| author | wenzelm | 
| Mon, 04 Jul 2011 20:18:19 +0200 | |
| changeset 43660 | bfc0bb115fa1 | 
| parent 43594 | ef1ddc59b825 | 
| child 44013 | 5cfc1c36ae97 | 
| permissions | -rw-r--r-- | 
| 13462 | 1 | (* Title: HOL/List.thy | 
| 2 | Author: Tobias Nipkow | |
| 923 | 3 | *) | 
| 4 | ||
| 13114 | 5 | header {* The datatype of finite lists *}
 | 
| 13122 | 6 | |
| 15131 | 7 | theory List | 
| 40195 
430fff4a9167
include ATP in theory List -- avoid theory edge by-passing the prominent list theory
 haftmann parents: 
40122diff
changeset | 8 | imports Plain Presburger Recdef Code_Numeral Quotient ATP | 
| 41463 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 9 | uses | 
| 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 10 |   ("Tools/list_code.ML")
 | 
| 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 11 |   ("Tools/list_to_set_comprehension.ML")
 | 
| 15131 | 12 | begin | 
| 923 | 13 | |
| 13142 | 14 | datatype 'a list = | 
| 13366 | 15 |     Nil    ("[]")
 | 
| 16 | | Cons 'a "'a list" (infixr "#" 65) | |
| 923 | 17 | |
| 34941 | 18 | syntax | 
| 19 |   -- {* list Enumeration *}
 | |
| 35115 | 20 |   "_list" :: "args => 'a list"    ("[(_)]")
 | 
| 34941 | 21 | |
| 22 | translations | |
| 23 | "[x, xs]" == "x#[xs]" | |
| 24 | "[x]" == "x#[]" | |
| 25 | ||
| 35115 | 26 | |
| 27 | subsection {* Basic list processing functions *}
 | |
| 15302 | 28 | |
| 34941 | 29 | primrec | 
| 30 | hd :: "'a list \<Rightarrow> 'a" where | |
| 31 | "hd (x # xs) = x" | |
| 32 | ||
| 33 | primrec | |
| 34 | tl :: "'a list \<Rightarrow> 'a list" where | |
| 35 | "tl [] = []" | |
| 36 | | "tl (x # xs) = xs" | |
| 37 | ||
| 38 | primrec | |
| 39 | last :: "'a list \<Rightarrow> 'a" where | |
| 40 | "last (x # xs) = (if xs = [] then x else last xs)" | |
| 41 | ||
| 42 | primrec | |
| 43 | butlast :: "'a list \<Rightarrow> 'a list" where | |
| 44 | "butlast []= []" | |
| 45 | | "butlast (x # xs) = (if xs = [] then [] else x # butlast xs)" | |
| 46 | ||
| 47 | primrec | |
| 48 | set :: "'a list \<Rightarrow> 'a set" where | |
| 49 |     "set [] = {}"
 | |
| 50 | | "set (x # xs) = insert x (set xs)" | |
| 51 | ||
| 52 | primrec | |
| 53 |   map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
 | |
| 54 | "map f [] = []" | |
| 55 | | "map f (x # xs) = f x # map f xs" | |
| 56 | ||
| 57 | primrec | |
| 58 | append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where | |
| 59 | append_Nil:"[] @ ys = ys" | |
| 60 | | append_Cons: "(x#xs) @ ys = x # xs @ ys" | |
| 61 | ||
| 62 | primrec | |
| 63 | rev :: "'a list \<Rightarrow> 'a list" where | |
| 64 | "rev [] = []" | |
| 65 | | "rev (x # xs) = rev xs @ [x]" | |
| 66 | ||
| 67 | primrec | |
| 68 |   filter:: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 | |
| 69 | "filter P [] = []" | |
| 70 | | "filter P (x # xs) = (if P x then x # filter P xs else filter P xs)" | |
| 71 | ||
| 72 | syntax | |
| 73 |   -- {* Special syntax for filter *}
 | |
| 35115 | 74 |   "_filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_<-_./ _])")
 | 
| 34941 | 75 | |
| 76 | translations | |
| 77 | "[x<-xs . P]"== "CONST filter (%x. P) xs" | |
| 78 | ||
| 79 | syntax (xsymbols) | |
| 35115 | 80 |   "_filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
 | 
| 34941 | 81 | syntax (HTML output) | 
| 35115 | 82 |   "_filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
 | 
| 34941 | 83 | |
| 84 | primrec | |
| 85 |   foldl :: "('b \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b" where
 | |
| 86 | foldl_Nil: "foldl f a [] = a" | |
| 87 | | foldl_Cons: "foldl f a (x # xs) = foldl f (f a x) xs" | |
| 88 | ||
| 89 | primrec | |
| 90 |   foldr :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
 | |
| 91 | "foldr f [] a = a" | |
| 92 | | "foldr f (x # xs) a = f x (foldr f xs a)" | |
| 93 | ||
| 94 | primrec | |
| 95 | concat:: "'a list list \<Rightarrow> 'a list" where | |
| 96 | "concat [] = []" | |
| 97 | | "concat (x # xs) = x @ concat xs" | |
| 98 | ||
| 39774 | 99 | definition (in monoid_add) | 
| 34941 | 100 | listsum :: "'a list \<Rightarrow> 'a" where | 
| 39774 | 101 | "listsum xs = foldr plus xs 0" | 
| 34941 | 102 | |
| 103 | primrec | |
| 104 | drop:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 105 | drop_Nil: "drop n [] = []" | |
| 106 | | drop_Cons: "drop n (x # xs) = (case n of 0 \<Rightarrow> x # xs | Suc m \<Rightarrow> drop m xs)" | |
| 107 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 108 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 109 | ||
| 110 | primrec | |
| 111 | take:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 112 | take_Nil:"take n [] = []" | |
| 113 | | take_Cons: "take n (x # xs) = (case n of 0 \<Rightarrow> [] | Suc m \<Rightarrow> x # take m xs)" | |
| 114 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 115 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 116 | ||
| 117 | primrec | |
| 118 | nth :: "'a list => nat => 'a" (infixl "!" 100) where | |
| 119 | nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)" | |
| 120 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 121 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 122 | ||
| 123 | primrec | |
| 124 | list_update :: "'a list \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a list" where | |
| 125 | "list_update [] i v = []" | |
| 126 | | "list_update (x # xs) i v = (case i of 0 \<Rightarrow> v # xs | Suc j \<Rightarrow> x # list_update xs j v)" | |
| 923 | 127 | |
| 41229 
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
 wenzelm parents: 
41075diff
changeset | 128 | nonterminal lupdbinds and lupdbind | 
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 129 | |
| 923 | 130 | syntax | 
| 13366 | 131 |   "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
 | 
| 132 |   "" :: "lupdbind => lupdbinds"    ("_")
 | |
| 133 |   "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
 | |
| 134 |   "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
 | |
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 135 | |
| 923 | 136 | translations | 
| 35115 | 137 | "_LUpdate xs (_lupdbinds b bs)" == "_LUpdate (_LUpdate xs b) bs" | 
| 34941 | 138 | "xs[i:=x]" == "CONST list_update xs i x" | 
| 139 | ||
| 140 | primrec | |
| 141 |   takeWhile :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 | |
| 142 | "takeWhile P [] = []" | |
| 143 | | "takeWhile P (x # xs) = (if P x then x # takeWhile P xs else [])" | |
| 144 | ||
| 145 | primrec | |
| 146 |   dropWhile :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 | |
| 147 | "dropWhile P [] = []" | |
| 148 | | "dropWhile P (x # xs) = (if P x then dropWhile P xs else x # xs)" | |
| 149 | ||
| 150 | primrec | |
| 151 |   zip :: "'a list \<Rightarrow> 'b list \<Rightarrow> ('a \<times> 'b) list" where
 | |
| 152 | "zip xs [] = []" | |
| 153 | | zip_Cons: "zip xs (y # ys) = (case xs of [] => [] | z # zs => (z, y) # zip zs ys)" | |
| 154 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 155 |        theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
 | |
| 156 | ||
| 157 | primrec | |
| 158 |   upt :: "nat \<Rightarrow> nat \<Rightarrow> nat list" ("(1[_..</_'])") where
 | |
| 159 | upt_0: "[i..<0] = []" | |
| 160 | | upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])" | |
| 161 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 162 | definition | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 163 | insert :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 164 | "insert x xs = (if x \<in> set xs then xs else x # xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 165 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
36154diff
changeset | 166 | hide_const (open) insert | 
| 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
36154diff
changeset | 167 | hide_fact (open) insert_def | 
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 168 | |
| 34941 | 169 | primrec | 
| 170 | remove1 :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 171 | "remove1 x [] = []" | |
| 172 | | "remove1 x (y # xs) = (if x = y then xs else y # remove1 x xs)" | |
| 173 | ||
| 174 | primrec | |
| 175 | removeAll :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 176 | "removeAll x [] = []" | |
| 177 | | "removeAll x (y # xs) = (if x = y then removeAll x xs else y # removeAll x xs)" | |
| 178 | ||
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 179 | primrec | 
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 180 | distinct :: "'a list \<Rightarrow> bool" where | 
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 181 | "distinct [] \<longleftrightarrow> True" | 
| 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 182 | | "distinct (x # xs) \<longleftrightarrow> x \<notin> set xs \<and> distinct xs" | 
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 183 | |
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 184 | primrec | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 185 | remdups :: "'a list \<Rightarrow> 'a list" where | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 186 | "remdups [] = []" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 187 | | "remdups (x # xs) = (if x \<in> set xs then remdups xs else x # remdups xs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 188 | |
| 34941 | 189 | primrec | 
| 190 | replicate :: "nat \<Rightarrow> 'a \<Rightarrow> 'a list" where | |
| 191 | replicate_0: "replicate 0 x = []" | |
| 192 | | replicate_Suc: "replicate (Suc n) x = x # replicate n x" | |
| 3342 
ec3b55fcb165
New operator "lists" for formalizing sets of lists
 paulson parents: 
3320diff
changeset | 193 | |
| 13142 | 194 | text {*
 | 
| 14589 | 195 |   Function @{text size} is overloaded for all datatypes. Users may
 | 
| 13366 | 196 |   refer to the list version as @{text length}. *}
 | 
| 13142 | 197 | |
| 19363 | 198 | abbreviation | 
| 34941 | 199 | length :: "'a list \<Rightarrow> nat" where | 
| 200 | "length \<equiv> size" | |
| 15307 | 201 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 202 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 203 | rotate1 :: "'a list \<Rightarrow> 'a list" where | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 204 | "rotate1 xs = (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])" | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 205 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 206 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 207 | rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 30971 | 208 | "rotate n = rotate1 ^^ n" | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 209 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 210 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 211 |   list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" where
 | 
| 37767 | 212 | "list_all2 P xs ys = | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 213 | (length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y))" | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 214 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 215 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 216 | sublist :: "'a list => nat set => 'a list" where | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 217 | "sublist xs A = map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))" | 
| 17086 | 218 | |
| 40593 
1e57b18d27b1
code eqn for slice was missing; redefined splice with fun
 nipkow parents: 
40365diff
changeset | 219 | fun splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 
1e57b18d27b1
code eqn for slice was missing; redefined splice with fun
 nipkow parents: 
40365diff
changeset | 220 | "splice [] ys = ys" | | 
| 
1e57b18d27b1
code eqn for slice was missing; redefined splice with fun
 nipkow parents: 
40365diff
changeset | 221 | "splice xs [] = xs" | | 
| 
1e57b18d27b1
code eqn for slice was missing; redefined splice with fun
 nipkow parents: 
40365diff
changeset | 222 | "splice (x#xs) (y#ys) = x # y # splice xs ys" | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 223 | |
| 26771 | 224 | text{*
 | 
| 225 | \begin{figure}[htbp]
 | |
| 226 | \fbox{
 | |
| 227 | \begin{tabular}{l}
 | |
| 27381 | 228 | @{lemma "[a,b]@[c,d] = [a,b,c,d]" by simp}\\
 | 
| 229 | @{lemma "length [a,b,c] = 3" by simp}\\
 | |
| 230 | @{lemma "set [a,b,c] = {a,b,c}" by simp}\\
 | |
| 231 | @{lemma "map f [a,b,c] = [f a, f b, f c]" by simp}\\
 | |
| 232 | @{lemma "rev [a,b,c] = [c,b,a]" by simp}\\
 | |
| 233 | @{lemma "hd [a,b,c,d] = a" by simp}\\
 | |
| 234 | @{lemma "tl [a,b,c,d] = [b,c,d]" by simp}\\
 | |
| 235 | @{lemma "last [a,b,c,d] = d" by simp}\\
 | |
| 236 | @{lemma "butlast [a,b,c,d] = [a,b,c]" by simp}\\
 | |
| 237 | @{lemma[source] "filter (\<lambda>n::nat. n<2) [0,2,1] = [0,1]" by simp}\\
 | |
| 238 | @{lemma "concat [[a,b],[c,d,e],[],[f]] = [a,b,c,d,e,f]" by simp}\\
 | |
| 239 | @{lemma "foldl f x [a,b,c] = f (f (f x a) b) c" by simp}\\
 | |
| 240 | @{lemma "foldr f [a,b,c] x = f a (f b (f c x))" by simp}\\
 | |
| 241 | @{lemma "zip [a,b,c] [x,y,z] = [(a,x),(b,y),(c,z)]" by simp}\\
 | |
| 242 | @{lemma "zip [a,b] [x,y,z] = [(a,x),(b,y)]" by simp}\\
 | |
| 243 | @{lemma "splice [a,b,c] [x,y,z] = [a,x,b,y,c,z]" by simp}\\
 | |
| 244 | @{lemma "splice [a,b,c,d] [x,y] = [a,x,b,y,c,d]" by simp}\\
 | |
| 245 | @{lemma "take 2 [a,b,c,d] = [a,b]" by simp}\\
 | |
| 246 | @{lemma "take 6 [a,b,c,d] = [a,b,c,d]" by simp}\\
 | |
| 247 | @{lemma "drop 2 [a,b,c,d] = [c,d]" by simp}\\
 | |
| 248 | @{lemma "drop 6 [a,b,c,d] = []" by simp}\\
 | |
| 249 | @{lemma "takeWhile (%n::nat. n<3) [1,2,3,0] = [1,2]" by simp}\\
 | |
| 250 | @{lemma "dropWhile (%n::nat. n<3) [1,2,3,0] = [3,0]" by simp}\\
 | |
| 251 | @{lemma "distinct [2,0,1::nat]" by simp}\\
 | |
| 252 | @{lemma "remdups [2,0,2,1::nat,2] = [0,1,2]" by simp}\\
 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 253 | @{lemma "List.insert 2 [0::nat,1,2] = [0,1,2]" by (simp add: List.insert_def)}\\
 | 
| 35295 | 254 | @{lemma "List.insert 3 [0::nat,1,2] = [3,0,1,2]" by (simp add: List.insert_def)}\\
 | 
| 27381 | 255 | @{lemma "remove1 2 [2,0,2,1::nat,2] = [0,2,1,2]" by simp}\\
 | 
| 27693 | 256 | @{lemma "removeAll 2 [2,0,2,1::nat,2] = [0,1]" by simp}\\
 | 
| 27381 | 257 | @{lemma "nth [a,b,c,d] 2 = c" by simp}\\
 | 
| 258 | @{lemma "[a,b,c,d][2 := x] = [a,b,x,d]" by simp}\\
 | |
| 259 | @{lemma "sublist [a,b,c,d,e] {0,2,3} = [a,c,d]" by (simp add:sublist_def)}\\
 | |
| 260 | @{lemma "rotate1 [a,b,c,d] = [b,c,d,a]" by (simp add:rotate1_def)}\\
 | |
| 40077 | 261 | @{lemma "rotate 3 [a,b,c,d] = [d,a,b,c]" by (simp add:rotate1_def rotate_def eval_nat_numeral)}\\
 | 
| 262 | @{lemma "replicate 4 a = [a,a,a,a]" by (simp add:eval_nat_numeral)}\\
 | |
| 263 | @{lemma "[2..<5] = [2,3,4]" by (simp add:eval_nat_numeral)}\\
 | |
| 39774 | 264 | @{lemma "listsum [1,2,3::nat] = 6" by (simp add: listsum_def)}
 | 
| 26771 | 265 | \end{tabular}}
 | 
| 266 | \caption{Characteristic examples}
 | |
| 267 | \label{fig:Characteristic}
 | |
| 268 | \end{figure}
 | |
| 29927 | 269 | Figure~\ref{fig:Characteristic} shows characteristic examples
 | 
| 26771 | 270 | that should give an intuitive understanding of the above functions. | 
| 271 | *} | |
| 272 | ||
| 24616 | 273 | text{* The following simple sort functions are intended for proofs,
 | 
| 274 | not for efficient implementations. *} | |
| 275 | ||
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 276 | context linorder | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 277 | begin | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 278 | |
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 279 | inductive sorted :: "'a list \<Rightarrow> bool" where | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 280 | Nil [iff]: "sorted []" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 281 | | Cons: "\<forall>y\<in>set xs. x \<le> y \<Longrightarrow> sorted xs \<Longrightarrow> sorted (x # xs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 282 | |
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 283 | lemma sorted_single [iff]: | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 284 | "sorted [x]" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 285 | by (rule sorted.Cons) auto | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 286 | |
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 287 | lemma sorted_many: | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 288 | "x \<le> y \<Longrightarrow> sorted (y # zs) \<Longrightarrow> sorted (x # y # zs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 289 | by (rule sorted.Cons) (cases "y # zs" rule: sorted.cases, auto) | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 290 | |
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 291 | lemma sorted_many_eq [simp, code]: | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 292 | "sorted (x # y # zs) \<longleftrightarrow> x \<le> y \<and> sorted (y # zs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 293 | by (auto intro: sorted_many elim: sorted.cases) | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 294 | |
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 295 | lemma [code]: | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 296 | "sorted [] \<longleftrightarrow> True" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 297 | "sorted [x] \<longleftrightarrow> True" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 298 | by simp_all | 
| 24697 | 299 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 300 | primrec insort_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b \<Rightarrow> 'b list \<Rightarrow> 'b list" where
 | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 301 | "insort_key f x [] = [x]" | | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 302 | "insort_key f x (y#ys) = (if f x \<le> f y then (x#y#ys) else y#(insort_key f x ys))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 303 | |
| 35195 | 304 | definition sort_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b list \<Rightarrow> 'b list" where
 | 
| 305 | "sort_key f xs = foldr (insort_key f) xs []" | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 306 | |
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 307 | definition insort_insert_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b \<Rightarrow> 'b list \<Rightarrow> 'b list" where
 | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 308 | "insort_insert_key f x xs = (if f x \<in> f ` set xs then xs else insort_key f x xs)" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 309 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 310 | abbreviation "sort \<equiv> sort_key (\<lambda>x. x)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 311 | abbreviation "insort \<equiv> insort_key (\<lambda>x. x)" | 
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 312 | abbreviation "insort_insert \<equiv> insort_insert_key (\<lambda>x. x)" | 
| 35608 | 313 | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 314 | end | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 315 | |
| 24616 | 316 | |
| 23388 | 317 | subsubsection {* List comprehension *}
 | 
| 23192 | 318 | |
| 24349 | 319 | text{* Input syntax for Haskell-like list comprehension notation.
 | 
| 320 | Typical example: @{text"[(x,y). x \<leftarrow> xs, y \<leftarrow> ys, x \<noteq> y]"},
 | |
| 321 | the list of all pairs of distinct elements from @{text xs} and @{text ys}.
 | |
| 322 | The syntax is as in Haskell, except that @{text"|"} becomes a dot
 | |
| 323 | (like in Isabelle's set comprehension): @{text"[e. x \<leftarrow> xs, \<dots>]"} rather than
 | |
| 324 | \verb![e| x <- xs, ...]!. | |
| 325 | ||
| 326 | The qualifiers after the dot are | |
| 327 | \begin{description}
 | |
| 328 | \item[generators] @{text"p \<leftarrow> xs"},
 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 329 |  where @{text p} is a pattern and @{text xs} an expression of list type, or
 | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 330 | \item[guards] @{text"b"}, where @{text b} is a boolean expression.
 | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 331 | %\item[local bindings] @ {text"let x = e"}.
 | 
| 24349 | 332 | \end{description}
 | 
| 23240 | 333 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 334 | Just like in Haskell, list comprehension is just a shorthand. To avoid | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 335 | misunderstandings, the translation into desugared form is not reversed | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 336 | upon output. Note that the translation of @{text"[e. x \<leftarrow> xs]"} is
 | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 337 | optmized to @{term"map (%x. e) xs"}.
 | 
| 23240 | 338 | |
| 24349 | 339 | It is easy to write short list comprehensions which stand for complex | 
| 340 | expressions. During proofs, they may become unreadable (and | |
| 341 | mangled). In such cases it can be advisable to introduce separate | |
| 342 | definitions for the list comprehensions in question. *} | |
| 343 | ||
| 42144 
15218eb98fd7
list comprehension: strip positions where the translation cannot handle them right now;
 wenzelm parents: 
42057diff
changeset | 344 | nonterminal lc_gen and lc_qual and lc_quals | 
| 23192 | 345 | |
| 346 | syntax | |
| 23240 | 347 | "_listcompr" :: "'a \<Rightarrow> lc_qual \<Rightarrow> lc_quals \<Rightarrow> 'a list"  ("[_ . __")
 | 
| 42144 
15218eb98fd7
list comprehension: strip positions where the translation cannot handle them right now;
 wenzelm parents: 
42057diff
changeset | 348 | "_lc_gen" :: "lc_gen \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ <- _")
 | 
| 23240 | 349 | "_lc_test" :: "bool \<Rightarrow> lc_qual" ("_")
 | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 350 | (*"_lc_let" :: "letbinds => lc_qual"  ("let _")*)
 | 
| 23240 | 351 | "_lc_end" :: "lc_quals" ("]")
 | 
| 352 | "_lc_quals" :: "lc_qual \<Rightarrow> lc_quals \<Rightarrow> lc_quals" (", __")
 | |
| 24349 | 353 | "_lc_abs" :: "'a => 'b list => 'b list" | 
| 42144 
15218eb98fd7
list comprehension: strip positions where the translation cannot handle them right now;
 wenzelm parents: 
42057diff
changeset | 354 | "_strip_positions" :: "'a \<Rightarrow> lc_gen"  ("_")
 | 
| 23192 | 355 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 356 | (* These are easier than ML code but cannot express the optimized | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 357 | translation of [e. p<-xs] | 
| 23192 | 358 | translations | 
| 24349 | 359 | "[e. p<-xs]" => "concat(map (_lc_abs p [e]) xs)" | 
| 23240 | 360 | "_listcompr e (_lc_gen p xs) (_lc_quals Q Qs)" | 
| 24349 | 361 | => "concat (map (_lc_abs p (_listcompr e Q Qs)) xs)" | 
| 23240 | 362 | "[e. P]" => "if P then [e] else []" | 
| 363 | "_listcompr e (_lc_test P) (_lc_quals Q Qs)" | |
| 364 | => "if P then (_listcompr e Q Qs) else []" | |
| 24349 | 365 | "_listcompr e (_lc_let b) (_lc_quals Q Qs)" | 
| 366 | => "_Let b (_listcompr e Q Qs)" | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 367 | *) | 
| 23240 | 368 | |
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 369 | syntax (xsymbols) | 
| 42144 
15218eb98fd7
list comprehension: strip positions where the translation cannot handle them right now;
 wenzelm parents: 
42057diff
changeset | 370 | "_lc_gen" :: "lc_gen \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
 | 
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 371 | syntax (HTML output) | 
| 42144 
15218eb98fd7
list comprehension: strip positions where the translation cannot handle them right now;
 wenzelm parents: 
42057diff
changeset | 372 | "_lc_gen" :: "lc_gen \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
 | 
| 24349 | 373 | |
| 374 | parse_translation (advanced) {*
 | |
| 375 | let | |
| 35256 | 376 |   val NilC = Syntax.const @{const_syntax Nil};
 | 
| 377 |   val ConsC = Syntax.const @{const_syntax Cons};
 | |
| 378 |   val mapC = Syntax.const @{const_syntax map};
 | |
| 379 |   val concatC = Syntax.const @{const_syntax concat};
 | |
| 380 |   val IfC = Syntax.const @{const_syntax If};
 | |
| 35115 | 381 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 382 | fun singl x = ConsC $ x $ NilC; | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 383 | |
| 35115 | 384 | fun pat_tr ctxt p e opti = (* %x. case x of p => e | _ => [] *) | 
| 24349 | 385 | let | 
| 43324 
2b47822868e4
discontinued Name.variant to emphasize that this is old-style / indirect;
 wenzelm parents: 
42871diff
changeset | 386 | (* FIXME proper name context!? *) | 
| 
2b47822868e4
discontinued Name.variant to emphasize that this is old-style / indirect;
 wenzelm parents: 
42871diff
changeset | 387 | val x = Free (singleton (Name.variant_list (fold Term.add_free_names [p, e] [])) "x", dummyT); | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 388 | val e = if opti then singl e else e; | 
| 42264 | 389 |       val case1 = Syntax.const @{syntax_const "_case1"} $ Term_Position.strip_positions p $ e;
 | 
| 35256 | 390 | val case2 = | 
| 391 |         Syntax.const @{syntax_const "_case1"} $
 | |
| 392 |           Syntax.const @{const_syntax dummy_pattern} $ NilC;
 | |
| 35115 | 393 |       val cs = Syntax.const @{syntax_const "_case2"} $ case1 $ case2;
 | 
| 43580 
023a1d1f97bd
new Datatype.info_of_constr with strict behaviour wrt. to overloaded constructors -- side effect: function package correctly identifies 0::int as a non-constructor;
 krauss parents: 
43324diff
changeset | 394 | val ft = Datatype_Case.case_tr false Datatype.info_of_constr_permissive ctxt [x, cs]; | 
| 24349 | 395 | in lambda x ft end; | 
| 396 | ||
| 35256 | 397 | fun abs_tr ctxt (p as Free (s, T)) e opti = | 
| 35115 | 398 | let | 
| 42361 | 399 | val thy = Proof_Context.theory_of ctxt; | 
| 400 | val s' = Proof_Context.intern_const ctxt s; | |
| 35115 | 401 | in | 
| 402 | if Sign.declared_const thy s' | |
| 403 | then (pat_tr ctxt p e opti, false) | |
| 404 | else (lambda p e, true) | |
| 24349 | 405 | end | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 406 | | abs_tr ctxt p e opti = (pat_tr ctxt p e opti, false); | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 407 | |
| 35115 | 408 |   fun lc_tr ctxt [e, Const (@{syntax_const "_lc_test"}, _) $ b, qs] =
 | 
| 409 | let | |
| 410 | val res = | |
| 411 | (case qs of | |
| 412 |               Const (@{syntax_const "_lc_end"}, _) => singl e
 | |
| 413 |             | Const (@{syntax_const "_lc_quals"}, _) $ q $ qs => lc_tr ctxt [e, q, qs]);
 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 414 | in IfC $ b $ res $ NilC end | 
| 35115 | 415 | | lc_tr ctxt | 
| 416 |           [e, Const (@{syntax_const "_lc_gen"}, _) $ p $ es,
 | |
| 417 |             Const(@{syntax_const "_lc_end"}, _)] =
 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 418 | (case abs_tr ctxt p e true of | 
| 35115 | 419 | (f, true) => mapC $ f $ es | 
| 420 | | (f, false) => concatC $ (mapC $ f $ es)) | |
| 421 | | lc_tr ctxt | |
| 422 |           [e, Const (@{syntax_const "_lc_gen"}, _) $ p $ es,
 | |
| 423 |             Const (@{syntax_const "_lc_quals"}, _) $ q $ qs] =
 | |
| 424 | let val e' = lc_tr ctxt [e, q, qs]; | |
| 425 | in concatC $ (mapC $ (fst (abs_tr ctxt p e' false)) $ es) end; | |
| 426 | ||
| 427 | in [(@{syntax_const "_listcompr"}, lc_tr)] end
 | |
| 24349 | 428 | *} | 
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 429 | |
| 42167 | 430 | ML {*
 | 
| 431 | let | |
| 432 |     val read = Syntax.read_term @{context};
 | |
| 433 |     fun check s1 s2 = read s1 aconv read s2 orelse error ("Check failed: " ^ quote s1);
 | |
| 434 | in | |
| 435 | check "[(x,y,z). b]" "if b then [(x, y, z)] else []"; | |
| 436 | check "[(x,y,z). x\<leftarrow>xs]" "map (\<lambda>x. (x, y, z)) xs"; | |
| 437 | check "[e x y. x\<leftarrow>xs, y\<leftarrow>ys]" "concat (map (\<lambda>x. map (\<lambda>y. e x y) ys) xs)"; | |
| 438 | check "[(x,y,z). x<a, x>b]" "if x < a then if b < x then [(x, y, z)] else [] else []"; | |
| 439 | check "[(x,y,z). x\<leftarrow>xs, x>b]" "concat (map (\<lambda>x. if b < x then [(x, y, z)] else []) xs)"; | |
| 440 | check "[(x,y,z). x<a, x\<leftarrow>xs]" "if x < a then map (\<lambda>x. (x, y, z)) xs else []"; | |
| 441 | check "[(x,y). Cons True x \<leftarrow> xs]" | |
| 442 | "concat (map (\<lambda>xa. case xa of [] \<Rightarrow> [] | True # x \<Rightarrow> [(x, y)] | False # x \<Rightarrow> []) xs)"; | |
| 443 | check "[(x,y,z). Cons x [] \<leftarrow> xs]" | |
| 444 | "concat (map (\<lambda>xa. case xa of [] \<Rightarrow> [] | [x] \<Rightarrow> [(x, y, z)] | x # aa # lista \<Rightarrow> []) xs)"; | |
| 445 | check "[(x,y,z). x<a, x>b, x=d]" | |
| 446 | "if x < a then if b < x then if x = d then [(x, y, z)] else [] else [] else []"; | |
| 447 | check "[(x,y,z). x<a, x>b, y\<leftarrow>ys]" | |
| 448 | "if x < a then if b < x then map (\<lambda>y. (x, y, z)) ys else [] else []"; | |
| 449 | check "[(x,y,z). x<a, x\<leftarrow>xs,y>b]" | |
| 450 | "if x < a then concat (map (\<lambda>x. if b < y then [(x, y, z)] else []) xs) else []"; | |
| 451 | check "[(x,y,z). x<a, x\<leftarrow>xs, y\<leftarrow>ys]" | |
| 452 | "if x < a then concat (map (\<lambda>x. map (\<lambda>y. (x, y, z)) ys) xs) else []"; | |
| 453 | check "[(x,y,z). x\<leftarrow>xs, x>b, y<a]" | |
| 454 | "concat (map (\<lambda>x. if b < x then if y < a then [(x, y, z)] else [] else []) xs)"; | |
| 455 | check "[(x,y,z). x\<leftarrow>xs, x>b, y\<leftarrow>ys]" | |
| 456 | "concat (map (\<lambda>x. if b < x then map (\<lambda>y. (x, y, z)) ys else []) xs)"; | |
| 457 | check "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,y>x]" | |
| 458 | "concat (map (\<lambda>x. concat (map (\<lambda>y. if x < y then [(x, y, z)] else []) ys)) xs)"; | |
| 459 | check "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,z\<leftarrow>zs]" | |
| 460 | "concat (map (\<lambda>x. concat (map (\<lambda>y. map (\<lambda>z. (x, y, z)) zs) ys)) xs)" | |
| 461 | end; | |
| 462 | *} | |
| 463 | ||
| 35115 | 464 | (* | 
| 24349 | 465 | term "[(x,y). x\<leftarrow>xs, let xx = x+x, y\<leftarrow>ys, y \<noteq> xx]" | 
| 23192 | 466 | *) | 
| 467 | ||
| 42167 | 468 | |
| 41463 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 469 | use "Tools/list_to_set_comprehension.ML" | 
| 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 470 | |
| 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 471 | simproc_setup list_to_set_comprehension ("set xs") = {* K List_to_Set_Comprehension.simproc *}
 | 
| 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 472 | |
| 35115 | 473 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 474 | subsubsection {* @{const Nil} and @{const Cons} *}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 475 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 476 | lemma not_Cons_self [simp]: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 477 | "xs \<noteq> x # xs" | 
| 13145 | 478 | by (induct xs) auto | 
| 13114 | 479 | |
| 41697 | 480 | lemma not_Cons_self2 [simp]: | 
| 481 | "x # xs \<noteq> xs" | |
| 482 | by (rule not_Cons_self [symmetric]) | |
| 13114 | 483 | |
| 13142 | 484 | lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)" | 
| 13145 | 485 | by (induct xs) auto | 
| 13114 | 486 | |
| 13142 | 487 | lemma length_induct: | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 488 | "(\<And>xs. \<forall>ys. length ys < length xs \<longrightarrow> P ys \<Longrightarrow> P xs) \<Longrightarrow> P xs" | 
| 17589 | 489 | by (rule measure_induct [of length]) iprover | 
| 13114 | 490 | |
| 37289 | 491 | lemma list_nonempty_induct [consumes 1, case_names single cons]: | 
| 492 | assumes "xs \<noteq> []" | |
| 493 | assumes single: "\<And>x. P [x]" | |
| 494 | assumes cons: "\<And>x xs. xs \<noteq> [] \<Longrightarrow> P xs \<Longrightarrow> P (x # xs)" | |
| 495 | shows "P xs" | |
| 496 | using `xs \<noteq> []` proof (induct xs) | |
| 497 | case Nil then show ?case by simp | |
| 498 | next | |
| 499 | case (Cons x xs) show ?case proof (cases xs) | |
| 500 | case Nil with single show ?thesis by simp | |
| 501 | next | |
| 502 | case Cons then have "xs \<noteq> []" by simp | |
| 503 | moreover with Cons.hyps have "P xs" . | |
| 504 | ultimately show ?thesis by (rule cons) | |
| 505 | qed | |
| 506 | qed | |
| 507 | ||
| 13114 | 508 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 509 | subsubsection {* @{const length} *}
 | 
| 13114 | 510 | |
| 13142 | 511 | text {*
 | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 512 |   Needs to come before @{text "@"} because of theorem @{text
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 513 | append_eq_append_conv}. | 
| 13142 | 514 | *} | 
| 13114 | 515 | |
| 13142 | 516 | lemma length_append [simp]: "length (xs @ ys) = length xs + length ys" | 
| 13145 | 517 | by (induct xs) auto | 
| 13114 | 518 | |
| 13142 | 519 | lemma length_map [simp]: "length (map f xs) = length xs" | 
| 13145 | 520 | by (induct xs) auto | 
| 13114 | 521 | |
| 13142 | 522 | lemma length_rev [simp]: "length (rev xs) = length xs" | 
| 13145 | 523 | by (induct xs) auto | 
| 13114 | 524 | |
| 13142 | 525 | lemma length_tl [simp]: "length (tl xs) = length xs - 1" | 
| 13145 | 526 | by (cases xs) auto | 
| 13114 | 527 | |
| 13142 | 528 | lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])" | 
| 13145 | 529 | by (induct xs) auto | 
| 13114 | 530 | |
| 13142 | 531 | lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])" | 
| 13145 | 532 | by (induct xs) auto | 
| 13114 | 533 | |
| 23479 | 534 | lemma length_pos_if_in_set: "x : set xs \<Longrightarrow> length xs > 0" | 
| 535 | by auto | |
| 536 | ||
| 13114 | 537 | lemma length_Suc_conv: | 
| 13145 | 538 | "(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" | 
| 539 | by (induct xs) auto | |
| 13142 | 540 | |
| 14025 | 541 | lemma Suc_length_conv: | 
| 542 | "(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" | |
| 14208 | 543 | apply (induct xs, simp, simp) | 
| 14025 | 544 | apply blast | 
| 545 | done | |
| 546 | ||
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 547 | lemma impossible_Cons: "length xs <= length ys ==> xs = x # ys = False" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 548 | by (induct xs) auto | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 549 | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 550 | lemma list_induct2 [consumes 1, case_names Nil Cons]: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 551 | "length xs = length ys \<Longrightarrow> P [] [] \<Longrightarrow> | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 552 | (\<And>x xs y ys. length xs = length ys \<Longrightarrow> P xs ys \<Longrightarrow> P (x#xs) (y#ys)) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 553 | \<Longrightarrow> P xs ys" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 554 | proof (induct xs arbitrary: ys) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 555 | case Nil then show ?case by simp | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 556 | next | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 557 | case (Cons x xs ys) then show ?case by (cases ys) simp_all | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 558 | qed | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 559 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 560 | lemma list_induct3 [consumes 2, case_names Nil Cons]: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 561 | "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P [] [] [] \<Longrightarrow> | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 562 | (\<And>x xs y ys z zs. length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P xs ys zs \<Longrightarrow> P (x#xs) (y#ys) (z#zs)) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 563 | \<Longrightarrow> P xs ys zs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 564 | proof (induct xs arbitrary: ys zs) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 565 | case Nil then show ?case by simp | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 566 | next | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 567 | case (Cons x xs ys zs) then show ?case by (cases ys, simp_all) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 568 | (cases zs, simp_all) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 569 | qed | 
| 13114 | 570 | |
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 571 | lemma list_induct4 [consumes 3, case_names Nil Cons]: | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 572 | "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> length zs = length ws \<Longrightarrow> | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 573 | P [] [] [] [] \<Longrightarrow> (\<And>x xs y ys z zs w ws. length xs = length ys \<Longrightarrow> | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 574 | length ys = length zs \<Longrightarrow> length zs = length ws \<Longrightarrow> P xs ys zs ws \<Longrightarrow> | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 575 | P (x#xs) (y#ys) (z#zs) (w#ws)) \<Longrightarrow> P xs ys zs ws" | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 576 | proof (induct xs arbitrary: ys zs ws) | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 577 | case Nil then show ?case by simp | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 578 | next | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 579 | case (Cons x xs ys zs ws) then show ?case by ((cases ys, simp_all), (cases zs,simp_all)) (cases ws, simp_all) | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 580 | qed | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 581 | |
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 582 | lemma list_induct2': | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 583 | "\<lbrakk> P [] []; | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 584 | \<And>x xs. P (x#xs) []; | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 585 | \<And>y ys. P [] (y#ys); | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 586 | \<And>x xs y ys. P xs ys \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk> | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 587 | \<Longrightarrow> P xs ys" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 588 | by (induct xs arbitrary: ys) (case_tac x, auto)+ | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 589 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 590 | lemma neq_if_length_neq: "length xs \<noteq> length ys \<Longrightarrow> (xs = ys) == False" | 
| 24349 | 591 | by (rule Eq_FalseI) auto | 
| 24037 | 592 | |
| 593 | simproc_setup list_neq ("(xs::'a list) = ys") = {*
 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 594 | (* | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 595 | Reduces xs=ys to False if xs and ys cannot be of the same length. | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 596 | This is the case if the atomic sublists of one are a submultiset | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 597 | of those of the other list and there are fewer Cons's in one than the other. | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 598 | *) | 
| 24037 | 599 | |
| 600 | let | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 601 | |
| 29856 | 602 | fun len (Const(@{const_name Nil},_)) acc = acc
 | 
| 603 |   | len (Const(@{const_name Cons},_) $ _ $ xs) (ts,n) = len xs (ts,n+1)
 | |
| 604 |   | len (Const(@{const_name append},_) $ xs $ ys) acc = len xs (len ys acc)
 | |
| 605 |   | len (Const(@{const_name rev},_) $ xs) acc = len xs acc
 | |
| 606 |   | len (Const(@{const_name map},_) $ _ $ xs) acc = len xs acc
 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 607 | | len t (ts,n) = (t::ts,n); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 608 | |
| 24037 | 609 | fun list_neq _ ss ct = | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 610 | let | 
| 24037 | 611 | val (Const(_,eqT) $ lhs $ rhs) = Thm.term_of ct; | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 612 | val (ls,m) = len lhs ([],0) and (rs,n) = len rhs ([],0); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 613 | fun prove_neq() = | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 614 | let | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 615 | val Type(_,listT::_) = eqT; | 
| 22994 | 616 | val size = HOLogic.size_const listT; | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 617 | val eq_len = HOLogic.mk_eq (size $ lhs, size $ rhs); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 618 | val neq_len = HOLogic.mk_Trueprop (HOLogic.Not $ eq_len); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 619 | val thm = Goal.prove (Simplifier.the_context ss) [] [] neq_len | 
| 22633 | 620 |           (K (simp_tac (Simplifier.inherit_context ss @{simpset}) 1));
 | 
| 621 |       in SOME (thm RS @{thm neq_if_length_neq}) end
 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 622 | in | 
| 23214 | 623 | if m < n andalso submultiset (op aconv) (ls,rs) orelse | 
| 624 | n < m andalso submultiset (op aconv) (rs,ls) | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 625 | then prove_neq() else NONE | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 626 | end; | 
| 24037 | 627 | in list_neq end; | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 628 | *} | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 629 | |
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 630 | |
| 15392 | 631 | subsubsection {* @{text "@"} -- append *}
 | 
| 13114 | 632 | |
| 13142 | 633 | lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)" | 
| 13145 | 634 | by (induct xs) auto | 
| 13114 | 635 | |
| 13142 | 636 | lemma append_Nil2 [simp]: "xs @ [] = xs" | 
| 13145 | 637 | by (induct xs) auto | 
| 3507 | 638 | |
| 13142 | 639 | lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])" | 
| 13145 | 640 | by (induct xs) auto | 
| 13114 | 641 | |
| 13142 | 642 | lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])" | 
| 13145 | 643 | by (induct xs) auto | 
| 13114 | 644 | |
| 13142 | 645 | lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])" | 
| 13145 | 646 | by (induct xs) auto | 
| 13114 | 647 | |
| 13142 | 648 | lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])" | 
| 13145 | 649 | by (induct xs) auto | 
| 13114 | 650 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 651 | lemma append_eq_append_conv [simp, no_atp]: | 
| 24526 | 652 | "length xs = length ys \<or> length us = length vs | 
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 653 | ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)" | 
| 24526 | 654 | apply (induct xs arbitrary: ys) | 
| 14208 | 655 | apply (case_tac ys, simp, force) | 
| 656 | apply (case_tac ys, force, simp) | |
| 13145 | 657 | done | 
| 13142 | 658 | |
| 24526 | 659 | lemma append_eq_append_conv2: "(xs @ ys = zs @ ts) = | 
| 660 | (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)" | |
| 661 | apply (induct xs arbitrary: ys zs ts) | |
| 14495 | 662 | apply fastsimp | 
| 663 | apply(case_tac zs) | |
| 664 | apply simp | |
| 665 | apply fastsimp | |
| 666 | done | |
| 667 | ||
| 34910 
b23bd3ee4813
same_append_eq / append_same_eq are now used for simplifying induction rules.
