| author | wenzelm | 
| Mon, 25 Oct 2010 21:23:09 +0200 | |
| changeset 40133 | b61d52de66f0 | 
| parent 40122 | 1d8ad2ff3e01 | 
| child 40195 | 430fff4a9167 | 
| permissions | -rw-r--r-- | 
| 13462 | 1 | (* Title: HOL/List.thy | 
| 2 | Author: Tobias Nipkow | |
| 923 | 3 | *) | 
| 4 | ||
| 13114 | 5 | header {* The datatype of finite lists *}
 | 
| 13122 | 6 | |
| 15131 | 7 | theory List | 
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 8 | imports Plain Presburger Recdef Code_Numeral Quotient | 
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 9 | uses ("Tools/list_code.ML")
 | 
| 15131 | 10 | begin | 
| 923 | 11 | |
| 13142 | 12 | datatype 'a list = | 
| 13366 | 13 |     Nil    ("[]")
 | 
| 14 | | Cons 'a "'a list" (infixr "#" 65) | |
| 923 | 15 | |
| 34941 | 16 | syntax | 
| 17 |   -- {* list Enumeration *}
 | |
| 35115 | 18 |   "_list" :: "args => 'a list"    ("[(_)]")
 | 
| 34941 | 19 | |
| 20 | translations | |
| 21 | "[x, xs]" == "x#[xs]" | |
| 22 | "[x]" == "x#[]" | |
| 23 | ||
| 35115 | 24 | |
| 25 | subsection {* Basic list processing functions *}
 | |
| 15302 | 26 | |
| 34941 | 27 | primrec | 
| 28 | hd :: "'a list \<Rightarrow> 'a" where | |
| 29 | "hd (x # xs) = x" | |
| 30 | ||
| 31 | primrec | |
| 32 | tl :: "'a list \<Rightarrow> 'a list" where | |
| 33 | "tl [] = []" | |
| 34 | | "tl (x # xs) = xs" | |
| 35 | ||
| 36 | primrec | |
| 37 | last :: "'a list \<Rightarrow> 'a" where | |
| 38 | "last (x # xs) = (if xs = [] then x else last xs)" | |
| 39 | ||
| 40 | primrec | |
| 41 | butlast :: "'a list \<Rightarrow> 'a list" where | |
| 42 | "butlast []= []" | |
| 43 | | "butlast (x # xs) = (if xs = [] then [] else x # butlast xs)" | |
| 44 | ||
| 45 | primrec | |
| 46 | set :: "'a list \<Rightarrow> 'a set" where | |
| 47 |     "set [] = {}"
 | |
| 48 | | "set (x # xs) = insert x (set xs)" | |
| 49 | ||
| 50 | primrec | |
| 51 |   map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
 | |
| 52 | "map f [] = []" | |
| 53 | | "map f (x # xs) = f x # map f xs" | |
| 54 | ||
| 55 | primrec | |
| 56 | append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where | |
| 57 | append_Nil:"[] @ ys = ys" | |
| 58 | | append_Cons: "(x#xs) @ ys = x # xs @ ys" | |
| 59 | ||
| 60 | primrec | |
| 61 | rev :: "'a list \<Rightarrow> 'a list" where | |
| 62 | "rev [] = []" | |
| 63 | | "rev (x # xs) = rev xs @ [x]" | |
| 64 | ||
| 65 | primrec | |
| 66 |   filter:: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 | |
| 67 | "filter P [] = []" | |
| 68 | | "filter P (x # xs) = (if P x then x # filter P xs else filter P xs)" | |
| 69 | ||
| 70 | syntax | |
| 71 |   -- {* Special syntax for filter *}
 | |
| 35115 | 72 |   "_filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_<-_./ _])")
 | 
| 34941 | 73 | |
| 74 | translations | |
| 75 | "[x<-xs . P]"== "CONST filter (%x. P) xs" | |
| 76 | ||
| 77 | syntax (xsymbols) | |
| 35115 | 78 |   "_filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
 | 
| 34941 | 79 | syntax (HTML output) | 
| 35115 | 80 |   "_filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
 | 
| 34941 | 81 | |
| 82 | primrec | |
| 83 |   foldl :: "('b \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b" where
 | |
| 84 | foldl_Nil: "foldl f a [] = a" | |
| 85 | | foldl_Cons: "foldl f a (x # xs) = foldl f (f a x) xs" | |
| 86 | ||
| 87 | primrec | |
| 88 |   foldr :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
 | |
| 89 | "foldr f [] a = a" | |
| 90 | | "foldr f (x # xs) a = f x (foldr f xs a)" | |
| 91 | ||
| 92 | primrec | |
| 93 | concat:: "'a list list \<Rightarrow> 'a list" where | |
| 94 | "concat [] = []" | |
| 95 | | "concat (x # xs) = x @ concat xs" | |
| 96 | ||
| 39774 | 97 | definition (in monoid_add) | 
| 34941 | 98 | listsum :: "'a list \<Rightarrow> 'a" where | 
| 39774 | 99 | "listsum xs = foldr plus xs 0" | 
| 34941 | 100 | |
| 101 | primrec | |
| 102 | drop:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 103 | drop_Nil: "drop n [] = []" | |
| 104 | | drop_Cons: "drop n (x # xs) = (case n of 0 \<Rightarrow> x # xs | Suc m \<Rightarrow> drop m xs)" | |
| 105 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 106 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 107 | ||
| 108 | primrec | |
| 109 | take:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 110 | take_Nil:"take n [] = []" | |
| 111 | | take_Cons: "take n (x # xs) = (case n of 0 \<Rightarrow> [] | Suc m \<Rightarrow> x # take m xs)" | |
| 112 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 113 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 114 | ||
| 115 | primrec | |
| 116 | nth :: "'a list => nat => 'a" (infixl "!" 100) where | |
| 117 | nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)" | |
| 118 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 119 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 120 | ||
| 121 | primrec | |
| 122 | list_update :: "'a list \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a list" where | |
| 123 | "list_update [] i v = []" | |
| 124 | | "list_update (x # xs) i v = (case i of 0 \<Rightarrow> v # xs | Suc j \<Rightarrow> x # list_update xs j v)" | |
| 923 | 125 | |
| 13146 | 126 | nonterminals lupdbinds lupdbind | 
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 127 | |
| 923 | 128 | syntax | 
| 13366 | 129 |   "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
 | 
| 130 |   "" :: "lupdbind => lupdbinds"    ("_")
 | |
| 131 |   "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
 | |
| 132 |   "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
 | |
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 133 | |
| 923 | 134 | translations | 
| 35115 | 135 | "_LUpdate xs (_lupdbinds b bs)" == "_LUpdate (_LUpdate xs b) bs" | 
| 34941 | 136 | "xs[i:=x]" == "CONST list_update xs i x" | 
| 137 | ||
| 138 | primrec | |
| 139 |   takeWhile :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 | |
| 140 | "takeWhile P [] = []" | |
| 141 | | "takeWhile P (x # xs) = (if P x then x # takeWhile P xs else [])" | |
| 142 | ||
| 143 | primrec | |
| 144 |   dropWhile :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 | |
| 145 | "dropWhile P [] = []" | |
| 146 | | "dropWhile P (x # xs) = (if P x then dropWhile P xs else x # xs)" | |
| 147 | ||
| 148 | primrec | |
| 149 |   zip :: "'a list \<Rightarrow> 'b list \<Rightarrow> ('a \<times> 'b) list" where
 | |
| 150 | "zip xs [] = []" | |
| 151 | | zip_Cons: "zip xs (y # ys) = (case xs of [] => [] | z # zs => (z, y) # zip zs ys)" | |
| 152 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 153 |        theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
 | |
| 154 | ||
| 155 | primrec | |
| 156 |   upt :: "nat \<Rightarrow> nat \<Rightarrow> nat list" ("(1[_..</_'])") where
 | |
| 157 | upt_0: "[i..<0] = []" | |
| 158 | | upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])" | |
| 159 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 160 | definition | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 161 | insert :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 162 | "insert x xs = (if x \<in> set xs then xs else x # xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 163 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
36154diff
changeset | 164 | hide_const (open) insert | 
| 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
36154diff
changeset | 165 | hide_fact (open) insert_def | 
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 166 | |
| 34941 | 167 | primrec | 
| 168 | remove1 :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 169 | "remove1 x [] = []" | |
| 170 | | "remove1 x (y # xs) = (if x = y then xs else y # remove1 x xs)" | |
| 171 | ||
| 172 | primrec | |
| 173 | removeAll :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 174 | "removeAll x [] = []" | |
| 175 | | "removeAll x (y # xs) = (if x = y then removeAll x xs else y # removeAll x xs)" | |
| 176 | ||
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 177 | primrec | 
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 178 | distinct :: "'a list \<Rightarrow> bool" where | 
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 179 | "distinct [] \<longleftrightarrow> True" | 
| 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 180 | | "distinct (x # xs) \<longleftrightarrow> x \<notin> set xs \<and> distinct xs" | 
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 181 | |
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 182 | primrec | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 183 | remdups :: "'a list \<Rightarrow> 'a list" where | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 184 | "remdups [] = []" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 185 | | "remdups (x # xs) = (if x \<in> set xs then remdups xs else x # remdups xs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 186 | |
| 34941 | 187 | primrec | 
| 188 | replicate :: "nat \<Rightarrow> 'a \<Rightarrow> 'a list" where | |
| 189 | replicate_0: "replicate 0 x = []" | |
| 190 | | replicate_Suc: "replicate (Suc n) x = x # replicate n x" | |
| 3342 
ec3b55fcb165
New operator "lists" for formalizing sets of lists
 paulson parents: 
3320diff
changeset | 191 | |
| 13142 | 192 | text {*
 | 
| 14589 | 193 |   Function @{text size} is overloaded for all datatypes. Users may
 | 
| 13366 | 194 |   refer to the list version as @{text length}. *}
 | 
| 13142 | 195 | |
| 19363 | 196 | abbreviation | 
| 34941 | 197 | length :: "'a list \<Rightarrow> nat" where | 
| 198 | "length \<equiv> size" | |
| 15307 | 199 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 200 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 201 | rotate1 :: "'a list \<Rightarrow> 'a list" where | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 202 | "rotate1 xs = (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])" | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 203 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 204 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 205 | rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 30971 | 206 | "rotate n = rotate1 ^^ n" | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 207 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 208 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 209 |   list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" where
 | 
| 37767 | 210 | "list_all2 P xs ys = | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 211 | (length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y))" | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 212 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 213 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 214 | sublist :: "'a list => nat set => 'a list" where | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 215 | "sublist xs A = map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))" | 
| 17086 | 216 | |
| 217 | primrec | |
| 34941 | 218 | splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 219 | "splice [] ys = ys" | |
| 220 | | "splice (x # xs) ys = (if ys = [] then x # xs else x # hd ys # splice xs (tl ys))" | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 221 |     -- {*Warning: simpset does not contain the second eqn but a derived one. *}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 222 | |
| 26771 | 223 | text{*
 | 
| 224 | \begin{figure}[htbp]
 | |
| 225 | \fbox{
 | |
| 226 | \begin{tabular}{l}
 | |
| 27381 | 227 | @{lemma "[a,b]@[c,d] = [a,b,c,d]" by simp}\\
 | 
| 228 | @{lemma "length [a,b,c] = 3" by simp}\\
 | |
| 229 | @{lemma "set [a,b,c] = {a,b,c}" by simp}\\
 | |
| 230 | @{lemma "map f [a,b,c] = [f a, f b, f c]" by simp}\\
 | |
| 231 | @{lemma "rev [a,b,c] = [c,b,a]" by simp}\\
 | |
| 232 | @{lemma "hd [a,b,c,d] = a" by simp}\\
 | |
| 233 | @{lemma "tl [a,b,c,d] = [b,c,d]" by simp}\\
 | |
| 234 | @{lemma "last [a,b,c,d] = d" by simp}\\
 | |
| 235 | @{lemma "butlast [a,b,c,d] = [a,b,c]" by simp}\\
 | |
| 236 | @{lemma[source] "filter (\<lambda>n::nat. n<2) [0,2,1] = [0,1]" by simp}\\
 | |
| 237 | @{lemma "concat [[a,b],[c,d,e],[],[f]] = [a,b,c,d,e,f]" by simp}\\
 | |
| 238 | @{lemma "foldl f x [a,b,c] = f (f (f x a) b) c" by simp}\\
 | |
| 239 | @{lemma "foldr f [a,b,c] x = f a (f b (f c x))" by simp}\\
 | |
| 240 | @{lemma "zip [a,b,c] [x,y,z] = [(a,x),(b,y),(c,z)]" by simp}\\
 | |
| 241 | @{lemma "zip [a,b] [x,y,z] = [(a,x),(b,y)]" by simp}\\
 | |
| 242 | @{lemma "splice [a,b,c] [x,y,z] = [a,x,b,y,c,z]" by simp}\\
 | |
| 243 | @{lemma "splice [a,b,c,d] [x,y] = [a,x,b,y,c,d]" by simp}\\
 | |
| 244 | @{lemma "take 2 [a,b,c,d] = [a,b]" by simp}\\
 | |
| 245 | @{lemma "take 6 [a,b,c,d] = [a,b,c,d]" by simp}\\
 | |
| 246 | @{lemma "drop 2 [a,b,c,d] = [c,d]" by simp}\\
 | |
| 247 | @{lemma "drop 6 [a,b,c,d] = []" by simp}\\
 | |
| 248 | @{lemma "takeWhile (%n::nat. n<3) [1,2,3,0] = [1,2]" by simp}\\
 | |
| 249 | @{lemma "dropWhile (%n::nat. n<3) [1,2,3,0] = [3,0]" by simp}\\
 | |
| 250 | @{lemma "distinct [2,0,1::nat]" by simp}\\
 | |
| 251 | @{lemma "remdups [2,0,2,1::nat,2] = [0,1,2]" by simp}\\
 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 252 | @{lemma "List.insert 2 [0::nat,1,2] = [0,1,2]" by (simp add: List.insert_def)}\\
 | 
| 35295 | 253 | @{lemma "List.insert 3 [0::nat,1,2] = [3,0,1,2]" by (simp add: List.insert_def)}\\
 | 
| 27381 | 254 | @{lemma "remove1 2 [2,0,2,1::nat,2] = [0,2,1,2]" by simp}\\
 | 
| 27693 | 255 | @{lemma "removeAll 2 [2,0,2,1::nat,2] = [0,1]" by simp}\\
 | 
| 27381 | 256 | @{lemma "nth [a,b,c,d] 2 = c" by simp}\\
 | 
| 257 | @{lemma "[a,b,c,d][2 := x] = [a,b,x,d]" by simp}\\
 | |
| 258 | @{lemma "sublist [a,b,c,d,e] {0,2,3} = [a,c,d]" by (simp add:sublist_def)}\\
 | |
| 259 | @{lemma "rotate1 [a,b,c,d] = [b,c,d,a]" by (simp add:rotate1_def)}\\
 | |
| 40077 | 260 | @{lemma "rotate 3 [a,b,c,d] = [d,a,b,c]" by (simp add:rotate1_def rotate_def eval_nat_numeral)}\\
 | 
| 261 | @{lemma "replicate 4 a = [a,a,a,a]" by (simp add:eval_nat_numeral)}\\
 | |
| 262 | @{lemma "[2..<5] = [2,3,4]" by (simp add:eval_nat_numeral)}\\
 | |
| 39774 | 263 | @{lemma "listsum [1,2,3::nat] = 6" by (simp add: listsum_def)}
 | 
| 26771 | 264 | \end{tabular}}
 | 
| 265 | \caption{Characteristic examples}
 | |
| 266 | \label{fig:Characteristic}
 | |
| 267 | \end{figure}
 | |
| 29927 | 268 | Figure~\ref{fig:Characteristic} shows characteristic examples
 | 
| 26771 | 269 | that should give an intuitive understanding of the above functions. | 
| 270 | *} | |
| 271 | ||
| 24616 | 272 | text{* The following simple sort functions are intended for proofs,
 | 
| 273 | not for efficient implementations. *} | |
| 274 | ||
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 275 | context linorder | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 276 | begin | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 277 | |
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 278 | inductive sorted :: "'a list \<Rightarrow> bool" where | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 279 | Nil [iff]: "sorted []" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 280 | | Cons: "\<forall>y\<in>set xs. x \<le> y \<Longrightarrow> sorted xs \<Longrightarrow> sorted (x # xs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 281 | |
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 282 | lemma sorted_single [iff]: | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 283 | "sorted [x]" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 284 | by (rule sorted.Cons) auto | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 285 | |
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 286 | lemma sorted_many: | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 287 | "x \<le> y \<Longrightarrow> sorted (y # zs) \<Longrightarrow> sorted (x # y # zs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 288 | by (rule sorted.Cons) (cases "y # zs" rule: sorted.cases, auto) | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 289 | |
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 290 | lemma sorted_many_eq [simp, code]: | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 291 | "sorted (x # y # zs) \<longleftrightarrow> x \<le> y \<and> sorted (y # zs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 292 | by (auto intro: sorted_many elim: sorted.cases) | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 293 | |
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 294 | lemma [code]: | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 295 | "sorted [] \<longleftrightarrow> True" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 296 | "sorted [x] \<longleftrightarrow> True" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 297 | by simp_all | 
| 24697 | 298 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 299 | primrec insort_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b \<Rightarrow> 'b list \<Rightarrow> 'b list" where
 | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 300 | "insort_key f x [] = [x]" | | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 301 | "insort_key f x (y#ys) = (if f x \<le> f y then (x#y#ys) else y#(insort_key f x ys))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 302 | |
| 35195 | 303 | definition sort_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b list \<Rightarrow> 'b list" where
 | 
| 304 | "sort_key f xs = foldr (insort_key f) xs []" | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 305 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 306 | abbreviation "sort \<equiv> sort_key (\<lambda>x. x)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 307 | abbreviation "insort \<equiv> insort_key (\<lambda>x. x)" | 
| 24616 | 308 | |
| 35608 | 309 | definition insort_insert :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 310 | "insort_insert x xs = (if x \<in> set xs then xs else insort x xs)" | |
| 311 | ||
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 312 | end | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 313 | |
| 24616 | 314 | |
| 23388 | 315 | subsubsection {* List comprehension *}
 | 
| 23192 | 316 | |
| 24349 | 317 | text{* Input syntax for Haskell-like list comprehension notation.
 | 
| 318 | Typical example: @{text"[(x,y). x \<leftarrow> xs, y \<leftarrow> ys, x \<noteq> y]"},
 | |
| 319 | the list of all pairs of distinct elements from @{text xs} and @{text ys}.
 | |
| 320 | The syntax is as in Haskell, except that @{text"|"} becomes a dot
 | |
| 321 | (like in Isabelle's set comprehension): @{text"[e. x \<leftarrow> xs, \<dots>]"} rather than
 | |
| 322 | \verb![e| x <- xs, ...]!. | |
| 323 | ||
| 324 | The qualifiers after the dot are | |
| 325 | \begin{description}
 | |
| 326 | \item[generators] @{text"p \<leftarrow> xs"},
 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 327 |  where @{text p} is a pattern and @{text xs} an expression of list type, or
 | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 328 | \item[guards] @{text"b"}, where @{text b} is a boolean expression.
 | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 329 | %\item[local bindings] @ {text"let x = e"}.
 | 
| 24349 | 330 | \end{description}
 | 
| 23240 | 331 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 332 | Just like in Haskell, list comprehension is just a shorthand. To avoid | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 333 | misunderstandings, the translation into desugared form is not reversed | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 334 | upon output. Note that the translation of @{text"[e. x \<leftarrow> xs]"} is
 | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 335 | optmized to @{term"map (%x. e) xs"}.
 | 
| 23240 | 336 | |
| 24349 | 337 | It is easy to write short list comprehensions which stand for complex | 
| 338 | expressions. During proofs, they may become unreadable (and | |
| 339 | mangled). In such cases it can be advisable to introduce separate | |
| 340 | definitions for the list comprehensions in question. *} | |
| 341 | ||
| 23209 | 342 | (* | 
| 23240 | 343 | Proper theorem proving support would be nice. For example, if | 
| 23192 | 344 | @{text"set[f x y. x \<leftarrow> xs, y \<leftarrow> ys, P x y]"}
 | 
| 345 | produced something like | |
| 23209 | 346 | @{term"{z. EX x: set xs. EX y:set ys. P x y \<and> z = f x y}"}.
 | 
| 347 | *) | |
| 348 | ||
| 23240 | 349 | nonterminals lc_qual lc_quals | 
| 23192 | 350 | |
| 351 | syntax | |
| 23240 | 352 | "_listcompr" :: "'a \<Rightarrow> lc_qual \<Rightarrow> lc_quals \<Rightarrow> 'a list"  ("[_ . __")
 | 
| 24349 | 353 | "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ <- _")
 | 
| 23240 | 354 | "_lc_test" :: "bool \<Rightarrow> lc_qual" ("_")
 | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 355 | (*"_lc_let" :: "letbinds => lc_qual"  ("let _")*)
 | 
| 23240 | 356 | "_lc_end" :: "lc_quals" ("]")
 | 
| 357 | "_lc_quals" :: "lc_qual \<Rightarrow> lc_quals \<Rightarrow> lc_quals" (", __")
 | |
| 24349 | 358 | "_lc_abs" :: "'a => 'b list => 'b list" | 
| 23192 | 359 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 360 | (* These are easier than ML code but cannot express the optimized | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 361 | translation of [e. p<-xs] | 
| 23192 | 362 | translations | 
| 24349 | 363 | "[e. p<-xs]" => "concat(map (_lc_abs p [e]) xs)" | 
| 23240 | 364 | "_listcompr e (_lc_gen p xs) (_lc_quals Q Qs)" | 
| 24349 | 365 | => "concat (map (_lc_abs p (_listcompr e Q Qs)) xs)" | 
| 23240 | 366 | "[e. P]" => "if P then [e] else []" | 
| 367 | "_listcompr e (_lc_test P) (_lc_quals Q Qs)" | |
| 368 | => "if P then (_listcompr e Q Qs) else []" | |
| 24349 | 369 | "_listcompr e (_lc_let b) (_lc_quals Q Qs)" | 
| 370 | => "_Let b (_listcompr e Q Qs)" | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 371 | *) | 
| 23240 | 372 | |
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 373 | syntax (xsymbols) | 
| 24349 | 374 | "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
 | 
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 375 | syntax (HTML output) | 
| 24349 | 376 | "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
 | 
| 377 | ||
| 378 | parse_translation (advanced) {*
 | |
| 379 | let | |
| 35256 | 380 |   val NilC = Syntax.const @{const_syntax Nil};
 | 
| 381 |   val ConsC = Syntax.const @{const_syntax Cons};
 | |
| 382 |   val mapC = Syntax.const @{const_syntax map};
 | |
| 383 |   val concatC = Syntax.const @{const_syntax concat};
 | |
| 384 |   val IfC = Syntax.const @{const_syntax If};
 | |
| 35115 | 385 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 386 | fun singl x = ConsC $ x $ NilC; | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 387 | |
| 35115 | 388 | fun pat_tr ctxt p e opti = (* %x. case x of p => e | _ => [] *) | 
| 24349 | 389 | let | 
| 29281 | 390 | val x = Free (Name.variant (fold Term.add_free_names [p, e] []) "x", dummyT); | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 391 | val e = if opti then singl e else e; | 
| 35115 | 392 |       val case1 = Syntax.const @{syntax_const "_case1"} $ p $ e;
 | 
| 35256 | 393 | val case2 = | 
| 394 |         Syntax.const @{syntax_const "_case1"} $
 | |
| 395 |           Syntax.const @{const_syntax dummy_pattern} $ NilC;
 | |
| 35115 | 396 |       val cs = Syntax.const @{syntax_const "_case2"} $ case1 $ case2;
 | 
| 397 | val ft = Datatype_Case.case_tr false Datatype.info_of_constr ctxt [x, cs]; | |
| 24349 | 398 | in lambda x ft end; | 
| 399 | ||
| 35256 | 400 | fun abs_tr ctxt (p as Free (s, T)) e opti = | 
| 35115 | 401 | let | 
| 402 | val thy = ProofContext.theory_of ctxt; | |
| 403 | val s' = Sign.intern_const thy s; | |
| 404 | in | |
| 405 | if Sign.declared_const thy s' | |
| 406 | then (pat_tr ctxt p e opti, false) | |
| 407 | else (lambda p e, true) | |
| 24349 | 408 | end | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 409 | | abs_tr ctxt p e opti = (pat_tr ctxt p e opti, false); | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 410 | |
| 35115 | 411 |   fun lc_tr ctxt [e, Const (@{syntax_const "_lc_test"}, _) $ b, qs] =
 | 
| 412 | let | |
| 413 | val res = | |
| 414 | (case qs of | |
| 415 |               Const (@{syntax_const "_lc_end"}, _) => singl e
 | |
| 416 |             | Const (@{syntax_const "_lc_quals"}, _) $ q $ qs => lc_tr ctxt [e, q, qs]);
 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 417 | in IfC $ b $ res $ NilC end | 
| 35115 | 418 | | lc_tr ctxt | 
| 419 |           [e, Const (@{syntax_const "_lc_gen"}, _) $ p $ es,
 | |
| 420 |             Const(@{syntax_const "_lc_end"}, _)] =
 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 421 | (case abs_tr ctxt p e true of | 
| 35115 | 422 | (f, true) => mapC $ f $ es | 
| 423 | | (f, false) => concatC $ (mapC $ f $ es)) | |
| 424 | | lc_tr ctxt | |
| 425 |           [e, Const (@{syntax_const "_lc_gen"}, _) $ p $ es,
 | |
| 426 |             Const (@{syntax_const "_lc_quals"}, _) $ q $ qs] =
 | |
| 427 | let val e' = lc_tr ctxt [e, q, qs]; | |
| 428 | in concatC $ (mapC $ (fst (abs_tr ctxt p e' false)) $ es) end; | |
| 429 | ||
| 430 | in [(@{syntax_const "_listcompr"}, lc_tr)] end
 | |
| 24349 | 431 | *} | 
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 432 | |
| 23240 | 433 | term "[(x,y,z). b]" | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 434 | term "[(x,y,z). x\<leftarrow>xs]" | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 435 | term "[e x y. x\<leftarrow>xs, y\<leftarrow>ys]" | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 436 | term "[(x,y,z). x<a, x>b]" | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 437 | term "[(x,y,z). x\<leftarrow>xs, x>b]" | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 438 | term "[(x,y,z). x<a, x\<leftarrow>xs]" | 
| 24349 | 439 | term "[(x,y). Cons True x \<leftarrow> xs]" | 
| 440 | term "[(x,y,z). Cons x [] \<leftarrow> xs]" | |
| 23240 | 441 | term "[(x,y,z). x<a, x>b, x=d]" | 
| 442 | term "[(x,y,z). x<a, x>b, y\<leftarrow>ys]" | |
| 443 | term "[(x,y,z). x<a, x\<leftarrow>xs,y>b]" | |
| 444 | term "[(x,y,z). x<a, x\<leftarrow>xs, y\<leftarrow>ys]" | |
| 445 | term "[(x,y,z). x\<leftarrow>xs, x>b, y<a]" | |
| 446 | term "[(x,y,z). x\<leftarrow>xs, x>b, y\<leftarrow>ys]" | |
| 447 | term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,y>x]" | |
| 448 | term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,z\<leftarrow>zs]" | |
| 35115 | 449 | (* | 
| 24349 | 450 | term "[(x,y). x\<leftarrow>xs, let xx = x+x, y\<leftarrow>ys, y \<noteq> xx]" | 
| 23192 | 451 | *) | 
| 452 | ||
| 35115 | 453 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 454 | subsubsection {* @{const Nil} and @{const Cons} *}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 455 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 456 | lemma not_Cons_self [simp]: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 457 | "xs \<noteq> x # xs" | 
| 13145 | 458 | by (induct xs) auto | 
| 13114 | 459 | |
| 13142 | 460 | lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric] | 
| 13114 | 461 | |
| 13142 | 462 | lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)" | 
| 13145 | 463 | by (induct xs) auto | 
| 13114 | 464 | |
| 13142 | 465 | lemma length_induct: | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 466 | "(\<And>xs. \<forall>ys. length ys < length xs \<longrightarrow> P ys \<Longrightarrow> P xs) \<Longrightarrow> P xs" | 
| 17589 | 467 | by (rule measure_induct [of length]) iprover | 
| 13114 | 468 | |
| 37289 | 469 | lemma list_nonempty_induct [consumes 1, case_names single cons]: | 
| 470 | assumes "xs \<noteq> []" | |
| 471 | assumes single: "\<And>x. P [x]" | |
| 472 | assumes cons: "\<And>x xs. xs \<noteq> [] \<Longrightarrow> P xs \<Longrightarrow> P (x # xs)" | |
| 473 | shows "P xs" | |
| 474 | using `xs \<noteq> []` proof (induct xs) | |
| 475 | case Nil then show ?case by simp | |
| 476 | next | |
| 477 | case (Cons x xs) show ?case proof (cases xs) | |
| 478 | case Nil with single show ?thesis by simp | |
| 479 | next | |
| 480 | case Cons then have "xs \<noteq> []" by simp | |
| 481 | moreover with Cons.hyps have "P xs" . | |
| 482 | ultimately show ?thesis by (rule cons) | |
| 483 | qed | |
| 484 | qed | |
| 485 | ||
| 13114 | 486 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 487 | subsubsection {* @{const length} *}
 | 
| 13114 | 488 | |
| 13142 | 489 | text {*
 | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 490 |   Needs to come before @{text "@"} because of theorem @{text
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 491 | append_eq_append_conv}. | 
| 13142 | 492 | *} | 
| 13114 | 493 | |
| 13142 | 494 | lemma length_append [simp]: "length (xs @ ys) = length xs + length ys" | 
| 13145 | 495 | by (induct xs) auto | 
| 13114 | 496 | |
| 13142 | 497 | lemma length_map [simp]: "length (map f xs) = length xs" | 
| 13145 | 498 | by (induct xs) auto | 
| 13114 | 499 | |
| 13142 | 500 | lemma length_rev [simp]: "length (rev xs) = length xs" | 
| 13145 | 501 | by (induct xs) auto | 
| 13114 | 502 | |
| 13142 | 503 | lemma length_tl [simp]: "length (tl xs) = length xs - 1" | 
| 13145 | 504 | by (cases xs) auto | 
| 13114 | 505 | |
| 13142 | 506 | lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])" | 
| 13145 | 507 | by (induct xs) auto | 
| 13114 | 508 | |
| 13142 | 509 | lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])" | 
| 13145 | 510 | by (induct xs) auto | 
| 13114 | 511 | |
| 23479 | 512 | lemma length_pos_if_in_set: "x : set xs \<Longrightarrow> length xs > 0" | 
| 513 | by auto | |
| 514 | ||
| 13114 | 515 | lemma length_Suc_conv: | 
| 13145 | 516 | "(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" | 
| 517 | by (induct xs) auto | |
| 13142 | 518 | |
| 14025 | 519 | lemma Suc_length_conv: | 
| 520 | "(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" | |
| 14208 | 521 | apply (induct xs, simp, simp) | 
| 14025 | 522 | apply blast | 
| 523 | done | |
| 524 | ||
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 525 | lemma impossible_Cons: "length xs <= length ys ==> xs = x # ys = False" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 526 | by (induct xs) auto | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 527 | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 528 | lemma list_induct2 [consumes 1, case_names Nil Cons]: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 529 | "length xs = length ys \<Longrightarrow> P [] [] \<Longrightarrow> | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 530 | (\<And>x xs y ys. length xs = length ys \<Longrightarrow> P xs ys \<Longrightarrow> P (x#xs) (y#ys)) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 531 | \<Longrightarrow> P xs ys" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 532 | proof (induct xs arbitrary: ys) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 533 | case Nil then show ?case by simp | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 534 | next | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 535 | case (Cons x xs ys) then show ?case by (cases ys) simp_all | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 536 | qed | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 537 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 538 | lemma list_induct3 [consumes 2, case_names Nil Cons]: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 539 | "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P [] [] [] \<Longrightarrow> | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 540 | (\<And>x xs y ys z zs. length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P xs ys zs \<Longrightarrow> P (x#xs) (y#ys) (z#zs)) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 541 | \<Longrightarrow> P xs ys zs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 542 | proof (induct xs arbitrary: ys zs) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 543 | case Nil then show ?case by simp | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 544 | next | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 545 | case (Cons x xs ys zs) then show ?case by (cases ys, simp_all) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 546 | (cases zs, simp_all) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 547 | qed | 
| 13114 | 548 | |
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 549 | lemma list_induct4 [consumes 3, case_names Nil Cons]: | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 550 | "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> length zs = length ws \<Longrightarrow> | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 551 | P [] [] [] [] \<Longrightarrow> (\<And>x xs y ys z zs w ws. length xs = length ys \<Longrightarrow> | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 552 | length ys = length zs \<Longrightarrow> length zs = length ws \<Longrightarrow> P xs ys zs ws \<Longrightarrow> | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 553 | P (x#xs) (y#ys) (z#zs) (w#ws)) \<Longrightarrow> P xs ys zs ws" | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 554 | proof (induct xs arbitrary: ys zs ws) | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 555 | case Nil then show ?case by simp | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 556 | next | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 557 | case (Cons x xs ys zs ws) then show ?case by ((cases ys, simp_all), (cases zs,simp_all)) (cases ws, simp_all) | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 558 | qed | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 559 | |
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 560 | lemma list_induct2': | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 561 | "\<lbrakk> P [] []; | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 562 | \<And>x xs. P (x#xs) []; | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 563 | \<And>y ys. P [] (y#ys); | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 564 | \<And>x xs y ys. P xs ys \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk> | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 565 | \<Longrightarrow> P xs ys" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 566 | by (induct xs arbitrary: ys) (case_tac x, auto)+ | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 567 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 568 | lemma neq_if_length_neq: "length xs \<noteq> length ys \<Longrightarrow> (xs = ys) == False" | 
| 24349 | 569 | by (rule Eq_FalseI) auto | 
| 24037 | 570 | |
| 571 | simproc_setup list_neq ("(xs::'a list) = ys") = {*
 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 572 | (* | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 573 | Reduces xs=ys to False if xs and ys cannot be of the same length. | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 574 | This is the case if the atomic sublists of one are a submultiset | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 575 | of those of the other list and there are fewer Cons's in one than the other. | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 576 | *) | 
| 24037 | 577 | |
| 578 | let | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 579 | |
| 29856 | 580 | fun len (Const(@{const_name Nil},_)) acc = acc
 | 
| 581 |   | len (Const(@{const_name Cons},_) $ _ $ xs) (ts,n) = len xs (ts,n+1)
 | |
| 582 |   | len (Const(@{const_name append},_) $ xs $ ys) acc = len xs (len ys acc)
 | |
| 583 |   | len (Const(@{const_name rev},_) $ xs) acc = len xs acc
 | |
| 584 |   | len (Const(@{const_name map},_) $ _ $ xs) acc = len xs acc
 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 585 | | len t (ts,n) = (t::ts,n); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 586 | |
| 24037 | 587 | fun list_neq _ ss ct = | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 588 | let | 
| 24037 | 589 | val (Const(_,eqT) $ lhs $ rhs) = Thm.term_of ct; | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 590 | val (ls,m) = len lhs ([],0) and (rs,n) = len rhs ([],0); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 591 | fun prove_neq() = | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 592 | let | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 593 | val Type(_,listT::_) = eqT; | 
| 22994 | 594 | val size = HOLogic.size_const listT; | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 595 | val eq_len = HOLogic.mk_eq (size $ lhs, size $ rhs); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 596 | val neq_len = HOLogic.mk_Trueprop (HOLogic.Not $ eq_len); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 597 | val thm = Goal.prove (Simplifier.the_context ss) [] [] neq_len | 
| 22633 | 598 |           (K (simp_tac (Simplifier.inherit_context ss @{simpset}) 1));
 | 
| 599 |       in SOME (thm RS @{thm neq_if_length_neq}) end
 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 600 | in | 
| 23214 | 601 | if m < n andalso submultiset (op aconv) (ls,rs) orelse | 
| 602 | n < m andalso submultiset (op aconv) (rs,ls) | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 603 | then prove_neq() else NONE | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 604 | end; | 
| 24037 | 605 | in list_neq end; | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 606 | *} | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 607 | |
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 608 | |
| 15392 | 609 | subsubsection {* @{text "@"} -- append *}
 | 
| 13114 | 610 | |
| 13142 | 611 | lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)" | 
| 13145 | 612 | by (induct xs) auto | 
| 13114 | 613 | |
| 13142 | 614 | lemma append_Nil2 [simp]: "xs @ [] = xs" | 
| 13145 | 615 | by (induct xs) auto | 
| 3507 | 616 | |
| 13142 | 617 | lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])" | 
| 13145 | 618 | by (induct xs) auto | 
| 13114 | 619 | |
| 13142 | 620 | lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])" | 
| 13145 | 621 | by (induct xs) auto | 
| 13114 | 622 | |
| 13142 | 623 | lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])" | 
| 13145 | 624 | by (induct xs) auto | 
| 13114 | 625 | |
| 13142 | 626 | lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])" | 
| 13145 | 627 | by (induct xs) auto | 
| 13114 | 628 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 629 | lemma append_eq_append_conv [simp, no_atp]: | 
| 24526 | 630 | "length xs = length ys \<or> length us = length vs | 
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 631 | ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)" | 
| 24526 | 632 | apply (induct xs arbitrary: ys) | 
| 14208 | 633 | apply (case_tac ys, simp, force) | 
| 634 | apply (case_tac ys, force, simp) | |
| 13145 | 635 | done | 
| 13142 | 636 | |
| 24526 | 637 | lemma append_eq_append_conv2: "(xs @ ys = zs @ ts) = | 
| 638 | (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)" | |
| 639 | apply (induct xs arbitrary: ys zs ts) | |
| 14495 | 640 | apply fastsimp | 
| 641 | apply(case_tac zs) | |
| 642 | apply simp | |
| 643 | apply fastsimp | |
| 644 | done | |
| 645 | ||
| 34910 
b23bd3ee4813
same_append_eq / append_same_eq are now used for simplifying induction rules.
