| author | wenzelm | 
| Tue, 30 Mar 2010 00:12:42 +0200 | |
| changeset 36014 | c51a077680e4 | 
| parent 35828 | 46cfc4b8112e | 
| child 36154 | 11c6106d7787 | 
| child 36198 | ead2db2be11a | 
| permissions | -rw-r--r-- | 
| 13462 | 1 | (* Title: HOL/List.thy | 
| 2 | Author: Tobias Nipkow | |
| 923 | 3 | *) | 
| 4 | ||
| 13114 | 5 | header {* The datatype of finite lists *}
 | 
| 13122 | 6 | |
| 15131 | 7 | theory List | 
| 35827 | 8 | imports Plain Presburger Sledgehammer Recdef | 
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 9 | uses ("Tools/list_code.ML")
 | 
| 15131 | 10 | begin | 
| 923 | 11 | |
| 13142 | 12 | datatype 'a list = | 
| 13366 | 13 |     Nil    ("[]")
 | 
| 14 | | Cons 'a "'a list" (infixr "#" 65) | |
| 923 | 15 | |
| 34941 | 16 | syntax | 
| 17 |   -- {* list Enumeration *}
 | |
| 35115 | 18 |   "_list" :: "args => 'a list"    ("[(_)]")
 | 
| 34941 | 19 | |
| 20 | translations | |
| 21 | "[x, xs]" == "x#[xs]" | |
| 22 | "[x]" == "x#[]" | |
| 23 | ||
| 35115 | 24 | |
| 25 | subsection {* Basic list processing functions *}
 | |
| 15302 | 26 | |
| 34941 | 27 | primrec | 
| 28 | hd :: "'a list \<Rightarrow> 'a" where | |
| 29 | "hd (x # xs) = x" | |
| 30 | ||
| 31 | primrec | |
| 32 | tl :: "'a list \<Rightarrow> 'a list" where | |
| 33 | "tl [] = []" | |
| 34 | | "tl (x # xs) = xs" | |
| 35 | ||
| 36 | primrec | |
| 37 | last :: "'a list \<Rightarrow> 'a" where | |
| 38 | "last (x # xs) = (if xs = [] then x else last xs)" | |
| 39 | ||
| 40 | primrec | |
| 41 | butlast :: "'a list \<Rightarrow> 'a list" where | |
| 42 | "butlast []= []" | |
| 43 | | "butlast (x # xs) = (if xs = [] then [] else x # butlast xs)" | |
| 44 | ||
| 45 | primrec | |
| 46 | set :: "'a list \<Rightarrow> 'a set" where | |
| 47 |     "set [] = {}"
 | |
| 48 | | "set (x # xs) = insert x (set xs)" | |
| 49 | ||
| 50 | primrec | |
| 51 |   map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
 | |
| 52 | "map f [] = []" | |
| 53 | | "map f (x # xs) = f x # map f xs" | |
| 54 | ||
| 55 | primrec | |
| 56 | append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where | |
| 57 | append_Nil:"[] @ ys = ys" | |
| 58 | | append_Cons: "(x#xs) @ ys = x # xs @ ys" | |
| 59 | ||
| 60 | primrec | |
| 61 | rev :: "'a list \<Rightarrow> 'a list" where | |
| 62 | "rev [] = []" | |
| 63 | | "rev (x # xs) = rev xs @ [x]" | |
| 64 | ||
| 65 | primrec | |
| 66 |   filter:: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 | |
| 67 | "filter P [] = []" | |
| 68 | | "filter P (x # xs) = (if P x then x # filter P xs else filter P xs)" | |
| 69 | ||
| 70 | syntax | |
| 71 |   -- {* Special syntax for filter *}
 | |
| 35115 | 72 |   "_filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_<-_./ _])")
 | 
| 34941 | 73 | |
| 74 | translations | |
| 75 | "[x<-xs . P]"== "CONST filter (%x. P) xs" | |
| 76 | ||
| 77 | syntax (xsymbols) | |
| 35115 | 78 |   "_filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
 | 
| 34941 | 79 | syntax (HTML output) | 
| 35115 | 80 |   "_filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
 | 
| 34941 | 81 | |
| 82 | primrec | |
| 83 |   foldl :: "('b \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b" where
 | |
| 84 | foldl_Nil: "foldl f a [] = a" | |
| 85 | | foldl_Cons: "foldl f a (x # xs) = foldl f (f a x) xs" | |
| 86 | ||
| 87 | primrec | |
| 88 |   foldr :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
 | |
| 89 | "foldr f [] a = a" | |
| 90 | | "foldr f (x # xs) a = f x (foldr f xs a)" | |
| 91 | ||
| 92 | primrec | |
| 93 | concat:: "'a list list \<Rightarrow> 'a list" where | |
| 94 | "concat [] = []" | |
| 95 | | "concat (x # xs) = x @ concat xs" | |
| 96 | ||
| 97 | primrec (in monoid_add) | |
| 98 | listsum :: "'a list \<Rightarrow> 'a" where | |
| 99 | "listsum [] = 0" | |
| 100 | | "listsum (x # xs) = x + listsum xs" | |
| 101 | ||
| 102 | primrec | |
| 103 | drop:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 104 | drop_Nil: "drop n [] = []" | |
| 105 | | drop_Cons: "drop n (x # xs) = (case n of 0 \<Rightarrow> x # xs | Suc m \<Rightarrow> drop m xs)" | |
| 106 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 107 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 108 | ||
| 109 | primrec | |
| 110 | take:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 111 | take_Nil:"take n [] = []" | |
| 112 | | take_Cons: "take n (x # xs) = (case n of 0 \<Rightarrow> [] | Suc m \<Rightarrow> x # take m xs)" | |
| 113 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 114 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 115 | ||
| 116 | primrec | |
| 117 | nth :: "'a list => nat => 'a" (infixl "!" 100) where | |
| 118 | nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)" | |
| 119 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 120 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 121 | ||
| 122 | primrec | |
| 123 | list_update :: "'a list \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a list" where | |
| 124 | "list_update [] i v = []" | |
| 125 | | "list_update (x # xs) i v = (case i of 0 \<Rightarrow> v # xs | Suc j \<Rightarrow> x # list_update xs j v)" | |
| 923 | 126 | |
| 13146 | 127 | nonterminals lupdbinds lupdbind | 
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 128 | |
| 923 | 129 | syntax | 
| 13366 | 130 |   "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
 | 
| 131 |   "" :: "lupdbind => lupdbinds"    ("_")
 | |
| 132 |   "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
 | |
| 133 |   "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
 | |
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 134 | |
| 923 | 135 | translations | 
| 35115 | 136 | "_LUpdate xs (_lupdbinds b bs)" == "_LUpdate (_LUpdate xs b) bs" | 
| 34941 | 137 | "xs[i:=x]" == "CONST list_update xs i x" | 
| 138 | ||
| 139 | primrec | |
| 140 |   takeWhile :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 | |
| 141 | "takeWhile P [] = []" | |
| 142 | | "takeWhile P (x # xs) = (if P x then x # takeWhile P xs else [])" | |
| 143 | ||
| 144 | primrec | |
| 145 |   dropWhile :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 | |
| 146 | "dropWhile P [] = []" | |
| 147 | | "dropWhile P (x # xs) = (if P x then dropWhile P xs else x # xs)" | |
| 148 | ||
| 149 | primrec | |
| 150 |   zip :: "'a list \<Rightarrow> 'b list \<Rightarrow> ('a \<times> 'b) list" where
 | |
| 151 | "zip xs [] = []" | |
| 152 | | zip_Cons: "zip xs (y # ys) = (case xs of [] => [] | z # zs => (z, y) # zip zs ys)" | |
| 153 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 154 |        theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
 | |
| 155 | ||
| 156 | primrec | |
| 157 |   upt :: "nat \<Rightarrow> nat \<Rightarrow> nat list" ("(1[_..</_'])") where
 | |
| 158 | upt_0: "[i..<0] = []" | |
| 159 | | upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])" | |
| 160 | ||
| 161 | primrec | |
| 162 | distinct :: "'a list \<Rightarrow> bool" where | |
| 163 | "distinct [] \<longleftrightarrow> True" | |
| 164 | | "distinct (x # xs) \<longleftrightarrow> x \<notin> set xs \<and> distinct xs" | |
| 165 | ||
| 166 | primrec | |
| 167 | remdups :: "'a list \<Rightarrow> 'a list" where | |
| 168 | "remdups [] = []" | |
| 169 | | "remdups (x # xs) = (if x \<in> set xs then remdups xs else x # remdups xs)" | |
| 170 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 171 | definition | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 172 | insert :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 173 | "insert x xs = (if x \<in> set xs then xs else x # xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 174 | |
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 175 | hide (open) const insert hide (open) fact insert_def | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 176 | |
| 34941 | 177 | primrec | 
| 178 | remove1 :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 179 | "remove1 x [] = []" | |
| 180 | | "remove1 x (y # xs) = (if x = y then xs else y # remove1 x xs)" | |
| 181 | ||
| 182 | primrec | |
| 183 | removeAll :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 184 | "removeAll x [] = []" | |
| 185 | | "removeAll x (y # xs) = (if x = y then removeAll x xs else y # removeAll x xs)" | |
| 186 | ||
| 187 | primrec | |
| 188 | replicate :: "nat \<Rightarrow> 'a \<Rightarrow> 'a list" where | |
| 189 | replicate_0: "replicate 0 x = []" | |
| 190 | | replicate_Suc: "replicate (Suc n) x = x # replicate n x" | |
| 3342 
ec3b55fcb165
New operator "lists" for formalizing sets of lists
 paulson parents: 
3320diff
changeset | 191 | |
| 13142 | 192 | text {*
 | 
| 14589 | 193 |   Function @{text size} is overloaded for all datatypes. Users may
 | 
| 13366 | 194 |   refer to the list version as @{text length}. *}
 | 
| 13142 | 195 | |
| 19363 | 196 | abbreviation | 
| 34941 | 197 | length :: "'a list \<Rightarrow> nat" where | 
| 198 | "length \<equiv> size" | |
