def) | 
| 
878ed0fcb510
added lemmas antisym_on_subset and antisymp_on_subset
 desharna parents: 
76641diff
changeset | 543 | |
| 
878ed0fcb510
added lemmas antisym_on_subset and antisymp_on_subset
 desharna parents: 
76641diff
changeset | 544 | lemma antisymp_on_subset: "antisymp_on A R \<Longrightarrow> B \<subseteq> A \<Longrightarrow> antisymp_on B R" | 
| 
878ed0fcb510
added lemmas antisym_on_subset and antisymp_on_subset
 desharna parents: 
76641diff
changeset | 545 | by (auto simp: antisymp_on_def) | 
| 64634 | 546 | |
| 79905 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 547 | lemma antisymp_on_image: | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 548 | assumes "inj_on f A" | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 549 | shows "antisymp_on (f ` A) R \<longleftrightarrow> antisymp_on A (\<lambda>a b. R (f a) (f b))" | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 550 | using assms by (auto simp: antisymp_on_def inj_on_def) | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 551 | |
| 76639 | 552 | lemma antisym_onI: | 
| 553 | "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, x) \<in> r \<Longrightarrow> x = y) \<Longrightarrow> antisym_on A r" | |
| 554 | unfolding antisym_on_def by simp | |
| 555 | ||
| 64634 | 556 | lemma antisymI [intro?]: | 
| 557 | "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (y, x) \<in> r \<Longrightarrow> x = y) \<Longrightarrow> antisym r" | |
| 76639 | 558 | by (simp add: antisym_onI) | 
| 559 | ||
| 560 | lemma antisymp_onI: | |
| 561 | "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> R x y \<Longrightarrow> R y x \<Longrightarrow> x = y) \<Longrightarrow> antisymp_on A R" | |
| 562 | by (rule antisym_onI[to_pred]) | |
| 46694 | 563 | |
| 64634 | 564 | lemma antisympI [intro?]: | 
| 76639 | 565 | "(\<And>x y. R x y \<Longrightarrow> R y x \<Longrightarrow> x = y) \<Longrightarrow> antisymp R" | 
| 566 | by (rule antisymI[to_pred]) | |
| 64634 | 567 | |
| 76640 | 568 | lemma antisym_onD: | 
| 569 | "antisym_on A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, x) \<in> r \<Longrightarrow> x = y" | |
| 570 | by (simp add: antisym_on_def) | |
| 571 | ||
| 64634 | 572 | lemma antisymD [dest?]: | 
| 76640 | 573 | "antisym r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, x) \<in> r \<Longrightarrow> x = y" | 
| 574 | by (simp add: antisym_onD) | |
| 575 | ||
| 576 | lemma antisymp_onD: | |
| 577 | "antisymp_on A R \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> R x y \<Longrightarrow> R y x \<Longrightarrow> x = y" | |
| 578 | by (rule antisym_onD[to_pred]) | |
| 46694 | 579 | |
| 64634 | 580 | lemma antisympD [dest?]: | 
| 76640 | 581 | "antisymp R \<Longrightarrow> R x y \<Longrightarrow> R y x \<Longrightarrow> x = y" | 
| 582 | by (rule antisymD[to_pred]) | |
| 46694 | 583 | |
| 64634 | 584 | lemma antisym_subset: | 
| 585 | "r \<subseteq> s \<Longrightarrow> antisym s \<Longrightarrow> antisym r" | |
| 63404 | 586 | unfolding antisym_def by blast | 
| 46694 | 587 | |
| 64634 | 588 | lemma antisymp_less_eq: | 
| 589 | "r \<le> s \<Longrightarrow> antisymp s \<Longrightarrow> antisymp r" | |
| 590 | by (fact antisym_subset [to_pred]) | |
| 591 | ||
| 592 | lemma antisym_empty [simp]: | |
| 593 |   "antisym {}"
 | |
| 594 | unfolding antisym_def by blast | |
| 46694 | 595 | |
| 64634 | 596 | lemma antisym_bot [simp]: | 
| 597 | "antisymp \<bottom>" | |
| 598 | by (fact antisym_empty [to_pred]) | |
| 599 | ||
| 600 | lemma antisymp_equality [simp]: | |
| 601 | "antisymp HOL.eq" | |
| 602 | by (auto intro: antisympI) | |
| 603 | ||
| 604 | lemma antisym_singleton [simp]: | |
| 605 |   "antisym {x}"
 | |
| 606 | by (blast intro: antisymI) | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63404diff
changeset | 607 | |
| 76688 
87e7ab6aa40b
strengthened lemmas antisym_on_if_asym_on and antisymp_on_if_asymp_on
 desharna parents: 
76687diff
changeset | 608 | lemma antisym_on_if_asym_on: "asym_on A r \<Longrightarrow> antisym_on A r" | 
| 
87e7ab6aa40b
strengthened lemmas antisym_on_if_asym_on and antisymp_on_if_asymp_on
 desharna parents: 
76687diff
changeset | 609 | by (auto intro: antisym_onI dest: asym_onD) | 
| 76254 
7ae89ee919a7
added lemmas antisym_if_asym and antisymp_if_asymp
 desharna parents: 
76253diff
changeset | 610 | |
| 76688 
87e7ab6aa40b
strengthened lemmas antisym_on_if_asym_on and antisymp_on_if_asymp_on
 desharna parents: 
76687diff
changeset | 611 | lemma antisymp_on_if_asymp_on: "asymp_on A R \<Longrightarrow> antisymp_on A R" | 
| 
87e7ab6aa40b
strengthened lemmas antisym_on_if_asym_on and antisymp_on_if_asymp_on
 desharna parents: 
76687diff
changeset | 612 | by (rule antisym_on_if_asym_on[to_pred]) | 
| 76254 
7ae89ee919a7
added lemmas antisym_if_asym and antisymp_if_asymp
 desharna parents: 
76253diff
changeset | 613 | |
| 76689 
ca258cf6c977
strengthened and renamed lemmas antisymp_less and antisymp_greater
 desharna parents: 
76688diff
changeset | 614 | lemma (in preorder) antisymp_on_less[simp]: "antisymp_on A (<)" | 
| 76688 
87e7ab6aa40b
strengthened lemmas antisym_on_if_asym_on and antisymp_on_if_asymp_on
 desharna parents: 
76687diff
changeset | 615 | by (rule antisymp_on_if_asymp_on[OF asymp_on_less]) | 
| 76258 
2f10e7a2ff01
added lemmas antisymp_ge[simp], antisymp_greater[simp], antisymp_le[simp], and antisymp_less[simp]
 desharna parents: 
76257diff
changeset | 616 | |
| 76689 
ca258cf6c977
strengthened and renamed lemmas antisymp_less and antisymp_greater
 desharna parents: 
76688diff
changeset | 617 | lemma (in preorder) antisymp_on_greater[simp]: "antisymp_on A (>)" | 
| 76688 
87e7ab6aa40b
strengthened lemmas antisym_on_if_asym_on and antisymp_on_if_asymp_on
 desharna parents: 
76687diff
changeset | 618 | by (rule antisymp_on_if_asymp_on[OF asymp_on_greater]) | 
| 76258 
2f10e7a2ff01
added lemmas antisymp_ge[simp], antisymp_greater[simp], antisymp_le[simp], and antisymp_less[simp]
 desharna parents: 
76257diff
changeset | 619 | |
| 76641 | 620 | lemma (in order) antisymp_on_le[simp]: "antisymp_on A (\<le>)" | 
| 621 | by (simp add: antisymp_onI) | |
| 76258 
2f10e7a2ff01
added lemmas antisymp_ge[simp], antisymp_greater[simp], antisymp_le[simp], and antisymp_less[simp]
 desharna parents: 
76257diff
changeset | 622 | |
| 76641 | 623 | lemma (in order) antisymp_on_ge[simp]: "antisymp_on A (\<ge>)" | 
| 624 | by (simp add: antisymp_onI) | |
| 76258 
2f10e7a2ff01
added lemmas antisymp_ge[simp], antisymp_greater[simp], antisymp_le[simp], and antisymp_less[simp]
 desharna parents: 
76257diff
changeset | 625 | |
| 63376 
4c0cc2b356f0
default one-step rules for predicates on relations;
 haftmann parents: 
62343diff
changeset | 626 | |
| 60758 | 627 | subsubsection \<open>Transitivity\<close> | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 628 | |
| 76743 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 629 | definition trans_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool" where | 
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 630 | "trans_on A r \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> A. \<forall>z \<in> A. (x, y) \<in> r \<longrightarrow> (y, z) \<in> r \<longrightarrow> (x, z) \<in> r)" | 
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 631 | |
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 632 | abbreviation trans :: "'a rel \<Rightarrow> bool" where | 
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 633 | "trans \<equiv> trans_on UNIV" | 
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 634 | |
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 635 | definition transp_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 636 | "transp_on A R \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> A. \<forall>z \<in> A. R x y \<longrightarrow> R y z \<longrightarrow> R x z)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 637 | |
| 76743 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 638 | abbreviation transp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 639 | "transp \<equiv> transp_on UNIV" | 
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 640 | |
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 641 | lemma trans_def[no_atp]: "trans r \<longleftrightarrow> (\<forall>x y z. (x, y) \<in> r \<longrightarrow> (y, z) \<in> r \<longrightarrow> (x, z) \<in> r)" | 
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 642 | by (simp add: trans_on_def) | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 643 | |
| 76743 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 644 | lemma transp_def: "transp R \<longleftrightarrow> (\<forall>x y z. R x y \<longrightarrow> R y z \<longrightarrow> R x z)" | 
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 645 | by (simp add: transp_on_def) | 
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 646 | |
| 
d33fc5228aae
added predicates trans_on and transp_on and redefined trans and transp to be abbreviations
 desharna parents: 
76697diff
changeset | 647 | text \<open>@{thm [source] trans_def} and @{thm [source] transp_def} are for backward compatibility.\<close>
 | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 648 | |
| 76745 
201cbd9027fc
added lemma transp_on_trans_on_eq[pred_set_conv]
 desharna parents: 
76744diff
changeset | 649 | lemma transp_on_trans_on_eq[pred_set_conv]: "transp_on A (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> trans_on A r" | 
| 
201cbd9027fc
added lemma transp_on_trans_on_eq[pred_set_conv]
 desharna parents: 
76744diff
changeset | 650 | by (simp add: trans_on_def transp_on_def) | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 651 | |
| 76745 
201cbd9027fc
added lemma transp_on_trans_on_eq[pred_set_conv]
 desharna parents: 
76744diff
changeset | 652 | lemmas transp_trans_eq = transp_on_trans_on_eq[of UNIV] \<comment> \<open>For backward compatibility\<close> | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 653 | |
| 76746 | 654 | lemma trans_onI: | 
| 655 | "(\<And>x y z. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> z \<in> A \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> (x, z) \<in> r) \<Longrightarrow> | |
| 656 | trans_on A r" | |
| 657 | unfolding trans_on_def | |
| 658 | by (intro ballI) iprover | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 659 | |
| 63404 | 660 | lemma transI [intro?]: "(\<And>x y z. (x, y) \<in> r \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> (x, z) \<in> r) \<Longrightarrow> trans r" | 
| 76746 | 661 | by (rule trans_onI) | 
| 46694 | 662 | |
| 76746 | 663 | lemma transp_onI: | 
