| author | huffman | 
| Wed, 23 Nov 2011 07:00:01 +0100 | |
| changeset 45615 | c05e8209a3aa | 
| parent 45139 | bdcaa3f3a2f4 | 
| child 45967 | 76cf71ed15c7 | 
| permissions | -rw-r--r-- | 
| 10358 | 1  | 
(* Title: HOL/Relation.thy  | 
| 1983 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
3  | 
Copyright 1996 University of Cambridge  | 
|
| 
1128
 
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
 
nipkow 
parents:  
diff
changeset
 | 
4  | 
*)  | 
| 
 
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
 
nipkow 
parents:  
diff
changeset
 | 
5  | 
|
| 12905 | 6  | 
header {* Relations *}
 | 
7  | 
||
| 15131 | 8  | 
theory Relation  | 
| 32850 | 9  | 
imports Datatype Finite_Set  | 
| 15131 | 10  | 
begin  | 
| 
5978
 
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
 
paulson 
parents: 
5608 
diff
changeset
 | 
11  | 
|
| 12913 | 12  | 
subsection {* Definitions *}
 | 
13  | 
||
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19363 
diff
changeset
 | 
14  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
15  | 
  converse :: "('a * 'b) set => ('b * 'a) set"
 | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
16  | 
    ("(_^-1)" [1000] 999) where
 | 
| 45137 | 17  | 
  "r^-1 = {(y, x). (x, y) : r}"
 | 
| 7912 | 18  | 
|
| 21210 | 19  | 
notation (xsymbols)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19363 
diff
changeset
 | 
20  | 
  converse  ("(_\<inverse>)" [1000] 999)
 | 
| 
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19363 
diff
changeset
 | 
21  | 
|
| 
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19363 
diff
changeset
 | 
22  | 
definition  | 
| 
32235
 
8f9b8d14fc9f
"more standard" argument order of relation composition (op O)
 
krauss 
parents: 
31011 
diff
changeset
 | 
23  | 
  rel_comp  :: "[('a * 'b) set, ('b * 'c) set] => ('a * 'c) set"
 | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
24  | 
(infixr "O" 75) where  | 
| 45137 | 25  | 
  "r O s = {(x,z). EX y. (x, y) : r & (y, z) : s}"
 | 
| 12913 | 26  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
27  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
28  | 
  Image :: "[('a * 'b) set, 'a set] => 'b set"
 | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
29  | 
(infixl "``" 90) where  | 
| 45137 | 30  | 
  "r `` s = {y. EX x:s. (x,y):r}"
 | 
| 7912 | 31  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
32  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
33  | 
  Id :: "('a * 'a) set" where -- {* the identity relation *}
 | 
| 45137 | 34  | 
  "Id = {p. EX x. p = (x,x)}"
 | 
| 7912 | 35  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
36  | 
definition  | 
| 30198 | 37  | 
  Id_on  :: "'a set => ('a * 'a) set" where -- {* diagonal: identity over a set *}
 | 
| 45137 | 38  | 
  "Id_on A = (\<Union>x\<in>A. {(x,x)})"
 | 
| 12913 | 39  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
40  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
41  | 
  Domain :: "('a * 'b) set => 'a set" where
 | 
| 45137 | 42  | 
  "Domain r = {x. EX y. (x,y):r}"
 | 
| 
5978
 
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
 
paulson 
parents: 
5608 
diff
changeset
 | 
43  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
44  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
45  | 
  Range  :: "('a * 'b) set => 'b set" where
 | 
| 45137 | 46  | 
"Range r = Domain(r^-1)"  | 
| 
5978
 
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
 
paulson 
parents: 
5608 
diff
changeset
 | 
47  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
48  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
49  | 
  Field :: "('a * 'a) set => 'a set" where
 | 
| 45137 | 50  | 
"Field r = Domain r \<union> Range r"  | 
| 10786 | 51  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
52  | 
definition  | 
| 30198 | 53  | 
  refl_on :: "['a set, ('a * 'a) set] => bool" where -- {* reflexivity over a set *}
 | 
| 45137 | 54  | 
"refl_on A r \<longleftrightarrow> r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)"  | 
| 
6806
 
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
 
paulson 
parents: 
5978 
diff
changeset
 | 
55  | 
|
| 26297 | 56  | 
abbreviation  | 
| 30198 | 57  | 
  refl :: "('a * 'a) set => bool" where -- {* reflexivity over a type *}
 | 
| 45137 | 58  | 
"refl \<equiv> refl_on UNIV"  | 
| 26297 | 59  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
60  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
61  | 
  sym :: "('a * 'a) set => bool" where -- {* symmetry predicate *}
 | 
| 45137 | 62  | 
"sym r \<longleftrightarrow> (ALL x y. (x,y): r --> (y,x): r)"  | 
| 
6806
 
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
 
paulson 
parents: 
5978 
diff
changeset
 | 
63  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
64  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
65  | 
  antisym :: "('a * 'a) set => bool" where -- {* antisymmetry predicate *}
 | 
| 45137 | 66  | 
"antisym r \<longleftrightarrow> (ALL x y. (x,y):r --> (y,x):r --> x=y)"  | 
| 
6806
 
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
 
paulson 
parents: 
5978 
diff
changeset
 | 
67  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
68  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
69  | 
  trans :: "('a * 'a) set => bool" where -- {* transitivity predicate *}
 | 
| 45137 | 70  | 
"trans r \<longleftrightarrow> (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)"  | 
| 
5978
 