| 15307 | 199 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 200 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 201 | rotate1 :: "'a list \<Rightarrow> 'a list" where | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 202 | "rotate1 xs = (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])" | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 203 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 204 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 205 | rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 30971 | 206 | "rotate n = rotate1 ^^ n" | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 207 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 208 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 209 |   list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" where
 | 
| 28562 | 210 | [code del]: "list_all2 P xs ys = | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 211 | (length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y))" | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 212 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 213 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 214 | sublist :: "'a list => nat set => 'a list" where | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 215 | "sublist xs A = map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))" | 
| 17086 | 216 | |
| 217 | primrec | |
| 34941 | 218 | splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 219 | "splice [] ys = ys" | |
| 220 | | "splice (x # xs) ys = (if ys = [] then x # xs else x # hd ys # splice xs (tl ys))" | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 221 |     -- {*Warning: simpset does not contain the second eqn but a derived one. *}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 222 | |
| 26771 | 223 | text{*
 | 
| 224 | \begin{figure}[htbp]
 | |
| 225 | \fbox{
 | |
| 226 | \begin{tabular}{l}
 | |
| 27381 | 227 | @{lemma "[a,b]@[c,d] = [a,b,c,d]" by simp}\\
 | 
| 228 | @{lemma "length [a,b,c] = 3" by simp}\\
 | |
| 229 | @{lemma "set [a,b,c] = {a,b,c}" by simp}\\
 | |
| 230 | @{lemma "map f [a,b,c] = [f a, f b, f c]" by simp}\\
 | |
| 231 | @{lemma "rev [a,b,c] = [c,b,a]" by simp}\\
 | |
| 232 | @{lemma "hd [a,b,c,d] = a" by simp}\\
 | |
| 233 | @{lemma "tl [a,b,c,d] = [b,c,d]" by simp}\\
 | |
| 234 | @{lemma "last [a,b,c,d] = d" by simp}\\
 | |
| 235 | @{lemma "butlast [a,b,c,d] = [a,b,c]" by simp}\\
 | |
| 236 | @{lemma[source] "filter (\<lambda>n::nat. n<2) [0,2,1] = [0,1]" by simp}\\
 | |
| 237 | @{lemma "concat [[a,b],[c,d,e],[],[f]] = [a,b,c,d,e,f]" by simp}\\
 | |
| 238 | @{lemma "foldl f x [a,b,c] = f (f (f x a) b) c" by simp}\\
 | |
| 239 | @{lemma "foldr f [a,b,c] x = f a (f b (f c x))" by simp}\\
 | |
| 240 | @{lemma "zip [a,b,c] [x,y,z] = [(a,x),(b,y),(c,z)]" by simp}\\
 | |
| 241 | @{lemma "zip [a,b] [x,y,z] = [(a,x),(b,y)]" by simp}\\
 | |
| 242 | @{lemma "splice [a,b,c] [x,y,z] = [a,x,b,y,c,z]" by simp}\\
 | |
| 243 | @{lemma "splice [a,b,c,d] [x,y] = [a,x,b,y,c,d]" by simp}\\
 | |
| 244 | @{lemma "take 2 [a,b,c,d] = [a,b]" by simp}\\
 | |
| 245 | @{lemma "take 6 [a,b,c,d] = [a,b,c,d]" by simp}\\
 | |
| 246 | @{lemma "drop 2 [a,b,c,d] = [c,d]" by simp}\\
 | |
| 247 | @{lemma "drop 6 [a,b,c,d] = []" by simp}\\
 | |
| 248 | @{lemma "takeWhile (%n::nat. n<3) [1,2,3,0] = [1,2]" by simp}\\
 | |
| 249 | @{lemma "dropWhile (%n::nat. n<3) [1,2,3,0] = [3,0]" by simp}\\
 | |
| 250 | @{lemma "distinct [2,0,1::nat]" by simp}\\
 | |
| 251 | @{lemma "remdups [2,0,2,1::nat,2] = [0,1,2]" by simp}\\
 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 252 | @{lemma "List.insert 2 [0::nat,1,2] = [0,1,2]" by (simp add: List.insert_def)}\\
 | 
| 35295 | 253 | @{lemma "List.insert 3 [0::nat,1,2] = [3,0,1,2]" by (simp add: List.insert_def)}\\
 | 
| 27381 | 254 | @{lemma "remove1 2 [2,0,2,1::nat,2] = [0,2,1,2]" by simp}\\
 | 
| 27693 | 255 | @{lemma "removeAll 2 [2,0,2,1::nat,2] = [0,1]" by simp}\\
 | 
| 27381 | 256 | @{lemma "nth [a,b,c,d] 2 = c" by simp}\\
 | 
| 257 | @{lemma "[a,b,c,d][2 := x] = [a,b,x,d]" by simp}\\
 | |
| 258 | @{lemma "sublist [a,b,c,d,e] {0,2,3} = [a,c,d]" by (simp add:sublist_def)}\\
 | |
| 259 | @{lemma "rotate1 [a,b,c,d] = [b,c,d,a]" by (simp add:rotate1_def)}\\
 | |
| 35216 | 260 | @{lemma "rotate 3 [a,b,c,d] = [d,a,b,c]" by (simp add:rotate1_def rotate_def nat_number')}\\
 | 
| 261 | @{lemma "replicate 4 a = [a,a,a,a]" by (simp add:nat_number')}\\
 | |
| 262 | @{lemma "[2..<5] = [2,3,4]" by (simp add:nat_number')}\\
 | |
| 27381 | 263 | @{lemma "listsum [1,2,3::nat] = 6" by simp}
 | 
| 26771 | 264 | \end{tabular}}
 | 
| 265 | \caption{Characteristic examples}
 | |
| 266 | \label{fig:Characteristic}
 | |
| 267 | \end{figure}
 | |
| 29927 | 268 | Figure~\ref{fig:Characteristic} shows characteristic examples
 | 
| 26771 | 269 | that should give an intuitive understanding of the above functions. | 
| 270 | *} | |
| 271 | ||
| 24616 | 272 | text{* The following simple sort functions are intended for proofs,
 | 
| 273 | not for efficient implementations. *} | |
| 274 | ||
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 275 | context linorder | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 276 | begin | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 277 | |
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 278 | fun sorted :: "'a list \<Rightarrow> bool" where | 
| 24697 | 279 | "sorted [] \<longleftrightarrow> True" | | 
| 280 | "sorted [x] \<longleftrightarrow> True" | | |
| 25062 | 281 | "sorted (x#y#zs) \<longleftrightarrow> x <= y \<and> sorted (y#zs)" | 
| 24697 | 282 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 283 | primrec insort_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b \<Rightarrow> 'b list \<Rightarrow> 'b list" where
 | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 284 | "insort_key f x [] = [x]" | | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 285 | "insort_key f x (y#ys) = (if f x \<le> f y then (x#y#ys) else y#(insort_key f x ys))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 286 | |
| 35195 | 287 | definition sort_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b list \<Rightarrow> 'b list" where
 | 
| 288 | "sort_key f xs = foldr (insort_key f) xs []" | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 289 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 290 | abbreviation "sort \<equiv> sort_key (\<lambda>x. x)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 291 | abbreviation "insort \<equiv> insort_key (\<lambda>x. x)" | 
| 24616 | 292 | |
| 35608 | 293 | definition insort_insert :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 294 | "insort_insert x xs = (if x \<in> set xs then xs else insort x xs)" | |
| 295 | ||
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 296 | end | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 297 | |
| 24616 | 298 | |
| 23388 | 299 | subsubsection {* List comprehension *}
 | 
| 23192 | 300 | |
| 24349 | 301 | text{* Input syntax for Haskell-like list comprehension notation.
 | 
| 302 | Typical example: @{text"[(x,y). x \<leftarrow> xs, y \<leftarrow> ys, x \<noteq> y]"},
 | |
| 303 | the list of all pairs of distinct elements from @{text xs} and @{text ys}.
 | |
| 304 | The syntax is as in Haskell, except that @{text"|"} becomes a dot
 | |
| 305 | (like in Isabelle's set comprehension): @{text"[e. x \<leftarrow> xs, \<dots>]"} rather than
 | |
| 306 | \verb![e| x <- xs, ...]!. | |
| 307 | ||
| 308 | The qualifiers after the dot are | |
| 309 | \begin{description}
 | |
| 310 | \item[generators] @{text"p \<leftarrow> xs"},
 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 311 |  where @{text p} is a pattern and @{text xs} an expression of list type, or
 | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 312 | \item[guards] @{text"b"}, where @{text b} is a boolean expression.
 | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 313 | %\item[local bindings] @ {text"let x = e"}.
 | 
| 24349 | 314 | \end{description}
 | 
| 23240 | 315 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 316 | Just like in Haskell, list comprehension is just a shorthand. To avoid | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 317 | misunderstandings, the translation into desugared form is not reversed | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 318 | upon output. Note that the translation of @{text"[e. x \<leftarrow> xs]"} is
 | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 319 | optmized to @{term"map (%x. e) xs"}.
 | 
| 23240 | 320 | |
| 24349 | 321 | It is easy to write short list comprehensions which stand for complex | 
| 322 | expressions. During proofs, they may become unreadable (and | |
| 323 | mangled). In such cases it can be advisable to introduce separate | |
| 324 | definitions for the list comprehensions in question. *} | |
| 325 | ||
| 23209 | 326 | (* | 
| 23240 | 327 | Proper theorem proving support would be nice. For example, if | 
| 23192 | 328 | @{text"set[f x y. x \<leftarrow> xs, y \<leftarrow> ys, P x y]"}
 | 
| 329 | produced something like | |
| 23209 | 330 | @{term"{z. EX x: set xs. EX y:set ys. P x y \<and> z = f x y}"}.