| 664 | "(\<And>x y z. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> z \<in> A \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z) \<Longrightarrow> transp_on A R" | |
| 665 | by (rule trans_onI[to_pred]) | |
| 666 | ||
| 667 | lemma transpI [intro?]: "(\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z) \<Longrightarrow> transp R" | |
| 668 | by (rule transI[to_pred]) | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 669 | |
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 670 | lemma transE: | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 671 | assumes "trans r" and "(x, y) \<in> r" and "(y, z) \<in> r" | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 672 | obtains "(x, z) \<in> r" | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 673 | using assms by (unfold trans_def) iprover | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 674 | |
| 46694 | 675 | lemma transpE: | 
| 676 | assumes "transp r" and "r x y" and "r y z" | |
| 677 | obtains "r x z" | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 678 | using assms by (rule transE [to_pred]) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 679 | |
| 76747 | 680 | lemma trans_onD: | 
| 681 | "trans_on A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> z \<in> A \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> (x, z) \<in> r" | |
| 682 | unfolding trans_on_def | |
| 683 | by (elim ballE) iprover+ | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 684 | |
| 76747 | 685 | lemma transD[dest?]: "trans r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> (x, z) \<in> r" | 
| 686 | by (simp add: trans_onD[of UNIV r x y z]) | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 687 | |
| 76747 | 688 | lemma transp_onD: "transp_on A R \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> z \<in> A \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" | 
| 689 | by (rule trans_onD[to_pred]) | |
| 690 | ||
| 691 | lemma transpD[dest?]: "transp R \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" | |
| 692 | by (rule transD[to_pred]) | |
| 46694 | 693 | |
| 76748 
b35ffbe82031
added lemmas trans_on_subset and transp_on_subset
 desharna parents: 
76747diff
changeset | 694 | lemma trans_on_subset: "trans_on A r \<Longrightarrow> B \<subseteq> A \<Longrightarrow> trans_on B r" | 
| 
b35ffbe82031
added lemmas trans_on_subset and transp_on_subset
 desharna parents: 
76747diff
changeset | 695 | by (auto simp: trans_on_def) | 
| 
b35ffbe82031
added lemmas trans_on_subset and transp_on_subset
 desharna parents: 
76747diff
changeset | 696 | |
| 
b35ffbe82031
added lemmas trans_on_subset and transp_on_subset
 desharna parents: 
76747diff
changeset | 697 | lemma transp_on_subset: "transp_on A R \<Longrightarrow> B \<subseteq> A \<Longrightarrow> transp_on B R" | 
| 
b35ffbe82031
added lemmas trans_on_subset and transp_on_subset
 desharna parents: 
76747diff
changeset | 698 | by (auto simp: transp_on_def) | 
| 46694 | 699 | |
| 79905 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 700 | lemma transp_on_image: "transp_on (f ` A) R \<longleftrightarrow> transp_on A (\<lambda>a b. R (f a) (f b))" | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 701 | by (simp add: transp_on_def) | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 702 | |
| 63404 | 703 | lemma trans_Int: "trans r \<Longrightarrow> trans s \<Longrightarrow> trans (r \<inter> s)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 704 | by (fast intro: transI elim: transE) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 705 | |
| 63404 | 706 | lemma transp_inf: "transp r \<Longrightarrow> transp s \<Longrightarrow> transp (r \<sqinter> s)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 707 | by (fact trans_Int [to_pred]) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 708 | |
| 69275 | 709 | lemma trans_INTER: "\<forall>x\<in>S. trans (r x) \<Longrightarrow> trans (\<Inter>(r ` S))" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 710 | by (fast intro: transI elim: transD) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 711 | |
| 69275 | 712 | lemma transp_INF: "\<forall>x\<in>S. transp (r x) \<Longrightarrow> transp (\<Sqinter>(r ` S))" | 
| 64584 | 713 | by (fact trans_INTER [to_pred]) | 
| 76744 | 714 | |
| 715 | lemma trans_on_join [code]: | |
| 716 | "trans_on A r \<longleftrightarrow> (\<forall>(x, y1) \<in> r. x \<in> A \<longrightarrow> y1 \<in> A \<longrightarrow> | |
| 717 | (\<forall>(y2, z) \<in> r. y1 = y2 \<longrightarrow> z \<in> A \<longrightarrow> (x, z) \<in> r))" | |
| 718 | by (auto simp: trans_on_def) | |
| 719 | ||
| 720 | lemma trans_join: "trans r \<longleftrightarrow> (\<forall>(x, y1) \<in> r. \<forall>(y2, z) \<in> r. y1 = y2 \<longrightarrow> (x, z) \<in> r)" | |
| 46694 | 721 | by (auto simp add: trans_def) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 722 | |
| 63404 | 723 | lemma transp_trans: "transp r \<longleftrightarrow> trans {(x, y). r x y}"
 | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 724 | by (simp add: trans_def transp_def) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 725 | |
| 67399 | 726 | lemma transp_equality [simp]: "transp (=)" | 
| 63404 | 727 | by (auto intro: transpI) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 728 | |
| 63563 
0bcd79da075b
prefer [simp] over [iff] as [iff] break HOL-UNITY
 Andreas Lochbihler parents: 
63561diff
changeset | 729 | lemma trans_empty [simp]: "trans {}"
 | 
| 63612 | 730 | by (blast intro: transI) | 
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63404diff
changeset | 731 | |
| 63563 
0bcd79da075b
prefer [simp] over [iff] as [iff] break HOL-UNITY
 Andreas Lochbihler parents: 
63561diff
changeset | 732 | lemma transp_empty [simp]: "transp (\<lambda>x y. False)" | 
| 63612 | 733 | using trans_empty[to_pred] by (simp add: bot_fun_def) | 
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63404diff
changeset | 734 | |
| 63563 
0bcd79da075b
prefer [simp] over [iff] as [iff] break HOL-UNITY
 Andreas Lochbihler parents: 
63561diff
changeset | 735 | lemma trans_singleton [simp]: "trans {(a, a)}"
 | 
| 63612 | 736 | by (blast intro: transI) | 
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63404diff
changeset | 737 | |
| 63563 
0bcd79da075b
prefer [simp] over [iff] as [iff] break HOL-UNITY
 Andreas Lochbihler parents: 
63561diff
changeset | 738 | lemma transp_singleton [simp]: "transp (\<lambda>x y. x = a \<and> y = a)" | 
| 63612 | 739 | by (simp add: transp_def) | 
| 740 | ||
| 76877 
c9e091867206
strengthened and renamed lemmas asym_on_iff_irrefl_on_if_trans and asymp_on_iff_irreflp_on_if_transp
 desharna parents: 
76773diff
changeset | 741 | lemma asym_on_iff_irrefl_on_if_trans_on: "trans_on A r \<Longrightarrow> asym_on A r \<longleftrightarrow> irrefl_on A r" | 
| 
c9e091867206
strengthened and renamed lemmas asym_on_iff_irrefl_on_if_trans and asymp_on_iff_irreflp_on_if_transp
 desharna parents: 
76773diff
changeset | 742 | by (auto intro: irrefl_on_if_asym_on dest: trans_onD irrefl_onD) | 
| 76574 
7bc934b99faf
added lemmas asym_if_irrefl_and_trans and asymp_if_irreflp_and_transp
 desharna parents: 
76573diff
changeset | 743 | |
| 76877 
c9e091867206
strengthened and renamed lemmas asym_on_iff_irrefl_on_if_trans and asymp_on_iff_irreflp_on_if_transp
 desharna parents: 
76773diff
changeset | 744 | lemma asymp_on_iff_irreflp_on_if_transp_on: "transp_on A R \<Longrightarrow> asymp_on A R \<longleftrightarrow> irreflp_on A R" | 
| 
c9e091867206
strengthened and renamed lemmas asym_on_iff_irrefl_on_if_trans and asymp_on_iff_irreflp_on_if_transp
 desharna parents: 
76773diff
changeset | 745 | by (rule asym_on_iff_irrefl_on_if_trans_on[to_pred]) | 
| 76574 
7bc934b99faf
added lemmas asym_if_irrefl_and_trans and asymp_if_irreflp_and_transp
 desharna parents: 
76573diff
changeset | 746 | |
| 76749 
11a24dab1880
strengthened and renamed lemmas preorder.transp_(ge|gr|le|less)
 desharna parents: 
76748diff
changeset | 747 | lemma (in preorder) transp_on_le[simp]: "transp_on A (\<le>)" | 
| 
11a24dab1880
strengthened and renamed lemmas preorder.transp_(ge|gr|le|less)
 desharna parents: 
76748diff
changeset | 748 | by (auto intro: transp_onI order_trans) | 
| 
11a24dab1880
strengthened and renamed lemmas preorder.transp_(ge|gr|le|less)
 desharna parents: 
76748diff
changeset | 749 | |
| 
11a24dab1880
strengthened and renamed lemmas preorder.transp_(ge|gr|le|less)
 desharna parents: 
76748diff
changeset | 750 | lemma (in preorder) transp_on_less[simp]: "transp_on A (<)" | 
| 
11a24dab1880
strengthened and renamed lemmas preorder.transp_(ge|gr|le|less)
 desharna parents: 
76748diff
changeset | 751 | by (auto intro: transp_onI less_trans) | 
| 
11a24dab1880
strengthened and renamed lemmas preorder.transp_(ge|gr|le|less)
 desharna parents: 
76748diff
changeset | 752 | |
| 
11a24dab1880
strengthened and renamed lemmas preorder.transp_(ge|gr|le|less)
 desharna parents: 
76748diff
changeset | 753 | lemma (in preorder) transp_on_ge[simp]: "transp_on A (\<ge>)" | 
| 
11a24dab1880
strengthened and renamed lemmas preorder.transp_(ge|gr|le|less)
 desharna parents: 
76748diff
changeset | 754 | by (auto intro: transp_onI order_trans) | 
| 
11a24dab1880
strengthened and renamed lemmas preorder.transp_(ge|gr|le|less)
 desharna parents: 
76748diff
changeset | 755 | |
| 
11a24dab1880
strengthened and renamed lemmas preorder.transp_(ge|gr|le|less)
 desharna parents: 
76748diff
changeset | 756 | lemma (in preorder) transp_on_greater[simp]: "transp_on A (>)" | 
| 
11a24dab1880
strengthened and renamed lemmas preorder.transp_(ge|gr|le|less)
 desharna parents: 
76748diff
changeset | 757 | by (auto intro: transp_onI less_trans) | 
| 66434 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
64634diff
changeset | 758 | |
| 63376 
4c0cc2b356f0
default one-step rules for predicates on relations;
 haftmann parents: 
62343diff
changeset | 759 | |
| 60758 | 760 | subsubsection \<open>Totality\<close> | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 761 | |
| 76571 | 762 | definition total_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool" where | 
| 763 | "total_on A r \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. x \<noteq> y \<longrightarrow> (x, y) \<in> r \<or> (y, x) \<in> r)" | |
| 29859 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 nipkow parents: 
29609diff
changeset | 764 | |
| 76571 | 765 | abbreviation total :: "'a rel \<Rightarrow> bool" where | 
| 766 | "total \<equiv> total_on UNIV" | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63404diff
changeset | 767 | |