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
 
paulson 
parents: 
5608 
diff
changeset
 | 
71  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
72  | 
definition  | 
| 45137 | 73  | 
  irrefl :: "('a * 'a) set => bool" where
 | 
74  | 
"irrefl r \<longleftrightarrow> (\<forall>x. (x,x) \<notin> r)"  | 
|
| 
29859
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
75  | 
|
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
76  | 
definition  | 
| 45137 | 77  | 
  total_on :: "'a set => ('a * 'a) set => bool" where
 | 
78  | 
"total_on A r \<longleftrightarrow> (\<forall>x\<in>A.\<forall>y\<in>A. x\<noteq>y \<longrightarrow> (x,y)\<in>r \<or> (y,x)\<in>r)"  | 
|
| 
29859
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
79  | 
|
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
80  | 
abbreviation "total \<equiv> total_on UNIV"  | 
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
81  | 
|
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
82  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
83  | 
  single_valued :: "('a * 'b) set => bool" where
 | 
| 45137 | 84  | 
"single_valued r \<longleftrightarrow> (ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z))"  | 
| 
7014
 
11ee650edcd2
Added some definitions and theorems needed for the
 
berghofe 
parents: 
6806 
diff
changeset
 | 
85  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
86  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
87  | 
  inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" where
 | 
| 45137 | 88  | 
  "inv_image r f = {(x, y). (f x, f y) : r}"
 | 
| 11136 | 89  | 
|
| 12905 | 90  | 
|
| 12913 | 91  | 
subsection {* The identity relation *}
 | 
| 12905 | 92  | 
|
93  | 
lemma IdI [intro]: "(a, a) : Id"  | 
|
| 26271 | 94  | 
by (simp add: Id_def)  | 
| 12905 | 95  | 
|
96  | 
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P"  | 
|
| 26271 | 97  | 
by (unfold Id_def) (iprover elim: CollectE)  | 
| 12905 | 98  | 
|
99  | 
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)"  | 
|
| 26271 | 100  | 
by (unfold Id_def) blast  | 
| 12905 | 101  | 
|
| 30198 | 102  | 
lemma refl_Id: "refl Id"  | 
103  | 
by (simp add: refl_on_def)  | 
|
| 12905 | 104  | 
|
105  | 
lemma antisym_Id: "antisym Id"  | 
|
106  | 
  -- {* A strange result, since @{text Id} is also symmetric. *}
 | 
|
| 26271 | 107  | 
by (simp add: antisym_def)  | 
| 12905 | 108  | 
|
| 19228 | 109  | 
lemma sym_Id: "sym Id"  | 
| 26271 | 110  | 
by (simp add: sym_def)  | 
| 19228 | 111  | 
|
| 12905 | 112  | 
lemma trans_Id: "trans Id"  | 
| 26271 | 113  | 
by (simp add: trans_def)  | 
| 12905 | 114  | 
|
115  | 
||
| 12913 | 116  | 
subsection {* Diagonal: identity over a set *}
 | 
| 12905 | 117  | 
|
| 30198 | 118  | 
lemma Id_on_empty [simp]: "Id_on {} = {}"
 | 
119  | 
by (simp add: Id_on_def)  | 
|
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13639 
diff
changeset
 | 
120  | 
|
| 30198 | 121  | 
lemma Id_on_eqI: "a = b ==> a : A ==> (a, b) : Id_on A"  | 
122  | 
by (simp add: Id_on_def)  | 
|
| 12905 | 123  | 
|
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
33218 
diff
changeset
 | 
124  | 
lemma Id_onI [intro!,no_atp]: "a : A ==> (a, a) : Id_on A"  | 
| 30198 | 125  | 
by (rule Id_on_eqI) (rule refl)  | 
| 12905 | 126  | 
|
| 30198 | 127  | 
lemma Id_onE [elim!]:  | 
128  | 
"c : Id_on A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P"  | 
|
| 12913 | 129  | 
  -- {* The general elimination rule. *}
 | 
| 30198 | 130  | 
by (unfold Id_on_def) (iprover elim!: UN_E singletonE)  | 
| 12905 | 131  | 
|
| 30198 | 132  | 
lemma Id_on_iff: "((x, y) : Id_on A) = (x = y & x : A)"  | 
| 26271 | 133  | 
by blast  | 
| 12905 | 134  | 
|
| 
41792
 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 
blanchet 
parents: 
41056 
diff
changeset
 | 
135  | 
lemma Id_on_def' [nitpick_unfold, code]:  | 
| 
44278
 
1220ecb81e8f
observe distinction between sets and predicates more properly
 
haftmann 
parents: 
41792 
diff
changeset
 | 
136  | 
  "Id_on {x. A x} = Collect (\<lambda>(x, y). x = y \<and> A x)"
 | 
| 
 
1220ecb81e8f
observe distinction between sets and predicates more properly
 
haftmann 
parents: 
41792 
diff
changeset
 | 
137  | 
by auto  | 
| 
40923
 
be80c93ac0a2
adding a nice definition of Id_on for quickcheck and nitpick
 
bulwahn 
parents: 
36772 
diff
changeset
 | 
138  | 
|
| 30198 | 139  | 
lemma Id_on_subset_Times: "Id_on A \<subseteq> A \<times> A"  | 
| 26271 | 140  | 
by blast  | 
| 12905 | 141  | 
|
142  | 
||
143  | 
subsection {* Composition of two relations *}
 | 
|
144  | 
||
| 12913 | 145  | 
lemma rel_compI [intro]:  | 
| 
32235
 
8f9b8d14fc9f
"more standard" argument order of relation composition (op O)
 
krauss 
parents: 
31011 
diff
changeset
 | 
146  | 
"(a, b) : r ==> (b, c) : s ==> (a, c) : r O s"  | 
| 26271 | 147  | 
by (unfold rel_comp_def) blast  | 
| 12905 | 148  | 
|
| 12913 | 149  | 
lemma rel_compE [elim!]: "xz : r O s ==>  | 
| 
32235
 