 | 
| 331 | *) | |
| 332 | ||
| 23240 | 333 | nonterminals lc_qual lc_quals | 
| 23192 | 334 | |
| 335 | syntax | |
| 23240 | 336 | "_listcompr" :: "'a \<Rightarrow> lc_qual \<Rightarrow> lc_quals \<Rightarrow> 'a list"  ("[_ . __")
 | 
| 24349 | 337 | "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ <- _")
 | 
| 23240 | 338 | "_lc_test" :: "bool \<Rightarrow> lc_qual" ("_")
 | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 339 | (*"_lc_let" :: "letbinds => lc_qual"  ("let _")*)
 | 
| 23240 | 340 | "_lc_end" :: "lc_quals" ("]")
 | 
| 341 | "_lc_quals" :: "lc_qual \<Rightarrow> lc_quals \<Rightarrow> lc_quals" (", __")
 | |
| 24349 | 342 | "_lc_abs" :: "'a => 'b list => 'b list" | 
| 23192 | 343 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 344 | (* These are easier than ML code but cannot express the optimized | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 345 | translation of [e. p<-xs] | 
| 23192 | 346 | translations | 
| 24349 | 347 | "[e. p<-xs]" => "concat(map (_lc_abs p [e]) xs)" | 
| 23240 | 348 | "_listcompr e (_lc_gen p xs) (_lc_quals Q Qs)" | 
| 24349 | 349 | => "concat (map (_lc_abs p (_listcompr e Q Qs)) xs)" | 
| 23240 | 350 | "[e. P]" => "if P then [e] else []" | 
| 351 | "_listcompr e (_lc_test P) (_lc_quals Q Qs)" | |
| 352 | => "if P then (_listcompr e Q Qs) else []" | |
| 24349 | 353 | "_listcompr e (_lc_let b) (_lc_quals Q Qs)" | 
| 354 | => "_Let b (_listcompr e Q Qs)" | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 355 | *) | 
| 23240 | 356 | |
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 357 | syntax (xsymbols) | 
| 24349 | 358 | "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
 | 
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 359 | syntax (HTML output) | 
| 24349 | 360 | "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
 | 
| 361 | ||
| 362 | parse_translation (advanced) {*
 | |
| 363 | let | |
| 35256 | 364 |   val NilC = Syntax.const @{const_syntax Nil};
 | 
| 365 |   val ConsC = Syntax.const @{const_syntax Cons};
 | |
| 366 |   val mapC = Syntax.const @{const_syntax map};
 | |
| 367 |   val concatC = Syntax.const @{const_syntax concat};
 | |
| 368 |   val IfC = Syntax.const @{const_syntax If};
 | |
| 35115 | 369 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 370 | fun singl x = ConsC $ x $ NilC; | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 371 | |
| 35115 | 372 | fun pat_tr ctxt p e opti = (* %x. case x of p => e | _ => [] *) | 
| 24349 | 373 | let | 
| 29281 | 374 | val x = Free (Name.variant (fold Term.add_free_names [p, e] []) "x", dummyT); | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 375 | val e = if opti then singl e else e; | 
| 35115 | 376 |       val case1 = Syntax.const @{syntax_const "_case1"} $ p $ e;
 | 
| 35256 | 377 | val case2 = | 
| 378 |         Syntax.const @{syntax_const "_case1"} $
 | |
| 379 |           Syntax.const @{const_syntax dummy_pattern} $ NilC;
 | |
| 35115 | 380 |       val cs = Syntax.const @{syntax_const "_case2"} $ case1 $ case2;
 | 
| 381 | val ft = Datatype_Case.case_tr false Datatype.info_of_constr ctxt [x, cs]; | |
| 24349 | 382 | in lambda x ft end; | 
| 383 | ||
| 35256 | 384 | fun abs_tr ctxt (p as Free (s, T)) e opti = | 
| 35115 | 385 | let | 
| 386 | val thy = ProofContext.theory_of ctxt; | |
| 387 | val s' = Sign.intern_const thy s; | |
| 388 | in | |
| 389 | if Sign.declared_const thy s' | |
| 390 | then (pat_tr ctxt p e opti, false) | |
| 391 | else (lambda p e, true) | |
| 24349 | 392 | end | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 393 | | abs_tr ctxt p e opti = (pat_tr ctxt p e opti, false); | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 394 | |
| 35115 | 395 |   fun lc_tr ctxt [e, Const (@{syntax_const "_lc_test"}, _) $ b, qs] =
 | 
| 396 | let | |
| 397 | val res = | |
| 398 | (case qs of | |
| 399 |               Const (@{syntax_const "_lc_end"}, _) => singl e
 | |
| 400 |             | Const (@{syntax_const "_lc_quals"}, _) $ q $ qs => lc_tr ctxt [e, q, qs]);
 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 401 | in IfC $ b $ res $ NilC end | 
| 35115 | 402 | | lc_tr ctxt | 
| 403 |           [e, Const (@{syntax_const "_lc_gen"}, _) $ p $ es,
 | |
| 404 |             Const(@{syntax_const "_lc_end"}, _)] =
 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 405 | (case abs_tr ctxt p e true of | 
| 35115 | 406 | (f, true) => mapC $ f $ es | 
| 407 | | (f, false) => concatC $ (mapC $ f $ es)) | |
| 408 | | lc_tr ctxt | |
| 409 |           [e, Const (@{syntax_const "_lc_gen"}, _) $ p $ es,
 | |
| 410 |             Const (@{syntax_const "_lc_quals"}, _) $ q $ qs] =
 | |
| 411 | let val e' = lc_tr ctxt [e, q, qs]; | |
| 412 | in concatC $ (mapC $ (fst (abs_tr ctxt p e' false)) $ es) end; | |
| 413 | ||
| 414 | in [(@{syntax_const "_listcompr"}, lc_tr)] end
 | |
| 24349 | 415 | *} | 
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 416 | |
| 23240 | 417 | term "[(x,y,z). b]" | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 418 | term "[(x,y,z). x\<leftarrow>xs]" | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 419 | term "[e x y. x\<leftarrow>xs, y\<leftarrow>ys]" | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 420 | term "[(x,y,z). x<a, x>b]" | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 421 | term "[(x,y,z). x\<leftarrow>xs, x>b]" | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 422 | term "[(x,y,z). x<a, x\<leftarrow>xs]" | 
| 24349 | 423 | term "[(x,y). Cons True x \<leftarrow> xs]" | 
| 424 | term "[(x,y,z). Cons x [] \<leftarrow> xs]" | |
| 23240 | 425 | term "[(x,y,z). x<a, x>b, x=d]" | 
| 426 | term "[(x,y,z). x<a, x>b, y\<leftarrow>ys]" | |
| 427 | term "[(x,y,z). x<a, x\<leftarrow>xs,y>b]" | |
| 428 | term "[(x,y,z). x<a, x\<leftarrow>xs, y\<leftarrow>ys]" | |
| 429 | term "[(x,y,z). x\<leftarrow>xs, x>b, y<a]" | |
| 430 | term "[(x,y,z). x\<leftarrow>xs, x>b, y\<leftarrow>ys]" | |
| 431 | term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,y>x]" | |
| 432 | term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,z\<leftarrow>zs]" | |
| 35115 | 433 | (* | 
| 24349 | 434 | term "[(x,y). x\<leftarrow>xs, let xx = x+x, y\<leftarrow>ys, y \<noteq> xx]" | 
| 23192 | 435 | *) | 
| 436 | ||
| 35115 | 437 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 438 | subsubsection {* @{const Nil} and @{const Cons} *}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 439 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 440 | lemma not_Cons_self [simp]: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 441 | "xs \<noteq> x # xs" | 
| 13145 | 442 | by (induct xs) auto | 
| 13114 | 443 | |
| 13142 | 444 | lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric] | 
| 13114 | 445 | |
| 13142 | 446 | lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)" | 
| 13145 | 447 | by (induct xs) auto | 
| 13114 | 448 | |
| 13142 | 449 | lemma length_induct: | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 450 | "(\<And>xs. \<forall>ys. length ys < length xs \<longrightarrow> P ys \<Longrightarrow> P xs) \<Longrightarrow> P xs" | 
| 17589 | 451 | by (rule measure_induct [of length]) iprover | 
| 13114 | 452 | |
| 453 | ||
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 454 | subsubsection {* @{const length} *}
 | 
| 13114 | 455 | |
| 13142 | 456 | text {*
 | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 457 |   Needs to come before @{text "@"} because of theorem @{text
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 458 | append_eq_append_conv}. | 
| 13142 | 459 | *} | 
| 13114 | 460 | |
| 13142 | 461 | lemma length_append [simp]: "length (xs @ ys) = length xs + length ys" | 
| 13145 | 462 | by (induct xs) auto | 
| 13114 | 463 | |
| 13142 | 464 | lemma length_map [simp]: "length (map f xs) = length xs" | 
| 13145 | 465 | by (induct xs) auto | 
| 13114 | 466 | |
| 13142 | 467 | lemma length_rev [simp]: "length (rev xs) = length xs" | 
| 13145 | 468 | by (induct xs) auto | 
| 13114 | 469 | |
| 13142 | 470 | lemma length_tl [simp]: "length (tl xs) = length xs - 1" | 
| 13145 | 471 | by (cases xs) auto | 
| 13114 | 472 | |
| 13142 | 473 | lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])" | 
| 13145 | 474 | by (induct xs) auto | 
| 13114 | 475 | |
| 13142 | 476 | lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])" | 
| 13145 | 477 | by (induct xs) auto | 
| 13114 | 478 | |
| 23479 | 479 | lemma length_pos_if_in_set: "x : set xs \<Longrightarrow> length xs > 0" | 
| 480 | by auto | |
| 481 | ||
| 13114 | 482 | lemma length_Suc_conv: | 
| 13145 | 483 | "(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" | 
| 484 | by (induct xs) auto | |
| 13142 | 485 | |
| 14025 | 486 | lemma Suc_length_conv: | 
| 487 | "(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" | |
| 14208 | 488 | apply (induct xs, simp, simp) | 
| 14025 | 489 | apply blast | 
| 490 | done | |
| 491 | ||
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 492 | lemma impossible_Cons: "length xs <= length ys ==> xs = x # ys = False" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 493 | by (induct xs) auto | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 494 | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 495 | lemma list_induct2 [consumes 1, case_names Nil Cons]: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 496 | "length xs = length ys \<Longrightarrow> P [] [] \<Longrightarrow> | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 497 | (\<And>x xs y ys. length xs = length ys \<Longrightarrow> P xs ys \<Longrightarrow> P (x#xs) (y#ys)) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 498 | \<Longrightarrow> P xs ys" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 499 | proof (induct xs arbitrary: ys) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 500 | case Nil then show ?case by simp | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 501 | next | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 502 | case (Cons x xs ys) then show ?case by (cases ys) simp_all | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 503 | qed | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 504 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 505 | lemma list_induct3 [consumes 2, case_names Nil Cons]: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 506 | "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P [] [] [] \<Longrightarrow> | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 507 | (\<And>x xs y ys z zs. length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P xs ys zs \<Longrightarrow> P (x#xs) (y#ys) (z#zs)) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 508 | \<Longrightarrow> P xs ys zs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 509 | proof (induct xs arbitrary: ys zs) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 510 | case Nil then show ?case by simp | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 511 | next | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 512 | case (Cons x xs ys zs) then show ?case by (cases ys, simp_all) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 513 | (cases zs, simp_all) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 514 | qed | 
| 13114 | 515 | |
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 516 | lemma list_induct2': | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 517 | "\<lbrakk> P [] []; | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 518 | \<And>x xs. P (x#xs) []; | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 519 | \<And>y ys. P [] (y#ys); | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 520 | \<And>x xs y ys. P xs ys \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk> | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 521 | \<Longrightarrow> P xs ys" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 522 | by (induct xs arbitrary: ys) (case_tac x, auto)+ | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 523 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 524 | lemma neq_if_length_neq: "length xs \<noteq> length ys \<Longrightarrow> (xs = ys) == False" | 
| 24349 | 525 | by (rule Eq_FalseI) auto | 
| 24037 | 526 | |
| 527 | simproc_setup list_neq ("(xs::'a list) = ys") = {*
 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 528 | (* | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 529 | Reduces xs=ys to False if xs and ys cannot be of the same length. | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 530 | This is the case if the atomic sublists of one are a submultiset | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 531 | of those of the other list and there are fewer Cons's in one than the other. | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 532 | *) | 
| 24037 | 533 | |
| 534 | let | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 535 | |
| 29856 | 536 | fun len (Const(@{const_name Nil},_)) acc = acc
 | 
| 537 |   | len (Const(@{const_name Cons},_) $ _ $ xs) (ts,n) = len xs (ts,n+1)
 | |
| 538 |   | len (Const(@{const_name append},_) $ xs $ ys) acc = len xs (len ys acc)
 | |
| 539 |   | len (Const(@{const_name rev},_) $ xs) acc = len xs acc
 | |
| 540 |   | len (Const(@{const_name map},_) $ _ $ xs) acc = len xs acc
 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 541 | | len t (ts,n) = (t::ts,n); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 542 | |
| 24037 | 543 | fun list_neq _ ss ct = | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 544 | let | 
| 24037 | 545 | val (Const(_,eqT) $ lhs $ rhs) = Thm.term_of ct; | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 546 | val (ls,m) = len lhs ([],0) and (rs,n) = len rhs ([],0); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 547 | fun prove_neq() = | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 548 | let | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 549 | val Type(_,listT::_) = eqT; | 
| 22994 | 550 | val size = HOLogic.size_const listT; | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 551 | val eq_len = HOLogic.mk_eq (size $ lhs, size $ rhs); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 552 | val neq_len = HOLogic.mk_Trueprop (HOLogic.Not $ eq_len); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 553 | val thm = Goal.prove (Simplifier.the_context ss) [] [] neq_len | 
| 22633 | 554 |           (K (simp_tac (Simplifier.inherit_context ss @{simpset}) 1));
 | 
| 555 |       in SOME (thm RS @{thm neq_if_length_neq}) end
 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 556 | in | 
| 23214 | 557 | if m < n andalso submultiset (op aconv) (ls,rs) orelse | 
| 558 | n < m andalso submultiset (op aconv) (rs,ls) | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 559 | then prove_neq() else NONE | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 560 | end; | 
| 24037 | 561 | in list_neq end; | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 562 | *} | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 563 | |
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 564 | |
| 15392 | 565 | subsubsection {* @{text "@"} -- append *}
 | 
| 13114 | 566 | |
| 13142 | 567 | lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)" | 
| 13145 | 568 | by (induct xs) auto | 
| 13114 | 569 | |
| 13142 | 570 | lemma append_Nil2 [simp]: "xs @ [] = xs" | 
| 13145 | 571 | by (induct xs) auto | 
| 3507 | 572 | |
| 13142 | 573 | lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])" | 
| 13145 | 574 | by (induct xs) auto | 
| 13114 | 575 | |
| 13142 | 576 | lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])" | 
| 13145 | 577 | by (induct xs) auto | 
| 13114 | 578 | |
| 13142 | 579 | lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])" | 
| 13145 | 580 | by (induct xs) auto | 
| 13114 | 581 | |
| 13142 | 582 | lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])" | 
| 13145 | 583 | by (induct xs) auto | 
| 13114 | 584 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 585 | lemma append_eq_append_conv [simp, no_atp]: | 
| 24526 | 586 | "length xs = length ys \<or> length us = length vs | 
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 587 | ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)" | 
| 24526 | 588 | apply (induct xs arbitrary: ys) | 
| 14208 | 589 | apply (case_tac ys, simp, force) | 
| 590 | apply (case_tac ys, force, simp) | |
| 13145 | 591 | done | 
| 13142 | 592 | |
| 24526 | 593 | lemma append_eq_append_conv2: "(xs @ ys = zs @ ts) = | 
| 594 | (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)" | |
| 595 | apply (induct xs arbitrary: ys zs ts) | |
| 14495 | 596 | apply fastsimp | 
| 597 | apply(case_tac zs) | |
| 598 | apply simp | |
| 599 | apply fastsimp | |
| 600 | done | |
| 601 | ||
| 34910 
b23bd3ee4813
same_append_eq / append_same_eq are now used for simplifying induction rules.