| 76571 | 768 | definition totalp_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 75466 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 769 | "totalp_on A R \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> A. x \<noteq> y \<longrightarrow> R x y \<or> R y x)" | 
| 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 770 | |
| 76571 | 771 | abbreviation totalp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 75466 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 772 | "totalp \<equiv> totalp_on UNIV" | 
| 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 773 | |
| 77048 | 774 | lemma totalp_on_total_on_eq[pred_set_conv]: "totalp_on A (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> total_on A r" | 
| 75541 
a4fa039a6a60
added lemma totalp_on_total_on_eq[pred_set_conv]
 desharna parents: 
75540diff
changeset | 775 | by (simp add: totalp_on_def total_on_def) | 
| 
a4fa039a6a60
added lemma totalp_on_total_on_eq[pred_set_conv]
 desharna parents: 
75540diff
changeset | 776 | |
| 76571 | 777 | lemma total_onI [intro?]: | 
| 778 | "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> (x, y) \<in> r \<or> (y, x) \<in> r) \<Longrightarrow> total_on A r" | |
| 779 | unfolding total_on_def by blast | |
| 780 | ||
| 781 | lemma totalI: "(\<And>x y. x \<noteq> y \<Longrightarrow> (x, y) \<in> r \<or> (y, x) \<in> r) \<Longrightarrow> total r" | |
| 782 | by (rule total_onI) | |
| 783 | ||
| 784 | lemma totalp_onI: "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> R x y \<or> R y x) \<Longrightarrow> totalp_on A R" | |
| 76588 
82a36e3d1b55
rewrite proofs using to_pred attribute on existing lemmas
 desharna parents: 
76574diff
changeset | 785 | by (rule total_onI[to_pred]) | 
| 75466 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 786 | |
| 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 787 | lemma totalpI: "(\<And>x y. x \<noteq> y \<Longrightarrow> R x y \<or> R y x) \<Longrightarrow> totalp R" | 
| 76588 
82a36e3d1b55
rewrite proofs using to_pred attribute on existing lemmas
 desharna parents: 
76574diff
changeset | 788 | by (rule totalI[to_pred]) | 
| 75466 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 789 | |
| 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 790 | lemma totalp_onD: | 
| 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 791 | "totalp_on A R \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> R x y \<or> R y x" | 
| 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 792 | by (simp add: totalp_on_def) | 
| 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 793 | |
| 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 794 | lemma totalpD: "totalp R \<Longrightarrow> x \<noteq> y \<Longrightarrow> R x y \<or> R y x" | 
| 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 795 | by (simp add: totalp_onD) | 
| 
5f2a1efd0560
added predicate totalp_on and abbreviation totalp
 desharna parents: 
74975diff
changeset | 796 | |
| 75504 
75e1b94396c6
added lemmas reflp_on_subset, totalp_on_subset, and total_on_subset
 desharna parents: 
75503diff
changeset | 797 | lemma total_on_subset: "total_on A r \<Longrightarrow> B \<subseteq> A \<Longrightarrow> total_on B r" | 
| 
75e1b94396c6
added lemmas reflp_on_subset, totalp_on_subset, and total_on_subset
 desharna parents: 
75503diff
changeset | 798 | by (auto simp: total_on_def) | 
| 
75e1b94396c6
added lemmas reflp_on_subset, totalp_on_subset, and total_on_subset
 desharna parents: 
75503diff
changeset | 799 | |
| 
75e1b94396c6
added lemmas reflp_on_subset, totalp_on_subset, and total_on_subset
 desharna parents: 
75503diff
changeset | 800 | lemma totalp_on_subset: "totalp_on A R \<Longrightarrow> B \<subseteq> A \<Longrightarrow> totalp_on B R" | 
| 
75e1b94396c6
added lemmas reflp_on_subset, totalp_on_subset, and total_on_subset
 desharna parents: 
75503diff
changeset | 801 | by (auto intro: totalp_onI dest: totalp_onD) | 
| 
75e1b94396c6
added lemmas reflp_on_subset, totalp_on_subset, and total_on_subset
 desharna parents: 
75503diff
changeset | 802 | |
| 79905 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 803 | lemma totalp_on_image: | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 804 | assumes "inj_on f A" | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 805 | shows "totalp_on (f ` A) R \<longleftrightarrow> totalp_on A (\<lambda>a b. R (f a) (f b))" | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 806 | using assms by (auto simp: totalp_on_def inj_on_def) | 
| 
1f509d01c9e3
added lemmas antisymp_on_image, asymp_on_image, irreflp_on_image, reflp_on_image, symp_on_image, totalp_on_image, and transp_on_image
 desharna parents: 
77695diff
changeset | 807 | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 808 | lemma total_on_empty [simp]: "total_on {} r"
 | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 809 | by (simp add: total_on_def) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 810 | |
| 75540 
02719bd7b4e6
added lemma reflp_on_empty[simp] and totalp_on_empty[simp]
 desharna parents: 
75532diff
changeset | 811 | lemma totalp_on_empty [simp]: "totalp_on {} R"
 | 
| 76253 
08f555c6f3b5
strengthened lemma total_on_singleton and added lemma totalp_on_singleton
 desharna parents: 
75669diff
changeset | 812 | by (simp add: totalp_on_def) | 
| 75540 
02719bd7b4e6
added lemma reflp_on_empty[simp] and totalp_on_empty[simp]
 desharna parents: 
75532diff
changeset | 813 | |
| 76253 
08f555c6f3b5
strengthened lemma total_on_singleton and added lemma totalp_on_singleton
 desharna parents: 
75669diff
changeset | 814 | lemma total_on_singleton [simp]: "total_on {x} r"
 | 
| 
08f555c6f3b5
strengthened lemma total_on_singleton and added lemma totalp_on_singleton
 desharna parents: 
75669diff
changeset | 815 | by (simp add: total_on_def) | 
| 
08f555c6f3b5
strengthened lemma total_on_singleton and added lemma totalp_on_singleton
 desharna parents: 
75669diff
changeset | 816 | |
| 
08f555c6f3b5
strengthened lemma total_on_singleton and added lemma totalp_on_singleton
 desharna parents: 
75669diff
changeset | 817 | lemma totalp_on_singleton [simp]: "totalp_on {x} R"
 | 
| 
08f555c6f3b5
strengthened lemma total_on_singleton and added lemma totalp_on_singleton
 desharna parents: 
75669diff
changeset | 818 | by (simp add: totalp_on_def) | 
| 63612 | 819 | |
| 76521 
15f868460de9
renamed lemmas linorder.totalp_on_(ge|greater|le|less) and preorder.reflp_(ge|le)
 desharna parents: 
76499diff
changeset | 820 | lemma (in linorder) totalp_on_less[simp]: "totalp_on A (<)" | 
| 76285 
8e777e0e206a
added lemmas linorder.totalp_ge[simp], linorder.totalp_greater[simp], linorder.totalp_le[simp], and linorder.totalp_less[simp]
 desharna parents: 
76258diff
changeset | 821 | by (auto intro: totalp_onI) | 
| 
8e777e0e206a
added lemmas linorder.totalp_ge[simp], linorder.totalp_greater[simp], linorder.totalp_le[simp], and linorder.totalp_less[simp]
 desharna parents: 
76258diff
changeset | 822 | |
| 76521 
15f868460de9
renamed lemmas linorder.totalp_on_(ge|greater|le|less) and preorder.reflp_(ge|le)
 desharna parents: 
76499diff
changeset | 823 | lemma (in linorder) totalp_on_greater[simp]: "totalp_on A (>)" | 
| 76285 
8e777e0e206a
added lemmas linorder.totalp_ge[simp], linorder.totalp_greater[simp], linorder.totalp_le[simp], and linorder.totalp_less[simp]
 desharna parents: 
76258diff
changeset | 824 | by (auto intro: totalp_onI) | 
| 
8e777e0e206a
added lemmas linorder.totalp_ge[simp], linorder.totalp_greater[simp], linorder.totalp_le[simp], and linorder.totalp_less[simp]
 desharna parents: 
76258diff
changeset | 825 | |
| 76521 
15f868460de9
renamed lemmas linorder.totalp_on_(ge|greater|le|less) and preorder.reflp_(ge|le)
 desharna parents: 
76499diff
changeset | 826 | lemma (in linorder) totalp_on_le[simp]: "totalp_on A (\<le>)" | 
| 76285 
8e777e0e206a
added lemmas linorder.totalp_ge[simp], linorder.totalp_greater[simp], linorder.totalp_le[simp], and linorder.totalp_less[simp]
 desharna parents: 
76258diff
changeset | 827 | by (rule totalp_onI, rule linear) | 
| 
8e777e0e206a
added lemmas linorder.totalp_ge[simp], linorder.totalp_greater[simp], linorder.totalp_le[simp], and linorder.totalp_less[simp]
 desharna parents: 
76258diff
changeset | 828 | |
| 76521 
15f868460de9
renamed lemmas linorder.totalp_on_(ge|greater|le|less) and preorder.reflp_(ge|le)
 desharna parents: 
76499diff
changeset | 829 | lemma (in linorder) totalp_on_ge[simp]: "totalp_on A (\<ge>)" | 
| 76285 
8e777e0e206a
added lemmas linorder.totalp_ge[simp], linorder.totalp_greater[simp], linorder.totalp_le[simp], and linorder.totalp_less[simp]
 desharna parents: 
76258diff
changeset | 830 | by (rule totalp_onI, rule linear) | 
| 
8e777e0e206a
added lemmas linorder.totalp_ge[simp], linorder.totalp_greater[simp], linorder.totalp_le[simp], and linorder.totalp_less[simp]
 desharna parents: 
76258diff
changeset | 831 | |
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 832 | |
| 60758 | 833 | subsubsection \<open>Single valued relations\<close> | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 834 | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 835 | definition single_valued :: "('a \<times> 'b) set \<Rightarrow> bool"
 | 
| 63404 | 836 | where "single_valued r \<longleftrightarrow> (\<forall>x y. (x, y) \<in> r \<longrightarrow> (\<forall>z. (x, z) \<in> r \<longrightarrow> y = z))" | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 837 | |
| 64634 | 838 | definition single_valuedp :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 839 | where "single_valuedp r \<longleftrightarrow> (\<forall>x y. r x y \<longrightarrow> (\<forall>z. r x z \<longrightarrow> y = z))" | |
| 840 | ||
| 841 | lemma single_valuedp_single_valued_eq [pred_set_conv]: | |
| 842 | "single_valuedp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> single_valued r" | |
| 843 | by (simp add: single_valued_def single_valuedp_def) | |
| 46694 | 844 | |
| 71827 | 845 | lemma single_valuedp_iff_Uniq: | 
| 846 | "single_valuedp r \<longleftrightarrow> (\<forall>x. \<exists>\<^sub>\<le>\<^sub>1y. r x y)" | |
| 847 | unfolding Uniq_def single_valuedp_def by auto | |
| 848 | ||
| 64634 | 849 | lemma single_valuedI: | 
| 850 | "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (\<And>z. (x, z) \<in> r \<Longrightarrow> y = z)) \<Longrightarrow> single_valued r" | |
| 851 | unfolding single_valued_def by blast | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 852 | |
| 64634 | 853 | lemma single_valuedpI: | 
| 854 | "(\<And>x y. r x y \<Longrightarrow> (\<And>z. r x z \<Longrightarrow> y = z)) \<Longrightarrow> single_valuedp r" | |
| 855 | by (fact single_valuedI [to_pred]) | |
| 856 | ||
| 857 | lemma single_valuedD: | |