8f9b8d14fc9f
"more standard" argument order of relation composition (op O)
 
krauss 
parents: 
31011 
diff
changeset
 | 
150  | 
(!!x y z. xz = (x, z) ==> (x, y) : r ==> (y, z) : s ==> P) ==> P"  | 
| 26271 | 151  | 
by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE)  | 
| 12905 | 152  | 
|
153  | 
lemma rel_compEpair:  | 
|
| 
32235
 
8f9b8d14fc9f
"more standard" argument order of relation composition (op O)
 
krauss 
parents: 
31011 
diff
changeset
 | 
154  | 
"(a, c) : r O s ==> (!!y. (a, y) : r ==> (y, c) : s ==> P) ==> P"  | 
| 26271 | 155  | 
by (iprover elim: rel_compE Pair_inject ssubst)  | 
| 12905 | 156  | 
|
157  | 
lemma R_O_Id [simp]: "R O Id = R"  | 
|
| 26271 | 158  | 
by fast  | 
| 12905 | 159  | 
|
160  | 
lemma Id_O_R [simp]: "Id O R = R"  | 
|
| 26271 | 161  | 
by fast  | 
| 12905 | 162  | 
|
| 23185 | 163  | 
lemma rel_comp_empty1[simp]: "{} O R = {}"
 | 
| 26271 | 164  | 
by blast  | 
| 23185 | 165  | 
|
166  | 
lemma rel_comp_empty2[simp]: "R O {} = {}"
 | 
|
| 26271 | 167  | 
by blast  | 
| 23185 | 168  | 
|
| 12905 | 169  | 
lemma O_assoc: "(R O S) O T = R O (S O T)"  | 
| 26271 | 170  | 
by blast  | 
| 12905 | 171  | 
|
| 12913 | 172  | 
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r"  | 
| 26271 | 173  | 
by (unfold trans_def) blast  | 
| 12905 | 174  | 
|
| 12913 | 175  | 
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)"  | 
| 26271 | 176  | 
by blast  | 
| 12905 | 177  | 
|
178  | 
lemma rel_comp_subset_Sigma:  | 
|
| 
32235
 
8f9b8d14fc9f
"more standard" argument order of relation composition (op O)
 
krauss 
parents: 
31011 
diff
changeset
 | 
179  | 
"r \<subseteq> A \<times> B ==> s \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C"  | 
| 26271 | 180  | 
by blast  | 
| 12905 | 181  | 
|
| 
28008
 
f945f8d9ad4d
added distributivity of relation composition over union [simp]
 
krauss 
parents: 
26297 
diff
changeset
 | 
182  | 
lemma rel_comp_distrib[simp]: "R O (S \<union> T) = (R O S) \<union> (R O T)"  | 
| 
 
f945f8d9ad4d
added distributivity of relation composition over union [simp]
 
krauss 
parents: 
26297 
diff
changeset
 | 
183  | 
by auto  | 
| 
 
f945f8d9ad4d
added distributivity of relation composition over union [simp]
 
krauss 
parents: 
26297 
diff
changeset
 | 
184  | 
|
| 
 
f945f8d9ad4d
added distributivity of relation composition over union [simp]
 
krauss 
parents: 
26297 
diff
changeset
 | 
185  | 
lemma rel_comp_distrib2[simp]: "(S \<union> T) O R = (S O R) \<union> (T O R)"  | 
| 
 
f945f8d9ad4d
added distributivity of relation composition over union [simp]
 
krauss 
parents: 
26297 
diff
changeset
 | 
186  | 
by auto  | 
| 
 
f945f8d9ad4d
added distributivity of relation composition over union [simp]
 
krauss 
parents: 
26297 
diff
changeset
 | 
187  | 
|
| 36772 | 188  | 
lemma rel_comp_UNION_distrib: "s O UNION I r = UNION I (%i. s O r i)"  | 
189  | 
by auto  | 
|
190  | 
||
191  | 
lemma rel_comp_UNION_distrib2: "UNION I r O s = UNION I (%i. r i O s)"  | 
|
192  | 
by auto  | 
|
193  | 
||
| 12913 | 194  | 
|
195  | 
subsection {* Reflexivity *}
 | 
|
196  | 
||
| 30198 | 197  | 
lemma refl_onI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl_on A r"  | 
198  | 
by (unfold refl_on_def) (iprover intro!: ballI)  | 
|
| 12905 | 199  | 
|
| 30198 | 200  | 
lemma refl_onD: "refl_on A r ==> a : A ==> (a, a) : r"  | 
201  | 
by (unfold refl_on_def) blast  | 
|
| 12905 | 202  | 
|
| 30198 | 203  | 
lemma refl_onD1: "refl_on A r ==> (x, y) : r ==> x : A"  | 
204  | 
by (unfold refl_on_def) blast  | 
|
| 19228 | 205  | 
|
| 30198 | 206  | 
lemma refl_onD2: "refl_on A r ==> (x, y) : r ==> y : A"  | 
207  | 
by (unfold refl_on_def) blast  | 
|
| 19228 | 208  | 
|
| 30198 | 209  | 
lemma refl_on_Int: "refl_on A r ==> refl_on B s ==> refl_on (A \<inter> B) (r \<inter> s)"  | 
210  | 
by (unfold refl_on_def) blast  | 
|
| 19228 | 211  | 
|
| 30198 | 212  | 
lemma refl_on_Un: "refl_on A r ==> refl_on B s ==> refl_on (A \<union> B) (r \<union> s)"  | 
213  | 
by (unfold refl_on_def) blast  | 
|
| 19228 | 214  | 
|
| 30198 | 215  | 
lemma refl_on_INTER:  | 
216  | 
"ALL x:S. refl_on (A x) (r x) ==> refl_on (INTER S A) (INTER S r)"  | 
|
217  | 
by (unfold refl_on_def) fast  | 
|
| 19228 | 218  | 
|
| 30198 | 219  | 
lemma refl_on_UNION:  | 
220  | 
"ALL x:S. refl_on (A x) (r x) \<Longrightarrow> refl_on (UNION S A) (UNION S r)"  | 
|
221  | 
by (unfold refl_on_def) blast  | 
|
| 19228 | 222  | 
|
| 30198 | 223  | 
lemma refl_on_empty[simp]: "refl_on {} {}"
 | 
224  | 
by(simp add:refl_on_def)  | 
|
| 26297 | 225  | 
|
| 30198 | 226  | 
lemma refl_on_Id_on: "refl_on A (Id_on A)"  | 
227  | 
by (rule refl_onI [OF Id_on_subset_Times Id_onI])  | 
|
| 19228 | 228  | 
|
| 
41792
 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 
blanchet 
parents: 
41056 
diff
changeset
 | 
229  | 
lemma refl_on_def' [nitpick_unfold, code]:  | 
| 
41056
 