 berghofe parents: 
34064diff
changeset | 646 | lemma same_append_eq [iff, induct_simp]: "(xs @ ys = xs @ zs) = (ys = zs)" | 
| 13145 | 647 | by simp | 
| 13142 | 648 | |
| 649 | lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)" | |
| 13145 | 650 | by simp | 
| 13114 | 651 | |
| 34910 
b23bd3ee4813
same_append_eq / append_same_eq are now used for simplifying induction rules.
 berghofe parents: 
34064diff
changeset | 652 | lemma append_same_eq [iff, induct_simp]: "(ys @ xs = zs @ xs) = (ys = zs)" | 
| 13145 | 653 | by simp | 
| 13114 | 654 | |
| 13142 | 655 | lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])" | 
| 13145 | 656 | using append_same_eq [of _ _ "[]"] by auto | 
| 3507 | 657 | |
| 13142 | 658 | lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])" | 
| 13145 | 659 | using append_same_eq [of "[]"] by auto | 
| 13114 | 660 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 661 | lemma hd_Cons_tl [simp,no_atp]: "xs \<noteq> [] ==> hd xs # tl xs = xs" | 
| 13145 | 662 | by (induct xs) auto | 
| 13114 | 663 | |
| 13142 | 664 | lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)" | 
| 13145 | 665 | by (induct xs) auto | 
| 13114 | 666 | |
| 13142 | 667 | lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs" | 
| 13145 | 668 | by (simp add: hd_append split: list.split) | 
| 13114 | 669 | |
| 13142 | 670 | lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)" | 
| 13145 | 671 | by (simp split: list.split) | 
| 13114 | 672 | |
| 13142 | 673 | lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys" | 
| 13145 | 674 | by (simp add: tl_append split: list.split) | 
| 13114 | 675 | |
| 676 | ||
| 14300 | 677 | lemma Cons_eq_append_conv: "x#xs = ys@zs = | 
| 678 | (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))" | |
| 679 | by(cases ys) auto | |
| 680 | ||
| 15281 | 681 | lemma append_eq_Cons_conv: "(ys@zs = x#xs) = | 
| 682 | (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))" | |
| 683 | by(cases ys) auto | |
| 684 | ||
| 14300 | 685 | |
| 13142 | 686 | text {* Trivial rules for solving @{text "@"}-equations automatically. *}
 | 
| 13114 | 687 | |
| 688 | lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys" | |
| 13145 | 689 | by simp | 
| 13114 | 690 | |
| 13142 | 691 | lemma Cons_eq_appendI: | 
| 13145 | 692 | "[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs" | 
| 693 | by (drule sym) simp | |
| 13114 | 694 | |
| 13142 | 695 | lemma append_eq_appendI: | 
| 13145 | 696 | "[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us" | 
| 697 | by (drule sym) simp | |
| 13114 | 698 | |
| 699 | ||
| 13142 | 700 | text {*
 | 
| 13145 | 701 | Simplification procedure for all list equalities. | 
| 702 | Currently only tries to rearrange @{text "@"} to see if
 | |
| 703 | - both lists end in a singleton list, | |
| 704 | - or both lists end in the same list. | |
| 13142 | 705 | *} | 
| 706 | ||
| 26480 | 707 | ML {*
 | 
| 3507 | 708 | local | 
| 709 | ||
| 29856 | 710 | fun last (cons as Const(@{const_name Cons},_) $ _ $ xs) =
 | 
| 711 |   (case xs of Const(@{const_name Nil},_) => cons | _ => last xs)
 | |
| 712 |   | last (Const(@{const_name append},_) $ _ $ ys) = last ys
 | |
| 13462 | 713 | | last t = t; | 
| 13114 | 714 | |
| 29856 | 715 | fun list1 (Const(@{const_name Cons},_) $ _ $ Const(@{const_name Nil},_)) = true
 | 
| 13462 | 716 | | list1 _ = false; | 
| 13114 | 717 | |
| 29856 | 718 | fun butlast ((cons as Const(@{const_name Cons},_) $ x) $ xs) =
 | 
| 719 |   (case xs of Const(@{const_name Nil},_) => xs | _ => cons $ butlast xs)
 | |
| 720 |   | butlast ((app as Const(@{const_name append},_) $ xs) $ ys) = app $ butlast ys
 | |
| 721 |   | butlast xs = Const(@{const_name Nil},fastype_of xs);
 | |
| 13114 | 722 | |
| 22633 | 723 | val rearr_ss = HOL_basic_ss addsimps [@{thm append_assoc},
 | 
| 724 |   @{thm append_Nil}, @{thm append_Cons}];
 | |
| 16973 | 725 | |
| 20044 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19890diff
changeset | 726 | fun list_eq ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) = | 
| 13462 | 727 | let | 
| 728 | val lastl = last lhs and lastr = last rhs; | |
| 729 | fun rearr conv = | |
| 730 | let | |
| 731 | val lhs1 = butlast lhs and rhs1 = butlast rhs; | |
| 732 | val Type(_,listT::_) = eqT | |
| 733 | val appT = [listT,listT] ---> listT | |
| 29856 | 734 |         val app = Const(@{const_name append},appT)
 | 
| 13462 | 735 | val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr) | 
| 13480 
bb72bd43c6c3
use Tactic.prove instead of prove_goalw_cterm in internal proofs!
 wenzelm parents: 
13462diff
changeset | 736 | val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2)); | 
| 20044 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19890diff
changeset | 737 | val thm = Goal.prove (Simplifier.the_context ss) [] [] eq | 
| 17877 
67d5ab1cb0d8
Simplifier.inherit_context instead of Simplifier.inherit_bounds;
 wenzelm parents: 
17830diff
changeset | 738 | (K (simp_tac (Simplifier.inherit_context ss rearr_ss) 1)); | 
| 15531 | 739 | in SOME ((conv RS (thm RS trans)) RS eq_reflection) end; | 
| 13114 | 740 | |
| 13462 | 741 | in | 
| 22633 | 742 |     if list1 lastl andalso list1 lastr then rearr @{thm append1_eq_conv}
 | 
| 743 |     else if lastl aconv lastr then rearr @{thm append_same_eq}
 | |
| 15531 | 744 | else NONE | 
| 13462 | 745 | end; | 
| 746 | ||
| 13114 | 747 | in | 
| 13462 | 748 | |
| 749 | val list_eq_simproc = | |
| 38715 
6513ea67d95d
renamed Simplifier.simproc(_i) to Simplifier.simproc_global(_i) to emphasize that this is not the real thing;
 wenzelm parents: 
37880diff
changeset | 750 |   Simplifier.simproc_global @{theory} "list_eq" ["(xs::'a list) = ys"] (K list_eq);
 | 
| 13462 | 751 | |
| 13114 | 752 | end; | 
| 753 | ||
| 754 | Addsimprocs [list_eq_simproc]; | |
| 755 | *} | |
| 756 | ||
| 757 | ||
| 15392 | 758 | subsubsection {* @{text map} *}
 | 
| 13114 | 759 | |
| 13142 | 760 | lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs" | 
| 13145 | 761 | by (induct xs) simp_all | 
| 13114 | 762 | |
| 13142 | 763 | lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)" | 
| 13145 | 764 | by (rule ext, induct_tac xs) auto | 
| 13114 | 765 | |
| 13142 | 766 | lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys" | 
| 13145 | 767 | by (induct xs) auto | 
| 13114 | 768 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 769 | lemma map_map [simp]: "map f (map g xs) = map (f \<circ> g) xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 770 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 771 | |
| 35208 | 772 | lemma map_comp_map[simp]: "((map f) o (map g)) = map(f o g)" | 
| 773 | apply(rule ext) | |
| 774 | apply(simp) | |
| 775 | done | |
| 776 | ||
| 13142 | 777 | lemma rev_map: "rev (map f xs) = map f (rev xs)" | 
| 13145 | 778 | by (induct xs) auto | 
| 13114 | 779 | |
| 13737 | 780 | lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)" | 
| 781 | by (induct xs) auto | |
| 782 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 783 | lemma map_cong [fundef_cong, recdef_cong]: | 
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 784 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> f x = g x) \<Longrightarrow> map f xs = map g ys" | 
| 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 785 | by simp | 
| 13114 | 786 | |
| 13142 | 787 | lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])" | 
| 13145 | 788 | by (cases xs) auto | 
| 13114 | 789 | |
| 13142 | 790 | lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])" | 
| 13145 | 791 | by (cases xs) auto | 
| 13114 | 792 | |
| 18447 | 793 | lemma map_eq_Cons_conv: | 
| 14025 | 794 | "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)" | 
| 13145 | 795 | by (cases xs) auto | 
| 13114 | 796 | |
| 18447 | 797 | lemma Cons_eq_map_conv: | 
| 14025 | 798 | "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)" | 
| 799 | by (cases ys) auto | |
| 800 | ||
| 18447 | 801 | lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1] | 
| 802 | lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1] | |
| 803 | declare map_eq_Cons_D [dest!] Cons_eq_map_D [dest!] | |
| 804 | ||
| 14111 | 805 | lemma ex_map_conv: | 
| 806 | "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)" | |
| 18447 | 807 | by(induct ys, auto simp add: Cons_eq_map_conv) | 
| 14111 | 808 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 809 | lemma map_eq_imp_length_eq: | 
| 35510 | 810 | assumes "map f xs = map g ys" | 
| 26734 | 811 | shows "length xs = length ys" | 
| 812 | using assms proof (induct ys arbitrary: xs) | |
| 813 | case Nil then show ?case by simp | |
| 814 | next | |
| 815 | case (Cons y ys) then obtain z zs where xs: "xs = z # zs" by auto | |
| 35510 | 816 | from Cons xs have "map f zs = map g ys" by simp | 
| 26734 | 817 | moreover with Cons have "length zs = length ys" by blast | 
| 818 | with xs show ?case by simp | |
| 819 | qed | |
| 820 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 821 | lemma map_inj_on: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 822 | "[| map f xs = map f ys; inj_on f (set xs Un set ys) |] | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 823 | ==> xs = ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 824 | apply(frule map_eq_imp_length_eq) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 825 | apply(rotate_tac -1) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 826 | apply(induct rule:list_induct2) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 827 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 828 | apply(simp) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 829 | apply (blast intro:sym) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 830 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 831 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 832 | lemma inj_on_map_eq_map: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 833 | "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 834 | by(blast dest:map_inj_on) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 835 | |
| 13114 | 836 | lemma map_injective: | 
| 24526 | 837 | "map f xs = map f ys ==> inj f ==> xs = ys" | 
| 838 | by (induct ys arbitrary: xs) (auto dest!:injD) | |
| 13114 | 839 | |
| 14339 | 840 | lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)" | 
| 841 | by(blast dest:map_injective) | |
| 842 | ||
| 13114 | 843 | lemma inj_mapI: "inj f ==> inj (map f)" | 
| 17589 | 844 | by (iprover dest: map_injective injD intro: inj_onI) | 
| 13114 | 845 | |
| 846 | lemma inj_mapD: "inj (map f) ==> inj f" | |
| 14208 | 847 | apply (unfold inj_on_def, clarify) | 
| 13145 | 848 | apply (erule_tac x = "[x]" in ballE) | 
| 14208 | 849 | apply (erule_tac x = "[y]" in ballE, simp, blast) | 
| 13145 | 850 | apply blast | 
| 851 | done | |
| 13114 | 852 | |
| 14339 | 853 | lemma inj_map[iff]: "inj (map f) = inj f" | 
| 13145 | 854 | by (blast dest: inj_mapD intro: inj_mapI) | 
| 13114 | 855 | |
| 15303 | 856 | lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A" | 
| 857 | apply(rule inj_onI) | |
| 858 | apply(erule map_inj_on) | |
| 859 | apply(blast intro:inj_onI dest:inj_onD) | |
| 860 | done | |
| 861 | ||
| 14343 | 862 | lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs" | 
| 863 | by (induct xs, auto) | |
| 13114 | 864 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 865 | lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 866 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 867 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 868 | lemma map_fst_zip[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 869 | "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 870 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 871 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 872 | lemma map_snd_zip[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 873 | "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 874 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 875 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 876 | |
| 15392 | 877 | subsubsection {* @{text rev} *}
 | 
| 13114 | 878 | |
| 13142 | 879 | lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs" | 
| 13145 | 880 | by (induct xs) auto | 
| 13114 | 881 | |
| 13142 | 882 | lemma rev_rev_ident [simp]: "rev (rev xs) = xs" | 
| 13145 | 883 | by (induct xs) auto | 
| 13114 | 884 | |
| 15870 | 885 | lemma rev_swap: "(rev xs = ys) = (xs = rev ys)" | 
| 886 | by auto | |
| 887 | ||
| 13142 | 888 | lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])" | 
| 13145 | 889 | by (induct xs) auto | 
| 13114 | 890 | |
| 13142 | 891 | lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])" | 
| 13145 | 892 | by (induct xs) auto | 
| 13114 | 893 | |
| 15870 | 894 | lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])" | 
| 895 | by (cases xs) auto | |
| 896 | ||
| 897 | lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])" | |
| 898 | by (cases xs) auto | |
| 899 | ||
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 900 | lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 901 | apply (induct xs arbitrary: ys, force) | 
| 14208 | 902 | apply (case_tac ys, simp, force) | 
| 13145 | 903 | done | 
| 13114 | 904 | |
| 15439 | 905 | lemma inj_on_rev[iff]: "inj_on rev A" | 
| 906 | by(simp add:inj_on_def) | |
| 907 | ||
| 13366 | 908 | lemma rev_induct [case_names Nil snoc]: | 
| 909 | "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs" | |
| 15489 
d136af442665
Replaced application of subst by simplesubst in proof of rev_induct
 berghofe parents: 
15439diff
changeset | 910 | apply(simplesubst rev_rev_ident[symmetric]) | 
| 13145 | 911 | apply(rule_tac list = "rev xs" in list.induct, simp_all) | 
| 912 | done | |
| 13114 | 913 | |
| 13366 | 914 | lemma rev_exhaust [case_names Nil snoc]: | 
| 915 | "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P" | |
| 13145 | 916 | by (induct xs rule: rev_induct) auto | 
| 13114 | 917 | |
| 13366 | 918 | lemmas rev_cases = rev_exhaust | 
| 919 | ||
| 18423 | 920 | lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])" | 
| 921 | by(rule rev_cases[of xs]) auto | |
| 922 | ||
| 13114 | 923 | |
| 15392 | 924 | subsubsection {* @{text set} *}
 | 
| 13114 | 925 | |
| 13142 | 926 | lemma finite_set [iff]: "finite (set xs)" | 
| 13145 | 927 | by (induct xs) auto | 
| 13114 | 928 | |
| 13142 | 929 | lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)" | 
| 13145 | 930 | by (induct xs) auto | 
| 13114 | 931 | |
| 17830 | 932 | lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs" | 
| 933 | by(cases xs) auto | |
| 14099 | 934 | |
| 13142 | 935 | lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)" | 
| 13145 | 936 | by auto | 
| 13114 | 937 | |
| 14099 | 938 | lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" | 
| 939 | by auto | |
| 940 | ||
| 13142 | 941 | lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
 | 
| 13145 | 942 | by (induct xs) auto | 
| 13114 | 943 | |
| 15245 | 944 | lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
 | 
| 945 | by(induct xs) auto | |
| 946 | ||
| 13142 | 947 | lemma set_rev [simp]: "set (rev xs) = set xs" | 
| 13145 | 948 | by (induct xs) auto | 
| 13114 | 949 | |
| 13142 | 950 | lemma set_map [simp]: "set (map f xs) = f`(set xs)" | 
| 13145 | 951 | by (induct xs) auto | 
| 13114 | 952 | |
| 13142 | 953 | lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
 | 
| 13145 | 954 | by (induct xs) auto | 
| 13114 | 955 | |
| 32417 | 956 | lemma set_upt [simp]: "set[i..<j] = {i..<j}"
 | 
| 957 | by (induct j) (simp_all add: atLeastLessThanSuc) | |
| 13114 | 958 | |
| 13142 | 959 | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 960 | lemma split_list: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs" | 
| 18049 | 961 | proof (induct xs) | 
| 26073 | 962 | case Nil thus ?case by simp | 
| 963 | next | |
| 964 | case Cons thus ?case by (auto intro: Cons_eq_appendI) | |
| 965 | qed | |
| 966 | ||
| 26734 | 967 | lemma in_set_conv_decomp: "x \<in> set xs \<longleftrightarrow> (\<exists>ys zs. xs = ys @ x # zs)" | 
| 968 | by (auto elim: split_list) | |
| 26073 | 969 | |
| 970 | lemma split_list_first: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys" | |
| 971 | proof (induct xs) | |
| 972 | case Nil thus ?case by simp | |
| 18049 | 973 | next | 
| 974 | case (Cons a xs) | |
| 975 | show ?case | |
| 976 | proof cases | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 977 | assume "x = a" thus ?case using Cons by fastsimp | 
| 18049 | 978 | next | 
| 26073 | 979 | assume "x \<noteq> a" thus ?case using Cons by(fastsimp intro!: Cons_eq_appendI) | 
| 980 | qed | |
| 981 | qed | |
| 982 | ||
| 983 | lemma in_set_conv_decomp_first: | |
| 984 | "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)" | |
| 26734 | 985 | by (auto dest!: split_list_first) | 
| 26073 | 986 | |
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 987 | lemma split_list_last: "x \<in> set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs" | 
| 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 988 | proof (induct xs rule: rev_induct) | 
| 26073 | 989 | case Nil thus ?case by simp | 
| 990 | next | |
| 991 | case (snoc a xs) | |
| 992 | show ?case | |
| 993 | proof cases | |
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 994 | assume "x = a" thus ?case using snoc by (metis List.set.simps(1) emptyE) | 
| 26073 | 995 | next | 
| 996 | assume "x \<noteq> a" thus ?case using snoc by fastsimp | |
| 18049 | 997 | qed | 
| 998 | qed | |
| 999 | ||
| 26073 | 1000 | lemma in_set_conv_decomp_last: | 
| 1001 | "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs)" | |
| 26734 | 1002 | by (auto dest!: split_list_last) | 
| 26073 | 1003 | |
| 1004 | lemma split_list_prop: "\<exists>x \<in> set xs. P x \<Longrightarrow> \<exists>ys x zs. xs = ys @ x # zs & P x" | |
| 1005 | proof (induct xs) | |
| 1006 | case Nil thus ?case by simp | |
| 1007 | next | |
| 1008 | case Cons thus ?case | |
| 1009 | by(simp add:Bex_def)(metis append_Cons append.simps(1)) | |
| 1010 | qed | |
| 1011 | ||
| 1012 | lemma split_list_propE: | |
| 26734 | 1013 | assumes "\<exists>x \<in> set xs. P x" | 
| 1014 | obtains ys x zs where "xs = ys @ x # zs" and "P x" | |
| 1015 | using split_list_prop [OF assms] by blast | |
| 26073 | 1016 | |
| 1017 | lemma split_list_first_prop: | |
| 1018 | "\<exists>x \<in> set xs. P x \<Longrightarrow> | |
| 1019 | \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y)" | |
| 26734 | 1020 | proof (induct xs) | 
| 26073 | 1021 | case Nil thus ?case by simp | 
| 1022 | next | |
| 1023 | case (Cons x xs) | |
| 1024 | show ?case | |
| 1025 | proof cases | |
| 1026 | assume "P x" | |
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 1027 | thus ?thesis by simp (metis Un_upper1 contra_subsetD in_set_conv_decomp_first self_append_conv2 set_append) | 
| 26073 | 1028 | next | 
| 1029 | assume "\<not> P x" | |
| 1030 | hence "\<exists>x\<in>set xs. P x" using Cons(2) by simp | |
| 1031 | thus ?thesis using `\<not> P x` Cons(1) by (metis append_Cons set_ConsD) | |
| 1032 | qed | |
| 1033 | qed | |
| 1034 | ||
| 1035 | lemma split_list_first_propE: | |
| 26734 | 1036 | assumes "\<exists>x \<in> set xs. P x" | 
| 1037 | obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>y \<in> set ys. \<not> P y" | |
| 1038 | using split_list_first_prop [OF assms] by blast | |
| 26073 | 1039 | |
| 1040 | lemma split_list_first_prop_iff: | |
| 1041 | "(\<exists>x \<in> set xs. P x) \<longleftrightarrow> | |
| 1042 | (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y))" | |
| 26734 | 1043 | by (rule, erule split_list_first_prop) auto | 
| 26073 | 1044 | |
| 1045 | lemma split_list_last_prop: | |
| 1046 | "\<exists>x \<in> set xs. P x \<Longrightarrow> | |
| 1047 | \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z)" | |
| 1048 | proof(induct xs rule:rev_induct) | |
| 1049 | case Nil thus ?case by simp | |
| 1050 | next | |
| 1051 | case (snoc x xs) | |
| 1052 | show ?case | |
| 1053 | proof cases | |
| 1054 | assume "P x" thus ?thesis by (metis emptyE set_empty) | |
| 1055 | next | |
| 1056 | assume "\<not> P x" | |
| 1057 | hence "\<exists>x\<in>set xs. P x" using snoc(2) by simp | |
| 1058 | thus ?thesis using `\<not> P x` snoc(1) by fastsimp | |
| 1059 | qed | |
| 1060 | qed | |
| 1061 | ||
| 1062 | lemma split_list_last_propE: | |
| 26734 | 1063 | assumes "\<exists>x \<in> set xs. P x" | 
| 1064 | obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>z \<in> set zs. \<not> P z" | |
| 1065 | using split_list_last_prop [OF assms] by blast | |
| 26073 | 1066 | |
| 1067 | lemma split_list_last_prop_iff: | |
| 1068 | "(\<exists>x \<in> set xs. P x) \<longleftrightarrow> | |
| 1069 | (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z))" | |
| 26734 | 1070 | by (metis split_list_last_prop [where P=P] in_set_conv_decomp) | 
| 26073 | 1071 | |
| 1072 | lemma finite_list: "finite A ==> EX xs. set xs = A" | |
| 26734 | 1073 | by (erule finite_induct) | 
| 1074 | (auto simp add: set.simps(2) [symmetric] simp del: set.simps(2)) | |
| 13508 | 1075 | |
| 14388 | 1076 | lemma card_length: "card (set xs) \<le> length xs" | 
| 1077 | by (induct xs) (auto simp add: card_insert_if) | |
| 13114 | 1078 | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1079 | lemma set_minus_filter_out: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1080 |   "set xs - {y} = set (filter (\<lambda>x. \<not> (x = y)) xs)"
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1081 | by (induct xs) auto | 
| 15168 | 1082 | |
| 35115 | 1083 | |
| 15392 | 1084 | subsubsection {* @{text filter} *}
 | 
| 13114 | 1085 | |
| 13142 | 1086 | lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys" | 
| 13145 | 1087 | by (induct xs) auto | 
| 13114 | 1088 | |
| 15305 | 1089 | lemma rev_filter: "rev (filter P xs) = filter P (rev xs)" | 
| 1090 | by (induct xs) simp_all | |
| 1091 | ||
| 13142 | 1092 | lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs" | 
| 13145 | 1093 | by (induct xs) auto | 
| 13114 | 1094 | |
| 16998 | 1095 | lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs" | 
| 1096 | by (induct xs) (auto simp add: le_SucI) | |
| 1097 | ||
| 18423 | 1098 | lemma sum_length_filter_compl: | 
| 1099 | "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs" | |
| 1100 | by(induct xs) simp_all | |
| 1101 | ||
| 13142 | 1102 | lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs" | 
| 13145 | 1103 | by (induct xs) auto | 
| 13114 | 1104 | |
| 13142 | 1105 | lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []" | 
| 13145 | 1106 | by (induct xs) auto | 
| 13114 | 1107 | |
| 16998 | 1108 | lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" | 
| 24349 | 1109 | by (induct xs) simp_all | 
| 16998 | 1110 | |
| 1111 | lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)" | |
| 1112 | apply (induct xs) | |
| 1113 | apply auto | |
| 1114 | apply(cut_tac P=P and xs=xs in length_filter_le) | |
| 1115 | apply simp | |
| 1116 | done | |
| 13114 | 1117 | |
| 16965 | 1118 | lemma filter_map: | 
| 1119 | "filter P (map f xs) = map f (filter (P o f) xs)" | |
| 1120 | by (induct xs) simp_all | |
| 1121 | ||
| 1122 | lemma length_filter_map[simp]: | |
| 1123 | "length (filter P (map f xs)) = length(filter (P o f) xs)" | |
| 1124 | by (simp add:filter_map) | |
| 1125 | ||
| 13142 | 1126 | lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs" | 
| 13145 | 1127 | by auto | 
| 13114 | 1128 | |
| 15246 | 1129 | lemma length_filter_less: | 
| 1130 | "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs" | |
| 1131 | proof (induct xs) | |
| 1132 | case Nil thus ?case by simp | |
| 1133 | next | |
| 1134 | case (Cons x xs) thus ?case | |
| 1135 | apply (auto split:split_if_asm) | |
| 1136 | using length_filter_le[of P xs] apply arith | |
| 1137 | done | |
| 1138 | qed | |
| 13114 | 1139 | |
| 15281 | 1140 | lemma length_filter_conv_card: | 
| 1141 |  "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
 | |
| 1142 | proof (induct xs) | |
| 1143 | case Nil thus ?case by simp | |
| 1144 | next | |
| 1145 | case (Cons x xs) | |
| 1146 |   let ?S = "{i. i < length xs & p(xs!i)}"
 | |
| 1147 | have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite) | |
| 1148 | show ?case (is "?l = card ?S'") | |
| 1149 | proof (cases) | |
| 1150 | assume "p x" | |
| 1151 | hence eq: "?S' = insert 0 (Suc ` ?S)" | |
| 25162 | 1152 | by(auto simp: image_def split:nat.split dest:gr0_implies_Suc) | 
| 15281 | 1153 | have "length (filter p (x # xs)) = Suc(card ?S)" | 
| 23388 | 1154 | using Cons `p x` by simp | 
| 15281 | 1155 | also have "\<dots> = Suc(card(Suc ` ?S))" using fin | 
| 1156 | by (simp add: card_image inj_Suc) | |
| 1157 | also have "\<dots> = card ?S'" using eq fin | |
| 1158 | by (simp add:card_insert_if) (simp add:image_def) | |
| 1159 | finally show ?thesis . | |
| 1160 | next | |
| 1161 | assume "\<not> p x" | |
| 1162 | hence eq: "?S' = Suc ` ?S" | |
| 25162 | 1163 | by(auto simp add: image_def split:nat.split elim:lessE) | 
| 15281 | 1164 | have "length (filter p (x # xs)) = card ?S" | 
| 23388 | 1165 | using Cons `\<not> p x` by simp | 
| 15281 | 1166 | also have "\<dots> = card(Suc ` ?S)" using fin | 
| 1167 | by (simp add: card_image inj_Suc) | |
| 1168 | also have "\<dots> = card ?S'" using eq fin | |
| 1169 | by (simp add:card_insert_if) | |
| 1170 | finally show ?thesis . | |
| 1171 | qed | |
| 1172 | qed | |
| 1173 | ||
| 17629 | 1174 | lemma Cons_eq_filterD: | 
| 1175 | "x#xs = filter P ys \<Longrightarrow> | |
| 1176 | \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs" | |
| 19585 | 1177 | (is "_ \<Longrightarrow> \<exists>us vs. ?P ys us vs") | 
| 17629 | 1178 | proof(induct ys) | 
| 1179 | case Nil thus ?case by simp | |
| 1180 | next | |
| 1181 | case (Cons y ys) | |
| 1182 | show ?case (is "\<exists>x. ?Q x") | |
| 1183 | proof cases | |
| 1184 | assume Py: "P y" | |
| 1185 | show ?thesis | |
| 1186 | proof cases | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1187 | assume "x = y" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1188 | with Py Cons.prems have "?Q []" by simp | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1189 | then show ?thesis .. | 
| 17629 | 1190 | next | 
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1191 | assume "x \<noteq> y" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1192 | with Py Cons.prems show ?thesis by simp | 
| 17629 | 1193 | qed | 
| 1194 | next | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1195 | assume "\<not> P y" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1196 | with Cons obtain us vs where "?P (y#ys) (y#us) vs" by fastsimp | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1197 | then have "?Q (y#us)" by simp | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1198 | then show ?thesis .. | 
| 17629 | 1199 | qed | 
| 1200 | qed | |
| 1201 | ||
| 1202 | lemma filter_eq_ConsD: | |
| 1203 | "filter P ys = x#xs \<Longrightarrow> | |
| 1204 | \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs" | |
| 1205 | by(rule Cons_eq_filterD) simp | |
| 1206 | ||
| 1207 | lemma filter_eq_Cons_iff: | |
| 1208 | "(filter P ys = x#xs) = | |
| 1209 | (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)" | |
| 1210 | by(auto dest:filter_eq_ConsD) | |
| 1211 | ||
| 1212 | lemma Cons_eq_filter_iff: | |
| 1213 | "(x#xs = filter P ys) = | |
| 1214 | (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)" | |
| 1215 | by(auto dest:Cons_eq_filterD) | |
| 1216 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1217 | lemma filter_cong[fundef_cong, recdef_cong]: | 
| 17501 | 1218 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys" | 
| 1219 | apply simp | |
| 1220 | apply(erule thin_rl) | |
| 1221 | by (induct ys) simp_all | |
| 1222 | ||
| 15281 | 1223 | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1224 | subsubsection {* List partitioning *}
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1225 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1226 | primrec partition :: "('a \<Rightarrow> bool) \<Rightarrow>'a list \<Rightarrow> 'a list \<times> 'a list" where
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1227 | "partition P [] = ([], [])" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1228 | | "partition P (x # xs) = | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1229 | (let (yes, no) = partition P xs | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1230 | in if P x then (x # yes, no) else (yes, x # no))" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1231 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1232 | lemma partition_filter1: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1233 | "fst (partition P xs) = filter P xs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1234 | by (induct xs) (auto simp add: Let_def split_def) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1235 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1236 | lemma partition_filter2: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1237 | "snd (partition P xs) = filter (Not o P) xs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1238 | by (induct xs) (auto simp add: Let_def split_def) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1239 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1240 | lemma partition_P: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1241 | assumes "partition P xs = (yes, no)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1242 | shows "(\<forall>p \<in> set yes. P p) \<and> (\<forall>p \<in> set no. \<not> P p)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1243 | proof - | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1244 | from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1245 | by simp_all | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1246 | then show ?thesis by (simp_all add: partition_filter1 partition_filter2) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1247 | qed | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1248 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1249 | lemma partition_set: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1250 | assumes "partition P xs = (yes, no)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1251 | shows "set yes \<union> set no = set xs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1252 | proof - | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1253 | from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1254 | by simp_all | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1255 | then show ?thesis by (auto simp add: partition_filter1 partition_filter2) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1256 | qed | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1257 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1258 | lemma partition_filter_conv[simp]: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1259 | "partition f xs = (filter f xs,filter (Not o f) xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1260 | unfolding partition_filter2[symmetric] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1261 | unfolding partition_filter1[symmetric] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1262 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1263 | declare partition.simps[simp del] | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1264 | |
| 35115 | 1265 | |
| 15392 | 1266 | subsubsection {* @{text concat} *}
 | 
| 13114 | 1267 | |
| 13142 | 1268 | lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys" | 
| 13145 | 1269 | by (induct xs) auto | 
| 13114 | 1270 | |
| 18447 | 1271 | lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])" | 
| 13145 | 1272 | by (induct xss) auto | 
| 13114 | 1273 | |
| 18447 | 1274 | lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])" | 
| 13145 | 1275 | by (induct xss) auto | 
| 13114 | 1276 | |
| 24308 | 1277 | lemma set_concat [simp]: "set (concat xs) = (UN x:set xs. set x)" | 
| 13145 | 1278 | by (induct xs) auto | 
| 13114 | 1279 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 1280 | lemma concat_map_singleton[simp]: "concat(map (%x. [f x]) xs) = map f xs" | 
| 24349 | 1281 | by (induct xs) auto | 
| 1282 | ||
| 13142 | 1283 | lemma map_concat: "map f (concat xs) = concat (map (map f) xs)" | 
| 13145 | 1284 | by (induct xs) auto | 
| 13114 | 1285 | |
| 13142 | 1286 | lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)" | 
| 13145 | 1287 | by (induct xs) auto | 
| 13114 | 1288 | |
| 13142 | 1289 | lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))" | 
| 13145 | 1290 | by (induct xs) auto | 
| 13114 | 1291 | |
| 1292 | ||
| 15392 | 1293 | subsubsection {* @{text nth} *}
 | 
| 13114 | 1294 | |
| 29827 | 1295 | lemma nth_Cons_0 [simp, code]: "(x # xs)!0 = x" | 
| 13145 | 1296 | by auto | 
| 13114 | 1297 | |
| 29827 | 1298 | lemma nth_Cons_Suc [simp, code]: "(x # xs)!(Suc n) = xs!n" | 
| 13145 | 1299 | by auto | 
| 13114 | 1300 | |
| 13142 | 1301 | declare nth.simps [simp del] | 
| 13114 | 1302 | |
| 1303 | lemma nth_append: | |
| 24526 | 1304 | "(xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))" | 
| 1305 | apply (induct xs arbitrary: n, simp) | |
| 14208 | 1306 | apply (case_tac n, auto) | 
| 13145 | 1307 | done | 
| 13114 | 1308 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1309 | lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x" | 
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1310 | by (induct xs) auto | 