| 858 | "single_valued r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (x, z) \<in> r \<Longrightarrow> y = z" | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 859 | by (simp add: single_valued_def) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 860 | |
| 64634 | 861 | lemma single_valuedpD: | 
| 862 | "single_valuedp r \<Longrightarrow> r x y \<Longrightarrow> r x z \<Longrightarrow> y = z" | |
| 863 | by (fact single_valuedD [to_pred]) | |
| 864 | ||
| 865 | lemma single_valued_empty [simp]: | |
| 866 |   "single_valued {}"
 | |
| 63404 | 867 | by (simp add: single_valued_def) | 
| 52392 | 868 | |
| 64634 | 869 | lemma single_valuedp_bot [simp]: | 
| 870 | "single_valuedp \<bottom>" | |
| 871 | by (fact single_valued_empty [to_pred]) | |
| 872 | ||
| 873 | lemma single_valued_subset: | |
| 874 | "r \<subseteq> s \<Longrightarrow> single_valued s \<Longrightarrow> single_valued r" | |
| 63404 | 875 | unfolding single_valued_def by blast | 
| 11136 | 876 | |
| 64634 | 877 | lemma single_valuedp_less_eq: | 
| 878 | "r \<le> s \<Longrightarrow> single_valuedp s \<Longrightarrow> single_valuedp r" | |
| 879 | by (fact single_valued_subset [to_pred]) | |
| 880 | ||
| 12905 | 881 | |
| 60758 | 882 | subsection \<open>Relation operations\<close> | 
| 46694 | 883 | |
| 60758 | 884 | subsubsection \<open>The identity relation\<close> | 
| 12905 | 885 | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 886 | definition Id :: "'a rel" | 
| 69905 | 887 |   where "Id = {p. \<exists>x. p = (x, x)}"
 | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 888 | |
| 63404 | 889 | lemma IdI [intro]: "(a, a) \<in> Id" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 890 | by (simp add: Id_def) | 
| 12905 | 891 | |
| 63404 | 892 | lemma IdE [elim!]: "p \<in> Id \<Longrightarrow> (\<And>x. p = (x, x) \<Longrightarrow> P) \<Longrightarrow> P" | 
| 893 | unfolding Id_def by (iprover elim: CollectE) | |
| 12905 | 894 | |
| 63404 | 895 | lemma pair_in_Id_conv [iff]: "(a, b) \<in> Id \<longleftrightarrow> a = b" | 
| 896 | unfolding Id_def by blast | |
| 12905 | 897 | |
| 30198 | 898 | lemma refl_Id: "refl Id" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 899 | by (simp add: refl_on_def) | 
| 12905 | 900 | |
| 901 | lemma antisym_Id: "antisym Id" | |
| 61799 | 902 | \<comment> \<open>A strange result, since \<open>Id\<close> is also symmetric.\<close> | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 903 | by (simp add: antisym_def) | 
| 12905 | 904 | |
| 19228 | 905 | lemma sym_Id: "sym Id" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 906 | by (simp add: sym_def) | 
| 19228 | 907 | |
| 12905 | 908 | lemma trans_Id: "trans Id" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 909 | by (simp add: trans_def) | 
| 12905 | 910 | |
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 911 | lemma single_valued_Id [simp]: "single_valued Id" | 
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 912 | by (unfold single_valued_def) blast | 
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 913 | |
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 914 | lemma irrefl_diff_Id [simp]: "irrefl (r - Id)" | 
| 63404 | 915 | by (simp add: irrefl_def) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 916 | |
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 917 | lemma trans_diff_Id: "trans r \<Longrightarrow> antisym r \<Longrightarrow> trans (r - Id)" | 
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 918 | unfolding antisym_def trans_def by blast | 
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 919 | |
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 920 | lemma total_on_diff_Id [simp]: "total_on A (r - Id) = total_on A r" | 
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 921 | by (simp add: total_on_def) | 
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 922 | |
| 62087 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
61955diff
changeset | 923 | lemma Id_fstsnd_eq: "Id = {x. fst x = snd x}"
 | 
| 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
61955diff
changeset | 924 | by force | 
| 12905 | 925 | |
| 63376 
4c0cc2b356f0
default one-step rules for predicates on relations;
 haftmann parents: 
62343diff
changeset | 926 | |
| 60758 | 927 | subsubsection \<open>Diagonal: identity over a set\<close> | 
| 12905 | 928 | |
| 63612 | 929 | definition Id_on :: "'a set \<Rightarrow> 'a rel" | 
| 63404 | 930 |   where "Id_on A = (\<Union>x\<in>A. {(x, x)})"
 | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 931 | |
| 30198 | 932 | lemma Id_on_empty [simp]: "Id_on {} = {}"
 | 
| 63404 | 933 | by (simp add: Id_on_def) | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13639diff
changeset | 934 | |
| 63404 | 935 | lemma Id_on_eqI: "a = b \<Longrightarrow> a \<in> A \<Longrightarrow> (a, b) \<in> Id_on A" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 936 | by (simp add: Id_on_def) | 
| 12905 | 937 | |
| 63404 | 938 | lemma Id_onI [intro!]: "a \<in> A \<Longrightarrow> (a, a) \<in> Id_on A" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 939 | by (rule Id_on_eqI) (rule refl) | 
| 12905 | 940 | |
| 63404 | 941 | lemma Id_onE [elim!]: "c \<in> Id_on A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> c = (x, x) \<Longrightarrow> P) \<Longrightarrow> P" | 
| 61799 | 942 | \<comment> \<open>The general elimination rule.\<close> | 
| 63404 | 943 | unfolding Id_on_def by (iprover elim!: UN_E singletonE) | 
| 12905 | 944 | |
| 63404 | 945 | lemma Id_on_iff: "(x, y) \<in> Id_on A \<longleftrightarrow> x = y \<and> x \<in> A" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 946 | by blast | 
| 12905 | 947 | |
| 63404 | 948 | lemma Id_on_def' [nitpick_unfold]: "Id_on {x. A x} = Collect (\<lambda>(x, y). x = y \<and> A x)"
 | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 949 | by auto | 
| 40923 
be80c93ac0a2
adding a nice definition of Id_on for quickcheck and nitpick
 bulwahn parents: 
36772diff
changeset | 950 | |
| 30198 | 951 | lemma Id_on_subset_Times: "Id_on A \<subseteq> A \<times> A" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 952 | by blast | 
| 12905 | 953 | |
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 954 | lemma refl_on_Id_on: "refl_on A (Id_on A)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 955 | by (rule refl_onI [OF Id_on_subset_Times Id_onI]) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 956 | |
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 957 | lemma antisym_Id_on [simp]: "antisym (Id_on A)" | 
| 63404 | 958 | unfolding antisym_def by blast | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 959 | |
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 960 | lemma sym_Id_on [simp]: "sym (Id_on A)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 961 | by (rule symI) clarify | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 962 | |
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 963 | lemma trans_Id_on [simp]: "trans (Id_on A)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 964 | by (fast intro: transI elim: transD) | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 965 | |
| 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 966 | lemma single_valued_Id_on [simp]: "single_valued (Id_on A)" | 
| 63404 | 967 | unfolding single_valued_def by blast | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 968 | |
| 12905 | 969 | |
| 60758 | 970 | subsubsection \<open>Composition\<close> | 
| 12905 | 971 | |
| 81134 | 972 | inductive_set relcomp  :: "('a \<times> 'b) set \<Rightarrow> ('b \<times> 'c) set \<Rightarrow> ('a \<times> 'c) set"
 | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 973 |   for r :: "('a \<times> 'b) set" and s :: "('b \<times> 'c) set"
 | 
| 81134 | 974 | where relcompI [intro]: "(a, b) \<in> r \<Longrightarrow> (b, c) \<in> s \<Longrightarrow> (a, c) \<in> relcomp r s" | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 975 | |
| 81134 | 976 | open_bundle relcomp_syntax | 
| 977 | begin | |
| 978 | notation relcomp (infixr \<open>O\<close> 75) and relcompp (infixr \<open>OO\<close> 75) | |
| 979 | end | |
| 12905 | 980 | |
| 47434 
b75ce48a93ee
dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
 griff parents: 
47433diff
changeset | 981 | lemmas relcomppI = relcompp.intros | 
| 12905 | 982 | |
| 60758 | 983 | text \<open> | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 984 | For historic reasons, the elimination rules are not wholly corresponding. | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 985 | Feel free to consolidate this. | 
| 60758 | 986 | \<close> | 
| 46694 | 987 | |
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47087diff
changeset | 988 | inductive_cases relcompEpair: "(a, c) \<in> r O s" | 
| 47434 
b75ce48a93ee
dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
 griff parents: 
47433diff
changeset | 989 | inductive_cases relcomppE [elim!]: "(r OO s) a c" | 
| 46694 | 990 | |
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47087diff
changeset | 991 | lemma relcompE [elim!]: "xz \<in> r O s \<Longrightarrow> | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 992 | (\<And>x y z. xz = (x, z) \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, z) \<in> s \<Longrightarrow> P) \<Longrightarrow> P" | 
| 63404 | 993 | apply (cases xz) | 
| 994 | apply simp | |
| 995 | apply (erule relcompEpair) | |
| 996 | apply iprover | |
| 997 | done | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 998 | |
| 63404 | 999 | lemma R_O_Id [simp]: "R O Id = R" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1000 | by fast | 
| 46694 | 1001 | |
| 63404 | 1002 | lemma Id_O_R [simp]: "Id O R = R" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1003 | by fast | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1004 | |
| 63404 | 1005 | lemma relcomp_empty1 [simp]: "{} O R = {}"
 | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1006 | by blast | 
| 12905 | 1007 | |
| 63404 | 1008 | lemma relcompp_bot1 [simp]: "\<bottom> OO R = \<bottom>" | 
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47087diff
changeset | 1009 | by (fact relcomp_empty1 [to_pred]) | 
| 12905 | 1010 | |
| 63404 | 1011 | lemma relcomp_empty2 [simp]: "R O {} = {}"
 | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1012 | by blast | 
| 12905 | 1013 | |
| 63404 | 1014 | lemma relcompp_bot2 [simp]: "R OO \<bottom> = \<bottom>" | 
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47087diff
changeset | 1015 | by (fact relcomp_empty2 [to_pred]) | 
| 23185 | 1016 | |