dcec9bc71ee9
adding a definition for refl_on which is friendly for quickcheck and nitpick
 
bulwahn 
parents: 
40923 
diff
changeset
 | 
230  | 
"refl_on A r = ((\<forall>(x, y) \<in> r. x : A \<and> y : A) \<and> (\<forall>x \<in> A. (x, x) : r))"  | 
| 
 
dcec9bc71ee9
adding a definition for refl_on which is friendly for quickcheck and nitpick
 
bulwahn 
parents: 
40923 
diff
changeset
 | 
231  | 
by (auto intro: refl_onI dest: refl_onD refl_onD1 refl_onD2)  | 
| 12913 | 232  | 
|
233  | 
subsection {* Antisymmetry *}
 | 
|
| 12905 | 234  | 
|
235  | 
lemma antisymI:  | 
|
236  | 
"(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r"  | 
|
| 26271 | 237  | 
by (unfold antisym_def) iprover  | 
| 12905 | 238  | 
|
239  | 
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b"  | 
|
| 26271 | 240  | 
by (unfold antisym_def) iprover  | 
| 12905 | 241  | 
|
| 19228 | 242  | 
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r"  | 
| 26271 | 243  | 
by (unfold antisym_def) blast  | 
| 12913 | 244  | 
|
| 19228 | 245  | 
lemma antisym_empty [simp]: "antisym {}"
 | 
| 26271 | 246  | 
by (unfold antisym_def) blast  | 
| 19228 | 247  | 
|
| 30198 | 248  | 
lemma antisym_Id_on [simp]: "antisym (Id_on A)"  | 
| 26271 | 249  | 
by (unfold antisym_def) blast  | 
| 19228 | 250  | 
|
251  | 
||
252  | 
subsection {* Symmetry *}
 | 
|
253  | 
||
254  | 
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r"  | 
|
| 26271 | 255  | 
by (unfold sym_def) iprover  | 
| 15177 | 256  | 
|
257  | 
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r"  | 
|
| 26271 | 258  | 
by (unfold sym_def, blast)  | 
| 12905 | 259  | 
|
| 19228 | 260  | 
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)"  | 
| 26271 | 261  | 
by (fast intro: symI dest: symD)  | 
| 19228 | 262  | 
|
263  | 
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)"  | 
|
| 26271 | 264  | 
by (fast intro: symI dest: symD)  | 
| 19228 | 265  | 
|
266  | 
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)"  | 
|
| 26271 | 267  | 
by (fast intro: symI dest: symD)  | 
| 19228 | 268  | 
|
269  | 
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)"  | 
|
| 26271 | 270  | 
by (fast intro: symI dest: symD)  | 
| 19228 | 271  | 
|
| 30198 | 272  | 
lemma sym_Id_on [simp]: "sym (Id_on A)"  | 
| 26271 | 273  | 
by (rule symI) clarify  | 
| 19228 | 274  | 
|
275  | 
||
276  | 
subsection {* Transitivity *}
 | 
|
277  | 
||
| 
45012
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
278  | 
lemma trans_join:  | 
| 
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
279  | 
"trans r \<longleftrightarrow> (\<forall>(x, y1) \<in> r. \<forall>(y2, z) \<in> r. y1 = y2 \<longrightarrow> (x, z) \<in> r)"  | 
| 
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
280  | 
by (auto simp add: trans_def)  | 
| 
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
281  | 
|
| 12905 | 282  | 
lemma transI:  | 
283  | 
"(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r"  | 
|
| 26271 | 284  | 
by (unfold trans_def) iprover  | 
| 12905 | 285  | 
|
286  | 
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r"  | 
|
| 26271 | 287  | 
by (unfold trans_def) iprover  | 
| 12905 | 288  | 
|
| 19228 | 289  | 
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)"  | 
| 26271 | 290  | 
by (fast intro: transI elim: transD)  | 
| 19228 | 291  | 
|
292  | 
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)"  | 
|
| 26271 | 293  | 
by (fast intro: transI elim: transD)  | 
| 19228 | 294  | 
|
| 30198 | 295  | 
lemma trans_Id_on [simp]: "trans (Id_on A)"  | 
| 26271 | 296  | 
by (fast intro: transI elim: transD)  | 
| 19228 | 297  | 
|
| 
29859
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
298  | 
lemma trans_diff_Id: " trans r \<Longrightarrow> antisym r \<Longrightarrow> trans (r-Id)"  | 
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
299  | 
unfolding antisym_def trans_def by blast  | 
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
300  | 
|
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
301  | 
subsection {* Irreflexivity *}
 | 
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
302  | 
|
| 
45012
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
303  | 
lemma irrefl_distinct:  | 
| 
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
304  | 
"irrefl r \<longleftrightarrow> (\<forall>(x, y) \<in> r. x \<noteq> y)"  | 
| 
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
305  | 
by (auto simp add: irrefl_def)  | 
| 
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
306  | 
|
| 
29859
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
307  | 
lemma irrefl_diff_Id[simp]: "irrefl(r-Id)"  | 
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
308  | 
by(simp add:irrefl_def)  | 
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
309  | 
|
| 45139 | 310  | 
|
| 
29859
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
311  | 
subsection {* Totality *}
 | 
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
312  | 
|
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
313  | 
lemma total_on_empty[simp]: "total_on {} r"
 | 
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
314  | 
by(simp add:total_on_def)  | 
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
315  | 
|
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
316  | 
lemma total_on_diff_Id[simp]: "total_on A (r-Id) = total_on A r"  | 
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
317  | 
by(simp add: total_on_def)  | 
| 12905 | 318  | 
|
| 12913 | 319  | 
subsection {* Converse *}
 | 
320  | 
||
321  | 
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)"  | 
|
| 26271 | 322  | 
by (simp add: converse_def)  | 
| 12905 | 323  | 
|
| 13343 | 324  | 
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1"  | 
| 26271 | 325  | 
by (simp add: converse_def)  | 
| 12905 | 326  | 
|
| 13343 | 327  | 
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r"  | 
| 26271 | 328  | 
by (simp add: converse_def)  | 
| 12905 | 329  | 
|
330  | 
lemma converseE [elim!]:  | 
|
331  | 
"yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P"  | 
|
| 12913 | 332  | 
    -- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *}
 | 
| 26271 | 333  | 
by (unfold converse_def) (iprover elim!: CollectE splitE bexE)  | 
| 12905 | 334  | 
|
335  | 
lemma converse_converse [simp]: "(r^-1)^-1 = r"  | 
|
| 26271 | 336  | 
by (unfold converse_def) blast  | 
| 12905 | 337  | 
|
338  | 
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1"  | 
|
| 26271 | 339  | 
by blast  | 
| 12905 | 340  | 
|
| 19228 | 341  | 
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1"  | 
| 26271 | 342  | 
by blast  | 
| 19228 | 343  | 
|
344  | 
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1"  | 
|
| 26271 | 345  | 
by blast  | 
| 19228 | 346  | 
|
347  | 
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)"  | 
|
| 26271 | 348  | 
by fast  | 
| 19228 | 349  | 
|
350  | 
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)"  | 
|
| 26271 | 351  | 
by blast  | 
| 19228 | 352  | 
|
| 12905 | 353  | 
lemma converse_Id [simp]: "Id^-1 = Id"  | 
| 26271 | 354  | 
by blast  | 
| 12905 | 355  | 
|
| 30198 | 356  | 
lemma converse_Id_on [simp]: "(Id_on A)^-1 = Id_on A"  | 
| 26271 | 357  | 
by blast  | 
| 12905 | 358  | 
|
| 30198 | 359  | 
lemma refl_on_converse [simp]: "refl_on A (converse r) = refl_on A r"  | 
360  | 
by (unfold refl_on_def) auto  | 
|
| 12905 | 361  | 
|
| 19228 | 362  | 
lemma sym_converse [simp]: "sym (converse r) = sym r"  | 
| 26271 | 363  | 
by (unfold sym_def) blast  | 
| 19228 | 364  | 
|
365  | 
lemma antisym_converse [simp]: "antisym (converse r) = antisym r"  | 
|
| 26271 | 366  | 
by (unfold antisym_def) blast  | 
| 12905 | 367  | 
|
| 19228 | 368  | 
lemma trans_converse [simp]: "trans (converse r) = trans r"  | 
| 26271 | 369  | 
by (unfold trans_def) blast  | 
| 12905 | 370  | 
|
| 19228 | 371  | 
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)"  | 
| 26271 | 372  | 
by (unfold sym_def) fast  | 
| 19228 | 373  | 
|
374  | 
lemma sym_Un_converse: "sym (r \<union> r^-1)"  | 
|
| 26271 | 375  | 
by (unfold sym_def) blast  | 
| 19228 | 376  | 
|
377  | 
lemma sym_Int_converse: "sym (r \<inter> r^-1)"  | 
|
| 26271 | 378  | 
by (unfold sym_def) blast  | 
| 19228 | 379  | 
|
| 
29859
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
380  | 
lemma total_on_converse[simp]: "total_on A (r^-1) = total_on A r"  | 
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
381  | 
by (auto simp: total_on_def)  | 
| 
 