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1311 | |
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1312 | lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n" | 
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1313 | by (induct xs) auto | 
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1314 | |
| 24526 | 1315 | lemma nth_map [simp]: "n < length xs ==> (map f xs)!n = f(xs!n)" | 
| 1316 | apply (induct xs arbitrary: n, simp) | |
| 14208 | 1317 | apply (case_tac n, auto) | 
| 13145 | 1318 | done | 
| 13114 | 1319 | |
| 18423 | 1320 | lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0" | 
| 1321 | by(cases xs) simp_all | |
| 1322 | ||
| 18049 | 1323 | |
| 1324 | lemma list_eq_iff_nth_eq: | |
| 24526 | 1325 | "(xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))" | 
| 1326 | apply(induct xs arbitrary: ys) | |
| 24632 | 1327 | apply force | 
| 18049 | 1328 | apply(case_tac ys) | 
| 1329 | apply simp | |
| 1330 | apply(simp add:nth_Cons split:nat.split)apply blast | |
| 1331 | done | |
| 1332 | ||
| 13142 | 1333 | lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
 | 
| 15251 | 1334 | apply (induct xs, simp, simp) | 
| 13145 | 1335 | apply safe | 
| 24632 | 1336 | apply (metis nat_case_0 nth.simps zero_less_Suc) | 
| 1337 | apply (metis less_Suc_eq_0_disj nth_Cons_Suc) | |
| 14208 | 1338 | apply (case_tac i, simp) | 
| 24632 | 1339 | apply (metis diff_Suc_Suc nat_case_Suc nth.simps zero_less_diff) | 
| 13145 | 1340 | done | 
| 13114 | 1341 | |
| 17501 | 1342 | lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)" | 
| 1343 | by(auto simp:set_conv_nth) | |
| 1344 | ||
| 13145 | 1345 | lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)" | 
| 1346 | by (auto simp add: set_conv_nth) | |
| 13114 | 1347 | |
| 13142 | 1348 | lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs" | 
| 13145 | 1349 | by (auto simp add: set_conv_nth) | 
| 13114 | 1350 | |
| 1351 | lemma all_nth_imp_all_set: | |
| 13145 | 1352 | "[| !i < length xs. P(xs!i); x : set xs|] ==> P x" | 
| 1353 | by (auto simp add: set_conv_nth) | |
| 13114 | 1354 | |
| 1355 | lemma all_set_conv_all_nth: | |
| 13145 | 1356 | "(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))" | 
| 1357 | by (auto simp add: set_conv_nth) | |
| 13114 | 1358 | |
| 25296 | 1359 | lemma rev_nth: | 
| 1360 | "n < size xs \<Longrightarrow> rev xs ! n = xs ! (length xs - Suc n)" | |
| 1361 | proof (induct xs arbitrary: n) | |
| 1362 | case Nil thus ?case by simp | |
| 1363 | next | |
| 1364 | case (Cons x xs) | |
| 1365 | hence n: "n < Suc (length xs)" by simp | |
| 1366 | moreover | |
| 1367 |   { assume "n < length xs"
 | |
| 1368 | with n obtain n' where "length xs - n = Suc n'" | |
| 1369 | by (cases "length xs - n", auto) | |
| 1370 | moreover | |
| 1371 | then have "length xs - Suc n = n'" by simp | |
| 1372 | ultimately | |
| 1373 | have "xs ! (length xs - Suc n) = (x # xs) ! (length xs - n)" by simp | |
| 1374 | } | |
| 1375 | ultimately | |
| 1376 | show ?case by (clarsimp simp add: Cons nth_append) | |
| 1377 | qed | |
| 13114 | 1378 | |
| 31159 | 1379 | lemma Skolem_list_nth: | 
| 1380 | "(ALL i<k. EX x. P i x) = (EX xs. size xs = k & (ALL i<k. P i (xs!i)))" | |
| 1381 | (is "_ = (EX xs. ?P k xs)") | |
| 1382 | proof(induct k) | |
| 1383 | case 0 show ?case by simp | |
| 1384 | next | |
| 1385 | case (Suc k) | |
| 1386 | show ?case (is "?L = ?R" is "_ = (EX xs. ?P' xs)") | |
| 1387 | proof | |
| 1388 | assume "?R" thus "?L" using Suc by auto | |
| 1389 | next | |
| 1390 | assume "?L" | |
| 1391 | with Suc obtain x xs where "?P k xs & P k x" by (metis less_Suc_eq) | |
| 1392 | hence "?P'(xs@[x])" by(simp add:nth_append less_Suc_eq) | |
| 1393 | thus "?R" .. | |
| 1394 | qed | |
| 1395 | qed | |
| 1396 | ||
| 1397 | ||
| 15392 | 1398 | subsubsection {* @{text list_update} *}
 | 
| 13114 | 1399 | |
| 24526 | 1400 | lemma length_list_update [simp]: "length(xs[i:=x]) = length xs" | 
| 1401 | by (induct xs arbitrary: i) (auto split: nat.split) | |
| 13114 | 1402 | |
| 1403 | lemma nth_list_update: | |
| 24526 | 1404 | "i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)" | 
| 1405 | by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split) | |
| 13114 | 1406 | |
| 13142 | 1407 | lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x" | 
| 13145 | 1408 | by (simp add: nth_list_update) | 
| 13114 | 1409 | |
| 24526 | 1410 | lemma nth_list_update_neq [simp]: "i \<noteq> j ==> xs[i:=x]!j = xs!j" | 
| 1411 | by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split) | |
| 13114 | 1412 | |
| 24526 | 1413 | lemma list_update_id[simp]: "xs[i := xs!i] = xs" | 
| 1414 | by (induct xs arbitrary: i) (simp_all split:nat.splits) | |
| 1415 | ||
| 1416 | lemma list_update_beyond[simp]: "length xs \<le> i \<Longrightarrow> xs[i:=x] = xs" | |
| 1417 | apply (induct xs arbitrary: i) | |
| 17501 | 1418 | apply simp | 
| 1419 | apply (case_tac i) | |
| 1420 | apply simp_all | |
| 1421 | done | |
| 1422 | ||
| 31077 | 1423 | lemma list_update_nonempty[simp]: "xs[k:=x] = [] \<longleftrightarrow> xs=[]" | 
| 1424 | by(metis length_0_conv length_list_update) | |
| 1425 | ||
| 13114 | 1426 | lemma list_update_same_conv: | 
| 24526 | 1427 | "i < length xs ==> (xs[i := x] = xs) = (xs!i = x)" | 
| 1428 | by (induct xs arbitrary: i) (auto split: nat.split) | |
| 13114 | 1429 | |
| 14187 | 1430 | lemma list_update_append1: | 
| 24526 | 1431 | "i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys" | 
| 1432 | apply (induct xs arbitrary: i, simp) | |
| 14187 | 1433 | apply(simp split:nat.split) | 
| 1434 | done | |
| 1435 | ||
| 15868 | 1436 | lemma list_update_append: | 
| 24526 | 1437 | "(xs @ ys) [n:= x] = | 
| 15868 | 1438 | (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))" | 
| 24526 | 1439 | by (induct xs arbitrary: n) (auto split:nat.splits) | 
| 15868 | 1440 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1441 | lemma list_update_length [simp]: | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1442 | "(xs @ x # ys)[length xs := y] = (xs @ y # ys)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1443 | by (induct xs, auto) | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1444 | |
| 31264 | 1445 | lemma map_update: "map f (xs[k:= y]) = (map f xs)[k := f y]" | 
| 1446 | by(induct xs arbitrary: k)(auto split:nat.splits) | |
| 1447 | ||
| 1448 | lemma rev_update: | |
| 1449 | "k < length xs \<Longrightarrow> rev (xs[k:= y]) = (rev xs)[length xs - k - 1 := y]" | |
| 1450 | by (induct xs arbitrary: k) (auto simp: list_update_append split:nat.splits) | |
| 1451 | ||
| 13114 | 1452 | lemma update_zip: | 
| 31080 | 1453 | "(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])" | 
| 24526 | 1454 | by (induct ys arbitrary: i xy xs) (auto, case_tac xs, auto split: nat.split) | 
| 1455 | ||
| 1456 | lemma set_update_subset_insert: "set(xs[i:=x]) <= insert x (set xs)" | |
| 1457 | by (induct xs arbitrary: i) (auto split: nat.split) | |
| 13114 | 1458 | |
| 1459 | lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A" | |
| 13145 | 1460 | by (blast dest!: set_update_subset_insert [THEN subsetD]) | 
| 13114 | 1461 | |
| 24526 | 1462 | lemma set_update_memI: "n < length xs \<Longrightarrow> x \<in> set (xs[n := x])" | 
| 1463 | by (induct xs arbitrary: n) (auto split:nat.splits) | |
| 15868 | 1464 | |
| 31077 | 1465 | lemma list_update_overwrite[simp]: | 
| 24796 | 1466 | "xs [i := x, i := y] = xs [i := y]" | 
| 31077 | 1467 | apply (induct xs arbitrary: i) apply simp | 
| 1468 | apply (case_tac i, simp_all) | |
| 24796 | 1469 | done | 
| 1470 | ||
| 1471 | lemma list_update_swap: | |
| 1472 | "i \<noteq> i' \<Longrightarrow> xs [i := x, i' := x'] = xs [i' := x', i := x]" | |
| 1473 | apply (induct xs arbitrary: i i') | |
| 1474 | apply simp | |
| 1475 | apply (case_tac i, case_tac i') | |
| 1476 | apply auto | |
| 1477 | apply (case_tac i') | |
| 1478 | apply auto | |
| 1479 | done | |
| 1480 | ||
| 29827 | 1481 | lemma list_update_code [code]: | 
| 1482 | "[][i := y] = []" | |
| 1483 | "(x # xs)[0 := y] = y # xs" | |
| 1484 | "(x # xs)[Suc i := y] = x # xs[i := y]" | |
| 1485 | by simp_all | |
| 1486 | ||
| 13114 | 1487 | |
| 15392 | 1488 | subsubsection {* @{text last} and @{text butlast} *}
 | 
| 13114 | 1489 | |
| 13142 | 1490 | lemma last_snoc [simp]: "last (xs @ [x]) = x" | 
| 13145 | 1491 | by (induct xs) auto | 
| 13114 | 1492 | |
| 13142 | 1493 | lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs" | 
| 13145 | 1494 | by (induct xs) auto | 
| 13114 | 1495 | |
| 14302 | 1496 | lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x" | 
| 1497 | by(simp add:last.simps) | |
| 1498 | ||
| 1499 | lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs" | |
| 1500 | by(simp add:last.simps) | |
| 1501 | ||
| 1502 | lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)" | |
| 1503 | by (induct xs) (auto) | |
| 1504 | ||
| 1505 | lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs" | |
| 1506 | by(simp add:last_append) | |
| 1507 | ||
| 1508 | lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys" | |
| 1509 | by(simp add:last_append) | |
| 1510 | ||
| 17762 | 1511 | lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs" | 
| 1512 | by(rule rev_exhaust[of xs]) simp_all | |
| 1513 | ||
| 1514 | lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs" | |
| 1515 | by(cases xs) simp_all | |
| 1516 | ||
| 17765 | 1517 | lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as" | 
| 1518 | by (induct as) auto | |
| 17762 | 1519 | |
| 13142 | 1520 | lemma length_butlast [simp]: "length (butlast xs) = length xs - 1" | 
| 13145 | 1521 | by (induct xs rule: rev_induct) auto | 
| 13114 | 1522 | |
| 1523 | lemma butlast_append: | |
| 24526 | 1524 | "butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)" | 
| 1525 | by (induct xs arbitrary: ys) auto | |
| 13114 | 1526 | |
| 13142 | 1527 | lemma append_butlast_last_id [simp]: | 
| 13145 | 1528 | "xs \<noteq> [] ==> butlast xs @ [last xs] = xs" | 
| 1529 | by (induct xs) auto | |
| 13114 | 1530 | |
| 13142 | 1531 | lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs" | 
| 13145 | 1532 | by (induct xs) (auto split: split_if_asm) | 
| 13114 | 1533 | |
| 1534 | lemma in_set_butlast_appendI: | |
| 13145 | 1535 | "x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))" | 
| 1536 | by (auto dest: in_set_butlastD simp add: butlast_append) | |
| 13114 | 1537 | |
| 24526 | 1538 | lemma last_drop[simp]: "n < length xs \<Longrightarrow> last (drop n xs) = last xs" | 
| 1539 | apply (induct xs arbitrary: n) | |
| 17501 | 1540 | apply simp | 
| 1541 | apply (auto split:nat.split) | |
| 1542 | done | |
| 1543 | ||
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1544 | lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)" | 
| 17589 | 1545 | by(induct xs)(auto simp:neq_Nil_conv) | 
| 1546 | ||
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1547 | lemma butlast_conv_take: "butlast xs = take (length xs - 1) xs" | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1548 | by (induct xs, simp, case_tac xs, simp_all) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1549 | |
| 31077 | 1550 | lemma last_list_update: | 
| 1551 | "xs \<noteq> [] \<Longrightarrow> last(xs[k:=x]) = (if k = size xs - 1 then x else last xs)" | |
| 1552 | by (auto simp: last_conv_nth) | |
| 1553 | ||
| 1554 | lemma butlast_list_update: | |
| 1555 | "butlast(xs[k:=x]) = | |
| 1556 | (if k = size xs - 1 then butlast xs else (butlast xs)[k:=x])" | |
| 1557 | apply(cases xs rule:rev_cases) | |
| 1558 | apply simp | |
| 1559 | apply(simp add:list_update_append split:nat.splits) | |
| 1560 | done | |
| 1561 | ||
| 36851 | 1562 | lemma last_map: | 
| 1563 | "xs \<noteq> [] \<Longrightarrow> last (map f xs) = f (last xs)" | |
| 1564 | by (cases xs rule: rev_cases) simp_all | |
| 1565 | ||
| 1566 | lemma map_butlast: | |
| 1567 | "map f (butlast xs) = butlast (map f xs)" | |
| 1568 | by (induct xs) simp_all | |
| 1569 | ||
| 24796 | 1570 | |
| 15392 | 1571 | subsubsection {* @{text take} and @{text drop} *}
 | 
| 13114 | 1572 | |
| 13142 | 1573 | lemma take_0 [simp]: "take 0 xs = []" | 
| 13145 | 1574 | by (induct xs) auto | 
| 13114 | 1575 | |
| 13142 | 1576 | lemma drop_0 [simp]: "drop 0 xs = xs" | 
| 13145 | 1577 | by (induct xs) auto | 
| 13114 | 1578 | |
| 13142 | 1579 | lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs" | 
| 13145 | 1580 | by simp | 
| 13114 | 1581 | |
| 13142 | 1582 | lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs" | 
| 13145 | 1583 | by simp | 
| 13114 | 1584 | |
| 13142 | 1585 | declare take_Cons [simp del] and drop_Cons [simp del] | 
| 13114 | 1586 | |
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1587 | lemma take_1_Cons [simp]: "take 1 (x # xs) = [x]" | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1588 | unfolding One_nat_def by simp | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1589 | |
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1590 | lemma drop_1_Cons [simp]: "drop 1 (x # xs) = xs" | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1591 | unfolding One_nat_def by simp | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1592 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1593 | lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1594 | by(clarsimp simp add:neq_Nil_conv) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1595 | |
| 14187 | 1596 | lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)" | 
| 1597 | by(cases xs, simp_all) | |
| 1598 | ||
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1599 | lemma take_tl: "take n (tl xs) = tl (take (Suc n) xs)" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1600 | by (induct xs arbitrary: n) simp_all | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1601 | |
| 24526 | 1602 | lemma drop_tl: "drop n (tl xs) = tl(drop n xs)" | 
| 1603 | by(induct xs arbitrary: n, simp_all add:drop_Cons drop_Suc split:nat.split) | |
| 1604 | ||
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1605 | lemma tl_take: "tl (take n xs) = take (n - 1) (tl xs)" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1606 | by (cases n, simp, cases xs, auto) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1607 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1608 | lemma tl_drop: "tl (drop n xs) = drop n (tl xs)" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1609 | by (simp only: drop_tl) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1610 | |
| 24526 | 1611 | lemma nth_via_drop: "drop n xs = y#ys \<Longrightarrow> xs!n = y" | 
| 1612 | apply (induct xs arbitrary: n, simp) | |
| 14187 | 1613 | apply(simp add:drop_Cons nth_Cons split:nat.splits) | 
| 1614 | done | |
| 1615 | ||
| 13913 | 1616 | lemma take_Suc_conv_app_nth: | 
| 24526 | 1617 | "i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]" | 
| 1618 | apply (induct xs arbitrary: i, simp) | |
| 14208 | 1619 | apply (case_tac i, auto) | 
| 13913 | 1620 | done | 
| 1621 | ||
| 14591 | 1622 | lemma drop_Suc_conv_tl: | 
| 24526 | 1623 | "i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs" | 
| 1624 | apply (induct xs arbitrary: i, simp) | |
| 14591 | 1625 | apply (case_tac i, auto) | 
| 1626 | done | |
| 1627 | ||
| 24526 | 1628 | lemma length_take [simp]: "length (take n xs) = min (length xs) n" | 
| 1629 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1630 | ||
| 1631 | lemma length_drop [simp]: "length (drop n xs) = (length xs - n)" | |
| 1632 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1633 | ||
| 1634 | lemma take_all [simp]: "length xs <= n ==> take n xs = xs" | |
| 1635 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1636 | ||
| 1637 | lemma drop_all [simp]: "length xs <= n ==> drop n xs = []" | |
| 1638 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 13114 | 1639 | |
| 13142 | 1640 | lemma take_append [simp]: | 
| 24526 | 1641 | "take n (xs @ ys) = (take n xs @ take (n - length xs) ys)" | 
| 1642 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 13114 | 1643 | |
| 13142 | 1644 | lemma drop_append [simp]: | 
| 24526 | 1645 | "drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys" | 
| 1646 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1647 | ||
| 1648 | lemma take_take [simp]: "take n (take m xs) = take (min n m) xs" | |
| 1649 | apply (induct m arbitrary: xs n, auto) | |
| 14208 | 1650 | apply (case_tac xs, auto) | 
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
15176diff
changeset | 1651 | apply (case_tac n, auto) | 
| 13145 | 1652 | done | 
| 13114 | 1653 | |
| 24526 | 1654 | lemma drop_drop [simp]: "drop n (drop m xs) = drop (n + m) xs" | 
| 1655 | apply (induct m arbitrary: xs, auto) | |
| 14208 | 1656 | apply (case_tac xs, auto) | 
| 13145 | 1657 | done | 
| 13114 | 1658 | |
| 24526 | 1659 | lemma take_drop: "take n (drop m xs) = drop m (take (n + m) xs)" | 
| 1660 | apply (induct m arbitrary: xs n, auto) | |
| 14208 | 1661 | apply (case_tac xs, auto) | 
| 13145 | 1662 | done | 
| 13114 | 1663 | |
| 24526 | 1664 | lemma drop_take: "drop n (take m xs) = take (m-n) (drop n xs)" | 
| 1665 | apply(induct xs arbitrary: m n) | |
| 14802 | 1666 | apply simp | 
| 1667 | apply(simp add: take_Cons drop_Cons split:nat.split) | |
| 1668 | done | |
| 1669 | ||
| 24526 | 1670 | lemma append_take_drop_id [simp]: "take n xs @ drop n xs = xs" | 
| 1671 | apply (induct n arbitrary: xs, auto) | |
| 14208 | 1672 | apply (case_tac xs, auto) | 
| 13145 | 1673 | done | 
| 13114 | 1674 | |
| 24526 | 1675 | lemma take_eq_Nil[simp]: "(take n xs = []) = (n = 0 \<or> xs = [])" | 
| 1676 | apply(induct xs arbitrary: n) | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1677 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1678 | apply(simp add:take_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1679 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1680 | |
| 24526 | 1681 | lemma drop_eq_Nil[simp]: "(drop n xs = []) = (length xs <= n)" | 
| 1682 | apply(induct xs arbitrary: n) | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1683 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1684 | apply(simp add:drop_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1685 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1686 | |
| 24526 | 1687 | lemma take_map: "take n (map f xs) = map f (take n xs)" | 
| 1688 | apply (induct n arbitrary: xs, auto) | |
| 14208 | 1689 | apply (case_tac xs, auto) | 
| 13145 | 1690 | done | 
| 13114 | 1691 | |
| 24526 | 1692 | lemma drop_map: "drop n (map f xs) = map f (drop n xs)" | 
| 1693 | apply (induct n arbitrary: xs, auto) | |
| 14208 | 1694 | apply (case_tac xs, auto) | 
| 13145 | 1695 | done | 
| 13114 | 1696 | |
| 24526 | 1697 | lemma rev_take: "rev (take i xs) = drop (length xs - i) (rev xs)" | 
| 1698 | apply (induct xs arbitrary: i, auto) | |
| 14208 | 1699 | apply (case_tac i, auto) | 
| 13145 | 1700 | done | 
| 13114 | 1701 | |
| 24526 | 1702 | lemma rev_drop: "rev (drop i xs) = take (length xs - i) (rev xs)" | 
| 1703 | apply (induct xs arbitrary: i, auto) | |
| 14208 | 1704 | apply (case_tac i, auto) | 
| 13145 | 1705 | done | 
| 13114 | 1706 | |
| 24526 | 1707 | lemma nth_take [simp]: "i < n ==> (take n xs)!i = xs!i" | 
| 1708 | apply (induct xs arbitrary: i n, auto) | |
| 14208 | 1709 | apply (case_tac n, blast) | 
| 1710 | apply (case_tac i, auto) | |
| 13145 | 1711 | done | 
| 13114 | 1712 | |
| 13142 | 1713 | lemma nth_drop [simp]: | 
| 24526 | 1714 | "n + i <= length xs ==> (drop n xs)!i = xs!(n + i)" | 
| 1715 | apply (induct n arbitrary: xs i, auto) | |
| 14208 | 1716 | apply (case_tac xs, auto) | 
| 13145 | 1717 | done | 
| 3507 | 1718 | |
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1719 | lemma butlast_take: | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1720 | "n <= length xs ==> butlast (take n xs) = take (n - 1) xs" | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1721 | by (simp add: butlast_conv_take min_max.inf_absorb1 min_max.inf_absorb2) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1722 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1723 | lemma butlast_drop: "butlast (drop n xs) = drop n (butlast xs)" | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1724 | by (simp add: butlast_conv_take drop_take add_ac) | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1725 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1726 | lemma take_butlast: "n < length xs ==> take n (butlast xs) = take n xs" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1727 | by (simp add: butlast_conv_take min_max.inf_absorb1) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1728 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1729 | lemma drop_butlast: "drop n (butlast xs) = butlast (drop n xs)" | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1730 | by (simp add: butlast_conv_take drop_take add_ac) | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1731 | |
| 18423 | 1732 | lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n" | 
| 1733 | by(simp add: hd_conv_nth) | |
| 1734 | ||
| 35248 | 1735 | lemma set_take_subset_set_take: | 
| 1736 | "m <= n \<Longrightarrow> set(take m xs) <= set(take n xs)" | |
| 1737 | by(induct xs arbitrary: m n)(auto simp:take_Cons split:nat.split) | |
| 1738 | ||
| 24526 | 1739 | lemma set_take_subset: "set(take n xs) \<subseteq> set xs" | 
| 1740 | by(induct xs arbitrary: n)(auto simp:take_Cons split:nat.split) | |
| 1741 | ||
| 1742 | lemma set_drop_subset: "set(drop n xs) \<subseteq> set xs" | |
| 1743 | by(induct xs arbitrary: n)(auto simp:drop_Cons split:nat.split) | |
| 14025 | 1744 | |
| 35248 | 1745 | lemma set_drop_subset_set_drop: | 
| 1746 | "m >= n \<Longrightarrow> set(drop m xs) <= set(drop n xs)" | |
| 1747 | apply(induct xs arbitrary: m n) | |
| 1748 | apply(auto simp:drop_Cons split:nat.split) | |
| 1749 | apply (metis set_drop_subset subset_iff) | |
| 1750 | done | |
| 1751 | ||
| 14187 | 1752 | lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs" | 
| 1753 | using set_take_subset by fast | |
| 1754 | ||
| 1755 | lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs" | |
| 1756 | using set_drop_subset by fast | |
| 1757 | ||
| 13114 | 1758 | lemma append_eq_conv_conj: | 
| 24526 | 1759 | "(xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)" | 
| 1760 | apply (induct xs arbitrary: zs, simp, clarsimp) | |
| 14208 | 1761 | apply (case_tac zs, auto) | 
| 13145 | 1762 | done | 
| 13142 | 1763 | |
| 24526 | 1764 | lemma take_add: | 
| 1765 | "i+j \<le> length(xs) \<Longrightarrow> take (i+j) xs = take i xs @ take j (drop i xs)" | |
| 1766 | apply (induct xs arbitrary: i, auto) | |
| 1767 | apply (case_tac i, simp_all) | |
| 14050 | 1768 | done | 
| 1769 | ||
| 14300 | 1770 | lemma append_eq_append_conv_if: | 
| 24526 | 1771 | "(xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) = | 
| 14300 | 1772 | (if size xs\<^isub>1 \<le> size ys\<^isub>1 | 
| 1773 | then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2 | |
| 1774 | else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)" | |
| 24526 | 1775 | apply(induct xs\<^isub>1 arbitrary: ys\<^isub>1) | 
| 14300 | 1776 | apply simp | 
| 1777 | apply(case_tac ys\<^isub>1) | |
| 1778 | apply simp_all | |
| 1779 | done | |
| 1780 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1781 | lemma take_hd_drop: | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30008diff
changeset | 1782 | "n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (Suc n) xs" | 
| 24526 | 1783 | apply(induct xs arbitrary: n) | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1784 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1785 | apply(simp add:drop_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1786 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1787 | |
| 17501 | 1788 | lemma id_take_nth_drop: | 
| 1789 | "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" | |
| 1790 | proof - | |
| 1791 | assume si: "i < length xs" | |
| 1792 | hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto | |
| 1793 | moreover | |
| 1794 | from si have "take (Suc i) xs = take i xs @ [xs!i]" | |
| 1795 | apply (rule_tac take_Suc_conv_app_nth) by arith | |
| 1796 | ultimately show ?thesis by auto | |
| 1797 | qed | |
| 1798 | ||
| 1799 | lemma upd_conv_take_nth_drop: | |
| 1800 | "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs" | |
| 1801 | proof - | |
| 1802 | assume i: "i < length xs" | |
| 1803 | have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]" | |
| 1804 | by(rule arg_cong[OF id_take_nth_drop[OF i]]) | |
| 1805 | also have "\<dots> = take i xs @ a # drop (Suc i) xs" | |
| 1806 | using i by (simp add: list_update_append) | |
| 1807 | finally show ?thesis . | |
| 1808 | qed | |
| 1809 | ||
| 24796 | 1810 | lemma nth_drop': | 
| 1811 | "i < length xs \<Longrightarrow> xs ! i # drop (Suc i) xs = drop i xs" | |
| 1812 | apply (induct i arbitrary: xs) | |
| 1813 | apply (simp add: neq_Nil_conv) | |
| 1814 | apply (erule exE)+ | |
| 1815 | apply simp | |
| 1816 | apply (case_tac xs) | |
| 1817 | apply simp_all | |
| 1818 | done | |
| 1819 | ||
| 13114 | 1820 | |
| 15392 | 1821 | subsubsection {* @{text takeWhile} and @{text dropWhile} *}
 | 
| 13114 | 1822 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1823 | lemma length_takeWhile_le: "length (takeWhile P xs) \<le> length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1824 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1825 | |
| 13142 | 1826 | lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs" | 
| 13145 | 1827 | by (induct xs) auto | 
| 13114 | 1828 | |
| 13142 | 1829 | lemma takeWhile_append1 [simp]: | 
| 13145 | 1830 | "[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs" | 
| 1831 | by (induct xs) auto | |
| 13114 | 1832 | |
| 13142 | 1833 | lemma takeWhile_append2 [simp]: | 
| 13145 | 1834 | "(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys" | 
| 1835 | by (induct xs) auto | |
| 13114 | 1836 | |
| 13142 | 1837 | lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs" | 
| 13145 | 1838 | by (induct xs) auto | 
| 13114 | 1839 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1840 | lemma takeWhile_nth: "j < length (takeWhile P xs) \<Longrightarrow> takeWhile P xs ! j = xs ! j" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1841 | apply (subst (3) takeWhile_dropWhile_id[symmetric]) unfolding nth_append by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1842 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1843 | lemma dropWhile_nth: "j < length (dropWhile P xs) \<Longrightarrow> dropWhile P xs ! j = xs ! (j + length (takeWhile P xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1844 | apply (subst (3) takeWhile_dropWhile_id[symmetric]) unfolding nth_append by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1845 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1846 | lemma length_dropWhile_le: "length (dropWhile P xs) \<le> length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1847 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1848 | |
| 13142 | 1849 | lemma dropWhile_append1 [simp]: | 
| 13145 | 1850 | "[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys" | 
| 1851 | by (induct xs) auto | |
| 13114 | 1852 | |
| 13142 | 1853 | lemma dropWhile_append2 [simp]: | 
| 13145 | 1854 | "(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys" | 
| 1855 | by (induct xs) auto | |
| 13114 | 1856 | |
| 23971 
e6d505d5b03d
renamed lemma "set_take_whileD" to "set_takeWhileD"
 krauss parents: 
23740diff
changeset | 1857 | lemma set_takeWhileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x" | 
| 13145 | 1858 | by (induct xs) (auto split: split_if_asm) | 
| 13114 | 1859 | |
| 13913 | 1860 | lemma takeWhile_eq_all_conv[simp]: | 
| 1861 | "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)" | |
| 1862 | by(induct xs, auto) | |
| 1863 | ||
| 1864 | lemma dropWhile_eq_Nil_conv[simp]: | |
| 1865 | "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)" | |
| 1866 | by(induct xs, auto) | |
| 1867 | ||
| 1868 | lemma dropWhile_eq_Cons_conv: | |
| 1869 | "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)" | |
| 1870 | by(induct xs, auto) | |
| 1871 | ||
| 31077 | 1872 | lemma distinct_takeWhile[simp]: "distinct xs ==> distinct (takeWhile P xs)" | 
| 1873 | by (induct xs) (auto dest: set_takeWhileD) | |
| 1874 | ||
| 1875 | lemma distinct_dropWhile[simp]: "distinct xs ==> distinct (dropWhile P xs)" | |
| 1876 | by (induct xs) auto | |
| 1877 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1878 | lemma takeWhile_map: "takeWhile P (map f xs) = map f (takeWhile (P \<circ> f) xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1879 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1880 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1881 | lemma dropWhile_map: "dropWhile P (map f xs) = map f (dropWhile (P \<circ> f) xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1882 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1883 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1884 | lemma takeWhile_eq_take: "takeWhile P xs = take (length (takeWhile P xs)) xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1885 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1886 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1887 | lemma dropWhile_eq_drop: "dropWhile P xs = drop (length (takeWhile P xs)) xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1888 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1889 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1890 | lemma hd_dropWhile: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1891 | "dropWhile P xs \<noteq> [] \<Longrightarrow> \<not> P (hd (dropWhile P xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1892 | using assms by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1893 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1894 | lemma takeWhile_eq_filter: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1895 | assumes "\<And> x. x \<in> set (dropWhile P xs) \<Longrightarrow> \<not> P x" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1896 | shows "takeWhile P xs = filter P xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1897 | proof - | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1898 | have A: "filter P xs = filter P (takeWhile P xs @ dropWhile P xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1899 | by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1900 | have B: "filter P (dropWhile P xs) = []" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1901 | unfolding filter_empty_conv using assms by blast | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1902 | have "filter P xs = takeWhile P xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1903 | unfolding A filter_append B | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1904 | by (auto simp add: filter_id_conv dest: set_takeWhileD) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1905 | thus ?thesis .. | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1906 | qed | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1907 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1908 | lemma takeWhile_eq_take_P_nth: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1909 | "\<lbrakk> \<And> i. \<lbrakk> i < n ; i < length xs \<rbrakk> \<Longrightarrow> P (xs ! i) ; n < length xs \<Longrightarrow> \<not> P (xs ! n) \<rbrakk> \<Longrightarrow> | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1910 | takeWhile P xs = take n xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1911 | proof (induct xs arbitrary: n) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1912 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1913 | thus ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1914 | proof (cases n) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1915 | case (Suc n') note this[simp] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1916 | have "P x" using Cons.prems(1)[of 0] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1917 | moreover have "takeWhile P xs = take n' xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1918 | proof (rule Cons.hyps) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1919 | case goal1 thus "P (xs ! i)" using Cons.prems(1)[of "Suc i"] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1920 | next case goal2 thus ?case using Cons by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1921 | qed | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1922 | ultimately show ?thesis by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1923 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1924 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1925 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1926 | lemma nth_length_takeWhile: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1927 | "length (takeWhile P xs) < length xs \<Longrightarrow> \<not> P (xs ! length (takeWhile P xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1928 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1929 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1930 | lemma length_takeWhile_less_P_nth: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1931 | assumes all: "\<And> i. i < j \<Longrightarrow> P (xs ! i)" and "j \<le> length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1932 | shows "j \<le> length (takeWhile P xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1933 | proof (rule classical) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1934 | assume "\<not> ?thesis" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1935 | hence "length (takeWhile P xs) < length xs" using assms by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1936 | thus ?thesis using all `\<not> ?thesis` nth_length_takeWhile[of P xs] by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1937 | qed | 