 berghofe parents: 
34064diff
changeset | 602 | lemma same_append_eq [iff, induct_simp]: "(xs @ ys = xs @ zs) = (ys = zs)" | 
| 13145 | 603 | by simp | 
| 13142 | 604 | |
| 605 | lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)" | |
| 13145 | 606 | by simp | 
| 13114 | 607 | |
| 34910 
b23bd3ee4813
same_append_eq / append_same_eq are now used for simplifying induction rules.
 berghofe parents: 
34064diff
changeset | 608 | lemma append_same_eq [iff, induct_simp]: "(ys @ xs = zs @ xs) = (ys = zs)" | 
| 13145 | 609 | by simp | 
| 13114 | 610 | |
| 13142 | 611 | lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])" | 
| 13145 | 612 | using append_same_eq [of _ _ "[]"] by auto | 
| 3507 | 613 | |
| 13142 | 614 | lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])" | 
| 13145 | 615 | using append_same_eq [of "[]"] by auto | 
| 13114 | 616 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 617 | lemma hd_Cons_tl [simp,no_atp]: "xs \<noteq> [] ==> hd xs # tl xs = xs" | 
| 13145 | 618 | by (induct xs) auto | 
| 13114 | 619 | |
| 13142 | 620 | lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)" | 
| 13145 | 621 | by (induct xs) auto | 
| 13114 | 622 | |
| 13142 | 623 | lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs" | 
| 13145 | 624 | by (simp add: hd_append split: list.split) | 
| 13114 | 625 | |
| 13142 | 626 | lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)" | 
| 13145 | 627 | by (simp split: list.split) | 
| 13114 | 628 | |
| 13142 | 629 | lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys" | 
| 13145 | 630 | by (simp add: tl_append split: list.split) | 
| 13114 | 631 | |
| 632 | ||
| 14300 | 633 | lemma Cons_eq_append_conv: "x#xs = ys@zs = | 
| 634 | (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))" | |
| 635 | by(cases ys) auto | |
| 636 | ||
| 15281 | 637 | lemma append_eq_Cons_conv: "(ys@zs = x#xs) = | 
| 638 | (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))" | |
| 639 | by(cases ys) auto | |
| 640 | ||
| 14300 | 641 | |
| 13142 | 642 | text {* Trivial rules for solving @{text "@"}-equations automatically. *}
 | 
| 13114 | 643 | |
| 644 | lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys" | |
| 13145 | 645 | by simp | 
| 13114 | 646 | |
| 13142 | 647 | lemma Cons_eq_appendI: | 
| 13145 | 648 | "[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs" | 
| 649 | by (drule sym) simp | |
| 13114 | 650 | |
| 13142 | 651 | lemma append_eq_appendI: | 
| 13145 | 652 | "[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us" | 
| 653 | by (drule sym) simp | |
| 13114 | 654 | |
| 655 | ||
| 13142 | 656 | text {*
 | 
| 13145 | 657 | Simplification procedure for all list equalities. | 
| 658 | Currently only tries to rearrange @{text "@"} to see if
 | |
| 659 | - both lists end in a singleton list, | |
| 660 | - or both lists end in the same list. | |
| 13142 | 661 | *} | 
| 662 | ||
| 26480 | 663 | ML {*
 | 
| 3507 | 664 | local | 
| 665 | ||
| 29856 | 666 | fun last (cons as Const(@{const_name Cons},_) $ _ $ xs) =
 | 
| 667 |   (case xs of Const(@{const_name Nil},_) => cons | _ => last xs)
 | |
| 668 |   | last (Const(@{const_name append},_) $ _ $ ys) = last ys
 | |
| 13462 | 669 | | last t = t; | 
| 13114 | 670 | |
| 29856 | 671 | fun list1 (Const(@{const_name Cons},_) $ _ $ Const(@{const_name Nil},_)) = true
 | 
| 13462 | 672 | | list1 _ = false; | 
| 13114 | 673 | |
| 29856 | 674 | fun butlast ((cons as Const(@{const_name Cons},_) $ x) $ xs) =
 | 
| 675 |   (case xs of Const(@{const_name Nil},_) => xs | _ => cons $ butlast xs)
 | |
| 676 |   | butlast ((app as Const(@{const_name append},_) $ xs) $ ys) = app $ butlast ys
 | |
| 677 |   | butlast xs = Const(@{const_name Nil},fastype_of xs);
 | |
| 13114 | 678 | |
| 22633 | 679 | val rearr_ss = HOL_basic_ss addsimps [@{thm append_assoc},
 | 
| 680 |   @{thm append_Nil}, @{thm append_Cons}];
 | |
| 16973 | 681 | |
| 20044 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19890diff
changeset | 682 | fun list_eq ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) = | 
| 13462 | 683 | let | 
| 684 | val lastl = last lhs and lastr = last rhs; | |
| 685 | fun rearr conv = | |
| 686 | let | |
| 687 | val lhs1 = butlast lhs and rhs1 = butlast rhs; | |
| 688 | val Type(_,listT::_) = eqT | |
| 689 | val appT = [listT,listT] ---> listT | |
| 29856 | 690 |         val app = Const(@{const_name append},appT)
 | 
| 13462 | 691 | val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr) | 
| 13480 
bb72bd43c6c3
use Tactic.prove instead of prove_goalw_cterm in internal proofs!