| 63404 | 1017 | lemma O_assoc: "(R O S) O T = R O (S O T)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1018 | by blast | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1019 | |
| 63404 | 1020 | lemma relcompp_assoc: "(r OO s) OO t = r OO (s OO t)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1021 | by (fact O_assoc [to_pred]) | 
| 23185 | 1022 | |
| 63404 | 1023 | lemma trans_O_subset: "trans r \<Longrightarrow> r O r \<subseteq> r" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1024 | by (unfold trans_def) blast | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1025 | |
| 63404 | 1026 | lemma transp_relcompp_less_eq: "transp r \<Longrightarrow> r OO r \<le> r " | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1027 | by (fact trans_O_subset [to_pred]) | 
| 12905 | 1028 | |
| 63404 | 1029 | lemma relcomp_mono: "r' \<subseteq> r \<Longrightarrow> s' \<subseteq> s \<Longrightarrow> r' O s' \<subseteq> r O s" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1030 | by blast | 
| 12905 | 1031 | |
| 63404 | 1032 | lemma relcompp_mono: "r' \<le> r \<Longrightarrow> s' \<le> s \<Longrightarrow> r' OO s' \<le> r OO s " | 
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47087diff
changeset | 1033 | by (fact relcomp_mono [to_pred]) | 
| 12905 | 1034 | |
| 63404 | 1035 | lemma relcomp_subset_Sigma: "r \<subseteq> A \<times> B \<Longrightarrow> s \<subseteq> B \<times> C \<Longrightarrow> r O s \<subseteq> A \<times> C" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1036 | by blast | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1037 | |
| 63404 | 1038 | lemma relcomp_distrib [simp]: "R O (S \<union> T) = (R O S) \<union> (R O T)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1039 | by auto | 
| 12905 | 1040 | |
| 63404 | 1041 | lemma relcompp_distrib [simp]: "R OO (S \<squnion> T) = R OO S \<squnion> R OO T" | 
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47087diff
changeset | 1042 | by (fact relcomp_distrib [to_pred]) | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1043 | |
| 63404 | 1044 | lemma relcomp_distrib2 [simp]: "(S \<union> T) O R = (S O R) \<union> (T O R)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1045 | by auto | 
| 28008 
f945f8d9ad4d
added distributivity of relation composition over union [simp]
 krauss parents: 
26297diff
changeset | 1046 | |
| 63404 | 1047 | lemma relcompp_distrib2 [simp]: "(S \<squnion> T) OO R = S OO R \<squnion> T OO R" | 
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47087diff
changeset | 1048 | by (fact relcomp_distrib2 [to_pred]) | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1049 | |
| 69275 | 1050 | lemma relcomp_UNION_distrib: "s O \<Union>(r ` I) = (\<Union>i\<in>I. s O r i) " | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1051 | by auto | 
| 28008 
f945f8d9ad4d
added distributivity of relation composition over union [simp]
 krauss parents: 
26297diff
changeset | 1052 | |
| 69275 | 1053 | lemma relcompp_SUP_distrib: "s OO \<Squnion>(r ` I) = (\<Squnion>i\<in>I. s OO r i)" | 
| 64584 | 1054 | by (fact relcomp_UNION_distrib [to_pred]) | 
| 1055 | ||
| 69275 | 1056 | lemma relcomp_UNION_distrib2: "\<Union>(r ` I) O s = (\<Union>i\<in>I. r i O s) " | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1057 | by auto | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1058 | |
| 69275 | 1059 | lemma relcompp_SUP_distrib2: "\<Squnion>(r ` I) OO s = (\<Squnion>i\<in>I. r i OO s)" | 
| 64584 | 1060 | by (fact relcomp_UNION_distrib2 [to_pred]) | 
| 1061 | ||
| 63404 | 1062 | lemma single_valued_relcomp: "single_valued r \<Longrightarrow> single_valued s \<Longrightarrow> single_valued (r O s)" | 
| 1063 | unfolding single_valued_def by blast | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1064 | |
| 63404 | 1065 | lemma relcomp_unfold: "r O s = {(x, z). \<exists>y. (x, y) \<in> r \<and> (y, z) \<in> s}"
 | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1066 | by (auto simp add: set_eq_iff) | 
| 12905 | 1067 | |
| 58195 | 1068 | lemma relcompp_apply: "(R OO S) a c \<longleftrightarrow> (\<exists>b. R a b \<and> S b c)" | 
| 1069 | unfolding relcomp_unfold [to_pred] .. | |
| 1070 | ||
| 67399 | 1071 | lemma eq_OO: "(=) OO R = R" | 
| 63404 | 1072 | by blast | 
| 55083 | 1073 | |
| 67399 | 1074 | lemma OO_eq: "R OO (=) = R" | 
| 63404 | 1075 | by blast | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 1076 | |
| 63376 
4c0cc2b356f0
default one-step rules for predicates on relations;
 haftmann parents: 
62343diff
changeset | 1077 | |
| 60758 | 1078 | subsubsection \<open>Converse\<close> | 
| 12913 | 1079 | |
| 81134 | 1080 | inductive_set converse :: "('a \<times> 'b) set \<Rightarrow> ('b \<times> 'a) set"
 | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1081 |   for r :: "('a \<times> 'b) set"
 | 
| 81134 | 1082 | where "(a, b) \<in> r \<Longrightarrow> (b, a) \<in> converse r" | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 1083 | |
| 81134 | 1084 | open_bundle converse_syntax | 
| 1085 | begin | |
| 1086 | notation | |
| 1087 | converse (\<open>(\<open>notation=\<open>postfix -1\<close>\<close>_\<inverse>)\<close> [1000] 999) and | |
| 1088 | conversep (\<open>(\<open>notation=\<open>postfix -1-1\<close>\<close>_\<inverse>\<inverse>)\<close> [1000] 1000) | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1089 | notation (ASCII) | 
| 80934 | 1090 | converse (\<open>(\<open>notation=\<open>postfix -1\<close>\<close>_^-1)\<close> [1000] 999) and | 
| 1091 | conversep (\<open>(\<open>notation=\<open>postfix -1-1\<close>\<close>_^--1)\<close> [1000] 1000) | |
| 81134 | 1092 | end | 
| 46694 | 1093 | |
| 63404 | 1094 | lemma converseI [sym]: "(a, b) \<in> r \<Longrightarrow> (b, a) \<in> r\<inverse>" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1095 | by (fact converse.intros) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1096 | |
| 63404 | 1097 | lemma conversepI (* CANDIDATE [sym] *): "r a b \<Longrightarrow> r\<inverse>\<inverse> b a" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1098 | by (fact conversep.intros) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1099 | |
| 63404 | 1100 | lemma converseD [sym]: "(a, b) \<in> r\<inverse> \<Longrightarrow> (b, a) \<in> r" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1101 | by (erule converse.cases) iprover | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1102 | |
| 63404 | 1103 | lemma conversepD (* CANDIDATE [sym] *): "r\<inverse>\<inverse> b a \<Longrightarrow> r a b" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1104 | by (fact converseD [to_pred]) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1105 | |
| 63404 | 1106 | lemma converseE [elim!]: "yx \<in> r\<inverse> \<Longrightarrow> (\<And>x y. yx = (y, x) \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> P) \<Longrightarrow> P" | 
| 61799 | 1107 | \<comment> \<open>More general than \<open>converseD\<close>, as it ``splits'' the member of the relation.\<close> | 
| 63404 | 1108 | apply (cases yx) | 
| 1109 | apply simp | |
| 1110 | apply (erule converse.cases) | |
| 1111 | apply iprover | |
| 1112 | done | |
| 46694 | 1113 | |
| 46882 | 1114 | lemmas conversepE [elim!] = conversep.cases | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1115 | |
| 63404 | 1116 | lemma converse_iff [iff]: "(a, b) \<in> r\<inverse> \<longleftrightarrow> (b, a) \<in> r" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1117 | by (auto intro: converseI) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1118 | |
| 63404 | 1119 | lemma conversep_iff [iff]: "r\<inverse>\<inverse> a b = r b a" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1120 | by (fact converse_iff [to_pred]) | 
| 46694 | 1121 | |
| 63404 | 1122 | lemma converse_converse [simp]: "(r\<inverse>)\<inverse> = r" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1123 | by (simp add: set_eq_iff) | 
| 46694 | 1124 | |
| 63404 | 1125 | lemma conversep_conversep [simp]: "(r\<inverse>\<inverse>)\<inverse>\<inverse> = r" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1126 | by (fact converse_converse [to_pred]) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1127 | |
| 53680 | 1128 | lemma converse_empty[simp]: "{}\<inverse> = {}"
 | 
| 63404 | 1129 | by auto | 
| 53680 | 1130 | |
| 1131 | lemma converse_UNIV[simp]: "UNIV\<inverse> = UNIV" | |
| 63404 | 1132 | by auto | 
| 53680 | 1133 | |
| 63404 | 1134 | lemma converse_relcomp: "(r O s)\<inverse> = s\<inverse> O r\<inverse>" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1135 | by blast | 
| 46694 | 1136 | |
| 63404 | 1137 | lemma converse_relcompp: "(r OO s)\<inverse>\<inverse> = s\<inverse>\<inverse> OO r\<inverse>\<inverse>" | 
| 1138 | by (iprover intro: order_antisym conversepI relcomppI elim: relcomppE dest: conversepD) | |
| 46694 | 1139 | |
| 63404 | 1140 | lemma converse_Int: "(r \<inter> s)\<inverse> = r\<inverse> \<inter> s\<inverse>" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1141 | by blast | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1142 | |
| 63404 | 1143 | lemma converse_meet: "(r \<sqinter> s)\<inverse>\<inverse> = r\<inverse>\<inverse> \<sqinter> s\<inverse>\<inverse>" | 
| 46694 | 1144 | by (simp add: inf_fun_def) (iprover intro: conversepI ext dest: conversepD) | 
| 1145 | ||
| 63404 | 1146 | lemma converse_Un: "(r \<union> s)\<inverse> = r\<inverse> \<union> s\<inverse>" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1147 | by blast | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1148 | |
| 63404 | 1149 | lemma converse_join: "(r \<squnion> s)\<inverse>\<inverse> = r\<inverse>\<inverse> \<squnion> s\<inverse>\<inverse>" | 
| 46694 | 1150 | by (simp add: sup_fun_def) (iprover intro: conversepI ext dest: conversepD) | 
| 1151 | ||
| 69275 | 1152 | lemma converse_INTER: "(\<Inter>(r ` S))\<inverse> = (\<Inter>x\<in>S. (r x)\<inverse>)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1153 | by fast | 
| 19228 | 1154 | |
| 69275 | 1155 | lemma converse_UNION: "(\<Union>(r ` S))\<inverse> = (\<Union>x\<in>S. (r x)\<inverse>)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1156 | by blast | 
| 19228 | 1157 | |
| 63404 | 1158 | lemma converse_mono[simp]: "r\<inverse> \<subseteq> s \<inverse> \<longleftrightarrow> r \<subseteq> s" | 
| 52749 | 1159 | by auto | 
| 1160 | ||
| 63404 | 1161 | lemma conversep_mono[simp]: "r\<inverse>\<inverse> \<le> s \<inverse>\<inverse> \<longleftrightarrow> r \<le> s" | 
| 52749 | 1162 | by (fact converse_mono[to_pred]) | 
| 1163 | ||
| 63404 | 1164 | lemma converse_inject[simp]: "r\<inverse> = s \<inverse> \<longleftrightarrow> r = s" | 
| 52730 | 1165 | by auto | 
| 1166 | ||