| 31077 | 1938 | |
| 17501 | 1939 | text{* The following two lemmmas could be generalized to an arbitrary
 | 
| 1940 | property. *} | |
| 1941 | ||
| 1942 | lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow> | |
| 1943 | takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))" | |
| 1944 | by(induct xs) (auto simp: takeWhile_tail[where l="[]"]) | |
| 1945 | ||
| 1946 | lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow> | |
| 1947 | dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)" | |
| 1948 | apply(induct xs) | |
| 1949 | apply simp | |
| 1950 | apply auto | |
| 1951 | apply(subst dropWhile_append2) | |
| 1952 | apply auto | |
| 1953 | done | |
| 1954 | ||
| 18423 | 1955 | lemma takeWhile_not_last: | 
| 1956 | "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs" | |
| 1957 | apply(induct xs) | |
| 1958 | apply simp | |
| 1959 | apply(case_tac xs) | |
| 1960 | apply(auto) | |
| 1961 | done | |
| 1962 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1963 | lemma takeWhile_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1964 | "[| l = k; !!x. x : set l ==> P x = Q x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1965 | ==> takeWhile P l = takeWhile Q k" | 
| 24349 | 1966 | by (induct k arbitrary: l) (simp_all) | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1967 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1968 | lemma dropWhile_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1969 | "[| l = k; !!x. x : set l ==> P x = Q x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1970 | ==> dropWhile P l = dropWhile Q k" | 
| 24349 | 1971 | by (induct k arbitrary: l, simp_all) | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1972 | |
| 13114 | 1973 | |
| 15392 | 1974 | subsubsection {* @{text zip} *}
 | 
| 13114 | 1975 | |
| 13142 | 1976 | lemma zip_Nil [simp]: "zip [] ys = []" | 
| 13145 | 1977 | by (induct ys) auto | 
| 13114 | 1978 | |
| 13142 | 1979 | lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys" | 
| 13145 | 1980 | by simp | 
| 13114 | 1981 | |
| 13142 | 1982 | declare zip_Cons [simp del] | 
| 13114 | 1983 | |
| 36198 | 1984 | lemma [code]: | 
| 1985 | "zip [] ys = []" | |
| 1986 | "zip xs [] = []" | |
| 1987 | "zip (x # xs) (y # ys) = (x, y) # zip xs ys" | |
| 1988 | by (fact zip_Nil zip.simps(1) zip_Cons_Cons)+ | |
| 1989 | ||
| 15281 | 1990 | lemma zip_Cons1: | 
| 1991 | "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)" | |
| 1992 | by(auto split:list.split) | |
| 1993 | ||
| 13142 | 1994 | lemma length_zip [simp]: | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 1995 | "length (zip xs ys) = min (length xs) (length ys)" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 1996 | by (induct xs ys rule:list_induct2') auto | 
| 13114 | 1997 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1998 | lemma zip_obtain_same_length: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1999 | assumes "\<And>zs ws n. length zs = length ws \<Longrightarrow> n = min (length xs) (length ys) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2000 | \<Longrightarrow> zs = take n xs \<Longrightarrow> ws = take n ys \<Longrightarrow> P (zip zs ws)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2001 | shows "P (zip xs ys)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2002 | proof - | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2003 | let ?n = "min (length xs) (length ys)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2004 | have "P (zip (take ?n xs) (take ?n ys))" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2005 | by (rule assms) simp_all | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2006 | moreover have "zip xs ys = zip (take ?n xs) (take ?n ys)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2007 | proof (induct xs arbitrary: ys) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2008 | case Nil then show ?case by simp | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2009 | next | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2010 | case (Cons x xs) then show ?case by (cases ys) simp_all | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2011 | qed | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2012 | ultimately show ?thesis by simp | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2013 | qed | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2014 | |
| 13114 | 2015 | lemma zip_append1: | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2016 | "zip (xs @ ys) zs = | 
| 13145 | 2017 | zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)" | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2018 | by (induct xs zs rule:list_induct2') auto | 
| 13114 | 2019 | |
| 2020 | lemma zip_append2: | |
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2021 | "zip xs (ys @ zs) = | 
| 13145 | 2022 | zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs" | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2023 | by (induct xs ys rule:list_induct2') auto | 
| 13114 | 2024 | |
| 13142 | 2025 | lemma zip_append [simp]: | 
| 2026 | "[| length xs = length us; length ys = length vs |] ==> | |
| 13145 | 2027 | zip (xs@ys) (us@vs) = zip xs us @ zip ys vs" | 
| 2028 | by (simp add: zip_append1) | |
| 13114 | 2029 | |
| 2030 | lemma zip_rev: | |
| 14247 | 2031 | "length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)" | 
| 2032 | by (induct rule:list_induct2, simp_all) | |
| 13114 | 2033 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2034 | lemma zip_map_map: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2035 | "zip (map f xs) (map g ys) = map (\<lambda> (x, y). (f x, g y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2036 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2037 | case (Cons x xs) note Cons_x_xs = Cons.hyps | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2038 | show ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2039 | proof (cases ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2040 | case (Cons y ys') | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2041 | show ?thesis unfolding Cons using Cons_x_xs by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2042 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2043 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2044 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2045 | lemma zip_map1: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2046 | "zip (map f xs) ys = map (\<lambda>(x, y). (f x, y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2047 | using zip_map_map[of f xs "\<lambda>x. x" ys] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2048 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2049 | lemma zip_map2: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2050 | "zip xs (map f ys) = map (\<lambda>(x, y). (x, f y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2051 | using zip_map_map[of "\<lambda>x. x" xs f ys] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2052 | |
| 23096 | 2053 | lemma map_zip_map: | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2054 | "map f (zip (map g xs) ys) = map (%(x,y). f(g x, y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2055 | unfolding zip_map1 by auto | 
| 23096 | 2056 | |
| 2057 | lemma map_zip_map2: | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2058 | "map f (zip xs (map g ys)) = map (%(x,y). f(x, g y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2059 | unfolding zip_map2 by auto | 
| 23096 | 2060 | |
| 31080 | 2061 | text{* Courtesy of Andreas Lochbihler: *}
 | 
| 2062 | lemma zip_same_conv_map: "zip xs xs = map (\<lambda>x. (x, x)) xs" | |
| 2063 | by(induct xs) auto | |
| 2064 | ||
| 13142 | 2065 | lemma nth_zip [simp]: | 
| 24526 | 2066 | "[| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)" | 
| 2067 | apply (induct ys arbitrary: i xs, simp) | |
| 13145 | 2068 | apply (case_tac xs) | 
| 2069 | apply (simp_all add: nth.simps split: nat.split) | |
| 2070 | done | |
| 13114 | 2071 | |
| 2072 | lemma set_zip: | |
| 13145 | 2073 | "set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
 | 
| 31080 | 2074 | by(simp add: set_conv_nth cong: rev_conj_cong) | 
| 13114 | 2075 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2076 | lemma zip_same: "((a,b) \<in> set (zip xs xs)) = (a \<in> set xs \<and> a = b)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2077 | by(induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2078 | |
| 13114 | 2079 | lemma zip_update: | 
| 31080 | 2080 | "zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]" | 
| 2081 | by(rule sym, simp add: update_zip) | |
| 13114 | 2082 | |
| 13142 | 2083 | lemma zip_replicate [simp]: | 
| 24526 | 2084 | "zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)" | 
| 2085 | apply (induct i arbitrary: j, auto) | |
| 14208 | 2086 | apply (case_tac j, auto) | 
| 13145 | 2087 | done | 
| 13114 | 2088 | |
| 19487 | 2089 | lemma take_zip: | 
| 24526 | 2090 | "take n (zip xs ys) = zip (take n xs) (take n ys)" | 
| 2091 | apply (induct n arbitrary: xs ys) | |
| 19487 | 2092 | apply simp | 
| 2093 | apply (case_tac xs, simp) | |
| 2094 | apply (case_tac ys, simp_all) | |
| 2095 | done | |
| 2096 | ||
| 2097 | lemma drop_zip: | |
| 24526 | 2098 | "drop n (zip xs ys) = zip (drop n xs) (drop n ys)" | 
| 2099 | apply (induct n arbitrary: xs ys) | |
| 19487 | 2100 | apply simp | 
| 2101 | apply (case_tac xs, simp) | |
| 2102 | apply (case_tac ys, simp_all) | |
| 2103 | done | |
| 2104 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2105 | lemma zip_takeWhile_fst: "zip (takeWhile P xs) ys = takeWhile (P \<circ> fst) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2106 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2107 | case (Cons x xs) thus ?case by (cases ys) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2108 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2109 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2110 | lemma zip_takeWhile_snd: "zip xs (takeWhile P ys) = takeWhile (P \<circ> snd) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2111 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2112 | case (Cons x xs) thus ?case by (cases ys) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2113 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2114 | |
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2115 | lemma set_zip_leftD: | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2116 | "(x,y)\<in> set (zip xs ys) \<Longrightarrow> x \<in> set xs" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2117 | by (induct xs ys rule:list_induct2') auto | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2118 | |
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2119 | lemma set_zip_rightD: | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2120 | "(x,y)\<in> set (zip xs ys) \<Longrightarrow> y \<in> set ys" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2121 | by (induct xs ys rule:list_induct2') auto | 
| 13142 | 2122 | |
| 23983 | 2123 | lemma in_set_zipE: | 
| 2124 | "(x,y) : set(zip xs ys) \<Longrightarrow> (\<lbrakk> x : set xs; y : set ys \<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R" | |
| 2125 | by(blast dest: set_zip_leftD set_zip_rightD) | |
| 2126 | ||
| 29829 | 2127 | lemma zip_map_fst_snd: | 
| 2128 | "zip (map fst zs) (map snd zs) = zs" | |
| 2129 | by (induct zs) simp_all | |
| 2130 | ||
| 2131 | lemma zip_eq_conv: | |
| 2132 | "length xs = length ys \<Longrightarrow> zip xs ys = zs \<longleftrightarrow> map fst zs = xs \<and> map snd zs = ys" | |
| 2133 | by (auto simp add: zip_map_fst_snd) | |
| 2134 | ||
| 35115 | 2135 | |
| 15392 | 2136 | subsubsection {* @{text list_all2} *}
 | 
| 13114 | 2137 | |
| 14316 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 2138 | lemma list_all2_lengthD [intro?]: | 
| 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 2139 | "list_all2 P xs ys ==> length xs = length ys" | 
| 24349 | 2140 | by (simp add: list_all2_def) | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2141 | |
| 19787 | 2142 | lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])" | 
| 24349 | 2143 | by (simp add: list_all2_def) | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2144 | |
| 19787 | 2145 | lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])" | 
| 24349 | 2146 | by (simp add: list_all2_def) | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2147 | |
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2148 | lemma list_all2_Cons [iff, code]: | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2149 | "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)" | 
| 24349 | 2150 | by (auto simp add: list_all2_def) | 
| 13114 | 2151 | |
| 2152 | lemma list_all2_Cons1: | |
| 13145 | 2153 | "list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)" | 
| 2154 | by (cases ys) auto | |
| 13114 | 2155 | |
| 2156 | lemma list_all2_Cons2: | |
| 13145 | 2157 | "list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)" | 
| 2158 | by (cases xs) auto | |
| 13114 | 2159 | |
| 13142 | 2160 | lemma list_all2_rev [iff]: | 
| 13145 | 2161 | "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys" | 
| 2162 | by (simp add: list_all2_def zip_rev cong: conj_cong) | |
| 13114 | 2163 | |
| 13863 | 2164 | lemma list_all2_rev1: | 
| 2165 | "list_all2 P (rev xs) ys = list_all2 P xs (rev ys)" | |
| 2166 | by (subst list_all2_rev [symmetric]) simp | |
| 2167 | ||
| 13114 | 2168 | lemma list_all2_append1: | 
| 13145 | 2169 | "list_all2 P (xs @ ys) zs = | 
| 2170 | (EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and> | |
| 2171 | list_all2 P xs us \<and> list_all2 P ys vs)" | |
| 2172 | apply (simp add: list_all2_def zip_append1) | |
| 2173 | apply (rule iffI) | |
| 2174 | apply (rule_tac x = "take (length xs) zs" in exI) | |
| 2175 | apply (rule_tac x = "drop (length xs) zs" in exI) | |
| 14208 | 2176 | apply (force split: nat_diff_split simp add: min_def, clarify) | 
| 13145 | 2177 | apply (simp add: ball_Un) | 
| 2178 | done | |
| 13114 | 2179 | |
| 2180 | lemma list_all2_append2: | |
| 13145 | 2181 | "list_all2 P xs (ys @ zs) = | 
| 2182 | (EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and> | |
| 2183 | list_all2 P us ys \<and> list_all2 P vs zs)" | |
| 2184 | apply (simp add: list_all2_def zip_append2) | |
| 2185 | apply (rule iffI) | |
| 2186 | apply (rule_tac x = "take (length ys) xs" in exI) | |
| 2187 | apply (rule_tac x = "drop (length ys) xs" in exI) | |
| 14208 | 2188 | apply (force split: nat_diff_split simp add: min_def, clarify) | 
| 13145 | 2189 | apply (simp add: ball_Un) | 
| 2190 | done | |
| 13114 | 2191 | |
| 13863 | 2192 | lemma list_all2_append: | 
| 14247 | 2193 | "length xs = length ys \<Longrightarrow> | 
| 2194 | list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)" | |
| 2195 | by (induct rule:list_induct2, simp_all) | |
| 13863 | 2196 | |
| 2197 | lemma list_all2_appendI [intro?, trans]: | |
| 2198 | "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)" | |
| 24349 | 2199 | by (simp add: list_all2_append list_all2_lengthD) | 
| 13863 | 2200 | |
| 13114 | 2201 | lemma list_all2_conv_all_nth: | 
| 13145 | 2202 | "list_all2 P xs ys = | 
| 2203 | (length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))" | |
| 2204 | by (force simp add: list_all2_def set_zip) | |
| 13114 | 2205 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2206 | lemma list_all2_trans: | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2207 | assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2208 | shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2209 | (is "!!bs cs. PROP ?Q as bs cs") | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2210 | proof (induct as) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2211 | fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2212 | show "!!cs. PROP ?Q (x # xs) bs cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2213 | proof (induct bs) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2214 | fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2215 | show "PROP ?Q (x # xs) (y # ys) cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2216 | by (induct cs) (auto intro: tr I1 I2) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2217 | qed simp | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2218 | qed simp | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2219 | |
| 13863 | 2220 | lemma list_all2_all_nthI [intro?]: | 
| 2221 | "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b" | |
| 24349 | 2222 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2223 | |
| 14395 | 2224 | lemma list_all2I: | 
| 2225 | "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b" | |
| 24349 | 2226 | by (simp add: list_all2_def) | 
| 14395 | 2227 | |
| 14328 | 2228 | lemma list_all2_nthD: | 
| 13863 | 2229 | "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)" | 
| 24349 | 2230 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2231 | |
| 14302 | 2232 | lemma list_all2_nthD2: | 
| 2233 | "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)" | |
| 24349 | 2234 | by (frule list_all2_lengthD) (auto intro: list_all2_nthD) | 
| 14302 | 2235 | |
| 13863 | 2236 | lemma list_all2_map1: | 
| 2237 | "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs" | |
| 24349 | 2238 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2239 | |
| 2240 | lemma list_all2_map2: | |
| 2241 | "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs" | |
| 24349 | 2242 | by (auto simp add: list_all2_conv_all_nth) | 
| 13863 | 2243 | |
| 14316 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 2244 | lemma list_all2_refl [intro?]: | 
| 13863 | 2245 | "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs" | 
| 24349 | 2246 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2247 | |
| 2248 | lemma list_all2_update_cong: | |
| 2249 | "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])" | |
| 24349 | 2250 | by (simp add: list_all2_conv_all_nth nth_list_update) | 
| 13863 | 2251 | |
| 2252 | lemma list_all2_update_cong2: | |
| 2253 | "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])" | |
| 24349 | 2254 | by (simp add: list_all2_lengthD list_all2_update_cong) | 
| 13863 | 2255 | |
| 14302 | 2256 | lemma list_all2_takeI [simp,intro?]: | 
| 24526 | 2257 | "list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)" | 
| 2258 | apply (induct xs arbitrary: n ys) | |
| 2259 | apply simp | |
| 2260 | apply (clarsimp simp add: list_all2_Cons1) | |
| 2261 | apply (case_tac n) | |
| 2262 | apply auto | |
| 2263 | done | |
| 14302 | 2264 | |
| 2265 | lemma list_all2_dropI [simp,intro?]: | |
| 24526 | 2266 | "list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)" | 
| 2267 | apply (induct as arbitrary: n bs, simp) | |
| 2268 | apply (clarsimp simp add: list_all2_Cons1) | |
| 2269 | apply (case_tac n, simp, simp) | |
| 2270 | done | |
| 13863 | 2271 | |
| 14327 | 2272 | lemma list_all2_mono [intro?]: | 
| 24526 | 2273 | "list_all2 P xs ys \<Longrightarrow> (\<And>xs ys. P xs ys \<Longrightarrow> Q xs ys) \<Longrightarrow> list_all2 Q xs ys" | 
| 2274 | apply (induct xs arbitrary: ys, simp) | |
| 2275 | apply (case_tac ys, auto) | |
| 2276 | done | |
| 13863 | 2277 | |
| 22551 | 2278 | lemma list_all2_eq: | 
| 2279 | "xs = ys \<longleftrightarrow> list_all2 (op =) xs ys" | |
| 24349 | 2280 | by (induct xs ys rule: list_induct2') auto | 
| 22551 | 2281 | |
| 13142 | 2282 | |
| 15392 | 2283 | subsubsection {* @{text foldl} and @{text foldr} *}
 | 
| 13142 | 2284 | |
| 2285 | lemma foldl_append [simp]: | |
| 24526 | 2286 | "foldl f a (xs @ ys) = foldl f (foldl f a xs) ys" | 
| 2287 | by (induct xs arbitrary: a) auto | |
| 13142 | 2288 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2289 | lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2290 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2291 | |
| 23096 | 2292 | lemma foldr_map: "foldr g (map f xs) a = foldr (g o f) xs a" | 
| 2293 | by(induct xs) simp_all | |
| 2294 | ||
| 24449 | 2295 | text{* For efficient code generation: avoid intermediate list. *}
 | 
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 2296 | lemma foldl_map[code_unfold]: | 
| 24449 | 2297 | "foldl g a (map f xs) = foldl (%a x. g a (f x)) a xs" | 
| 23096 | 2298 | by(induct xs arbitrary:a) simp_all | 
| 2299 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2300 | lemma foldl_apply: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2301 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> f x \<circ> h = h \<circ> g x" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2302 | shows "foldl (\<lambda>s x. f x s) (h s) xs = h (foldl (\<lambda>s x. g x s) s xs)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39272diff
changeset | 2303 | by (rule sym, insert assms, induct xs arbitrary: s) (simp_all add: fun_eq_iff) | 
| 31930 | 2304 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 2305 | lemma foldl_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2306 | "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2307 | ==> foldl f a l = foldl g b k" | 
| 24349 | 2308 | by (induct k arbitrary: a b l) simp_all | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2309 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 2310 | lemma foldr_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2311 | "[| a = b; l = k; !!a x. x : set l ==> f x a = g x a |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2312 | ==> foldr f l a = foldr g k b" | 
| 24349 | 2313 | by (induct k arbitrary: a b l) simp_all | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2314 | |
| 35195 | 2315 | lemma foldl_fun_comm: | 
| 2316 | assumes "\<And>x y s. f (f s x) y = f (f s y) x" | |
| 2317 | shows "f (foldl f s xs) x = foldl f (f s x) xs" | |
| 2318 | by (induct xs arbitrary: s) | |
| 2319 | (simp_all add: assms) | |
| 2320 | ||
| 24449 | 2321 | lemma (in semigroup_add) foldl_assoc: | 
| 25062 | 2322 | shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)" | 
| 24449 | 2323 | by (induct zs arbitrary: y) (simp_all add:add_assoc) | 
| 2324 | ||
| 2325 | lemma (in monoid_add) foldl_absorb0: | |
| 25062 | 2326 | shows "x + (foldl op+ 0 zs) = foldl op+ x zs" | 
| 24449 | 2327 | by (induct zs) (simp_all add:foldl_assoc) | 
| 2328 | ||
| 35195 | 2329 | lemma foldl_rev: | 
| 2330 | assumes "\<And>x y s. f (f s x) y = f (f s y) x" | |
| 2331 | shows "foldl f s (rev xs) = foldl f s xs" | |
| 2332 | proof (induct xs arbitrary: s) | |
| 2333 | case Nil then show ?case by simp | |
| 2334 | next | |
| 2335 | case (Cons x xs) with assms show ?case by (simp add: foldl_fun_comm) | |
| 2336 | qed | |
| 2337 | ||
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2338 | lemma rev_foldl_cons [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2339 | "rev xs = foldl (\<lambda>xs x. x # xs) [] xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2340 | proof (induct xs) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2341 | case Nil then show ?case by simp | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2342 | next | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2343 | case Cons | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2344 |   {
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2345 | fix x xs ys | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2346 | have "foldl (\<lambda>xs x. x # xs) ys xs @ [x] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2347 | = foldl (\<lambda>xs x. x # xs) (ys @ [x]) xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2348 | by (induct xs arbitrary: ys) auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2349 | } | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2350 | note aux = this | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2351 | show ?case by (induct xs) (auto simp add: Cons aux) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2352 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2353 | |
| 24449 | 2354 | |
| 39774 | 2355 | text{* The ``Third Duality Theorem'' in Bird \& Wadler: *}
 | 
| 2356 | ||
| 2357 | lemma foldr_foldl: | |
| 2358 | "foldr f xs a = foldl (%x y. f y x) a (rev xs)" | |
| 2359 | by (induct xs) auto | |
| 2360 | ||
| 2361 | lemma foldl_foldr: | |
| 2362 | "foldl f a xs = foldr (%x y. f y x) (rev xs) a" | |
| 2363 | by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"]) | |
| 2364 | ||
| 2365 | ||
| 23096 | 2366 | text{* The ``First Duality Theorem'' in Bird \& Wadler: *}
 | 
| 2367 | ||
| 39774 | 2368 | lemma (in monoid_add) foldl_foldr1_lemma: | 
| 2369 | "foldl op + a xs = a + foldr op + xs 0" | |
| 2370 | by (induct xs arbitrary: a) (auto simp: add_assoc) | |
| 2371 | ||
| 2372 | corollary (in monoid_add) foldl_foldr1: | |
| 2373 | "foldl op + 0 xs = foldr op + xs 0" | |
| 2374 | by (simp add: foldl_foldr1_lemma) | |
| 2375 | ||
| 2376 | lemma (in ab_semigroup_add) foldr_conv_foldl: | |
| 2377 | "foldr op + xs a = foldl op + a xs" | |
| 2378 | by (induct xs) (simp_all add: foldl_assoc add.commute) | |
| 24471 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2379 | |
| 13142 | 2380 | text {*
 | 
| 13145 | 2381 | Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
 | 
| 2382 | difficult to use because it requires an additional transitivity step. | |
| 13142 | 2383 | *} | 
| 2384 | ||
| 24526 | 2385 | lemma start_le_sum: "(m::nat) <= n ==> m <= foldl (op +) n ns" | 
| 2386 | by (induct ns arbitrary: n) auto | |
| 2387 | ||
| 2388 | lemma elem_le_sum: "(n::nat) : set ns ==> n <= foldl (op +) 0 ns" | |
| 13145 | 2389 | by (force intro: start_le_sum simp add: in_set_conv_decomp) | 
| 13142 | 2390 | |
| 2391 | lemma sum_eq_0_conv [iff]: | |
| 24526 | 2392 | "(foldl (op +) (m::nat) ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))" | 
| 2393 | by (induct ns arbitrary: m) auto | |
| 13114 | 2394 | |
| 24471 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2395 | lemma foldr_invariant: | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2396 | "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f x y) \<rbrakk> \<Longrightarrow> Q (foldr f xs x)" | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2397 | by (induct xs, simp_all) | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2398 | |
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2399 | lemma foldl_invariant: | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2400 | "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f y x) \<rbrakk> \<Longrightarrow> Q (foldl f x xs)" | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2401 | by (induct xs arbitrary: x, simp_all) | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2402 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2403 | lemma foldl_weak_invariant: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2404 | assumes "P s" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2405 | and "\<And>s x. x \<in> set xs \<Longrightarrow> P s \<Longrightarrow> P (f s x)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2406 | shows "P (foldl f s xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2407 | using assms by (induct xs arbitrary: s) simp_all | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2408 | |
| 31455 | 2409 | text {* @{const foldl} and @{const concat} *}
 | 
| 24449 | 2410 | |
| 2411 | lemma foldl_conv_concat: | |
| 29782 | 2412 | "foldl (op @) xs xss = xs @ concat xss" | 
| 2413 | proof (induct xss arbitrary: xs) | |
| 2414 | case Nil show ?case by simp | |
| 2415 | next | |
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35217diff
changeset | 2416 | interpret monoid_add "op @" "[]" proof qed simp_all | 
| 29782 | 2417 | case Cons then show ?case by (simp add: foldl_absorb0) | 
| 2418 | qed | |
| 2419 | ||
| 2420 | lemma concat_conv_foldl: "concat xss = foldl (op @) [] xss" | |
| 2421 | by (simp add: foldl_conv_concat) | |
| 2422 | ||
| 31455 | 2423 | text {* @{const Finite_Set.fold} and @{const foldl} *}
 | 
| 2424 | ||
| 35195 | 2425 | lemma (in fun_left_comm) fold_set_remdups: | 
| 2426 | "fold f y (set xs) = foldl (\<lambda>y x. f x y) y (remdups xs)" | |
| 2427 | by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm insert_absorb) | |
| 2428 | ||
| 31455 | 2429 | lemma (in fun_left_comm_idem) fold_set: | 
| 2430 | "fold f y (set xs) = foldl (\<lambda>y x. f x y) y xs" | |
| 2431 | by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm) | |
| 2432 | ||
| 32681 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2433 | lemma (in ab_semigroup_idem_mult) fold1_set: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2434 | assumes "xs \<noteq> []" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2435 | shows "fold1 times (set xs) = foldl times (hd xs) (tl xs)" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2436 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2437 | interpret fun_left_comm_idem times by (fact fun_left_comm_idem) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2438 | from assms obtain y ys where xs: "xs = y # ys" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2439 | by (cases xs) auto | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2440 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2441 |   proof (cases "set ys = {}")
 | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2442 | case True with xs show ?thesis by simp | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2443 | next | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2444 | case False | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2445 | then have "fold1 times (insert y (set ys)) = fold times y (set ys)" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2446 | by (simp only: finite_set fold1_eq_fold_idem) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2447 | with xs show ?thesis by (simp add: fold_set mult_commute) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2448 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2449 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2450 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2451 | lemma (in lattice) Inf_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2452 | "Inf_fin (set (x # xs)) = foldl inf x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2453 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2454 | interpret ab_semigroup_idem_mult "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2455 | by (fact ab_semigroup_idem_mult_inf) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2456 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2457 | by (simp add: Inf_fin_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2458 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2459 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2460 | lemma (in lattice) Sup_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2461 | "Sup_fin (set (x # xs)) = foldl sup x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2462 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2463 | interpret ab_semigroup_idem_mult "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2464 | by (fact ab_semigroup_idem_mult_sup) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2465 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2466 | by (simp add: Sup_fin_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2467 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2468 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2469 | lemma (in linorder) Min_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2470 | "Min (set (x # xs)) = foldl min x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2471 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2472 | interpret ab_semigroup_idem_mult "min :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2473 | by (fact ab_semigroup_idem_mult_min) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2474 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2475 | by (simp add: Min_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2476 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2477 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2478 | lemma (in linorder) Max_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2479 | "Max (set (x # xs)) = foldl max x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2480 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2481 | interpret ab_semigroup_idem_mult "max :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2482 | by (fact ab_semigroup_idem_mult_max) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2483 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2484 | by (simp add: Max_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2485 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2486 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2487 | lemma (in complete_lattice) Inf_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2488 | "Inf (set xs) = foldl inf top xs" | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2489 | proof - | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2490 | interpret fun_left_comm_idem "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2491 | by (fact fun_left_comm_idem_inf) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2492 | show ?thesis by (simp add: Inf_fold_inf fold_set inf_commute) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2493 | qed | 