 berghofe parents: 
34064diff
changeset | 668 | lemma same_append_eq [iff, induct_simp]: "(xs @ ys = xs @ zs) = (ys = zs)" | 
| 13145 | 669 | by simp | 
| 13142 | 670 | |
| 671 | lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)" | |
| 13145 | 672 | by simp | 
| 13114 | 673 | |
| 34910 
b23bd3ee4813
same_append_eq / append_same_eq are now used for simplifying induction rules.
 berghofe parents: 
34064diff
changeset | 674 | lemma append_same_eq [iff, induct_simp]: "(ys @ xs = zs @ xs) = (ys = zs)" | 
| 13145 | 675 | by simp | 
| 13114 | 676 | |
| 13142 | 677 | lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])" | 
| 13145 | 678 | using append_same_eq [of _ _ "[]"] by auto | 
| 3507 | 679 | |
| 13142 | 680 | lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])" | 
| 13145 | 681 | using append_same_eq [of "[]"] by auto | 
| 13114 | 682 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 683 | lemma hd_Cons_tl [simp,no_atp]: "xs \<noteq> [] ==> hd xs # tl xs = xs" | 
| 13145 | 684 | by (induct xs) auto | 
| 13114 | 685 | |
| 13142 | 686 | lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)" | 
| 13145 | 687 | by (induct xs) auto | 
| 13114 | 688 | |
| 13142 | 689 | lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs" | 
| 13145 | 690 | by (simp add: hd_append split: list.split) | 
| 13114 | 691 | |
| 13142 | 692 | lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)" | 
| 13145 | 693 | by (simp split: list.split) | 
| 13114 | 694 | |
| 13142 | 695 | lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys" | 
| 13145 | 696 | by (simp add: tl_append split: list.split) | 
| 13114 | 697 | |
| 698 | ||
| 14300 | 699 | lemma Cons_eq_append_conv: "x#xs = ys@zs = | 
| 700 | (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))" | |
| 701 | by(cases ys) auto | |
| 702 | ||
| 15281 | 703 | lemma append_eq_Cons_conv: "(ys@zs = x#xs) = | 
| 704 | (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))" | |
| 705 | by(cases ys) auto | |
| 706 | ||
| 14300 | 707 | |
| 13142 | 708 | text {* Trivial rules for solving @{text "@"}-equations automatically. *}
 | 
| 13114 | 709 | |
| 710 | lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys" | |
| 13145 | 711 | by simp | 
| 13114 | 712 | |
| 13142 | 713 | lemma Cons_eq_appendI: | 
| 13145 | 714 | "[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs" | 
| 715 | by (drule sym) simp | |
| 13114 | 716 | |
| 13142 | 717 | lemma append_eq_appendI: | 
| 13145 | 718 | "[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us" | 
| 719 | by (drule sym) simp | |
| 13114 | 720 | |
| 721 | ||
| 13142 | 722 | text {*
 | 
| 13145 | 723 | Simplification procedure for all list equalities. | 
| 724 | Currently only tries to rearrange @{text "@"} to see if
 | |
| 725 | - both lists end in a singleton list, | |
| 726 | - or both lists end in the same list. | |
| 13142 | 727 | *} | 
| 728 | ||
| 43594 | 729 | simproc_setup list_eq ("(xs::'a list) = ys")  = {*
 | 
| 13462 | 730 | let | 
| 43594 | 731 |     fun last (cons as Const (@{const_name Cons}, _) $ _ $ xs) =
 | 
| 732 |           (case xs of Const (@{const_name Nil}, _) => cons | _ => last xs)
 | |
| 733 |       | last (Const(@{const_name append},_) $ _ $ ys) = last ys
 | |
| 734 | | last t = t; | |
| 735 | ||
| 736 |     fun list1 (Const(@{const_name Cons},_) $ _ $ Const(@{const_name Nil},_)) = true
 | |
| 737 | | list1 _ = false; | |
| 738 | ||
| 739 |     fun butlast ((cons as Const(@{const_name Cons},_) $ x) $ xs) =
 | |
| 740 |           (case xs of Const (@{const_name Nil}, _) => xs | _ => cons $ butlast xs)
 | |
| 741 |       | butlast ((app as Const (@{const_name append}, _) $ xs) $ ys) = app $ butlast ys
 | |
| 742 |       | butlast xs = Const(@{const_name Nil}, fastype_of xs);
 | |
| 743 | ||
| 744 | val rearr_ss = | |
| 745 |       HOL_basic_ss addsimps [@{thm append_assoc}, @{thm append_Nil}, @{thm append_Cons}];
 | |
| 746 | ||
| 747 | fun list_eq ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) = | |
| 13462 | 748 | let | 
| 43594 | 749 | val lastl = last lhs and lastr = last rhs; | 
| 750 | fun rearr conv = | |
| 751 | let | |
| 752 | val lhs1 = butlast lhs and rhs1 = butlast rhs; | |
| 753 | val Type(_,listT::_) = eqT | |
| 754 | val appT = [listT,listT] ---> listT | |
| 755 |             val app = Const(@{const_name append},appT)
 | |
| 756 | val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr) | |
| 757 | val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2)); | |
| 758 | val thm = Goal.prove (Simplifier.the_context ss) [] [] eq | |
| 759 | (K (simp_tac (Simplifier.inherit_context ss rearr_ss) 1)); | |
| 760 | in SOME ((conv RS (thm RS trans)) RS eq_reflection) end; | |
| 761 | in | |
| 762 |         if list1 lastl andalso list1 lastr then rearr @{thm append1_eq_conv}
 | |
| 763 |         else if lastl aconv lastr then rearr @{thm append_same_eq}
 | |
| 764 | else NONE | |
| 765 | end; | |
| 766 | in fn _ => fn ss => fn ct => list_eq ss (term_of ct) end; | |
| 13114 | 767 | *} | 
| 768 | ||
| 769 | ||
| 15392 | 770 | subsubsection {* @{text map} *}
 | 
| 13114 | 771 | |
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 772 | lemma hd_map: | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 773 | "xs \<noteq> [] \<Longrightarrow> hd (map f xs) = f (hd xs)" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 774 | by (cases xs) simp_all | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 775 | |
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 776 | lemma map_tl: | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 777 | "map f (tl xs) = tl (map f xs)" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 778 | by (cases xs) simp_all | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 779 | |
| 13142 | 780 | lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs" | 
| 13145 | 781 | by (induct xs) simp_all | 
| 13114 | 782 | |
| 13142 | 783 | lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)" | 
| 13145 | 784 | by (rule ext, induct_tac xs) auto | 
| 13114 | 785 | |
| 13142 | 786 | lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys" | 
| 13145 | 787 | by (induct xs) auto | 
| 13114 | 788 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 789 | lemma map_map [simp]: "map f (map g xs) = map (f \<circ> g) xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 790 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 791 | |
| 35208 | 792 | lemma map_comp_map[simp]: "((map f) o (map g)) = map(f o g)" | 
| 793 | apply(rule ext) | |
| 794 | apply(simp) | |
| 795 | done | |
| 796 | ||
| 13142 | 797 | lemma rev_map: "rev (map f xs) = map f (rev xs)" | 
| 13145 | 798 | by (induct xs) auto | 
| 13114 | 799 | |
| 13737 | 800 | lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)" | 
| 801 | by (induct xs) auto | |
| 802 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 803 | lemma map_cong [fundef_cong, recdef_cong]: | 
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 804 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> f x = g x) \<Longrightarrow> map f xs = map g ys" | 
| 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 805 | by simp | 
| 13114 | 806 | |
| 13142 | 807 | lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])" | 
| 13145 | 808 | by (cases xs) auto | 
| 13114 | 809 | |
| 13142 | 810 | lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])" | 
| 13145 | 811 | by (cases xs) auto | 
| 13114 | 812 | |
| 18447 | 813 | lemma map_eq_Cons_conv: | 
| 14025 | 814 | "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)" | 
| 13145 | 815 | by (cases xs) auto | 
| 13114 | 816 | |
| 18447 | 817 | lemma Cons_eq_map_conv: | 
| 14025 | 818 | "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)" | 
| 819 | by (cases ys) auto | |
| 820 | ||
| 18447 | 821 | lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1] | 
| 822 | lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1] | |
| 823 | declare map_eq_Cons_D [dest!] Cons_eq_map_D [dest!] | |
| 824 | ||
| 14111 | 825 | lemma ex_map_conv: | 
| 826 | "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)" | |
| 18447 | 827 | by(induct ys, auto simp add: Cons_eq_map_conv) | 
| 14111 | 828 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 829 | lemma map_eq_imp_length_eq: | 
| 35510 | 830 | assumes "map f xs = map g ys" | 
| 26734 | 831 | shows "length xs = length ys" | 
| 832 | using assms proof (induct ys arbitrary: xs) | |
| 833 | case Nil then show ?case by simp | |
| 834 | next | |
| 835 | case (Cons y ys) then obtain z zs where xs: "xs = z # zs" by auto | |
| 35510 | 836 | from Cons xs have "map f zs = map g ys" by simp | 
| 26734 | 837 | moreover with Cons have "length zs = length ys" by blast | 
| 838 | with xs show ?case by simp | |
| 839 | qed | |
| 840 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 841 | lemma map_inj_on: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 842 | "[| map f xs = map f ys; inj_on f (set xs Un set ys) |] | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 843 | ==> xs = ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 844 | apply(frule map_eq_imp_length_eq) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 845 | apply(rotate_tac -1) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 846 | apply(induct rule:list_induct2) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 847 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 848 | apply(simp) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 849 | apply (blast intro:sym) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 850 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 851 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 852 | lemma inj_on_map_eq_map: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 853 | "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 854 | by(blast dest:map_inj_on) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 855 | |
| 13114 | 856 | lemma map_injective: | 
| 24526 | 857 | "map f xs = map f ys ==> inj f ==> xs = ys" | 
| 858 | by (induct ys arbitrary: xs) (auto dest!:injD) | |
| 13114 | 859 | |
| 14339 | 860 | lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)" | 
| 861 | by(blast dest:map_injective) | |
| 862 | ||
| 13114 | 863 | lemma inj_mapI: "inj f ==> inj (map f)" | 
| 17589 | 864 | by (iprover dest: map_injective injD intro: inj_onI) | 
| 13114 | 865 | |
| 866 | lemma inj_mapD: "inj (map f) ==> inj f" | |
| 14208 | 867 | apply (unfold inj_on_def, clarify) | 
| 13145 | 868 | apply (erule_tac x = "[x]" in ballE) | 
| 14208 | 869 | apply (erule_tac x = "[y]" in ballE, simp, blast) | 
| 13145 | 870 | apply blast | 
| 871 | done | |
| 13114 | 872 | |
| 14339 | 873 | lemma inj_map[iff]: "inj (map f) = inj f" | 
| 13145 | 874 | by (blast dest: inj_mapD intro: inj_mapI) | 
| 13114 | 875 | |
| 15303 | 876 | lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A" | 
| 877 | apply(rule inj_onI) | |
| 878 | apply(erule map_inj_on) | |
| 879 | apply(blast intro:inj_onI dest:inj_onD) | |
| 880 | done | |
| 881 | ||
| 14343 | 882 | lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs" | 
| 883 | by (induct xs, auto) | |
| 13114 | 884 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 885 | lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 886 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 887 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 888 | lemma map_fst_zip[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 889 | "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 890 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 891 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 892 | lemma map_snd_zip[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 893 | "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 894 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 895 | |
| 41505 
6d19301074cf
"enriched_type" replaces less specific "type_lifting"
 haftmann parents: 
41463diff
changeset | 896 | enriched_type map: map | 
| 41372 | 897 | by (simp_all add: fun_eq_iff id_def) | 
| 40608 
6c28ab8b8166
mapper for list type; map_pair replaces prod_fun
 haftmann parents: 
40593diff
changeset | 898 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 899 | |
| 15392 | 900 | subsubsection {* @{text rev} *}
 | 
| 13114 | 901 | |
| 13142 | 902 | lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs" | 
| 13145 | 903 | by (induct xs) auto | 
| 13114 | 904 | |
| 13142 | 905 | lemma rev_rev_ident [simp]: "rev (rev xs) = xs" | 
| 13145 | 906 | by (induct xs) auto | 
| 13114 | 907 | |
| 15870 | 908 | lemma rev_swap: "(rev xs = ys) = (xs = rev ys)" | 
| 909 | by auto | |
| 910 | ||
| 13142 | 911 | lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])" | 
| 13145 | 912 | by (induct xs) auto | 
| 13114 | 913 | |
| 13142 | 914 | lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])" | 
| 13145 | 915 | by (induct xs) auto | 
| 13114 | 916 | |
| 15870 | 917 | lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])" | 
| 918 | by (cases xs) auto | |
| 919 | ||
| 920 | lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])" | |
| 921 | by (cases xs) auto | |
| 922 | ||
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 923 | lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 924 | apply (induct xs arbitrary: ys, force) | 
| 14208 | 925 | apply (case_tac ys, simp, force) | 
| 13145 | 926 | done | 
| 13114 | 927 | |
| 15439 | 928 | lemma inj_on_rev[iff]: "inj_on rev A" | 
| 929 | by(simp add:inj_on_def) | |
| 930 | ||
| 13366 | 931 | lemma rev_induct [case_names Nil snoc]: | 
| 932 | "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs" | |
| 15489 
d136af442665
Replaced application of subst by simplesubst in proof of rev_induct
 berghofe parents: 
15439diff
changeset | 933 | apply(simplesubst rev_rev_ident[symmetric]) | 
| 13145 | 934 | apply(rule_tac list = "rev xs" in list.induct, simp_all) | 
| 935 | done | |
| 13114 | 936 | |
| 13366 | 937 | lemma rev_exhaust [case_names Nil snoc]: | 
| 938 | "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P" | |
| 13145 | 939 | by (induct xs rule: rev_induct) auto | 
| 13114 | 940 | |
| 13366 | 941 | lemmas rev_cases = rev_exhaust | 
| 942 | ||
| 18423 | 943 | lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])" | 
| 944 | by(rule rev_cases[of xs]) auto | |
| 945 | ||
| 13114 | 946 | |
| 15392 | 947 | subsubsection {* @{text set} *}
 | 
| 13114 | 948 | |
| 13142 | 949 | lemma finite_set [iff]: "finite (set xs)" | 
| 13145 | 950 | by (induct xs) auto | 
| 13114 | 951 | |
| 13142 | 952 | lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)" | 
| 13145 | 953 | by (induct xs) auto | 
| 13114 | 954 | |
| 17830 | 955 | lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs" | 
| 956 | by(cases xs) auto | |
| 14099 | 957 | |
| 13142 | 958 | lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)" | 
| 13145 | 959 | by auto | 
| 13114 | 960 | |
| 14099 | 961 | lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" | 
| 962 | by auto | |
| 963 | ||
| 13142 | 964 | lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
 | 
| 13145 | 965 | by (induct xs) auto | 
| 13114 | 966 | |
| 15245 | 967 | lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
 | 
| 968 | by(induct xs) auto | |
| 969 | ||
| 13142 | 970 | lemma set_rev [simp]: "set (rev xs) = set xs" | 
| 13145 | 971 | by (induct xs) auto | 
| 13114 | 972 | |
| 13142 | 973 | lemma set_map [simp]: "set (map f xs) = f`(set xs)" | 
| 13145 | 974 | by (induct xs) auto | 
| 13114 | 975 | |
| 13142 | 976 | lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
 | 
| 13145 | 977 | by (induct xs) auto | 
| 13114 | 978 | |
| 32417 | 979 | lemma set_upt [simp]: "set[i..<j] = {i..<j}"
 | 
| 41463 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 980 | by (induct j) auto | 
| 13114 | 981 | |
| 13142 | 982 | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 983 | lemma split_list: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs" | 
| 18049 | 984 | proof (induct xs) | 
| 26073 | 985 | case Nil thus ?case by simp | 
| 986 | next | |
| 987 | case Cons thus ?case by (auto intro: Cons_eq_appendI) | |
| 988 | qed | |
| 989 | ||
| 26734 | 990 | lemma in_set_conv_decomp: "x \<in> set xs \<longleftrightarrow> (\<exists>ys zs. xs = ys @ x # zs)" | 
| 991 | by (auto elim: split_list) | |
| 26073 | 992 | |
| 993 | lemma split_list_first: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys" | |
| 994 | proof (induct xs) | |
| 995 | case Nil thus ?case by simp | |
| 18049 | 996 | next | 
| 997 | case (Cons a xs) | |
| 998 | show ?case | |
| 999 | proof cases | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1000 | assume "x = a" thus ?case using Cons by fastsimp | 
| 18049 | 1001 | next | 
| 26073 | 1002 | assume "x \<noteq> a" thus ?case using Cons by(fastsimp intro!: Cons_eq_appendI) | 
| 1003 | qed | |
| 1004 | qed | |
| 1005 | ||
| 1006 | lemma in_set_conv_decomp_first: | |
| 1007 | "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)" | |
| 26734 | 1008 | by (auto dest!: split_list_first) | 
| 26073 | 1009 | |
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 1010 | lemma split_list_last: "x \<in> set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs" | 
| 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 1011 | proof (induct xs rule: rev_induct) | 
| 26073 | 1012 | case Nil thus ?case by simp | 
| 1013 | next | |
| 1014 | case (snoc a xs) | |
| 1015 | show ?case | |
| 1016 | proof cases | |
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 1017 | assume "x = a" thus ?case using snoc by (metis List.set.simps(1) emptyE) | 
| 26073 | 1018 | next | 
| 1019 | assume "x \<noteq> a" thus ?case using snoc by fastsimp | |
| 18049 | 1020 | qed | 
| 1021 | qed | |
| 1022 | ||
| 26073 | 1023 | lemma in_set_conv_decomp_last: | 
| 1024 | "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs)" | |
| 26734 | 1025 | by (auto dest!: split_list_last) | 
| 26073 | 1026 | |
| 1027 | lemma split_list_prop: "\<exists>x \<in> set xs. P x \<Longrightarrow> \<exists>ys x zs. xs = ys @ x # zs & P x" | |
| 1028 | proof (induct xs) | |
| 1029 | case Nil thus ?case by simp | |
| 1030 | next | |
| 1031 | case Cons thus ?case | |
| 1032 | by(simp add:Bex_def)(metis append_Cons append.simps(1)) | |
| 1033 | qed | |
| 1034 | ||
| 1035 | lemma split_list_propE: | |
| 26734 | 1036 | assumes "\<exists>x \<in> set xs. P x" | 
| 1037 | obtains ys x zs where "xs = ys @ x # zs" and "P x" | |
| 1038 | using split_list_prop [OF assms] by blast | |
| 26073 | 1039 | |
| 1040 | lemma split_list_first_prop: | |
| 1041 | "\<exists>x \<in> set xs. P x \<Longrightarrow> | |
| 1042 | \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y)" | |
| 26734 | 1043 | proof (induct xs) | 
| 26073 | 1044 | case Nil thus ?case by simp | 
| 1045 | next | |
| 1046 | case (Cons x xs) | |
| 1047 | show ?case | |
| 1048 | proof cases | |
| 1049 | assume "P x" | |
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
40077diff
changeset | 1050 | thus ?thesis by simp (metis Un_upper1 contra_subsetD in_set_conv_decomp_first self_append_conv2 set_append) | 
| 26073 | 1051 | next | 
| 1052 | assume "\<not> P x" | |
| 1053 | hence "\<exists>x\<in>set xs. P x" using Cons(2) by simp | |
| 1054 | thus ?thesis using `\<not> P x` Cons(1) by (metis append_Cons set_ConsD) | |
| 1055 | qed | |
| 1056 | qed | |
| 1057 | ||
| 1058 | lemma split_list_first_propE: | |
| 26734 | 1059 | assumes "\<exists>x \<in> set xs. P x" | 
| 1060 | obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>y \<in> set ys. \<not> P y" | |
| 1061 | using split_list_first_prop [OF assms] by blast | |
| 26073 | 1062 | |
| 1063 | lemma split_list_first_prop_iff: | |
| 1064 | "(\<exists>x \<in> set xs. P x) \<longleftrightarrow> | |
| 1065 | (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y))" | |
| 26734 | 1066 | by (rule, erule split_list_first_prop) auto | 
| 26073 | 1067 | |
| 1068 | lemma split_list_last_prop: | |
| 1069 | "\<exists>x \<in> set xs. P x \<Longrightarrow> | |
| 1070 | \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z)" | |
| 1071 | proof(induct xs rule:rev_induct) | |
| 1072 | case Nil thus ?case by simp | |
| 1073 | next | |
| 1074 | case (snoc x xs) | |
| 1075 | show ?case | |
| 1076 | proof cases | |
| 1077 | assume "P x" thus ?thesis by (metis emptyE set_empty) | |
| 1078 | next | |
| 1079 | assume "\<not> P x" | |
| 1080 | hence "\<exists>x\<in>set xs. P x" using snoc(2) by simp | |
| 1081 | thus ?thesis using `\<not> P x` snoc(1) by fastsimp | |
| 1082 | qed | |
| 1083 | qed | |
| 1084 | ||
| 1085 | lemma split_list_last_propE: | |
| 26734 | 1086 | assumes "\<exists>x \<in> set xs. P x" | 
| 1087 | obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>z \<in> set zs. \<not> P z" | |
| 1088 | using split_list_last_prop [OF assms] by blast | |
| 26073 | 1089 | |
| 1090 | lemma split_list_last_prop_iff: | |
| 1091 | "(\<exists>x \<in> set xs. P x) \<longleftrightarrow> | |
| 1092 | (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z))" | |
| 26734 | 1093 | by (metis split_list_last_prop [where P=P] in_set_conv_decomp) | 
| 26073 | 1094 | |
| 1095 | lemma finite_list: "finite A ==> EX xs. set xs = A" | |
| 26734 | 1096 | by (erule finite_induct) | 
| 1097 | (auto simp add: set.simps(2) [symmetric] simp del: set.simps(2)) | |
| 13508 | 1098 | |
| 14388 | 1099 | lemma card_length: "card (set xs) \<le> length xs" | 
| 1100 | by (induct xs) (auto simp add: card_insert_if) | |
| 13114 | 1101 | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1102 | lemma set_minus_filter_out: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1103 |   "set xs - {y} = set (filter (\<lambda>x. \<not> (x = y)) xs)"
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1104 | by (induct xs) auto | 
| 15168 | 1105 | |
| 35115 | 1106 | |
| 15392 | 1107 | subsubsection {* @{text filter} *}
 | 
| 13114 | 1108 | |
| 13142 | 1109 | lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys" | 
| 13145 | 1110 | by (induct xs) auto | 
| 13114 | 1111 | |
| 15305 | 1112 | lemma rev_filter: "rev (filter P xs) = filter P (rev xs)" | 
| 1113 | by (induct xs) simp_all | |
| 1114 | ||
| 13142 | 1115 | lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs" | 
| 13145 | 1116 | by (induct xs) auto | 
| 13114 | 1117 | |
| 16998 | 1118 | lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs" | 
| 1119 | by (induct xs) (auto simp add: le_SucI) | |
| 1120 | ||
| 18423 | 1121 | lemma sum_length_filter_compl: | 
| 1122 | "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs" | |
| 1123 | by(induct xs) simp_all | |
| 1124 | ||
| 13142 | 1125 | lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs" | 
| 13145 | 1126 | by (induct xs) auto | 
| 13114 | 1127 | |
| 13142 | 1128 | lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []" | 
| 13145 | 1129 | by (induct xs) auto | 
| 13114 | 1130 | |
| 16998 | 1131 | lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" | 
| 24349 | 1132 | by (induct xs) simp_all | 
| 16998 | 1133 | |
| 1134 | lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)" | |
| 1135 | apply (induct xs) | |
| 1136 | apply auto | |
| 1137 | apply(cut_tac P=P and xs=xs in length_filter_le) | |
| 1138 | apply simp | |
| 1139 | done | |
| 13114 | 1140 | |
| 16965 | 1141 | lemma filter_map: | 
| 1142 | "filter P (map f xs) = map f (filter (P o f) xs)" | |
| 1143 | by (induct xs) simp_all | |
| 1144 | ||
| 1145 | lemma length_filter_map[simp]: | |
| 1146 | "length (filter P (map f xs)) = length(filter (P o f) xs)" | |
| 1147 | by (simp add:filter_map) | |
| 1148 | ||
| 13142 | 1149 | lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs" | 
| 13145 | 1150 | by auto | 
| 13114 | 1151 | |
| 15246 | 1152 | lemma length_filter_less: | 
| 1153 | "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs" | |
| 1154 | proof (induct xs) | |
| 1155 | case Nil thus ?case by simp | |
| 1156 | next | |
| 1157 | case (Cons x xs) thus ?case | |
| 1158 | apply (auto split:split_if_asm) | |
| 1159 | using length_filter_le[of P xs] apply arith | |
| 1160 | done | |
| 1161 | qed | |
| 13114 | 1162 | |
| 15281 | 1163 | lemma length_filter_conv_card: | 
| 1164 |  "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
 | |
| 1165 | proof (induct xs) | |
| 1166 | case Nil thus ?case by simp | |
| 1167 | next | |
| 1168 | case (Cons x xs) | |
| 1169 |   let ?S = "{i. i < length xs & p(xs!i)}"
 | |
| 1170 | have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite) | |
| 1171 | show ?case (is "?l = card ?S'") | |
| 1172 | proof (cases) | |
| 1173 | assume "p x" | |
| 1174 | hence eq: "?S' = insert 0 (Suc ` ?S)" | |
| 25162 | 1175 | by(auto simp: image_def split:nat.split dest:gr0_implies_Suc) | 
| 15281 | 1176 | have "length (filter p (x # xs)) = Suc(card ?S)" | 
| 23388 | 1177 | using Cons `p x` by simp | 
| 15281 | 1178 | also have "\<dots> = Suc(card(Suc ` ?S))" using fin | 
| 1179 | by (simp add: card_image inj_Suc) | |
| 1180 | also have "\<dots> = card ?S'" using eq fin | |
| 1181 | by (simp add:card_insert_if) (simp add:image_def) | |
| 1182 | finally show ?thesis . | |
| 1183 | next | |
| 1184 | assume "\<not> p x" | |
| 1185 | hence eq: "?S' = Suc ` ?S" | |
| 25162 | 1186 | by(auto simp add: image_def split:nat.split elim:lessE) | 
| 15281 | 1187 | have "length (filter p (x # xs)) = card ?S" | 
| 23388 | 1188 | using Cons `\<not> p x` by simp | 
| 15281 | 1189 | also have "\<dots> = card(Suc ` ?S)" using fin | 
| 1190 | by (simp add: card_image inj_Suc) | |
| 1191 | also have "\<dots> = card ?S'" using eq fin | |
| 1192 | by (simp add:card_insert_if) | |
| 1193 | finally show ?thesis . | |
| 1194 | qed | |
| 1195 | qed | |
| 1196 | ||
| 17629 | 1197 | lemma Cons_eq_filterD: | 
| 1198 | "x#xs = filter P ys \<Longrightarrow> | |
| 1199 | \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs" | |
| 19585 | 1200 | (is "_ \<Longrightarrow> \<exists>us vs. ?P ys us vs") | 
| 17629 | 1201 | proof(induct ys) | 
| 1202 | case Nil thus ?case by simp | |
| 1203 | next | |
| 1204 | case (Cons y ys) | |
| 1205 | show ?case (is "\<exists>x. ?Q x") | |
| 1206 | proof cases | |
| 1207 | assume Py: "P y" | |
| 1208 | show ?thesis | |
| 1209 | proof cases | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1210 | assume "x = y" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1211 | with Py Cons.prems have "?Q []" by simp | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1212 | then show ?thesis .. | 
| 17629 | 1213 | next | 
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1214 | assume "x \<noteq> y" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1215 | with Py Cons.prems show ?thesis by simp | 
| 17629 | 1216 | qed | 
| 1217 | next | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1218 | assume "\<not> P y" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1219 | with Cons obtain us vs where "?P (y#ys) (y#us) vs" by fastsimp | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1220 | then have "?Q (y#us)" by simp | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1221 | then show ?thesis .. | 
| 17629 | 1222 | qed | 
| 1223 | qed | |
| 1224 | ||
| 1225 | lemma filter_eq_ConsD: | |
| 1226 | "filter P ys = x#xs \<Longrightarrow> | |
| 1227 | \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs" | |
| 1228 | by(rule Cons_eq_filterD) simp | |
| 1229 | ||
| 1230 | lemma filter_eq_Cons_iff: | |
| 1231 | "(filter P ys = x#xs) = | |
| 1232 | (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)" | |
| 1233 | by(auto dest:filter_eq_ConsD) | |
| 1234 | ||
| 1235 | lemma Cons_eq_filter_iff: | |
| 1236 | "(x#xs = filter P ys) = | |
| 1237 | (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)" | |
| 1238 | by(auto dest:Cons_eq_filterD) | |
| 1239 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1240 | lemma filter_cong[fundef_cong, recdef_cong]: | 
| 17501 | 1241 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys" | 
| 1242 | apply simp | |
| 1243 | apply(erule thin_rl) | |
| 1244 | by (induct ys) simp_all | |
| 1245 | ||
| 15281 | 1246 | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1247 | subsubsection {* List partitioning *}
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1248 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1249 | primrec partition :: "('a \<Rightarrow> bool) \<Rightarrow>'a list \<Rightarrow> 'a list \<times> 'a list" where
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1250 | "partition P [] = ([], [])" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1251 | | "partition P (x # xs) = | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1252 | (let (yes, no) = partition P xs | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1253 | in if P x then (x # yes, no) else (yes, x # no))" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1254 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1255 | lemma partition_filter1: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1256 | "fst (partition P xs) = filter P xs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1257 | by (induct xs) (auto simp add: Let_def split_def) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1258 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1259 | lemma partition_filter2: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1260 | "snd (partition P xs) = filter (Not o P) xs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1261 | by (induct xs) (auto simp add: Let_def split_def) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1262 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1263 | lemma partition_P: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1264 | assumes "partition P xs = (yes, no)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1265 | shows "(\<forall>p \<in> set yes. P p) \<and> (\<forall>p \<in> set no. \<not> P p)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1266 | proof - | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1267 | from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1268 | by simp_all | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1269 | then show ?thesis by (simp_all add: partition_filter1 partition_filter2) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1270 | qed | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1271 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1272 | lemma partition_set: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1273 | assumes "partition P xs = (yes, no)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1274 | shows "set yes \<union> set no = set xs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1275 | proof - | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1276 | from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1277 | by simp_all | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1278 | then show ?thesis by (auto simp add: partition_filter1 partition_filter2) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1279 | qed | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1280 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1281 | lemma partition_filter_conv[simp]: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1282 | "partition f xs = (filter f xs,filter (Not o f) xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1283 | unfolding partition_filter2[symmetric] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1284 | unfolding partition_filter1[symmetric] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1285 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1286 | declare partition.simps[simp del] | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1287 | |
| 35115 | 1288 | |
| 15392 | 1289 | subsubsection {* @{text concat} *}
 | 
| 13114 | 1290 | |
| 13142 | 1291 | lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys" | 
| 13145 | 1292 | by (induct xs) auto | 
| 13114 | 1293 | |
| 18447 | 1294 | lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])" | 
| 13145 | 1295 | by (induct xss) auto | 
| 13114 | 1296 | |
| 18447 | 1297 | lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])" | 
| 13145 | 1298 | by (induct xss) auto | 
| 13114 | 1299 | |
| 24308 | 1300 | lemma set_concat [simp]: "set (concat xs) = (UN x:set xs. set x)" | 
| 13145 | 1301 | by (induct xs) auto | 
| 13114 | 1302 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 1303 | lemma concat_map_singleton[simp]: "concat(map (%x. [f x]) xs) = map f xs" | 
| 24349 | 1304 | by (induct xs) auto | 
| 1305 | ||
| 13142 | 1306 | lemma map_concat: "map f (concat xs) = concat (map (map f) xs)" | 
| 13145 | 1307 | by (induct xs) auto | 
| 13114 | 1308 | |
| 13142 | 1309 | lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)" | 
| 13145 | 1310 | by (induct xs) auto | 
| 13114 | 1311 | |
| 13142 | 1312 | lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))" | 
| 13145 | 1313 | by (induct xs) auto | 
| 13114 | 1314 | |
| 40365 
a1456f2e1c9d
added two lemmas about injectivity of concat to the list theory
 bulwahn parents: 
40304diff
changeset | 1315 | lemma concat_eq_concat_iff: "\<forall>(x, y) \<in> set (zip xs ys). length x = length y ==> length xs = length ys ==> (concat xs = concat ys) = (xs = ys)" | 
| 
a1456f2e1c9d
added two lemmas about injectivity of concat to the list theory
 bulwahn parents: 
40304diff
changeset | 1316 | proof (induct xs arbitrary: ys) | 
| 
a1456f2e1c9d
added two lemmas about injectivity of concat to the list theory
 bulwahn parents: 
40304diff
changeset | 1317 | case (Cons x xs ys) | 
| 
a1456f2e1c9d
added two lemmas about injectivity of concat to the list theory
 bulwahn parents: 
40304diff
changeset | 1318 | thus ?case by (cases ys) auto | 
| 
a1456f2e1c9d
added two lemmas about injectivity of concat to the list theory
 bulwahn parents: 
40304diff
changeset | 1319 | qed (auto) | 
| 
a1456f2e1c9d
added two lemmas about injectivity of concat to the list theory
 bulwahn parents: 
40304diff
changeset | 1320 | |
| 
a1456f2e1c9d
added two lemmas about injectivity of concat to the list theory
 bulwahn parents: 
40304diff
changeset | 1321 | lemma concat_injective: "concat xs = concat ys ==> length xs = length ys ==> \<forall>(x, y) \<in> set (zip xs ys). length x = length y ==> xs = ys" | 
| 
a1456f2e1c9d
added two lemmas about injectivity of concat to the list theory
 bulwahn parents: 
40304diff
changeset | 1322 | by (simp add: concat_eq_concat_iff) | 
| 
a1456f2e1c9d
added two lemmas about injectivity of concat to the list theory
 bulwahn parents: 
40304diff
changeset | 1323 | |
| 13114 | 1324 | |
| 15392 | 1325 | subsubsection {* @{text nth} *}
 | 
| 13114 | 1326 | |
| 29827 | 1327 | lemma nth_Cons_0 [simp, code]: "(x # xs)!0 = x" | 
| 13145 | 1328 | by auto | 
| 13114 | 1329 | |
| 29827 | 1330 | lemma nth_Cons_Suc [simp, code]: "(x # xs)!(Suc n) = xs!n" | 
| 13145 | 1331 | by auto | 
| 13114 | 1332 | |
| 13142 | 1333 | declare nth.simps [simp del] | 
| 13114 | 1334 | |
| 41842 | 1335 | lemma nth_Cons_pos[simp]: "0 < n \<Longrightarrow> (x#xs) ! n = xs ! (n - 1)" | 
| 1336 | by(auto simp: Nat.gr0_conv_Suc) | |
| 1337 | ||
| 13114 | 1338 | lemma nth_append: | 
| 24526 | 1339 | "(xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))" | 
| 1340 | apply (induct xs arbitrary: n, simp) | |
| 14208 | 1341 | apply (case_tac n, auto) | 
| 13145 | 1342 | done | 
| 13114 | 1343 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1344 | lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x" | 
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1345 | by (induct xs) auto | 
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1346 | |
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1347 | lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n" | 
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1348 | by (induct xs) auto | 
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1349 | |
| 24526 | 1350 | lemma nth_map [simp]: "n < length xs ==> (map f xs)!n = f(xs!n)" | 
| 1351 | apply (induct xs arbitrary: n, simp) | |
| 14208 | 1352 | apply (case_tac n, auto) | 
| 13145 | 1353 | done | 
| 13114 | 1354 | |
| 18423 | 1355 | lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0" | 
| 1356 | by(cases xs) simp_all | |
| 1357 | ||
| 18049 | 1358 | |
| 1359 | lemma list_eq_iff_nth_eq: | |
| 24526 | 1360 | "(xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))" | 
| 1361 | apply(induct xs arbitrary: ys) | |
| 24632 | 1362 | apply force | 
| 18049 | 1363 | apply(case_tac ys) | 
| 1364 | apply simp | |
| 1365 | apply(simp add:nth_Cons split:nat.split)apply blast | |
| 1366 | done | |
| 1367 | ||
| 13142 | 1368 | lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
 | 
| 15251 | 1369 | apply (induct xs, simp, simp) | 
| 13145 | 1370 | apply safe | 
| 24632 | 1371 | apply (metis nat_case_0 nth.simps zero_less_Suc) | 
| 1372 | apply (metis less_Suc_eq_0_disj nth_Cons_Suc) | |
| 14208 | 1373 | apply (case_tac i, simp) | 
| 24632 | 1374 | apply (metis diff_Suc_Suc nat_case_Suc nth.simps zero_less_diff) | 
| 13145 | 1375 | done | 
| 13114 | 1376 | |
| 17501 | 1377 | lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)" | 
| 1378 | by(auto simp:set_conv_nth) | |
| 1379 | ||
| 13145 | 1380 | lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)" | 
| 1381 | by (auto simp add: set_conv_nth) | |