| 63404 | 1167 | lemma conversep_inject[simp]: "r\<inverse>\<inverse> = s \<inverse>\<inverse> \<longleftrightarrow> r = s" | 
| 52749 | 1168 | by (fact converse_inject[to_pred]) | 
| 1169 | ||
| 63612 | 1170 | lemma converse_subset_swap: "r \<subseteq> s \<inverse> \<longleftrightarrow> r \<inverse> \<subseteq> s" | 
| 52749 | 1171 | by auto | 
| 1172 | ||
| 63612 | 1173 | lemma conversep_le_swap: "r \<le> s \<inverse>\<inverse> \<longleftrightarrow> r \<inverse>\<inverse> \<le> s" | 
| 52749 | 1174 | by (fact converse_subset_swap[to_pred]) | 
| 52730 | 1175 | |
| 63404 | 1176 | lemma converse_Id [simp]: "Id\<inverse> = Id" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1177 | by blast | 
| 12905 | 1178 | |
| 63404 | 1179 | lemma converse_Id_on [simp]: "(Id_on A)\<inverse> = Id_on A" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1180 | by blast | 
| 12905 | 1181 | |
| 76572 
d8542bc5a3fa
added lemmas irrefl_on_converse[simp] and irreflp_on_converse[simp]
 desharna parents: 
76571diff
changeset | 1182 | lemma refl_on_converse [simp]: "refl_on A (r\<inverse>) = refl_on A r" | 
| 63404 | 1183 | by (auto simp: refl_on_def) | 
| 12905 | 1184 | |
| 76499 | 1185 | lemma reflp_on_conversp [simp]: "reflp_on A R\<inverse>\<inverse> \<longleftrightarrow> reflp_on A R" | 
| 1186 | by (auto simp: reflp_on_def) | |
| 1187 | ||
| 76572 
d8542bc5a3fa
added lemmas irrefl_on_converse[simp] and irreflp_on_converse[simp]
 desharna parents: 
76571diff
changeset | 1188 | lemma irrefl_on_converse [simp]: "irrefl_on A (r\<inverse>) = irrefl_on A r" | 
| 
d8542bc5a3fa
added lemmas irrefl_on_converse[simp] and irreflp_on_converse[simp]
 desharna parents: 
76571diff
changeset | 1189 | by (simp add: irrefl_on_def) | 
| 
d8542bc5a3fa
added lemmas irrefl_on_converse[simp] and irreflp_on_converse[simp]
 desharna parents: 
76571diff
changeset | 1190 | |
| 
d8542bc5a3fa
added lemmas irrefl_on_converse[simp] and irreflp_on_converse[simp]
 desharna parents: 
76571diff
changeset | 1191 | lemma irreflp_on_converse [simp]: "irreflp_on A (r\<inverse>\<inverse>) = irreflp_on A r" | 
| 
d8542bc5a3fa
added lemmas irrefl_on_converse[simp] and irreflp_on_converse[simp]
 desharna parents: 
76571diff
changeset | 1192 | by (rule irrefl_on_converse[to_pred]) | 
| 
d8542bc5a3fa
added lemmas irrefl_on_converse[simp] and irreflp_on_converse[simp]
 desharna parents: 
76571diff
changeset | 1193 | |
| 76690 
da062f9f2e53
strengthened and renamed lemma sym_converse and added lemma symp_on_conversep
 desharna parents: 
76689diff
changeset | 1194 | lemma sym_on_converse [simp]: "sym_on A (r\<inverse>) = sym_on A r" | 
| 
da062f9f2e53
strengthened and renamed lemma sym_converse and added lemma symp_on_conversep
 desharna parents: 
76689diff
changeset | 1195 | by (auto intro: sym_onI dest: sym_onD) | 
| 
da062f9f2e53
strengthened and renamed lemma sym_converse and added lemma symp_on_conversep
 desharna parents: 
76689diff
changeset | 1196 | |
| 
da062f9f2e53
strengthened and renamed lemma sym_converse and added lemma symp_on_conversep
 desharna parents: 
76689diff
changeset | 1197 | lemma symp_on_conversep [simp]: "symp_on A R\<inverse>\<inverse> = symp_on A R" | 
| 
da062f9f2e53
strengthened and renamed lemma sym_converse and added lemma symp_on_conversep
 desharna parents: 
76689diff
changeset | 1198 | by (rule sym_on_converse[to_pred]) | 
| 19228 | 1199 | |
| 76691 
0c6aa6c27ba4
added lemmas asym_on_converse[simp] and asymp_on_conversep[simp]
 desharna parents: 
76690diff
changeset | 1200 | lemma asym_on_converse [simp]: "asym_on A (r\<inverse>) = asym_on A r" | 
| 
0c6aa6c27ba4
added lemmas asym_on_converse[simp] and asymp_on_conversep[simp]
 desharna parents: 
76690diff
changeset | 1201 | by (auto dest: asym_onD) | 
| 
0c6aa6c27ba4
added lemmas asym_on_converse[simp] and asymp_on_conversep[simp]
 desharna parents: 
76690diff
changeset | 1202 | |
| 
0c6aa6c27ba4
added lemmas asym_on_converse[simp] and asymp_on_conversep[simp]
 desharna parents: 
76690diff
changeset | 1203 | lemma asymp_on_conversep [simp]: "asymp_on A R\<inverse>\<inverse> = asymp_on A R" | 
| 
0c6aa6c27ba4
added lemmas asym_on_converse[simp] and asymp_on_conversep[simp]
 desharna parents: 
76690diff
changeset | 1204 | by (rule asym_on_converse[to_pred]) | 
| 
0c6aa6c27ba4
added lemmas asym_on_converse[simp] and asymp_on_conversep[simp]
 desharna parents: 
76690diff
changeset | 1205 | |
| 76692 
98880b2430ea
strengthened and renamed lemma antisym_converse and added lemma antisymp_on_conversep
 desharna parents: 
76691diff
changeset | 1206 | lemma antisym_on_converse [simp]: "antisym_on A (r\<inverse>) = antisym_on A r" | 
| 
98880b2430ea
strengthened and renamed lemma antisym_converse and added lemma antisymp_on_conversep
 desharna parents: 
76691diff
changeset | 1207 | by (auto intro: antisym_onI dest: antisym_onD) | 
| 
98880b2430ea
strengthened and renamed lemma antisym_converse and added lemma antisymp_on_conversep
 desharna parents: 
76691diff
changeset | 1208 | |
| 
98880b2430ea
strengthened and renamed lemma antisym_converse and added lemma antisymp_on_conversep
 desharna parents: 
76691diff
changeset | 1209 | lemma antisymp_on_conversep [simp]: "antisymp_on A R\<inverse>\<inverse> = antisymp_on A R" | 
| 
98880b2430ea
strengthened and renamed lemma antisym_converse and added lemma antisymp_on_conversep
 desharna parents: 
76691diff
changeset | 1210 | by (rule antisym_on_converse[to_pred]) | 
| 12905 | 1211 | |
| 76752 
66cae055ac7b
strengthened and renamed lemma trans_converse and added lemma transp_on_conversep
 desharna parents: 
76749diff
changeset | 1212 | lemma trans_on_converse [simp]: "trans_on A (r\<inverse>) = trans_on A r" | 
| 
66cae055ac7b
strengthened and renamed lemma trans_converse and added lemma transp_on_conversep
 desharna parents: 
76749diff
changeset | 1213 | by (auto intro: trans_onI dest: trans_onD) | 
| 
66cae055ac7b
strengthened and renamed lemma trans_converse and added lemma transp_on_conversep
 desharna parents: 
76749diff
changeset | 1214 | |
| 
66cae055ac7b
strengthened and renamed lemma trans_converse and added lemma transp_on_conversep
 desharna parents: 
76749diff
changeset | 1215 | lemma transp_on_conversep [simp]: "transp_on A R\<inverse>\<inverse> = transp_on A R" | 
| 
66cae055ac7b
strengthened and renamed lemma trans_converse and added lemma transp_on_conversep
 desharna parents: 
76749diff
changeset | 1216 | by (rule trans_on_converse[to_pred]) | 
| 12905 | 1217 | |
| 63404 | 1218 | lemma sym_conv_converse_eq: "sym r \<longleftrightarrow> r\<inverse> = r" | 
| 1219 | unfolding sym_def by fast | |
| 19228 | 1220 | |
| 63404 | 1221 | lemma sym_Un_converse: "sym (r \<union> r\<inverse>)" | 
| 1222 | unfolding sym_def by blast | |
| 19228 | 1223 | |
| 63404 | 1224 | lemma sym_Int_converse: "sym (r \<inter> r\<inverse>)" | 
| 1225 | unfolding sym_def by blast | |
| 19228 | 1226 | |
| 63404 | 1227 | lemma total_on_converse [simp]: "total_on A (r\<inverse>) = total_on A r" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1228 | by (auto simp: total_on_def) | 
| 29859 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 nipkow parents: 
29609diff
changeset | 1229 | |
| 76573 | 1230 | lemma totalp_on_converse [simp]: "totalp_on A R\<inverse>\<inverse> = totalp_on A R" | 
| 1231 | by (rule total_on_converse[to_pred]) | |
| 1232 | ||
| 67399 | 1233 | lemma conversep_noteq [simp]: "(\<noteq>)\<inverse>\<inverse> = (\<noteq>)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1234 | by (auto simp add: fun_eq_iff) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1235 | |
| 67399 | 1236 | lemma conversep_eq [simp]: "(=)\<inverse>\<inverse> = (=)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1237 | by (auto simp add: fun_eq_iff) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1238 | |
| 63404 | 1239 | lemma converse_unfold [code]: "r\<inverse> = {(y, x). (x, y) \<in> r}"
 | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1240 | by (simp add: set_eq_iff) | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1241 | |
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 1242 | |
| 60758 | 1243 | subsubsection \<open>Domain, range and field\<close> | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 1244 | |
| 63404 | 1245 | inductive_set Domain :: "('a \<times> 'b) set \<Rightarrow> 'a set" for r :: "('a \<times> 'b) set"
 | 
| 1246 | where DomainI [intro]: "(a, b) \<in> r \<Longrightarrow> a \<in> Domain r" | |
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1247 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1248 | lemmas DomainPI = Domainp.DomainI | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1249 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1250 | inductive_cases DomainE [elim!]: "a \<in> Domain r" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1251 | inductive_cases DomainpE [elim!]: "Domainp r a" | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 1252 | |
| 63404 | 1253 | inductive_set Range :: "('a \<times> 'b) set \<Rightarrow> 'b set" for r :: "('a \<times> 'b) set"
 | 
| 1254 | where RangeI [intro]: "(a, b) \<in> r \<Longrightarrow> b \<in> Range r" | |
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1255 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1256 | lemmas RangePI = Rangep.RangeI | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1257 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1258 | inductive_cases RangeE [elim!]: "b \<in> Range r" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1259 | inductive_cases RangepE [elim!]: "Rangep r b" | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 1260 | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1261 | definition Field :: "'a rel \<Rightarrow> 'a set" | 
| 63404 | 1262 | where "Field r = Domain r \<union> Range r" | 
| 12905 | 1263 | |
| 76948 
f33df7529fed
Substantial simplification of HOL-Cardinals
 paulson <lp15@cam.ac.uk> parents: 
76877diff
changeset | 1264 | lemma Field_iff: "x \<in> Field r \<longleftrightarrow> (\<exists>y. (x,y) \<in> r \<or> (y,x) \<in> r)" | 
| 
f33df7529fed
Substantial simplification of HOL-Cardinals
 paulson <lp15@cam.ac.uk> parents: 
76877diff
changeset | 1265 | by (auto simp: Field_def) | 
| 
f33df7529fed
Substantial simplification of HOL-Cardinals
 paulson <lp15@cam.ac.uk> parents: 
76877diff
changeset | 1266 | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63404diff
changeset | 1267 | lemma FieldI1: "(i, j) \<in> R \<Longrightarrow> i \<in> Field R" | 
| 63612 | 1268 | unfolding Field_def by blast | 
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63404diff
changeset | 1269 | |
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63404diff