| 32681 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2494 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2495 | lemma (in complete_lattice) Sup_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2496 | "Sup (set xs) = foldl sup bot xs" | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2497 | proof - | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2498 | interpret fun_left_comm_idem "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2499 | by (fact fun_left_comm_idem_sup) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2500 | show ?thesis by (simp add: Sup_fold_sup fold_set sup_commute) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2501 | qed | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2502 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2503 | lemma (in complete_lattice) INFI_set_fold: | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2504 | "INFI (set xs) f = foldl (\<lambda>y x. inf (f x) y) top xs" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2505 | unfolding INFI_def set_map [symmetric] Inf_set_fold foldl_map | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2506 | by (simp add: inf_commute) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2507 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2508 | lemma (in complete_lattice) SUPR_set_fold: | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2509 | "SUPR (set xs) f = foldl (\<lambda>y x. sup (f x) y) bot xs" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2510 | unfolding SUPR_def set_map [symmetric] Sup_set_fold foldl_map | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2511 | by (simp add: sup_commute) | 
| 31455 | 2512 | |
| 35115 | 2513 | |
| 24645 | 2514 | subsubsection {* @{text upt} *}
 | 
| 13114 | 2515 | |
| 17090 | 2516 | lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])" | 
| 2517 | -- {* simp does not terminate! *}
 | |
| 13145 | 2518 | by (induct j) auto | 
| 13142 | 2519 | |
| 32005 | 2520 | lemmas upt_rec_number_of[simp] = upt_rec[of "number_of m" "number_of n", standard] | 
| 2521 | ||
| 15425 | 2522 | lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []" | 
| 13145 | 2523 | by (subst upt_rec) simp | 
| 13114 | 2524 | |
| 15425 | 2525 | lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)" | 
| 15281 | 2526 | by(induct j)simp_all | 
| 2527 | ||
| 2528 | lemma upt_eq_Cons_conv: | |
| 24526 | 2529 | "([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)" | 
| 2530 | apply(induct j arbitrary: x xs) | |
| 15281 | 2531 | apply simp | 
| 2532 | apply(clarsimp simp add: append_eq_Cons_conv) | |
| 2533 | apply arith | |
| 2534 | done | |
| 2535 | ||
| 15425 | 2536 | lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]" | 
| 13145 | 2537 | -- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
 | 
| 2538 | by simp | |
| 13114 | 2539 | |
| 15425 | 2540 | lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]" | 
| 26734 | 2541 | by (simp add: upt_rec) | 
| 13114 | 2542 | |
| 15425 | 2543 | lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]" | 
| 13145 | 2544 | -- {* LOOPS as a simprule, since @{text "j <= j"}. *}
 | 
| 2545 | by (induct k) auto | |
| 13114 | 2546 | |
| 15425 | 2547 | lemma length_upt [simp]: "length [i..<j] = j - i" | 
| 13145 | 2548 | by (induct j) (auto simp add: Suc_diff_le) | 
| 13114 | 2549 | |
| 15425 | 2550 | lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k" | 
| 13145 | 2551 | apply (induct j) | 
| 2552 | apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split) | |
| 2553 | done | |
| 13114 | 2554 | |
| 17906 | 2555 | |
| 2556 | lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i" | |
| 2557 | by(simp add:upt_conv_Cons) | |
| 2558 | ||
| 2559 | lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1" | |
| 2560 | apply(cases j) | |
| 2561 | apply simp | |
| 2562 | by(simp add:upt_Suc_append) | |
| 2563 | ||
| 24526 | 2564 | lemma take_upt [simp]: "i+m <= n ==> take m [i..<n] = [i..<i+m]" | 
| 2565 | apply (induct m arbitrary: i, simp) | |
| 13145 | 2566 | apply (subst upt_rec) | 
| 2567 | apply (rule sym) | |
| 2568 | apply (subst upt_rec) | |
| 2569 | apply (simp del: upt.simps) | |
| 2570 | done | |
| 3507 | 2571 | |
| 17501 | 2572 | lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]" | 
| 2573 | apply(induct j) | |
| 2574 | apply auto | |
| 2575 | done | |
| 2576 | ||
| 24645 | 2577 | lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..<Suc n]" | 
| 13145 | 2578 | by (induct n) auto | 
| 13114 | 2579 | |
| 24526 | 2580 | lemma nth_map_upt: "i < n-m ==> (map f [m..<n]) ! i = f(m+i)" | 
| 2581 | apply (induct n m arbitrary: i rule: diff_induct) | |
| 13145 | 2582 | prefer 3 apply (subst map_Suc_upt[symmetric]) | 
| 2583 | apply (auto simp add: less_diff_conv nth_upt) | |
| 2584 | done | |
| 13114 | 2585 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2586 | lemma nth_take_lemma: | 
| 24526 | 2587 | "k <= length xs ==> k <= length ys ==> | 
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2588 | (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys" | 
| 24526 | 2589 | apply (atomize, induct k arbitrary: xs ys) | 
| 14208 | 2590 | apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify) | 
| 13145 | 2591 | txt {* Both lists must be non-empty *}
 | 
| 14208 | 2592 | apply (case_tac xs, simp) | 
| 2593 | apply (case_tac ys, clarify) | |
| 13145 | 2594 | apply (simp (no_asm_use)) | 
| 2595 | apply clarify | |
| 2596 | txt {* prenexing's needed, not miniscoping *}
 | |
| 2597 | apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps) | |
| 2598 | apply blast | |
| 2599 | done | |
| 13114 | 2600 | |
| 2601 | lemma nth_equalityI: | |
| 2602 | "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys" | |
| 13145 | 2603 | apply (frule nth_take_lemma [OF le_refl eq_imp_le]) | 
| 2604 | apply (simp_all add: take_all) | |
| 2605 | done | |
| 13142 | 2606 | |
| 24796 | 2607 | lemma map_nth: | 
| 2608 | "map (\<lambda>i. xs ! i) [0..<length xs] = xs" | |
| 2609 | by (rule nth_equalityI, auto) | |
| 2610 | ||
| 13863 | 2611 | (* needs nth_equalityI *) | 
| 2612 | lemma list_all2_antisym: | |
| 2613 | "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> | |
| 2614 | \<Longrightarrow> xs = ys" | |
| 2615 | apply (simp add: list_all2_conv_all_nth) | |
| 14208 | 2616 | apply (rule nth_equalityI, blast, simp) | 
| 13863 | 2617 | done | 
| 2618 | ||
| 13142 | 2619 | lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys" | 
| 13145 | 2620 | -- {* The famous take-lemma. *}
 | 
| 2621 | apply (drule_tac x = "max (length xs) (length ys)" in spec) | |
| 2622 | apply (simp add: le_max_iff_disj take_all) | |
| 2623 | done | |
| 13142 | 2624 | |
| 2625 | ||
| 15302 | 2626 | lemma take_Cons': | 
| 2627 | "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)" | |
| 2628 | by (cases n) simp_all | |
| 2629 | ||
| 2630 | lemma drop_Cons': | |
| 2631 | "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)" | |
| 2632 | by (cases n) simp_all | |
| 2633 | ||
| 2634 | lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))" | |
| 2635 | by (cases n) simp_all | |
| 2636 | ||
| 18622 | 2637 | lemmas take_Cons_number_of = take_Cons'[of "number_of v",standard] | 
| 2638 | lemmas drop_Cons_number_of = drop_Cons'[of "number_of v",standard] | |
| 2639 | lemmas nth_Cons_number_of = nth_Cons'[of _ _ "number_of v",standard] | |
| 2640 | ||
| 2641 | declare take_Cons_number_of [simp] | |
| 2642 | drop_Cons_number_of [simp] | |
| 2643 | nth_Cons_number_of [simp] | |
| 15302 | 2644 | |
| 2645 | ||
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2646 | subsubsection {* @{text upto}: interval-list on @{typ int} *}
 | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2647 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2648 | (* FIXME make upto tail recursive? *) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2649 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2650 | function upto :: "int \<Rightarrow> int \<Rightarrow> int list" ("(1[_../_])") where
 | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2651 | "upto i j = (if i \<le> j then i # [i+1..j] else [])" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2652 | by auto | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2653 | termination | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2654 | by(relation "measure(%(i::int,j). nat(j - i + 1))") auto | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2655 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2656 | declare upto.simps[code, simp del] | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2657 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2658 | lemmas upto_rec_number_of[simp] = | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2659 | upto.simps[of "number_of m" "number_of n", standard] | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2660 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2661 | lemma upto_empty[simp]: "j < i \<Longrightarrow> [i..j] = []" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2662 | by(simp add: upto.simps) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2663 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2664 | lemma set_upto[simp]: "set[i..j] = {i..j}"
 | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2665 | apply(induct i j rule:upto.induct) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2666 | apply(simp add: upto.simps simp_from_to) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2667 | done | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2668 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2669 | |
| 15392 | 2670 | subsubsection {* @{text "distinct"} and @{text remdups} *}
 | 
| 13142 | 2671 | |
| 2672 | lemma distinct_append [simp]: | |
| 13145 | 2673 | "distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
 | 
| 2674 | by (induct xs) auto | |
| 13142 | 2675 | |
| 15305 | 2676 | lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs" | 
| 2677 | by(induct xs) auto | |
| 2678 | ||
| 13142 | 2679 | lemma set_remdups [simp]: "set (remdups xs) = set xs" | 
| 13145 | 2680 | by (induct xs) (auto simp add: insert_absorb) | 
| 13142 | 2681 | |
| 2682 | lemma distinct_remdups [iff]: "distinct (remdups xs)" | |
| 13145 | 2683 | by (induct xs) auto | 
| 13142 | 2684 | |
| 25287 | 2685 | lemma distinct_remdups_id: "distinct xs ==> remdups xs = xs" | 
| 2686 | by (induct xs, auto) | |
| 2687 | ||
| 26734 | 2688 | lemma remdups_id_iff_distinct [simp]: "remdups xs = xs \<longleftrightarrow> distinct xs" | 
| 2689 | by (metis distinct_remdups distinct_remdups_id) | |
| 25287 | 2690 | |
| 24566 | 2691 | lemma finite_distinct_list: "finite A \<Longrightarrow> EX xs. set xs = A & distinct xs" | 
| 24632 | 2692 | by (metis distinct_remdups finite_list set_remdups) | 
| 24566 | 2693 | |
| 15072 | 2694 | lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])" | 
| 24349 | 2695 | by (induct x, auto) | 
| 15072 | 2696 | |
| 2697 | lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])" | |
| 24349 | 2698 | by (induct x, auto) | 
| 15072 | 2699 | |
| 15245 | 2700 | lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs" | 
| 2701 | by (induct xs) auto | |
| 2702 | ||
| 2703 | lemma length_remdups_eq[iff]: | |
| 2704 | "(length (remdups xs) = length xs) = (remdups xs = xs)" | |
| 2705 | apply(induct xs) | |
| 2706 | apply auto | |
| 2707 | apply(subgoal_tac "length (remdups xs) <= length xs") | |
| 2708 | apply arith | |
| 2709 | apply(rule length_remdups_leq) | |
| 2710 | done | |
| 2711 | ||
| 33945 | 2712 | lemma remdups_filter: "remdups(filter P xs) = filter P (remdups xs)" | 
| 2713 | apply(induct xs) | |
| 2714 | apply auto | |
| 2715 | done | |
| 18490 | 2716 | |
| 2717 | lemma distinct_map: | |
| 2718 | "distinct(map f xs) = (distinct xs & inj_on f (set xs))" | |
| 2719 | by (induct xs) auto | |
| 2720 | ||
| 2721 | ||
| 13142 | 2722 | lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)" | 
| 13145 | 2723 | by (induct xs) auto | 
| 13114 | 2724 | |
| 17501 | 2725 | lemma distinct_upt[simp]: "distinct[i..<j]" | 
| 2726 | by (induct j) auto | |
| 2727 | ||
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2728 | lemma distinct_upto[simp]: "distinct[i..j]" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2729 | apply(induct i j rule:upto.induct) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2730 | apply(subst upto.simps) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2731 | apply(simp) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2732 | done | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2733 | |
| 24526 | 2734 | lemma distinct_take[simp]: "distinct xs \<Longrightarrow> distinct (take i xs)" | 
| 2735 | apply(induct xs arbitrary: i) | |
| 17501 | 2736 | apply simp | 
| 2737 | apply (case_tac i) | |
| 2738 | apply simp_all | |
| 2739 | apply(blast dest:in_set_takeD) | |
| 2740 | done | |
| 2741 | ||
| 24526 | 2742 | lemma distinct_drop[simp]: "distinct xs \<Longrightarrow> distinct (drop i xs)" | 
| 2743 | apply(induct xs arbitrary: i) | |
| 17501 | 2744 | apply simp | 
| 2745 | apply (case_tac i) | |
| 2746 | apply simp_all | |
| 2747 | done | |
| 2748 | ||
| 2749 | lemma distinct_list_update: | |
| 2750 | assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
 | |
| 2751 | shows "distinct (xs[i:=a])" | |
| 2752 | proof (cases "i < length xs") | |
| 2753 | case True | |
| 2754 |   with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
 | |
| 2755 | apply (drule_tac id_take_nth_drop) by simp | |
| 2756 | with d True show ?thesis | |
| 2757 | apply (simp add: upd_conv_take_nth_drop) | |
| 2758 | apply (drule subst [OF id_take_nth_drop]) apply assumption | |
| 2759 | apply simp apply (cases "a = xs!i") apply simp by blast | |
| 2760 | next | |
| 2761 | case False with d show ?thesis by auto | |
| 2762 | qed | |
| 2763 | ||
| 31363 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2764 | lemma distinct_concat: | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2765 | assumes "distinct xs" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2766 | and "\<And> ys. ys \<in> set xs \<Longrightarrow> distinct ys" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2767 |   and "\<And> ys zs. \<lbrakk> ys \<in> set xs ; zs \<in> set xs ; ys \<noteq> zs \<rbrakk> \<Longrightarrow> set ys \<inter> set zs = {}"
 | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2768 | shows "distinct (concat xs)" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2769 | using assms by (induct xs) auto | 
| 17501 | 2770 | |
| 2771 | text {* It is best to avoid this indexed version of distinct, but
 | |
| 2772 | sometimes it is useful. *} | |
| 2773 | ||
| 13142 | 2774 | lemma distinct_conv_nth: | 
| 17501 | 2775 | "distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)" | 
| 15251 | 2776 | apply (induct xs, simp, simp) | 
| 14208 | 2777 | apply (rule iffI, clarsimp) | 
| 13145 | 2778 | apply (case_tac i) | 
| 14208 | 2779 | apply (case_tac j, simp) | 
| 13145 | 2780 | apply (simp add: set_conv_nth) | 
| 2781 | apply (case_tac j) | |
| 24648 | 2782 | apply (clarsimp simp add: set_conv_nth, simp) | 
| 13145 | 2783 | apply (rule conjI) | 
| 24648 | 2784 | (*TOO SLOW | 
| 24632 | 2785 | apply (metis Zero_neq_Suc gr0_conv_Suc in_set_conv_nth lessI less_trans_Suc nth_Cons' nth_Cons_Suc) | 
| 24648 | 2786 | *) | 
| 2787 | apply (clarsimp simp add: set_conv_nth) | |
| 2788 | apply (erule_tac x = 0 in allE, simp) | |
| 2789 | apply (erule_tac x = "Suc i" in allE, simp, clarsimp) | |
| 25130 | 2790 | (*TOO SLOW | 
| 24632 | 2791 | apply (metis Suc_Suc_eq lessI less_trans_Suc nth_Cons_Suc) | 
| 25130 | 2792 | *) | 
| 2793 | apply (erule_tac x = "Suc i" in allE, simp) | |
| 2794 | apply (erule_tac x = "Suc j" in allE, simp) | |
| 13145 | 2795 | done | 
| 13114 | 2796 | |
| 18490 | 2797 | lemma nth_eq_iff_index_eq: | 
| 2798 | "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)" | |
| 2799 | by(auto simp: distinct_conv_nth) | |
| 2800 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2801 | lemma distinct_card: "distinct xs ==> card (set xs) = size xs" | 
| 24349 | 2802 | by (induct xs) auto | 
| 14388 | 2803 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2804 | lemma card_distinct: "card (set xs) = size xs ==> distinct xs" | 
| 14388 | 2805 | proof (induct xs) | 
| 2806 | case Nil thus ?case by simp | |
| 2807 | next | |
| 2808 | case (Cons x xs) | |
| 2809 | show ?case | |
| 2810 | proof (cases "x \<in> set xs") | |
| 2811 | case False with Cons show ?thesis by simp | |
| 2812 | next | |
| 2813 | case True with Cons.prems | |
| 2814 | have "card (set xs) = Suc (length xs)" | |
| 2815 | by (simp add: card_insert_if split: split_if_asm) | |
| 2816 | moreover have "card (set xs) \<le> length xs" by (rule card_length) | |
| 2817 | ultimately have False by simp | |
| 2818 | thus ?thesis .. | |
| 2819 | qed | |
| 2820 | qed | |
| 2821 | ||
| 25287 | 2822 | lemma not_distinct_decomp: "~ distinct ws ==> EX xs ys zs y. ws = xs@[y]@ys@[y]@zs" | 
| 2823 | apply (induct n == "length ws" arbitrary:ws) apply simp | |
| 2824 | apply(case_tac ws) apply simp | |
| 2825 | apply (simp split:split_if_asm) | |
| 2826 | apply (metis Cons_eq_appendI eq_Nil_appendI split_list) | |
| 2827 | done | |
| 18490 | 2828 | |
| 2829 | lemma length_remdups_concat: | |
| 2830 | "length(remdups(concat xss)) = card(\<Union>xs \<in> set xss. set xs)" | |
| 24308 | 2831 | by(simp add: set_concat distinct_card[symmetric]) | 
| 17906 | 2832 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2833 | lemma length_remdups_card_conv: "length(remdups xs) = card(set xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2834 | proof - | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2835 | have xs: "concat[xs] = xs" by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2836 | from length_remdups_concat[of "[xs]"] show ?thesis unfolding xs by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2837 | qed | 
| 17906 | 2838 | |
| 36275 | 2839 | lemma remdups_remdups: | 
| 2840 | "remdups (remdups xs) = remdups xs" | |
| 2841 | by (induct xs) simp_all | |
| 2842 | ||
| 36851 | 2843 | lemma distinct_butlast: | 
| 2844 | assumes "xs \<noteq> []" and "distinct xs" | |
| 2845 | shows "distinct (butlast xs)" | |
| 2846 | proof - | |
| 2847 | from `xs \<noteq> []` obtain ys y where "xs = ys @ [y]" by (cases xs rule: rev_cases) auto | |
| 2848 | with `distinct xs` show ?thesis by simp | |
| 2849 | qed | |
| 2850 | ||
| 39728 | 2851 | lemma remdups_map_remdups: | 
| 2852 | "remdups (map f (remdups xs)) = remdups (map f xs)" | |
| 2853 | by (induct xs) simp_all | |
| 2854 | ||
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2855 | lemma distinct_zipI1: | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2856 | assumes "distinct xs" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2857 | shows "distinct (zip xs ys)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2858 | proof (rule zip_obtain_same_length) | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2859 | fix xs' :: "'a list" and ys' :: "'b list" and n | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2860 | assume "length xs' = length ys'" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2861 | assume "xs' = take n xs" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2862 | with assms have "distinct xs'" by simp | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2863 | with `length xs' = length ys'` show "distinct (zip xs' ys')" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2864 | by (induct xs' ys' rule: list_induct2) (auto elim: in_set_zipE) | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2865 | qed | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2866 | |
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2867 | lemma distinct_zipI2: | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2868 | assumes "distinct ys" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2869 | shows "distinct (zip xs ys)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2870 | proof (rule zip_obtain_same_length) | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2871 | fix xs' :: "'b list" and ys' :: "'a list" and n | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2872 | assume "length xs' = length ys'" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2873 | assume "ys' = take n ys" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2874 | with assms have "distinct ys'" by simp | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2875 | with `length xs' = length ys'` show "distinct (zip xs' ys')" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2876 | by (induct xs' ys' rule: list_induct2) (auto elim: in_set_zipE) | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2877 | qed | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2878 | |
| 35115 | 2879 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2880 | subsubsection {* List summation: @{const listsum} and @{text"\<Sum>"}*}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2881 | |
| 39774 | 2882 | lemma (in monoid_add) listsum_foldl [code]: | 
| 2883 | "listsum = foldl (op +) 0" | |
| 2884 | by (simp add: listsum_def foldl_foldr1 fun_eq_iff) | |
| 2885 | ||
| 2886 | lemma (in monoid_add) listsum_simps [simp]: | |
| 2887 | "listsum [] = 0" | |
| 2888 | "listsum (x#xs) = x + listsum xs" | |
| 2889 | by (simp_all add: listsum_def) | |
| 2890 | ||
| 2891 | lemma (in monoid_add) listsum_append [simp]: | |
| 2892 | "listsum (xs @ ys) = listsum xs + listsum ys" | |
| 2893 | by (induct xs) (simp_all add: add.assoc) | |
| 2894 | ||
| 2895 | lemma (in comm_monoid_add) listsum_rev [simp]: | |
| 2896 | "listsum (rev xs) = listsum xs" | |
| 2897 | by (simp add: listsum_def [of "rev xs"]) (simp add: listsum_foldl foldr_foldl add.commute) | |
| 2898 | ||
| 2899 | lemma (in comm_monoid_add) listsum_map_remove1: | |
| 2900 | "x \<in> set xs \<Longrightarrow> listsum (map f xs) = f x + listsum (map f (remove1 x xs))" | |
| 2901 | by (induct xs) (auto simp add: ac_simps) | |
| 2902 | ||
| 2903 | lemma (in monoid_add) list_size_conv_listsum: | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2904 | "list_size f xs = listsum (map f xs) + size xs" | 
| 39774 | 2905 | by (induct xs) auto | 
| 2906 | ||
| 2907 | lemma (in monoid_add) length_concat: | |
| 2908 | "length (concat xss) = listsum (map length xss)" | |
| 2909 | by (induct xss) simp_all | |
| 2910 | ||
| 2911 | lemma (in monoid_add) listsum_map_filter: | |
| 2912 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> \<not> P x \<Longrightarrow> f x = 0" | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2913 | shows "listsum (map f (filter P xs)) = listsum (map f xs)" | 
| 39774 | 2914 | using assms by (induct xs) auto | 
| 2915 | ||
| 2916 | lemma (in monoid_add) distinct_listsum_conv_Setsum: | |
| 2917 | "distinct xs \<Longrightarrow> listsum xs = Setsum (set xs)" | |
| 2918 | by (induct xs) simp_all | |
| 2919 | ||
| 2920 | lemma listsum_eq_0_nat_iff_nat [simp]: | |
| 2921 | "listsum ns = (0::nat) \<longleftrightarrow> (\<forall>n \<in> set ns. n = 0)" | |
| 2922 | by (simp add: listsum_foldl) | |
| 2923 | ||
| 2924 | lemma elem_le_listsum_nat: | |
| 2925 | "k < size ns \<Longrightarrow> ns ! k \<le> listsum (ns::nat list)" | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2926 | apply(induct ns arbitrary: k) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2927 | apply simp | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2928 | apply(fastsimp simp add:nth_Cons split: nat.split) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2929 | done | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2930 | |
| 39774 | 2931 | lemma listsum_update_nat: | 
| 2932 | "k<size ns \<Longrightarrow> listsum (ns[k := (n::nat)]) = listsum ns + n - ns ! k" | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2933 | apply(induct ns arbitrary:k) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2934 | apply (auto split:nat.split) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2935 | apply(drule elem_le_listsum_nat) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2936 | apply arith | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2937 | done | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2938 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2939 | text{* Some syntactic sugar for summing a function over a list: *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2940 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2941 | syntax | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2942 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2943 | syntax (xsymbols) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2944 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2945 | syntax (HTML output) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2946 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2947 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2948 | translations -- {* Beware of argument permutation! *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2949 | "SUM x<-xs. b" == "CONST listsum (CONST map (%x. b) xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2950 | "\<Sum>x\<leftarrow>xs. b" == "CONST listsum (CONST map (%x. b) xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2951 | |
| 39774 | 2952 | lemma (in monoid_add) listsum_triv: | 
| 2953 | "(\<Sum>x\<leftarrow>xs. r) = of_nat (length xs) * r" | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2954 | by (induct xs) (simp_all add: left_distrib) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2955 | |
| 39774 | 2956 | lemma (in monoid_add) listsum_0 [simp]: | 
| 2957 | "(\<Sum>x\<leftarrow>xs. 0) = 0" | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2958 | by (induct xs) (simp_all add: left_distrib) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2959 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2960 | text{* For non-Abelian groups @{text xs} needs to be reversed on one side: *}
 | 
| 39774 | 2961 | lemma (in ab_group_add) uminus_listsum_map: | 
| 2962 | "- listsum (map f xs) = listsum (map (uminus \<circ> f) xs)" | |
| 2963 | by (induct xs) simp_all | |
| 2964 | ||
| 2965 | lemma (in comm_monoid_add) listsum_addf: | |
| 2966 | "(\<Sum>x\<leftarrow>xs. f x + g x) = listsum (map f xs) + listsum (map g xs)" | |
| 2967 | by (induct xs) (simp_all add: algebra_simps) | |
| 2968 | ||
| 2969 | lemma (in ab_group_add) listsum_subtractf: | |
| 2970 | "(\<Sum>x\<leftarrow>xs. f x - g x) = listsum (map f xs) - listsum (map g xs)" | |
| 2971 | by (induct xs) (simp_all add: algebra_simps) | |
| 2972 | ||
| 2973 | lemma (in semiring_0) listsum_const_mult: | |
| 2974 | "(\<Sum>x\<leftarrow>xs. c * f x) = c * (\<Sum>x\<leftarrow>xs. f x)" | |
| 2975 | by (induct xs) (simp_all add: algebra_simps) | |
| 2976 | ||
| 2977 | lemma (in semiring_0) listsum_mult_const: | |
| 2978 | "(\<Sum>x\<leftarrow>xs. f x * c) = (\<Sum>x\<leftarrow>xs. f x) * c" | |
| 2979 | by (induct xs) (simp_all add: algebra_simps) | |
| 2980 | ||
| 2981 | lemma (in ordered_ab_group_add_abs) listsum_abs: | |
| 2982 | "\<bar>listsum xs\<bar> \<le> listsum (map abs xs)" | |
| 2983 | by (induct xs) (simp_all add: order_trans [OF abs_triangle_ineq]) | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2984 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2985 | lemma listsum_mono: | 
| 39774 | 2986 |   fixes f g :: "'a \<Rightarrow> 'b::{monoid_add, ordered_ab_semigroup_add}"
 | 
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2987 | shows "(\<And>x. x \<in> set xs \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sum>x\<leftarrow>xs. f x) \<le> (\<Sum>x\<leftarrow>xs. g x)" | 
| 39774 | 2988 | by (induct xs) (simp, simp add: add_mono) | 
| 2989 | ||
| 2990 | lemma (in monoid_add) listsum_distinct_conv_setsum_set: | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2991 | "distinct xs \<Longrightarrow> listsum (map f xs) = setsum f (set xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2992 | by (induct xs) simp_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2993 | |
| 39774 | 2994 | lemma (in monoid_add) interv_listsum_conv_setsum_set_nat: | 
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2995 | "listsum (map f [m..<n]) = setsum f (set [m..<n])" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2996 | by (simp add: listsum_distinct_conv_setsum_set) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2997 | |
| 39774 | 2998 | lemma (in monoid_add) interv_listsum_conv_setsum_set_int: | 
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2999 | "listsum (map f [k..l]) = setsum f (set [k..l])" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3000 | by (simp add: listsum_distinct_conv_setsum_set) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3001 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3002 | text {* General equivalence between @{const listsum} and @{const setsum} *}
 | 
| 39774 | 3003 | lemma (in monoid_add) listsum_setsum_nth: | 
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3004 | "listsum xs = (\<Sum> i = 0 ..< length xs. xs ! i)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3005 | using interv_listsum_conv_setsum_set_nat [of "op ! xs" 0 "length xs"] by (simp add: map_nth) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3006 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3007 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3008 | subsubsection {* @{const insert} *}
 | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3009 | |
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3010 | lemma in_set_insert [simp]: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3011 | "x \<in> set xs \<Longrightarrow> List.insert x xs = xs" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3012 | by (simp add: List.insert_def) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3013 | |
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3014 | lemma not_in_set_insert [simp]: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3015 | "x \<notin> set xs \<Longrightarrow> List.insert x xs = x # xs" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3016 | by (simp add: List.insert_def) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3017 | |
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3018 | lemma insert_Nil [simp]: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3019 | "List.insert x [] = [x]" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3020 | by simp | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3021 | |
| 35295 | 3022 | lemma set_insert [simp]: | 
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3023 | "set (List.insert x xs) = insert x (set xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3024 | by (auto simp add: List.insert_def) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3025 | |
| 35295 | 3026 | lemma distinct_insert [simp]: | 
| 3027 | "distinct xs \<Longrightarrow> distinct (List.insert x xs)" | |
| 3028 | by (simp add: List.insert_def) | |
| 3029 | ||
| 36275 | 3030 | lemma insert_remdups: | 
| 3031 | "List.insert x (remdups xs) = remdups (List.insert x xs)" | |
| 3032 | by (simp add: List.insert_def) | |
| 3033 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3034 | |
| 15392 | 3035 | subsubsection {* @{text remove1} *}
 | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3036 | |
| 18049 | 3037 | lemma remove1_append: | 
| 3038 | "remove1 x (xs @ ys) = | |
| 3039 | (if x \<in> set xs then remove1 x xs @ ys else xs @ remove1 x ys)" | |
| 3040 | by (induct xs) auto | |
| 3041 | ||
| 36903 | 3042 | lemma remove1_commute: "remove1 x (remove1 y zs) = remove1 y (remove1 x zs)" | 
| 3043 | by (induct zs) auto | |
| 3044 | ||
| 23479 | 3045 | lemma in_set_remove1[simp]: | 
| 3046 | "a \<noteq> b \<Longrightarrow> a : set(remove1 b xs) = (a : set xs)" | |
| 3047 | apply (induct xs) | |
| 3048 | apply auto | |
| 3049 | done | |
| 3050 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3051 | lemma set_remove1_subset: "set(remove1 x xs) <= set xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3052 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3053 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3054 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3055 | apply blast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3056 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3057 | |
| 17724 | 3058 | lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
 | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3059 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3060 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3061 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3062 | apply blast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3063 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3064 | |
| 23479 | 3065 | lemma length_remove1: | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 3066 | "length(remove1 x xs) = (if x : set xs then length xs - 1 else length xs)" | 
| 23479 | 3067 | apply (induct xs) | 
| 3068 | apply (auto dest!:length_pos_if_in_set) | |
| 3069 | done | |
| 3070 | ||
| 18049 | 3071 | lemma remove1_filter_not[simp]: | 