| 13114 | 1382 | |
| 13142 | 1383 | lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs" | 
| 13145 | 1384 | by (auto simp add: set_conv_nth) | 
| 13114 | 1385 | |
| 1386 | lemma all_nth_imp_all_set: | |
| 13145 | 1387 | "[| !i < length xs. P(xs!i); x : set xs|] ==> P x" | 
| 1388 | by (auto simp add: set_conv_nth) | |
| 13114 | 1389 | |
| 1390 | lemma all_set_conv_all_nth: | |
| 13145 | 1391 | "(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))" | 
| 1392 | by (auto simp add: set_conv_nth) | |
| 13114 | 1393 | |
| 25296 | 1394 | lemma rev_nth: | 
| 1395 | "n < size xs \<Longrightarrow> rev xs ! n = xs ! (length xs - Suc n)" | |
| 1396 | proof (induct xs arbitrary: n) | |
| 1397 | case Nil thus ?case by simp | |
| 1398 | next | |
| 1399 | case (Cons x xs) | |
| 1400 | hence n: "n < Suc (length xs)" by simp | |
| 1401 | moreover | |
| 1402 |   { assume "n < length xs"
 | |
| 1403 | with n obtain n' where "length xs - n = Suc n'" | |
| 1404 | by (cases "length xs - n", auto) | |
| 1405 | moreover | |
| 1406 | then have "length xs - Suc n = n'" by simp | |
| 1407 | ultimately | |
| 1408 | have "xs ! (length xs - Suc n) = (x # xs) ! (length xs - n)" by simp | |
| 1409 | } | |
| 1410 | ultimately | |
| 1411 | show ?case by (clarsimp simp add: Cons nth_append) | |
| 1412 | qed | |
| 13114 | 1413 | |
| 31159 | 1414 | lemma Skolem_list_nth: | 
| 1415 | "(ALL i<k. EX x. P i x) = (EX xs. size xs = k & (ALL i<k. P i (xs!i)))" | |
| 1416 | (is "_ = (EX xs. ?P k xs)") | |
| 1417 | proof(induct k) | |
| 1418 | case 0 show ?case by simp | |
| 1419 | next | |
| 1420 | case (Suc k) | |
| 1421 | show ?case (is "?L = ?R" is "_ = (EX xs. ?P' xs)") | |
| 1422 | proof | |
| 1423 | assume "?R" thus "?L" using Suc by auto | |
| 1424 | next | |
| 1425 | assume "?L" | |
| 1426 | with Suc obtain x xs where "?P k xs & P k x" by (metis less_Suc_eq) | |
| 1427 | hence "?P'(xs@[x])" by(simp add:nth_append less_Suc_eq) | |
| 1428 | thus "?R" .. | |
| 1429 | qed | |
| 1430 | qed | |
| 1431 | ||
| 1432 | ||
| 15392 | 1433 | subsubsection {* @{text list_update} *}
 | 
| 13114 | 1434 | |
| 24526 | 1435 | lemma length_list_update [simp]: "length(xs[i:=x]) = length xs" | 
| 1436 | by (induct xs arbitrary: i) (auto split: nat.split) | |
| 13114 | 1437 | |
| 1438 | lemma nth_list_update: | |
| 24526 | 1439 | "i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)" | 
| 1440 | by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split) | |
| 13114 | 1441 | |
| 13142 | 1442 | lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x" | 
| 13145 | 1443 | by (simp add: nth_list_update) | 
| 13114 | 1444 | |
| 24526 | 1445 | lemma nth_list_update_neq [simp]: "i \<noteq> j ==> xs[i:=x]!j = xs!j" | 
| 1446 | by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split) | |
| 13114 | 1447 | |
| 24526 | 1448 | lemma list_update_id[simp]: "xs[i := xs!i] = xs" | 
| 1449 | by (induct xs arbitrary: i) (simp_all split:nat.splits) | |
| 1450 | ||
| 1451 | lemma list_update_beyond[simp]: "length xs \<le> i \<Longrightarrow> xs[i:=x] = xs" | |
| 1452 | apply (induct xs arbitrary: i) | |
| 17501 | 1453 | apply simp | 
| 1454 | apply (case_tac i) | |
| 1455 | apply simp_all | |
| 1456 | done | |
| 1457 | ||
| 31077 | 1458 | lemma list_update_nonempty[simp]: "xs[k:=x] = [] \<longleftrightarrow> xs=[]" | 
| 1459 | by(metis length_0_conv length_list_update) | |
| 1460 | ||
| 13114 | 1461 | lemma list_update_same_conv: | 
| 24526 | 1462 | "i < length xs ==> (xs[i := x] = xs) = (xs!i = x)" | 
| 1463 | by (induct xs arbitrary: i) (auto split: nat.split) | |
| 13114 | 1464 | |
| 14187 | 1465 | lemma list_update_append1: | 
| 24526 | 1466 | "i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys" | 
| 1467 | apply (induct xs arbitrary: i, simp) | |
| 14187 | 1468 | apply(simp split:nat.split) | 
| 1469 | done | |
| 1470 | ||
| 15868 | 1471 | lemma list_update_append: | 
| 24526 | 1472 | "(xs @ ys) [n:= x] = | 
| 15868 | 1473 | (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))" | 
| 24526 | 1474 | by (induct xs arbitrary: n) (auto split:nat.splits) | 
| 15868 | 1475 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1476 | lemma list_update_length [simp]: | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1477 | "(xs @ x # ys)[length xs := y] = (xs @ y # ys)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1478 | by (induct xs, auto) | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1479 | |
| 31264 | 1480 | lemma map_update: "map f (xs[k:= y]) = (map f xs)[k := f y]" | 
| 1481 | by(induct xs arbitrary: k)(auto split:nat.splits) | |
| 1482 | ||
| 1483 | lemma rev_update: | |
| 1484 | "k < length xs \<Longrightarrow> rev (xs[k:= y]) = (rev xs)[length xs - k - 1 := y]" | |
| 1485 | by (induct xs arbitrary: k) (auto simp: list_update_append split:nat.splits) | |
| 1486 | ||
| 13114 | 1487 | lemma update_zip: | 
| 31080 | 1488 | "(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])" | 
| 24526 | 1489 | by (induct ys arbitrary: i xy xs) (auto, case_tac xs, auto split: nat.split) | 
| 1490 | ||
| 1491 | lemma set_update_subset_insert: "set(xs[i:=x]) <= insert x (set xs)" | |
| 1492 | by (induct xs arbitrary: i) (auto split: nat.split) | |
| 13114 | 1493 | |
| 1494 | lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A" | |
| 13145 | 1495 | by (blast dest!: set_update_subset_insert [THEN subsetD]) | 
| 13114 | 1496 | |
| 24526 | 1497 | lemma set_update_memI: "n < length xs \<Longrightarrow> x \<in> set (xs[n := x])" | 
| 1498 | by (induct xs arbitrary: n) (auto split:nat.splits) | |
| 15868 | 1499 | |
| 31077 | 1500 | lemma list_update_overwrite[simp]: | 
| 24796 | 1501 | "xs [i := x, i := y] = xs [i := y]" | 
| 31077 | 1502 | apply (induct xs arbitrary: i) apply simp | 
| 1503 | apply (case_tac i, simp_all) | |
| 24796 | 1504 | done | 
| 1505 | ||
| 1506 | lemma list_update_swap: | |
| 1507 | "i \<noteq> i' \<Longrightarrow> xs [i := x, i' := x'] = xs [i' := x', i := x]" | |
| 1508 | apply (induct xs arbitrary: i i') | |
| 1509 | apply simp | |
| 1510 | apply (case_tac i, case_tac i') | |
| 1511 | apply auto | |
| 1512 | apply (case_tac i') | |
| 1513 | apply auto | |
| 1514 | done | |
| 1515 | ||
| 29827 | 1516 | lemma list_update_code [code]: | 
| 1517 | "[][i := y] = []" | |
| 1518 | "(x # xs)[0 := y] = y # xs" | |
| 1519 | "(x # xs)[Suc i := y] = x # xs[i := y]" | |
| 1520 | by simp_all | |
| 1521 | ||
| 13114 | 1522 | |
| 15392 | 1523 | subsubsection {* @{text last} and @{text butlast} *}
 | 
| 13114 | 1524 | |
| 13142 | 1525 | lemma last_snoc [simp]: "last (xs @ [x]) = x" | 
| 13145 | 1526 | by (induct xs) auto | 
| 13114 | 1527 | |
| 13142 | 1528 | lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs" | 
| 13145 | 1529 | by (induct xs) auto | 
| 13114 | 1530 | |
| 14302 | 1531 | lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x" | 
| 1532 | by(simp add:last.simps) | |
| 1533 | ||
| 1534 | lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs" | |
| 1535 | by(simp add:last.simps) | |
| 1536 | ||
| 1537 | lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)" | |
| 1538 | by (induct xs) (auto) | |
| 1539 | ||
| 1540 | lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs" | |
| 1541 | by(simp add:last_append) | |
| 1542 | ||
| 1543 | lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys" | |
| 1544 | by(simp add:last_append) | |
| 1545 | ||
| 17762 | 1546 | lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs" | 
| 1547 | by(rule rev_exhaust[of xs]) simp_all | |
| 1548 | ||
| 1549 | lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs" | |
| 1550 | by(cases xs) simp_all | |
| 1551 | ||
| 17765 | 1552 | lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as" | 
| 1553 | by (induct as) auto | |
| 17762 | 1554 | |
| 13142 | 1555 | lemma length_butlast [simp]: "length (butlast xs) = length xs - 1" | 
| 13145 | 1556 | by (induct xs rule: rev_induct) auto | 
| 13114 | 1557 | |
| 1558 | lemma butlast_append: | |
| 24526 | 1559 | "butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)" | 
| 1560 | by (induct xs arbitrary: ys) auto | |
| 13114 | 1561 | |
| 13142 | 1562 | lemma append_butlast_last_id [simp]: | 
| 13145 | 1563 | "xs \<noteq> [] ==> butlast xs @ [last xs] = xs" | 
| 1564 | by (induct xs) auto | |
| 13114 | 1565 | |
| 13142 | 1566 | lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs" | 
| 13145 | 1567 | by (induct xs) (auto split: split_if_asm) | 
| 13114 | 1568 | |
| 1569 | lemma in_set_butlast_appendI: | |
| 13145 | 1570 | "x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))" | 
| 1571 | by (auto dest: in_set_butlastD simp add: butlast_append) | |
| 13114 | 1572 | |
| 24526 | 1573 | lemma last_drop[simp]: "n < length xs \<Longrightarrow> last (drop n xs) = last xs" | 
| 1574 | apply (induct xs arbitrary: n) | |
| 17501 | 1575 | apply simp | 
| 1576 | apply (auto split:nat.split) | |
| 1577 | done | |
| 1578 | ||
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1579 | lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)" | 
| 17589 | 1580 | by(induct xs)(auto simp:neq_Nil_conv) | 
| 1581 | ||
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1582 | lemma butlast_conv_take: "butlast xs = take (length xs - 1) xs" | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1583 | by (induct xs, simp, case_tac xs, simp_all) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1584 | |
| 31077 | 1585 | lemma last_list_update: | 
| 1586 | "xs \<noteq> [] \<Longrightarrow> last(xs[k:=x]) = (if k = size xs - 1 then x else last xs)" | |
| 1587 | by (auto simp: last_conv_nth) | |
| 1588 | ||
| 1589 | lemma butlast_list_update: | |
| 1590 | "butlast(xs[k:=x]) = | |
| 1591 | (if k = size xs - 1 then butlast xs else (butlast xs)[k:=x])" | |
| 1592 | apply(cases xs rule:rev_cases) | |
| 1593 | apply simp | |
| 1594 | apply(simp add:list_update_append split:nat.splits) | |
| 1595 | done | |
| 1596 | ||
| 36851 | 1597 | lemma last_map: | 
| 1598 | "xs \<noteq> [] \<Longrightarrow> last (map f xs) = f (last xs)" | |
| 1599 | by (cases xs rule: rev_cases) simp_all | |
| 1600 | ||
| 1601 | lemma map_butlast: | |
| 1602 | "map f (butlast xs) = butlast (map f xs)" | |
| 1603 | by (induct xs) simp_all | |
| 1604 | ||
| 40230 | 1605 | lemma snoc_eq_iff_butlast: | 
| 1606 | "xs @ [x] = ys \<longleftrightarrow> (ys \<noteq> [] & butlast ys = xs & last ys = x)" | |
| 1607 | by (metis append_butlast_last_id append_is_Nil_conv butlast_snoc last_snoc not_Cons_self) | |
| 1608 | ||
| 24796 | 1609 | |
| 15392 | 1610 | subsubsection {* @{text take} and @{text drop} *}
 | 
| 13114 | 1611 | |
| 13142 | 1612 | lemma take_0 [simp]: "take 0 xs = []" | 
| 13145 | 1613 | by (induct xs) auto | 
| 13114 | 1614 | |
| 13142 | 1615 | lemma drop_0 [simp]: "drop 0 xs = xs" | 
| 13145 | 1616 | by (induct xs) auto | 
| 13114 | 1617 | |
| 13142 | 1618 | lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs" | 
| 13145 | 1619 | by simp | 
| 13114 | 1620 | |
| 13142 | 1621 | lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs" | 
| 13145 | 1622 | by simp | 
| 13114 | 1623 | |
| 13142 | 1624 | declare take_Cons [simp del] and drop_Cons [simp del] | 
| 13114 | 1625 | |
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1626 | lemma take_1_Cons [simp]: "take 1 (x # xs) = [x]" | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1627 | unfolding One_nat_def by simp | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1628 | |
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1629 | lemma drop_1_Cons [simp]: "drop 1 (x # xs) = xs" | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1630 | unfolding One_nat_def by simp | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1631 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1632 | lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1633 | by(clarsimp simp add:neq_Nil_conv) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1634 | |
| 14187 | 1635 | lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)" | 
| 1636 | by(cases xs, simp_all) | |
| 1637 | ||
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1638 | lemma take_tl: "take n (tl xs) = tl (take (Suc n) xs)" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1639 | by (induct xs arbitrary: n) simp_all | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1640 | |
| 24526 | 1641 | lemma drop_tl: "drop n (tl xs) = tl(drop n xs)" | 
| 1642 | by(induct xs arbitrary: n, simp_all add:drop_Cons drop_Suc split:nat.split) | |
| 1643 | ||
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1644 | lemma tl_take: "tl (take n xs) = take (n - 1) (tl xs)" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1645 | by (cases n, simp, cases xs, auto) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1646 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1647 | lemma tl_drop: "tl (drop n xs) = drop n (tl xs)" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1648 | by (simp only: drop_tl) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1649 | |
| 24526 | 1650 | lemma nth_via_drop: "drop n xs = y#ys \<Longrightarrow> xs!n = y" | 
| 1651 | apply (induct xs arbitrary: n, simp) | |
| 14187 | 1652 | apply(simp add:drop_Cons nth_Cons split:nat.splits) | 
| 1653 | done | |
| 1654 | ||
| 13913 | 1655 | lemma take_Suc_conv_app_nth: | 
| 24526 | 1656 | "i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]" | 
| 1657 | apply (induct xs arbitrary: i, simp) | |
| 14208 | 1658 | apply (case_tac i, auto) | 
| 13913 | 1659 | done | 
| 1660 | ||
| 14591 | 1661 | lemma drop_Suc_conv_tl: | 
| 24526 | 1662 | "i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs" | 
| 1663 | apply (induct xs arbitrary: i, simp) | |
| 14591 | 1664 | apply (case_tac i, auto) | 
| 1665 | done | |
| 1666 | ||
| 24526 | 1667 | lemma length_take [simp]: "length (take n xs) = min (length xs) n" | 
| 1668 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1669 | ||
| 1670 | lemma length_drop [simp]: "length (drop n xs) = (length xs - n)" | |
| 1671 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1672 | ||
| 1673 | lemma take_all [simp]: "length xs <= n ==> take n xs = xs" | |
| 1674 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1675 | ||
| 1676 | lemma drop_all [simp]: "length xs <= n ==> drop n xs = []" | |
| 1677 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 13114 | 1678 | |
| 13142 | 1679 | lemma take_append [simp]: | 
| 24526 | 1680 | "take n (xs @ ys) = (take n xs @ take (n - length xs) ys)" | 
| 1681 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 13114 | 1682 | |
| 13142 | 1683 | lemma drop_append [simp]: | 
| 24526 | 1684 | "drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys" | 
| 1685 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1686 | ||
| 1687 | lemma take_take [simp]: "take n (take m xs) = take (min n m) xs" | |
| 1688 | apply (induct m arbitrary: xs n, auto) | |
| 14208 | 1689 | apply (case_tac xs, auto) | 
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
15176diff
changeset | 1690 | apply (case_tac n, auto) | 
| 13145 | 1691 | done | 
| 13114 | 1692 | |
| 24526 | 1693 | lemma drop_drop [simp]: "drop n (drop m xs) = drop (n + m) xs" | 
| 1694 | apply (induct m arbitrary: xs, auto) | |
| 14208 | 1695 | apply (case_tac xs, auto) | 
| 13145 | 1696 | done | 
| 13114 | 1697 | |
| 24526 | 1698 | lemma take_drop: "take n (drop m xs) = drop m (take (n + m) xs)" | 
| 1699 | apply (induct m arbitrary: xs n, auto) | |
| 14208 | 1700 | apply (case_tac xs, auto) | 
| 13145 | 1701 | done | 
| 13114 | 1702 | |
| 24526 | 1703 | lemma drop_take: "drop n (take m xs) = take (m-n) (drop n xs)" | 
| 1704 | apply(induct xs arbitrary: m n) | |
| 14802 | 1705 | apply simp | 
| 1706 | apply(simp add: take_Cons drop_Cons split:nat.split) | |
| 1707 | done | |
| 1708 | ||
| 24526 | 1709 | lemma append_take_drop_id [simp]: "take n xs @ drop n xs = xs" | 
| 1710 | apply (induct n arbitrary: xs, auto) | |
| 14208 | 1711 | apply (case_tac xs, auto) | 
| 13145 | 1712 | done | 
| 13114 | 1713 | |
| 24526 | 1714 | lemma take_eq_Nil[simp]: "(take n xs = []) = (n = 0 \<or> xs = [])" | 
| 1715 | apply(induct xs arbitrary: n) | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1716 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1717 | apply(simp add:take_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1718 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1719 | |
| 24526 | 1720 | lemma drop_eq_Nil[simp]: "(drop n xs = []) = (length xs <= n)" | 
| 1721 | apply(induct xs arbitrary: n) | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1722 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1723 | apply(simp add:drop_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1724 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1725 | |
| 24526 | 1726 | lemma take_map: "take n (map f xs) = map f (take n xs)" | 
| 1727 | apply (induct n arbitrary: xs, auto) | |
| 14208 | 1728 | apply (case_tac xs, auto) | 
| 13145 | 1729 | done | 
| 13114 | 1730 | |
| 24526 | 1731 | lemma drop_map: "drop n (map f xs) = map f (drop n xs)" | 
| 1732 | apply (induct n arbitrary: xs, auto) | |
| 14208 | 1733 | apply (case_tac xs, auto) | 
| 13145 | 1734 | done | 
| 13114 | 1735 | |
| 24526 | 1736 | lemma rev_take: "rev (take i xs) = drop (length xs - i) (rev xs)" | 
| 1737 | apply (induct xs arbitrary: i, auto) | |
| 14208 | 1738 | apply (case_tac i, auto) | 
| 13145 | 1739 | done | 
| 13114 | 1740 | |
| 24526 | 1741 | lemma rev_drop: "rev (drop i xs) = take (length xs - i) (rev xs)" | 
| 1742 | apply (induct xs arbitrary: i, auto) | |
| 14208 | 1743 | apply (case_tac i, auto) | 
| 13145 | 1744 | done | 
| 13114 | 1745 | |
| 24526 | 1746 | lemma nth_take [simp]: "i < n ==> (take n xs)!i = xs!i" | 
| 1747 | apply (induct xs arbitrary: i n, auto) | |
| 14208 | 1748 | apply (case_tac n, blast) | 
| 1749 | apply (case_tac i, auto) | |
| 13145 | 1750 | done | 
| 13114 | 1751 | |
| 13142 | 1752 | lemma nth_drop [simp]: | 
| 24526 | 1753 | "n + i <= length xs ==> (drop n xs)!i = xs!(n + i)" | 
| 1754 | apply (induct n arbitrary: xs i, auto) | |
| 14208 | 1755 | apply (case_tac xs, auto) | 
| 13145 | 1756 | done | 
| 3507 | 1757 | |
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1758 | lemma butlast_take: | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1759 | "n <= length xs ==> butlast (take n xs) = take (n - 1) xs" | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1760 | by (simp add: butlast_conv_take min_max.inf_absorb1 min_max.inf_absorb2) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1761 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1762 | lemma butlast_drop: "butlast (drop n xs) = drop n (butlast xs)" | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1763 | by (simp add: butlast_conv_take drop_take add_ac) | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1764 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1765 | lemma take_butlast: "n < length xs ==> take n (butlast xs) = take n xs" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1766 | by (simp add: butlast_conv_take min_max.inf_absorb1) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1767 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1768 | lemma drop_butlast: "drop n (butlast xs) = butlast (drop n xs)" | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1769 | by (simp add: butlast_conv_take drop_take add_ac) | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1770 | |
| 18423 | 1771 | lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n" | 
| 1772 | by(simp add: hd_conv_nth) | |
| 1773 | ||
| 35248 | 1774 | lemma set_take_subset_set_take: | 
| 1775 | "m <= n \<Longrightarrow> set(take m xs) <= set(take n xs)" | |
| 41463 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 1776 | apply (induct xs arbitrary: m n) | 
| 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 1777 | apply simp | 
| 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 1778 | apply (case_tac n) | 
| 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 1779 | apply (auto simp: take_Cons) | 
| 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 1780 | done | 
| 35248 | 1781 | |
| 24526 | 1782 | lemma set_take_subset: "set(take n xs) \<subseteq> set xs" | 
| 1783 | by(induct xs arbitrary: n)(auto simp:take_Cons split:nat.split) | |
| 1784 | ||
| 1785 | lemma set_drop_subset: "set(drop n xs) \<subseteq> set xs" | |
| 1786 | by(induct xs arbitrary: n)(auto simp:drop_Cons split:nat.split) | |
| 14025 | 1787 | |
| 35248 | 1788 | lemma set_drop_subset_set_drop: | 
| 1789 | "m >= n \<Longrightarrow> set(drop m xs) <= set(drop n xs)" | |
| 1790 | apply(induct xs arbitrary: m n) | |
| 1791 | apply(auto simp:drop_Cons split:nat.split) | |
| 1792 | apply (metis set_drop_subset subset_iff) | |
| 1793 | done | |
| 1794 | ||
| 14187 | 1795 | lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs" | 
| 1796 | using set_take_subset by fast | |
| 1797 | ||
| 1798 | lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs" | |
| 1799 | using set_drop_subset by fast | |
| 1800 | ||
| 13114 | 1801 | lemma append_eq_conv_conj: | 
| 24526 | 1802 | "(xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)" | 
| 1803 | apply (induct xs arbitrary: zs, simp, clarsimp) | |
| 14208 | 1804 | apply (case_tac zs, auto) | 
| 13145 | 1805 | done | 
| 13142 | 1806 | |
| 24526 | 1807 | lemma take_add: | 
| 42713 | 1808 | "take (i+j) xs = take i xs @ take j (drop i xs)" | 
| 24526 | 1809 | apply (induct xs arbitrary: i, auto) | 
| 1810 | apply (case_tac i, simp_all) | |
| 14050 | 1811 | done | 
| 1812 | ||
| 14300 | 1813 | lemma append_eq_append_conv_if: | 
| 24526 | 1814 | "(xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) = | 
| 14300 | 1815 | (if size xs\<^isub>1 \<le> size ys\<^isub>1 | 
| 1816 | then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2 | |
| 1817 | else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)" | |
| 24526 | 1818 | apply(induct xs\<^isub>1 arbitrary: ys\<^isub>1) | 
| 14300 | 1819 | apply simp | 
| 1820 | apply(case_tac ys\<^isub>1) | |
| 1821 | apply simp_all | |
| 1822 | done | |
| 1823 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1824 | lemma take_hd_drop: | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30008diff
changeset | 1825 | "n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (Suc n) xs" | 
| 24526 | 1826 | apply(induct xs arbitrary: n) | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1827 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1828 | apply(simp add:drop_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1829 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1830 | |
| 17501 | 1831 | lemma id_take_nth_drop: | 
| 1832 | "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" | |
| 1833 | proof - | |
| 1834 | assume si: "i < length xs" | |
| 1835 | hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto | |
| 1836 | moreover | |
| 1837 | from si have "take (Suc i) xs = take i xs @ [xs!i]" | |
| 1838 | apply (rule_tac take_Suc_conv_app_nth) by arith | |
| 1839 | ultimately show ?thesis by auto | |
| 1840 | qed | |
| 1841 | ||
| 1842 | lemma upd_conv_take_nth_drop: | |
| 1843 | "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs" | |
| 1844 | proof - | |
| 1845 | assume i: "i < length xs" | |
| 1846 | have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]" | |
| 1847 | by(rule arg_cong[OF id_take_nth_drop[OF i]]) | |
| 1848 | also have "\<dots> = take i xs @ a # drop (Suc i) xs" | |
| 1849 | using i by (simp add: list_update_append) | |
| 1850 | finally show ?thesis . | |
| 1851 | qed | |
| 1852 | ||
| 24796 | 1853 | lemma nth_drop': | 
| 1854 | "i < length xs \<Longrightarrow> xs ! i # drop (Suc i) xs = drop i xs" | |
| 1855 | apply (induct i arbitrary: xs) | |
| 1856 | apply (simp add: neq_Nil_conv) | |
| 1857 | apply (erule exE)+ | |
| 1858 | apply simp | |
| 1859 | apply (case_tac xs) | |
| 1860 | apply simp_all | |
| 1861 | done | |
| 1862 | ||
| 13114 | 1863 | |
| 15392 | 1864 | subsubsection {* @{text takeWhile} and @{text dropWhile} *}
 | 
| 13114 | 1865 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1866 | lemma length_takeWhile_le: "length (takeWhile P xs) \<le> length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1867 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1868 | |
| 13142 | 1869 | lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs" | 
| 13145 | 1870 | by (induct xs) auto | 
| 13114 | 1871 | |
| 13142 | 1872 | lemma takeWhile_append1 [simp]: | 
| 13145 | 1873 | "[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs" | 
| 1874 | by (induct xs) auto | |
| 13114 | 1875 | |
| 13142 | 1876 | lemma takeWhile_append2 [simp]: | 
| 13145 | 1877 | "(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys" | 
| 1878 | by (induct xs) auto | |
| 13114 | 1879 | |
| 13142 | 1880 | lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs" | 
| 13145 | 1881 | by (induct xs) auto | 
| 13114 | 1882 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1883 | lemma takeWhile_nth: "j < length (takeWhile P xs) \<Longrightarrow> takeWhile P xs ! j = xs ! j" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1884 | apply (subst (3) takeWhile_dropWhile_id[symmetric]) unfolding nth_append by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1885 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1886 | lemma dropWhile_nth: "j < length (dropWhile P xs) \<Longrightarrow> dropWhile P xs ! j = xs ! (j + length (takeWhile P xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1887 | apply (subst (3) takeWhile_dropWhile_id[symmetric]) unfolding nth_append by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1888 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1889 | lemma length_dropWhile_le: "length (dropWhile P xs) \<le> length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1890 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1891 | |
| 13142 | 1892 | lemma dropWhile_append1 [simp]: | 
| 13145 | 1893 | "[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys" | 
| 1894 | by (induct xs) auto | |
| 13114 | 1895 | |
| 13142 | 1896 | lemma dropWhile_append2 [simp]: | 
| 13145 | 1897 | "(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys" | 
| 1898 | by (induct xs) auto | |
| 13114 | 1899 | |
| 23971 
e6d505d5b03d
renamed lemma "set_take_whileD" to "set_takeWhileD"
 krauss parents: 
23740diff
changeset | 1900 | lemma set_takeWhileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x" | 
| 13145 | 1901 | by (induct xs) (auto split: split_if_asm) | 
| 13114 | 1902 | |
| 13913 | 1903 | lemma takeWhile_eq_all_conv[simp]: | 
| 1904 | "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)" | |
| 1905 | by(induct xs, auto) | |
| 1906 | ||
| 1907 | lemma dropWhile_eq_Nil_conv[simp]: | |
| 1908 | "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)" | |
| 1909 | by(induct xs, auto) | |
| 1910 | ||
| 1911 | lemma dropWhile_eq_Cons_conv: | |
| 1912 | "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)" | |
| 1913 | by(induct xs, auto) | |
| 1914 | ||
| 31077 | 1915 | lemma distinct_takeWhile[simp]: "distinct xs ==> distinct (takeWhile P xs)" | 
| 1916 | by (induct xs) (auto dest: set_takeWhileD) | |
| 1917 | ||
| 1918 | lemma distinct_dropWhile[simp]: "distinct xs ==> distinct (dropWhile P xs)" | |
| 1919 | by (induct xs) auto | |
| 1920 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1921 | lemma takeWhile_map: "takeWhile P (map f xs) = map f (takeWhile (P \<circ> f) xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1922 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1923 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1924 | lemma dropWhile_map: "dropWhile P (map f xs) = map f (dropWhile (P \<circ> f) xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1925 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1926 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1927 | lemma takeWhile_eq_take: "takeWhile P xs = take (length (takeWhile P xs)) xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1928 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1929 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1930 | lemma dropWhile_eq_drop: "dropWhile P xs = drop (length (takeWhile P xs)) xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1931 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1932 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1933 | lemma hd_dropWhile: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1934 | "dropWhile P xs \<noteq> [] \<Longrightarrow> \<not> P (hd (dropWhile P xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1935 | using assms by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1936 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1937 | lemma takeWhile_eq_filter: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1938 | assumes "\<And> x. x \<in> set (dropWhile P xs) \<Longrightarrow> \<not> P x" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1939 | shows "takeWhile P xs = filter P xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1940 | proof - | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1941 | have A: "filter P xs = filter P (takeWhile P xs @ dropWhile P xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1942 | by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1943 | have B: "filter P (dropWhile P xs) = []" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1944 | unfolding filter_empty_conv using assms by blast | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1945 | have "filter P xs = takeWhile P xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1946 | unfolding A filter_append B | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1947 | by (auto simp add: filter_id_conv dest: set_takeWhileD) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1948 | thus ?thesis .. | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1949 | qed | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1950 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1951 | lemma takeWhile_eq_take_P_nth: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1952 | "\<lbrakk> \<And> i. \<lbrakk> i < n ; i < length xs \<rbrakk> \<Longrightarrow> P (xs ! i) ; n < length xs \<Longrightarrow> \<not> P (xs ! n) \<rbrakk> \<Longrightarrow> | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1953 | takeWhile P xs = take n xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1954 | proof (induct xs arbitrary: n) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1955 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1956 | thus ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1957 | proof (cases n) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1958 | case (Suc n') note this[simp] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1959 | have "P x" using Cons.prems(1)[of 0] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1960 | moreover have "takeWhile P xs = take n' xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1961 | proof (rule Cons.hyps) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1962 | case goal1 thus "P (xs ! i)" using Cons.prems(1)[of "Suc i"] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1963 | next case goal2 thus ?case using Cons by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1964 | qed | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1965 | ultimately show ?thesis by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1966 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1967 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1968 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1969 | lemma nth_length_takeWhile: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1970 | "length (takeWhile P xs) < length xs \<Longrightarrow> \<not> P (xs ! length (takeWhile P xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1971 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1972 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1973 | lemma length_takeWhile_less_P_nth: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1974 | assumes all: "\<And> i. i < j \<Longrightarrow> P (xs ! i)" and "j \<le> length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1975 | shows "j \<le> length (takeWhile P xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1976 | proof (rule classical) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1977 | assume "\<not> ?thesis" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1978 | hence "length (takeWhile P xs) < length xs" using assms by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1979 | thus ?thesis using all `\<not> ?thesis` nth_length_takeWhile[of P xs] by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1980 | qed | 
| 31077 | 1981 | |
| 17501 | 1982 | text{* The following two lemmmas could be generalized to an arbitrary
 | 
| 1983 | property. *} | |
| 1984 | ||
| 1985 | lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow> | |
| 1986 | takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))" | |
| 1987 | by(induct xs) (auto simp: takeWhile_tail[where l="[]"]) | |
| 1988 | ||
| 1989 | lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow> | |
| 1990 | dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)" | |
| 1991 | apply(induct xs) | |
| 1992 | apply simp | |
| 1993 | apply auto | |
| 1994 | apply(subst dropWhile_append2) | |
| 1995 | apply auto | |
| 1996 | done | |
| 1997 | ||
| 18423 | 1998 | lemma takeWhile_not_last: | 
| 1999 | "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs" | |
| 2000 | apply(induct xs) | |
| 2001 | apply simp | |
| 2002 | apply(case_tac xs) | |
| 2003 | apply(auto) | |
| 2004 | done | |
| 2005 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 2006 | lemma takeWhile_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2007 | "[| l = k; !!x. x : set l ==> P x = Q x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2008 | ==> takeWhile P l = takeWhile Q k" | 
| 24349 | 2009 | by (induct k arbitrary: l) (simp_all) | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2010 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 2011 | lemma dropWhile_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2012 | "[| l = k; !!x. x : set l ==> P x = Q x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2013 | ==> dropWhile P l = dropWhile Q k" | 
| 24349 | 2014 | by (induct k arbitrary: l, simp_all) | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2015 | |
| 13114 | 2016 | |
| 15392 | 2017 | subsubsection {* @{text zip} *}
 | 
| 13114 | 2018 | |
| 13142 | 2019 | lemma zip_Nil [simp]: "zip [] ys = []" | 
| 13145 | 2020 | by (induct ys) auto | 
| 13114 | 2021 | |
| 13142 | 2022 | lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys" | 
| 13145 | 2023 | by simp | 
| 13114 | 2024 | |
| 13142 | 2025 | declare zip_Cons [simp del] | 
| 13114 | 2026 | |
| 36198 | 2027 | lemma [code]: | 
| 2028 | "zip [] ys = []" | |
| 2029 | "zip xs [] = []" | |
| 2030 | "zip (x # xs) (y # ys) = (x, y) # zip xs ys" | |
| 2031 | by (fact zip_Nil zip.simps(1) zip_Cons_Cons)+ | |
| 2032 | ||
| 15281 | 2033 | lemma zip_Cons1: | 
| 2034 | "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)" | |
| 2035 | by(auto split:list.split) | |
| 2036 | ||
| 13142 | 2037 | lemma length_zip [simp]: | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2038 | "length (zip xs ys) = min (length xs) (length ys)" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2039 | by (induct xs ys rule:list_induct2') auto | 
| 13114 | 2040 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2041 | lemma zip_obtain_same_length: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2042 | assumes "\<And>zs ws n. length zs = length ws \<Longrightarrow> n = min (length xs) (length ys) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2043 | \<Longrightarrow> zs = take n xs \<Longrightarrow> ws = take n ys \<Longrightarrow> P (zip zs ws)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2044 | shows "P (zip xs ys)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2045 | proof - | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2046 | let ?n = "min (length xs) (length ys)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2047 | have "P (zip (take ?n xs) (take ?n ys))" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2048 | by (rule assms) simp_all | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2049 | moreover have "zip xs ys = zip (take ?n xs) (take ?n ys)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2050 | proof (induct xs arbitrary: ys) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2051 | case Nil then show ?case by simp | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2052 | next | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2053 | case (Cons x xs) then show ?case by (cases ys) simp_all | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2054 | qed | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2055 | ultimately show ?thesis by simp | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2056 | qed | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2057 | |
| 13114 | 2058 | lemma zip_append1: | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2059 | "zip (xs @ ys) zs = | 