 wenzelm parents: 
13462diff
changeset | 692 | val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2)); | 
| 20044 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19890diff
changeset | 693 | val thm = Goal.prove (Simplifier.the_context ss) [] [] eq | 
| 17877 
67d5ab1cb0d8
Simplifier.inherit_context instead of Simplifier.inherit_bounds;
 wenzelm parents: 
17830diff
changeset | 694 | (K (simp_tac (Simplifier.inherit_context ss rearr_ss) 1)); | 
| 15531 | 695 | in SOME ((conv RS (thm RS trans)) RS eq_reflection) end; | 
| 13114 | 696 | |
| 13462 | 697 | in | 
| 22633 | 698 |     if list1 lastl andalso list1 lastr then rearr @{thm append1_eq_conv}
 | 
| 699 |     else if lastl aconv lastr then rearr @{thm append_same_eq}
 | |
| 15531 | 700 | else NONE | 
| 13462 | 701 | end; | 
| 702 | ||
| 13114 | 703 | in | 
| 13462 | 704 | |
| 705 | val list_eq_simproc = | |
| 32010 | 706 |   Simplifier.simproc @{theory} "list_eq" ["(xs::'a list) = ys"] (K list_eq);
 | 
| 13462 | 707 | |
| 13114 | 708 | end; | 
| 709 | ||
| 710 | Addsimprocs [list_eq_simproc]; | |
| 711 | *} | |
| 712 | ||
| 713 | ||
| 15392 | 714 | subsubsection {* @{text map} *}
 | 
| 13114 | 715 | |
| 13142 | 716 | lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs" | 
| 13145 | 717 | by (induct xs) simp_all | 
| 13114 | 718 | |
| 13142 | 719 | lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)" | 
| 13145 | 720 | by (rule ext, induct_tac xs) auto | 
| 13114 | 721 | |
| 13142 | 722 | lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys" | 
| 13145 | 723 | by (induct xs) auto | 
| 13114 | 724 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 725 | lemma map_map [simp]: "map f (map g xs) = map (f \<circ> g) xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 726 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 727 | |
| 35208 | 728 | lemma map_comp_map[simp]: "((map f) o (map g)) = map(f o g)" | 
| 729 | apply(rule ext) | |
| 730 | apply(simp) | |
| 731 | done | |
| 732 | ||
| 13142 | 733 | lemma rev_map: "rev (map f xs) = map f (rev xs)" | 
| 13145 | 734 | by (induct xs) auto | 
| 13114 | 735 | |
| 13737 | 736 | lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)" | 
| 737 | by (induct xs) auto | |
| 738 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 739 | lemma map_cong [fundef_cong, recdef_cong]: | 
| 13145 | 740 | "xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys" | 
| 741 | -- {* a congruence rule for @{text map} *}
 | |
| 13737 | 742 | by simp | 
| 13114 | 743 | |
| 13142 | 744 | lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])" | 
| 13145 | 745 | by (cases xs) auto | 
| 13114 | 746 | |
| 13142 | 747 | lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])" | 
| 13145 | 748 | by (cases xs) auto | 
| 13114 | 749 | |
| 18447 | 750 | lemma map_eq_Cons_conv: | 
| 14025 | 751 | "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)" | 
| 13145 | 752 | by (cases xs) auto | 
| 13114 | 753 | |
| 18447 | 754 | lemma Cons_eq_map_conv: | 
| 14025 | 755 | "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)" | 
| 756 | by (cases ys) auto | |
| 757 | ||
| 18447 | 758 | lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1] | 
| 759 | lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1] | |
| 760 | declare map_eq_Cons_D [dest!] Cons_eq_map_D [dest!] | |
| 761 | ||
| 14111 | 762 | lemma ex_map_conv: | 
| 763 | "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)" | |
| 18447 | 764 | by(induct ys, auto simp add: Cons_eq_map_conv) | 
| 14111 | 765 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 766 | lemma map_eq_imp_length_eq: | 
| 35510 | 767 | assumes "map f xs = map g ys" | 
| 26734 | 768 | shows "length xs = length ys" | 
| 769 | using assms proof (induct ys arbitrary: xs) | |
| 770 | case Nil then show ?case by simp | |
| 771 | next | |
| 772 | case (Cons y ys) then obtain z zs where xs: "xs = z # zs" by auto | |
| 35510 | 773 | from Cons xs have "map f zs = map g ys" by simp | 
| 26734 | 774 | moreover with Cons have "length zs = length ys" by blast | 
| 775 | with xs show ?case by simp | |
| 776 | qed | |
| 777 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 778 | lemma map_inj_on: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 779 | "[| map f xs = map f ys; inj_on f (set xs Un set ys) |] | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 780 | ==> xs = ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 781 | apply(frule map_eq_imp_length_eq) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 782 | apply(rotate_tac -1) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 783 | apply(induct rule:list_induct2) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 784 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 785 | apply(simp) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 786 | apply (blast intro:sym) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 787 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 788 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 789 | lemma inj_on_map_eq_map: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 790 | "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 791 | by(blast dest:map_inj_on) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 792 | |
| 13114 | 793 | lemma map_injective: | 
| 24526 | 794 | "map f xs = map f ys ==> inj f ==> xs = ys" | 
| 795 | by (induct ys arbitrary: xs) (auto dest!:injD) | |
| 13114 | 796 | |
| 14339 | 797 | lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)" | 
| 798 | by(blast dest:map_injective) | |
| 799 | ||
| 13114 | 800 | lemma inj_mapI: "inj f ==> inj (map f)" | 
| 17589 | 801 | by (iprover dest: map_injective injD intro: inj_onI) | 
| 13114 | 802 | |
| 803 | lemma inj_mapD: "inj (map f) ==> inj f" | |
| 14208 | 804 | apply (unfold inj_on_def, clarify) | 
| 13145 | 805 | apply (erule_tac x = "[x]" in ballE) | 
| 14208 | 806 | apply (erule_tac x = "[y]" in ballE, simp, blast) | 
| 13145 | 807 | apply blast | 
| 808 | done | |
| 13114 | 809 | |
| 14339 | 810 | lemma inj_map[iff]: "inj (map f) = inj f" | 
| 13145 | 811 | by (blast dest: inj_mapD intro: inj_mapI) | 
| 13114 | 812 | |
| 15303 | 813 | lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A" | 
| 814 | apply(rule inj_onI) | |
| 815 | apply(erule map_inj_on) | |
| 816 | apply(blast intro:inj_onI dest:inj_onD) | |
| 817 | done | |
| 818 | ||
| 14343 | 819 | lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs" | 
| 820 | by (induct xs, auto) | |
| 13114 | 821 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 822 | lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 823 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 824 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 825 | lemma map_fst_zip[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 826 | "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 827 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 828 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 829 | lemma map_snd_zip[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 830 | "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 831 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 832 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 833 | |
| 15392 | 834 | subsubsection {* @{text rev} *}
 | 
| 13114 | 835 | |
| 13142 | 836 | lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs" | 
| 13145 | 837 | by (induct xs) auto | 
| 13114 | 838 | |
| 13142 | 839 | lemma rev_rev_ident [simp]: "rev (rev xs) = xs" | 
| 13145 | 840 | by (induct xs) auto | 
| 13114 | 841 | |
| 15870 | 842 | lemma rev_swap: "(rev xs = ys) = (xs = rev ys)" | 
| 843 | by auto | |
| 844 | ||
| 13142 | 845 | lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])" | 
| 13145 | 846 | by (induct xs) auto | 
| 13114 | 847 | |
| 13142 | 848 | lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])" | 
| 13145 | 849 | by (induct xs) auto | 
| 13114 | 850 | |
| 15870 | 851 | lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])" | 
| 852 | by (cases xs) auto | |
| 853 | ||
| 854 | lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])" | |
| 855 | by (cases xs) auto | |
| 856 | ||
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 857 | lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 858 | apply (induct xs arbitrary: ys, force) | 
| 14208 | 859 | apply (case_tac ys, simp, force) | 
| 13145 | 860 | done | 
| 13114 | 861 | |
| 15439 | 862 | lemma inj_on_rev[iff]: "inj_on rev A" | 
| 863 | by(simp add:inj_on_def) | |
| 864 | ||
| 13366 | 865 | lemma rev_induct [case_names Nil snoc]: | 
| 866 | "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs" | |
| 15489 
d136af442665
Replaced application of subst by simplesubst in proof of rev_induct
 berghofe parents: 
15439diff
changeset | 867 | apply(simplesubst rev_rev_ident[symmetric]) | 
| 13145 | 868 | apply(rule_tac list = "rev xs" in list.induct, simp_all) | 
| 869 | done | |
| 13114 | 870 | |
| 13366 | 871 | lemma rev_exhaust [case_names Nil snoc]: | 
| 872 | "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P" | |
| 13145 | 873 | by (induct xs rule: rev_induct) auto | 
| 13114 | 874 | |
| 13366 | 875 | lemmas rev_cases = rev_exhaust | 
| 876 | ||
| 18423 | 877 | lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])" | 
| 878 | by(rule rev_cases[of xs]) auto | |
| 879 | ||
| 13114 | 880 | |
| 15392 | 881 | subsubsection {* @{text set} *}
 | 
| 13114 | 882 | |
| 13142 | 883 | lemma finite_set [iff]: "finite (set xs)" | 
| 13145 | 884 | by (induct xs) auto | 
| 13114 | 885 | |
| 13142 | 886 | lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)" | 
| 13145 | 887 | by (induct xs) auto | 
| 13114 | 888 | |
| 17830 | 889 | lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs" | 
| 890 | by(cases xs) auto | |
| 14099 | 891 | |
| 13142 | 892 | lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)" | 
| 13145 | 893 | by auto | 
| 13114 | 894 | |
| 14099 | 895 | lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" | 
| 896 | by auto | |
| 897 | ||
| 13142 | 898 | lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
 | 
| 13145 | 899 | by (induct xs) auto | 
| 13114 | 900 | |
| 15245 | 901 | lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
 | 
| 902 | by(induct xs) auto | |
| 903 | ||
| 13142 | 904 | lemma set_rev [simp]: "set (rev xs) = set xs" | 
| 13145 | 905 | by (induct xs) auto | 
| 13114 | 906 | |
| 13142 | 907 | lemma set_map [simp]: "set (map f xs) = f`(set xs)" | 
| 13145 | 908 | by (induct xs) auto | 
| 13114 | 909 | |
| 13142 | 910 | lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
 | 
| 13145 | 911 | by (induct xs) auto | 
| 13114 | 912 | |
| 32417 | 913 | lemma set_upt [simp]: "set[i..<j] = {i..<j}"
 | 
| 914 | by (induct j) (simp_all add: atLeastLessThanSuc) | |
| 13114 | 915 | |
| 13142 | 916 | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 917 | lemma split_list: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs" | 
| 18049 | 918 | proof (induct xs) | 
| 26073 | 919 | case Nil thus ?case by simp | 
| 920 | next | |
| 921 | case Cons thus ?case by (auto intro: Cons_eq_appendI) | |
| 922 | qed | |
| 923 | ||
| 26734 | 924 | lemma in_set_conv_decomp: "x \<in> set xs \<longleftrightarrow> (\<exists>ys zs. xs = ys @ x # zs)" | 
| 925 | by (auto elim: split_list) | |
| 26073 | 926 | |
| 927 | lemma split_list_first: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys" | |