| 3072 | "\<not> P x \<Longrightarrow> remove1 x (filter P xs) = filter P xs" | |
| 3073 | by(induct xs) auto | |
| 3074 | ||
| 39073 | 3075 | lemma filter_remove1: | 
| 3076 | "filter Q (remove1 x xs) = remove1 x (filter Q xs)" | |
| 3077 | by (induct xs) auto | |
| 3078 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3079 | lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3080 | apply(insert set_remove1_subset) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3081 | apply fast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3082 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3083 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3084 | lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3085 | by (induct xs) simp_all | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3086 | |
| 36275 | 3087 | lemma remove1_remdups: | 
| 3088 | "distinct xs \<Longrightarrow> remove1 x (remdups xs) = remdups (remove1 x xs)" | |
| 3089 | by (induct xs) simp_all | |
| 3090 | ||
| 37107 | 3091 | lemma remove1_idem: | 
| 3092 | assumes "x \<notin> set xs" | |
| 3093 | shows "remove1 x xs = xs" | |
| 3094 | using assms by (induct xs) simp_all | |
| 3095 | ||
| 13114 | 3096 | |
| 27693 | 3097 | subsubsection {* @{text removeAll} *}
 | 
| 3098 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3099 | lemma removeAll_filter_not_eq: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3100 | "removeAll x = filter (\<lambda>y. x \<noteq> y)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3101 | proof | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3102 | fix xs | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3103 | show "removeAll x xs = filter (\<lambda>y. x \<noteq> y) xs" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3104 | by (induct xs) auto | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3105 | qed | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3106 | |
| 27693 | 3107 | lemma removeAll_append[simp]: | 
| 3108 | "removeAll x (xs @ ys) = removeAll x xs @ removeAll x ys" | |
| 3109 | by (induct xs) auto | |
| 3110 | ||
| 3111 | lemma set_removeAll[simp]: "set(removeAll x xs) = set xs - {x}"
 | |
| 3112 | by (induct xs) auto | |
| 3113 | ||
| 3114 | lemma removeAll_id[simp]: "x \<notin> set xs \<Longrightarrow> removeAll x xs = xs" | |
| 3115 | by (induct xs) auto | |
| 3116 | ||
| 3117 | (* Needs count:: 'a \<Rightarrow> a' list \<Rightarrow> nat | |
| 3118 | lemma length_removeAll: | |
| 3119 | "length(removeAll x xs) = length xs - count x xs" | |
| 3120 | *) | |
| 3121 | ||
| 3122 | lemma removeAll_filter_not[simp]: | |
| 3123 | "\<not> P x \<Longrightarrow> removeAll x (filter P xs) = filter P xs" | |
| 3124 | by(induct xs) auto | |
| 3125 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3126 | lemma distinct_removeAll: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3127 | "distinct xs \<Longrightarrow> distinct (removeAll x xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3128 | by (simp add: removeAll_filter_not_eq) | 
| 27693 | 3129 | |
| 3130 | lemma distinct_remove1_removeAll: | |
| 3131 | "distinct xs ==> remove1 x xs = removeAll x xs" | |
| 3132 | by (induct xs) simp_all | |
| 3133 | ||
| 3134 | lemma map_removeAll_inj_on: "inj_on f (insert x (set xs)) \<Longrightarrow> | |
| 3135 | map f (removeAll x xs) = removeAll (f x) (map f xs)" | |
| 3136 | by (induct xs) (simp_all add:inj_on_def) | |
| 3137 | ||
| 3138 | lemma map_removeAll_inj: "inj f \<Longrightarrow> | |
| 3139 | map f (removeAll x xs) = removeAll (f x) (map f xs)" | |
| 3140 | by(metis map_removeAll_inj_on subset_inj_on subset_UNIV) | |
| 3141 | ||
| 3142 | ||
| 15392 | 3143 | subsubsection {* @{text replicate} *}
 | 
| 13114 | 3144 | |
| 13142 | 3145 | lemma length_replicate [simp]: "length (replicate n x) = n" | 
| 13145 | 3146 | by (induct n) auto | 
| 13124 | 3147 | |
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36275diff
changeset | 3148 | lemma Ex_list_of_length: "\<exists>xs. length xs = n" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36275diff
changeset | 3149 | by (rule exI[of _ "replicate n undefined"]) simp | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36275diff
changeset | 3150 | |
| 13142 | 3151 | lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)" | 
| 13145 | 3152 | by (induct n) auto | 
| 13114 | 3153 | |
| 31363 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3154 | lemma map_replicate_const: | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3155 | "map (\<lambda> x. k) lst = replicate (length lst) k" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3156 | by (induct lst) auto | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3157 | |
| 13114 | 3158 | lemma replicate_app_Cons_same: | 
| 13145 | 3159 | "(replicate n x) @ (x # xs) = x # replicate n x @ xs" | 
| 3160 | by (induct n) auto | |
| 13114 | 3161 | |
| 13142 | 3162 | lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x" | 
| 14208 | 3163 | apply (induct n, simp) | 
| 13145 | 3164 | apply (simp add: replicate_app_Cons_same) | 
| 3165 | done | |
| 13114 | 3166 | |
| 13142 | 3167 | lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x" | 
| 13145 | 3168 | by (induct n) auto | 
| 13114 | 3169 | |
| 16397 | 3170 | text{* Courtesy of Matthias Daum: *}
 | 
| 3171 | lemma append_replicate_commute: | |
| 3172 | "replicate n x @ replicate k x = replicate k x @ replicate n x" | |
| 3173 | apply (simp add: replicate_add [THEN sym]) | |
| 3174 | apply (simp add: add_commute) | |
| 3175 | done | |
| 3176 | ||
| 31080 | 3177 | text{* Courtesy of Andreas Lochbihler: *}
 | 
| 3178 | lemma filter_replicate: | |
| 3179 | "filter P (replicate n x) = (if P x then replicate n x else [])" | |
| 3180 | by(induct n) auto | |
| 3181 | ||
| 13142 | 3182 | lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x" | 
| 13145 | 3183 | by (induct n) auto | 
| 13114 | 3184 | |
| 13142 | 3185 | lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x" | 
| 13145 | 3186 | by (induct n) auto | 
| 13114 | 3187 | |
| 13142 | 3188 | lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x" | 
| 13145 | 3189 | by (atomize (full), induct n) auto | 
| 13114 | 3190 | |
| 24526 | 3191 | lemma nth_replicate[simp]: "i < n ==> (replicate n x)!i = x" | 
| 3192 | apply (induct n arbitrary: i, simp) | |
| 13145 | 3193 | apply (simp add: nth_Cons split: nat.split) | 
| 3194 | done | |
| 13114 | 3195 | |
| 16397 | 3196 | text{* Courtesy of Matthias Daum (2 lemmas): *}
 | 
| 3197 | lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x" | |
| 3198 | apply (case_tac "k \<le> i") | |
| 3199 | apply (simp add: min_def) | |
| 3200 | apply (drule not_leE) | |
| 3201 | apply (simp add: min_def) | |
| 3202 | apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x") | |
| 3203 | apply simp | |
| 3204 | apply (simp add: replicate_add [symmetric]) | |
| 3205 | done | |
| 3206 | ||
| 24526 | 3207 | lemma drop_replicate[simp]: "drop i (replicate k x) = replicate (k-i) x" | 
| 3208 | apply (induct k arbitrary: i) | |
| 16397 | 3209 | apply simp | 
| 3210 | apply clarsimp | |
| 3211 | apply (case_tac i) | |
| 3212 | apply simp | |
| 3213 | apply clarsimp | |
| 3214 | done | |
| 3215 | ||
| 3216 | ||
| 13142 | 3217 | lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
 | 
| 13145 | 3218 | by (induct n) auto | 
| 13114 | 3219 | |
| 13142 | 3220 | lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
 | 
| 13145 | 3221 | by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc) | 
| 13114 | 3222 | |
| 13142 | 3223 | lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
 | 
| 13145 | 3224 | by auto | 
| 13114 | 3225 | |
| 37456 | 3226 | lemma in_set_replicate[simp]: "(x : set (replicate n y)) = (x = y & n \<noteq> 0)" | 
| 3227 | by (simp add: set_replicate_conv_if) | |
| 3228 | ||
| 37454 | 3229 | lemma Ball_set_replicate[simp]: | 
| 3230 | "(ALL x : set(replicate n a). P x) = (P a | n=0)" | |
| 3231 | by(simp add: set_replicate_conv_if) | |
| 3232 | ||
| 3233 | lemma Bex_set_replicate[simp]: | |
| 3234 | "(EX x : set(replicate n a). P x) = (P a & n\<noteq>0)" | |
| 3235 | by(simp add: set_replicate_conv_if) | |
| 13114 | 3236 | |
| 24796 | 3237 | lemma replicate_append_same: | 
| 3238 | "replicate i x @ [x] = x # replicate i x" | |
| 3239 | by (induct i) simp_all | |
| 3240 | ||
| 3241 | lemma map_replicate_trivial: | |
| 3242 | "map (\<lambda>i. x) [0..<i] = replicate i x" | |
| 3243 | by (induct i) (simp_all add: replicate_append_same) | |
| 3244 | ||
| 31363 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3245 | lemma concat_replicate_trivial[simp]: | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3246 | "concat (replicate i []) = []" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3247 | by (induct i) (auto simp add: map_replicate_const) | 
| 13114 | 3248 | |
| 28642 | 3249 | lemma replicate_empty[simp]: "(replicate n x = []) \<longleftrightarrow> n=0" | 
| 3250 | by (induct n) auto | |
| 3251 | ||
| 3252 | lemma empty_replicate[simp]: "([] = replicate n x) \<longleftrightarrow> n=0" | |
| 3253 | by (induct n) auto | |
| 3254 | ||
| 3255 | lemma replicate_eq_replicate[simp]: | |
| 3256 | "(replicate m x = replicate n y) \<longleftrightarrow> (m=n & (m\<noteq>0 \<longrightarrow> x=y))" | |
| 3257 | apply(induct m arbitrary: n) | |
| 3258 | apply simp | |
| 3259 | apply(induct_tac n) | |
| 3260 | apply auto | |
| 3261 | done | |
| 3262 | ||
| 39534 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3263 | lemma replicate_length_filter: | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3264 | "replicate (length (filter (\<lambda>y. x = y) xs)) x = filter (\<lambda>y. x = y) xs" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3265 | by (induct xs) auto | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3266 | |
| 28642 | 3267 | |
| 15392 | 3268 | subsubsection{*@{text rotate1} and @{text rotate}*}
 | 
| 15302 | 3269 | |
| 3270 | lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]" | |
| 3271 | by(simp add:rotate1_def) | |
| 3272 | ||
| 3273 | lemma rotate0[simp]: "rotate 0 = id" | |
| 3274 | by(simp add:rotate_def) | |
| 3275 | ||
| 3276 | lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)" | |
| 3277 | by(simp add:rotate_def) | |
| 3278 | ||
| 3279 | lemma rotate_add: | |
| 3280 | "rotate (m+n) = rotate m o rotate n" | |
| 3281 | by(simp add:rotate_def funpow_add) | |
| 3282 | ||
| 3283 | lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs" | |
| 3284 | by(simp add:rotate_add) | |
| 3285 | ||
| 18049 | 3286 | lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)" | 
| 3287 | by(simp add:rotate_def funpow_swap1) | |
| 3288 | ||
| 15302 | 3289 | lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs" | 
| 3290 | by(cases xs) simp_all | |
| 3291 | ||
| 3292 | lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs" | |
| 3293 | apply(induct n) | |
| 3294 | apply simp | |
| 3295 | apply (simp add:rotate_def) | |
| 13145 | 3296 | done | 
| 13114 | 3297 | |
| 15302 | 3298 | lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]" | 
| 3299 | by(simp add:rotate1_def split:list.split) | |
| 3300 | ||
| 3301 | lemma rotate_drop_take: | |
| 3302 | "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs" | |
| 3303 | apply(induct n) | |
| 3304 | apply simp | |
| 3305 | apply(simp add:rotate_def) | |
| 3306 | apply(cases "xs = []") | |
| 3307 | apply (simp) | |
| 3308 | apply(case_tac "n mod length xs = 0") | |
| 3309 | apply(simp add:mod_Suc) | |
| 3310 | apply(simp add: rotate1_hd_tl drop_Suc take_Suc) | |
| 3311 | apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric] | |
| 3312 | take_hd_drop linorder_not_le) | |
| 13145 | 3313 | done | 
| 13114 | 3314 | |
| 15302 | 3315 | lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs" | 
| 3316 | by(simp add:rotate_drop_take) | |
| 3317 | ||
| 3318 | lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs" | |
| 3319 | by(simp add:rotate_drop_take) | |
| 3320 | ||
| 3321 | lemma length_rotate1[simp]: "length(rotate1 xs) = length xs" | |
| 3322 | by(simp add:rotate1_def split:list.split) | |
| 3323 | ||
| 24526 | 3324 | lemma length_rotate[simp]: "length(rotate n xs) = length xs" | 
| 3325 | by (induct n arbitrary: xs) (simp_all add:rotate_def) | |
| 15302 | 3326 | |
| 3327 | lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs" | |
| 3328 | by(simp add:rotate1_def split:list.split) blast | |
| 3329 | ||
| 3330 | lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs" | |
| 3331 | by (induct n) (simp_all add:rotate_def) | |
| 3332 | ||
| 3333 | lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)" | |
| 3334 | by(simp add:rotate_drop_take take_map drop_map) | |
| 3335 | ||
| 3336 | lemma set_rotate1[simp]: "set(rotate1 xs) = set xs" | |
| 3337 | by(simp add:rotate1_def split:list.split) | |
| 3338 | ||
| 3339 | lemma set_rotate[simp]: "set(rotate n xs) = set xs" | |
| 3340 | by (induct n) (simp_all add:rotate_def) | |
| 3341 | ||
| 3342 | lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])" | |
| 3343 | by(simp add:rotate1_def split:list.split) | |
| 3344 | ||
| 3345 | lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])" | |
| 3346 | by (induct n) (simp_all add:rotate_def) | |
| 13114 | 3347 | |
| 15439 | 3348 | lemma rotate_rev: | 
| 3349 | "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)" | |
| 3350 | apply(simp add:rotate_drop_take rev_drop rev_take) | |
| 3351 | apply(cases "length xs = 0") | |
| 3352 | apply simp | |
| 3353 | apply(cases "n mod length xs = 0") | |
| 3354 | apply simp | |
| 3355 | apply(simp add:rotate_drop_take rev_drop rev_take) | |
| 3356 | done | |
| 3357 | ||
| 18423 | 3358 | lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)" | 
| 3359 | apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth) | |
| 3360 | apply(subgoal_tac "length xs \<noteq> 0") | |
| 3361 | prefer 2 apply simp | |
| 3362 | using mod_less_divisor[of "length xs" n] by arith | |
| 3363 | ||
| 13114 | 3364 | |
| 15392 | 3365 | subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
 | 
| 13114 | 3366 | |
| 13142 | 3367 | lemma sublist_empty [simp]: "sublist xs {} = []"
 | 
| 13145 | 3368 | by (auto simp add: sublist_def) | 
| 13114 | 3369 | |
| 13142 | 3370 | lemma sublist_nil [simp]: "sublist [] A = []" | 
| 13145 | 3371 | by (auto simp add: sublist_def) | 
| 13114 | 3372 | |
| 15281 | 3373 | lemma length_sublist: | 
| 3374 |   "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
 | |
| 3375 | by(simp add: sublist_def length_filter_conv_card cong:conj_cong) | |
| 3376 | ||
| 3377 | lemma sublist_shift_lemma_Suc: | |
| 24526 | 3378 | "map fst (filter (%p. P(Suc(snd p))) (zip xs is)) = | 
| 3379 | map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))" | |
| 3380 | apply(induct xs arbitrary: "is") | |
| 15281 | 3381 | apply simp | 
| 3382 | apply (case_tac "is") | |
| 3383 | apply simp | |
| 3384 | apply simp | |
| 3385 | done | |
| 3386 | ||
| 13114 | 3387 | lemma sublist_shift_lemma: | 
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 3388 | "map fst [p<-zip xs [i..<i + length xs] . snd p : A] = | 
| 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 3389 | map fst [p<-zip xs [0..<length xs] . snd p + i : A]" | 
| 13145 | 3390 | by (induct xs rule: rev_induct) (simp_all add: add_commute) | 
| 13114 | 3391 | |
| 3392 | lemma sublist_append: | |
| 15168 | 3393 |      "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
 | 
| 13145 | 3394 | apply (unfold sublist_def) | 
| 14208 | 3395 | apply (induct l' rule: rev_induct, simp) | 
| 13145 | 3396 | apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma) | 
| 3397 | apply (simp add: add_commute) | |
| 3398 | done | |
| 13114 | 3399 | |
| 3400 | lemma sublist_Cons: | |
| 13145 | 3401 | "sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
 | 
| 3402 | apply (induct l rule: rev_induct) | |
| 3403 | apply (simp add: sublist_def) | |
| 3404 | apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append) | |
| 3405 | done | |
| 13114 | 3406 | |
| 24526 | 3407 | lemma set_sublist: "set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
 | 
| 3408 | apply(induct xs arbitrary: I) | |
| 25162 | 3409 | apply(auto simp: sublist_Cons nth_Cons split:nat.split dest!: gr0_implies_Suc) | 
| 15281 | 3410 | done | 
| 3411 | ||
| 3412 | lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs" | |
| 3413 | by(auto simp add:set_sublist) | |
| 3414 | ||
| 3415 | lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)" | |
| 3416 | by(auto simp add:set_sublist) | |
| 3417 | ||
| 3418 | lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs" | |
| 3419 | by(auto simp add:set_sublist) | |
| 3420 | ||
| 13142 | 3421 | lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])" | 
| 13145 | 3422 | by (simp add: sublist_Cons) | 
| 13114 | 3423 | |
| 15281 | 3424 | |
| 24526 | 3425 | lemma distinct_sublistI[simp]: "distinct xs \<Longrightarrow> distinct(sublist xs I)" | 
| 3426 | apply(induct xs arbitrary: I) | |
| 15281 | 3427 | apply simp | 
| 3428 | apply(auto simp add:sublist_Cons) | |
| 3429 | done | |
| 3430 | ||
| 3431 | ||
| 15045 | 3432 | lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
 | 
| 14208 | 3433 | apply (induct l rule: rev_induct, simp) | 
| 13145 | 3434 | apply (simp split: nat_diff_split add: sublist_append) | 
| 3435 | done | |
| 13114 | 3436 | |
| 24526 | 3437 | lemma filter_in_sublist: | 
| 3438 | "distinct xs \<Longrightarrow> filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s" | |
| 3439 | proof (induct xs arbitrary: s) | |
| 17501 | 3440 | case Nil thus ?case by simp | 
| 3441 | next | |
| 3442 | case (Cons a xs) | |
| 3443 | moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto | |
| 3444 | ultimately show ?case by(simp add: sublist_Cons cong:filter_cong) | |
| 3445 | qed | |
| 3446 | ||
| 13114 | 3447 | |
| 19390 | 3448 | subsubsection {* @{const splice} *}
 | 
| 3449 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 3450 | lemma splice_Nil2 [simp, code]: | 
| 19390 | 3451 | "splice xs [] = xs" | 
| 3452 | by (cases xs) simp_all | |
| 3453 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 3454 | lemma splice_Cons_Cons [simp, code]: | 
| 19390 | 3455 | "splice (x#xs) (y#ys) = x # y # splice xs ys" | 
| 3456 | by simp | |
| 3457 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 3458 | declare splice.simps(2) [simp del, code del] | 
| 19390 | 3459 | |
| 24526 | 3460 | lemma length_splice[simp]: "length(splice xs ys) = length xs + length ys" | 
| 3461 | apply(induct xs arbitrary: ys) apply simp | |
| 22793 | 3462 | apply(case_tac ys) | 
| 3463 | apply auto | |
| 3464 | done | |
| 3465 | ||
| 35115 | 3466 | |
| 3467 | subsubsection {* Transpose *}
 | |
| 34933 | 3468 | |
| 3469 | function transpose where | |
| 3470 | "transpose [] = []" | | |
| 3471 | "transpose ([] # xss) = transpose xss" | | |
| 3472 | "transpose ((x#xs) # xss) = | |
| 3473 | (x # [h. (h#t) \<leftarrow> xss]) # transpose (xs # [t. (h#t) \<leftarrow> xss])" | |
| 3474 | by pat_completeness auto | |
| 3475 | ||
| 3476 | lemma transpose_aux_filter_head: | |
| 3477 | "concat (map (list_case [] (\<lambda>h t. [h])) xss) = | |
| 3478 | map (\<lambda>xs. hd xs) [ys\<leftarrow>xss . ys \<noteq> []]" | |
| 3479 | by (induct xss) (auto split: list.split) | |
| 3480 | ||
| 3481 | lemma transpose_aux_filter_tail: | |
| 3482 | "concat (map (list_case [] (\<lambda>h t. [t])) xss) = | |
| 3483 | map (\<lambda>xs. tl xs) [ys\<leftarrow>xss . ys \<noteq> []]" | |
| 3484 | by (induct xss) (auto split: list.split) | |
| 3485 | ||
| 3486 | lemma transpose_aux_max: | |
| 3487 | "max (Suc (length xs)) (foldr (\<lambda>xs. max (length xs)) xss 0) = | |
| 3488 | Suc (max (length xs) (foldr (\<lambda>x. max (length x - Suc 0)) [ys\<leftarrow>xss . ys\<noteq>[]] 0))" | |
| 3489 | (is "max _ ?foldB = Suc (max _ ?foldA)") | |
| 3490 | proof (cases "[ys\<leftarrow>xss . ys\<noteq>[]] = []") | |
| 3491 | case True | |
| 3492 | hence "foldr (\<lambda>xs. max (length xs)) xss 0 = 0" | |
| 3493 | proof (induct xss) | |
| 3494 | case (Cons x xs) | |
| 3495 | moreover hence "x = []" by (cases x) auto | |
| 3496 | ultimately show ?case by auto | |
| 3497 | qed simp | |
| 3498 | thus ?thesis using True by simp | |
| 3499 | next | |
| 3500 | case False | |
| 3501 | ||
| 3502 | have foldA: "?foldA = foldr (\<lambda>x. max (length x)) [ys\<leftarrow>xss . ys \<noteq> []] 0 - 1" | |
| 3503 | by (induct xss) auto | |
| 3504 | have foldB: "?foldB = foldr (\<lambda>x. max (length x)) [ys\<leftarrow>xss . ys \<noteq> []] 0" | |
| 3505 | by (induct xss) auto | |
| 3506 | ||
| 3507 | have "0 < ?foldB" | |
| 3508 | proof - | |
| 3509 | from False | |
| 3510 | obtain z zs where zs: "[ys\<leftarrow>xss . ys \<noteq> []] = z#zs" by (auto simp: neq_Nil_conv) | |
| 3511 | hence "z \<in> set ([ys\<leftarrow>xss . ys \<noteq> []])" by auto | |
| 3512 | hence "z \<noteq> []" by auto | |
| 3513 | thus ?thesis | |
| 3514 | unfolding foldB zs | |
| 3515 | by (auto simp: max_def intro: less_le_trans) | |
| 3516 | qed | |
| 3517 | thus ?thesis | |
| 3518 | unfolding foldA foldB max_Suc_Suc[symmetric] | |
| 3519 | by simp | |
| 3520 | qed | |
| 3521 | ||
| 3522 | termination transpose | |
| 3523 | by (relation "measure (\<lambda>xs. foldr (\<lambda>xs. max (length xs)) xs 0 + length xs)") | |
| 3524 | (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max less_Suc_eq_le) | |
| 3525 | ||
| 3526 | lemma transpose_empty: "(transpose xs = []) \<longleftrightarrow> (\<forall>x \<in> set xs. x = [])" | |
| 3527 | by (induct rule: transpose.induct) simp_all | |
| 3528 | ||
| 3529 | lemma length_transpose: | |
| 3530 | fixes xs :: "'a list list" | |
| 3531 | shows "length (transpose xs) = foldr (\<lambda>xs. max (length xs)) xs 0" | |
| 3532 | by (induct rule: transpose.induct) | |
| 3533 | (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max | |
| 3534 | max_Suc_Suc[symmetric] simp del: max_Suc_Suc) | |
| 3535 | ||
| 3536 | lemma nth_transpose: | |
| 3537 | fixes xs :: "'a list list" | |
| 3538 | assumes "i < length (transpose xs)" | |
| 3539 | shows "transpose xs ! i = map (\<lambda>xs. xs ! i) [ys \<leftarrow> xs. i < length ys]" | |
| 3540 | using assms proof (induct arbitrary: i rule: transpose.induct) | |
| 3541 | case (3 x xs xss) | |
| 3542 | def XS == "(x # xs) # xss" | |
| 3543 | hence [simp]: "XS \<noteq> []" by auto | |
| 3544 | thus ?case | |
| 3545 | proof (cases i) | |
| 3546 | case 0 | |
| 3547 | thus ?thesis by (simp add: transpose_aux_filter_head hd_conv_nth) | |
| 3548 | next | |
| 3549 | case (Suc j) | |
| 3550 | have *: "\<And>xss. xs # map tl xss = map tl ((x#xs)#xss)" by simp | |
| 3551 | have **: "\<And>xss. (x#xs) # filter (\<lambda>ys. ys \<noteq> []) xss = filter (\<lambda>ys. ys \<noteq> []) ((x#xs)#xss)" by simp | |
| 3552 |     { fix x have "Suc j < length x \<longleftrightarrow> x \<noteq> [] \<and> j < length x - Suc 0"
 | |
| 3553 | by (cases x) simp_all | |
| 3554 | } note *** = this | |
| 3555 | ||
| 3556 | have j_less: "j < length (transpose (xs # concat (map (list_case [] (\<lambda>h t. [t])) xss)))" | |
| 3557 | using "3.prems" by (simp add: transpose_aux_filter_tail length_transpose Suc) | |
| 3558 | ||
| 3559 | show ?thesis | |
| 3560 | unfolding transpose.simps `i = Suc j` nth_Cons_Suc "3.hyps"[OF j_less] | |
| 3561 | apply (auto simp: transpose_aux_filter_tail filter_map comp_def length_transpose * ** *** XS_def[symmetric]) | |
| 3562 | apply (rule_tac y=x in list.exhaust) | |
| 3563 | by auto | |
| 3564 | qed | |
| 3565 | qed simp_all | |
| 3566 | ||
| 3567 | lemma transpose_map_map: | |
| 3568 | "transpose (map (map f) xs) = map (map f) (transpose xs)" | |
| 3569 | proof (rule nth_equalityI, safe) | |
| 3570 | have [simp]: "length (transpose (map (map f) xs)) = length (transpose xs)" | |
| 3571 | by (simp add: length_transpose foldr_map comp_def) | |
| 3572 | show "length (transpose (map (map f) xs)) = length (map (map f) (transpose xs))" by simp | |
| 3573 | ||
| 3574 | fix i assume "i < length (transpose (map (map f) xs))" | |
| 3575 | thus "transpose (map (map f) xs) ! i = map (map f) (transpose xs) ! i" | |
| 3576 | by (simp add: nth_transpose filter_map comp_def) | |
| 3577 | qed | |
| 24616 | 3578 | |
| 35115 | 3579 | |
| 31557 | 3580 | subsubsection {* (In)finiteness *}
 | 
| 28642 | 3581 | |
| 3582 | lemma finite_maxlen: | |
| 3583 | "finite (M::'a list set) ==> EX n. ALL s:M. size s < n" | |
| 3584 | proof (induct rule: finite.induct) | |
| 3585 | case emptyI show ?case by simp | |
| 3586 | next | |
| 3587 | case (insertI M xs) | |
| 3588 | then obtain n where "\<forall>s\<in>M. length s < n" by blast | |
| 3589 | hence "ALL s:insert xs M. size s < max n (size xs) + 1" by auto | |
| 3590 | thus ?case .. | |
| 3591 | qed | |
| 3592 | ||
| 31557 | 3593 | lemma finite_lists_length_eq: | 
| 3594 | assumes "finite A" | |
| 3595 | shows "finite {xs. set xs \<subseteq> A \<and> length xs = n}" (is "finite (?S n)")
 | |
| 3596 | proof(induct n) | |
| 3597 | case 0 show ?case by simp | |
| 3598 | next | |
| 3599 | case (Suc n) | |
| 3600 | have "?S (Suc n) = (\<Union>x\<in>A. (\<lambda>xs. x#xs) ` ?S n)" | |
| 3601 | by (auto simp:length_Suc_conv) | |
| 3602 | then show ?case using `finite A` | |
| 3603 | by (auto intro: finite_imageI Suc) (* FIXME metis? *) | |
| 3604 | qed | |
| 3605 | ||
| 3606 | lemma finite_lists_length_le: | |
| 3607 |   assumes "finite A" shows "finite {xs. set xs \<subseteq> A \<and> length xs \<le> n}"
 | |
| 3608 | (is "finite ?S") | |
| 3609 | proof- | |
| 3610 |   have "?S = (\<Union>n\<in>{0..n}. {xs. set xs \<subseteq> A \<and> length xs = n})" by auto
 | |
| 3611 | thus ?thesis by (auto intro: finite_lists_length_eq[OF `finite A`]) | |
| 3612 | qed | |
| 3613 | ||
| 28642 | 3614 | lemma infinite_UNIV_listI: "~ finite(UNIV::'a list set)" | 
| 3615 | apply(rule notI) | |
| 3616 | apply(drule finite_maxlen) | |
| 3617 | apply (metis UNIV_I length_replicate less_not_refl) | |
| 3618 | done | |
| 3619 | ||
| 3620 | ||
| 35115 | 3621 | subsection {* Sorting *}
 | 
| 24616 | 3622 | |
| 24617 | 3623 | text{* Currently it is not shown that @{const sort} returns a
 | 
| 3624 | permutation of its input because the nicest proof is via multisets, | |
| 3625 | which are not yet available. Alternatively one could define a function | |
| 3626 | that counts the number of occurrences of an element in a list and use | |
| 3627 | that instead of multisets to state the correctness property. *} | |
| 3628 | ||
| 24616 | 3629 | context linorder | 
| 3630 | begin | |
| 3631 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3632 | lemma length_insert[simp] : "length (insort_key f x xs) = Suc (length xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3633 | by (induct xs, auto) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3634 | |
| 35195 | 3635 | lemma insort_left_comm: | 
| 3636 | "insort x (insort y xs) = insort y (insort x xs)" | |
| 3637 | by (induct xs) auto | |
| 3638 | ||
| 3639 | lemma fun_left_comm_insort: | |
| 3640 | "fun_left_comm insort" | |
| 3641 | proof | |
| 3642 | qed (fact insort_left_comm) | |
| 3643 | ||
| 3644 | lemma sort_key_simps [simp]: | |
| 3645 | "sort_key f [] = []" | |
| 3646 | "sort_key f (x#xs) = insort_key f x (sort_key f xs)" | |
| 3647 | by (simp_all add: sort_key_def) | |
| 3648 | ||
| 3649 | lemma sort_foldl_insort: | |
| 3650 | "sort xs = foldl (\<lambda>ys x. insort x ys) [] xs" | |
| 3651 | by (simp add: sort_key_def foldr_foldl foldl_rev insort_left_comm) | |
| 3652 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3653 | lemma length_sort[simp]: "length (sort_key f xs) = length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3654 | by (induct xs, auto) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3655 | |
| 25062 | 3656 | lemma sorted_Cons: "sorted (x#xs) = (sorted xs & (ALL y:set xs. x <= y))" | 
| 24616 | 3657 | apply(induct xs arbitrary: x) apply simp | 
| 3658 | by simp (blast intro: order_trans) | |
| 3659 | ||
| 3660 | lemma sorted_append: | |
| 25062 | 3661 | "sorted (xs@ys) = (sorted xs & sorted ys & (\<forall>x \<in> set xs. \<forall>y \<in> set ys. x\<le>y))" | 
| 24616 | 3662 | by (induct xs) (auto simp add:sorted_Cons) | 
| 3663 | ||
| 31201 | 3664 | lemma sorted_nth_mono: | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3665 | "sorted xs \<Longrightarrow> i \<le> j \<Longrightarrow> j < length xs \<Longrightarrow> xs!i \<le> xs!j" | 
| 31201 | 3666 | by (induct xs arbitrary: i j) (auto simp:nth_Cons' sorted_Cons) | 
| 3667 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3668 | lemma sorted_rev_nth_mono: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3669 | "sorted (rev xs) \<Longrightarrow> i \<le> j \<Longrightarrow> j < length xs \<Longrightarrow> xs!j \<le> xs!i" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3670 | using sorted_nth_mono[ of "rev xs" "length xs - j - 1" "length xs - i - 1"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3671 | rev_nth[of "length xs - i - 1" "xs"] rev_nth[of "length xs - j - 1" "xs"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3672 | by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3673 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3674 | lemma sorted_nth_monoI: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3675 | "(\<And> i j. \<lbrakk> i \<le> j ; j < length xs \<rbrakk> \<Longrightarrow> xs ! i \<le> xs ! j) \<Longrightarrow> sorted xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3676 | proof (induct xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3677 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3678 | have "sorted xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3679 | proof (rule Cons.hyps) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3680 | fix i j assume "i \<le> j" and "j < length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3681 | with Cons.prems[of "Suc i" "Suc j"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3682 | show "xs ! i \<le> xs ! j" by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3683 | qed | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3684 | moreover | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3685 |   {
 | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3686 | fix y assume "y \<in> set xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3687 | then obtain j where "j < length xs" and "xs ! j = y" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3688 | unfolding in_set_conv_nth by blast | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3689 | with Cons.prems[of 0 "Suc j"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3690 | have "x \<le> y" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3691 | by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3692 | } | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3693 | ultimately | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3694 | show ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3695 | unfolding sorted_Cons by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3696 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3697 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3698 | lemma sorted_equals_nth_mono: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3699 | "sorted xs = (\<forall>j < length xs. \<forall>i \<le> j. xs ! i \<le> xs ! j)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3700 | by (auto intro: sorted_nth_monoI sorted_nth_mono) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3701 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3702 | lemma set_insort: "set(insort_key f x xs) = insert x (set xs)" | 
| 24616 | 3703 | by (induct xs) auto | 
| 3704 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3705 | lemma set_sort[simp]: "set(sort_key f xs) = set xs" | 
| 24616 | 3706 | by (induct xs) (simp_all add:set_insort) | 
| 3707 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3708 | lemma distinct_insort: "distinct (insort_key f x xs) = (x \<notin> set xs \<and> distinct xs)" | 
| 24616 | 3709 | by(induct xs)(auto simp:set_insort) | 
| 3710 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3711 | lemma distinct_sort[simp]: "distinct (sort_key f xs) = distinct xs" | 
| 24616 | 3712 | by(induct xs)(simp_all add:distinct_insort set_sort) | 
| 3713 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3714 | lemma sorted_insort_key: "sorted (map f (insort_key f x xs)) = sorted (map f xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3715 | by(induct xs)(auto simp:sorted_Cons set_insort) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3716 | |
| 24616 | 3717 | lemma sorted_insort: "sorted (insort x xs) = sorted xs" | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3718 | using sorted_insort_key[where f="\<lambda>x. x"] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3719 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3720 | theorem sorted_sort_key[simp]: "sorted (map f (sort_key f xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3721 | by(induct xs)(auto simp:sorted_insort_key) | 
| 24616 | 3722 | |
| 3723 | theorem sorted_sort[simp]: "sorted (sort xs)" | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3724 | by(induct xs)(auto simp:sorted_insort) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3725 | |
| 36851 | 3726 | lemma sorted_butlast: | 
| 3727 | assumes "xs \<noteq> []" and "sorted xs" | |
| 3728 | shows "sorted (butlast xs)" | |
| 3729 | proof - | |