| 13145 | 2060 | zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)" | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2061 | by (induct xs zs rule:list_induct2') auto | 
| 13114 | 2062 | |
| 2063 | lemma zip_append2: | |
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2064 | "zip xs (ys @ zs) = | 
| 13145 | 2065 | zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs" | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2066 | by (induct xs ys rule:list_induct2') auto | 
| 13114 | 2067 | |
| 13142 | 2068 | lemma zip_append [simp]: | 
| 2069 | "[| length xs = length us; length ys = length vs |] ==> | |
| 13145 | 2070 | zip (xs@ys) (us@vs) = zip xs us @ zip ys vs" | 
| 2071 | by (simp add: zip_append1) | |
| 13114 | 2072 | |
| 2073 | lemma zip_rev: | |
| 14247 | 2074 | "length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)" | 
| 2075 | by (induct rule:list_induct2, simp_all) | |
| 13114 | 2076 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2077 | lemma zip_map_map: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2078 | "zip (map f xs) (map g ys) = map (\<lambda> (x, y). (f x, g y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2079 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2080 | case (Cons x xs) note Cons_x_xs = Cons.hyps | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2081 | show ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2082 | proof (cases ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2083 | case (Cons y ys') | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2084 | show ?thesis unfolding Cons using Cons_x_xs by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2085 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2086 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2087 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2088 | lemma zip_map1: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2089 | "zip (map f xs) ys = map (\<lambda>(x, y). (f x, y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2090 | using zip_map_map[of f xs "\<lambda>x. x" ys] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2091 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2092 | lemma zip_map2: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2093 | "zip xs (map f ys) = map (\<lambda>(x, y). (x, f y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2094 | using zip_map_map[of "\<lambda>x. x" xs f ys] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2095 | |
| 23096 | 2096 | lemma map_zip_map: | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2097 | "map f (zip (map g xs) ys) = map (%(x,y). f(g x, y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2098 | unfolding zip_map1 by auto | 
| 23096 | 2099 | |
| 2100 | lemma map_zip_map2: | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2101 | "map f (zip xs (map g ys)) = map (%(x,y). f(x, g y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2102 | unfolding zip_map2 by auto | 
| 23096 | 2103 | |
| 31080 | 2104 | text{* Courtesy of Andreas Lochbihler: *}
 | 
| 2105 | lemma zip_same_conv_map: "zip xs xs = map (\<lambda>x. (x, x)) xs" | |
| 2106 | by(induct xs) auto | |
| 2107 | ||
| 13142 | 2108 | lemma nth_zip [simp]: | 
| 24526 | 2109 | "[| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)" | 
| 2110 | apply (induct ys arbitrary: i xs, simp) | |
| 13145 | 2111 | apply (case_tac xs) | 
| 2112 | apply (simp_all add: nth.simps split: nat.split) | |
| 2113 | done | |
| 13114 | 2114 | |
| 2115 | lemma set_zip: | |
| 13145 | 2116 | "set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
 | 
| 31080 | 2117 | by(simp add: set_conv_nth cong: rev_conj_cong) | 
| 13114 | 2118 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2119 | lemma zip_same: "((a,b) \<in> set (zip xs xs)) = (a \<in> set xs \<and> a = b)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2120 | by(induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2121 | |
| 13114 | 2122 | lemma zip_update: | 
| 31080 | 2123 | "zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]" | 
| 2124 | by(rule sym, simp add: update_zip) | |
| 13114 | 2125 | |
| 13142 | 2126 | lemma zip_replicate [simp]: | 
| 24526 | 2127 | "zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)" | 
| 2128 | apply (induct i arbitrary: j, auto) | |
| 14208 | 2129 | apply (case_tac j, auto) | 
| 13145 | 2130 | done | 
| 13114 | 2131 | |
| 19487 | 2132 | lemma take_zip: | 
| 24526 | 2133 | "take n (zip xs ys) = zip (take n xs) (take n ys)" | 
| 2134 | apply (induct n arbitrary: xs ys) | |
| 19487 | 2135 | apply simp | 
| 2136 | apply (case_tac xs, simp) | |
| 2137 | apply (case_tac ys, simp_all) | |
| 2138 | done | |
| 2139 | ||
| 2140 | lemma drop_zip: | |
| 24526 | 2141 | "drop n (zip xs ys) = zip (drop n xs) (drop n ys)" | 
| 2142 | apply (induct n arbitrary: xs ys) | |
| 19487 | 2143 | apply simp | 
| 2144 | apply (case_tac xs, simp) | |
| 2145 | apply (case_tac ys, simp_all) | |
| 2146 | done | |
| 2147 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2148 | lemma zip_takeWhile_fst: "zip (takeWhile P xs) ys = takeWhile (P \<circ> fst) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2149 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2150 | case (Cons x xs) thus ?case by (cases ys) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2151 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2152 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2153 | lemma zip_takeWhile_snd: "zip xs (takeWhile P ys) = takeWhile (P \<circ> snd) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2154 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2155 | case (Cons x xs) thus ?case by (cases ys) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2156 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2157 | |
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2158 | lemma set_zip_leftD: | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2159 | "(x,y)\<in> set (zip xs ys) \<Longrightarrow> x \<in> set xs" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2160 | by (induct xs ys rule:list_induct2') auto | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2161 | |
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2162 | lemma set_zip_rightD: | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2163 | "(x,y)\<in> set (zip xs ys) \<Longrightarrow> y \<in> set ys" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2164 | by (induct xs ys rule:list_induct2') auto | 
| 13142 | 2165 | |
| 23983 | 2166 | lemma in_set_zipE: | 
| 2167 | "(x,y) : set(zip xs ys) \<Longrightarrow> (\<lbrakk> x : set xs; y : set ys \<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R" | |
| 2168 | by(blast dest: set_zip_leftD set_zip_rightD) | |
| 2169 | ||
| 29829 | 2170 | lemma zip_map_fst_snd: | 
| 2171 | "zip (map fst zs) (map snd zs) = zs" | |
| 2172 | by (induct zs) simp_all | |
| 2173 | ||
| 2174 | lemma zip_eq_conv: | |
| 2175 | "length xs = length ys \<Longrightarrow> zip xs ys = zs \<longleftrightarrow> map fst zs = xs \<and> map snd zs = ys" | |
| 2176 | by (auto simp add: zip_map_fst_snd) | |
| 2177 | ||
| 35115 | 2178 | |
| 15392 | 2179 | subsubsection {* @{text list_all2} *}
 | 
| 13114 | 2180 | |
| 14316 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 2181 | lemma list_all2_lengthD [intro?]: | 
| 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 2182 | "list_all2 P xs ys ==> length xs = length ys" | 
| 24349 | 2183 | by (simp add: list_all2_def) | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2184 | |
| 19787 | 2185 | lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])" | 
| 24349 | 2186 | by (simp add: list_all2_def) | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2187 | |
| 19787 | 2188 | lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])" | 
| 24349 | 2189 | by (simp add: list_all2_def) | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2190 | |
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2191 | lemma list_all2_Cons [iff, code]: | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2192 | "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)" | 
| 24349 | 2193 | by (auto simp add: list_all2_def) | 
| 13114 | 2194 | |
| 2195 | lemma list_all2_Cons1: | |
| 13145 | 2196 | "list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)" | 
| 2197 | by (cases ys) auto | |
| 13114 | 2198 | |
| 2199 | lemma list_all2_Cons2: | |
| 13145 | 2200 | "list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)" | 
| 2201 | by (cases xs) auto | |
| 13114 | 2202 | |
| 13142 | 2203 | lemma list_all2_rev [iff]: | 
| 13145 | 2204 | "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys" | 
| 2205 | by (simp add: list_all2_def zip_rev cong: conj_cong) | |
| 13114 | 2206 | |
| 13863 | 2207 | lemma list_all2_rev1: | 
| 2208 | "list_all2 P (rev xs) ys = list_all2 P xs (rev ys)" | |
| 2209 | by (subst list_all2_rev [symmetric]) simp | |
| 2210 | ||
| 13114 | 2211 | lemma list_all2_append1: | 
| 13145 | 2212 | "list_all2 P (xs @ ys) zs = | 
| 2213 | (EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and> | |
| 2214 | list_all2 P xs us \<and> list_all2 P ys vs)" | |
| 2215 | apply (simp add: list_all2_def zip_append1) | |
| 2216 | apply (rule iffI) | |
| 2217 | apply (rule_tac x = "take (length xs) zs" in exI) | |
| 2218 | apply (rule_tac x = "drop (length xs) zs" in exI) | |
| 14208 | 2219 | apply (force split: nat_diff_split simp add: min_def, clarify) | 
| 13145 | 2220 | apply (simp add: ball_Un) | 
| 2221 | done | |
| 13114 | 2222 | |
| 2223 | lemma list_all2_append2: | |
| 13145 | 2224 | "list_all2 P xs (ys @ zs) = | 
| 2225 | (EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and> | |
| 2226 | list_all2 P us ys \<and> list_all2 P vs zs)" | |
| 2227 | apply (simp add: list_all2_def zip_append2) | |
| 2228 | apply (rule iffI) | |
| 2229 | apply (rule_tac x = "take (length ys) xs" in exI) | |
| 2230 | apply (rule_tac x = "drop (length ys) xs" in exI) | |
| 14208 | 2231 | apply (force split: nat_diff_split simp add: min_def, clarify) | 
| 13145 | 2232 | apply (simp add: ball_Un) | 
| 2233 | done | |
| 13114 | 2234 | |
| 13863 | 2235 | lemma list_all2_append: | 
| 14247 | 2236 | "length xs = length ys \<Longrightarrow> | 
| 2237 | list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)" | |
| 2238 | by (induct rule:list_induct2, simp_all) | |
| 13863 | 2239 | |
| 2240 | lemma list_all2_appendI [intro?, trans]: | |
| 2241 | "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)" | |
| 24349 | 2242 | by (simp add: list_all2_append list_all2_lengthD) | 
| 13863 | 2243 | |
| 13114 | 2244 | lemma list_all2_conv_all_nth: | 
| 13145 | 2245 | "list_all2 P xs ys = | 
| 2246 | (length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))" | |
| 2247 | by (force simp add: list_all2_def set_zip) | |
| 13114 | 2248 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2249 | lemma list_all2_trans: | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2250 | assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2251 | shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2252 | (is "!!bs cs. PROP ?Q as bs cs") | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2253 | proof (induct as) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2254 | fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2255 | show "!!cs. PROP ?Q (x # xs) bs cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2256 | proof (induct bs) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2257 | fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2258 | show "PROP ?Q (x # xs) (y # ys) cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2259 | by (induct cs) (auto intro: tr I1 I2) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2260 | qed simp | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2261 | qed simp | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2262 | |
| 13863 | 2263 | lemma list_all2_all_nthI [intro?]: | 
| 2264 | "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b" | |
| 24349 | 2265 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2266 | |
| 14395 | 2267 | lemma list_all2I: | 
| 2268 | "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b" | |
| 24349 | 2269 | by (simp add: list_all2_def) | 
| 14395 | 2270 | |
| 14328 | 2271 | lemma list_all2_nthD: | 
| 13863 | 2272 | "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)" | 
| 24349 | 2273 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2274 | |
| 14302 | 2275 | lemma list_all2_nthD2: | 
| 2276 | "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)" | |
| 24349 | 2277 | by (frule list_all2_lengthD) (auto intro: list_all2_nthD) | 
| 14302 | 2278 | |
| 13863 | 2279 | lemma list_all2_map1: | 
| 2280 | "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs" | |
| 24349 | 2281 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2282 | |
| 2283 | lemma list_all2_map2: | |
| 2284 | "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs" | |
| 24349 | 2285 | by (auto simp add: list_all2_conv_all_nth) | 
| 13863 | 2286 | |
| 14316 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 2287 | lemma list_all2_refl [intro?]: | 
| 13863 | 2288 | "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs" | 
| 24349 | 2289 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2290 | |
| 2291 | lemma list_all2_update_cong: | |
| 2292 | "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])" | |
| 24349 | 2293 | by (simp add: list_all2_conv_all_nth nth_list_update) | 
| 13863 | 2294 | |
| 2295 | lemma list_all2_update_cong2: | |
| 2296 | "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])" | |
| 24349 | 2297 | by (simp add: list_all2_lengthD list_all2_update_cong) | 
| 13863 | 2298 | |
| 14302 | 2299 | lemma list_all2_takeI [simp,intro?]: | 
| 24526 | 2300 | "list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)" | 
| 2301 | apply (induct xs arbitrary: n ys) | |
| 2302 | apply simp | |
| 2303 | apply (clarsimp simp add: list_all2_Cons1) | |
| 2304 | apply (case_tac n) | |
| 2305 | apply auto | |
| 2306 | done | |
| 14302 | 2307 | |
| 2308 | lemma list_all2_dropI [simp,intro?]: | |
| 24526 | 2309 | "list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)" | 
| 2310 | apply (induct as arbitrary: n bs, simp) | |
| 2311 | apply (clarsimp simp add: list_all2_Cons1) | |
| 2312 | apply (case_tac n, simp, simp) | |
| 2313 | done | |
| 13863 | 2314 | |
| 14327 | 2315 | lemma list_all2_mono [intro?]: | 
| 24526 | 2316 | "list_all2 P xs ys \<Longrightarrow> (\<And>xs ys. P xs ys \<Longrightarrow> Q xs ys) \<Longrightarrow> list_all2 Q xs ys" | 
| 2317 | apply (induct xs arbitrary: ys, simp) | |
| 2318 | apply (case_tac ys, auto) | |
| 2319 | done | |
| 13863 | 2320 | |
| 22551 | 2321 | lemma list_all2_eq: | 
| 2322 | "xs = ys \<longleftrightarrow> list_all2 (op =) xs ys" | |
| 24349 | 2323 | by (induct xs ys rule: list_induct2') auto | 
| 22551 | 2324 | |
| 40230 | 2325 | lemma list_eq_iff_zip_eq: | 
| 2326 | "xs = ys \<longleftrightarrow> length xs = length ys \<and> (\<forall>(x,y) \<in> set (zip xs ys). x = y)" | |
| 2327 | by(auto simp add: set_zip list_all2_eq list_all2_conv_all_nth cong: conj_cong) | |
| 2328 | ||
| 13142 | 2329 | |
| 15392 | 2330 | subsubsection {* @{text foldl} and @{text foldr} *}
 | 
| 13142 | 2331 | |
| 2332 | lemma foldl_append [simp]: | |
| 24526 | 2333 | "foldl f a (xs @ ys) = foldl f (foldl f a xs) ys" | 
| 2334 | by (induct xs arbitrary: a) auto | |
| 13142 | 2335 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2336 | lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2337 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2338 | |
| 23096 | 2339 | lemma foldr_map: "foldr g (map f xs) a = foldr (g o f) xs a" | 
| 2340 | by(induct xs) simp_all | |
| 2341 | ||
| 24449 | 2342 | text{* For efficient code generation: avoid intermediate list. *}
 | 
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 2343 | lemma foldl_map[code_unfold]: | 
| 24449 | 2344 | "foldl g a (map f xs) = foldl (%a x. g a (f x)) a xs" | 
| 23096 | 2345 | by(induct xs arbitrary:a) simp_all | 
| 2346 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2347 | lemma foldl_apply: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2348 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> f x \<circ> h = h \<circ> g x" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2349 | shows "foldl (\<lambda>s x. f x s) (h s) xs = h (foldl (\<lambda>s x. g x s) s xs)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39272diff
changeset | 2350 | by (rule sym, insert assms, induct xs arbitrary: s) (simp_all add: fun_eq_iff) | 
| 31930 | 2351 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 2352 | lemma foldl_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2353 | "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2354 | ==> foldl f a l = foldl g b k" | 
| 24349 | 2355 | by (induct k arbitrary: a b l) simp_all | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2356 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 2357 | lemma foldr_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2358 | "[| a = b; l = k; !!a x. x : set l ==> f x a = g x a |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2359 | ==> foldr f l a = foldr g k b" | 
| 24349 | 2360 | by (induct k arbitrary: a b l) simp_all | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2361 | |
| 35195 | 2362 | lemma foldl_fun_comm: | 
| 2363 | assumes "\<And>x y s. f (f s x) y = f (f s y) x" | |
| 2364 | shows "f (foldl f s xs) x = foldl f (f s x) xs" | |
| 2365 | by (induct xs arbitrary: s) | |
| 2366 | (simp_all add: assms) | |
| 2367 | ||
| 24449 | 2368 | lemma (in semigroup_add) foldl_assoc: | 
| 25062 | 2369 | shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)" | 
| 24449 | 2370 | by (induct zs arbitrary: y) (simp_all add:add_assoc) | 
| 2371 | ||
| 2372 | lemma (in monoid_add) foldl_absorb0: | |
| 25062 | 2373 | shows "x + (foldl op+ 0 zs) = foldl op+ x zs" | 
| 24449 | 2374 | by (induct zs) (simp_all add:foldl_assoc) | 
| 2375 | ||
| 35195 | 2376 | lemma foldl_rev: | 
| 2377 | assumes "\<And>x y s. f (f s x) y = f (f s y) x" | |
| 2378 | shows "foldl f s (rev xs) = foldl f s xs" | |
| 2379 | proof (induct xs arbitrary: s) | |
| 2380 | case Nil then show ?case by simp | |
| 2381 | next | |
| 2382 | case (Cons x xs) with assms show ?case by (simp add: foldl_fun_comm) | |
| 2383 | qed | |
| 2384 | ||
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2385 | lemma rev_foldl_cons [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2386 | "rev xs = foldl (\<lambda>xs x. x # xs) [] xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2387 | proof (induct xs) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2388 | case Nil then show ?case by simp | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2389 | next | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2390 | case Cons | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2391 |   {
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2392 | fix x xs ys | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2393 | have "foldl (\<lambda>xs x. x # xs) ys xs @ [x] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2394 | = foldl (\<lambda>xs x. x # xs) (ys @ [x]) xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2395 | by (induct xs arbitrary: ys) auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2396 | } | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2397 | note aux = this | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2398 | show ?case by (induct xs) (auto simp add: Cons aux) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2399 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2400 | |
| 24449 | 2401 | |
| 39774 | 2402 | text{* The ``Third Duality Theorem'' in Bird \& Wadler: *}
 | 
| 2403 | ||
| 2404 | lemma foldr_foldl: | |
| 2405 | "foldr f xs a = foldl (%x y. f y x) a (rev xs)" | |
| 2406 | by (induct xs) auto | |
| 2407 | ||
| 2408 | lemma foldl_foldr: | |
| 2409 | "foldl f a xs = foldr (%x y. f y x) (rev xs) a" | |
| 2410 | by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"]) | |
| 2411 | ||
| 2412 | ||
| 23096 | 2413 | text{* The ``First Duality Theorem'' in Bird \& Wadler: *}
 | 
| 2414 | ||
| 39774 | 2415 | lemma (in monoid_add) foldl_foldr1_lemma: | 
| 2416 | "foldl op + a xs = a + foldr op + xs 0" | |
| 2417 | by (induct xs arbitrary: a) (auto simp: add_assoc) | |
| 2418 | ||
| 2419 | corollary (in monoid_add) foldl_foldr1: | |
| 2420 | "foldl op + 0 xs = foldr op + xs 0" | |
| 2421 | by (simp add: foldl_foldr1_lemma) | |
| 2422 | ||
| 2423 | lemma (in ab_semigroup_add) foldr_conv_foldl: | |
| 2424 | "foldr op + xs a = foldl op + a xs" | |
| 2425 | by (induct xs) (simp_all add: foldl_assoc add.commute) | |
| 24471 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2426 | |
| 13142 | 2427 | text {*
 | 
| 13145 | 2428 | Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
 | 
| 2429 | difficult to use because it requires an additional transitivity step. | |
| 13142 | 2430 | *} | 
| 2431 | ||
| 24526 | 2432 | lemma start_le_sum: "(m::nat) <= n ==> m <= foldl (op +) n ns" | 
| 2433 | by (induct ns arbitrary: n) auto | |
| 2434 | ||
| 2435 | lemma elem_le_sum: "(n::nat) : set ns ==> n <= foldl (op +) 0 ns" | |
| 13145 | 2436 | by (force intro: start_le_sum simp add: in_set_conv_decomp) | 
| 13142 | 2437 | |
| 2438 | lemma sum_eq_0_conv [iff]: | |
| 24526 | 2439 | "(foldl (op +) (m::nat) ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))" | 
| 2440 | by (induct ns arbitrary: m) auto | |
| 13114 | 2441 | |
| 24471 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2442 | lemma foldr_invariant: | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2443 | "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f x y) \<rbrakk> \<Longrightarrow> Q (foldr f xs x)" | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2444 | by (induct xs, simp_all) | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2445 | |
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2446 | lemma foldl_invariant: | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2447 | "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f y x) \<rbrakk> \<Longrightarrow> Q (foldl f x xs)" | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2448 | by (induct xs arbitrary: x, simp_all) | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2449 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2450 | lemma foldl_weak_invariant: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2451 | assumes "P s" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2452 | and "\<And>s x. x \<in> set xs \<Longrightarrow> P s \<Longrightarrow> P (f s x)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2453 | shows "P (foldl f s xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2454 | using assms by (induct xs arbitrary: s) simp_all | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2455 | |
| 31455 | 2456 | text {* @{const foldl} and @{const concat} *}
 | 
| 24449 | 2457 | |
| 2458 | lemma foldl_conv_concat: | |
| 29782 | 2459 | "foldl (op @) xs xss = xs @ concat xss" | 
| 2460 | proof (induct xss arbitrary: xs) | |
| 2461 | case Nil show ?case by simp | |
| 2462 | next | |
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35217diff
changeset | 2463 | interpret monoid_add "op @" "[]" proof qed simp_all | 
| 29782 | 2464 | case Cons then show ?case by (simp add: foldl_absorb0) | 
| 2465 | qed | |
| 2466 | ||
| 2467 | lemma concat_conv_foldl: "concat xss = foldl (op @) [] xss" | |
| 2468 | by (simp add: foldl_conv_concat) | |
| 2469 | ||
| 31455 | 2470 | text {* @{const Finite_Set.fold} and @{const foldl} *}
 | 
| 2471 | ||
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
42809diff
changeset | 2472 | lemma (in comp_fun_commute) fold_set_remdups: | 
| 35195 | 2473 | "fold f y (set xs) = foldl (\<lambda>y x. f x y) y (remdups xs)" | 
| 2474 | by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm insert_absorb) | |
| 2475 | ||
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
42809diff
changeset | 2476 | lemma (in comp_fun_idem) fold_set: | 
| 31455 | 2477 | "fold f y (set xs) = foldl (\<lambda>y x. f x y) y xs" | 
| 2478 | by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm) | |
| 2479 | ||
| 32681 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2480 | lemma (in ab_semigroup_idem_mult) fold1_set: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2481 | assumes "xs \<noteq> []" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2482 | shows "fold1 times (set xs) = foldl times (hd xs) (tl xs)" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2483 | proof - | 
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
42809diff
changeset | 2484 | interpret comp_fun_idem times by (fact comp_fun_idem) | 
| 32681 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2485 | from assms obtain y ys where xs: "xs = y # ys" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2486 | by (cases xs) auto | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2487 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2488 |   proof (cases "set ys = {}")
 | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2489 | case True with xs show ?thesis by simp | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2490 | next | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2491 | case False | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2492 | then have "fold1 times (insert y (set ys)) = fold times y (set ys)" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2493 | by (simp only: finite_set fold1_eq_fold_idem) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2494 | with xs show ?thesis by (simp add: fold_set mult_commute) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2495 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2496 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2497 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2498 | lemma (in lattice) Inf_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2499 | "Inf_fin (set (x # xs)) = foldl inf x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2500 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2501 | interpret ab_semigroup_idem_mult "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2502 | by (fact ab_semigroup_idem_mult_inf) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2503 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2504 | by (simp add: Inf_fin_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2505 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2506 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2507 | lemma (in lattice) Sup_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2508 | "Sup_fin (set (x # xs)) = foldl sup x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2509 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2510 | interpret ab_semigroup_idem_mult "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2511 | by (fact ab_semigroup_idem_mult_sup) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2512 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2513 | by (simp add: Sup_fin_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2514 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2515 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2516 | lemma (in linorder) Min_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2517 | "Min (set (x # xs)) = foldl min x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2518 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2519 | interpret ab_semigroup_idem_mult "min :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2520 | by (fact ab_semigroup_idem_mult_min) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2521 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2522 | by (simp add: Min_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2523 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2524 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2525 | lemma (in linorder) Max_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2526 | "Max (set (x # xs)) = foldl max x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2527 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2528 | interpret ab_semigroup_idem_mult "max :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2529 | by (fact ab_semigroup_idem_mult_max) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2530 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2531 | by (simp add: Max_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2532 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2533 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2534 | lemma (in complete_lattice) Inf_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2535 | "Inf (set xs) = foldl inf top xs" | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2536 | proof - | 
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
42809diff
changeset | 2537 | interpret comp_fun_idem "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
42809diff
changeset | 2538 | by (fact comp_fun_idem_inf) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2539 | show ?thesis by (simp add: Inf_fold_inf fold_set inf_commute) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2540 | qed | 
| 32681 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2541 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2542 | lemma (in complete_lattice) Sup_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2543 | "Sup (set xs) = foldl sup bot xs" | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2544 | proof - | 
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
42809diff
changeset | 2545 | interpret comp_fun_idem "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
42809diff
changeset | 2546 | by (fact comp_fun_idem_sup) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2547 | show ?thesis by (simp add: Sup_fold_sup fold_set sup_commute) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2548 | qed | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2549 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2550 | lemma (in complete_lattice) INFI_set_fold: | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2551 | "INFI (set xs) f = foldl (\<lambda>y x. inf (f x) y) top xs" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2552 | unfolding INFI_def set_map [symmetric] Inf_set_fold foldl_map | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2553 | by (simp add: inf_commute) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2554 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2555 | lemma (in complete_lattice) SUPR_set_fold: | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2556 | "SUPR (set xs) f = foldl (\<lambda>y x. sup (f x) y) bot xs" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2557 | unfolding SUPR_def set_map [symmetric] Sup_set_fold foldl_map | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2558 | by (simp add: sup_commute) | 
| 31455 | 2559 | |
| 35115 | 2560 | |
| 24645 | 2561 | subsubsection {* @{text upt} *}
 | 
| 13114 | 2562 | |
| 17090 | 2563 | lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])" | 
| 2564 | -- {* simp does not terminate! *}
 | |
| 13145 | 2565 | by (induct j) auto | 
| 13142 | 2566 | |
| 32005 | 2567 | lemmas upt_rec_number_of[simp] = upt_rec[of "number_of m" "number_of n", standard] | 
| 2568 | ||
| 15425 | 2569 | lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []" | 
| 13145 | 2570 | by (subst upt_rec) simp | 
| 13114 | 2571 | |
| 15425 | 2572 | lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)" | 
| 15281 | 2573 | by(induct j)simp_all | 
| 2574 | ||
| 2575 | lemma upt_eq_Cons_conv: | |
| 24526 | 2576 | "([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)" | 
| 2577 | apply(induct j arbitrary: x xs) | |
| 15281 | 2578 | apply simp | 
| 2579 | apply(clarsimp simp add: append_eq_Cons_conv) | |
| 2580 | apply arith | |
| 2581 | done | |
| 2582 | ||
| 15425 | 2583 | lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]" | 
| 13145 | 2584 | -- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
 | 
| 2585 | by simp | |
| 13114 | 2586 | |
| 15425 | 2587 | lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]" | 
| 26734 | 2588 | by (simp add: upt_rec) | 
| 13114 | 2589 | |
| 15425 | 2590 | lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]" | 
| 13145 | 2591 | -- {* LOOPS as a simprule, since @{text "j <= j"}. *}
 | 
| 2592 | by (induct k) auto | |
| 13114 | 2593 | |
| 15425 | 2594 | lemma length_upt [simp]: "length [i..<j] = j - i" | 
| 13145 | 2595 | by (induct j) (auto simp add: Suc_diff_le) | 
| 13114 | 2596 | |
| 15425 | 2597 | lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k" | 
| 13145 | 2598 | apply (induct j) | 
| 2599 | apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split) | |
| 2600 | done | |
| 13114 | 2601 | |
| 17906 | 2602 | |
| 2603 | lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i" | |
| 2604 | by(simp add:upt_conv_Cons) | |
| 2605 | ||
| 2606 | lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1" | |
| 2607 | apply(cases j) | |
| 2608 | apply simp | |
| 2609 | by(simp add:upt_Suc_append) | |
| 2610 | ||
| 24526 | 2611 | lemma take_upt [simp]: "i+m <= n ==> take m [i..<n] = [i..<i+m]" | 
| 2612 | apply (induct m arbitrary: i, simp) | |
| 13145 | 2613 | apply (subst upt_rec) | 
| 2614 | apply (rule sym) | |
| 2615 | apply (subst upt_rec) | |
| 2616 | apply (simp del: upt.simps) | |
| 2617 | done | |
| 3507 | 2618 | |
| 17501 | 2619 | lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]" | 
| 2620 | apply(induct j) | |
| 2621 | apply auto | |
| 2622 | done | |
| 2623 | ||
| 24645 | 2624 | lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..<Suc n]" | 
| 13145 | 2625 | by (induct n) auto | 
| 13114 | 2626 | |
| 24526 | 2627 | lemma nth_map_upt: "i < n-m ==> (map f [m..<n]) ! i = f(m+i)" | 
| 2628 | apply (induct n m arbitrary: i rule: diff_induct) | |
| 13145 | 2629 | prefer 3 apply (subst map_Suc_upt[symmetric]) | 
| 2630 | apply (auto simp add: less_diff_conv nth_upt) | |
| 2631 | done | |
| 13114 | 2632 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2633 | lemma nth_take_lemma: | 
| 24526 | 2634 | "k <= length xs ==> k <= length ys ==> | 
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2635 | (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys" | 
| 24526 | 2636 | apply (atomize, induct k arbitrary: xs ys) | 
| 14208 | 2637 | apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify) | 
| 13145 | 2638 | txt {* Both lists must be non-empty *}
 | 
| 14208 | 2639 | apply (case_tac xs, simp) | 
| 2640 | apply (case_tac ys, clarify) | |
| 13145 | 2641 | apply (simp (no_asm_use)) | 
| 2642 | apply clarify | |
| 2643 | txt {* prenexing's needed, not miniscoping *}
 | |
| 2644 | apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps) | |
| 2645 | apply blast | |
| 2646 | done | |
| 13114 | 2647 | |
| 2648 | lemma nth_equalityI: | |
| 2649 | "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys" | |
| 13145 | 2650 | apply (frule nth_take_lemma [OF le_refl eq_imp_le]) | 
| 2651 | apply (simp_all add: take_all) | |
| 2652 | done | |
| 13142 | 2653 | |
| 24796 | 2654 | lemma map_nth: | 
| 2655 | "map (\<lambda>i. xs ! i) [0..<length xs] = xs" | |
| 2656 | by (rule nth_equalityI, auto) | |
| 2657 | ||
| 13863 | 2658 | (* needs nth_equalityI *) | 
| 2659 | lemma list_all2_antisym: | |
| 2660 | "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> | |
| 2661 | \<Longrightarrow> xs = ys" | |
| 2662 | apply (simp add: list_all2_conv_all_nth) | |
| 14208 | 2663 | apply (rule nth_equalityI, blast, simp) | 
| 13863 | 2664 | done | 
| 2665 | ||
| 13142 | 2666 | lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys" | 
| 13145 | 2667 | -- {* The famous take-lemma. *}
 | 
| 2668 | apply (drule_tac x = "max (length xs) (length ys)" in spec) | |
| 2669 | apply (simp add: le_max_iff_disj take_all) | |
| 2670 | done | |
| 13142 | 2671 | |
| 2672 | ||
| 15302 | 2673 | lemma take_Cons': | 
| 2674 | "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)" | |
| 2675 | by (cases n) simp_all | |
| 2676 | ||
| 2677 | lemma drop_Cons': | |
| 2678 | "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)" | |
| 2679 | by (cases n) simp_all | |
| 2680 | ||
| 2681 | lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))" | |
| 2682 | by (cases n) simp_all | |
| 2683 | ||
| 18622 | 2684 | lemmas take_Cons_number_of = take_Cons'[of "number_of v",standard] | 
| 2685 | lemmas drop_Cons_number_of = drop_Cons'[of "number_of v",standard] | |
| 2686 | lemmas nth_Cons_number_of = nth_Cons'[of _ _ "number_of v",standard] | |
| 2687 | ||
| 2688 | declare take_Cons_number_of [simp] | |
| 2689 | drop_Cons_number_of [simp] | |
| 2690 | nth_Cons_number_of [simp] | |
| 15302 | 2691 | |
| 2692 | ||
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2693 | subsubsection {* @{text upto}: interval-list on @{typ int} *}
 | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2694 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2695 | (* FIXME make upto tail recursive? *) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2696 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2697 | function upto :: "int \<Rightarrow> int \<Rightarrow> int list" ("(1[_../_])") where
 | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2698 | "upto i j = (if i \<le> j then i # [i+1..j] else [])" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2699 | by auto | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2700 | termination | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2701 | by(relation "measure(%(i::int,j). nat(j - i + 1))") auto | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2702 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2703 | declare upto.simps[code, simp del] | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2704 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2705 | lemmas upto_rec_number_of[simp] = | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2706 | upto.simps[of "number_of m" "number_of n", standard] | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2707 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2708 | lemma upto_empty[simp]: "j < i \<Longrightarrow> [i..j] = []" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2709 | by(simp add: upto.simps) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2710 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2711 | lemma set_upto[simp]: "set[i..j] = {i..j}"
 | 
| 41463 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 2712 | proof(induct i j rule:upto.induct) | 
| 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 2713 | case (1 i j) | 
| 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 2714 | from this show ?case | 
| 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 2715 | unfolding upto.simps[of i j] simp_from_to[of i j] by auto | 
| 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 2716 | qed | 
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2717 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2718 | |
| 15392 | 2719 | subsubsection {* @{text "distinct"} and @{text remdups} *}
 | 
| 13142 | 2720 | |
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 2721 | lemma distinct_tl: | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 2722 | "distinct xs \<Longrightarrow> distinct (tl xs)" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 2723 | by (cases xs) simp_all | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 2724 | |
| 13142 | 2725 | lemma distinct_append [simp]: | 
| 13145 | 2726 | "distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
 | 
| 2727 | by (induct xs) auto | |
| 13142 | 2728 | |
| 15305 | 2729 | lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs" | 
| 2730 | by(induct xs) auto | |
| 2731 | ||
| 13142 | 2732 | lemma set_remdups [simp]: "set (remdups xs) = set xs" | 
| 13145 | 2733 | by (induct xs) (auto simp add: insert_absorb) | 
| 13142 | 2734 | |
| 2735 | lemma distinct_remdups [iff]: "distinct (remdups xs)" | |
| 13145 | 2736 | by (induct xs) auto | 
| 13142 | 2737 | |
| 25287 | 2738 | lemma distinct_remdups_id: "distinct xs ==> remdups xs = xs" | 
| 2739 | by (induct xs, auto) | |
| 2740 | ||
| 26734 | 2741 | lemma remdups_id_iff_distinct [simp]: "remdups xs = xs \<longleftrightarrow> distinct xs" | 
| 2742 | by (metis distinct_remdups distinct_remdups_id) | |
| 25287 | 2743 | |
| 24566 | 2744 | lemma finite_distinct_list: "finite A \<Longrightarrow> EX xs. set xs = A & distinct xs" | 
| 24632 | 2745 | by (metis distinct_remdups finite_list set_remdups) | 
| 24566 | 2746 | |
| 15072 | 2747 | lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])" | 
| 24349 | 2748 | by (induct x, auto) | 
| 15072 | 2749 | |
| 2750 | lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])" | |
| 24349 | 2751 | by (induct x, auto) | 
| 15072 | 2752 | |
| 15245 | 2753 | lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs" | 
| 2754 | by (induct xs) auto | |
| 2755 | ||
| 2756 | lemma length_remdups_eq[iff]: | |
| 2757 | "(length (remdups xs) = length xs) = (remdups xs = xs)" | |
| 2758 | apply(induct xs) | |
| 2759 | apply auto | |
| 2760 | apply(subgoal_tac "length (remdups xs) <= length xs") | |
| 2761 | apply arith | |
| 2762 | apply(rule length_remdups_leq) | |
| 2763 | done | |
| 2764 | ||
| 33945 | 2765 | lemma remdups_filter: "remdups(filter P xs) = filter P (remdups xs)" | 
| 2766 | apply(induct xs) | |
| 2767 | apply auto | |
| 2768 | done | |
| 18490 | 2769 | |
| 2770 | lemma distinct_map: | |
| 2771 | "distinct(map f xs) = (distinct xs & inj_on f (set xs))" | |
| 2772 | by (induct xs) auto | |
| 2773 | ||
| 2774 | ||
| 13142 | 2775 | lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)" | 
| 13145 | 2776 | by (induct xs) auto | 
| 13114 | 2777 | |
| 17501 | 2778 | lemma distinct_upt[simp]: "distinct[i..<j]" | 
| 2779 | by (induct j) auto | |
| 2780 | ||
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2781 | lemma distinct_upto[simp]: "distinct[i..j]" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2782 | apply(induct i j rule:upto.induct) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2783 | apply(subst upto.simps) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2784 | apply(simp) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2785 | done | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2786 | |
| 24526 | 2787 | lemma distinct_take[simp]: "distinct xs \<Longrightarrow> distinct (take i xs)" | 
| 2788 | apply(induct xs arbitrary: i) | |
| 17501 | 2789 | apply simp | 
| 2790 | apply (case_tac i) | |
| 2791 | apply simp_all | |
| 2792 | apply(blast dest:in_set_takeD) | |
| 2793 | done | |
| 2794 | ||
| 24526 | 2795 | lemma distinct_drop[simp]: "distinct xs \<Longrightarrow> distinct (drop i xs)" | 
| 2796 | apply(induct xs arbitrary: i) | |
| 17501 | 2797 | apply simp | 
| 2798 | apply (case_tac i) | |
| 2799 | apply simp_all | |
| 2800 | done | |
| 2801 | ||
| 2802 | lemma distinct_list_update: | |
| 2803 | assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
 | |
| 2804 | shows "distinct (xs[i:=a])" | |
| 2805 | proof (cases "i < length xs") | |
| 2806 | case True | |
| 2807 |   with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
 | |
| 2808 | apply (drule_tac id_take_nth_drop) by simp | |
| 2809 | with d True show ?thesis | |
| 2810 | apply (simp add: upd_conv_take_nth_drop) | |
| 2811 | apply (drule subst [OF id_take_nth_drop]) apply assumption | |
| 2812 | apply simp apply (cases "a = xs!i") apply simp by blast | |
| 2813 | next | |
| 2814 | case False with d show ?thesis by auto | |
| 2815 | qed | |
| 2816 | ||
| 31363 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2817 | lemma distinct_concat: | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2818 | assumes "distinct xs" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2819 | and "\<And> ys. ys \<in> set xs \<Longrightarrow> distinct ys" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2820 |   and "\<And> ys zs. \<lbrakk> ys \<in> set xs ; zs \<in> set xs ; ys \<noteq> zs \<rbrakk> \<Longrightarrow> set ys \<inter> set zs = {}"
 | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2821 | shows "distinct (concat xs)" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2822 | using assms by (induct xs) auto | 
| 17501 | 2823 | |
| 2824 | text {* It is best to avoid this indexed version of distinct, but
 | |
| 2825 | sometimes it is useful. *} | |
| 2826 | ||
| 13142 | 2827 | lemma distinct_conv_nth: | 
| 17501 | 2828 | "distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)" | 
| 15251 | 2829 | apply (induct xs, simp, simp) | 
| 14208 | 2830 | apply (rule iffI, clarsimp) | 
| 13145 | 2831 | apply (case_tac i) | 
| 14208 | 2832 | apply (case_tac j, simp) | 
| 13145 | 2833 | apply (simp add: set_conv_nth) | 
| 2834 | apply (case_tac j) | |
| 24648 | 2835 | apply (clarsimp simp add: set_conv_nth, simp) | 
| 13145 | 2836 | apply (rule conjI) | 
| 24648 | 2837 | (*TOO SLOW | 
| 24632 | 2838 | apply (metis Zero_neq_Suc gr0_conv_Suc in_set_conv_nth lessI less_trans_Suc nth_Cons' nth_Cons_Suc) | 
| 24648 | 2839 | *) | 
| 2840 | apply (clarsimp simp add: set_conv_nth) | |
| 2841 | apply (erule_tac x = 0 in allE, simp) | |
| 2842 | apply (erule_tac x = "Suc i" in allE, simp, clarsimp) | |
| 25130 | 2843 | (*TOO SLOW | 
| 24632 | 2844 | apply (metis Suc_Suc_eq lessI less_trans_Suc nth_Cons_Suc) | 
| 25130 | 2845 | *) | 
| 2846 | apply (erule_tac x = "Suc i" in allE, simp) | |
| 2847 | apply (erule_tac x = "Suc j" in allE, simp) | |
| 13145 | 2848 | done | 
| 13114 | 2849 | |
| 18490 | 2850 | lemma nth_eq_iff_index_eq: | 
| 2851 | "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)" | |
| 2852 | by(auto simp: distinct_conv_nth) | |
| 2853 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2854 | lemma distinct_card: "distinct xs ==> card (set xs) = size xs" | 
| 24349 | 2855 | by (induct xs) auto | 
| 14388 | 2856 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2857 | lemma card_distinct: "card (set xs) = size xs ==> distinct xs" | 
| 14388 | 2858 | proof (induct xs) | 
| 2859 | case Nil thus ?case by simp | |
| 2860 | next | |
| 2861 | case (Cons x xs) | |
| 2862 | show ?case | |
| 2863 | proof (cases "x \<in> set xs") | |
| 2864 | case False with Cons show ?thesis by simp | |
| 2865 | next | |
| 2866 | case True with Cons.prems | |
| 2867 | have "card (set xs) = Suc (length xs)" | |
| 2868 | by (simp add: card_insert_if split: split_if_asm) | |
| 2869 | moreover have "card (set xs) \<le> length xs" by (rule card_length) | |
| 2870 | ultimately have False by simp | |
| 2871 | thus ?thesis .. | |
| 2872 | qed | |
| 2873 | qed | |
| 2874 | ||
| 25287 | 2875 | lemma not_distinct_decomp: "~ distinct ws ==> EX xs ys zs y. ws = xs@[y]@ys@[y]@zs" | 
| 2876 | apply (induct n == "length ws" arbitrary:ws) apply simp | |
| 2877 | apply(case_tac ws) apply simp | |
| 2878 | apply (simp split:split_if_asm) | |
| 2879 | apply (metis Cons_eq_appendI eq_Nil_appendI split_list) | |
| 2880 | done | |
| 18490 | 2881 | |
| 2882 | lemma length_remdups_concat: | |
| 2883 | "length(remdups(concat xss)) = card(\<Union>xs \<in> set xss. set xs)" | |
| 24308 | 2884 | by(simp add: set_concat distinct_card[symmetric]) | 
| 17906 | 2885 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2886 | lemma length_remdups_card_conv: "length(remdups xs) = card(set xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2887 | proof - | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2888 | have xs: "concat[xs] = xs" by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2889 | from length_remdups_concat[of "[xs]"] show ?thesis unfolding xs by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2890 | qed | 
| 17906 | 2891 | |
| 36275 | 2892 | lemma remdups_remdups: | 
| 2893 | "remdups (remdups xs) = remdups xs" | |
| 2894 | by (induct xs) simp_all | |
| 2895 | ||
| 36851 | 2896 | lemma distinct_butlast: | 
| 2897 | assumes "xs \<noteq> []" and "distinct xs" | |
| 2898 | shows "distinct (butlast xs)" | |
| 2899 | proof - | |
| 2900 | from `xs \<noteq> []` obtain ys y where "xs = ys @ [y]" by (cases xs rule: rev_cases) auto | |
| 2901 | with `distinct xs` show ?thesis by simp | |
| 2902 | qed | |
| 2903 | ||
| 39728 | 2904 | lemma remdups_map_remdups: | 
| 2905 | "remdups (map f (remdups xs)) = remdups (map f xs)" | |
| 2906 | by (induct xs) simp_all | |
| 2907 | ||
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2908 | lemma distinct_zipI1: | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2909 | assumes "distinct xs" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2910 | shows "distinct (zip xs ys)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2911 | proof (rule zip_obtain_same_length) | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2912 | fix xs' :: "'a list" and ys' :: "'b list" and n | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2913 | assume "length xs' = length ys'" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2914 | assume "xs' = take n xs" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2915 | with assms have "distinct xs'" by simp | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2916 | with `length xs' = length ys'` show "distinct (zip xs' ys')" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2917 | by (induct xs' ys' rule: list_induct2) (auto elim: in_set_zipE) | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2918 | qed | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2919 | |
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2920 | lemma distinct_zipI2: | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2921 | assumes "distinct ys" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2922 | shows "distinct (zip xs ys)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2923 | proof (rule zip_obtain_same_length) | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2924 | fix xs' :: "'b list" and ys' :: "'a list" and n | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2925 | assume "length xs' = length ys'" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2926 | assume "ys' = take n ys" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2927 | with assms have "distinct ys'" by simp | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2928 | with `length xs' = length ys'` show "distinct (zip xs' ys')" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2929 | by (induct xs' ys' rule: list_induct2) (auto elim: in_set_zipE) | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2930 | qed | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 2931 | |
| 35115 | 2932 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2933 | subsubsection {* List summation: @{const listsum} and @{text"\<Sum>"}*}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2934 | |
| 39774 | 2935 | lemma (in monoid_add) listsum_foldl [code]: | 
| 2936 | "listsum = foldl (op +) 0" | |
| 2937 | by (simp add: listsum_def foldl_foldr1 fun_eq_iff) | |
| 2938 | ||
| 2939 | lemma (in monoid_add) listsum_simps [simp]: | |
| 2940 | "listsum [] = 0" | |
| 2941 | "listsum (x#xs) = x + listsum xs" | |
| 2942 | by (simp_all add: listsum_def) | |
| 2943 | ||
| 2944 | lemma (in monoid_add) listsum_append [simp]: | |
| 2945 | "listsum (xs @ ys) = listsum xs + listsum ys" | |
| 2946 | by (induct xs) (simp_all add: add.assoc) | |
| 2947 | ||
| 2948 | lemma (in comm_monoid_add) listsum_rev [simp]: | |
| 2949 | "listsum (rev xs) = listsum xs" | |
| 2950 | by (simp add: listsum_def [of "rev xs"]) (simp add: listsum_foldl foldr_foldl add.commute) | |
| 2951 | ||
| 2952 | lemma (in comm_monoid_add) listsum_map_remove1: | |
| 2953 | "x \<in> set xs \<Longrightarrow> listsum (map f xs) = f x + listsum (map f (remove1 x xs))" | |
| 2954 | by (induct xs) (auto simp add: ac_simps) | |
| 2955 | ||
| 2956 | lemma (in monoid_add) list_size_conv_listsum: | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2957 | "list_size f xs = listsum (map f xs) + size xs" | 
| 39774 | 2958 | by (induct xs) auto | 
| 2959 | ||
| 2960 | lemma (in monoid_add) length_concat: | |
| 2961 | "length (concat xss) = listsum (map length xss)" | |
| 2962 | by (induct xss) simp_all | |
| 2963 | ||
| 2964 | lemma (in monoid_add) listsum_map_filter: | |
| 2965 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> \<not> P x \<Longrightarrow> f x = 0" | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2966 | shows "listsum (map f (filter P xs)) = listsum (map f xs)" | 
| 39774 | 2967 | using assms by (induct xs) auto | 
| 2968 | ||
| 2969 | lemma (in monoid_add) distinct_listsum_conv_Setsum: | |
| 2970 | "distinct xs \<Longrightarrow> listsum xs = Setsum (set xs)" | |
| 2971 | by (induct xs) simp_all | |
| 2972 | ||
| 2973 | lemma listsum_eq_0_nat_iff_nat [simp]: | |
| 2974 | "listsum ns = (0::nat) \<longleftrightarrow> (\<forall>n \<in> set ns. n = 0)" | |
| 2975 | by (simp add: listsum_foldl) | |
| 2976 | ||
| 2977 | lemma elem_le_listsum_nat: | |
| 2978 | "k < size ns \<Longrightarrow> ns ! k \<le> listsum (ns::nat list)" | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2979 | apply(induct ns arbitrary: k) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2980 | apply simp | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2981 | apply(fastsimp simp add:nth_Cons split: nat.split) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2982 | done | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2983 | |
| 39774 | 2984 | lemma listsum_update_nat: | 
| 2985 | "k<size ns \<Longrightarrow> listsum (ns[k := (n::nat)]) = listsum ns + n - ns ! k" | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2986 | apply(induct ns arbitrary:k) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2987 | apply (auto split:nat.split) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2988 | apply(drule elem_le_listsum_nat) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2989 | apply arith | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2990 | done | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2991 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2992 | text{* Some syntactic sugar for summing a function over a list: *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2993 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2994 | syntax | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2995 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2996 | syntax (xsymbols) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2997 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2998 | syntax (HTML output) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2999 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3000 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3001 | translations -- {* Beware of argument permutation! *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3002 | "SUM x<-xs. b" == "CONST listsum (CONST map (%x. b) xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3003 | "\<Sum>x\<leftarrow>xs. b" == "CONST listsum (CONST map (%x. b) xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3004 | |
| 39774 | 3005 | lemma (in monoid_add) listsum_triv: | 
| 3006 | "(\<Sum>x\<leftarrow>xs. r) = of_nat (length xs) * r" | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3007 | by (induct xs) (simp_all add: left_distrib) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3008 | |
| 39774 | 3009 | lemma (in monoid_add) listsum_0 [simp]: | 
| 3010 | "(\<Sum>x\<leftarrow>xs. 0) = 0" | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3011 | by (induct xs) (simp_all add: left_distrib) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3012 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3013 | text{* For non-Abelian groups @{text xs} needs to be reversed on one side: *}
 | 
| 39774 | 3014 | lemma (in ab_group_add) uminus_listsum_map: | 
| 3015 | "- listsum (map f xs) = listsum (map (uminus \<circ> f) xs)" | |
| 3016 | by (induct xs) simp_all | |
| 3017 | ||
| 3018 | lemma (in comm_monoid_add) listsum_addf: | |
| 3019 | "(\<Sum>x\<leftarrow>xs. f x + g x) = listsum (map f xs) + listsum (map g xs)" | |
| 3020 | by (induct xs) (simp_all add: algebra_simps) | |
| 3021 | ||
| 3022 | lemma (in ab_group_add) listsum_subtractf: | |
| 3023 | "(\<Sum>x\<leftarrow>xs. f x - g x) = listsum (map f xs) - listsum (map g xs)" | |
| 3024 | by (induct xs) (simp_all add: algebra_simps) | |
| 3025 | ||
| 3026 | lemma (in semiring_0) listsum_const_mult: | |
| 3027 | "(\<Sum>x\<leftarrow>xs. c * f x) = c * (\<Sum>x\<leftarrow>xs. f x)" | |
| 3028 | by (induct xs) (simp_all add: algebra_simps) | |
| 3029 | ||
| 3030 | lemma (in semiring_0) listsum_mult_const: | |
| 3031 | "(\<Sum>x\<leftarrow>xs. f x * c) = (\<Sum>x\<leftarrow>xs. f x) * c" | |
| 3032 | by (induct xs) (simp_all add: algebra_simps) | |
| 3033 | ||
| 3034 | lemma (in ordered_ab_group_add_abs) listsum_abs: | |
| 3035 | "\<bar>listsum xs\<bar> \<le> listsum (map abs xs)" | |
| 3036 | by (induct xs) (simp_all add: order_trans [OF abs_triangle_ineq]) | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3037 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3038 | lemma listsum_mono: | 
| 39774 | 3039 |   fixes f g :: "'a \<Rightarrow> 'b::{monoid_add, ordered_ab_semigroup_add}"
 | 
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3040 | shows "(\<And>x. x \<in> set xs \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sum>x\<leftarrow>xs. f x) \<le> (\<Sum>x\<leftarrow>xs. g x)" | 
| 39774 | 3041 | by (induct xs) (simp, simp add: add_mono) | 
| 3042 | ||
| 3043 | lemma (in monoid_add) listsum_distinct_conv_setsum_set: | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3044 | "distinct xs \<Longrightarrow> listsum (map f xs) = setsum f (set xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3045 | by (induct xs) simp_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3046 | |
| 39774 | 3047 | lemma (in monoid_add) interv_listsum_conv_setsum_set_nat: | 
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3048 | "listsum (map f [m..<n]) = setsum f (set [m..<n])" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3049 | by (simp add: listsum_distinct_conv_setsum_set) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3050 | |
| 39774 | 3051 | lemma (in monoid_add) interv_listsum_conv_setsum_set_int: | 
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3052 | "listsum (map f [k..l]) = setsum f (set [k..l])" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3053 | by (simp add: listsum_distinct_conv_setsum_set) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3054 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3055 | text {* General equivalence between @{const listsum} and @{const setsum} *}
 | 
| 39774 | 3056 | lemma (in monoid_add) listsum_setsum_nth: | 
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3057 | "listsum xs = (\<Sum> i = 0 ..< length xs. xs ! i)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3058 | using interv_listsum_conv_setsum_set_nat [of "op ! xs" 0 "length xs"] by (simp add: map_nth) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3059 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 3060 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3061 | subsubsection {* @{const insert} *}
 | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3062 | |
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3063 | lemma in_set_insert [simp]: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3064 | "x \<in> set xs \<Longrightarrow> List.insert x xs = xs" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3065 | by (simp add: List.insert_def) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3066 | |
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3067 | lemma not_in_set_insert [simp]: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3068 | "x \<notin> set xs \<Longrightarrow> List.insert x xs = x # xs" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3069 | by (simp add: List.insert_def) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3070 | |
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3071 | lemma insert_Nil [simp]: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3072 | "List.insert x [] = [x]" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3073 | by simp | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3074 | |
| 35295 | 3075 | lemma set_insert [simp]: | 
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3076 | "set (List.insert x xs) = insert x (set xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3077 | by (auto simp add: List.insert_def) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3078 | |
| 35295 | 3079 | lemma distinct_insert [simp]: | 
| 3080 | "distinct xs \<Longrightarrow> distinct (List.insert x xs)" | |
| 3081 | by (simp add: List.insert_def) | |
| 3082 | ||
| 36275 | 3083 | lemma insert_remdups: | 
| 3084 | "List.insert x (remdups xs) = remdups (List.insert x xs)" | |
| 3085 | by (simp add: List.insert_def) | |
| 3086 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3087 | |
| 15392 | 3088 | subsubsection {* @{text remove1} *}
 | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3089 | |
| 18049 | 3090 | lemma remove1_append: | 
| 3091 | "remove1 x (xs @ ys) = | |
| 3092 | (if x \<in> set xs then remove1 x xs @ ys else xs @ remove1 x ys)" | |
| 3093 | by (induct xs) auto | |
| 3094 | ||
| 36903 | 3095 | lemma remove1_commute: "remove1 x (remove1 y zs) = remove1 y (remove1 x zs)" | 
| 3096 | by (induct zs) auto | |
| 3097 | ||
| 23479 | 3098 | lemma in_set_remove1[simp]: | 
| 3099 | "a \<noteq> b \<Longrightarrow> a : set(remove1 b xs) = (a : set xs)" | |
| 3100 | apply (induct xs) | |
| 3101 | apply auto | |
| 3102 | done | |
| 3103 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3104 | lemma set_remove1_subset: "set(remove1 x xs) <= set xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3105 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3106 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3107 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3108 | apply blast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3109 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3110 | |
| 17724 | 3111 | lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
 | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3112 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3113 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3114 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3115 | apply blast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3116 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3117 | |
| 23479 | 3118 | lemma length_remove1: | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 3119 | "length(remove1 x xs) = (if x : set xs then length xs - 1 else length xs)" | 
| 23479 | 3120 | apply (induct xs) | 
| 3121 | apply (auto dest!:length_pos_if_in_set) | |
| 3122 | done | |
| 3123 | ||
| 18049 | 3124 | lemma remove1_filter_not[simp]: | 
| 3125 | "\<not> P x \<Longrightarrow> remove1 x (filter P xs) = filter P xs" | |
| 3126 | by(induct xs) auto | |
| 3127 | ||
| 39073 | 3128 | lemma filter_remove1: | 
| 3129 | "filter Q (remove1 x xs) = remove1 x (filter Q xs)" | |
| 3130 | by (induct xs) auto | |
| 3131 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3132 | lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3133 | apply(insert set_remove1_subset) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3134 | apply fast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3135 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3136 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3137 | lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3138 | by (induct xs) simp_all | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3139 | |
| 36275 | 3140 | lemma remove1_remdups: | 
| 3141 | "distinct xs \<Longrightarrow> remove1 x (remdups xs) = remdups (remove1 x xs)" | |
| 3142 | by (induct xs) simp_all | |
| 3143 | ||
| 37107 | 3144 | lemma remove1_idem: | 
| 3145 | assumes "x \<notin> set xs" | |
| 3146 | shows "remove1 x xs = xs" | |
| 3147 | using assms by (induct xs) simp_all | |
| 3148 | ||
| 13114 | 3149 | |
| 27693 | 3150 | subsubsection {* @{text removeAll} *}
 | 
| 3151 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3152 | lemma removeAll_filter_not_eq: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3153 | "removeAll x = filter (\<lambda>y. x \<noteq> y)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3154 | proof | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3155 | fix xs | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3156 | show "removeAll x xs = filter (\<lambda>y. x \<noteq> y) xs" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3157 | by (induct xs) auto | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3158 | qed | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3159 | |
| 27693 | 3160 | lemma removeAll_append[simp]: | 
| 3161 | "removeAll x (xs @ ys) = removeAll x xs @ removeAll x ys" | |
| 3162 | by (induct xs) auto | |
| 3163 | ||
| 3164 | lemma set_removeAll[simp]: "set(removeAll x xs) = set xs - {x}"
 | |
| 3165 | by (induct xs) auto | |
| 3166 | ||
| 3167 | lemma removeAll_id[simp]: "x \<notin> set xs \<Longrightarrow> removeAll x xs = xs" | |
| 3168 | by (induct xs) auto | |
| 3169 | ||
| 3170 | (* Needs count:: 'a \<Rightarrow> a' list \<Rightarrow> nat | |
| 3171 | lemma length_removeAll: | |
| 3172 | "length(removeAll x xs) = length xs - count x xs" | |
| 3173 | *) | |
| 3174 | ||
| 3175 | lemma removeAll_filter_not[simp]: | |
| 3176 | "\<not> P x \<Longrightarrow> removeAll x (filter P xs) = filter P xs" | |
| 3177 | by(induct xs) auto | |
| 3178 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3179 | lemma distinct_removeAll: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3180 | "distinct xs \<Longrightarrow> distinct (removeAll x xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3181 | by (simp add: removeAll_filter_not_eq) | 
| 27693 | 3182 | |
| 3183 | lemma distinct_remove1_removeAll: | |
| 3184 | "distinct xs ==> remove1 x xs = removeAll x xs" | |
| 3185 | by (induct xs) simp_all | |
| 3186 | ||
| 3187 | lemma map_removeAll_inj_on: "inj_on f (insert x (set xs)) \<Longrightarrow> | |
| 3188 | map f (removeAll x xs) = removeAll (f x) (map f xs)" | |
| 3189 | by (induct xs) (simp_all add:inj_on_def) | |
| 3190 | ||
| 3191 | lemma map_removeAll_inj: "inj f \<Longrightarrow> | |
| 3192 | map f (removeAll x xs) = removeAll (f x) (map f xs)" | |
| 3193 | by(metis map_removeAll_inj_on subset_inj_on subset_UNIV) | |
| 3194 | ||
| 3195 | ||
| 15392 | 3196 | subsubsection {* @{text replicate} *}
 | 
| 13114 | 3197 | |
| 13142 | 3198 | lemma length_replicate [simp]: "length (replicate n x) = n" | 
| 13145 | 3199 | by (induct n) auto | 
| 13124 | 3200 | |
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36275diff
changeset | 3201 | lemma Ex_list_of_length: "\<exists>xs. length xs = n" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36275diff
changeset | 3202 | by (rule exI[of _ "replicate n undefined"]) simp | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36275diff
changeset | 3203 | |
| 13142 | 3204 | lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)" | 
| 13145 | 3205 | by (induct n) auto | 
| 13114 | 3206 | |
| 31363 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3207 | lemma map_replicate_const: | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3208 | "map (\<lambda> x. k) lst = replicate (length lst) k" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3209 | by (induct lst) auto | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3210 | |
| 13114 | 3211 | lemma replicate_app_Cons_same: | 
| 13145 | 3212 | "(replicate n x) @ (x # xs) = x # replicate n x @ xs" | 
| 3213 | by (induct n) auto | |
| 13114 | 3214 | |
| 13142 | 3215 | lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x" | 
| 14208 | 3216 | apply (induct n, simp) | 
| 13145 | 3217 | apply (simp add: replicate_app_Cons_same) | 
| 3218 | done | |
| 13114 | 3219 | |
| 13142 | 3220 | lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x" | 
| 13145 | 3221 | by (induct n) auto | 
| 13114 | 3222 | |
| 16397 | 3223 | text{* Courtesy of Matthias Daum: *}
 | 
| 3224 | lemma append_replicate_commute: | |
| 3225 | "replicate n x @ replicate k x = replicate k x @ replicate n x" | |
| 3226 | apply (simp add: replicate_add [THEN sym]) | |
| 3227 | apply (simp add: add_commute) | |
| 3228 | done | |
| 3229 | ||
| 31080 | 3230 | text{* Courtesy of Andreas Lochbihler: *}
 | 
| 3231 | lemma filter_replicate: | |
| 3232 | "filter P (replicate n x) = (if P x then replicate n x else [])" | |
| 3233 | by(induct n) auto | |
| 3234 | ||
| 13142 | 3235 | lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x" | 
| 13145 | 3236 | by (induct n) auto | 
| 13114 | 3237 | |
| 13142 | 3238 | lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x" | 
| 13145 | 3239 | by (induct n) auto | 
| 13114 | 3240 | |
| 13142 | 3241 | lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x" | 
| 13145 | 3242 | by (atomize (full), induct n) auto | 
| 13114 | 3243 | |
| 24526 | 3244 | lemma nth_replicate[simp]: "i < n ==> (replicate n x)!i = x" | 
| 3245 | apply (induct n arbitrary: i, simp) | |
| 13145 | 3246 | apply (simp add: nth_Cons split: nat.split) | 
| 3247 | done | |
| 13114 | 3248 | |
| 16397 | 3249 | text{* Courtesy of Matthias Daum (2 lemmas): *}
 | 
| 3250 | lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x" | |
| 3251 | apply (case_tac "k \<le> i") | |
| 3252 | apply (simp add: min_def) | |
| 3253 | apply (drule not_leE) | |
| 3254 | apply (simp add: min_def) | |
| 3255 | apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x") | |
| 3256 | apply simp | |
| 3257 | apply (simp add: replicate_add [symmetric]) | |
| 3258 | done | |
| 3259 | ||
| 24526 | 3260 | lemma drop_replicate[simp]: "drop i (replicate k x) = replicate (k-i) x" | 
| 3261 | apply (induct k arbitrary: i) | |
| 16397 | 3262 | apply simp | 
| 3263 | apply clarsimp | |
| 3264 | apply (case_tac i) | |
| 3265 | apply simp | |
| 3266 | apply clarsimp | |
| 3267 | done | |
| 3268 | ||
| 3269 | ||
| 13142 | 3270 | lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
 | 
| 13145 | 3271 | by (induct n) auto | 
| 13114 | 3272 | |
| 13142 | 3273 | lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
 | 
| 13145 | 3274 | by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc) | 
| 13114 | 3275 | |
| 13142 | 3276 | lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
 | 
| 13145 | 3277 | by auto | 
| 13114 | 3278 | |
| 37456 | 3279 | lemma in_set_replicate[simp]: "(x : set (replicate n y)) = (x = y & n \<noteq> 0)" | 
| 3280 | by (simp add: set_replicate_conv_if) | |
| 3281 | ||
| 37454 | 3282 | lemma Ball_set_replicate[simp]: | 
| 3283 | "(ALL x : set(replicate n a). P x) = (P a | n=0)" | |
| 3284 | by(simp add: set_replicate_conv_if) | |
| 3285 | ||
| 3286 | lemma Bex_set_replicate[simp]: | |
| 3287 | "(EX x : set(replicate n a). P x) = (P a & n\<noteq>0)" | |
| 3288 | by(simp add: set_replicate_conv_if) | |
| 13114 | 3289 | |
| 24796 | 3290 | lemma replicate_append_same: | 
| 3291 | "replicate i x @ [x] = x # replicate i x" | |
| 3292 | by (induct i) simp_all | |
| 3293 | ||
| 3294 | lemma map_replicate_trivial: | |
| 3295 | "map (\<lambda>i. x) [0..<i] = replicate i x" | |
| 3296 | by (induct i) (simp_all add: replicate_append_same) | |
| 3297 | ||
| 31363 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3298 | lemma concat_replicate_trivial[simp]: | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3299 | "concat (replicate i []) = []" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3300 | by (induct i) (auto simp add: map_replicate_const) | 
| 13114 | 3301 | |
| 28642 | 3302 | lemma replicate_empty[simp]: "(replicate n x = []) \<longleftrightarrow> n=0" | 
| 3303 | by (induct n) auto | |
| 3304 | ||
| 3305 | lemma empty_replicate[simp]: "([] = replicate n x) \<longleftrightarrow> n=0" | |
| 3306 | by (induct n) auto | |
| 3307 | ||
| 3308 | lemma replicate_eq_replicate[simp]: | |
| 3309 | "(replicate m x = replicate n y) \<longleftrightarrow> (m=n & (m\<noteq>0 \<longrightarrow> x=y))" | |
| 3310 | apply(induct m arbitrary: n) | |
| 3311 | apply simp | |
| 3312 | apply(induct_tac n) | |
| 3313 | apply auto | |
| 3314 | done | |
| 3315 | ||
| 39534 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3316 | lemma replicate_length_filter: | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3317 | "replicate (length (filter (\<lambda>y. x = y) xs)) x = filter (\<lambda>y. x = y) xs" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3318 | by (induct xs) auto | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3319 | |
| 42714 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3320 | lemma comm_append_are_replicate: | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3321 | fixes xs ys :: "'a list" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3322 | assumes "xs \<noteq> []" "ys \<noteq> []" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3323 | assumes "xs @ ys = ys @ xs" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3324 | shows "\<exists>m n zs. concat (replicate m zs) = xs \<and> concat (replicate n zs) = ys" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3325 | using assms | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3326 | proof (induct "length (xs @ ys)" arbitrary: xs ys rule: less_induct) | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3327 | case less | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3328 | |
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3329 | def xs' \<equiv> "if (length xs \<le> length ys) then xs else ys" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3330 | and ys' \<equiv> "if (length xs \<le> length ys) then ys else xs" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3331 | then have | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3332 | prems': "length xs' \<le> length ys'" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3333 | "xs' @ ys' = ys' @ xs'" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3334 | and "xs' \<noteq> []" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3335 | and len: "length (xs @ ys) = length (xs' @ ys')" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3336 | using less by (auto intro: less.hyps) | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3337 | |