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
 
nipkow 
parents: 
29609 
diff
changeset
 | 
382  | 
|
| 12913 | 383  | 
|
| 12905 | 384  | 
subsection {* Domain *}
 | 
385  | 
||
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
33218 
diff
changeset
 | 
386  | 
declare Domain_def [no_atp]  | 
| 
24286
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
23709 
diff
changeset
 | 
387  | 
|
| 12905 | 388  | 
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)"  | 
| 26271 | 389  | 
by (unfold Domain_def) blast  | 
| 12905 | 390  | 
|
391  | 
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r"  | 
|
| 26271 | 392  | 
by (iprover intro!: iffD2 [OF Domain_iff])  | 
| 12905 | 393  | 
|
394  | 
lemma DomainE [elim!]:  | 
|
395  | 
"a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P"  | 
|
| 26271 | 396  | 
by (iprover dest!: iffD1 [OF Domain_iff])  | 
| 12905 | 397  | 
|
| 
45012
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
398  | 
lemma Domain_fst:  | 
| 
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
399  | 
"Domain r = fst ` r"  | 
| 
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
400  | 
by (auto simp add: image_def Bex_def)  | 
| 
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
401  | 
|
| 12905 | 402  | 
lemma Domain_empty [simp]: "Domain {} = {}"
 | 
| 26271 | 403  | 
by blast  | 
| 12905 | 404  | 
|
| 32876 | 405  | 
lemma Domain_empty_iff: "Domain r = {} \<longleftrightarrow> r = {}"
 | 
406  | 
by auto  | 
|
407  | 
||
| 12905 | 408  | 
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)"  | 
| 26271 | 409  | 
by blast  | 
| 12905 | 410  | 
|
411  | 
lemma Domain_Id [simp]: "Domain Id = UNIV"  | 
|
| 26271 | 412  | 
by blast  | 
| 12905 | 413  | 
|
| 30198 | 414  | 
lemma Domain_Id_on [simp]: "Domain (Id_on A) = A"  | 
| 26271 | 415  | 
by blast  | 
| 12905 | 416  | 
|
| 13830 | 417  | 
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)"  | 
| 26271 | 418  | 
by blast  | 
| 12905 | 419  | 
|
| 13830 | 420  | 
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)"  | 
| 26271 | 421  | 
by blast  | 
| 12905 | 422  | 
|
| 12913 | 423  | 
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)"  | 
| 26271 | 424  | 
by blast  | 
| 12905 | 425  | 
|
| 13830 | 426  | 
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)"  | 
| 26271 | 427  | 
by blast  | 
428  | 
||
429  | 
lemma Domain_converse[simp]: "Domain(r^-1) = Range r"  | 
|
430  | 
by(auto simp:Range_def)  | 
|
| 12905 | 431  | 
|
| 12913 | 432  | 
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s"  | 
| 26271 | 433  | 
by blast  | 
| 12905 | 434  | 
|
| 36729 | 435  | 
lemma fst_eq_Domain: "fst ` R = Domain R"  | 
| 44921 | 436  | 
by force  | 
| 22172 | 437  | 
|
| 29609 | 438  | 
lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)"  | 
439  | 
by auto  | 
|
440  | 
||
441  | 
lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)"  | 
|
442  | 
by auto  | 
|
443  | 
||
| 12905 | 444  | 
|
445  | 
subsection {* Range *}
 | 
|
446  | 
||
447  | 
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)"  | 
|
| 26271 | 448  | 
by (simp add: Domain_def Range_def)  | 
| 12905 | 449  | 
|
450  | 
lemma RangeI [intro]: "(a, b) : r ==> b : Range r"  | 
|
| 26271 | 451  | 
by (unfold Range_def) (iprover intro!: converseI DomainI)  | 
| 12905 | 452  | 
|
453  | 
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P"  | 
|
| 26271 | 454  | 
by (unfold Range_def) (iprover elim!: DomainE dest!: converseD)  | 
| 12905 | 455  | 
|
| 
45012
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
456  | 
lemma Range_snd:  | 
| 
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
457  | 
"Range r = snd ` r"  | 
| 
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
458  | 
by (auto simp add: image_def Bex_def)  | 
| 
 
060f76635bfe
tuned specification and lemma distribution among theories; tuned proofs
 