| 928 | proof (induct xs) | |
| 929 | case Nil thus ?case by simp | |
| 18049 | 930 | next | 
| 931 | case (Cons a xs) | |
| 932 | show ?case | |
| 933 | proof cases | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 934 | assume "x = a" thus ?case using Cons by fastsimp | 
| 18049 | 935 | next | 
| 26073 | 936 | assume "x \<noteq> a" thus ?case using Cons by(fastsimp intro!: Cons_eq_appendI) | 
| 937 | qed | |
| 938 | qed | |
| 939 | ||
| 940 | lemma in_set_conv_decomp_first: | |
| 941 | "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)" | |
| 26734 | 942 | by (auto dest!: split_list_first) | 
| 26073 | 943 | |
| 944 | lemma split_list_last: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs" | |
| 945 | proof (induct xs rule:rev_induct) | |
| 946 | case Nil thus ?case by simp | |
| 947 | next | |
| 948 | case (snoc a xs) | |
| 949 | show ?case | |
| 950 | proof cases | |
| 951 | assume "x = a" thus ?case using snoc by simp (metis ex_in_conv set_empty2) | |
| 952 | next | |
| 953 | assume "x \<noteq> a" thus ?case using snoc by fastsimp | |
| 18049 | 954 | qed | 
| 955 | qed | |
| 956 | ||
| 26073 | 957 | lemma in_set_conv_decomp_last: | 
| 958 | "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs)" | |
| 26734 | 959 | by (auto dest!: split_list_last) | 
| 26073 | 960 | |
| 961 | lemma split_list_prop: "\<exists>x \<in> set xs. P x \<Longrightarrow> \<exists>ys x zs. xs = ys @ x # zs & P x" | |
| 962 | proof (induct xs) | |
| 963 | case Nil thus ?case by simp | |
| 964 | next | |
| 965 | case Cons thus ?case | |
| 966 | by(simp add:Bex_def)(metis append_Cons append.simps(1)) | |
| 967 | qed | |
| 968 | ||
| 969 | lemma split_list_propE: | |
| 26734 | 970 | assumes "\<exists>x \<in> set xs. P x" | 
| 971 | obtains ys x zs where "xs = ys @ x # zs" and "P x" | |
| 972 | using split_list_prop [OF assms] by blast | |
| 26073 | 973 | |
| 974 | lemma split_list_first_prop: | |
| 975 | "\<exists>x \<in> set xs. P x \<Longrightarrow> | |
| 976 | \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y)" | |
| 26734 | 977 | proof (induct xs) | 
| 26073 | 978 | case Nil thus ?case by simp | 
| 979 | next | |
| 980 | case (Cons x xs) | |
| 981 | show ?case | |
| 982 | proof cases | |
| 983 | assume "P x" | |
| 26734 | 984 | thus ?thesis by simp | 
| 985 | (metis Un_upper1 contra_subsetD in_set_conv_decomp_first self_append_conv2 set_append) | |
| 26073 | 986 | next | 
| 987 | assume "\<not> P x" | |
| 988 | hence "\<exists>x\<in>set xs. P x" using Cons(2) by simp | |
| 989 | thus ?thesis using `\<not> P x` Cons(1) by (metis append_Cons set_ConsD) | |
| 990 | qed | |
| 991 | qed | |
| 992 | ||
| 993 | lemma split_list_first_propE: | |
| 26734 | 994 | assumes "\<exists>x \<in> set xs. P x" | 
| 995 | obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>y \<in> set ys. \<not> P y" | |
| 996 | using split_list_first_prop [OF assms] by blast | |
| 26073 | 997 | |
| 998 | lemma split_list_first_prop_iff: | |
| 999 | "(\<exists>x \<in> set xs. P x) \<longleftrightarrow> | |
| 1000 | (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y))" | |
| 26734 | 1001 | by (rule, erule split_list_first_prop) auto | 
| 26073 | 1002 | |
| 1003 | lemma split_list_last_prop: | |
| 1004 | "\<exists>x \<in> set xs. P x \<Longrightarrow> | |
| 1005 | \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z)" | |
| 1006 | proof(induct xs rule:rev_induct) | |
| 1007 | case Nil thus ?case by simp | |
| 1008 | next | |
| 1009 | case (snoc x xs) | |
| 1010 | show ?case | |
| 1011 | proof cases | |
| 1012 | assume "P x" thus ?thesis by (metis emptyE set_empty) | |
| 1013 | next | |
| 1014 | assume "\<not> P x" | |
| 1015 | hence "\<exists>x\<in>set xs. P x" using snoc(2) by simp | |
| 1016 | thus ?thesis using `\<not> P x` snoc(1) by fastsimp | |
| 1017 | qed | |
| 1018 | qed | |
| 1019 | ||
| 1020 | lemma split_list_last_propE: | |
| 26734 | 1021 | assumes "\<exists>x \<in> set xs. P x" | 
| 1022 | obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>z \<in> set zs. \<not> P z" | |
| 1023 | using split_list_last_prop [OF assms] by blast | |
| 26073 | 1024 | |
| 1025 | lemma split_list_last_prop_iff: | |
| 1026 | "(\<exists>x \<in> set xs. P x) \<longleftrightarrow> | |
| 1027 | (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z))" | |
| 26734 | 1028 | by (metis split_list_last_prop [where P=P] in_set_conv_decomp) | 
| 26073 | 1029 | |
| 1030 | lemma finite_list: "finite A ==> EX xs. set xs = A" | |
| 26734 | 1031 | by (erule finite_induct) | 
| 1032 | (auto simp add: set.simps(2) [symmetric] simp del: set.simps(2)) | |
| 13508 | 1033 | |
| 14388 | 1034 | lemma card_length: "card (set xs) \<le> length xs" | 
| 1035 | by (induct xs) (auto simp add: card_insert_if) | |
| 13114 | 1036 | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1037 | lemma set_minus_filter_out: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1038 |   "set xs - {y} = set (filter (\<lambda>x. \<not> (x = y)) xs)"
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1039 | by (induct xs) auto | 
| 15168 | 1040 | |
| 35115 | 1041 | |
| 15392 | 1042 | subsubsection {* @{text filter} *}
 | 
| 13114 | 1043 | |
| 13142 | 1044 | lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys" | 
| 13145 | 1045 | by (induct xs) auto | 
| 13114 | 1046 | |
| 15305 | 1047 | lemma rev_filter: "rev (filter P xs) = filter P (rev xs)" | 
| 1048 | by (induct xs) simp_all | |
| 1049 | ||
| 13142 | 1050 | lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs" | 
| 13145 | 1051 | by (induct xs) auto | 
| 13114 | 1052 | |
| 16998 | 1053 | lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs" | 
| 1054 | by (induct xs) (auto simp add: le_SucI) | |
| 1055 | ||
| 18423 | 1056 | lemma sum_length_filter_compl: | 
| 1057 | "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs" | |
| 1058 | by(induct xs) simp_all | |
| 1059 | ||
| 13142 | 1060 | lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs" | 
| 13145 | 1061 | by (induct xs) auto | 
| 13114 | 1062 | |
| 13142 | 1063 | lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []" | 
| 13145 | 1064 | by (induct xs) auto | 
| 13114 | 1065 | |
| 16998 | 1066 | lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" | 
| 24349 | 1067 | by (induct xs) simp_all | 
| 16998 | 1068 | |
| 1069 | lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)" | |
| 1070 | apply (induct xs) | |
| 1071 | apply auto | |
| 1072 | apply(cut_tac P=P and xs=xs in length_filter_le) | |
| 1073 | apply simp | |
| 1074 | done | |
| 13114 | 1075 | |
| 16965 | 1076 | lemma filter_map: | 
| 1077 | "filter P (map f xs) = map f (filter (P o f) xs)" | |
| 1078 | by (induct xs) simp_all | |
| 1079 | ||
| 1080 | lemma length_filter_map[simp]: | |
| 1081 | "length (filter P (map f xs)) = length(filter (P o f) xs)" | |
| 1082 | by (simp add:filter_map) | |
| 1083 | ||
| 13142 | 1084 | lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs" | 
| 13145 | 1085 | by auto | 
| 13114 | 1086 | |
| 15246 | 1087 | lemma length_filter_less: | 
| 1088 | "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs" | |
| 1089 | proof (induct xs) | |
| 1090 | case Nil thus ?case by simp | |
| 1091 | next | |
| 1092 | case (Cons x xs) thus ?case | |
| 1093 | apply (auto split:split_if_asm) | |
| 1094 | using length_filter_le[of P xs] apply arith | |
| 1095 | done | |
| 1096 | qed | |
| 13114 | 1097 | |
| 15281 | 1098 | lemma length_filter_conv_card: | 
| 1099 |  "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
 | |
| 1100 | proof (induct xs) | |
| 1101 | case Nil thus ?case by simp | |
| 1102 | next | |
| 1103 | case (Cons x xs) | |
| 1104 |   let ?S = "{i. i < length xs & p(xs!i)}"
 | |
| 1105 | have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite) | |
| 1106 | show ?case (is "?l = card ?S'") | |
| 1107 | proof (cases) | |
| 1108 | assume "p x" | |
| 1109 | hence eq: "?S' = insert 0 (Suc ` ?S)" | |
| 25162 | 1110 | by(auto simp: image_def split:nat.split dest:gr0_implies_Suc) | 
| 15281 | 1111 | have "length (filter p (x # xs)) = Suc(card ?S)" | 
| 23388 | 1112 | using Cons `p x` by simp | 
| 15281 | 1113 | also have "\<dots> = Suc(card(Suc ` ?S))" using fin | 
| 1114 | by (simp add: card_image inj_Suc) | |
| 1115 | also have "\<dots> = card ?S'" using eq fin | |
| 1116 | by (simp add:card_insert_if) (simp add:image_def) | |
| 1117 | finally show ?thesis . | |
| 1118 | next | |
| 1119 | assume "\<not> p x" | |
| 1120 | hence eq: "?S' = Suc ` ?S" | |
| 25162 | 1121 | by(auto simp add: image_def split:nat.split elim:lessE) | 
| 15281 | 1122 | have "length (filter p (x # xs)) = card ?S" | 
| 23388 | 1123 | using Cons `\<not> p x` by simp | 
| 15281 | 1124 | also have "\<dots> = card(Suc ` ?S)" using fin | 
| 1125 | by (simp add: card_image inj_Suc) | |
| 1126 | also have "\<dots> = card ?S'" using eq fin | |
| 1127 | by (simp add:card_insert_if) | |
| 1128 | finally show ?thesis . | |
| 1129 | qed | |
| 1130 | qed | |
| 1131 | ||
| 17629 | 1132 | lemma Cons_eq_filterD: | 
| 1133 | "x#xs = filter P ys \<Longrightarrow> | |
| 1134 | \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs" | |
| 19585 | 1135 | (is "_ \<Longrightarrow> \<exists>us vs. ?P ys us vs") | 
| 17629 | 1136 | proof(induct ys) | 
| 1137 | case Nil thus ?case by simp | |
| 1138 | next | |
| 1139 | case (Cons y ys) | |
| 1140 | show ?case (is "\<exists>x. ?Q x") | |
| 1141 | proof cases | |
| 1142 | assume Py: "P y" | |
| 1143 | show ?thesis | |
| 1144 | proof cases | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1145 | assume "x = y" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1146 | with Py Cons.prems have "?Q []" by simp | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1147 | then show ?thesis .. | 
| 17629 | 1148 | next | 
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1149 | assume "x \<noteq> y" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1150 | with Py Cons.prems show ?thesis by simp | 
| 17629 | 1151 | qed | 
| 1152 | next | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1153 | assume "\<not> P y" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1154 | with Cons obtain us vs where "?P (y#ys) (y#us) vs" by fastsimp | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1155 | then have "?Q (y#us)" by simp | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1156 | then show ?thesis .. | 
| 17629 | 1157 | qed | 
| 1158 | qed | |
| 1159 | ||
| 1160 | lemma filter_eq_ConsD: | |
| 1161 | "filter P ys = x#xs \<Longrightarrow> | |
| 1162 | \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs" | |
| 1163 | by(rule Cons_eq_filterD) simp | |
| 1164 | ||
| 1165 | lemma filter_eq_Cons_iff: | |
| 1166 | "(filter P ys = x#xs) = | |
| 1167 | (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)" | |
| 1168 | by(auto dest:filter_eq_ConsD) | |
| 1169 | ||
| 1170 | lemma Cons_eq_filter_iff: | |
| 1171 | "(x#xs = filter P ys) = | |
| 1172 | (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)" | |
| 1173 | by(auto dest:Cons_eq_filterD) | |
| 1174 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1175 | lemma filter_cong[fundef_cong, recdef_cong]: | 
| 17501 | 1176 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys" | 
| 1177 | apply simp | |
| 1178 | apply(erule thin_rl) | |
| 1179 | by (induct ys) simp_all | |
| 1180 | ||
| 15281 | 1181 | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1182 | subsubsection {* List partitioning *}