changeset | 1270 | lemma FieldI2: "(i, j) \<in> R \<Longrightarrow> j \<in> Field R" | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63404diff
changeset | 1271 | unfolding Field_def by auto | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63404diff
changeset | 1272 | |
| 63404 | 1273 | lemma Domain_fst [code]: "Domain r = fst ` r" | 
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1274 | by force | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1275 | |
| 63404 | 1276 | lemma Range_snd [code]: "Range r = snd ` r" | 
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1277 | by force | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1278 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1279 | lemma fst_eq_Domain: "fst ` R = Domain R" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1280 | by force | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1281 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1282 | lemma snd_eq_Range: "snd ` R = Range R" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1283 | by force | 
| 46694 | 1284 | |
| 62087 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
61955diff
changeset | 1285 | lemma range_fst [simp]: "range fst = UNIV" | 
| 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
61955diff
changeset | 1286 | by (auto simp: fst_eq_Domain) | 
| 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
61955diff
changeset | 1287 | |
| 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
61955diff
changeset | 1288 | lemma range_snd [simp]: "range snd = UNIV" | 
| 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
61955diff
changeset | 1289 | by (auto simp: snd_eq_Range) | 
| 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
61955diff
changeset | 1290 | |
| 46694 | 1291 | lemma Domain_empty [simp]: "Domain {} = {}"
 | 
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1292 | by auto | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1293 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1294 | lemma Range_empty [simp]: "Range {} = {}"
 | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1295 | by auto | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1296 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1297 | lemma Field_empty [simp]: "Field {} = {}"
 | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1298 | by (simp add: Field_def) | 
| 46694 | 1299 | |
| 1300 | lemma Domain_empty_iff: "Domain r = {} \<longleftrightarrow> r = {}"
 | |
| 1301 | by auto | |
| 1302 | ||
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1303 | lemma Range_empty_iff: "Range r = {} \<longleftrightarrow> r = {}"
 | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1304 | by auto | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1305 | |
| 46882 | 1306 | lemma Domain_insert [simp]: "Domain (insert (a, b) r) = insert a (Domain r)" | 
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1307 | by blast | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1308 | |
| 46882 | 1309 | lemma Range_insert [simp]: "Range (insert (a, b) r) = insert b (Range r)" | 
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1310 | by blast | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1311 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1312 | lemma Field_insert [simp]: "Field (insert (a, b) r) = {a, b} \<union> Field r"
 | 
| 46884 | 1313 | by (auto simp add: Field_def) | 
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1314 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1315 | lemma Domain_iff: "a \<in> Domain r \<longleftrightarrow> (\<exists>y. (a, y) \<in> r)" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1316 | by blast | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1317 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1318 | lemma Range_iff: "a \<in> Range r \<longleftrightarrow> (\<exists>y. (y, a) \<in> r)" | 
| 46694 | 1319 | by blast | 
| 1320 | ||
| 1321 | lemma Domain_Id [simp]: "Domain Id = UNIV" | |
| 1322 | by blast | |
| 1323 | ||
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1324 | lemma Range_Id [simp]: "Range Id = UNIV" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1325 | by blast | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1326 | |
| 46694 | 1327 | lemma Domain_Id_on [simp]: "Domain (Id_on A) = A" | 
| 1328 | by blast | |
| 1329 | ||
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1330 | lemma Range_Id_on [simp]: "Range (Id_on A) = A" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1331 | by blast | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1332 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1333 | lemma Domain_Un_eq: "Domain (A \<union> B) = Domain A \<union> Domain B" | 
| 46694 | 1334 | by blast | 
| 1335 | ||
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1336 | lemma Range_Un_eq: "Range (A \<union> B) = Range A \<union> Range B" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1337 | by blast | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1338 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1339 | lemma Field_Un [simp]: "Field (r \<union> s) = Field r \<union> Field s" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1340 | by (auto simp: Field_def) | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1341 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1342 | lemma Domain_Int_subset: "Domain (A \<inter> B) \<subseteq> Domain A \<inter> Domain B" | 
| 46694 | 1343 | by blast | 
| 1344 | ||
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1345 | lemma Range_Int_subset: "Range (A \<inter> B) \<subseteq> Range A \<inter> Range B" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1346 | by blast | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1347 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1348 | lemma Domain_Diff_subset: "Domain A - Domain B \<subseteq> Domain (A - B)" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1349 | by blast | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1350 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1351 | lemma Range_Diff_subset: "Range A - Range B \<subseteq> Range (A - B)" | 
| 46694 | 1352 | by blast | 
| 1353 | ||
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1354 | lemma Domain_Union: "Domain (\<Union>S) = (\<Union>A\<in>S. Domain A)" | 
| 46694 | 1355 | by blast | 
| 1356 | ||
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1357 | lemma Range_Union: "Range (\<Union>S) = (\<Union>A\<in>S. Range A)" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1358 | by blast | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1359 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1360 | lemma Field_Union [simp]: "Field (\<Union>R) = \<Union>(Field ` R)" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1361 | by (auto simp: Field_def) | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1362 | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1363 | lemma Domain_converse [simp]: "Domain (r\<inverse>) = Range r" | 
| 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1364 | by auto | 
| 46694 | 1365 | |
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1366 | lemma Range_converse [simp]: "Range (r\<inverse>) = Domain r" | 
| 46694 | 1367 | by blast | 
| 1368 | ||
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1369 | lemma Field_converse [simp]: "Field (r\<inverse>) = Field r" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1370 | by (auto simp: Field_def) | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1371 | |
| 63404 | 1372 | lemma Domain_Collect_case_prod [simp]: "Domain {(x, y). P x y} = {x. \<exists>y. P x y}"
 | 
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1373 | by auto | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1374 | |
| 63404 | 1375 | lemma Range_Collect_case_prod [simp]: "Range {(x, y). P x y} = {y. \<exists>x. P x y}"
 | 
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1376 | by auto | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1377 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1378 | lemma Domain_mono: "r \<subseteq> s \<Longrightarrow> Domain r \<subseteq> Domain s" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1379 | by blast | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1380 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1381 | lemma Range_mono: "r \<subseteq> s \<Longrightarrow> Range r \<subseteq> Range s" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1382 | by blast | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1383 | |
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1384 | lemma mono_Field: "r \<subseteq> s \<Longrightarrow> Field r \<subseteq> Field s" | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1385 | by (auto simp: Field_def Domain_def Range_def) | 
| 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1386 | |
| 63404 | 1387 | lemma Domain_unfold: "Domain r = {x. \<exists>y. (x, y) \<in> r}"
 | 
| 46767 
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
 haftmann parents: 
46752diff
changeset | 1388 | by blast | 
| 46694 | 1389 | |
| 63563 
0bcd79da075b
prefer [simp] over [iff] as [iff] break HOL-UNITY
 Andreas Lochbihler parents: 
63561diff
changeset | 1390 | lemma Field_square [simp]: "Field (x \<times> x) = x" | 
| 63612 | 1391 | unfolding Field_def by blast | 
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63404diff
changeset | 1392 | |
| 12905 | 1393 | |
| 60758 | 1394 | subsubsection \<open>Image of a set under a relation\<close> | 
| 12905 | 1395 | |
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
79905diff
changeset | 1396 | definition Image :: "('a \<times> 'b) set \<Rightarrow> 'a set \<Rightarrow> 'b set"  (infixr \<open>``\<close> 90)
 | 
| 63404 | 1397 |   where "r `` s = {y. \<exists>x\<in>s. (x, y) \<in> r}"
 | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 1398 | |
| 63404 | 1399 | lemma Image_iff: "b \<in> r``A \<longleftrightarrow> (\<exists>x\<in>A. (x, b) \<in> r)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1400 | by (simp add: Image_def) | 
| 12905 | 1401 | |
| 63404 | 1402 | lemma Image_singleton: "r``{a} = {b. (a, b) \<in> r}"
 | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1403 | by (simp add: Image_def) | 
| 12905 | 1404 | |
| 63404 | 1405 | lemma Image_singleton_iff [iff]: "b \<in> r``{a} \<longleftrightarrow> (a, b) \<in> r"
 | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1406 | by (rule Image_iff [THEN trans]) simp | 
| 12905 | 1407 | |
| 63404 | 1408 | lemma ImageI [intro]: "(a, b) \<in> r \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> r``A" | 