haftmann 
parents: 
44921 
diff
changeset
 | 
459  | 
|
| 12905 | 460  | 
lemma Range_empty [simp]: "Range {} = {}"
 | 
| 26271 | 461  | 
by blast  | 
| 12905 | 462  | 
|
| 32876 | 463  | 
lemma Range_empty_iff: "Range r = {} \<longleftrightarrow> r = {}"
 | 
464  | 
by auto  | 
|
465  | 
||
| 12905 | 466  | 
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)"  | 
| 26271 | 467  | 
by blast  | 
| 12905 | 468  | 
|
469  | 
lemma Range_Id [simp]: "Range Id = UNIV"  | 
|
| 26271 | 470  | 
by blast  | 
| 12905 | 471  | 
|
| 30198 | 472  | 
lemma Range_Id_on [simp]: "Range (Id_on A) = A"  | 
| 26271 | 473  | 
by auto  | 
| 12905 | 474  | 
|
| 13830 | 475  | 
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)"  | 
| 26271 | 476  | 
by blast  | 
| 12905 | 477  | 
|
| 13830 | 478  | 
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)"  | 
| 26271 | 479  | 
by blast  | 
| 12905 | 480  | 
|
| 12913 | 481  | 
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)"  | 
| 26271 | 482  | 
by blast  | 
| 12905 | 483  | 
|
| 13830 | 484  | 
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)"  | 
| 26271 | 485  | 
by blast  | 
486  | 
||
487  | 
lemma Range_converse[simp]: "Range(r^-1) = Domain r"  | 
|
488  | 
by blast  | 
|
| 12905 | 489  | 
|
| 36729 | 490  | 
lemma snd_eq_Range: "snd ` R = Range R"  | 
| 44921 | 491  | 
by force  | 
| 26271 | 492  | 
|
493  | 
||
494  | 
subsection {* Field *}
 | 
|
495  | 
||
496  | 
lemma mono_Field: "r \<subseteq> s \<Longrightarrow> Field r \<subseteq> Field s"  | 
|
497  | 
by(auto simp:Field_def Domain_def Range_def)  | 
|
498  | 
||
499  | 
lemma Field_empty[simp]: "Field {} = {}"
 | 
|
500  | 
by(auto simp:Field_def)  | 
|
501  | 
||
502  | 
lemma Field_insert[simp]: "Field (insert (a,b) r) = {a,b} \<union> Field r"
 | 
|
503  | 
by(auto simp:Field_def)  | 
|
504  | 
||
505  | 
lemma Field_Un[simp]: "Field (r \<union> s) = Field r \<union> Field s"  | 
|
506  | 
by(auto simp:Field_def)  | 
|
507  | 
||
508  | 
lemma Field_Union[simp]: "Field (\<Union>R) = \<Union>(Field ` R)"  | 
|
509  | 
by(auto simp:Field_def)  | 
|
510  | 
||
511  | 
lemma Field_converse[simp]: "Field(r^-1) = Field r"  | 
|
512  | 
by(auto simp:Field_def)  | 
|
| 22172 | 513  | 
|
| 12905 | 514  | 
|
515  | 
subsection {* Image of a set under a relation *}
 | 
|
516  | 
||
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
33218 
diff
changeset
 | 
517  | 
declare Image_def [no_atp]  | 
| 
24286
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
23709 
diff
changeset
 | 
518  | 
|
| 12913 | 519  | 
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)"  | 
| 26271 | 520  | 
by (simp add: Image_def)  | 
| 12905 | 521  | 
|
| 12913 | 522  | 
lemma Image_singleton: "r``{a} = {b. (a, b) : r}"
 | 
| 26271 | 523  | 
by (simp add: Image_def)  | 
| 12905 | 524  | 
|
| 12913 | 525  | 
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)"
 | 
| 26271 | 526  | 
by (rule Image_iff [THEN trans]) simp  | 
| 12905 | 527  | 
|
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
33218 
diff
changeset
 | 
528  | 
lemma ImageI [intro,no_atp]: "(a, b) : r ==> a : A ==> b : r``A"  | 
| 26271 | 529  | 
by (unfold Image_def) blast  | 
| 12905 | 530  | 
|
531  | 
lemma ImageE [elim!]:  | 
|
| 12913 | 532  | 
"b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P"  | 
| 26271 | 533  | 
by (unfold Image_def) (iprover elim!: CollectE bexE)  | 
| 12905 | 534  | 
|
535  | 
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A"  | 
|
536  | 
  -- {* This version's more effective when we already have the required @{text a} *}
 | 
|
| 26271 | 537  | 
by blast  | 
| 12905 | 538  | 
|
539  | 
lemma Image_empty [simp]: "R``{} = {}"
 | 
|
| 26271 | 540  | 
by blast  | 
| 12905 | 541  | 
|
542  | 
lemma Image_Id [simp]: "Id `` A = A"  | 
|
| 26271 | 543  | 
by blast  | 
| 12905 | 544  | 
|
| 30198 | 545  | 
lemma Image_Id_on [simp]: "Id_on A `` B = A \<inter> B"  | 
| 26271 | 546  | 
by blast  | 
| 13830 | 547  | 
|
548  | 
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B"  | 