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1183 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1184 | primrec partition :: "('a \<Rightarrow> bool) \<Rightarrow>'a list \<Rightarrow> 'a list \<times> 'a list" where
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1185 | "partition P [] = ([], [])" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1186 | | "partition P (x # xs) = | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1187 | (let (yes, no) = partition P xs | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1188 | in if P x then (x # yes, no) else (yes, x # no))" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1189 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1190 | lemma partition_filter1: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1191 | "fst (partition P xs) = filter P xs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1192 | by (induct xs) (auto simp add: Let_def split_def) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1193 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1194 | lemma partition_filter2: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1195 | "snd (partition P xs) = filter (Not o P) xs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1196 | by (induct xs) (auto simp add: Let_def split_def) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1197 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1198 | lemma partition_P: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1199 | assumes "partition P xs = (yes, no)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1200 | shows "(\<forall>p \<in> set yes. P p) \<and> (\<forall>p \<in> set no. \<not> P p)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1201 | proof - | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1202 | from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1203 | by simp_all | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1204 | then show ?thesis by (simp_all add: partition_filter1 partition_filter2) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1205 | qed | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1206 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1207 | lemma partition_set: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1208 | assumes "partition P xs = (yes, no)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1209 | shows "set yes \<union> set no = set xs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1210 | proof - | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1211 | from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1212 | by simp_all | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1213 | then show ?thesis by (auto simp add: partition_filter1 partition_filter2) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1214 | qed | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1215 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1216 | lemma partition_filter_conv[simp]: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1217 | "partition f xs = (filter f xs,filter (Not o f) xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1218 | unfolding partition_filter2[symmetric] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1219 | unfolding partition_filter1[symmetric] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1220 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1221 | declare partition.simps[simp del] | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1222 | |
| 35115 | 1223 | |
| 15392 | 1224 | subsubsection {* @{text concat} *}
 | 
| 13114 | 1225 | |
| 13142 | 1226 | lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys" | 
| 13145 | 1227 | by (induct xs) auto | 
| 13114 | 1228 | |
| 18447 | 1229 | lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])" | 
| 13145 | 1230 | by (induct xss) auto | 
| 13114 | 1231 | |
| 18447 | 1232 | lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])" | 
| 13145 | 1233 | by (induct xss) auto | 
| 13114 | 1234 | |
| 24308 | 1235 | lemma set_concat [simp]: "set (concat xs) = (UN x:set xs. set x)" | 
| 13145 | 1236 | by (induct xs) auto | 
| 13114 | 1237 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 1238 | lemma concat_map_singleton[simp]: "concat(map (%x. [f x]) xs) = map f xs" | 
| 24349 | 1239 | by (induct xs) auto | 
| 1240 | ||
| 13142 | 1241 | lemma map_concat: "map f (concat xs) = concat (map (map f) xs)" | 
| 13145 | 1242 | by (induct xs) auto | 
| 13114 | 1243 | |
| 13142 | 1244 | lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)" | 
| 13145 | 1245 | by (induct xs) auto | 
| 13114 | 1246 | |
| 13142 | 1247 | lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))" | 
| 13145 | 1248 | by (induct xs) auto | 
| 13114 | 1249 | |
| 1250 | ||
| 15392 | 1251 | subsubsection {* @{text nth} *}
 | 
| 13114 | 1252 | |
| 29827 | 1253 | lemma nth_Cons_0 [simp, code]: "(x # xs)!0 = x" | 
| 13145 | 1254 | by auto | 
| 13114 | 1255 | |
| 29827 | 1256 | lemma nth_Cons_Suc [simp, code]: "(x # xs)!(Suc n) = xs!n" | 
| 13145 | 1257 | by auto | 
| 13114 | 1258 | |
| 13142 | 1259 | declare nth.simps [simp del] | 
| 13114 | 1260 | |
| 1261 | lemma nth_append: | |
| 24526 | 1262 | "(xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))" | 
| 1263 | apply (induct xs arbitrary: n, simp) | |
| 14208 | 1264 | apply (case_tac n, auto) | 
| 13145 | 1265 | done | 
| 13114 | 1266 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1267 | lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x" | 
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1268 | by (induct xs) auto | 
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1269 | |
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1270 | lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n" | 
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1271 | by (induct xs) auto | 
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1272 | |
| 24526 | 1273 | lemma nth_map [simp]: "n < length xs ==> (map f xs)!n = f(xs!n)" | 
| 1274 | apply (induct xs arbitrary: n, simp) | |
| 14208 | 1275 | apply (case_tac n, auto) | 
| 13145 | 1276 | done | 
| 13114 | 1277 | |
| 18423 | 1278 | lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0" | 
| 1279 | by(cases xs) simp_all | |
| 1280 | ||
| 18049 | 1281 | |
| 1282 | lemma list_eq_iff_nth_eq: | |
| 24526 | 1283 | "(xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))" | 
| 1284 | apply(induct xs arbitrary: ys) | |
| 24632 | 1285 | apply force | 
| 18049 | 1286 | apply(case_tac ys) | 
| 1287 | apply simp | |
| 1288 | apply(simp add:nth_Cons split:nat.split)apply blast | |
| 1289 | done | |
| 1290 | ||
| 13142 | 1291 | lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
 | 
| 15251 | 1292 | apply (induct xs, simp, simp) | 
| 13145 | 1293 | apply safe | 
| 24632 | 1294 | apply (metis nat_case_0 nth.simps zero_less_Suc) | 
| 1295 | apply (metis less_Suc_eq_0_disj nth_Cons_Suc) | |
| 14208 | 1296 | apply (case_tac i, simp) | 
| 24632 | 1297 | apply (metis diff_Suc_Suc nat_case_Suc nth.simps zero_less_diff) | 
| 13145 | 1298 | done | 
| 13114 | 1299 | |
| 17501 | 1300 | lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)" | 
| 1301 | by(auto simp:set_conv_nth) | |
| 1302 | ||
| 13145 | 1303 | lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)" | 
| 1304 | by (auto simp add: set_conv_nth) | |
| 13114 | 1305 | |
| 13142 | 1306 | lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs" | 
| 13145 | 1307 | by (auto simp add: set_conv_nth) | 
| 13114 | 1308 | |
| 1309 | lemma all_nth_imp_all_set: | |
| 13145 | 1310 | "[| !i < length xs. P(xs!i); x : set xs|] ==> P x" | 
| 1311 | by (auto simp add: set_conv_nth) | |
| 13114 | 1312 | |
| 1313 | lemma all_set_conv_all_nth: | |
| 13145 | 1314 | "(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))" | 
| 1315 | by (auto simp add: set_conv_nth) | |
| 13114 | 1316 | |
| 25296 | 1317 | lemma rev_nth: | 
| 1318 | "n < size xs \<Longrightarrow> rev xs ! n = xs ! (length xs - Suc n)" | |
| 1319 | proof (induct xs arbitrary: n) | |
| 1320 | case Nil thus ?case by simp | |
| 1321 | next | |
| 1322 | case (Cons x xs) | |
| 1323 | hence n: "n < Suc (length xs)" by simp | |
| 1324 | moreover | |
| 1325 |   { assume "n < length xs"
 | |
| 1326 | with n obtain n' where "length xs - n = Suc n'" | |
| 1327 | by (cases "length xs - n", auto) | |
| 1328 | moreover | |
| 1329 | then have "length xs - Suc n = n'" by simp | |
| 1330 | ultimately | |
| 1331 | have "xs ! (length xs - Suc n) = (x # xs) ! (length xs - n)" by simp | |
| 1332 | } | |
| 1333 | ultimately | |
| 1334 | show ?case by (clarsimp simp add: Cons nth_append) | |
| 1335 | qed | |
| 13114 | 1336 | |
| 31159 | 1337 | lemma Skolem_list_nth: | 
| 1338 | "(ALL i<k. EX x. P i x) = (EX xs. size xs = k & (ALL i<k. P i (xs!i)))" | |
| 1339 | (is "_ = (EX xs. ?P k xs)") | |
| 1340 | proof(induct k) | |
| 1341 | case 0 show ?case by simp | |
| 1342 | next | |
| 1343 | case (Suc k) | |
| 1344 | show ?case (is "?L = ?R" is "_ = (EX xs. ?P' xs)") | |
| 1345 | proof | |
| 1346 | assume "?R" thus "?L" using Suc by auto | |
| 1347 | next | |
| 1348 | assume "?L" | |
| 1349 | with Suc obtain x xs where "?P k xs & P k x" by (metis less_Suc_eq) | |
| 1350 | hence "?P'(xs@[x])" by(simp add:nth_append less_Suc_eq) | |
| 1351 | thus "?R" .. | |
| 1352 | qed | |
| 1353 | qed | |
| 1354 | ||
| 1355 | ||
| 15392 | 1356 | subsubsection {* @{text list_update} *}
 | 
| 13114 | 1357 | |
| 24526 | 1358 | lemma length_list_update [simp]: "length(xs[i:=x]) = length xs" | 
| 1359 | by (induct xs arbitrary: i) (auto split: nat.split) | |
| 13114 | 1360 | |
| 1361 | lemma nth_list_update: | |
| 24526 | 1362 | "i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)" | 
| 1363 | by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split) | |
| 13114 | 1364 | |
| 13142 | 1365 | lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x" | 
| 13145 | 1366 | by (simp add: nth_list_update) | 
| 13114 | 1367 | |
| 24526 | 1368 | lemma nth_list_update_neq [simp]: "i \<noteq> j ==> xs[i:=x]!j = xs!j" | 
| 1369 | by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split) | |
| 13114 | 1370 | |
| 24526 | 1371 | lemma list_update_id[simp]: "xs[i := xs!i] = xs" | 
| 1372 | by (induct xs arbitrary: i) (simp_all split:nat.splits) | |
| 1373 | ||
| 1374 | lemma list_update_beyond[simp]: "length xs \<le> i \<Longrightarrow> xs[i:=x] = xs" | |
| 1375 | apply (induct xs arbitrary: i) | |
| 17501 | 1376 | apply simp | 
| 1377 | apply (case_tac i) | |
| 1378 | apply simp_all | |
| 1379 | done | |
| 1380 | ||
| 31077 | 1381 | lemma list_update_nonempty[simp]: "xs[k:=x] = [] \<longleftrightarrow> xs=[]" | 
| 1382 | by(metis length_0_conv length_list_update) | |
| 1383 | ||
| 13114 | 1384 | lemma list_update_same_conv: | 
| 24526 | 1385 | "i < length xs ==> (xs[i := x] = xs) = (xs!i = x)" | 
| 1386 | by (induct xs arbitrary: i) (auto split: nat.split) | |
| 13114 | 1387 | |
| 14187 | 1388 | lemma list_update_append1: | 
| 24526 | 1389 | "i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys" | 
| 1390 | apply (induct xs arbitrary: i, simp) | |
| 14187 | 1391 | apply(simp split:nat.split) | 
| 1392 | done | |
| 1393 | ||
| 15868 | 1394 | lemma list_update_append: | 
| 24526 | 1395 | "(xs @ ys) [n:= x] = | 
| 15868 | 1396 | (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))" | 