| 3730 | from `xs \<noteq> []` obtain ys y where "xs = ys @ [y]" by (cases xs rule: rev_cases) auto | |
| 3731 | with `sorted xs` show ?thesis by (simp add: sorted_append) | |
| 3732 | qed | |
| 3733 | ||
| 3734 | lemma insort_not_Nil [simp]: | |
| 3735 | "insort_key f a xs \<noteq> []" | |
| 3736 | by (induct xs) simp_all | |
| 3737 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3738 | lemma insort_is_Cons: "\<forall>x\<in>set xs. f a \<le> f x \<Longrightarrow> insort_key f a xs = a # xs" | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3739 | by (cases xs) auto | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3740 | |
| 39534 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3741 | lemma sorted_map_remove1: | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3742 | "sorted (map f xs) \<Longrightarrow> sorted (map f (remove1 x xs))" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3743 | by (induct xs) (auto simp add: sorted_Cons) | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3744 | |
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3745 | lemma sorted_remove1: "sorted xs \<Longrightarrow> sorted (remove1 a xs)" | 
| 39534 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3746 | using sorted_map_remove1 [of "\<lambda>x. x"] by simp | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3747 | |
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3748 | lemma insort_key_remove1: | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3749 | assumes "a \<in> set xs" and "sorted (map f xs)" and "hd (filter (\<lambda>x. f a = f x) xs) = a" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3750 | shows "insort_key f a (remove1 a xs) = xs" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3751 | using assms proof (induct xs) | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3752 | case (Cons x xs) | 
| 39534 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3753 | then show ?case | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3754 | proof (cases "x = a") | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3755 | case False | 
| 39534 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3756 | then have "f x \<noteq> f a" using Cons.prems by auto | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3757 | then have "f x < f a" using Cons.prems by (auto simp: sorted_Cons) | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3758 | with `f x \<noteq> f a` show ?thesis using Cons by (auto simp: sorted_Cons insort_is_Cons) | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3759 | qed (auto simp: sorted_Cons insort_is_Cons) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3760 | qed simp | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3761 | |
| 39534 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3762 | lemma insort_remove1: | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3763 | assumes "a \<in> set xs" and "sorted xs" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3764 | shows "insort a (remove1 a xs) = xs" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3765 | proof (rule insort_key_remove1) | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3766 | from `a \<in> set xs` show "a \<in> set xs" . | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3767 | from `sorted xs` show "sorted (map (\<lambda>x. x) xs)" by simp | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3768 | from `a \<in> set xs` have "a \<in> set (filter (op = a) xs)" by auto | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3769 |   then have "set (filter (op = a) xs) \<noteq> {}" by auto
 | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3770 | then have "filter (op = a) xs \<noteq> []" by (auto simp only: set_empty) | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3771 | then have "length (filter (op = a) xs) > 0" by simp | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3772 | then obtain n where n: "Suc n = length (filter (op = a) xs)" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3773 | by (cases "length (filter (op = a) xs)") simp_all | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3774 | moreover have "replicate (Suc n) a = a # replicate n a" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3775 | by simp | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3776 | ultimately show "hd (filter (op = a) xs) = a" by (simp add: replicate_length_filter) | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3777 | qed | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3778 | |
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3779 | lemma sorted_remdups[simp]: | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3780 | "sorted l \<Longrightarrow> sorted (remdups l)" | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3781 | by (induct l) (auto simp: sorted_Cons) | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3782 | |
| 24645 | 3783 | lemma sorted_distinct_set_unique: | 
| 3784 | assumes "sorted xs" "distinct xs" "sorted ys" "distinct ys" "set xs = set ys" | |
| 3785 | shows "xs = ys" | |
| 3786 | proof - | |
| 26734 | 3787 | from assms have 1: "length xs = length ys" by (auto dest!: distinct_card) | 
| 24645 | 3788 | from assms show ?thesis | 
| 3789 | proof(induct rule:list_induct2[OF 1]) | |
| 3790 | case 1 show ?case by simp | |
| 3791 | next | |
| 3792 | case 2 thus ?case by (simp add:sorted_Cons) | |
| 3793 | (metis Diff_insert_absorb antisym insertE insert_iff) | |
| 3794 | qed | |
| 3795 | qed | |
| 3796 | ||
| 35603 | 3797 | lemma map_sorted_distinct_set_unique: | 
| 3798 | assumes "inj_on f (set xs \<union> set ys)" | |
| 3799 | assumes "sorted (map f xs)" "distinct (map f xs)" | |
| 3800 | "sorted (map f ys)" "distinct (map f ys)" | |
| 3801 | assumes "set xs = set ys" | |
| 3802 | shows "xs = ys" | |
| 3803 | proof - | |
| 3804 | from assms have "map f xs = map f ys" | |
| 3805 | by (simp add: sorted_distinct_set_unique) | |
| 3806 | moreover with `inj_on f (set xs \<union> set ys)` show "xs = ys" | |
| 3807 | by (blast intro: map_inj_on) | |
| 3808 | qed | |
| 3809 | ||
| 24645 | 3810 | lemma finite_sorted_distinct_unique: | 
| 3811 | shows "finite A \<Longrightarrow> EX! xs. set xs = A & sorted xs & distinct xs" | |
| 3812 | apply(drule finite_distinct_list) | |
| 3813 | apply clarify | |
| 3814 | apply(rule_tac a="sort xs" in ex1I) | |
| 3815 | apply (auto simp: sorted_distinct_set_unique) | |
| 3816 | done | |
| 3817 | ||
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3818 | lemma | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3819 | assumes "sorted xs" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3820 | shows sorted_take: "sorted (take n xs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3821 | and sorted_drop: "sorted (drop n xs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3822 | proof - | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3823 | from assms have "sorted (take n xs @ drop n xs)" by simp | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3824 | then show "sorted (take n xs)" and "sorted (drop n xs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3825 | unfolding sorted_append by simp_all | 
| 29626 | 3826 | qed | 
| 3827 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3828 | lemma sorted_dropWhile: "sorted xs \<Longrightarrow> sorted (dropWhile P xs)" | 
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3829 | by (auto dest: sorted_drop simp add: dropWhile_eq_drop) | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3830 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3831 | lemma sorted_takeWhile: "sorted xs \<Longrightarrow> sorted (takeWhile P xs)" | 
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3832 | by (subst takeWhile_eq_take) (auto dest: sorted_take) | 
| 29626 | 3833 | |
| 34933 | 3834 | lemma sorted_filter: | 
| 3835 | "sorted (map f xs) \<Longrightarrow> sorted (map f (filter P xs))" | |
| 3836 | by (induct xs) (simp_all add: sorted_Cons) | |
| 3837 | ||
| 3838 | lemma foldr_max_sorted: | |
| 3839 | assumes "sorted (rev xs)" | |
| 3840 | shows "foldr max xs y = (if xs = [] then y else max (xs ! 0) y)" | |
| 3841 | using assms proof (induct xs) | |
| 3842 | case (Cons x xs) | |
| 3843 | moreover hence "sorted (rev xs)" using sorted_append by auto | |
| 3844 | ultimately show ?case | |
| 3845 | by (cases xs, auto simp add: sorted_append max_def) | |
| 3846 | qed simp | |
| 3847 | ||
| 3848 | lemma filter_equals_takeWhile_sorted_rev: | |
| 3849 | assumes sorted: "sorted (rev (map f xs))" | |
| 3850 | shows "[x \<leftarrow> xs. t < f x] = takeWhile (\<lambda> x. t < f x) xs" | |
| 3851 | (is "filter ?P xs = ?tW") | |
| 3852 | proof (rule takeWhile_eq_filter[symmetric]) | |
| 3853 | let "?dW" = "dropWhile ?P xs" | |
| 3854 | fix x assume "x \<in> set ?dW" | |
| 3855 | then obtain i where i: "i < length ?dW" and nth_i: "x = ?dW ! i" | |
| 3856 | unfolding in_set_conv_nth by auto | |
| 3857 | hence "length ?tW + i < length (?tW @ ?dW)" | |
| 3858 | unfolding length_append by simp | |
| 3859 | hence i': "length (map f ?tW) + i < length (map f xs)" by simp | |
| 3860 | have "(map f ?tW @ map f ?dW) ! (length (map f ?tW) + i) \<le> | |
| 3861 | (map f ?tW @ map f ?dW) ! (length (map f ?tW) + 0)" | |
| 3862 | using sorted_rev_nth_mono[OF sorted _ i', of "length ?tW"] | |
| 3863 | unfolding map_append[symmetric] by simp | |
| 3864 | hence "f x \<le> f (?dW ! 0)" | |
| 3865 | unfolding nth_append_length_plus nth_i | |
| 3866 | using i preorder_class.le_less_trans[OF le0 i] by simp | |
| 3867 | also have "... \<le> t" | |
| 3868 | using hd_dropWhile[of "?P" xs] le0[THEN preorder_class.le_less_trans, OF i] | |
| 3869 | using hd_conv_nth[of "?dW"] by simp | |
| 3870 | finally show "\<not> t < f x" by simp | |
| 3871 | qed | |
| 3872 | ||
| 35608 | 3873 | lemma set_insort_insert: | 
| 3874 | "set (insort_insert x xs) = insert x (set xs)" | |
| 3875 | by (auto simp add: insort_insert_def set_insort) | |
| 3876 | ||
| 3877 | lemma distinct_insort_insert: | |
| 3878 | assumes "distinct xs" | |
| 3879 | shows "distinct (insort_insert x xs)" | |
| 3880 | using assms by (induct xs) (auto simp add: insort_insert_def set_insort) | |
| 3881 | ||
| 3882 | lemma sorted_insort_insert: | |
| 3883 | assumes "sorted xs" | |
| 3884 | shows "sorted (insort_insert x xs)" | |
| 3885 | using assms by (simp add: insort_insert_def sorted_insort) | |
| 3886 | ||
| 37107 | 3887 | lemma filter_insort_key_triv: | 
| 3888 | "\<not> P x \<Longrightarrow> filter P (insort_key f x xs) = filter P xs" | |
| 3889 | by (induct xs) simp_all | |
| 3890 | ||
| 3891 | lemma filter_insort_key: | |
| 3892 | "sorted (map f xs) \<Longrightarrow> P x \<Longrightarrow> filter P (insort_key f x xs) = insort_key f x (filter P xs)" | |
| 3893 | using assms by (induct xs) | |
| 3894 | (auto simp add: sorted_Cons, subst insort_is_Cons, auto) | |
| 3895 | ||
| 3896 | lemma filter_sort_key: | |
| 3897 | "filter P (sort_key f xs) = sort_key f (filter P xs)" | |
| 3898 | by (induct xs) (simp_all add: filter_insort_key_triv filter_insort_key) | |
| 3899 | ||
| 3900 | lemma sorted_same [simp]: | |
| 3901 | "sorted [x\<leftarrow>xs. x = f xs]" | |
| 3902 | proof (induct xs arbitrary: f) | |
| 3903 | case Nil then show ?case by simp | |
| 3904 | next | |
| 3905 | case (Cons x xs) | |
| 3906 | then have "sorted [y\<leftarrow>xs . y = (\<lambda>xs. x) xs]" . | |
| 3907 | moreover from Cons have "sorted [y\<leftarrow>xs . y = (f \<circ> Cons x) xs]" . | |
| 3908 | ultimately show ?case by (simp_all add: sorted_Cons) | |
| 3909 | qed | |
| 3910 | ||
| 3911 | lemma remove1_insort [simp]: | |
| 3912 | "remove1 x (insort x xs) = xs" | |
| 3913 | by (induct xs) simp_all | |
| 3914 | ||
| 24616 | 3915 | end | 
| 3916 | ||
| 25277 | 3917 | lemma sorted_upt[simp]: "sorted[i..<j]" | 
| 3918 | by (induct j) (simp_all add:sorted_append) | |
| 3919 | ||
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3920 | lemma sorted_upto[simp]: "sorted[i..j]" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3921 | apply(induct i j rule:upto.induct) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3922 | apply(subst upto.simps) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3923 | apply(simp add:sorted_Cons) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3924 | done | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3925 | |
| 35115 | 3926 | |
| 3927 | subsubsection {* @{const transpose} on sorted lists *}
 | |
| 34933 | 3928 | |
| 3929 | lemma sorted_transpose[simp]: | |
| 3930 | shows "sorted (rev (map length (transpose xs)))" | |
| 3931 | by (auto simp: sorted_equals_nth_mono rev_nth nth_transpose | |
| 3932 | length_filter_conv_card intro: card_mono) | |
| 3933 | ||
| 3934 | lemma transpose_max_length: | |
| 3935 | "foldr (\<lambda>xs. max (length xs)) (transpose xs) 0 = length [x \<leftarrow> xs. x \<noteq> []]" | |
| 3936 | (is "?L = ?R") | |
| 3937 | proof (cases "transpose xs = []") | |
| 3938 | case False | |
| 3939 | have "?L = foldr max (map length (transpose xs)) 0" | |
| 3940 | by (simp add: foldr_map comp_def) | |
| 3941 | also have "... = length (transpose xs ! 0)" | |
| 3942 | using False sorted_transpose by (simp add: foldr_max_sorted) | |
| 3943 | finally show ?thesis | |
| 3944 | using False by (simp add: nth_transpose) | |
| 3945 | next | |
| 3946 | case True | |
| 3947 | hence "[x \<leftarrow> xs. x \<noteq> []] = []" | |
| 3948 | by (auto intro!: filter_False simp: transpose_empty) | |
| 3949 | thus ?thesis by (simp add: transpose_empty True) | |
| 3950 | qed | |
| 3951 | ||
| 3952 | lemma length_transpose_sorted: | |
| 3953 | fixes xs :: "'a list list" | |
| 3954 | assumes sorted: "sorted (rev (map length xs))" | |
| 3955 | shows "length (transpose xs) = (if xs = [] then 0 else length (xs ! 0))" | |
| 3956 | proof (cases "xs = []") | |
| 3957 | case False | |
| 3958 | thus ?thesis | |
| 3959 | using foldr_max_sorted[OF sorted] False | |
| 3960 | unfolding length_transpose foldr_map comp_def | |
| 3961 | by simp | |
| 3962 | qed simp | |
| 3963 | ||
| 3964 | lemma nth_nth_transpose_sorted[simp]: | |
| 3965 | fixes xs :: "'a list list" | |
| 3966 | assumes sorted: "sorted (rev (map length xs))" | |
| 3967 | and i: "i < length (transpose xs)" | |
| 3968 | and j: "j < length [ys \<leftarrow> xs. i < length ys]" | |
| 3969 | shows "transpose xs ! i ! j = xs ! j ! i" | |
| 3970 | using j filter_equals_takeWhile_sorted_rev[OF sorted, of i] | |
| 3971 | nth_transpose[OF i] nth_map[OF j] | |
| 3972 | by (simp add: takeWhile_nth) | |
| 3973 | ||
| 3974 | lemma transpose_column_length: | |
| 3975 | fixes xs :: "'a list list" | |
| 3976 | assumes sorted: "sorted (rev (map length xs))" and "i < length xs" | |
| 3977 | shows "length (filter (\<lambda>ys. i < length ys) (transpose xs)) = length (xs ! i)" | |
| 3978 | proof - | |
| 3979 | have "xs \<noteq> []" using `i < length xs` by auto | |
| 3980 | note filter_equals_takeWhile_sorted_rev[OF sorted, simp] | |
| 3981 |   { fix j assume "j \<le> i"
 | |
| 3982 | note sorted_rev_nth_mono[OF sorted, of j i, simplified, OF this `i < length xs`] | |
| 3983 | } note sortedE = this[consumes 1] | |
| 3984 | ||
| 3985 |   have "{j. j < length (transpose xs) \<and> i < length (transpose xs ! j)}
 | |
| 3986 |     = {..< length (xs ! i)}"
 | |
| 3987 | proof safe | |
| 3988 | fix j | |
| 3989 | assume "j < length (transpose xs)" and "i < length (transpose xs ! j)" | |
| 3990 | with this(2) nth_transpose[OF this(1)] | |
| 3991 | have "i < length (takeWhile (\<lambda>ys. j < length ys) xs)" by simp | |
| 3992 | from nth_mem[OF this] takeWhile_nth[OF this] | |
| 3993 | show "j < length (xs ! i)" by (auto dest: set_takeWhileD) | |
| 3994 | next | |
| 3995 | fix j assume "j < length (xs ! i)" | |
| 3996 | thus "j < length (transpose xs)" | |
| 3997 | using foldr_max_sorted[OF sorted] `xs \<noteq> []` sortedE[OF le0] | |
| 3998 | by (auto simp: length_transpose comp_def foldr_map) | |
| 3999 | ||
| 4000 | have "Suc i \<le> length (takeWhile (\<lambda>ys. j < length ys) xs)" | |
| 4001 | using `i < length xs` `j < length (xs ! i)` less_Suc_eq_le | |
| 4002 | by (auto intro!: length_takeWhile_less_P_nth dest!: sortedE) | |
| 4003 | with nth_transpose[OF `j < length (transpose xs)`] | |
| 4004 | show "i < length (transpose xs ! j)" by simp | |
| 4005 | qed | |
| 4006 | thus ?thesis by (simp add: length_filter_conv_card) | |
| 4007 | qed | |
| 4008 | ||
| 4009 | lemma transpose_column: | |
| 4010 | fixes xs :: "'a list list" | |
| 4011 | assumes sorted: "sorted (rev (map length xs))" and "i < length xs" | |
| 4012 | shows "map (\<lambda>ys. ys ! i) (filter (\<lambda>ys. i < length ys) (transpose xs)) | |
| 4013 | = xs ! i" (is "?R = _") | |
| 4014 | proof (rule nth_equalityI, safe) | |
| 4015 | show length: "length ?R = length (xs ! i)" | |
| 4016 | using transpose_column_length[OF assms] by simp | |
| 4017 | ||
| 4018 | fix j assume j: "j < length ?R" | |
| 4019 | note * = less_le_trans[OF this, unfolded length_map, OF length_filter_le] | |
| 4020 | from j have j_less: "j < length (xs ! i)" using length by simp | |
| 4021 | have i_less_tW: "Suc i \<le> length (takeWhile (\<lambda>ys. Suc j \<le> length ys) xs)" | |
| 4022 | proof (rule length_takeWhile_less_P_nth) | |
| 4023 | show "Suc i \<le> length xs" using `i < length xs` by simp | |
| 4024 | fix k assume "k < Suc i" | |
| 4025 | hence "k \<le> i" by auto | |
| 4026 | with sorted_rev_nth_mono[OF sorted this] `i < length xs` | |
| 4027 | have "length (xs ! i) \<le> length (xs ! k)" by simp | |
| 4028 | thus "Suc j \<le> length (xs ! k)" using j_less by simp | |
| 4029 | qed | |
| 4030 | have i_less_filter: "i < length [ys\<leftarrow>xs . j < length ys]" | |
| 4031 | unfolding filter_equals_takeWhile_sorted_rev[OF sorted, of j] | |
| 4032 | using i_less_tW by (simp_all add: Suc_le_eq) | |
| 4033 | from j show "?R ! j = xs ! i ! j" | |
| 4034 | unfolding filter_equals_takeWhile_sorted_rev[OF sorted_transpose, of i] | |
| 4035 | by (simp add: takeWhile_nth nth_nth_transpose_sorted[OF sorted * i_less_filter]) | |
| 4036 | qed | |
| 4037 | ||
| 4038 | lemma transpose_transpose: | |
| 4039 | fixes xs :: "'a list list" | |
| 4040 | assumes sorted: "sorted (rev (map length xs))" | |
| 4041 | shows "transpose (transpose xs) = takeWhile (\<lambda>x. x \<noteq> []) xs" (is "?L = ?R") | |
| 4042 | proof - | |
| 4043 | have len: "length ?L = length ?R" | |
| 4044 | unfolding length_transpose transpose_max_length | |
| 4045 | using filter_equals_takeWhile_sorted_rev[OF sorted, of 0] | |
| 4046 | by simp | |
| 4047 | ||
| 4048 |   { fix i assume "i < length ?R"
 | |
| 4049 | with less_le_trans[OF _ length_takeWhile_le[of _ xs]] | |
| 4050 | have "i < length xs" by simp | |
| 4051 | } note * = this | |
| 4052 | show ?thesis | |
| 4053 | by (rule nth_equalityI) | |
| 4054 | (simp_all add: len nth_transpose transpose_column[OF sorted] * takeWhile_nth) | |
| 4055 | qed | |
| 24616 | 4056 | |
| 34934 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4057 | theorem transpose_rectangle: | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4058 | assumes "xs = [] \<Longrightarrow> n = 0" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4059 | assumes rect: "\<And> i. i < length xs \<Longrightarrow> length (xs ! i) = n" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4060 | shows "transpose xs = map (\<lambda> i. map (\<lambda> j. xs ! j ! i) [0..<length xs]) [0..<n]" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4061 | (is "?trans = ?map") | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4062 | proof (rule nth_equalityI) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4063 | have "sorted (rev (map length xs))" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4064 | by (auto simp: rev_nth rect intro!: sorted_nth_monoI) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4065 | from foldr_max_sorted[OF this] assms | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4066 | show len: "length ?trans = length ?map" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4067 | by (simp_all add: length_transpose foldr_map comp_def) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4068 | moreover | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4069 |   { fix i assume "i < n" hence "[ys\<leftarrow>xs . i < length ys] = xs"
 | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4070 | using rect by (auto simp: in_set_conv_nth intro!: filter_True) } | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4071 | ultimately show "\<forall>i < length ?trans. ?trans ! i = ?map ! i" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4072 | by (auto simp: nth_transpose intro: nth_equalityI) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4073 | qed | 
| 24616 | 4074 | |
| 35115 | 4075 | |
| 25069 | 4076 | subsubsection {* @{text sorted_list_of_set} *}
 | 
| 4077 | ||
| 4078 | text{* This function maps (finite) linearly ordered sets to sorted
 | |
| 4079 | lists. Warning: in most cases it is not a good idea to convert from | |
| 4080 | sets to lists but one should convert in the other direction (via | |
| 4081 | @{const set}). *}
 | |
| 4082 | ||
| 4083 | context linorder | |
| 4084 | begin | |
| 4085 | ||
| 35195 | 4086 | definition sorted_list_of_set :: "'a set \<Rightarrow> 'a list" where | 
| 4087 | "sorted_list_of_set = Finite_Set.fold insort []" | |
| 4088 | ||
| 4089 | lemma sorted_list_of_set_empty [simp]: | |
| 4090 |   "sorted_list_of_set {} = []"
 | |
| 4091 | by (simp add: sorted_list_of_set_def) | |
| 4092 | ||
| 4093 | lemma sorted_list_of_set_insert [simp]: | |
| 4094 | assumes "finite A" | |
| 4095 |   shows "sorted_list_of_set (insert x A) = insort x (sorted_list_of_set (A - {x}))"
 | |
| 4096 | proof - | |
| 4097 | interpret fun_left_comm insort by (fact fun_left_comm_insort) | |
| 4098 | with assms show ?thesis by (simp add: sorted_list_of_set_def fold_insert_remove) | |
| 4099 | qed | |
| 4100 | ||
| 4101 | lemma sorted_list_of_set [simp]: | |
| 4102 | "finite A \<Longrightarrow> set (sorted_list_of_set A) = A \<and> sorted (sorted_list_of_set A) | |
| 4103 | \<and> distinct (sorted_list_of_set A)" | |
| 4104 | by (induct A rule: finite_induct) (simp_all add: set_insort sorted_insort distinct_insort) | |
| 4105 | ||
| 4106 | lemma sorted_list_of_set_sort_remdups: | |
| 4107 | "sorted_list_of_set (set xs) = sort (remdups xs)" | |
| 4108 | proof - | |
| 4109 | interpret fun_left_comm insort by (fact fun_left_comm_insort) | |
| 4110 | show ?thesis by (simp add: sort_foldl_insort sorted_list_of_set_def fold_set_remdups) | |
| 4111 | qed | |
| 25069 | 4112 | |
| 37107 | 4113 | lemma sorted_list_of_set_remove: | 
| 4114 | assumes "finite A" | |
| 4115 |   shows "sorted_list_of_set (A - {x}) = remove1 x (sorted_list_of_set A)"
 | |
| 4116 | proof (cases "x \<in> A") | |
| 4117 | case False with assms have "x \<notin> set (sorted_list_of_set A)" by simp | |
| 4118 | with False show ?thesis by (simp add: remove1_idem) | |
| 4119 | next | |
| 4120 | case True then obtain B where A: "A = insert x B" by (rule Set.set_insert) | |
| 4121 | with assms show ?thesis by simp | |
| 4122 | qed | |
| 4123 | ||
| 25069 | 4124 | end | 
| 4125 | ||
| 37107 | 4126 | lemma sorted_list_of_set_range [simp]: | 
| 4127 |   "sorted_list_of_set {m..<n} = [m..<n]"
 | |
| 4128 | by (rule sorted_distinct_set_unique) simp_all | |
| 4129 | ||
| 4130 | ||
| 15392 | 4131 | subsubsection {* @{text lists}: the list-forming operator over sets *}
 | 
| 15302 | 4132 | |
| 23740 | 4133 | inductive_set | 
| 22262 | 4134 | lists :: "'a set => 'a list set" | 
| 23740 | 4135 | for A :: "'a set" | 
| 4136 | where | |
| 39613 | 4137 | Nil [intro!, simp]: "[]: lists A" | 
| 4138 | | Cons [intro!, simp, no_atp]: "[| a: A; l: lists A|] ==> a#l : lists A" | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4139 | |
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4140 | inductive_cases listsE [elim!,no_atp]: "x#l : lists A" | 
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4141 | inductive_cases listspE [elim!,no_atp]: "listsp A (x # l)" | 
| 23740 | 4142 | |
| 4143 | lemma listsp_mono [mono]: "A \<le> B ==> listsp A \<le> listsp B" | |
| 34064 
eee04bbbae7e
avoid dependency on implicit dest rule predicate1D in proofs
 haftmann parents: 
34007diff
changeset | 4144 | by (rule predicate1I, erule listsp.induct, (blast dest: predicate1D)+) | 
| 26795 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 4145 | |
| 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 4146 | lemmas lists_mono = listsp_mono [to_set pred_subset_eq] | 
| 22262 | 4147 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4148 | lemma listsp_infI: | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4149 | assumes l: "listsp A l" shows "listsp B l ==> listsp (inf A B) l" using l | 
| 24349 | 4150 | by induct blast+ | 
| 15302 | 4151 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4152 | lemmas lists_IntI = listsp_infI [to_set] | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4153 | |
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4154 | lemma listsp_inf_eq [simp]: "listsp (inf A B) = inf (listsp A) (listsp B)" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4155 | proof (rule mono_inf [where f=listsp, THEN order_antisym]) | 
| 22262 | 4156 | show "mono listsp" by (simp add: mono_def listsp_mono) | 
| 26795 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 4157 | show "inf (listsp A) (listsp B) \<le> listsp (inf A B)" by (blast intro!: listsp_infI predicate1I) | 
| 14388 | 4158 | qed | 
| 4159 | ||
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4160 | lemmas listsp_conj_eq [simp] = listsp_inf_eq [simplified inf_fun_eq inf_bool_eq] | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4161 | |
| 26795 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 4162 | lemmas lists_Int_eq [simp] = listsp_inf_eq [to_set pred_equals_eq] | 
| 22262 | 4163 | |
| 39613 | 4164 | lemma Cons_in_lists_iff[simp]: "x#xs : lists A \<longleftrightarrow> x:A \<and> xs : lists A" | 
| 4165 | by auto | |
| 4166 | ||
| 22262 | 4167 | lemma append_in_listsp_conv [iff]: | 
| 4168 | "(listsp A (xs @ ys)) = (listsp A xs \<and> listsp A ys)" | |
| 15302 | 4169 | by (induct xs) auto | 
| 4170 | ||
| 22262 | 4171 | lemmas append_in_lists_conv [iff] = append_in_listsp_conv [to_set] | 
| 4172 | ||
| 4173 | lemma in_listsp_conv_set: "(listsp A xs) = (\<forall>x \<in> set xs. A x)" | |
| 4174 | -- {* eliminate @{text listsp} in favour of @{text set} *}
 | |
| 15302 | 4175 | by (induct xs) auto | 
| 4176 | ||
| 22262 | 4177 | lemmas in_lists_conv_set = in_listsp_conv_set [to_set] | 
| 4178 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4179 | lemma in_listspD [dest!,no_atp]: "listsp A xs ==> \<forall>x\<in>set xs. A x" | 
| 22262 | 4180 | by (rule in_listsp_conv_set [THEN iffD1]) | 
| 4181 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4182 | lemmas in_listsD [dest!,no_atp] = in_listspD [to_set] | 
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4183 | |
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4184 | lemma in_listspI [intro!,no_atp]: "\<forall>x\<in>set xs. A x ==> listsp A xs" | 
| 22262 | 4185 | by (rule in_listsp_conv_set [THEN iffD2]) | 
| 4186 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4187 | lemmas in_listsI [intro!,no_atp] = in_listspI [to_set] | 
| 15302 | 4188 | |
| 39597 | 4189 | lemma lists_eq_set: "lists A = {xs. set xs <= A}"
 | 
| 4190 | by auto | |
| 4191 | ||
| 39613 | 4192 | lemma lists_empty [simp]: "lists {} = {[]}"
 | 
| 4193 | by auto | |
| 4194 | ||
| 15302 | 4195 | lemma lists_UNIV [simp]: "lists UNIV = UNIV" | 
| 4196 | by auto | |
| 4197 | ||
| 17086 | 4198 | |
| 35115 | 4199 | subsubsection {* Inductive definition for membership *}
 | 
| 17086 | 4200 | |
| 23740 | 4201 | inductive ListMem :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 22262 | 4202 | where | 
| 4203 | elem: "ListMem x (x # xs)" | |
| 4204 | | insert: "ListMem x xs \<Longrightarrow> ListMem x (y # xs)" | |
| 4205 | ||
| 4206 | lemma ListMem_iff: "(ListMem x xs) = (x \<in> set xs)" | |
| 17086 | 4207 | apply (rule iffI) | 
| 4208 | apply (induct set: ListMem) | |
| 4209 | apply auto | |
| 4210 | apply (induct xs) | |
| 4211 | apply (auto intro: ListMem.intros) | |
| 4212 | done | |
| 4213 | ||
| 4214 | ||
| 35115 | 4215 | subsubsection {* Lists as Cartesian products *}
 | 
| 15302 | 4216 | |
| 4217 | text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
 | |
| 4218 | @{term A} and tail drawn from @{term Xs}.*}
 | |
| 4219 | ||
| 34941 | 4220 | definition | 
| 4221 | set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set" where | |
| 37767 | 4222 |   "set_Cons A XS = {z. \<exists>x xs. z = x # xs \<and> x \<in> A \<and> xs \<in> XS}"
 | 
| 15302 | 4223 | |
| 17724 | 4224 | lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A"
 | 
| 15302 | 4225 | by (auto simp add: set_Cons_def) | 
| 4226 | ||
| 4227 | text{*Yields the set of lists, all of the same length as the argument and
 | |
| 4228 | with elements drawn from the corresponding element of the argument.*} | |
| 4229 | ||
| 4230 | primrec | |
| 34941 | 4231 | listset :: "'a set list \<Rightarrow> 'a list set" where | 
| 4232 |      "listset [] = {[]}"
 | |
| 4233 | | "listset (A # As) = set_Cons A (listset As)" | |
| 15302 | 4234 | |
| 4235 | ||
| 35115 | 4236 | subsection {* Relations on Lists *}
 | 
| 15656 | 4237 | |
| 4238 | subsubsection {* Length Lexicographic Ordering *}
 | |
| 4239 | ||
| 4240 | text{*These orderings preserve well-foundedness: shorter lists 
 | |
| 4241 | precede longer lists. These ordering are not used in dictionaries.*} | |
| 34941 | 4242 | |
| 4243 | primrec -- {*The lexicographic ordering for lists of the specified length*}
 | |
| 4244 |   lexn :: "('a \<times> 'a) set \<Rightarrow> nat \<Rightarrow> ('a list \<times> 'a list) set" where
 | |
| 37767 | 4245 |     "lexn r 0 = {}"
 | 
| 4246 | | "lexn r (Suc n) = (prod_fun (%(x, xs). x#xs) (%(x, xs). x#xs) ` (r <*lex*> lexn r n)) Int | |
| 34941 | 4247 |       {(xs, ys). length xs = Suc n \<and> length ys = Suc n}"
 | 
| 4248 | ||
| 4249 | definition | |
| 4250 |   lex :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where
 | |
| 37767 | 4251 |   "lex r = (\<Union>n. lexn r n)" -- {*Holds only between lists of the same length*}
 | 
| 34941 | 4252 | |
| 4253 | definition | |
| 4254 |   lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set" where
 | |
| 37767 | 4255 | "lenlex r = inv_image (less_than <*lex*> lex r) (\<lambda>xs. (length xs, xs))" | 
| 34941 | 4256 |         -- {*Compares lists by their length and then lexicographically*}
 | 
| 15302 | 4257 | |
| 4258 | lemma wf_lexn: "wf r ==> wf (lexn r n)" | |
| 4259 | apply (induct n, simp, simp) | |
| 4260 | apply(rule wf_subset) | |
| 4261 | prefer 2 apply (rule Int_lower1) | |
| 4262 | apply(rule wf_prod_fun_image) | |
| 4263 | prefer 2 apply (rule inj_onI, auto) | |
| 4264 | done | |
| 4265 | ||
| 4266 | lemma lexn_length: | |
| 24526 | 4267 | "(xs, ys) : lexn r n ==> length xs = n \<and> length ys = n" | 
| 4268 | by (induct n arbitrary: xs ys) auto | |
| 15302 | 4269 | |
| 4270 | lemma wf_lex [intro!]: "wf r ==> wf (lex r)" | |
| 4271 | apply (unfold lex_def) | |
| 4272 | apply (rule wf_UN) | |
| 4273 | apply (blast intro: wf_lexn, clarify) | |
| 4274 | apply (rename_tac m n) | |
| 4275 | apply (subgoal_tac "m \<noteq> n") | |
| 4276 | prefer 2 apply blast | |
| 4277 | apply (blast dest: lexn_length not_sym) | |
| 4278 | done | |
| 4279 | ||
| 4280 | lemma lexn_conv: | |
| 15656 | 4281 | "lexn r n = | 
| 4282 |     {(xs,ys). length xs = n \<and> length ys = n \<and>
 | |
| 4283 | (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}" | |
| 18423 | 4284 | apply (induct n, simp) | 
| 15302 | 4285 | apply (simp add: image_Collect lex_prod_def, safe, blast) | 
| 4286 | apply (rule_tac x = "ab # xys" in exI, simp) | |
| 4287 | apply (case_tac xys, simp_all, blast) | |
| 4288 | done | |
| 4289 | ||
| 4290 | lemma lex_conv: | |
| 15656 | 4291 | "lex r = | 
| 4292 |     {(xs,ys). length xs = length ys \<and>
 | |
| 4293 | (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}" | |
| 15302 | 4294 | by (force simp add: lex_def lexn_conv) | 
| 4295 | ||
| 15693 | 4296 | lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)" | 
| 4297 | by (unfold lenlex_def) blast | |
| 4298 | ||
| 4299 | lemma lenlex_conv: | |
| 4300 |     "lenlex r = {(xs,ys). length xs < length ys |
 | |
| 15656 | 4301 | length xs = length ys \<and> (xs, ys) : lex r}" | 
| 30198 | 4302 | by (simp add: lenlex_def Id_on_def lex_prod_def inv_image_def) | 
| 15302 | 4303 | |
| 4304 | lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r" | |
| 4305 | by (simp add: lex_conv) | |
| 4306 | ||
| 4307 | lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r" | |
| 4308 | by (simp add:lex_conv) | |
| 4309 | ||
| 18447 | 4310 | lemma Cons_in_lex [simp]: | 
| 15656 | 4311 | "((x # xs, y # ys) : lex r) = | 
| 4312 | ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)" | |
| 15302 | 4313 | apply (simp add: lex_conv) | 
| 4314 | apply (rule iffI) | |
| 4315 | prefer 2 apply (blast intro: Cons_eq_appendI, clarify) | |
| 4316 | apply (case_tac xys, simp, simp) | |
| 4317 | apply blast | |
| 4318 | done | |
| 4319 | ||
| 4320 | ||
| 15656 | 4321 | subsubsection {* Lexicographic Ordering *}
 | 
| 4322 | ||
| 4323 | text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
 | |
| 4324 |     This ordering does \emph{not} preserve well-foundedness.