|
| 26271 | 549  | 
by blast  | 
| 12905 | 550  | 
|
| 13830 | 551  | 
lemma Image_Int_eq:  | 
552  | 
"single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B"  | 
|
| 26271 | 553  | 
by (simp add: single_valued_def, blast)  | 
| 12905 | 554  | 
|
| 13830 | 555  | 
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B"  | 
| 26271 | 556  | 
by blast  | 
| 12905 | 557  | 
|
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13639 
diff
changeset
 | 
558  | 
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A"  | 
| 26271 | 559  | 
by blast  | 
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13639 
diff
changeset
 | 
560  | 
|
| 12913 | 561  | 
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B"  | 
| 26271 | 562  | 
by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2)  | 
| 12905 | 563  | 
|
| 13830 | 564  | 
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})"
 | 
| 12905 | 565  | 
  -- {* NOT suitable for rewriting *}
 | 
| 26271 | 566  | 
by blast  | 
| 12905 | 567  | 
|
| 12913 | 568  | 
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)"  | 
| 26271 | 569  | 
by blast  | 
| 12905 | 570  | 
|
| 13830 | 571  | 
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))"  | 
| 26271 | 572  | 
by blast  | 
| 13830 | 573  | 
|
574  | 
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))"  | 
|
| 26271 | 575  | 
by blast  | 
| 12905 | 576  | 
|
| 13830 | 577  | 
text{*Converse inclusion requires some assumptions*}
 | 
578  | 
lemma Image_INT_eq:  | 
|
579  | 
     "[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)"
 | 
|
580  | 
apply (rule equalityI)  | 
|
581  | 
apply (rule Image_INT_subset)  | 
|
582  | 
apply (simp add: single_valued_def, blast)  | 
|
583  | 
done  | 
|
| 12905 | 584  | 
|
| 12913 | 585  | 
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))"  | 
| 26271 | 586  | 
by blast  | 
| 12905 | 587  | 
|
588  | 
||
| 12913 | 589  | 
subsection {* Single valued relations *}
 | 
590  | 
||
591  | 
lemma single_valuedI:  | 
|
| 12905 | 592  | 
"ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r"  | 
| 26271 | 593  | 
by (unfold single_valued_def)  | 
| 12905 | 594  | 
|
595  | 
lemma single_valuedD:  | 
|
596  | 
"single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z"  | 
|
| 26271 | 597  | 
by (simp add: single_valued_def)  | 
| 12905 | 598  | 
|
| 19228 | 599  | 
lemma single_valued_rel_comp:  | 
600  | 
"single_valued r ==> single_valued s ==> single_valued (r O s)"  | 
|
| 26271 | 601  | 
by (unfold single_valued_def) blast  | 
| 19228 | 602  | 
|
603  | 
lemma single_valued_subset:  | 
|
604  | 
"r \<subseteq> s ==> single_valued s ==> single_valued r"  | 
|
| 26271 | 605  | 
by (unfold single_valued_def) blast  | 
| 19228 | 606  | 
|
607  | 
lemma single_valued_Id [simp]: "single_valued Id"  | 
|
| 26271 | 608  | 
by (unfold single_valued_def) blast  | 
| 19228 | 609  | 
|
| 30198 | 610  | 
lemma single_valued_Id_on [simp]: "single_valued (Id_on A)"  | 
| 26271 | 611  | 
by (unfold single_valued_def) blast  | 
| 19228 | 612  | 
|
| 12905 | 613  | 
|
614  | 
subsection {* Graphs given by @{text Collect} *}
 | 
|
615  | 
||
616  | 
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}"
 | 
|
| 26271 | 617  | 
by auto  | 
| 12905 | 618  | 
|
619  | 
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}"
 | 
|
| 26271 | 620  | 
by auto  | 
| 12905 | 621  | 
|
622  | 
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}"
 | 
|
| 26271 | 623  | 
by auto  | 
| 12905 | 624  | 
|
625  | 
||
| 12913 | 626  | 
subsection {* Inverse image *}
 | 
| 12905 | 627  | 
|
| 19228 | 628  | 
lemma sym_inv_image: "sym r ==> sym (inv_image r f)"  | 
| 26271 | 629  | 
by (unfold sym_def inv_image_def) blast  | 
| 19228 | 630  | 
|
| 12913 | 631  | 
lemma trans_inv_image: "trans r ==> trans (inv_image r f)"  | 
| 12905 | 632  | 
apply (unfold trans_def inv_image_def)  | 
633  | 
apply (simp (no_asm))  | 
|
634  | 
apply blast  | 
|
635  | 
done  | 
|
636  | 
||
| 
32463
 