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3338 | from prems' | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3339 | obtain ws where "ys' = xs' @ ws" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3340 | by (auto simp: append_eq_append_conv2) | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3341 | |
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3342 | have "\<exists>m n zs. concat (replicate m zs) = xs' \<and> concat (replicate n zs) = ys'" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3343 | proof (cases "ws = []") | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3344 | case True | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3345 | then have "concat (replicate 1 xs') = xs'" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3346 | and "concat (replicate 1 xs') = ys'" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3347 | using `ys' = xs' @ ws` by auto | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3348 | then show ?thesis by blast | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3349 | next | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3350 | case False | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3351 | from `ys' = xs' @ ws` and `xs' @ ys' = ys' @ xs'` | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3352 | have "xs' @ ws = ws @ xs'" by simp | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3353 | then have "\<exists>m n zs. concat (replicate m zs) = xs' \<and> concat (replicate n zs) = ws" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3354 | using False and `xs' \<noteq> []` and `ys' = xs' @ ws` and len | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3355 | by (intro less.hyps) auto | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3356 | then obtain m n zs where "concat (replicate m zs) = xs'" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3357 | and "concat (replicate n zs) = ws" by blast | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3358 | moreover | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3359 | then have "concat (replicate (m + n) zs) = ys'" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3360 | using `ys' = xs' @ ws` | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3361 | by (simp add: replicate_add) | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3362 | ultimately | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3363 | show ?thesis by blast | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3364 | qed | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3365 | then show ?case | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3366 | using xs'_def ys'_def by metis | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3367 | qed | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3368 | |
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3369 | lemma comm_append_is_replicate: | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3370 | fixes xs ys :: "'a list" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3371 | assumes "xs \<noteq> []" "ys \<noteq> []" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3372 | assumes "xs @ ys = ys @ xs" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3373 | shows "\<exists>n zs. n > 1 \<and> concat (replicate n zs) = xs @ ys" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3374 | |
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3375 | proof - | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3376 | obtain m n zs where "concat (replicate m zs) = xs" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3377 | and "concat (replicate n zs) = ys" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3378 | using assms by (metis comm_append_are_replicate) | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3379 | then have "m + n > 1" and "concat (replicate (m+n) zs) = xs @ ys" | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3380 | using `xs \<noteq> []` and `ys \<noteq> []` | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3381 | by (auto simp: replicate_add) | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3382 | then show ?thesis by blast | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3383 | qed | 
| 
fcba668b0839
add a lemma about commutative append to List.thy
 noschinl parents: 
42713diff
changeset | 3384 | |
| 28642 | 3385 | |
| 15392 | 3386 | subsubsection{*@{text rotate1} and @{text rotate}*}
 | 
| 15302 | 3387 | |
| 3388 | lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]" | |
| 3389 | by(simp add:rotate1_def) | |
| 3390 | ||
| 3391 | lemma rotate0[simp]: "rotate 0 = id" | |
| 3392 | by(simp add:rotate_def) | |
| 3393 | ||
| 3394 | lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)" | |
| 3395 | by(simp add:rotate_def) | |
| 3396 | ||
| 3397 | lemma rotate_add: | |
| 3398 | "rotate (m+n) = rotate m o rotate n" | |
| 3399 | by(simp add:rotate_def funpow_add) | |
| 3400 | ||
| 3401 | lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs" | |
| 3402 | by(simp add:rotate_add) | |
| 3403 | ||
| 18049 | 3404 | lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)" | 
| 3405 | by(simp add:rotate_def funpow_swap1) | |
| 3406 | ||
| 15302 | 3407 | lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs" | 
| 3408 | by(cases xs) simp_all | |
| 3409 | ||
| 3410 | lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs" | |
| 3411 | apply(induct n) | |
| 3412 | apply simp | |
| 3413 | apply (simp add:rotate_def) | |
| 13145 | 3414 | done | 
| 13114 | 3415 | |
| 15302 | 3416 | lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]" | 
| 3417 | by(simp add:rotate1_def split:list.split) | |
| 3418 | ||
| 3419 | lemma rotate_drop_take: | |
| 3420 | "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs" | |
| 3421 | apply(induct n) | |
| 3422 | apply simp | |
| 3423 | apply(simp add:rotate_def) | |
| 3424 | apply(cases "xs = []") | |
| 3425 | apply (simp) | |
| 3426 | apply(case_tac "n mod length xs = 0") | |
| 3427 | apply(simp add:mod_Suc) | |
| 3428 | apply(simp add: rotate1_hd_tl drop_Suc take_Suc) | |
| 3429 | apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric] | |
| 3430 | take_hd_drop linorder_not_le) | |
| 13145 | 3431 | done | 
| 13114 | 3432 | |
| 15302 | 3433 | lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs" | 
| 3434 | by(simp add:rotate_drop_take) | |
| 3435 | ||
| 3436 | lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs" | |
| 3437 | by(simp add:rotate_drop_take) | |
| 3438 | ||
| 3439 | lemma length_rotate1[simp]: "length(rotate1 xs) = length xs" | |
| 3440 | by(simp add:rotate1_def split:list.split) | |
| 3441 | ||
| 24526 | 3442 | lemma length_rotate[simp]: "length(rotate n xs) = length xs" | 
| 3443 | by (induct n arbitrary: xs) (simp_all add:rotate_def) | |
| 15302 | 3444 | |
| 3445 | lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs" | |
| 3446 | by(simp add:rotate1_def split:list.split) blast | |
| 3447 | ||
| 3448 | lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs" | |
| 3449 | by (induct n) (simp_all add:rotate_def) | |
| 3450 | ||
| 3451 | lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)" | |
| 3452 | by(simp add:rotate_drop_take take_map drop_map) | |
| 3453 | ||
| 3454 | lemma set_rotate1[simp]: "set(rotate1 xs) = set xs" | |
| 41463 
edbf0a86fb1c
adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
 bulwahn parents: 
41372diff
changeset | 3455 | by (cases xs) (auto simp add:rotate1_def) | 
| 15302 | 3456 | |
| 3457 | lemma set_rotate[simp]: "set(rotate n xs) = set xs" | |
| 3458 | by (induct n) (simp_all add:rotate_def) | |
| 3459 | ||
| 3460 | lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])" | |
| 3461 | by(simp add:rotate1_def split:list.split) | |
| 3462 | ||
| 3463 | lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])" | |
| 3464 | by (induct n) (simp_all add:rotate_def) | |
| 13114 | 3465 | |
| 15439 | 3466 | lemma rotate_rev: | 
| 3467 | "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)" | |
| 3468 | apply(simp add:rotate_drop_take rev_drop rev_take) | |
| 3469 | apply(cases "length xs = 0") | |
| 3470 | apply simp | |
| 3471 | apply(cases "n mod length xs = 0") | |
| 3472 | apply simp | |
| 3473 | apply(simp add:rotate_drop_take rev_drop rev_take) | |
| 3474 | done | |
| 3475 | ||
| 18423 | 3476 | lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)" | 
| 3477 | apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth) | |
| 3478 | apply(subgoal_tac "length xs \<noteq> 0") | |
| 3479 | prefer 2 apply simp | |
| 3480 | using mod_less_divisor[of "length xs" n] by arith | |
| 3481 | ||
| 13114 | 3482 | |
| 15392 | 3483 | subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
 | 
| 13114 | 3484 | |
| 13142 | 3485 | lemma sublist_empty [simp]: "sublist xs {} = []"
 | 
| 13145 | 3486 | by (auto simp add: sublist_def) | 
| 13114 | 3487 | |
| 13142 | 3488 | lemma sublist_nil [simp]: "sublist [] A = []" | 
| 13145 | 3489 | by (auto simp add: sublist_def) | 
| 13114 | 3490 | |
| 15281 | 3491 | lemma length_sublist: | 
| 3492 |   "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
 | |
| 3493 | by(simp add: sublist_def length_filter_conv_card cong:conj_cong) | |
| 3494 | ||
| 3495 | lemma sublist_shift_lemma_Suc: | |
| 24526 | 3496 | "map fst (filter (%p. P(Suc(snd p))) (zip xs is)) = | 
| 3497 | map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))" | |
| 3498 | apply(induct xs arbitrary: "is") | |
| 15281 | 3499 | apply simp | 
| 3500 | apply (case_tac "is") | |
| 3501 | apply simp | |
| 3502 | apply simp | |
| 3503 | done | |
| 3504 | ||
| 13114 | 3505 | lemma sublist_shift_lemma: | 
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 3506 | "map fst [p<-zip xs [i..<i + length xs] . snd p : A] = | 
| 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 3507 | map fst [p<-zip xs [0..<length xs] . snd p + i : A]" | 
| 13145 | 3508 | by (induct xs rule: rev_induct) (simp_all add: add_commute) | 
| 13114 | 3509 | |
| 3510 | lemma sublist_append: | |
| 15168 | 3511 |      "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
 | 
| 13145 | 3512 | apply (unfold sublist_def) | 
| 14208 | 3513 | apply (induct l' rule: rev_induct, simp) | 
| 13145 | 3514 | apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma) | 
| 3515 | apply (simp add: add_commute) | |
| 3516 | done | |
| 13114 | 3517 | |
| 3518 | lemma sublist_Cons: | |
| 13145 | 3519 | "sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
 | 
| 3520 | apply (induct l rule: rev_induct) | |
| 3521 | apply (simp add: sublist_def) | |
| 3522 | apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append) | |
| 3523 | done | |
| 13114 | 3524 | |
| 24526 | 3525 | lemma set_sublist: "set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
 | 
| 3526 | apply(induct xs arbitrary: I) | |
| 25162 | 3527 | apply(auto simp: sublist_Cons nth_Cons split:nat.split dest!: gr0_implies_Suc) | 
| 15281 | 3528 | done | 
| 3529 | ||
| 3530 | lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs" | |
| 3531 | by(auto simp add:set_sublist) | |
| 3532 | ||
| 3533 | lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)" | |
| 3534 | by(auto simp add:set_sublist) | |
| 3535 | ||
| 3536 | lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs" | |
| 3537 | by(auto simp add:set_sublist) | |
| 3538 | ||
| 13142 | 3539 | lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])" | 
| 13145 | 3540 | by (simp add: sublist_Cons) | 
| 13114 | 3541 | |
| 15281 | 3542 | |
| 24526 | 3543 | lemma distinct_sublistI[simp]: "distinct xs \<Longrightarrow> distinct(sublist xs I)" | 
| 3544 | apply(induct xs arbitrary: I) | |
| 15281 | 3545 | apply simp | 
| 3546 | apply(auto simp add:sublist_Cons) | |
| 3547 | done | |
| 3548 | ||
| 3549 | ||
| 15045 | 3550 | lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
 | 
| 14208 | 3551 | apply (induct l rule: rev_induct, simp) | 
| 13145 | 3552 | apply (simp split: nat_diff_split add: sublist_append) | 
| 3553 | done | |
| 13114 | 3554 | |
| 24526 | 3555 | lemma filter_in_sublist: | 
| 3556 | "distinct xs \<Longrightarrow> filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s" | |
| 3557 | proof (induct xs arbitrary: s) | |
| 17501 | 3558 | case Nil thus ?case by simp | 
| 3559 | next | |
| 3560 | case (Cons a xs) | |
| 3561 | moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto | |
| 3562 | ultimately show ?case by(simp add: sublist_Cons cong:filter_cong) | |
| 3563 | qed | |
| 3564 | ||
| 13114 | 3565 | |
| 19390 | 3566 | subsubsection {* @{const splice} *}
 | 
| 3567 | ||
| 40593 
1e57b18d27b1
code eqn for slice was missing; redefined splice with fun
 nipkow parents: 
40365diff
changeset | 3568 | lemma splice_Nil2 [simp, code]: "splice xs [] = xs" | 
| 19390 | 3569 | by (cases xs) simp_all | 
| 3570 | ||
| 40593 
1e57b18d27b1
code eqn for slice was missing; redefined splice with fun
 nipkow parents: 
40365diff
changeset | 3571 | declare splice.simps(1,3)[code] | 
| 
1e57b18d27b1
code eqn for slice was missing; redefined splice with fun
 nipkow parents: 
40365diff
changeset | 3572 | declare splice.simps(2)[simp del] | 
| 19390 | 3573 | |
| 24526 | 3574 | lemma length_splice[simp]: "length(splice xs ys) = length xs + length ys" | 
| 40593 
1e57b18d27b1
code eqn for slice was missing; redefined splice with fun
 nipkow parents: 
40365diff
changeset | 3575 | by (induct xs ys rule: splice.induct) auto | 
| 22793 | 3576 | |
| 35115 | 3577 | |
| 3578 | subsubsection {* Transpose *}
 | |
| 34933 | 3579 | |
| 3580 | function transpose where | |
| 3581 | "transpose [] = []" | | |
| 3582 | "transpose ([] # xss) = transpose xss" | | |
| 3583 | "transpose ((x#xs) # xss) = | |
| 3584 | (x # [h. (h#t) \<leftarrow> xss]) # transpose (xs # [t. (h#t) \<leftarrow> xss])" | |
| 3585 | by pat_completeness auto | |
| 3586 | ||
| 3587 | lemma transpose_aux_filter_head: | |
| 3588 | "concat (map (list_case [] (\<lambda>h t. [h])) xss) = | |
| 3589 | map (\<lambda>xs. hd xs) [ys\<leftarrow>xss . ys \<noteq> []]" | |
| 3590 | by (induct xss) (auto split: list.split) | |
| 3591 | ||
| 3592 | lemma transpose_aux_filter_tail: | |
| 3593 | "concat (map (list_case [] (\<lambda>h t. [t])) xss) = | |
| 3594 | map (\<lambda>xs. tl xs) [ys\<leftarrow>xss . ys \<noteq> []]" | |
| 3595 | by (induct xss) (auto split: list.split) | |
| 3596 | ||
| 3597 | lemma transpose_aux_max: | |
| 3598 | "max (Suc (length xs)) (foldr (\<lambda>xs. max (length xs)) xss 0) = | |
| 3599 | Suc (max (length xs) (foldr (\<lambda>x. max (length x - Suc 0)) [ys\<leftarrow>xss . ys\<noteq>[]] 0))" | |
| 3600 | (is "max _ ?foldB = Suc (max _ ?foldA)") | |
| 3601 | proof (cases "[ys\<leftarrow>xss . ys\<noteq>[]] = []") | |
| 3602 | case True | |
| 3603 | hence "foldr (\<lambda>xs. max (length xs)) xss 0 = 0" | |
| 3604 | proof (induct xss) | |
| 3605 | case (Cons x xs) | |
| 3606 | moreover hence "x = []" by (cases x) auto | |
| 3607 | ultimately show ?case by auto | |
| 3608 | qed simp | |
| 3609 | thus ?thesis using True by simp | |
| 3610 | next | |
| 3611 | case False | |
| 3612 | ||
| 3613 | have foldA: "?foldA = foldr (\<lambda>x. max (length x)) [ys\<leftarrow>xss . ys \<noteq> []] 0 - 1" | |
| 3614 | by (induct xss) auto | |
| 3615 | have foldB: "?foldB = foldr (\<lambda>x. max (length x)) [ys\<leftarrow>xss . ys \<noteq> []] 0" | |
| 3616 | by (induct xss) auto | |
| 3617 | ||
| 3618 | have "0 < ?foldB" | |
| 3619 | proof - | |
| 3620 | from False | |
| 3621 | obtain z zs where zs: "[ys\<leftarrow>xss . ys \<noteq> []] = z#zs" by (auto simp: neq_Nil_conv) | |
| 3622 | hence "z \<in> set ([ys\<leftarrow>xss . ys \<noteq> []])" by auto | |
| 3623 | hence "z \<noteq> []" by auto | |
| 3624 | thus ?thesis | |
| 3625 | unfolding foldB zs | |
| 3626 | by (auto simp: max_def intro: less_le_trans) | |
| 3627 | qed | |
| 3628 | thus ?thesis | |
| 3629 | unfolding foldA foldB max_Suc_Suc[symmetric] | |
| 3630 | by simp | |
| 3631 | qed | |
| 3632 | ||
| 3633 | termination transpose | |
| 3634 | by (relation "measure (\<lambda>xs. foldr (\<lambda>xs. max (length xs)) xs 0 + length xs)") | |
| 3635 | (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max less_Suc_eq_le) | |
| 3636 | ||
| 3637 | lemma transpose_empty: "(transpose xs = []) \<longleftrightarrow> (\<forall>x \<in> set xs. x = [])" | |
| 3638 | by (induct rule: transpose.induct) simp_all | |
| 3639 | ||
| 3640 | lemma length_transpose: | |
| 3641 | fixes xs :: "'a list list" | |
| 3642 | shows "length (transpose xs) = foldr (\<lambda>xs. max (length xs)) xs 0" | |
| 3643 | by (induct rule: transpose.induct) | |
| 3644 | (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max | |
| 3645 | max_Suc_Suc[symmetric] simp del: max_Suc_Suc) | |
| 3646 | ||
| 3647 | lemma nth_transpose: | |
| 3648 | fixes xs :: "'a list list" | |
| 3649 | assumes "i < length (transpose xs)" | |
| 3650 | shows "transpose xs ! i = map (\<lambda>xs. xs ! i) [ys \<leftarrow> xs. i < length ys]" | |
| 3651 | using assms proof (induct arbitrary: i rule: transpose.induct) | |
| 3652 | case (3 x xs xss) | |
| 3653 | def XS == "(x # xs) # xss" | |
| 3654 | hence [simp]: "XS \<noteq> []" by auto | |
| 3655 | thus ?case | |
| 3656 | proof (cases i) | |
| 3657 | case 0 | |
| 3658 | thus ?thesis by (simp add: transpose_aux_filter_head hd_conv_nth) | |
| 3659 | next | |
| 3660 | case (Suc j) | |
| 3661 | have *: "\<And>xss. xs # map tl xss = map tl ((x#xs)#xss)" by simp | |
| 3662 | have **: "\<And>xss. (x#xs) # filter (\<lambda>ys. ys \<noteq> []) xss = filter (\<lambda>ys. ys \<noteq> []) ((x#xs)#xss)" by simp | |
| 3663 |     { fix x have "Suc j < length x \<longleftrightarrow> x \<noteq> [] \<and> j < length x - Suc 0"
 | |
| 3664 | by (cases x) simp_all | |
| 3665 | } note *** = this | |
| 3666 | ||
| 3667 | have j_less: "j < length (transpose (xs # concat (map (list_case [] (\<lambda>h t. [t])) xss)))" | |
| 3668 | using "3.prems" by (simp add: transpose_aux_filter_tail length_transpose Suc) | |
| 3669 | ||
| 3670 | show ?thesis | |
| 3671 | unfolding transpose.simps `i = Suc j` nth_Cons_Suc "3.hyps"[OF j_less] | |
| 3672 | apply (auto simp: transpose_aux_filter_tail filter_map comp_def length_transpose * ** *** XS_def[symmetric]) | |
| 3673 | apply (rule_tac y=x in list.exhaust) | |
| 3674 | by auto | |
| 3675 | qed | |
| 3676 | qed simp_all | |
| 3677 | ||
| 3678 | lemma transpose_map_map: | |
| 3679 | "transpose (map (map f) xs) = map (map f) (transpose xs)" | |
| 3680 | proof (rule nth_equalityI, safe) | |
| 3681 | have [simp]: "length (transpose (map (map f) xs)) = length (transpose xs)" | |
| 3682 | by (simp add: length_transpose foldr_map comp_def) | |
| 3683 | show "length (transpose (map (map f) xs)) = length (map (map f) (transpose xs))" by simp | |
| 3684 | ||
| 3685 | fix i assume "i < length (transpose (map (map f) xs))" | |
| 3686 | thus "transpose (map (map f) xs) ! i = map (map f) (transpose xs) ! i" | |
| 3687 | by (simp add: nth_transpose filter_map comp_def) | |
| 3688 | qed | |
| 24616 | 3689 | |
| 35115 | 3690 | |
| 31557 | 3691 | subsubsection {* (In)finiteness *}
 | 
| 28642 | 3692 | |
| 3693 | lemma finite_maxlen: | |
| 3694 | "finite (M::'a list set) ==> EX n. ALL s:M. size s < n" | |
| 3695 | proof (induct rule: finite.induct) | |
| 3696 | case emptyI show ?case by simp | |
| 3697 | next | |
| 3698 | case (insertI M xs) | |
| 3699 | then obtain n where "\<forall>s\<in>M. length s < n" by blast | |
| 3700 | hence "ALL s:insert xs M. size s < max n (size xs) + 1" by auto | |
| 3701 | thus ?case .. | |
| 3702 | qed | |
| 3703 | ||
| 31557 | 3704 | lemma finite_lists_length_eq: | 
| 3705 | assumes "finite A" | |
| 3706 | shows "finite {xs. set xs \<subseteq> A \<and> length xs = n}" (is "finite (?S n)")
 | |
| 3707 | proof(induct n) | |
| 3708 | case 0 show ?case by simp | |
| 3709 | next | |
| 3710 | case (Suc n) | |
| 3711 | have "?S (Suc n) = (\<Union>x\<in>A. (\<lambda>xs. x#xs) ` ?S n)" | |
| 3712 | by (auto simp:length_Suc_conv) | |
| 3713 | then show ?case using `finite A` | |
| 40786 
0a54cfc9add3
gave more standard finite set rules simp and intro attribute
 nipkow parents: 
40652diff
changeset | 3714 | by (auto intro: Suc) (* FIXME metis? *) | 
| 31557 | 3715 | qed | 
| 3716 | ||
| 3717 | lemma finite_lists_length_le: | |
| 3718 |   assumes "finite A" shows "finite {xs. set xs \<subseteq> A \<and> length xs \<le> n}"
 | |
| 3719 | (is "finite ?S") | |
| 3720 | proof- | |
| 3721 |   have "?S = (\<Union>n\<in>{0..n}. {xs. set xs \<subseteq> A \<and> length xs = n})" by auto
 | |
| 3722 | thus ?thesis by (auto intro: finite_lists_length_eq[OF `finite A`]) | |
| 3723 | qed | |
| 3724 | ||
| 28642 | 3725 | lemma infinite_UNIV_listI: "~ finite(UNIV::'a list set)" | 
| 3726 | apply(rule notI) | |
| 3727 | apply(drule finite_maxlen) | |
| 3728 | apply (metis UNIV_I length_replicate less_not_refl) | |
| 3729 | done | |
| 3730 | ||
| 3731 | ||
| 35115 | 3732 | subsection {* Sorting *}
 | 
| 24616 | 3733 | |
| 24617 | 3734 | text{* Currently it is not shown that @{const sort} returns a
 | 
| 3735 | permutation of its input because the nicest proof is via multisets, | |
| 3736 | which are not yet available. Alternatively one could define a function | |
| 3737 | that counts the number of occurrences of an element in a list and use | |
| 3738 | that instead of multisets to state the correctness property. *} | |
| 3739 | ||
| 24616 | 3740 | context linorder | 
| 3741 | begin | |
| 3742 | ||
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3743 | lemma length_insort [simp]: | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3744 | "length (insort_key f x xs) = Suc (length xs)" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3745 | by (induct xs) simp_all | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3746 | |
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3747 | lemma insort_key_left_comm: | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3748 | assumes "f x \<noteq> f y" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3749 | shows "insort_key f y (insort_key f x xs) = insort_key f x (insort_key f y xs)" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3750 | by (induct xs) (auto simp add: assms dest: antisym) | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3751 | |
| 35195 | 3752 | lemma insort_left_comm: | 
| 3753 | "insort x (insort y xs) = insort y (insort x xs)" | |
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3754 | by (cases "x = y") (auto intro: insort_key_left_comm) | 
| 35195 | 3755 | |
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
42809diff
changeset | 3756 | lemma comp_fun_commute_insort: | 
| 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
42809diff
changeset | 3757 | "comp_fun_commute insort" | 
| 35195 | 3758 | proof | 
| 42809 
5b45125b15ba
use pointfree characterisation for fold_set locale
 haftmann parents: 
42714diff
changeset | 3759 | qed (simp add: insort_left_comm fun_eq_iff) | 
| 35195 | 3760 | |
| 3761 | lemma sort_key_simps [simp]: | |
| 3762 | "sort_key f [] = []" | |
| 3763 | "sort_key f (x#xs) = insort_key f x (sort_key f xs)" | |
| 3764 | by (simp_all add: sort_key_def) | |
| 3765 | ||
| 3766 | lemma sort_foldl_insort: | |
| 3767 | "sort xs = foldl (\<lambda>ys x. insort x ys) [] xs" | |
| 3768 | by (simp add: sort_key_def foldr_foldl foldl_rev insort_left_comm) | |
| 3769 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3770 | lemma length_sort[simp]: "length (sort_key f xs) = length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3771 | by (induct xs, auto) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3772 | |
| 25062 | 3773 | lemma sorted_Cons: "sorted (x#xs) = (sorted xs & (ALL y:set xs. x <= y))" | 
| 24616 | 3774 | apply(induct xs arbitrary: x) apply simp | 
| 3775 | by simp (blast intro: order_trans) | |
| 3776 | ||
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3777 | lemma sorted_tl: | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3778 | "sorted xs \<Longrightarrow> sorted (tl xs)" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3779 | by (cases xs) (simp_all add: sorted_Cons) | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3780 | |
| 24616 | 3781 | lemma sorted_append: | 
| 25062 | 3782 | "sorted (xs@ys) = (sorted xs & sorted ys & (\<forall>x \<in> set xs. \<forall>y \<in> set ys. x\<le>y))" | 
| 24616 | 3783 | by (induct xs) (auto simp add:sorted_Cons) | 
| 3784 | ||
| 31201 | 3785 | lemma sorted_nth_mono: | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3786 | "sorted xs \<Longrightarrow> i \<le> j \<Longrightarrow> j < length xs \<Longrightarrow> xs!i \<le> xs!j" | 
| 31201 | 3787 | by (induct xs arbitrary: i j) (auto simp:nth_Cons' sorted_Cons) | 
| 3788 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3789 | lemma sorted_rev_nth_mono: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3790 | "sorted (rev xs) \<Longrightarrow> i \<le> j \<Longrightarrow> j < length xs \<Longrightarrow> xs!j \<le> xs!i" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3791 | using sorted_nth_mono[ of "rev xs" "length xs - j - 1" "length xs - i - 1"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3792 | rev_nth[of "length xs - i - 1" "xs"] rev_nth[of "length xs - j - 1" "xs"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3793 | by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3794 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3795 | lemma sorted_nth_monoI: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3796 | "(\<And> i j. \<lbrakk> i \<le> j ; j < length xs \<rbrakk> \<Longrightarrow> xs ! i \<le> xs ! j) \<Longrightarrow> sorted xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3797 | proof (induct xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3798 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3799 | have "sorted xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3800 | proof (rule Cons.hyps) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3801 | fix i j assume "i \<le> j" and "j < length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3802 | with Cons.prems[of "Suc i" "Suc j"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3803 | show "xs ! i \<le> xs ! j" by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3804 | qed | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3805 | moreover | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3806 |   {
 | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3807 | fix y assume "y \<in> set xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3808 | then obtain j where "j < length xs" and "xs ! j = y" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3809 | unfolding in_set_conv_nth by blast | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3810 | with Cons.prems[of 0 "Suc j"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3811 | have "x \<le> y" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3812 | by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3813 | } | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3814 | ultimately | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3815 | show ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3816 | unfolding sorted_Cons by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3817 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3818 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3819 | lemma sorted_equals_nth_mono: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3820 | "sorted xs = (\<forall>j < length xs. \<forall>i \<le> j. xs ! i \<le> xs ! j)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3821 | by (auto intro: sorted_nth_monoI sorted_nth_mono) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3822 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3823 | lemma set_insort: "set(insort_key f x xs) = insert x (set xs)" | 
| 24616 | 3824 | by (induct xs) auto | 
| 3825 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3826 | lemma set_sort[simp]: "set(sort_key f xs) = set xs" | 
| 24616 | 3827 | by (induct xs) (simp_all add:set_insort) | 
| 3828 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3829 | lemma distinct_insort: "distinct (insort_key f x xs) = (x \<notin> set xs \<and> distinct xs)" | 
| 24616 | 3830 | by(induct xs)(auto simp:set_insort) | 
| 3831 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3832 | lemma distinct_sort[simp]: "distinct (sort_key f xs) = distinct xs" | 
| 24616 | 3833 | by(induct xs)(simp_all add:distinct_insort set_sort) | 
| 3834 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3835 | lemma sorted_insort_key: "sorted (map f (insort_key f x xs)) = sorted (map f xs)" | 
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3836 | by (induct xs) (auto simp:sorted_Cons set_insort) | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3837 | |
| 24616 | 3838 | lemma sorted_insort: "sorted (insort x xs) = sorted xs" | 
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3839 | using sorted_insort_key [where f="\<lambda>x. x"] by simp | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3840 | |
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3841 | theorem sorted_sort_key [simp]: "sorted (map f (sort_key f xs))" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3842 | by (induct xs) (auto simp:sorted_insort_key) | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3843 | |
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3844 | theorem sorted_sort [simp]: "sorted (sort xs)" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3845 | using sorted_sort_key [where f="\<lambda>x. x"] by simp | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3846 | |
| 36851 | 3847 | lemma sorted_butlast: | 
| 3848 | assumes "xs \<noteq> []" and "sorted xs" | |
| 3849 | shows "sorted (butlast xs)" | |
| 3850 | proof - | |
| 3851 | from `xs \<noteq> []` obtain ys y where "xs = ys @ [y]" by (cases xs rule: rev_cases) auto | |
| 3852 | with `sorted xs` show ?thesis by (simp add: sorted_append) | |
| 3853 | qed | |
| 3854 | ||
| 3855 | lemma insort_not_Nil [simp]: | |
| 3856 | "insort_key f a xs \<noteq> []" | |
| 3857 | by (induct xs) simp_all | |
| 3858 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3859 | lemma insort_is_Cons: "\<forall>x\<in>set xs. f a \<le> f x \<Longrightarrow> insort_key f a xs = a # xs" | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3860 | by (cases xs) auto | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3861 | |
| 39534 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3862 | lemma sorted_map_remove1: | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3863 | "sorted (map f xs) \<Longrightarrow> sorted (map f (remove1 x xs))" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3864 | by (induct xs) (auto simp add: sorted_Cons) | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3865 | |
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3866 | lemma sorted_remove1: "sorted xs \<Longrightarrow> sorted (remove1 a xs)" | 
| 39534 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3867 | using sorted_map_remove1 [of "\<lambda>x. x"] by simp | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3868 | |
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3869 | lemma insort_key_remove1: | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3870 | assumes "a \<in> set xs" and "sorted (map f xs)" and "hd (filter (\<lambda>x. f a = f x) xs) = a" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3871 | shows "insort_key f a (remove1 a xs) = xs" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3872 | using assms proof (induct xs) | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3873 | case (Cons x xs) | 
| 39534 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3874 | then show ?case | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3875 | proof (cases "x = a") | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3876 | case False | 
| 39534 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3877 | then have "f x \<noteq> f a" using Cons.prems by auto | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3878 | then have "f x < f a" using Cons.prems by (auto simp: sorted_Cons) | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3879 | with `f x \<noteq> f a` show ?thesis using Cons by (auto simp: sorted_Cons insort_is_Cons) | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3880 | qed (auto simp: sorted_Cons insort_is_Cons) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3881 | qed simp | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3882 | |
| 39534 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3883 | lemma insort_remove1: | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3884 | assumes "a \<in> set xs" and "sorted xs" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3885 | shows "insort a (remove1 a xs) = xs" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3886 | proof (rule insort_key_remove1) | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3887 | from `a \<in> set xs` show "a \<in> set xs" . | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3888 | from `sorted xs` show "sorted (map (\<lambda>x. x) xs)" by simp | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3889 | from `a \<in> set xs` have "a \<in> set (filter (op = a) xs)" by auto | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3890 |   then have "set (filter (op = a) xs) \<noteq> {}" by auto
 | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3891 | then have "filter (op = a) xs \<noteq> []" by (auto simp only: set_empty) | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3892 | then have "length (filter (op = a) xs) > 0" by simp | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3893 | then obtain n where n: "Suc n = length (filter (op = a) xs)" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3894 | by (cases "length (filter (op = a) xs)") simp_all | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3895 | moreover have "replicate (Suc n) a = a # replicate n a" | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3896 | by simp | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3897 | ultimately show "hd (filter (op = a) xs) = a" by (simp add: replicate_length_filter) | 
| 
c798d4f1b682
generalized lemma insort_remove1 to insort_key_remove1
 haftmann parents: 
39302diff
changeset | 3898 | qed | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3899 | |
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3900 | lemma sorted_remdups[simp]: | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3901 | "sorted l \<Longrightarrow> sorted (remdups l)" | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3902 | by (induct l) (auto simp: sorted_Cons) | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3903 | |
| 24645 | 3904 | lemma sorted_distinct_set_unique: | 
| 3905 | assumes "sorted xs" "distinct xs" "sorted ys" "distinct ys" "set xs = set ys" | |
| 3906 | shows "xs = ys" | |
| 3907 | proof - | |
| 26734 | 3908 | from assms have 1: "length xs = length ys" by (auto dest!: distinct_card) | 
| 24645 | 3909 | from assms show ?thesis | 
| 3910 | proof(induct rule:list_induct2[OF 1]) | |
| 3911 | case 1 show ?case by simp | |
| 3912 | next | |
| 3913 | case 2 thus ?case by (simp add:sorted_Cons) | |
| 3914 | (metis Diff_insert_absorb antisym insertE insert_iff) | |
| 3915 | qed | |
| 3916 | qed | |
| 3917 | ||
| 35603 | 3918 | lemma map_sorted_distinct_set_unique: | 
| 3919 | assumes "inj_on f (set xs \<union> set ys)" | |
| 3920 | assumes "sorted (map f xs)" "distinct (map f xs)" | |
| 3921 | "sorted (map f ys)" "distinct (map f ys)" | |
| 3922 | assumes "set xs = set ys" | |
| 3923 | shows "xs = ys" | |
| 3924 | proof - | |
| 3925 | from assms have "map f xs = map f ys" | |
| 3926 | by (simp add: sorted_distinct_set_unique) | |
| 3927 | moreover with `inj_on f (set xs \<union> set ys)` show "xs = ys" | |
| 3928 | by (blast intro: map_inj_on) | |
| 3929 | qed | |
| 3930 | ||
| 24645 | 3931 | lemma finite_sorted_distinct_unique: | 
| 3932 | shows "finite A \<Longrightarrow> EX! xs. set xs = A & sorted xs & distinct xs" | |
| 3933 | apply(drule finite_distinct_list) | |
| 3934 | apply clarify | |
| 3935 | apply(rule_tac a="sort xs" in ex1I) | |
| 3936 | apply (auto simp: sorted_distinct_set_unique) | |
| 3937 | done | |
| 3938 | ||
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3939 | lemma | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3940 | assumes "sorted xs" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3941 | shows sorted_take: "sorted (take n xs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3942 | and sorted_drop: "sorted (drop n xs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3943 | proof - | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3944 | from assms have "sorted (take n xs @ drop n xs)" by simp | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3945 | then show "sorted (take n xs)" and "sorted (drop n xs)" | 
| 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3946 | unfolding sorted_append by simp_all | 
| 29626 | 3947 | qed | 
| 3948 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3949 | lemma sorted_dropWhile: "sorted xs \<Longrightarrow> sorted (dropWhile P xs)" | 