 | |
| 17090 | 4325 | Author: N. Voelker, March 2005. *} | 
| 15656 | 4326 | |
| 34941 | 4327 | definition | 
| 4328 |   lexord :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where
 | |
| 37767 | 4329 |   "lexord r = {(x,y ). \<exists> a v. y = x @ a # v \<or>
 | 
| 15656 | 4330 | (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}" | 
| 4331 | ||
| 4332 | lemma lexord_Nil_left[simp]: "([],y) \<in> lexord r = (\<exists> a x. y = a # x)" | |
| 24349 | 4333 | by (unfold lexord_def, induct_tac y, auto) | 
| 15656 | 4334 | |
| 4335 | lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r" | |
| 24349 | 4336 | by (unfold lexord_def, induct_tac x, auto) | 
| 15656 | 4337 | |
| 4338 | lemma lexord_cons_cons[simp]: | |
| 4339 | "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))" | |
| 4340 | apply (unfold lexord_def, safe, simp_all) | |
| 4341 | apply (case_tac u, simp, simp) | |
| 4342 | apply (case_tac u, simp, clarsimp, blast, blast, clarsimp) | |
| 4343 | apply (erule_tac x="b # u" in allE) | |
| 4344 | by force | |
| 4345 | ||
| 4346 | lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons | |
| 4347 | ||
| 4348 | lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r" | |
| 24349 | 4349 | by (induct_tac x, auto) | 
| 15656 | 4350 | |
| 4351 | lemma lexord_append_left_rightI: | |
| 4352 | "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r" | |
| 24349 | 4353 | by (induct_tac u, auto) | 
| 15656 | 4354 | |
| 4355 | lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r" | |
| 24349 | 4356 | by (induct x, auto) | 
| 15656 | 4357 | |
| 4358 | lemma lexord_append_leftD: | |
| 4359 | "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r" | |
| 24349 | 4360 | by (erule rev_mp, induct_tac x, auto) | 
| 15656 | 4361 | |
| 4362 | lemma lexord_take_index_conv: | |
| 4363 | "((x,y) : lexord r) = | |
| 4364 | ((length x < length y \<and> take (length x) y = x) \<or> | |
| 4365 | (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))" | |
| 4366 | apply (unfold lexord_def Let_def, clarsimp) | |
| 4367 | apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2) | |
| 4368 | apply auto | |
| 4369 | apply (rule_tac x="hd (drop (length x) y)" in exI) | |
| 4370 | apply (rule_tac x="tl (drop (length x) y)" in exI) | |
| 4371 | apply (erule subst, simp add: min_def) | |
| 4372 | apply (rule_tac x ="length u" in exI, simp) | |
| 4373 | apply (rule_tac x ="take i x" in exI) | |
| 4374 | apply (rule_tac x ="x ! i" in exI) | |
| 4375 | apply (rule_tac x ="y ! i" in exI, safe) | |
| 4376 | apply (rule_tac x="drop (Suc i) x" in exI) | |
| 4377 | apply (drule sym, simp add: drop_Suc_conv_tl) | |
| 4378 | apply (rule_tac x="drop (Suc i) y" in exI) | |
| 4379 | by (simp add: drop_Suc_conv_tl) | |
| 4380 | ||
| 4381 | -- {* lexord is extension of partial ordering List.lex *} 
 | |
| 4382 | lemma lexord_lex: " (x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)" | |
| 4383 | apply (rule_tac x = y in spec) | |
| 4384 | apply (induct_tac x, clarsimp) | |
| 4385 | by (clarify, case_tac x, simp, force) | |
| 4386 | ||
| 4387 | lemma lexord_irreflexive: "(! x. (x,x) \<notin> r) \<Longrightarrow> (y,y) \<notin> lexord r" | |
| 4388 | by (induct y, auto) | |
| 4389 | ||
| 4390 | lemma lexord_trans: | |
| 4391 | "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r" | |
| 4392 | apply (erule rev_mp)+ | |
| 4393 | apply (rule_tac x = x in spec) | |
| 4394 | apply (rule_tac x = z in spec) | |
| 4395 | apply ( induct_tac y, simp, clarify) | |
| 4396 | apply (case_tac xa, erule ssubst) | |
| 4397 |   apply (erule allE, erule allE) -- {* avoid simp recursion *} 
 | |
| 4398 | apply (case_tac x, simp, simp) | |
| 24632 | 4399 | apply (case_tac x, erule allE, erule allE, simp) | 
| 15656 | 4400 | apply (erule_tac x = listb in allE) | 
| 4401 | apply (erule_tac x = lista in allE, simp) | |
| 4402 | apply (unfold trans_def) | |
| 4403 | by blast | |
| 4404 | ||
| 4405 | lemma lexord_transI: "trans r \<Longrightarrow> trans (lexord r)" | |
| 24349 | 4406 | by (rule transI, drule lexord_trans, blast) | 
| 15656 | 4407 | |
| 4408 | lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r" | |
| 4409 | apply (rule_tac x = y in spec) | |
| 4410 | apply (induct_tac x, rule allI) | |
| 4411 | apply (case_tac x, simp, simp) | |
| 4412 | apply (rule allI, case_tac x, simp, simp) | |
| 4413 | by blast | |
| 4414 | ||
| 4415 | ||
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4416 | subsection {* Lexicographic combination of measure functions *}
 | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4417 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4418 | text {* These are useful for termination proofs *}
 | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4419 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4420 | definition | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4421 | "measures fs = inv_image (lex less_than) (%a. map (%f. f a) fs)" | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4422 | |
| 21106 
51599a81b308
Added "recdef_wf" and "simp" attribute to "wf_measures"
 krauss parents: 
21103diff
changeset | 4423 | lemma wf_measures[recdef_wf, simp]: "wf (measures fs)" | 
| 24349 | 4424 | unfolding measures_def | 
| 4425 | by blast | |
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4426 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4427 | lemma in_measures[simp]: | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4428 | "(x, y) \<in> measures [] = False" | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4429 | "(x, y) \<in> measures (f # fs) | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4430 | = (f x < f y \<or> (f x = f y \<and> (x, y) \<in> measures fs))" | 
| 24349 | 4431 | unfolding measures_def | 
| 4432 | by auto | |
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4433 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4434 | lemma measures_less: "f x < f y ==> (x, y) \<in> measures (f#fs)" | 
| 24349 | 4435 | by simp | 
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4436 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4437 | lemma measures_lesseq: "f x <= f y ==> (x, y) \<in> measures fs ==> (x, y) \<in> measures (f#fs)" | 
| 24349 | 4438 | by auto | 
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4439 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4440 | |
| 35115 | 4441 | subsubsection {* Lifting a Relation on List Elements to the Lists *}
 | 
| 15302 | 4442 | |
| 23740 | 4443 | inductive_set | 
| 4444 |   listrel :: "('a * 'a)set => ('a list * 'a list)set"
 | |
| 4445 |   for r :: "('a * 'a)set"
 | |
| 22262 | 4446 | where | 
| 23740 | 4447 | Nil: "([],[]) \<in> listrel r" | 
| 4448 | | Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r" | |
| 4449 | ||
| 4450 | inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r" | |
| 4451 | inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r" | |
| 4452 | inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r" | |
| 4453 | inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r" | |
| 15302 | 4454 | |
| 4455 | ||
| 4456 | lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s" | |
| 4457 | apply clarify | |
| 23740 | 4458 | apply (erule listrel.induct) | 
| 4459 | apply (blast intro: listrel.intros)+ | |
| 15302 | 4460 | done | 
| 4461 | ||
| 4462 | lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A" | |
| 4463 | apply clarify | |
| 23740 | 4464 | apply (erule listrel.induct, auto) | 
| 15302 | 4465 | done | 
| 4466 | ||
| 30198 | 4467 | lemma listrel_refl_on: "refl_on A r \<Longrightarrow> refl_on (lists A) (listrel r)" | 
| 4468 | apply (simp add: refl_on_def listrel_subset Ball_def) | |
| 15302 | 4469 | apply (rule allI) | 
| 4470 | apply (induct_tac x) | |
| 23740 | 4471 | apply (auto intro: listrel.intros) | 
| 15302 | 4472 | done | 
| 4473 | ||
| 4474 | lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" | |
| 4475 | apply (auto simp add: sym_def) | |
| 23740 | 4476 | apply (erule listrel.induct) | 
| 4477 | apply (blast intro: listrel.intros)+ | |
| 15302 | 4478 | done | 
| 4479 | ||
| 4480 | lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" | |
| 4481 | apply (simp add: trans_def) | |
| 4482 | apply (intro allI) | |
| 4483 | apply (rule impI) | |
| 23740 | 4484 | apply (erule listrel.induct) | 
| 4485 | apply (blast intro: listrel.intros)+ | |
| 15302 | 4486 | done | 
| 4487 | ||
| 4488 | theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)" | |
| 30198 | 4489 | by (simp add: equiv_def listrel_refl_on listrel_sym listrel_trans) | 
| 15302 | 4490 | |
| 4491 | lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
 | |
| 23740 | 4492 | by (blast intro: listrel.intros) | 
| 15302 | 4493 | |
| 4494 | lemma listrel_Cons: | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4495 |      "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4496 | by (auto simp add: set_Cons_def intro: listrel.intros) | 
| 15302 | 4497 | |
| 4498 | ||
| 26749 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4499 | subsection {* Size function *}
 | 
| 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4500 | |
| 26875 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4501 | lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (list_size f)" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4502 | by (rule is_measure_trivial) | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4503 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4504 | lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (option_size f)" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4505 | by (rule is_measure_trivial) | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4506 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4507 | lemma list_size_estimation[termination_simp]: | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4508 | "x \<in> set xs \<Longrightarrow> y < f x \<Longrightarrow> y < list_size f xs" | 
| 26749 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4509 | by (induct xs) auto | 
| 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4510 | |
| 26875 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4511 | lemma list_size_estimation'[termination_simp]: | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4512 | "x \<in> set xs \<Longrightarrow> y \<le> f x \<Longrightarrow> y \<le> list_size f xs" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4513 | by (induct xs) auto | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4514 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4515 | lemma list_size_map[simp]: "list_size f (map g xs) = list_size (f o g) xs" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4516 | by (induct xs) auto | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4517 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4518 | lemma list_size_pointwise[termination_simp]: | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4519 | "(\<And>x. x \<in> set xs \<Longrightarrow> f x < g x) \<Longrightarrow> list_size f xs \<le> list_size g xs" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4520 | by (induct xs) force+ | 
| 26749 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4521 | |
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4522 | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4523 | subsection {* Transfer *}
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4524 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4525 | definition | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4526 | embed_list :: "nat list \<Rightarrow> int list" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4527 | where | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4528 | "embed_list l = map int l" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4529 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4530 | definition | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4531 | nat_list :: "int list \<Rightarrow> bool" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4532 | where | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4533 | "nat_list l = nat_set (set l)" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4534 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4535 | definition | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4536 | return_list :: "int list \<Rightarrow> nat list" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4537 | where | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4538 | "return_list l = map nat l" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4539 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4540 | lemma transfer_nat_int_list_return_embed: "nat_list l \<longrightarrow> | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4541 | embed_list (return_list l) = l" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4542 | unfolding embed_list_def return_list_def nat_list_def nat_set_def | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4543 | apply (induct l) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4544 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4545 | done | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4546 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4547 | lemma transfer_nat_int_list_functions: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4548 | "l @ m = return_list (embed_list l @ embed_list m)" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4549 | "[] = return_list []" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4550 | unfolding return_list_def embed_list_def | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4551 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4552 | apply (induct l, auto) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4553 | apply (induct m, auto) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4554 | done | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4555 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4556 | (* | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4557 | lemma transfer_nat_int_fold1: "fold f l x = | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4558 | fold (%x. f (nat x)) (embed_list l) x"; | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4559 | *) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4560 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4561 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4562 | subsection {* Code generation *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4563 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4564 | subsubsection {* Counterparts for set-related operations *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4565 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4566 | definition member :: "'a list \<Rightarrow> 'a \<Rightarrow> bool" where | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4567 | [code_post]: "member xs x \<longleftrightarrow> x \<in> set xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4568 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4569 | text {*
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4570 |   Only use @{text member} for generating executable code.  Otherwise use
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4571 |   @{prop "x \<in> set xs"} instead --- it is much easier to reason about.
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4572 | *} | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4573 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4574 | lemma member_set: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4575 | "member = set" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39272diff
changeset | 4576 | by (simp add: fun_eq_iff member_def mem_def) | 
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4577 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4578 | lemma member_rec [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4579 | "member (x # xs) y \<longleftrightarrow> x = y \<or> member xs y" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4580 | "member [] y \<longleftrightarrow> False" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4581 | by (auto simp add: member_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4582 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4583 | lemma in_set_member [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4584 | "x \<in> set xs \<longleftrightarrow> member xs x" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4585 | by (simp add: member_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4586 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4587 | declare INFI_def [code_unfold] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4588 | declare SUPR_def [code_unfold] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4589 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4590 | declare set_map [symmetric, code_unfold] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4591 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4592 | definition list_all :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4593 | list_all_iff [code_post]: "list_all P xs \<longleftrightarrow> (\<forall>x \<in> set xs. P x)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4594 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4595 | definition list_ex :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4596 | list_ex_iff [code_post]: "list_ex P xs \<longleftrightarrow> (\<exists>x \<in> set xs. P x)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4597 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4598 | text {*
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4599 |   Usually you should prefer @{text "\<forall>x\<in>set xs"} and @{text "\<exists>x\<in>set xs"}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4600 |   over @{const list_all} and @{const list_ex} in specifications.
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4601 | *} | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4602 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4603 | lemma list_all_simps [simp, code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4604 | "list_all P (x # xs) \<longleftrightarrow> P x \<and> list_all P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4605 | "list_all P [] \<longleftrightarrow> True" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4606 | by (simp_all add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4607 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4608 | lemma list_ex_simps [simp, code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4609 | "list_ex P (x # xs) \<longleftrightarrow> P x \<or> list_ex P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4610 | "list_ex P [] \<longleftrightarrow> False" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4611 | by (simp_all add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4612 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4613 | lemma Ball_set_list_all [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4614 | "Ball (set xs) P \<longleftrightarrow> list_all P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4615 | by (simp add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4616 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4617 | lemma Bex_set_list_ex [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4618 | "Bex (set xs) P \<longleftrightarrow> list_ex P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4619 | by (simp add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4620 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4621 | lemma list_all_append [simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4622 | "list_all P (xs @ ys) \<longleftrightarrow> list_all P xs \<and> list_all P ys" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4623 | by (auto simp add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4624 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4625 | lemma list_ex_append [simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4626 | "list_ex P (xs @ ys) \<longleftrightarrow> list_ex P xs \<or> list_ex P ys" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4627 | by (auto simp add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4628 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4629 | lemma list_all_rev [simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4630 | "list_all P (rev xs) \<longleftrightarrow> list_all P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4631 | by (simp add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4632 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4633 | lemma list_ex_rev [simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4634 | "list_ex P (rev xs) \<longleftrightarrow> list_ex P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4635 | by (simp add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4636 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4637 | lemma list_all_length: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4638 | "list_all P xs \<longleftrightarrow> (\<forall>n < length xs. P (xs ! n))" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4639 | by (auto simp add: list_all_iff set_conv_nth) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4640 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4641 | lemma list_ex_length: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4642 | "list_ex P xs \<longleftrightarrow> (\<exists>n < length xs. P (xs ! n))" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4643 | by (auto simp add: list_ex_iff set_conv_nth) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4644 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4645 | lemma list_all_cong [fundef_cong]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4646 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> f x = g x) \<Longrightarrow> list_all f xs = list_all g ys" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4647 | by (simp add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4648 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4649 | lemma list_any_cong [fundef_cong]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4650 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> f x = g x) \<Longrightarrow> list_ex f xs = list_ex g ys" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4651 | by (simp add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4652 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4653 | text {* Bounded quantification and summation over nats. *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4654 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4655 | lemma atMost_upto [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4656 |   "{..n} = set [0..<Suc n]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4657 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4658 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4659 | lemma atLeast_upt [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4660 |   "{..<n} = set [0..<n]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4661 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4662 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4663 | lemma greaterThanLessThan_upt [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4664 |   "{n<..<m} = set [Suc n..<m]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4665 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4666 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4667 | lemmas atLeastLessThan_upt [code_unfold] = set_upt [symmetric] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4668 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4669 | lemma greaterThanAtMost_upt [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4670 |   "{n<..m} = set [Suc n..<Suc m]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4671 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4672 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4673 | lemma atLeastAtMost_upt [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4674 |   "{n..m} = set [n..<Suc m]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4675 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4676 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4677 | lemma all_nat_less_eq [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4678 |   "(\<forall>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..<n}. P m)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4679 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4680 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4681 | lemma ex_nat_less_eq [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4682 |   "(\<exists>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..<n}. P m)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4683 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4684 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4685 | lemma all_nat_less [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4686 |   "(\<forall>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..n}. P m)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4687 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4688 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4689 | lemma ex_nat_less [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4690 |   "(\<exists>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..n}. P m)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4691 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4692 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4693 | lemma setsum_set_upt_conv_listsum_nat [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4694 | "setsum f (set [m..<n]) = listsum (map f [m..<n])" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4695 | by (simp add: interv_listsum_conv_setsum_set_nat) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4696 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4697 | text {* Summation over ints. *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4698 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4699 | lemma greaterThanLessThan_upto [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4700 |   "{i<..<j::int} = set [i+1..j - 1]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4701 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4702 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4703 | lemma atLeastLessThan_upto [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4704 |   "{i..<j::int} = set [i..j - 1]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4705 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4706 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4707 | lemma greaterThanAtMost_upto [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4708 |   "{i<..j::int} = set [i+1..j]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4709 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4710 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4711 | lemmas atLeastAtMost_upto [code_unfold] = set_upto [symmetric] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4712 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4713 | lemma setsum_set_upto_conv_listsum_int [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4714 | "setsum f (set [i..j::int]) = listsum (map f [i..j])" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4715 | by (simp add: interv_listsum_conv_setsum_set_int) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4716 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4717 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4718 | subsubsection {* Optimizing by rewriting *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4719 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4720 | definition null :: "'a list \<Rightarrow> bool" where | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4721 | [code_post]: "null xs \<longleftrightarrow> xs = []" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4722 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4723 | text {*
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4724 |   Efficient emptyness check is implemented by @{const null}.
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4725 | *} | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4726 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4727 | lemma null_rec [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4728 | "null (x # xs) \<longleftrightarrow> False" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4729 | "null [] \<longleftrightarrow> True" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4730 | by (simp_all add: null_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4731 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4732 | lemma eq_Nil_null [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4733 | "xs = [] \<longleftrightarrow> null xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4734 | by (simp add: null_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4735 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4736 | lemma equal_Nil_null [code_unfold]: | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38715diff
changeset | 4737 | "HOL.equal xs [] \<longleftrightarrow> null xs" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38715diff
changeset | 4738 | by (simp add: equal eq_Nil_null) | 
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4739 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4740 | definition maps :: "('a \<Rightarrow> 'b list) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4741 | [code_post]: "maps f xs = concat (map f xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4742 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4743 | definition map_filter :: "('a \<Rightarrow> 'b option) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4744 | [code_post]: "map_filter f xs = map (the \<circ> f) (filter (\<lambda>x. f x \<noteq> None) xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4745 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4746 | text {*
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4747 |   Operations @{const maps} and @{const map_filter} avoid
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4748 | intermediate lists on execution -- do not use for proving. | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4749 | *} | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4750 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4751 | lemma maps_simps [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4752 | "maps f (x # xs) = f x @ maps f xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4753 | "maps f [] = []" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4754 | by (simp_all add: maps_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4755 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4756 | lemma map_filter_simps [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4757 | "map_filter f (x # xs) = (case f x of None \<Rightarrow> map_filter f xs | Some y \<Rightarrow> y # map_filter f xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4758 | "map_filter f [] = []" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4759 | by (simp_all add: map_filter_def split: option.split) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4760 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4761 | lemma concat_map_maps [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4762 | "concat (map f xs) = maps f xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4763 | by (simp add: maps_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4764 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4765 | lemma map_filter_map_filter [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4766 | "map f (filter P xs) = map_filter (\<lambda>x. if P x then Some (f x) else None) xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4767 | by (simp add: map_filter_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4768 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4769 | text {* Optimized code for @{text"\<forall>i\<in>{a..b::int}"} and @{text"\<forall>n:{a..<b::nat}"}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4770 | and similiarly for @{text"\<exists>"}. *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4771 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4772 | definition all_interval_nat :: "(nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4773 |   "all_interval_nat P i j \<longleftrightarrow> (\<forall>n \<in> {i..<j}. P n)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4774 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4775 | lemma [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4776 | "all_interval_nat P i j \<longleftrightarrow> i \<ge> j \<or> P i \<and> all_interval_nat P (Suc i) j" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4777 | proof - | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4778 |   have *: "\<And>n. P i \<Longrightarrow> \<forall>n\<in>{Suc i..<j}. P n \<Longrightarrow> i \<le> n \<Longrightarrow> n < j \<Longrightarrow> P n"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4779 | proof - | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4780 | fix n | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4781 |     assume "P i" "\<forall>n\<in>{Suc i..<j}. P n" "i \<le> n" "n < j"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4782 | then show "P n" by (cases "n = i") simp_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4783 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4784 | show ?thesis by (auto simp add: all_interval_nat_def intro: *) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4785 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4786 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4787 | lemma list_all_iff_all_interval_nat [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4788 | "list_all P [i..<j] \<longleftrightarrow> all_interval_nat P i j" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4789 | by (simp add: list_all_iff all_interval_nat_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4790 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4791 | lemma list_ex_iff_not_all_inverval_nat [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4792 | "list_ex P [i..<j] \<longleftrightarrow> \<not> (all_interval_nat (Not \<circ> P) i j)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4793 | by (simp add: list_ex_iff all_interval_nat_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4794 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4795 | definition all_interval_int :: "(int \<Rightarrow> bool) \<Rightarrow> int \<Rightarrow> int \<Rightarrow> bool" where | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4796 |   "all_interval_int P i j \<longleftrightarrow> (\<forall>k \<in> {i..j}. P k)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4797 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4798 | lemma [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4799 | "all_interval_int P i j \<longleftrightarrow> i > j \<or> P i \<and> all_interval_int P (i + 1) j" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4800 | proof - | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4801 |   have *: "\<And>k. P i \<Longrightarrow> \<forall>k\<in>{i+1..j}. P k \<Longrightarrow> i \<le> k \<Longrightarrow> k \<le> j \<Longrightarrow> P k"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4802 | proof - | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4803 | fix k | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4804 |     assume "P i" "\<forall>k\<in>{i+1..j}. P k" "i \<le> k" "k \<le> j"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4805 | then show "P k" by (cases "k = i") simp_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4806 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4807 | show ?thesis by (auto simp add: all_interval_int_def intro: *) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4808 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4809 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4810 | lemma list_all_iff_all_interval_int [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4811 | "list_all P [i..j] \<longleftrightarrow> all_interval_int P i j" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4812 | by (simp add: list_all_iff all_interval_int_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4813 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4814 | lemma list_ex_iff_not_all_inverval_int [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4815 | "list_ex P [i..j] \<longleftrightarrow> \<not> (all_interval_int (Not \<circ> P) i j)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4816 | by (simp add: list_ex_iff all_interval_int_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4817 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4818 | hide_const (open) member null maps map_filter all_interval_nat all_interval_int | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4819 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4820 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4821 | subsubsection {* Pretty lists *}
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 4822 | |
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4823 | use "Tools/list_code.ML" | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4824 | |
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4825 | code_type list | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4826 | (SML "_ list") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4827 | (OCaml "_ list") | 
| 34886 | 4828 | (Haskell "![(_)]") | 
| 4829 | (Scala "List[(_)]") | |
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4830 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4831 | code_const Nil | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4832 | (SML "[]") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4833 | (OCaml "[]") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4834 | (Haskell "[]") | 
| 37880 
3b9ca8d2c5fb
Scala: subtle difference in printing strings vs. complex mixfix syntax
 haftmann parents: 
37767diff
changeset | 4835 | (Scala "!Nil") | 
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4836 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38715diff
changeset | 4837 | code_instance list :: equal | 
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4838 | (Haskell -) | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4839 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38715diff
changeset | 4840 | code_const "HOL.equal \<Colon> 'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 39272 | 4841 | (Haskell infix 4 "==") | 
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4842 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4843 | code_reserved SML | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4844 | list | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4845 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4846 | code_reserved OCaml | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4847 | list | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4848 | |
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4849 | types_code | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4850 |   "list" ("_ list")
 | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4851 | attach (term_of) {*
 | 
| 21760 | 4852 | fun term_of_list f T = HOLogic.mk_list T o map f; | 
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4853 | *} | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4854 | attach (test) {*
 | 
| 25885 | 4855 | fun gen_list' aG aT i j = frequency | 
| 4856 | [(i, fn () => | |
| 4857 | let | |
| 4858 | val (x, t) = aG j; | |
| 4859 | val (xs, ts) = gen_list' aG aT (i-1) j | |
| 4860 | in (x :: xs, fn () => HOLogic.cons_const aT $ t () $ ts ()) end), | |
| 4861 | (1, fn () => ([], fn () => HOLogic.nil_const aT))] () | |
| 4862 | and gen_list aG aT i = gen_list' aG aT i i; | |
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4863 | *} | 
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4864 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4865 | consts_code Cons ("(_ ::/ _)")
 | 
| 20588 | 4866 | |
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 4867 | setup {*
 | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 4868 | let | 
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4869 | fun list_codegen thy defs dep thyname b t gr = | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4870 | let | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4871 | val ts = HOLogic.dest_list t; | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4872 | val (_, gr') = Codegen.invoke_tycodegen thy defs dep thyname false | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4873 | (fastype_of t) gr; | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4874 | val (ps, gr'') = fold_map | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4875 | (Codegen.invoke_codegen thy defs dep thyname false) ts gr' | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4876 | in SOME (Pretty.list "[" "]" ps, gr'') end handle TERM _ => NONE; | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4877 | in | 
| 34886 | 4878 | fold (List_Code.add_literal_list) ["SML", "OCaml", "Haskell", "Scala"] | 
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4879 | #> Codegen.add_codegen "list_codegen" list_codegen | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4880 | end | 
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 4881 | *} | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 4882 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4883 | |
| 37424 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4884 | subsubsection {* Use convenient predefined operations *}
 | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4885 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4886 | code_const "op @" | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4887 | (SML infixr 7 "@") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4888 | (OCaml infixr 6 "@") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4889 | (Haskell infixr 5 "++") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4890 | (Scala infixl 7 "++") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4891 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4892 | code_const map | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4893 | (Haskell "map") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4894 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4895 | code_const filter | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4896 | (Haskell "filter") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4897 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4898 | code_const concat | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4899 | (Haskell "concat") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4900 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4901 | code_const List.maps | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4902 | (Haskell "concatMap") | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4903 | |
| 37424 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4904 | code_const rev | 
| 37451 | 4905 | (Haskell "reverse") | 
| 37424 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4906 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4907 | code_const zip | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4908 | (Haskell "zip") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4909 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4910 | code_const List.null | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4911 | (Haskell "null") | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4912 | |
| 37424 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4913 | code_const takeWhile | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4914 | (Haskell "takeWhile") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4915 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4916 | code_const dropWhile | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4917 | (Haskell "dropWhile") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4918 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4919 | code_const hd | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4920 | (Haskell "head") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4921 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4922 | code_const last | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4923 | (Haskell "last") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4924 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4925 | code_const list_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4926 | (Haskell "all") | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4927 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4928 | code_const list_ex | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4929 | (Haskell "any") | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4930 | |
| 23388 | 4931 | end |