3a0a65ca2261
moved lemma Wellfounded.in_inv_image to Relation.thy
 
krauss 
parents: 
32235 
diff
changeset
 | 
637  | 
lemma in_inv_image[simp]: "((x,y) : inv_image r f) = ((f x, f y) : r)"  | 
| 
 
3a0a65ca2261
moved lemma Wellfounded.in_inv_image to Relation.thy
 
krauss 
parents: 
32235 
diff
changeset
 | 
638  | 
by (auto simp:inv_image_def)  | 
| 
 
3a0a65ca2261
moved lemma Wellfounded.in_inv_image to Relation.thy
 
krauss 
parents: 
32235 
diff
changeset
 | 
639  | 
|
| 33218 | 640  | 
lemma converse_inv_image[simp]: "(inv_image R f)^-1 = inv_image (R^-1) f"  | 
641  | 
unfolding inv_image_def converse_def by auto  | 
|
642  | 
||
| 23709 | 643  | 
|
| 29609 | 644  | 
subsection {* Finiteness *}
 | 
645  | 
||
646  | 
lemma finite_converse [iff]: "finite (r^-1) = finite r"  | 
|
647  | 
apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r")  | 
|
648  | 
apply simp  | 
|
649  | 
apply (rule iffI)  | 
|
650  | 
apply (erule finite_imageD [unfolded inj_on_def])  | 
|
651  | 
apply (simp split add: split_split)  | 
|
652  | 
apply (erule finite_imageI)  | 
|
653  | 
apply (simp add: converse_def image_def, auto)  | 
|
654  | 
apply (rule bexI)  | 
|
655  | 
prefer 2 apply assumption  | 
|
656  | 
apply simp  | 
|
657  | 
done  | 
|
658  | 
||
| 32876 | 659  | 
lemma finite_Domain: "finite r ==> finite (Domain r)"  | 
660  | 
by (induct set: finite) (auto simp add: Domain_insert)  | 
|
661  | 
||
662  | 
lemma finite_Range: "finite r ==> finite (Range r)"  | 
|
663  | 
by (induct set: finite) (auto simp add: Range_insert)  | 
|
| 29609 | 664  | 
|
665  | 
lemma finite_Field: "finite r ==> finite (Field r)"  | 
|
666  | 
  -- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *}
 | 
|
667  | 
apply (induct set: finite)  | 
|
668  | 
apply (auto simp add: Field_def Domain_insert Range_insert)  | 
|
669  | 
done  | 
|
670  | 
||
671  | 
||
| 
36728
 
ae397b810c8b
rule subrelI (for nice Isar proofs of relation inequalities)
 
krauss 
parents: 
35828 
diff
changeset
 | 
672  | 
subsection {* Miscellaneous *}
 | 
| 
 
ae397b810c8b
rule subrelI (for nice Isar proofs of relation inequalities)
 
krauss 
parents: 
35828 
diff
changeset
 | 
673  | 
|
| 
 
ae397b810c8b
rule subrelI (for nice Isar proofs of relation inequalities)
 
krauss 
parents: 
35828 
diff
changeset
 | 
674  | 
text {* Version of @{thm[source] lfp_induct} for binary relations *}
 | 
| 23709 | 675  | 
|
676  | 
lemmas lfp_induct2 =  | 
|
677  | 
lfp_induct_set [of "(a, b)", split_format (complete)]  | 
|
678  | 
||
| 
36728
 
ae397b810c8b
rule subrelI (for nice Isar proofs of relation inequalities)
 
krauss 
parents: 
35828 
diff
changeset
 | 
679  | 
text {* Version of @{thm[source] subsetI} for binary relations *}
 | 
| 
 
ae397b810c8b
rule subrelI (for nice Isar proofs of relation inequalities)
 
krauss 
parents: 
35828 
diff
changeset
 | 
680  | 
|
| 
 
ae397b810c8b
rule subrelI (for nice Isar proofs of relation inequalities)
 
krauss 
parents: 
35828 
diff
changeset
 | 
681  | 
lemma subrelI: "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (x, y) \<in> s) \<Longrightarrow> r \<subseteq> s"  | 
| 
 
ae397b810c8b
rule subrelI (for nice Isar proofs of relation inequalities)
 
krauss 
parents: 
35828 
diff
changeset
 | 
682  | 
by auto  | 
| 
 
ae397b810c8b
rule subrelI (for nice Isar proofs of relation inequalities)
 
krauss 
parents: 
35828 
diff
changeset
 | 
683  | 
|
| 
1128
 
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
 
nipkow 
parents:  
diff
changeset
 | 
684  | 
end  |