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3950 | by (auto dest: sorted_drop simp add: dropWhile_eq_drop) | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3951 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3952 | lemma sorted_takeWhile: "sorted xs \<Longrightarrow> sorted (takeWhile P xs)" | 
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39774diff
changeset | 3953 | by (subst takeWhile_eq_take) (auto dest: sorted_take) | 
| 29626 | 3954 | |
| 34933 | 3955 | lemma sorted_filter: | 
| 3956 | "sorted (map f xs) \<Longrightarrow> sorted (map f (filter P xs))" | |
| 3957 | by (induct xs) (simp_all add: sorted_Cons) | |
| 3958 | ||
| 3959 | lemma foldr_max_sorted: | |
| 3960 | assumes "sorted (rev xs)" | |
| 3961 | shows "foldr max xs y = (if xs = [] then y else max (xs ! 0) y)" | |
| 3962 | using assms proof (induct xs) | |
| 3963 | case (Cons x xs) | |
| 3964 | moreover hence "sorted (rev xs)" using sorted_append by auto | |
| 3965 | ultimately show ?case | |
| 3966 | by (cases xs, auto simp add: sorted_append max_def) | |
| 3967 | qed simp | |
| 3968 | ||
| 3969 | lemma filter_equals_takeWhile_sorted_rev: | |
| 3970 | assumes sorted: "sorted (rev (map f xs))" | |
| 3971 | shows "[x \<leftarrow> xs. t < f x] = takeWhile (\<lambda> x. t < f x) xs" | |
| 3972 | (is "filter ?P xs = ?tW") | |
| 3973 | proof (rule takeWhile_eq_filter[symmetric]) | |
| 3974 | let "?dW" = "dropWhile ?P xs" | |
| 3975 | fix x assume "x \<in> set ?dW" | |
| 3976 | then obtain i where i: "i < length ?dW" and nth_i: "x = ?dW ! i" | |
| 3977 | unfolding in_set_conv_nth by auto | |
| 3978 | hence "length ?tW + i < length (?tW @ ?dW)" | |
| 3979 | unfolding length_append by simp | |
| 3980 | hence i': "length (map f ?tW) + i < length (map f xs)" by simp | |
| 3981 | have "(map f ?tW @ map f ?dW) ! (length (map f ?tW) + i) \<le> | |
| 3982 | (map f ?tW @ map f ?dW) ! (length (map f ?tW) + 0)" | |
| 3983 | using sorted_rev_nth_mono[OF sorted _ i', of "length ?tW"] | |
| 3984 | unfolding map_append[symmetric] by simp | |
| 3985 | hence "f x \<le> f (?dW ! 0)" | |
| 3986 | unfolding nth_append_length_plus nth_i | |
| 3987 | using i preorder_class.le_less_trans[OF le0 i] by simp | |
| 3988 | also have "... \<le> t" | |
| 3989 | using hd_dropWhile[of "?P" xs] le0[THEN preorder_class.le_less_trans, OF i] | |
| 3990 | using hd_conv_nth[of "?dW"] by simp | |
| 3991 | finally show "\<not> t < f x" by simp | |
| 3992 | qed | |
| 3993 | ||
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3994 | lemma insort_insert_key_triv: | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3995 | "f x \<in> f ` set xs \<Longrightarrow> insort_insert_key f x xs = xs" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3996 | by (simp add: insort_insert_key_def) | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3997 | |
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3998 | lemma insort_insert_triv: | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 3999 | "x \<in> set xs \<Longrightarrow> insort_insert x xs = xs" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4000 | using insort_insert_key_triv [of "\<lambda>x. x"] by simp | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4001 | |
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4002 | lemma insort_insert_insort_key: | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4003 | "f x \<notin> f ` set xs \<Longrightarrow> insort_insert_key f x xs = insort_key f x xs" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4004 | by (simp add: insort_insert_key_def) | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4005 | |
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4006 | lemma insort_insert_insort: | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4007 | "x \<notin> set xs \<Longrightarrow> insort_insert x xs = insort x xs" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4008 | using insort_insert_insort_key [of "\<lambda>x. x"] by simp | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4009 | |
| 35608 | 4010 | lemma set_insort_insert: | 
| 4011 | "set (insort_insert x xs) = insert x (set xs)" | |
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4012 | by (auto simp add: insort_insert_key_def set_insort) | 
| 35608 | 4013 | |
| 4014 | lemma distinct_insort_insert: | |
| 4015 | assumes "distinct xs" | |
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4016 | shows "distinct (insort_insert_key f x xs)" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4017 | using assms by (induct xs) (auto simp add: insort_insert_key_def set_insort) | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4018 | |
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4019 | lemma sorted_insort_insert_key: | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4020 | assumes "sorted (map f xs)" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4021 | shows "sorted (map f (insort_insert_key f x xs))" | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4022 | using assms by (simp add: insort_insert_key_def sorted_insort_key) | 
| 35608 | 4023 | |
| 4024 | lemma sorted_insort_insert: | |
| 4025 | assumes "sorted xs" | |
| 4026 | shows "sorted (insort_insert x xs)" | |
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4027 | using assms sorted_insort_insert_key [of "\<lambda>x. x"] by simp | 
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4028 | |
| 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4029 | lemma filter_insort_triv: | 
| 37107 | 4030 | "\<not> P x \<Longrightarrow> filter P (insort_key f x xs) = filter P xs" | 
| 4031 | by (induct xs) simp_all | |
| 4032 | ||
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4033 | lemma filter_insort: | 
| 37107 | 4034 | "sorted (map f xs) \<Longrightarrow> P x \<Longrightarrow> filter P (insort_key f x xs) = insort_key f x (filter P xs)" | 
| 4035 | using assms by (induct xs) | |
| 4036 | (auto simp add: sorted_Cons, subst insort_is_Cons, auto) | |
| 4037 | ||
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4038 | lemma filter_sort: | 
| 37107 | 4039 | "filter P (sort_key f xs) = sort_key f (filter P xs)" | 
| 40210 
aee7ef725330
sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
 haftmann parents: 
40195diff
changeset | 4040 | by (induct xs) (simp_all add: filter_insort_triv filter_insort) | 
| 37107 | 4041 | |
| 40304 | 4042 | lemma sorted_map_same: | 
| 4043 | "sorted (map f [x\<leftarrow>xs. f x = g xs])" | |
| 4044 | proof (induct xs arbitrary: g) | |
| 37107 | 4045 | case Nil then show ?case by simp | 
| 4046 | next | |
| 4047 | case (Cons x xs) | |
| 40304 | 4048 | then have "sorted (map f [y\<leftarrow>xs . f y = (\<lambda>xs. f x) xs])" . | 
| 4049 | moreover from Cons have "sorted (map f [y\<leftarrow>xs . f y = (g \<circ> Cons x) xs])" . | |
| 37107 | 4050 | ultimately show ?case by (simp_all add: sorted_Cons) | 
| 4051 | qed | |
| 4052 | ||
| 40304 | 4053 | lemma sorted_same: | 
| 4054 | "sorted [x\<leftarrow>xs. x = g xs]" | |
| 4055 | using sorted_map_same [of "\<lambda>x. x"] by simp | |
| 4056 | ||
| 37107 | 4057 | lemma remove1_insort [simp]: | 
| 4058 | "remove1 x (insort x xs) = xs" | |
| 4059 | by (induct xs) simp_all | |
| 4060 | ||
| 24616 | 4061 | end | 
| 4062 | ||
| 25277 | 4063 | lemma sorted_upt[simp]: "sorted[i..<j]" | 
| 4064 | by (induct j) (simp_all add:sorted_append) | |
| 4065 | ||
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 4066 | lemma sorted_upto[simp]: "sorted[i..j]" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 4067 | apply(induct i j rule:upto.induct) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 4068 | apply(subst upto.simps) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 4069 | apply(simp add:sorted_Cons) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 4070 | done | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 4071 | |
| 35115 | 4072 | |
| 4073 | subsubsection {* @{const transpose} on sorted lists *}
 | |
| 34933 | 4074 | |
| 4075 | lemma sorted_transpose[simp]: | |
| 4076 | shows "sorted (rev (map length (transpose xs)))" | |
| 4077 | by (auto simp: sorted_equals_nth_mono rev_nth nth_transpose | |
| 4078 | length_filter_conv_card intro: card_mono) | |
| 4079 | ||
| 4080 | lemma transpose_max_length: | |
| 4081 | "foldr (\<lambda>xs. max (length xs)) (transpose xs) 0 = length [x \<leftarrow> xs. x \<noteq> []]" | |
| 4082 | (is "?L = ?R") | |
| 4083 | proof (cases "transpose xs = []") | |
| 4084 | case False | |
| 4085 | have "?L = foldr max (map length (transpose xs)) 0" | |
| 4086 | by (simp add: foldr_map comp_def) | |
| 4087 | also have "... = length (transpose xs ! 0)" | |
| 4088 | using False sorted_transpose by (simp add: foldr_max_sorted) | |
| 4089 | finally show ?thesis | |
| 4090 | using False by (simp add: nth_transpose) | |
| 4091 | next | |
| 4092 | case True | |
| 4093 | hence "[x \<leftarrow> xs. x \<noteq> []] = []" | |
| 4094 | by (auto intro!: filter_False simp: transpose_empty) | |
| 4095 | thus ?thesis by (simp add: transpose_empty True) | |
| 4096 | qed | |
| 4097 | ||
| 4098 | lemma length_transpose_sorted: | |
| 4099 | fixes xs :: "'a list list" | |
| 4100 | assumes sorted: "sorted (rev (map length xs))" | |
| 4101 | shows "length (transpose xs) = (if xs = [] then 0 else length (xs ! 0))" | |
| 4102 | proof (cases "xs = []") | |
| 4103 | case False | |
| 4104 | thus ?thesis | |
| 4105 | using foldr_max_sorted[OF sorted] False | |
| 4106 | unfolding length_transpose foldr_map comp_def | |
| 4107 | by simp | |
| 4108 | qed simp | |
| 4109 | ||
| 4110 | lemma nth_nth_transpose_sorted[simp]: | |
| 4111 | fixes xs :: "'a list list" | |
| 4112 | assumes sorted: "sorted (rev (map length xs))" | |
| 4113 | and i: "i < length (transpose xs)" | |
| 4114 | and j: "j < length [ys \<leftarrow> xs. i < length ys]" | |
| 4115 | shows "transpose xs ! i ! j = xs ! j ! i" | |
| 4116 | using j filter_equals_takeWhile_sorted_rev[OF sorted, of i] | |
| 4117 | nth_transpose[OF i] nth_map[OF j] | |
| 4118 | by (simp add: takeWhile_nth) | |
| 4119 | ||
| 4120 | lemma transpose_column_length: | |
| 4121 | fixes xs :: "'a list list" | |
| 4122 | assumes sorted: "sorted (rev (map length xs))" and "i < length xs" | |
| 4123 | shows "length (filter (\<lambda>ys. i < length ys) (transpose xs)) = length (xs ! i)" | |
| 4124 | proof - | |
| 4125 | have "xs \<noteq> []" using `i < length xs` by auto | |
| 4126 | note filter_equals_takeWhile_sorted_rev[OF sorted, simp] | |
| 4127 |   { fix j assume "j \<le> i"
 | |
| 4128 | note sorted_rev_nth_mono[OF sorted, of j i, simplified, OF this `i < length xs`] | |
| 4129 | } note sortedE = this[consumes 1] | |
| 4130 | ||
| 4131 |   have "{j. j < length (transpose xs) \<and> i < length (transpose xs ! j)}
 | |
| 4132 |     = {..< length (xs ! i)}"
 | |
| 4133 | proof safe | |
| 4134 | fix j | |
| 4135 | assume "j < length (transpose xs)" and "i < length (transpose xs ! j)" | |
| 4136 | with this(2) nth_transpose[OF this(1)] | |
| 4137 | have "i < length (takeWhile (\<lambda>ys. j < length ys) xs)" by simp | |
| 4138 | from nth_mem[OF this] takeWhile_nth[OF this] | |
| 4139 | show "j < length (xs ! i)" by (auto dest: set_takeWhileD) | |
| 4140 | next | |
| 4141 | fix j assume "j < length (xs ! i)" | |
| 4142 | thus "j < length (transpose xs)" | |
| 4143 | using foldr_max_sorted[OF sorted] `xs \<noteq> []` sortedE[OF le0] | |
| 4144 | by (auto simp: length_transpose comp_def foldr_map) | |
| 4145 | ||
| 4146 | have "Suc i \<le> length (takeWhile (\<lambda>ys. j < length ys) xs)" | |
| 4147 | using `i < length xs` `j < length (xs ! i)` less_Suc_eq_le | |
| 4148 | by (auto intro!: length_takeWhile_less_P_nth dest!: sortedE) | |
| 4149 | with nth_transpose[OF `j < length (transpose xs)`] | |
| 4150 | show "i < length (transpose xs ! j)" by simp | |
| 4151 | qed | |
| 4152 | thus ?thesis by (simp add: length_filter_conv_card) | |
| 4153 | qed | |
| 4154 | ||
| 4155 | lemma transpose_column: | |
| 4156 | fixes xs :: "'a list list" | |
| 4157 | assumes sorted: "sorted (rev (map length xs))" and "i < length xs" | |
| 4158 | shows "map (\<lambda>ys. ys ! i) (filter (\<lambda>ys. i < length ys) (transpose xs)) | |
| 4159 | = xs ! i" (is "?R = _") | |
| 4160 | proof (rule nth_equalityI, safe) | |
| 4161 | show length: "length ?R = length (xs ! i)" | |
| 4162 | using transpose_column_length[OF assms] by simp | |
| 4163 | ||
| 4164 | fix j assume j: "j < length ?R" | |
| 4165 | note * = less_le_trans[OF this, unfolded length_map, OF length_filter_le] | |
| 4166 | from j have j_less: "j < length (xs ! i)" using length by simp | |
| 4167 | have i_less_tW: "Suc i \<le> length (takeWhile (\<lambda>ys. Suc j \<le> length ys) xs)" | |
| 4168 | proof (rule length_takeWhile_less_P_nth) | |
| 4169 | show "Suc i \<le> length xs" using `i < length xs` by simp | |
| 4170 | fix k assume "k < Suc i" | |
| 4171 | hence "k \<le> i" by auto | |
| 4172 | with sorted_rev_nth_mono[OF sorted this] `i < length xs` | |
| 4173 | have "length (xs ! i) \<le> length (xs ! k)" by simp | |
| 4174 | thus "Suc j \<le> length (xs ! k)" using j_less by simp | |
| 4175 | qed | |
| 4176 | have i_less_filter: "i < length [ys\<leftarrow>xs . j < length ys]" | |
| 4177 | unfolding filter_equals_takeWhile_sorted_rev[OF sorted, of j] | |
| 4178 | using i_less_tW by (simp_all add: Suc_le_eq) | |
| 4179 | from j show "?R ! j = xs ! i ! j" | |
| 4180 | unfolding filter_equals_takeWhile_sorted_rev[OF sorted_transpose, of i] | |
| 4181 | by (simp add: takeWhile_nth nth_nth_transpose_sorted[OF sorted * i_less_filter]) | |
| 4182 | qed | |
| 4183 | ||
| 4184 | lemma transpose_transpose: | |
| 4185 | fixes xs :: "'a list list" | |
| 4186 | assumes sorted: "sorted (rev (map length xs))" | |
| 4187 | shows "transpose (transpose xs) = takeWhile (\<lambda>x. x \<noteq> []) xs" (is "?L = ?R") | |
| 4188 | proof - | |
| 4189 | have len: "length ?L = length ?R" | |
| 4190 | unfolding length_transpose transpose_max_length | |
| 4191 | using filter_equals_takeWhile_sorted_rev[OF sorted, of 0] | |
| 4192 | by simp | |
| 4193 | ||
| 4194 |   { fix i assume "i < length ?R"
 | |
| 4195 | with less_le_trans[OF _ length_takeWhile_le[of _ xs]] | |
| 4196 | have "i < length xs" by simp | |
| 4197 | } note * = this | |
| 4198 | show ?thesis | |
| 4199 | by (rule nth_equalityI) | |
| 4200 | (simp_all add: len nth_transpose transpose_column[OF sorted] * takeWhile_nth) | |
| 4201 | qed | |
| 24616 | 4202 | |
| 34934 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4203 | theorem transpose_rectangle: | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4204 | assumes "xs = [] \<Longrightarrow> n = 0" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4205 | assumes rect: "\<And> i. i < length xs \<Longrightarrow> length (xs ! i) = n" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4206 | shows "transpose xs = map (\<lambda> i. map (\<lambda> j. xs ! j ! i) [0..<length xs]) [0..<n]" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4207 | (is "?trans = ?map") | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4208 | proof (rule nth_equalityI) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4209 | have "sorted (rev (map length xs))" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4210 | by (auto simp: rev_nth rect intro!: sorted_nth_monoI) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4211 | from foldr_max_sorted[OF this] assms | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4212 | show len: "length ?trans = length ?map" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4213 | by (simp_all add: length_transpose foldr_map comp_def) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4214 | moreover | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4215 |   { fix i assume "i < n" hence "[ys\<leftarrow>xs . i < length ys] = xs"
 | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4216 | using rect by (auto simp: in_set_conv_nth intro!: filter_True) } | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4217 | ultimately show "\<forall>i < length ?trans. ?trans ! i = ?map ! i" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4218 | by (auto simp: nth_transpose intro: nth_equalityI) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4219 | qed | 
| 24616 | 4220 | |
| 35115 | 4221 | |
| 25069 | 4222 | subsubsection {* @{text sorted_list_of_set} *}
 | 
| 4223 | ||
| 4224 | text{* This function maps (finite) linearly ordered sets to sorted
 | |
| 4225 | lists. Warning: in most cases it is not a good idea to convert from | |
| 4226 | sets to lists but one should convert in the other direction (via | |
| 4227 | @{const set}). *}
 | |
| 4228 | ||
| 4229 | context linorder | |
| 4230 | begin | |
| 4231 | ||
| 35195 | 4232 | definition sorted_list_of_set :: "'a set \<Rightarrow> 'a list" where | 
| 4233 | "sorted_list_of_set = Finite_Set.fold insort []" | |
| 4234 | ||
| 4235 | lemma sorted_list_of_set_empty [simp]: | |
| 4236 |   "sorted_list_of_set {} = []"
 | |
| 4237 | by (simp add: sorted_list_of_set_def) | |
| 4238 | ||
| 4239 | lemma sorted_list_of_set_insert [simp]: | |
| 4240 | assumes "finite A" | |
| 4241 |   shows "sorted_list_of_set (insert x A) = insort x (sorted_list_of_set (A - {x}))"
 | |
| 4242 | proof - | |
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
42809diff
changeset | 4243 | interpret comp_fun_commute insort by (fact comp_fun_commute_insort) | 
| 35195 | 4244 | with assms show ?thesis by (simp add: sorted_list_of_set_def fold_insert_remove) | 
| 4245 | qed | |
| 4246 | ||
| 4247 | lemma sorted_list_of_set [simp]: | |
| 4248 | "finite A \<Longrightarrow> set (sorted_list_of_set A) = A \<and> sorted (sorted_list_of_set A) | |
| 4249 | \<and> distinct (sorted_list_of_set A)" | |
| 4250 | by (induct A rule: finite_induct) (simp_all add: set_insort sorted_insort distinct_insort) | |
| 4251 | ||
| 4252 | lemma sorted_list_of_set_sort_remdups: | |
| 4253 | "sorted_list_of_set (set xs) = sort (remdups xs)" | |
| 4254 | proof - | |
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
42809diff
changeset | 4255 | interpret comp_fun_commute insort by (fact comp_fun_commute_insort) | 
| 35195 | 4256 | show ?thesis by (simp add: sort_foldl_insort sorted_list_of_set_def fold_set_remdups) | 
| 4257 | qed | |
| 25069 | 4258 | |
| 37107 | 4259 | lemma sorted_list_of_set_remove: | 
| 4260 | assumes "finite A" | |
| 4261 |   shows "sorted_list_of_set (A - {x}) = remove1 x (sorted_list_of_set A)"
 | |
| 4262 | proof (cases "x \<in> A") | |
| 4263 | case False with assms have "x \<notin> set (sorted_list_of_set A)" by simp | |
| 4264 | with False show ?thesis by (simp add: remove1_idem) | |
| 4265 | next | |
| 4266 | case True then obtain B where A: "A = insert x B" by (rule Set.set_insert) | |
| 4267 | with assms show ?thesis by simp | |
| 4268 | qed | |
| 4269 | ||
| 25069 | 4270 | end | 
| 4271 | ||
| 37107 | 4272 | lemma sorted_list_of_set_range [simp]: | 
| 4273 |   "sorted_list_of_set {m..<n} = [m..<n]"
 | |
| 4274 | by (rule sorted_distinct_set_unique) simp_all | |
| 4275 | ||
| 4276 | ||
| 15392 | 4277 | subsubsection {* @{text lists}: the list-forming operator over sets *}
 | 
| 15302 | 4278 | |
| 23740 | 4279 | inductive_set | 
| 22262 | 4280 | lists :: "'a set => 'a list set" | 
| 23740 | 4281 | for A :: "'a set" | 
| 4282 | where | |
| 39613 | 4283 | Nil [intro!, simp]: "[]: lists A" | 
| 4284 | | Cons [intro!, simp, no_atp]: "[| a: A; l: lists A|] ==> a#l : lists A" | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4285 | |
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4286 | inductive_cases listsE [elim!,no_atp]: "x#l : lists A" | 
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4287 | inductive_cases listspE [elim!,no_atp]: "listsp A (x # l)" | 
| 23740 | 4288 | |
| 4289 | lemma listsp_mono [mono]: "A \<le> B ==> listsp A \<le> listsp B" | |
| 34064 
eee04bbbae7e
avoid dependency on implicit dest rule predicate1D in proofs
 haftmann parents: 
34007diff
changeset | 4290 | by (rule predicate1I, erule listsp.induct, (blast dest: predicate1D)+) | 
| 26795 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 4291 | |
| 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 4292 | lemmas lists_mono = listsp_mono [to_set pred_subset_eq] | 
| 22262 | 4293 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4294 | lemma listsp_infI: | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4295 | assumes l: "listsp A l" shows "listsp B l ==> listsp (inf A B) l" using l | 
| 24349 | 4296 | by induct blast+ | 
| 15302 | 4297 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4298 | lemmas lists_IntI = listsp_infI [to_set] | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4299 | |
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4300 | lemma listsp_inf_eq [simp]: "listsp (inf A B) = inf (listsp A) (listsp B)" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4301 | proof (rule mono_inf [where f=listsp, THEN order_antisym]) | 
| 22262 | 4302 | show "mono listsp" by (simp add: mono_def listsp_mono) | 
| 26795 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 4303 | show "inf (listsp A) (listsp B) \<le> listsp (inf A B)" by (blast intro!: listsp_infI predicate1I) | 
| 14388 | 4304 | qed | 
| 4305 | ||
| 41075 
4bed56dc95fb
primitive definitions of bot/top/inf/sup for bool and fun are named with canonical suffix `_def` rather than `_eq`
 haftmann parents: 
40968diff
changeset | 4306 | lemmas listsp_conj_eq [simp] = listsp_inf_eq [simplified inf_fun_def inf_bool_def] | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4307 | |
| 26795 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 4308 | lemmas lists_Int_eq [simp] = listsp_inf_eq [to_set pred_equals_eq] | 
| 22262 | 4309 | |
| 39613 | 4310 | lemma Cons_in_lists_iff[simp]: "x#xs : lists A \<longleftrightarrow> x:A \<and> xs : lists A" | 
| 4311 | by auto | |
| 4312 | ||
| 22262 | 4313 | lemma append_in_listsp_conv [iff]: | 
| 4314 | "(listsp A (xs @ ys)) = (listsp A xs \<and> listsp A ys)" | |
| 15302 | 4315 | by (induct xs) auto | 
| 4316 | ||
| 22262 | 4317 | lemmas append_in_lists_conv [iff] = append_in_listsp_conv [to_set] | 
| 4318 | ||
| 4319 | lemma in_listsp_conv_set: "(listsp A xs) = (\<forall>x \<in> set xs. A x)" | |
| 4320 | -- {* eliminate @{text listsp} in favour of @{text set} *}
 | |
| 15302 | 4321 | by (induct xs) auto | 
| 4322 | ||
| 22262 | 4323 | lemmas in_lists_conv_set = in_listsp_conv_set [to_set] | 
| 4324 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4325 | lemma in_listspD [dest!,no_atp]: "listsp A xs ==> \<forall>x\<in>set xs. A x" | 
| 22262 | 4326 | by (rule in_listsp_conv_set [THEN iffD1]) | 
| 4327 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4328 | lemmas in_listsD [dest!,no_atp] = in_listspD [to_set] | 
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4329 | |
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4330 | lemma in_listspI [intro!,no_atp]: "\<forall>x\<in>set xs. A x ==> listsp A xs" | 
| 22262 | 4331 | by (rule in_listsp_conv_set [THEN iffD2]) | 
| 4332 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4333 | lemmas in_listsI [intro!,no_atp] = in_listspI [to_set] | 
| 15302 | 4334 | |
| 39597 | 4335 | lemma lists_eq_set: "lists A = {xs. set xs <= A}"
 | 
| 4336 | by auto | |
| 4337 | ||
| 39613 | 4338 | lemma lists_empty [simp]: "lists {} = {[]}"
 | 
| 4339 | by auto | |
| 4340 | ||
| 15302 | 4341 | lemma lists_UNIV [simp]: "lists UNIV = UNIV" | 
| 4342 | by auto | |
| 4343 | ||
| 17086 | 4344 | |
| 35115 | 4345 | subsubsection {* Inductive definition for membership *}
 | 
| 17086 | 4346 | |
| 23740 | 4347 | inductive ListMem :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 22262 | 4348 | where | 
| 4349 | elem: "ListMem x (x # xs)" | |
| 4350 | | insert: "ListMem x xs \<Longrightarrow> ListMem x (y # xs)" | |
| 4351 | ||
| 4352 | lemma ListMem_iff: "(ListMem x xs) = (x \<in> set xs)" | |
| 17086 | 4353 | apply (rule iffI) | 
| 4354 | apply (induct set: ListMem) | |
| 4355 | apply auto | |
| 4356 | apply (induct xs) | |
| 4357 | apply (auto intro: ListMem.intros) | |
| 4358 | done | |
| 4359 | ||
| 4360 | ||
| 35115 | 4361 | subsubsection {* Lists as Cartesian products *}
 | 
| 15302 | 4362 | |
| 4363 | text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
 | |
| 4364 | @{term A} and tail drawn from @{term Xs}.*}
 | |
| 4365 | ||
| 34941 | 4366 | definition | 
| 4367 | set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set" where | |
| 37767 | 4368 |   "set_Cons A XS = {z. \<exists>x xs. z = x # xs \<and> x \<in> A \<and> xs \<in> XS}"
 | 
| 15302 | 4369 | |
| 17724 | 4370 | lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A"
 | 
| 15302 | 4371 | by (auto simp add: set_Cons_def) | 
| 4372 | ||
| 4373 | text{*Yields the set of lists, all of the same length as the argument and
 | |
| 4374 | with elements drawn from the corresponding element of the argument.*} | |
| 4375 | ||
| 4376 | primrec | |
| 34941 | 4377 | listset :: "'a set list \<Rightarrow> 'a list set" where | 
| 4378 |      "listset [] = {[]}"
 | |
| 4379 | | "listset (A # As) = set_Cons A (listset As)" | |
| 15302 | 4380 | |
| 4381 | ||
| 35115 | 4382 | subsection {* Relations on Lists *}
 | 
| 15656 | 4383 | |
| 4384 | subsubsection {* Length Lexicographic Ordering *}
 | |
| 4385 | ||
| 4386 | text{*These orderings preserve well-foundedness: shorter lists 
 | |
| 4387 | precede longer lists. These ordering are not used in dictionaries.*} | |
| 34941 | 4388 | |
| 4389 | primrec -- {*The lexicographic ordering for lists of the specified length*}
 | |
| 4390 |   lexn :: "('a \<times> 'a) set \<Rightarrow> nat \<Rightarrow> ('a list \<times> 'a list) set" where
 | |
| 37767 | 4391 |     "lexn r 0 = {}"
 | 
| 40608 
6c28ab8b8166
mapper for list type; map_pair replaces prod_fun
 haftmann parents: 
40593diff
changeset | 4392 | | "lexn r (Suc n) = (map_pair (%(x, xs). x#xs) (%(x, xs). x#xs) ` (r <*lex*> lexn r n)) Int | 
| 34941 | 4393 |       {(xs, ys). length xs = Suc n \<and> length ys = Suc n}"
 | 
| 4394 | ||
| 4395 | definition | |
| 4396 |   lex :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where
 | |
| 37767 | 4397 |   "lex r = (\<Union>n. lexn r n)" -- {*Holds only between lists of the same length*}
 | 
| 34941 | 4398 | |
| 4399 | definition | |
| 4400 |   lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set" where
 | |
| 37767 | 4401 | "lenlex r = inv_image (less_than <*lex*> lex r) (\<lambda>xs. (length xs, xs))" | 
| 34941 | 4402 |         -- {*Compares lists by their length and then lexicographically*}
 | 
| 15302 | 4403 | |
| 4404 | lemma wf_lexn: "wf r ==> wf (lexn r n)" | |
| 4405 | apply (induct n, simp, simp) | |
| 4406 | apply(rule wf_subset) | |
| 4407 | prefer 2 apply (rule Int_lower1) | |
| 40608 
6c28ab8b8166
mapper for list type; map_pair replaces prod_fun
 haftmann parents: 
40593diff
changeset | 4408 | apply(rule wf_map_pair_image) | 
| 15302 | 4409 | prefer 2 apply (rule inj_onI, auto) | 
| 4410 | done | |
| 4411 | ||
| 4412 | lemma lexn_length: | |
| 24526 | 4413 | "(xs, ys) : lexn r n ==> length xs = n \<and> length ys = n" | 
| 4414 | by (induct n arbitrary: xs ys) auto | |
| 15302 | 4415 | |
| 4416 | lemma wf_lex [intro!]: "wf r ==> wf (lex r)" | |
| 4417 | apply (unfold lex_def) | |
| 4418 | apply (rule wf_UN) | |
| 4419 | apply (blast intro: wf_lexn, clarify) | |
| 4420 | apply (rename_tac m n) | |
| 4421 | apply (subgoal_tac "m \<noteq> n") | |
| 4422 | prefer 2 apply blast | |
| 4423 | apply (blast dest: lexn_length not_sym) | |
| 4424 | done | |
| 4425 | ||
| 4426 | lemma lexn_conv: | |
| 15656 | 4427 | "lexn r n = | 
| 4428 |     {(xs,ys). length xs = n \<and> length ys = n \<and>
 | |
| 4429 | (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}" | |
| 18423 | 4430 | apply (induct n, simp) | 
| 15302 | 4431 | apply (simp add: image_Collect lex_prod_def, safe, blast) | 
| 4432 | apply (rule_tac x = "ab # xys" in exI, simp) | |
| 4433 | apply (case_tac xys, simp_all, blast) | |
| 4434 | done | |
| 4435 | ||
| 4436 | lemma lex_conv: | |
| 15656 | 4437 | "lex r = | 
| 4438 |     {(xs,ys). length xs = length ys \<and>
 | |
| 4439 | (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}" | |
| 15302 | 4440 | by (force simp add: lex_def lexn_conv) | 
| 4441 | ||
| 15693 | 4442 | lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)" | 
| 4443 | by (unfold lenlex_def) blast | |
| 4444 | ||
| 4445 | lemma lenlex_conv: | |
| 4446 |     "lenlex r = {(xs,ys). length xs < length ys |
 | |
| 15656 | 4447 | length xs = length ys \<and> (xs, ys) : lex r}" | 
| 30198 | 4448 | by (simp add: lenlex_def Id_on_def lex_prod_def inv_image_def) | 
| 15302 | 4449 | |
| 4450 | lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r" | |
| 4451 | by (simp add: lex_conv) | |
| 4452 | ||
| 4453 | lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r" | |
| 4454 | by (simp add:lex_conv) | |
| 4455 | ||
| 18447 | 4456 | lemma Cons_in_lex [simp]: | 
| 15656 | 4457 | "((x # xs, y # ys) : lex r) = | 
| 4458 | ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)" | |
| 15302 | 4459 | apply (simp add: lex_conv) | 
| 4460 | apply (rule iffI) | |
| 4461 | prefer 2 apply (blast intro: Cons_eq_appendI, clarify) | |
| 4462 | apply (case_tac xys, simp, simp) | |
| 4463 | apply blast | |
| 4464 | done | |
| 4465 | ||
| 4466 | ||
| 15656 | 4467 | subsubsection {* Lexicographic Ordering *}
 | 
| 4468 | ||
| 4469 | text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
 | |
| 4470 |     This ordering does \emph{not} preserve well-foundedness.
 | |
| 17090 | 4471 | Author: N. Voelker, March 2005. *} | 
| 15656 | 4472 | |
| 34941 | 4473 | definition | 
| 4474 |   lexord :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where
 | |
| 37767 | 4475 |   "lexord r = {(x,y ). \<exists> a v. y = x @ a # v \<or>
 | 
| 15656 | 4476 | (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}" | 
| 4477 | ||
| 4478 | lemma lexord_Nil_left[simp]: "([],y) \<in> lexord r = (\<exists> a x. y = a # x)" | |
| 24349 | 4479 | by (unfold lexord_def, induct_tac y, auto) | 
| 15656 | 4480 | |
| 4481 | lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r" | |
| 24349 | 4482 | by (unfold lexord_def, induct_tac x, auto) | 
| 15656 | 4483 | |
| 4484 | lemma lexord_cons_cons[simp]: | |
| 4485 | "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))" | |
| 4486 | apply (unfold lexord_def, safe, simp_all) | |
| 4487 | apply (case_tac u, simp, simp) | |
| 4488 | apply (case_tac u, simp, clarsimp, blast, blast, clarsimp) | |
| 4489 | apply (erule_tac x="b # u" in allE) | |
| 4490 | by force | |
| 4491 | ||
| 4492 | lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons | |
| 4493 | ||
| 4494 | lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r" | |
| 24349 | 4495 | by (induct_tac x, auto) | 
| 15656 | 4496 | |
| 4497 | lemma lexord_append_left_rightI: | |
| 4498 | "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r" | |
| 24349 | 4499 | by (induct_tac u, auto) | 
| 15656 | 4500 | |
| 4501 | lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r" | |
| 24349 | 4502 | by (induct x, auto) | 
| 15656 | 4503 | |
| 4504 | lemma lexord_append_leftD: | |
| 4505 | "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r" | |
| 24349 | 4506 | by (erule rev_mp, induct_tac x, auto) | 
| 15656 | 4507 | |
| 4508 | lemma lexord_take_index_conv: | |
| 4509 | "((x,y) : lexord r) = | |
| 4510 | ((length x < length y \<and> take (length x) y = x) \<or> | |
| 4511 | (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))" | |
| 4512 | apply (unfold lexord_def Let_def, clarsimp) | |
| 4513 | apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2) | |
| 4514 | apply auto | |
| 4515 | apply (rule_tac x="hd (drop (length x) y)" in exI) | |
| 4516 | apply (rule_tac x="tl (drop (length x) y)" in exI) | |
| 4517 | apply (erule subst, simp add: min_def) | |
| 4518 | apply (rule_tac x ="length u" in exI, simp) | |
| 4519 | apply (rule_tac x ="take i x" in exI) | |
| 4520 | apply (rule_tac x ="x ! i" in exI) | |
| 4521 | apply (rule_tac x ="y ! i" in exI, safe) | |
| 4522 | apply (rule_tac x="drop (Suc i) x" in exI) | |
| 4523 | apply (drule sym, simp add: drop_Suc_conv_tl) | |
| 4524 | apply (rule_tac x="drop (Suc i) y" in exI) | |
| 4525 | by (simp add: drop_Suc_conv_tl) | |
| 4526 | ||
| 4527 | -- {* lexord is extension of partial ordering List.lex *} 
 | |
| 41986 | 4528 | lemma lexord_lex: "(x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)" | 
| 15656 | 4529 | apply (rule_tac x = y in spec) | 
| 4530 | apply (induct_tac x, clarsimp) | |
| 4531 | by (clarify, case_tac x, simp, force) | |
| 4532 | ||
| 41986 | 4533 | lemma lexord_irreflexive: "ALL x. (x,x) \<notin> r \<Longrightarrow> (xs,xs) \<notin> lexord r" | 
| 4534 | by (induct xs) auto | |
| 4535 | ||
| 4536 | text{* By Ren\'e Thiemann: *}
 | |
| 4537 | lemma lexord_partial_trans: | |
| 4538 | "(\<And>x y z. x \<in> set xs \<Longrightarrow> (x,y) \<in> r \<Longrightarrow> (y,z) \<in> r \<Longrightarrow> (x,z) \<in> r) | |
| 4539 | \<Longrightarrow> (xs,ys) \<in> lexord r \<Longrightarrow> (ys,zs) \<in> lexord r \<Longrightarrow> (xs,zs) \<in> lexord r" | |
| 4540 | proof (induct xs arbitrary: ys zs) | |
| 4541 | case Nil | |
| 4542 | from Nil(3) show ?case unfolding lexord_def by (cases zs, auto) | |
| 4543 | next | |
| 4544 | case (Cons x xs yys zzs) | |
| 4545 | from Cons(3) obtain y ys where yys: "yys = y # ys" unfolding lexord_def | |
| 4546 | by (cases yys, auto) | |
| 4547 | note Cons = Cons[unfolded yys] | |
| 4548 | from Cons(3) have one: "(x,y) \<in> r \<or> x = y \<and> (xs,ys) \<in> lexord r" by auto | |
| 4549 | from Cons(4) obtain z zs where zzs: "zzs = z # zs" unfolding lexord_def | |
| 4550 | by (cases zzs, auto) | |
| 4551 | note Cons = Cons[unfolded zzs] | |
| 4552 | from Cons(4) have two: "(y,z) \<in> r \<or> y = z \<and> (ys,zs) \<in> lexord r" by auto | |
| 4553 |   {
 | |
| 4554 | assume "(xs,ys) \<in> lexord r" and "(ys,zs) \<in> lexord r" | |
| 4555 | from Cons(1)[OF _ this] Cons(2) | |
| 4556 | have "(xs,zs) \<in> lexord r" by auto | |
| 4557 | } note ind1 = this | |
| 4558 |   {
 | |
| 4559 | assume "(x,y) \<in> r" and "(y,z) \<in> r" | |
| 4560 | from Cons(2)[OF _ this] have "(x,z) \<in> r" by auto | |
| 4561 | } note ind2 = this | |
| 4562 | from one two ind1 ind2 | |
| 4563 | have "(x,z) \<in> r \<or> x = z \<and> (xs,zs) \<in> lexord r" by blast | |
| 4564 | thus ?case unfolding zzs by auto | |
| 4565 | qed | |
| 15656 | 4566 | |
| 4567 | lemma lexord_trans: | |
| 4568 | "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r" | |
| 41986 | 4569 | by(auto simp: trans_def intro:lexord_partial_trans) | 
| 15656 | 4570 | |
| 4571 | lemma lexord_transI: "trans r \<Longrightarrow> trans (lexord r)" | |
| 24349 | 4572 | by (rule transI, drule lexord_trans, blast) | 
| 15656 | 4573 | |
| 4574 | lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r" | |
| 4575 | apply (rule_tac x = y in spec) | |
| 4576 | apply (induct_tac x, rule allI) | |
| 4577 | apply (case_tac x, simp, simp) | |
| 4578 | apply (rule allI, case_tac x, simp, simp) | |
| 4579 | by blast | |
| 4580 | ||
| 4581 | ||
| 40230 | 4582 | subsubsection {* Lexicographic combination of measure functions *}
 | 
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4583 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4584 | text {* These are useful for termination proofs *}
 | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4585 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4586 | definition | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4587 | "measures fs = inv_image (lex less_than) (%a. map (%f. f a) fs)" | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4588 | |
| 21106 
51599a81b308
Added "recdef_wf" and "simp" attribute to "wf_measures"
 krauss parents: 
21103diff
changeset | 4589 | lemma wf_measures[recdef_wf, simp]: "wf (measures fs)" | 
| 24349 | 4590 | unfolding measures_def | 
| 4591 | by blast | |
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4592 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4593 | lemma in_measures[simp]: | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4594 | "(x, y) \<in> measures [] = False" | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4595 | "(x, y) \<in> measures (f # fs) | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4596 | = (f x < f y \<or> (f x = f y \<and> (x, y) \<in> measures fs))" | 
| 24349 | 4597 | unfolding measures_def | 
| 4598 | by auto | |
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4599 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4600 | lemma measures_less: "f x < f y ==> (x, y) \<in> measures (f#fs)" | 
| 24349 | 4601 | by simp | 
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4602 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4603 | lemma measures_lesseq: "f x <= f y ==> (x, y) \<in> measures fs ==> (x, y) \<in> measures (f#fs)" | 
| 24349 | 4604 | by auto | 
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4605 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4606 | |
| 40230 | 4607 | subsubsection {* Lifting Relations to Lists: one element *}
 | 
| 4608 | ||
| 4609 | definition listrel1 :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where
 | |
| 4610 | "listrel1 r = {(xs,ys).