| 1409 | unfolding Image_def by blast | |
| 12905 | 1410 | |
| 63404 | 1411 | lemma ImageE [elim!]: "b \<in> r `` A \<Longrightarrow> (\<And>x. (x, b) \<in> r \<Longrightarrow> x \<in> A \<Longrightarrow> P) \<Longrightarrow> P" | 
| 1412 | unfolding Image_def by (iprover elim!: CollectE bexE) | |
| 12905 | 1413 | |
| 63404 | 1414 | lemma rev_ImageI: "a \<in> A \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> b \<in> r `` A" | 
| 61799 | 1415 | \<comment> \<open>This version's more effective when we already have the required \<open>a\<close>\<close> | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1416 | by blast | 
| 12905 | 1417 | |
| 68455 | 1418 | lemma Image_empty1 [simp]: "{} `` X = {}"
 | 
| 1419 | by auto | |
| 1420 | ||
| 1421 | lemma Image_empty2 [simp]: "R``{} = {}"
 | |
| 1422 | by blast | |
| 12905 | 1423 | |
| 1424 | lemma Image_Id [simp]: "Id `` A = A" | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1425 | by blast | 
| 12905 | 1426 | |
| 30198 | 1427 | lemma Image_Id_on [simp]: "Id_on A `` B = A \<inter> B" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1428 | by blast | 
| 13830 | 1429 | |
| 1430 | lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B" | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1431 | by blast | 
| 12905 | 1432 | |
| 63404 | 1433 | lemma Image_Int_eq: "single_valued (converse R) \<Longrightarrow> R `` (A \<inter> B) = R `` A \<inter> R `` B" | 
| 63612 | 1434 | by (auto simp: single_valued_def) | 
| 12905 | 1435 | |
| 13830 | 1436 | lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1437 | by blast | 
| 12905 | 1438 | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13639diff
changeset | 1439 | lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1440 | by blast | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13639diff
changeset | 1441 | |
| 63404 | 1442 | lemma Image_subset: "r \<subseteq> A \<times> B \<Longrightarrow> r``C \<subseteq> B" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1443 | by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2) | 
| 12905 | 1444 | |
| 13830 | 1445 | lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})"
 | 
| 61799 | 1446 | \<comment> \<open>NOT suitable for rewriting\<close> | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1447 | by blast | 
| 12905 | 1448 | |
| 63404 | 1449 | lemma Image_mono: "r' \<subseteq> r \<Longrightarrow> A' \<subseteq> A \<Longrightarrow> (r' `` A') \<subseteq> (r `` A)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1450 | by blast | 
| 12905 | 1451 | |
| 69275 | 1452 | lemma Image_UN: "r `` (\<Union>(B ` A)) = (\<Union>x\<in>A. r `` (B x))" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1453 | by blast | 
| 13830 | 1454 | |
| 54410 
0a578fb7fb73
countability of the image of a reflexive transitive closure
 hoelzl parents: 
54147diff
changeset | 1455 | lemma UN_Image: "(\<Union>i\<in>I. X i) `` S = (\<Union>i\<in>I. X i `` S)" | 
| 
0a578fb7fb73
countability of the image of a reflexive transitive closure
 hoelzl parents: 
54147diff
changeset | 1456 | by auto | 
| 
0a578fb7fb73
countability of the image of a reflexive transitive closure
 hoelzl parents: 
54147diff
changeset | 1457 | |
| 69275 | 1458 | lemma Image_INT_subset: "(r `` (\<Inter>(B ` A))) \<subseteq> (\<Inter>x\<in>A. r `` (B x))" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1459 | by blast | 
| 12905 | 1460 | |
| 63404 | 1461 | text \<open>Converse inclusion requires some assumptions\<close> | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75541diff
changeset | 1462 | lemma Image_INT_eq: | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75541diff
changeset | 1463 | assumes "single_valued (r\<inverse>)" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75541diff
changeset | 1464 |     and "A \<noteq> {}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75541diff
changeset | 1465 | shows "r `` (\<Inter>(B ` A)) = (\<Inter>x\<in>A. r `` B x)" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75541diff
changeset | 1466 | proof(rule equalityI, rule Image_INT_subset) | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75541diff
changeset | 1467 | show "(\<Inter>x\<in>A. r `` B x) \<subseteq> r `` \<Inter> (B ` A)" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75541diff
changeset | 1468 | proof | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75541diff
changeset | 1469 | fix x | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75541diff
changeset | 1470 | assume "x \<in> (\<Inter>x\<in>A. r `` B x)" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75541diff
changeset | 1471 | then show "x \<in> r `` \<Inter> (B ` A)" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75541diff
changeset | 1472 | using assms unfolding single_valued_def by simp blast | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75541diff
changeset | 1473 | qed | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75541diff
changeset | 1474 | qed | 
| 12905 | 1475 | |
| 63404 | 1476 | lemma Image_subset_eq: "r``A \<subseteq> B \<longleftrightarrow> A \<subseteq> - ((r\<inverse>) `` (- B))" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1477 | by blast | 
| 12905 | 1478 | |
| 63404 | 1479 | lemma Image_Collect_case_prod [simp]: "{(x, y). P x y} `` A = {y. \<exists>x\<in>A. P x y}"
 | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1480 | by auto | 
| 12905 | 1481 | |
| 54410 
0a578fb7fb73
countability of the image of a reflexive transitive closure
 hoelzl parents: 
54147diff
changeset | 1482 | lemma Sigma_Image: "(SIGMA x:A. B x) `` X = (\<Union>x\<in>X \<inter> A. B x)" | 
| 
0a578fb7fb73
countability of the image of a reflexive transitive closure
 hoelzl parents: 
54147diff
changeset | 1483 | by auto | 
| 
0a578fb7fb73
countability of the image of a reflexive transitive closure
 hoelzl parents: 
54147diff
changeset | 1484 | |
| 
0a578fb7fb73
countability of the image of a reflexive transitive closure
 hoelzl parents: 
54147diff
changeset | 1485 | lemma relcomp_Image: "(X O Y) `` Z = Y `` (X `` Z)" | 
| 
0a578fb7fb73
countability of the image of a reflexive transitive closure
 hoelzl parents: 
54147diff
changeset | 1486 | by auto | 
| 12905 | 1487 | |
| 63376 
4c0cc2b356f0
default one-step rules for predicates on relations;
 haftmann parents: 
62343diff
changeset | 1488 | |
| 60758 | 1489 | subsubsection \<open>Inverse image\<close> | 
| 12905 | 1490 | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1491 | definition inv_image :: "'b rel \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a rel"
 | 
| 63404 | 1492 |   where "inv_image r f = {(x, y). (f x, f y) \<in> r}"
 | 
| 46692 
1f8b766224f6
tuned structure; dropped already existing syntax declarations
 haftmann parents: 
46691diff
changeset | 1493 | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1494 | definition inv_imagep :: "('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
 | 
| 63404 | 1495 | where "inv_imagep r f = (\<lambda>x y. r (f x) (f y))" | 
| 46694 | 1496 | |
| 1497 | lemma [pred_set_conv]: "inv_imagep (\<lambda>x y. (x, y) \<in> r) f = (\<lambda>x y. (x, y) \<in> inv_image r f)" | |
| 1498 | by (simp add: inv_image_def inv_imagep_def) | |
| 1499 | ||
| 63404 | 1500 | lemma sym_inv_image: "sym r \<Longrightarrow> sym (inv_image r f)" | 
| 1501 | unfolding sym_def inv_image_def by blast | |
| 19228 | 1502 | |
| 63404 | 1503 | lemma trans_inv_image: "trans r \<Longrightarrow> trans (inv_image r f)" | 
| 1504 | unfolding trans_def inv_image_def | |
| 71404 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
69905diff
changeset | 1505 | by (simp (no_asm)) blast | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
69905diff
changeset | 1506 | |
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
69905diff
changeset | 1507 | lemma total_inv_image: "\<lbrakk>inj f; total r\<rbrakk> \<Longrightarrow> total (inv_image r f)" | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
69905diff
changeset | 1508 | unfolding inv_image_def total_on_def by (auto simp: inj_eq) | 
| 12905 | 1509 | |
| 71935 
82b00b8f1871
fixed the utterly weird definitions of asym / asymp, and added many asym lemmas
 paulson <lp15@cam.ac.uk> parents: 
71827diff
changeset | 1510 | lemma asym_inv_image: "asym R \<Longrightarrow> asym (inv_image R f)" | 
| 
82b00b8f1871
fixed the utterly weird definitions of asym / asymp, and added many asym lemmas
 paulson <lp15@cam.ac.uk> parents: 
71827diff
changeset | 1511 | by (simp add: inv_image_def asym_iff) | 
| 
82b00b8f1871
fixed the utterly weird definitions of asym / asymp, and added many asym lemmas
 paulson <lp15@cam.ac.uk> parents: 
71827diff
changeset | 1512 | |
| 63404 | 1513 | lemma in_inv_image[simp]: "(x, y) \<in> inv_image r f \<longleftrightarrow> (f x, f y) \<in> r" | 
| 71404 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
69905diff
changeset | 1514 | by (auto simp: inv_image_def) | 
| 32463 
3a0a65ca2261
moved lemma Wellfounded.in_inv_image to Relation.thy
 krauss parents: 
32235diff
changeset | 1515 | |
| 63404 | 1516 | lemma converse_inv_image[simp]: "(inv_image R f)\<inverse> = inv_image (R\<inverse>) f" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1517 | unfolding inv_image_def converse_unfold by auto | 
| 33218 | 1518 | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 1519 | lemma in_inv_imagep [simp]: "inv_imagep r f x y = r (f x) (f y)" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 1520 | by (simp add: inv_imagep_def) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 1521 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 1522 | |
| 60758 | 1523 | subsubsection \<open>Powerset\<close> | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 1524 | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46696diff
changeset | 1525 | definition Powp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool"
 | 
| 63404 | 1526 | where "Powp A = (\<lambda>B. \<forall>x \<in> B. A x)" | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 1527 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 1528 | lemma Powp_Pow_eq [pred_set_conv]: "Powp (\<lambda>x. x \<in> A) = (\<lambda>x. x \<in> Pow A)" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 1529 | by (auto simp add: Powp_def fun_eq_iff) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 1530 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 1531 | lemmas Powp_mono [mono] = Pow_mono [to_pred] | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 1532 | |
| 1128 
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
 nipkow parents: diff
changeset | 1533 | end |