 | |
| 4611 | \<exists>us z z' vs. xs = us @ z # vs \<and> (z,z') \<in> r \<and> ys = us @ z' # vs}" | |
| 4612 | ||
| 4613 | lemma listrel1I: | |
| 4614 | "\<lbrakk> (x, y) \<in> r; xs = us @ x # vs; ys = us @ y # vs \<rbrakk> \<Longrightarrow> | |
| 4615 | (xs, ys) \<in> listrel1 r" | |
| 4616 | unfolding listrel1_def by auto | |
| 4617 | ||
| 4618 | lemma listrel1E: | |
| 4619 | "\<lbrakk> (xs, ys) \<in> listrel1 r; | |
| 4620 | !!x y us vs. \<lbrakk> (x, y) \<in> r; xs = us @ x # vs; ys = us @ y # vs \<rbrakk> \<Longrightarrow> P | |
| 4621 | \<rbrakk> \<Longrightarrow> P" | |
| 4622 | unfolding listrel1_def by auto | |
| 4623 | ||
| 4624 | lemma not_Nil_listrel1 [iff]: "([], xs) \<notin> listrel1 r" | |
| 4625 | unfolding listrel1_def by blast | |
| 4626 | ||
| 4627 | lemma not_listrel1_Nil [iff]: "(xs, []) \<notin> listrel1 r" | |
| 4628 | unfolding listrel1_def by blast | |
| 4629 | ||
| 4630 | lemma Cons_listrel1_Cons [iff]: | |
| 4631 | "(x # xs, y # ys) \<in> listrel1 r \<longleftrightarrow> | |
| 4632 | (x,y) \<in> r \<and> xs = ys \<or> x = y \<and> (xs, ys) \<in> listrel1 r" | |
| 4633 | by (simp add: listrel1_def Cons_eq_append_conv) (blast) | |
| 4634 | ||
| 4635 | lemma listrel1I1: "(x,y) \<in> r \<Longrightarrow> (x # xs, y # xs) \<in> listrel1 r" | |
| 4636 | by (metis Cons_listrel1_Cons) | |
| 4637 | ||
| 4638 | lemma listrel1I2: "(xs, ys) \<in> listrel1 r \<Longrightarrow> (x # xs, x # ys) \<in> listrel1 r" | |
| 4639 | by (metis Cons_listrel1_Cons) | |
| 4640 | ||
| 4641 | lemma append_listrel1I: | |
| 4642 | "(xs, ys) \<in> listrel1 r \<and> us = vs \<or> xs = ys \<and> (us, vs) \<in> listrel1 r | |
| 4643 | \<Longrightarrow> (xs @ us, ys @ vs) \<in> listrel1 r" | |
| 4644 | unfolding listrel1_def | |
| 4645 | by auto (blast intro: append_eq_appendI)+ | |
| 4646 | ||
| 4647 | lemma Cons_listrel1E1[elim!]: | |
| 4648 | assumes "(x # xs, ys) \<in> listrel1 r" | |
| 4649 | and "\<And>y. ys = y # xs \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> R" | |
| 4650 | and "\<And>zs. ys = x # zs \<Longrightarrow> (xs, zs) \<in> listrel1 r \<Longrightarrow> R" | |
| 4651 | shows R | |
| 4652 | using assms by (cases ys) blast+ | |
| 4653 | ||
| 4654 | lemma Cons_listrel1E2[elim!]: | |
| 4655 | assumes "(xs, y # ys) \<in> listrel1 r" | |
| 4656 | and "\<And>x. xs = x # ys \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> R" | |
| 4657 | and "\<And>zs. xs = y # zs \<Longrightarrow> (zs, ys) \<in> listrel1 r \<Longrightarrow> R" | |
| 4658 | shows R | |
| 4659 | using assms by (cases xs) blast+ | |
| 4660 | ||
| 4661 | lemma snoc_listrel1_snoc_iff: | |
| 4662 | "(xs @ [x], ys @ [y]) \<in> listrel1 r | |
| 4663 | \<longleftrightarrow> (xs, ys) \<in> listrel1 r \<and> x = y \<or> xs = ys \<and> (x,y) \<in> r" (is "?L \<longleftrightarrow> ?R") | |
| 4664 | proof | |
| 4665 | assume ?L thus ?R | |
| 4666 | by (fastsimp simp: listrel1_def snoc_eq_iff_butlast butlast_append) | |
| 4667 | next | |
| 4668 | assume ?R then show ?L unfolding listrel1_def by force | |
| 4669 | qed | |
| 4670 | ||
| 4671 | lemma listrel1_eq_len: "(xs,ys) \<in> listrel1 r \<Longrightarrow> length xs = length ys" | |
| 4672 | unfolding listrel1_def by auto | |
| 4673 | ||
| 4674 | lemma listrel1_mono: | |
| 4675 | "r \<subseteq> s \<Longrightarrow> listrel1 r \<subseteq> listrel1 s" | |
| 4676 | unfolding listrel1_def by blast | |
| 4677 | ||
| 4678 | ||
| 4679 | lemma listrel1_converse: "listrel1 (r^-1) = (listrel1 r)^-1" | |
| 4680 | unfolding listrel1_def by blast | |
| 4681 | ||
| 4682 | lemma in_listrel1_converse: | |
| 4683 | "(x,y) : listrel1 (r^-1) \<longleftrightarrow> (x,y) : (listrel1 r)^-1" | |
| 4684 | unfolding listrel1_def by blast | |
| 4685 | ||
| 4686 | lemma listrel1_iff_update: | |
| 4687 | "(xs,ys) \<in> (listrel1 r) | |
| 4688 | \<longleftrightarrow> (\<exists>y n. (xs ! n, y) \<in> r \<and> n < length xs \<and> ys = xs[n:=y])" (is "?L \<longleftrightarrow> ?R") | |
| 4689 | proof | |
| 4690 | assume "?L" | |
| 4691 | then obtain x y u v where "xs = u @ x # v" "ys = u @ y # v" "(x,y) \<in> r" | |
| 4692 | unfolding listrel1_def by auto | |
| 4693 | then have "ys = xs[length u := y]" and "length u < length xs" | |
| 4694 | and "(xs ! length u, y) \<in> r" by auto | |
| 4695 | then show "?R" by auto | |
| 4696 | next | |
| 4697 | assume "?R" | |
| 4698 | then obtain x y n where "(xs!n, y) \<in> r" "n < size xs" "ys = xs[n:=y]" "x = xs!n" | |
| 4699 | by auto | |
| 4700 | then obtain u v where "xs = u @ x # v" and "ys = u @ y # v" and "(x, y) \<in> r" | |
| 4701 | by (auto intro: upd_conv_take_nth_drop id_take_nth_drop) | |
| 4702 | then show "?L" by (auto simp: listrel1_def) | |
| 4703 | qed | |
| 4704 | ||
| 4705 | ||
| 4706 | text{* Accessible part of @{term listrel1} relations: *}
 | |
| 4707 | ||
| 4708 | lemma Cons_acc_listrel1I [intro!]: | |
| 4709 | "x \<in> acc r \<Longrightarrow> xs \<in> acc (listrel1 r) \<Longrightarrow> (x # xs) \<in> acc (listrel1 r)" | |
| 4710 | apply (induct arbitrary: xs set: acc) | |
| 4711 | apply (erule thin_rl) | |
| 4712 | apply (erule acc_induct) | |
| 4713 | apply (rule accI) | |
| 4714 | apply (blast) | |
| 4715 | done | |
| 4716 | ||
| 4717 | lemma lists_accD: "xs \<in> lists (acc r) \<Longrightarrow> xs \<in> acc (listrel1 r)" | |
| 4718 | apply (induct set: lists) | |
| 4719 | apply (rule accI) | |
| 4720 | apply simp | |
| 4721 | apply (rule accI) | |
| 4722 | apply (fast dest: acc_downward) | |
| 4723 | done | |
| 4724 | ||
| 4725 | lemma lists_accI: "xs \<in> acc (listrel1 r) \<Longrightarrow> xs \<in> lists (acc r)" | |
| 4726 | apply (induct set: acc) | |
| 4727 | apply clarify | |
| 4728 | apply (rule accI) | |
| 4729 | apply (fastsimp dest!: in_set_conv_decomp[THEN iffD1] simp: listrel1_def) | |
| 4730 | done | |
| 4731 | ||
| 4732 | ||
| 4733 | subsubsection {* Lifting Relations to Lists: all elements *}
 | |
| 15302 | 4734 | |
| 23740 | 4735 | inductive_set | 
| 4736 |   listrel :: "('a * 'a)set => ('a list * 'a list)set"
 | |
| 4737 |   for r :: "('a * 'a)set"
 | |
| 22262 | 4738 | where | 
| 23740 | 4739 | Nil: "([],[]) \<in> listrel r" | 
| 4740 | | Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r" | |
| 4741 | ||
| 4742 | inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r" | |
| 4743 | inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r" | |
| 4744 | inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r" | |
| 4745 | inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r" | |
| 15302 | 4746 | |
| 4747 | ||
| 40230 | 4748 | lemma listrel_eq_len: "(xs, ys) \<in> listrel r \<Longrightarrow> length xs = length ys" | 
| 4749 | by(induct rule: listrel.induct) auto | |
| 4750 | ||
| 4751 | lemma listrel_iff_zip: "(xs,ys) : listrel r \<longleftrightarrow> | |
| 4752 | length xs = length ys & (\<forall>(x,y) \<in> set(zip xs ys). (x,y) \<in> r)" (is "?L \<longleftrightarrow> ?R") | |
| 4753 | proof | |
| 4754 | assume ?L thus ?R by induct (auto intro: listrel_eq_len) | |
| 4755 | next | |
| 4756 | assume ?R thus ?L | |
| 4757 | apply (clarify) | |
| 4758 | by (induct rule: list_induct2) (auto intro: listrel.intros) | |
| 4759 | qed | |
| 4760 | ||
| 4761 | lemma listrel_iff_nth: "(xs,ys) : listrel r \<longleftrightarrow> | |
| 4762 | length xs = length ys & (\<forall>n < length xs. (xs!n, ys!n) \<in> r)" (is "?L \<longleftrightarrow> ?R") | |
| 4763 | by (auto simp add: all_set_conv_all_nth listrel_iff_zip) | |
| 4764 | ||
| 4765 | ||
| 15302 | 4766 | lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s" | 
| 4767 | apply clarify | |
| 23740 | 4768 | apply (erule listrel.induct) | 
| 4769 | apply (blast intro: listrel.intros)+ | |
| 15302 | 4770 | done | 
| 4771 | ||
| 4772 | lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A" | |
| 4773 | apply clarify | |
| 23740 | 4774 | apply (erule listrel.induct, auto) | 
| 15302 | 4775 | done | 
| 4776 | ||
| 30198 | 4777 | lemma listrel_refl_on: "refl_on A r \<Longrightarrow> refl_on (lists A) (listrel r)" | 
| 4778 | apply (simp add: refl_on_def listrel_subset Ball_def) | |
| 15302 | 4779 | apply (rule allI) | 
| 4780 | apply (induct_tac x) | |
| 23740 | 4781 | apply (auto intro: listrel.intros) | 
| 15302 | 4782 | done | 
| 4783 | ||
| 4784 | lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" | |
| 4785 | apply (auto simp add: sym_def) | |
| 23740 | 4786 | apply (erule listrel.induct) | 
| 4787 | apply (blast intro: listrel.intros)+ | |
| 15302 | 4788 | done | 
| 4789 | ||
| 4790 | lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" | |
| 4791 | apply (simp add: trans_def) | |
| 4792 | apply (intro allI) | |
| 4793 | apply (rule impI) | |
| 23740 | 4794 | apply (erule listrel.induct) | 
| 4795 | apply (blast intro: listrel.intros)+ | |
| 15302 | 4796 | done | 
| 4797 | ||
| 4798 | theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)" | |
| 30198 | 4799 | by (simp add: equiv_def listrel_refl_on listrel_sym listrel_trans) | 
| 15302 | 4800 | |
| 40230 | 4801 | lemma listrel_rtrancl_refl[iff]: "(xs,xs) : listrel(r^*)" | 
| 4802 | using listrel_refl_on[of UNIV, OF refl_rtrancl] | |
| 4803 | by(auto simp: refl_on_def) | |
| 4804 | ||
| 4805 | lemma listrel_rtrancl_trans: | |
| 4806 | "\<lbrakk> (xs,ys) : listrel(r^*); (ys,zs) : listrel(r^*) \<rbrakk> | |
| 4807 | \<Longrightarrow> (xs,zs) : listrel(r^*)" | |
| 4808 | by (metis listrel_trans trans_def trans_rtrancl) | |
| 4809 | ||
| 4810 | ||
| 15302 | 4811 | lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
 | 
| 23740 | 4812 | by (blast intro: listrel.intros) | 
| 15302 | 4813 | |
| 4814 | lemma listrel_Cons: | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4815 |      "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4816 | by (auto simp add: set_Cons_def intro: listrel.intros) | 
| 15302 | 4817 | |
| 40230 | 4818 | text {* Relating @{term listrel1}, @{term listrel} and closures: *}
 | 
| 4819 | ||
| 4820 | lemma listrel1_rtrancl_subset_rtrancl_listrel1: | |
| 4821 | "listrel1 (r^*) \<subseteq> (listrel1 r)^*" | |
| 4822 | proof (rule subrelI) | |
| 4823 | fix xs ys assume 1: "(xs,ys) \<in> listrel1 (r^*)" | |
| 4824 |   { fix x y us vs
 | |
| 4825 | have "(x,y) : r^* \<Longrightarrow> (us @ x # vs, us @ y # vs) : (listrel1 r)^*" | |
| 4826 | proof(induct rule: rtrancl.induct) | |
| 4827 | case rtrancl_refl show ?case by simp | |
| 4828 | next | |
| 4829 | case rtrancl_into_rtrancl thus ?case | |
| 4830 | by (metis listrel1I rtrancl.rtrancl_into_rtrancl) | |
| 4831 | qed } | |
| 4832 | thus "(xs,ys) \<in> (listrel1 r)^*" using 1 by(blast elim: listrel1E) | |
| 4833 | qed | |
| 4834 | ||
| 4835 | lemma rtrancl_listrel1_eq_len: "(x,y) \<in> (listrel1 r)^* \<Longrightarrow> length x = length y" | |
| 4836 | by (induct rule: rtrancl.induct) (auto intro: listrel1_eq_len) | |
| 4837 | ||
| 4838 | lemma rtrancl_listrel1_ConsI1: | |
| 4839 | "(xs,ys) : (listrel1 r)^* \<Longrightarrow> (x#xs,x#ys) : (listrel1 r)^*" | |
| 4840 | apply(induct rule: rtrancl.induct) | |
| 4841 | apply simp | |
| 4842 | by (metis listrel1I2 rtrancl.rtrancl_into_rtrancl) | |
| 4843 | ||
| 4844 | lemma rtrancl_listrel1_ConsI2: | |
| 4845 | "(x,y) \<in> r^* \<Longrightarrow> (xs, ys) \<in> (listrel1 r)^* | |
| 4846 | \<Longrightarrow> (x # xs, y # ys) \<in> (listrel1 r)^*" | |
| 4847 | by (blast intro: rtrancl_trans rtrancl_listrel1_ConsI1 | |
| 4848 | subsetD[OF listrel1_rtrancl_subset_rtrancl_listrel1 listrel1I1]) | |
| 4849 | ||
| 4850 | lemma listrel1_subset_listrel: | |
| 4851 | "r \<subseteq> r' \<Longrightarrow> refl r' \<Longrightarrow> listrel1 r \<subseteq> listrel(r')" | |
| 4852 | by(auto elim!: listrel1E simp add: listrel_iff_zip set_zip refl_on_def) | |
| 4853 | ||
| 4854 | lemma listrel_reflcl_if_listrel1: | |
| 4855 | "(xs,ys) : listrel1 r \<Longrightarrow> (xs,ys) : listrel(r^*)" | |
| 4856 | by(erule listrel1E)(auto simp add: listrel_iff_zip set_zip) | |
| 4857 | ||
| 4858 | lemma listrel_rtrancl_eq_rtrancl_listrel1: "listrel (r^*) = (listrel1 r)^*" | |
| 4859 | proof | |
| 4860 |   { fix x y assume "(x,y) \<in> listrel (r^*)"
 | |
| 4861 | then have "(x,y) \<in> (listrel1 r)^*" | |
| 4862 | by induct (auto intro: rtrancl_listrel1_ConsI2) } | |
| 4863 | then show "listrel (r^*) \<subseteq> (listrel1 r)^*" | |
| 4864 | by (rule subrelI) | |
| 4865 | next | |
| 4866 | show "listrel (r^*) \<supseteq> (listrel1 r)^*" | |
| 4867 | proof(rule subrelI) | |
| 4868 | fix xs ys assume "(xs,ys) \<in> (listrel1 r)^*" | |
| 4869 | then show "(xs,ys) \<in> listrel (r^*)" | |
| 4870 | proof induct | |
| 4871 | case base show ?case by(auto simp add: listrel_iff_zip set_zip) | |
| 4872 | next | |
| 4873 | case (step ys zs) | |
| 4874 | thus ?case by (metis listrel_reflcl_if_listrel1 listrel_rtrancl_trans) | |
| 4875 | qed | |
| 4876 | qed | |
| 4877 | qed | |
| 4878 | ||
| 4879 | lemma rtrancl_listrel1_if_listrel: | |
| 4880 | "(xs,ys) : listrel r \<Longrightarrow> (xs,ys) : (listrel1 r)^*" | |
| 4881 | by(metis listrel_rtrancl_eq_rtrancl_listrel1 subsetD[OF listrel_mono] r_into_rtrancl subsetI) | |
| 4882 | ||
| 4883 | lemma listrel_subset_rtrancl_listrel1: "listrel r \<subseteq> (listrel1 r)^*" | |
| 4884 | by(fast intro:rtrancl_listrel1_if_listrel) | |
| 4885 | ||
| 15302 | 4886 | |
| 26749 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4887 | subsection {* Size function *}
 | 
| 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4888 | |
| 26875 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4889 | lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (list_size f)" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4890 | by (rule is_measure_trivial) | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4891 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4892 | lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (option_size f)" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4893 | by (rule is_measure_trivial) | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4894 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4895 | lemma list_size_estimation[termination_simp]: | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4896 | "x \<in> set xs \<Longrightarrow> y < f x \<Longrightarrow> y < list_size f xs" | 
| 26749 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4897 | by (induct xs) auto | 
| 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4898 | |
| 26875 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4899 | lemma list_size_estimation'[termination_simp]: | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4900 | "x \<in> set xs \<Longrightarrow> y \<le> f x \<Longrightarrow> y \<le> list_size f xs" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4901 | by (induct xs) auto | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4902 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4903 | lemma list_size_map[simp]: "list_size f (map g xs) = list_size (f o g) xs" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4904 | by (induct xs) auto | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4905 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4906 | lemma list_size_pointwise[termination_simp]: | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4907 | "(\<And>x. x \<in> set xs \<Longrightarrow> f x < g x) \<Longrightarrow> list_size f xs \<le> list_size g xs" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4908 | by (induct xs) force+ | 
| 26749 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4909 | |
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4910 | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4911 | subsection {* Transfer *}
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4912 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4913 | definition | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4914 | embed_list :: "nat list \<Rightarrow> int list" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4915 | where | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4916 | "embed_list l = map int l" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4917 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4918 | definition | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4919 | nat_list :: "int list \<Rightarrow> bool" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4920 | where | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4921 | "nat_list l = nat_set (set l)" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4922 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4923 | definition | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4924 | return_list :: "int list \<Rightarrow> nat list" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4925 | where | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4926 | "return_list l = map nat l" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4927 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4928 | lemma transfer_nat_int_list_return_embed: "nat_list l \<longrightarrow> | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4929 | embed_list (return_list l) = l" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4930 | unfolding embed_list_def return_list_def nat_list_def nat_set_def | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4931 | apply (induct l) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4932 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4933 | done | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4934 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4935 | lemma transfer_nat_int_list_functions: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4936 | "l @ m = return_list (embed_list l @ embed_list m)" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4937 | "[] = return_list []" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4938 | unfolding return_list_def embed_list_def | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4939 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4940 | apply (induct l, auto) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4941 | apply (induct m, auto) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4942 | done | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4943 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4944 | (* | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4945 | lemma transfer_nat_int_fold1: "fold f l x = | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4946 | fold (%x. f (nat x)) (embed_list l) x"; | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4947 | *) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4948 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4949 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4950 | subsection {* Code generation *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4951 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4952 | subsubsection {* Counterparts for set-related operations *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4953 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4954 | definition member :: "'a list \<Rightarrow> 'a \<Rightarrow> bool" where | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4955 | [code_post]: "member xs x \<longleftrightarrow> x \<in> set xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4956 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4957 | text {*
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4958 |   Only use @{text member} for generating executable code.  Otherwise use
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4959 |   @{prop "x \<in> set xs"} instead --- it is much easier to reason about.
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4960 | *} | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4961 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4962 | lemma member_set: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4963 | "member = set" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39272diff
changeset | 4964 | by (simp add: fun_eq_iff member_def mem_def) | 
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4965 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4966 | lemma member_rec [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4967 | "member (x # xs) y \<longleftrightarrow> x = y \<or> member xs y" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4968 | "member [] y \<longleftrightarrow> False" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4969 | by (auto simp add: member_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4970 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4971 | lemma in_set_member [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4972 | "x \<in> set xs \<longleftrightarrow> member xs x" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4973 | by (simp add: member_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4974 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4975 | declare INFI_def [code_unfold] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4976 | declare SUPR_def [code_unfold] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4977 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4978 | declare set_map [symmetric, code_unfold] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4979 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4980 | definition list_all :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4981 | list_all_iff [code_post]: "list_all P xs \<longleftrightarrow> (\<forall>x \<in> set xs. P x)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4982 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4983 | definition list_ex :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4984 | list_ex_iff [code_post]: "list_ex P xs \<longleftrightarrow> (\<exists>x \<in> set xs. P x)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4985 | |
| 40652 | 4986 | definition list_ex1 | 
| 4987 | where | |
| 4988 | list_ex1_iff: "list_ex1 P xs \<longleftrightarrow> (\<exists>! x. x \<in> set xs \<and> P x)" | |
| 4989 | ||
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4990 | text {*
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4991 |   Usually you should prefer @{text "\<forall>x\<in>set xs"} and @{text "\<exists>x\<in>set xs"}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4992 |   over @{const list_all} and @{const list_ex} in specifications.
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4993 | *} | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4994 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4995 | lemma list_all_simps [simp, code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4996 | "list_all P (x # xs) \<longleftrightarrow> P x \<and> list_all P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4997 | "list_all P [] \<longleftrightarrow> True" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4998 | by (simp_all add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4999 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5000 | lemma list_ex_simps [simp, code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5001 | "list_ex P (x # xs) \<longleftrightarrow> P x \<or> list_ex P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5002 | "list_ex P [] \<longleftrightarrow> False" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5003 | by (simp_all add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5004 | |
| 40652 | 5005 | lemma list_ex1_simps [simp, code]: | 
| 5006 | "list_ex1 P [] = False" | |
| 5007 | "list_ex1 P (x # xs) = (if P x then list_all (\<lambda>y. \<not> P y \<or> x = y) xs else list_ex1 P xs)" | |
| 5008 | unfolding list_ex1_iff list_all_iff by auto | |
| 5009 | ||
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5010 | lemma Ball_set_list_all [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5011 | "Ball (set xs) P \<longleftrightarrow> list_all P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5012 | by (simp add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5013 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5014 | lemma Bex_set_list_ex [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5015 | "Bex (set xs) P \<longleftrightarrow> list_ex P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5016 | by (simp add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5017 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5018 | lemma list_all_append [simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5019 | "list_all P (xs @ ys) \<longleftrightarrow> list_all P xs \<and> list_all P ys" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5020 | by (auto simp add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5021 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5022 | lemma list_ex_append [simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5023 | "list_ex P (xs @ ys) \<longleftrightarrow> list_ex P xs \<or> list_ex P ys" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5024 | by (auto simp add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5025 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5026 | lemma list_all_rev [simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5027 | "list_all P (rev xs) \<longleftrightarrow> list_all P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5028 | by (simp add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5029 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5030 | lemma list_ex_rev [simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5031 | "list_ex P (rev xs) \<longleftrightarrow> list_ex P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5032 | by (simp add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5033 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5034 | lemma list_all_length: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5035 | "list_all P xs \<longleftrightarrow> (\<forall>n < length xs. P (xs ! n))" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5036 | by (auto simp add: list_all_iff set_conv_nth) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5037 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5038 | lemma list_ex_length: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5039 | "list_ex P xs \<longleftrightarrow> (\<exists>n < length xs. P (xs ! n))" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5040 | by (auto simp add: list_ex_iff set_conv_nth) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5041 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5042 | lemma list_all_cong [fundef_cong]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5043 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> f x = g x) \<Longrightarrow> list_all f xs = list_all g ys" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5044 | by (simp add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5045 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5046 | lemma list_any_cong [fundef_cong]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5047 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> f x = g x) \<Longrightarrow> list_ex f xs = list_ex g ys" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5048 | by (simp add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5049 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5050 | text {* Bounded quantification and summation over nats. *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5051 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5052 | lemma atMost_upto [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5053 |   "{..n} = set [0..<Suc n]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5054 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5055 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5056 | lemma atLeast_upt [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5057 |   "{..<n} = set [0..<n]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5058 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5059 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5060 | lemma greaterThanLessThan_upt [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5061 |   "{n<..<m} = set [Suc n..<m]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5062 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5063 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5064 | lemmas atLeastLessThan_upt [code_unfold] = set_upt [symmetric] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5065 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5066 | lemma greaterThanAtMost_upt [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5067 |   "{n<..m} = set [Suc n..<Suc m]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5068 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5069 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5070 | lemma atLeastAtMost_upt [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5071 |   "{n..m} = set [n..<Suc m]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5072 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5073 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5074 | lemma all_nat_less_eq [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5075 |   "(\<forall>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..<n}. P m)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5076 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5077 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5078 | lemma ex_nat_less_eq [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5079 |   "(\<exists>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..<n}. P m)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5080 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5081 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5082 | lemma all_nat_less [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5083 |   "(\<forall>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..n}. P m)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5084 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5085 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5086 | lemma ex_nat_less [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5087 |   "(\<exists>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..n}. P m)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5088 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5089 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5090 | lemma setsum_set_upt_conv_listsum_nat [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5091 | "setsum f (set [m..<n]) = listsum (map f [m..<n])" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5092 | by (simp add: interv_listsum_conv_setsum_set_nat) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5093 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5094 | text {* Summation over ints. *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5095 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5096 | lemma greaterThanLessThan_upto [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5097 |   "{i<..<j::int} = set [i+1..j - 1]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5098 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5099 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5100 | lemma atLeastLessThan_upto [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5101 |   "{i..<j::int} = set [i..j - 1]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5102 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5103 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5104 | lemma greaterThanAtMost_upto [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5105 |   "{i<..j::int} = set [i+1..j]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5106 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5107 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5108 | lemmas atLeastAtMost_upto [code_unfold] = set_upto [symmetric] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5109 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5110 | lemma setsum_set_upto_conv_listsum_int [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5111 | "setsum f (set [i..j::int]) = listsum (map f [i..j])" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5112 | by (simp add: interv_listsum_conv_setsum_set_int) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5113 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5114 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5115 | subsubsection {* Optimizing by rewriting *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5116 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5117 | definition null :: "'a list \<Rightarrow> bool" where | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5118 | [code_post]: "null xs \<longleftrightarrow> xs = []" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5119 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5120 | text {*
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5121 |   Efficient emptyness check is implemented by @{const null}.
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5122 | *} | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5123 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5124 | lemma null_rec [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5125 | "null (x # xs) \<longleftrightarrow> False" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5126 | "null [] \<longleftrightarrow> True" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5127 | by (simp_all add: null_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5128 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5129 | lemma eq_Nil_null [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5130 | "xs = [] \<longleftrightarrow> null xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5131 | by (simp add: null_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5132 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5133 | lemma equal_Nil_null [code_unfold]: | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38715diff
changeset | 5134 | "HOL.equal xs [] \<longleftrightarrow> null xs" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38715diff
changeset | 5135 | by (simp add: equal eq_Nil_null) | 
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5136 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5137 | definition maps :: "('a \<Rightarrow> 'b list) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5138 | [code_post]: "maps f xs = concat (map f xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5139 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5140 | definition map_filter :: "('a \<Rightarrow> 'b option) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5141 | [code_post]: "map_filter f xs = map (the \<circ> f) (filter (\<lambda>x. f x \<noteq> None) xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5142 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5143 | text {*
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5144 |   Operations @{const maps} and @{const map_filter} avoid
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5145 | intermediate lists on execution -- do not use for proving. | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5146 | *} | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5147 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5148 | lemma maps_simps [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5149 | "maps f (x # xs) = f x @ maps f xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5150 | "maps f [] = []" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5151 | by (simp_all add: maps_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5152 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5153 | lemma map_filter_simps [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5154 | "map_filter f (x # xs) = (case f x of None \<Rightarrow> map_filter f xs | Some y \<Rightarrow> y # map_filter f xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5155 | "map_filter f [] = []" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5156 | by (simp_all add: map_filter_def split: option.split) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5157 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5158 | lemma concat_map_maps [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5159 | "concat (map f xs) = maps f xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5160 | by (simp add: maps_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5161 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5162 | lemma map_filter_map_filter [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5163 | "map f (filter P xs) = map_filter (\<lambda>x. if P x then Some (f x) else None) xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5164 | by (simp add: map_filter_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5165 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5166 | text {* Optimized code for @{text"\<forall>i\<in>{a..b::int}"} and @{text"\<forall>n:{a..<b::nat}"}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5167 | and similiarly for @{text"\<exists>"}. *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5168 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5169 | definition all_interval_nat :: "(nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5170 |   "all_interval_nat P i j \<longleftrightarrow> (\<forall>n \<in> {i..<j}. P n)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5171 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5172 | lemma [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5173 | "all_interval_nat P i j \<longleftrightarrow> i \<ge> j \<or> P i \<and> all_interval_nat P (Suc i) j" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5174 | proof - | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5175 |   have *: "\<And>n. P i \<Longrightarrow> \<forall>n\<in>{Suc i..<j}. P n \<Longrightarrow> i \<le> n \<Longrightarrow> n < j \<Longrightarrow> P n"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5176 | proof - | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5177 | fix n | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5178 |     assume "P i" "\<forall>n\<in>{Suc i..<j}. P n" "i \<le> n" "n < j"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5179 | then show "P n" by (cases "n = i") simp_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5180 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5181 | show ?thesis by (auto simp add: all_interval_nat_def intro: *) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5182 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5183 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5184 | lemma list_all_iff_all_interval_nat [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5185 | "list_all P [i..<j] \<longleftrightarrow> all_interval_nat P i j" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5186 | by (simp add: list_all_iff all_interval_nat_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5187 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5188 | lemma list_ex_iff_not_all_inverval_nat [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5189 | "list_ex P [i..<j] \<longleftrightarrow> \<not> (all_interval_nat (Not \<circ> P) i j)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5190 | by (simp add: list_ex_iff all_interval_nat_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5191 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5192 | definition all_interval_int :: "(int \<Rightarrow> bool) \<Rightarrow> int \<Rightarrow> int \<Rightarrow> bool" where | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5193 |   "all_interval_int P i j \<longleftrightarrow> (\<forall>k \<in> {i..j}. P k)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5194 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5195 | lemma [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5196 | "all_interval_int P i j \<longleftrightarrow> i > j \<or> P i \<and> all_interval_int P (i + 1) j" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5197 | proof - | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5198 |   have *: "\<And>k. P i \<Longrightarrow> \<forall>k\<in>{i+1..j}. P k \<Longrightarrow> i \<le> k \<Longrightarrow> k \<le> j \<Longrightarrow> P k"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5199 | proof - | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5200 | fix k | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5201 |     assume "P i" "\<forall>k\<in>{i+1..j}. P k" "i \<le> k" "k \<le> j"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5202 | then show "P k" by (cases "k = i") simp_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5203 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5204 | show ?thesis by (auto simp add: all_interval_int_def intro: *) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5205 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5206 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5207 | lemma list_all_iff_all_interval_int [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5208 | "list_all P [i..j] \<longleftrightarrow> all_interval_int P i j" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5209 | by (simp add: list_all_iff all_interval_int_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5210 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5211 | lemma list_ex_iff_not_all_inverval_int [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5212 | "list_ex P [i..j] \<longleftrightarrow> \<not> (all_interval_int (Not \<circ> P) i j)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5213 | by (simp add: list_ex_iff all_interval_int_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5214 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5215 | hide_const (open) member null maps map_filter all_interval_nat all_interval_int | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5216 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5217 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5218 | subsubsection {* Pretty lists *}
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 5219 | |
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 5220 | use "Tools/list_code.ML" | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 5221 | |
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5222 | code_type list | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5223 | (SML "_ list") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5224 | (OCaml "_ list") | 
| 34886 | 5225 | (Haskell "![(_)]") | 
| 5226 | (Scala "List[(_)]") | |
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5227 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5228 | code_const Nil | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5229 | (SML "[]") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5230 | (OCaml "[]") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5231 | (Haskell "[]") | 
| 37880 
3b9ca8d2c5fb
Scala: subtle difference in printing strings vs. complex mixfix syntax
 haftmann parents: 
37767diff
changeset | 5232 | (Scala "!Nil") | 
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5233 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38715diff
changeset | 5234 | code_instance list :: equal | 
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5235 | (Haskell -) | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5236 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38715diff
changeset | 5237 | code_const "HOL.equal \<Colon> 'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 39272 | 5238 | (Haskell infix 4 "==") | 
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5239 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5240 | code_reserved SML | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5241 | list | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5242 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5243 | code_reserved OCaml | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5244 | list | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5245 | |
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 5246 | types_code | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 5247 |   "list" ("_ list")
 | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 5248 | attach (term_of) {*
 | 
| 21760 | 5249 | fun term_of_list f T = HOLogic.mk_list T o map f; | 
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 5250 | *} | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 5251 | attach (test) {*
 | 
| 25885 | 5252 | fun gen_list' aG aT i j = frequency | 
| 5253 | [(i, fn () => | |
| 5254 | let | |
| 5255 | val (x, t) = aG j; | |
| 5256 | val (xs, ts) = gen_list' aG aT (i-1) j | |
| 5257 | in (x :: xs, fn () => HOLogic.cons_const aT $ t () $ ts ()) end), | |
| 5258 | (1, fn () => ([], fn () => HOLogic.nil_const aT))] () | |
| 5259 | and gen_list aG aT i = gen_list' aG aT i i; | |
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 5260 | *} | 
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5261 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 5262 | consts_code Cons ("(_ ::/ _)")
 | 
| 20588 | 5263 | |
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 5264 | setup {*
 | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 5265 | let | 
| 42411 
ff997038e8eb
eliminated Codegen.mode in favour of explicit argument;
 wenzelm parents: 
42361diff
changeset | 5266 | fun list_codegen thy mode defs dep thyname b t gr = | 
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 5267 | let | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 5268 | val ts = HOLogic.dest_list t; | 
| 42411 
ff997038e8eb
eliminated Codegen.mode in favour of explicit argument;
 wenzelm parents: 
42361diff
changeset | 5269 | val (_, gr') = Codegen.invoke_tycodegen thy mode defs dep thyname false | 
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 5270 | (fastype_of t) gr; | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 5271 | val (ps, gr'') = fold_map | 
| 42411 
ff997038e8eb
eliminated Codegen.mode in favour of explicit argument;
 wenzelm parents: 
42361diff
changeset | 5272 | (Codegen.invoke_codegen thy mode defs dep thyname false) ts gr' | 
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 5273 | in SOME (Pretty.list "[" "]" ps, gr'') end handle TERM _ => NONE; | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 5274 | in | 
| 34886 | 5275 | fold (List_Code.add_literal_list) ["SML", "OCaml", "Haskell", "Scala"] | 
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 5276 | #> Codegen.add_codegen "list_codegen" list_codegen | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 5277 | end | 
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 5278 | *} | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 5279 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 5280 | |
| 37424 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5281 | subsubsection {* Use convenient predefined operations *}
 | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5282 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5283 | code_const "op @" | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5284 | (SML infixr 7 "@") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5285 | (OCaml infixr 6 "@") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5286 | (Haskell infixr 5 "++") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5287 | (Scala infixl 7 "++") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5288 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5289 | code_const map | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5290 | (Haskell "map") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5291 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5292 | code_const filter | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5293 | (Haskell "filter") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5294 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5295 | code_const concat | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5296 | (Haskell "concat") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5297 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5298 | code_const List.maps | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5299 | (Haskell "concatMap") | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5300 | |
| 37424 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5301 | code_const rev | 
| 37451 | 5302 | (Haskell "reverse") | 
| 37424 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5303 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5304 | code_const zip | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5305 | (Haskell "zip") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5306 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5307 | code_const List.null | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5308 | (Haskell "null") | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5309 | |
| 37424 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5310 | code_const takeWhile | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5311 | (Haskell "takeWhile") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5312 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5313 | code_const dropWhile | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5314 | (Haskell "dropWhile") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5315 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5316 | code_const hd | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5317 | (Haskell "head") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5318 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5319 | code_const last | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5320 | (Haskell "last") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 5321 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5322 | code_const list_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5323 | (Haskell "all") | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5324 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5325 | code_const list_ex | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5326 | (Haskell "any") | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 5327 | |
| 23388 | 5328 | end |