| 24526 | 1397 | by (induct xs arbitrary: n) (auto split:nat.splits) | 
| 15868 | 1398 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1399 | lemma list_update_length [simp]: | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1400 | "(xs @ x # ys)[length xs := y] = (xs @ y # ys)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1401 | by (induct xs, auto) | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1402 | |
| 31264 | 1403 | lemma map_update: "map f (xs[k:= y]) = (map f xs)[k := f y]" | 
| 1404 | by(induct xs arbitrary: k)(auto split:nat.splits) | |
| 1405 | ||
| 1406 | lemma rev_update: | |
| 1407 | "k < length xs \<Longrightarrow> rev (xs[k:= y]) = (rev xs)[length xs - k - 1 := y]" | |
| 1408 | by (induct xs arbitrary: k) (auto simp: list_update_append split:nat.splits) | |
| 1409 | ||
| 13114 | 1410 | lemma update_zip: | 
| 31080 | 1411 | "(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])" | 
| 24526 | 1412 | by (induct ys arbitrary: i xy xs) (auto, case_tac xs, auto split: nat.split) | 
| 1413 | ||
| 1414 | lemma set_update_subset_insert: "set(xs[i:=x]) <= insert x (set xs)" | |
| 1415 | by (induct xs arbitrary: i) (auto split: nat.split) | |
| 13114 | 1416 | |
| 1417 | lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A" | |
| 13145 | 1418 | by (blast dest!: set_update_subset_insert [THEN subsetD]) | 
| 13114 | 1419 | |
| 24526 | 1420 | lemma set_update_memI: "n < length xs \<Longrightarrow> x \<in> set (xs[n := x])" | 
| 1421 | by (induct xs arbitrary: n) (auto split:nat.splits) | |
| 15868 | 1422 | |
| 31077 | 1423 | lemma list_update_overwrite[simp]: | 
| 24796 | 1424 | "xs [i := x, i := y] = xs [i := y]" | 
| 31077 | 1425 | apply (induct xs arbitrary: i) apply simp | 
| 1426 | apply (case_tac i, simp_all) | |
| 24796 | 1427 | done | 
| 1428 | ||
| 1429 | lemma list_update_swap: | |
| 1430 | "i \<noteq> i' \<Longrightarrow> xs [i := x, i' := x'] = xs [i' := x', i := x]" | |
| 1431 | apply (induct xs arbitrary: i i') | |
| 1432 | apply simp | |
| 1433 | apply (case_tac i, case_tac i') | |
| 1434 | apply auto | |
| 1435 | apply (case_tac i') | |
| 1436 | apply auto | |
| 1437 | done | |
| 1438 | ||
| 29827 | 1439 | lemma list_update_code [code]: | 
| 1440 | "[][i := y] = []" | |
| 1441 | "(x # xs)[0 := y] = y # xs" | |
| 1442 | "(x # xs)[Suc i := y] = x # xs[i := y]" | |
| 1443 | by simp_all | |
| 1444 | ||
| 13114 | 1445 | |
| 15392 | 1446 | subsubsection {* @{text last} and @{text butlast} *}
 | 
| 13114 | 1447 | |
| 13142 | 1448 | lemma last_snoc [simp]: "last (xs @ [x]) = x" | 
| 13145 | 1449 | by (induct xs) auto | 
| 13114 | 1450 | |
| 13142 | 1451 | lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs" | 
| 13145 | 1452 | by (induct xs) auto | 
| 13114 | 1453 | |
| 14302 | 1454 | lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x" | 
| 1455 | by(simp add:last.simps) | |
| 1456 | ||
| 1457 | lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs" | |
| 1458 | by(simp add:last.simps) | |
| 1459 | ||
| 1460 | lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)" | |
| 1461 | by (induct xs) (auto) | |
| 1462 | ||
| 1463 | lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs" | |
| 1464 | by(simp add:last_append) | |
| 1465 | ||
| 1466 | lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys" | |
| 1467 | by(simp add:last_append) | |
| 1468 | ||
| 17762 | 1469 | lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs" | 
| 1470 | by(rule rev_exhaust[of xs]) simp_all | |
| 1471 | ||
| 1472 | lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs" | |
| 1473 | by(cases xs) simp_all | |
| 1474 | ||
| 17765 | 1475 | lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as" | 
| 1476 | by (induct as) auto | |
| 17762 | 1477 | |
| 13142 | 1478 | lemma length_butlast [simp]: "length (butlast xs) = length xs - 1" | 
| 13145 | 1479 | by (induct xs rule: rev_induct) auto | 
| 13114 | 1480 | |
| 1481 | lemma butlast_append: | |
| 24526 | 1482 | "butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)" | 
| 1483 | by (induct xs arbitrary: ys) auto | |
| 13114 | 1484 | |
| 13142 | 1485 | lemma append_butlast_last_id [simp]: | 
| 13145 | 1486 | "xs \<noteq> [] ==> butlast xs @ [last xs] = xs" | 
| 1487 | by (induct xs) auto | |
| 13114 | 1488 | |
| 13142 | 1489 | lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs" | 
| 13145 | 1490 | by (induct xs) (auto split: split_if_asm) | 
| 13114 | 1491 | |
| 1492 | lemma in_set_butlast_appendI: | |
| 13145 | 1493 | "x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))" | 
| 1494 | by (auto dest: in_set_butlastD simp add: butlast_append) | |
| 13114 | 1495 | |
| 24526 | 1496 | lemma last_drop[simp]: "n < length xs \<Longrightarrow> last (drop n xs) = last xs" | 
| 1497 | apply (induct xs arbitrary: n) | |
| 17501 | 1498 | apply simp | 
| 1499 | apply (auto split:nat.split) | |
| 1500 | done | |
| 1501 | ||
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1502 | lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)" | 
| 17589 | 1503 | by(induct xs)(auto simp:neq_Nil_conv) | 
| 1504 | ||
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1505 | lemma butlast_conv_take: "butlast xs = take (length xs - 1) xs" | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1506 | by (induct xs, simp, case_tac xs, simp_all) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1507 | |
| 31077 | 1508 | lemma last_list_update: | 
| 1509 | "xs \<noteq> [] \<Longrightarrow> last(xs[k:=x]) = (if k = size xs - 1 then x else last xs)" | |
| 1510 | by (auto simp: last_conv_nth) | |
| 1511 | ||
| 1512 | lemma butlast_list_update: | |
| 1513 | "butlast(xs[k:=x]) = | |
| 1514 | (if k = size xs - 1 then butlast xs else (butlast xs)[k:=x])" | |
| 1515 | apply(cases xs rule:rev_cases) | |
| 1516 | apply simp | |
| 1517 | apply(simp add:list_update_append split:nat.splits) | |
| 1518 | done | |
| 1519 | ||
| 24796 | 1520 | |
| 15392 | 1521 | subsubsection {* @{text take} and @{text drop} *}
 | 
| 13114 | 1522 | |
| 13142 | 1523 | lemma take_0 [simp]: "take 0 xs = []" | 
| 13145 | 1524 | by (induct xs) auto | 
| 13114 | 1525 | |
| 13142 | 1526 | lemma drop_0 [simp]: "drop 0 xs = xs" | 
| 13145 | 1527 | by (induct xs) auto | 
| 13114 | 1528 | |
| 13142 | 1529 | lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs" | 
| 13145 | 1530 | by simp | 
| 13114 | 1531 | |
| 13142 | 1532 | lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs" | 
| 13145 | 1533 | by simp | 
| 13114 | 1534 | |
| 13142 | 1535 | declare take_Cons [simp del] and drop_Cons [simp del] | 
| 13114 | 1536 | |
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1537 | lemma take_1_Cons [simp]: "take 1 (x # xs) = [x]" | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1538 | unfolding One_nat_def by simp | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1539 | |
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1540 | lemma drop_1_Cons [simp]: "drop 1 (x # xs) = xs" | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1541 | unfolding One_nat_def by simp | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1542 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1543 | lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1544 | by(clarsimp simp add:neq_Nil_conv) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1545 | |
| 14187 | 1546 | lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)" | 
| 1547 | by(cases xs, simp_all) | |
| 1548 | ||
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1549 | lemma take_tl: "take n (tl xs) = tl (take (Suc n) xs)" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1550 | by (induct xs arbitrary: n) simp_all | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1551 | |
| 24526 | 1552 | lemma drop_tl: "drop n (tl xs) = tl(drop n xs)" | 
| 1553 | by(induct xs arbitrary: n, simp_all add:drop_Cons drop_Suc split:nat.split) | |
| 1554 | ||
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1555 | lemma tl_take: "tl (take n xs) = take (n - 1) (tl xs)" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1556 | by (cases n, simp, cases xs, auto) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1557 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1558 | lemma tl_drop: "tl (drop n xs) = drop n (tl xs)" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1559 | by (simp only: drop_tl) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1560 | |
| 24526 | 1561 | lemma nth_via_drop: "drop n xs = y#ys \<Longrightarrow> xs!n = y" | 
| 1562 | apply (induct xs arbitrary: n, simp) | |
| 14187 | 1563 | apply(simp add:drop_Cons nth_Cons split:nat.splits) | 
| 1564 | done | |
| 1565 | ||
| 13913 | 1566 | lemma take_Suc_conv_app_nth: | 
| 24526 | 1567 | "i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]" | 
| 1568 | apply (induct xs arbitrary: i, simp) | |
| 14208 | 1569 | apply (case_tac i, auto) | 
| 13913 | 1570 | done | 
| 1571 | ||
| 14591 | 1572 | lemma drop_Suc_conv_tl: | 
| 24526 | 1573 | "i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs" | 
| 1574 | apply (induct xs arbitrary: i, simp) | |
| 14591 | 1575 | apply (case_tac i, auto) | 
| 1576 | done | |
| 1577 | ||
| 24526 | 1578 | lemma length_take [simp]: "length (take n xs) = min (length xs) n" | 
| 1579 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1580 | ||
| 1581 | lemma length_drop [simp]: "length (drop n xs) = (length xs - n)" | |
| 1582 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1583 | ||
| 1584 | lemma take_all [simp]: "length xs <= n ==> take n xs = xs" | |
| 1585 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1586 | ||
| 1587 | lemma drop_all [simp]: "length xs <= n ==> drop n xs = []" | |
| 1588 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 13114 | 1589 | |
| 13142 | 1590 | lemma take_append [simp]: | 
| 24526 | 1591 | "take n (xs @ ys) = (take n xs @ take (n - length xs) ys)" | 
| 1592 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 13114 | 1593 | |
| 13142 | 1594 | lemma drop_append [simp]: | 
| 24526 | 1595 | "drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys" | 
| 1596 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1597 | ||
| 1598 | lemma take_take [simp]: "take n (take m xs) = take (min n m) xs" | |
| 1599 | apply (induct m arbitrary: xs n, auto) | |
| 14208 | 1600 | apply (case_tac xs, auto) | 
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
15176diff
changeset | 1601 | apply (case_tac n, auto) | 
| 13145 | 1602 | done | 
| 13114 | 1603 | |
| 24526 | 1604 | lemma drop_drop [simp]: "drop n (drop m xs) = drop (n + m) xs" | 
| 1605 | apply (induct m arbitrary: xs, auto) | |
| 14208 | 1606 | apply (case_tac xs, auto) | 
| 13145 | 1607 | done | 
| 13114 | 1608 | |
| 24526 | 1609 | lemma take_drop: "take n (drop m xs) = drop m (take (n + m) xs)" | 
| 1610 | apply (induct m arbitrary: xs n, auto) | |
| 14208 | 1611 | apply (case_tac xs, auto) | 
| 13145 | 1612 | done | 
| 13114 | 1613 | |
| 24526 | 1614 | lemma drop_take: "drop n (take m xs) = take (m-n) (drop n xs)" | 
| 1615 | apply(induct xs arbitrary: m n) | |
| 14802 | 1616 | apply simp | 
| 1617 | apply(simp add: take_Cons drop_Cons split:nat.split) | |
| 1618 | done | |
| 1619 | ||
| 24526 | 1620 | lemma append_take_drop_id [simp]: "take n xs @ drop n xs = xs" | 
| 1621 | apply (induct n arbitrary: xs, auto) | |
| 14208 | 1622 | apply (case_tac xs, auto) | 
| 13145 | 1623 | done | 
| 13114 | 1624 | |
| 24526 | 1625 | lemma take_eq_Nil[simp]: "(take n xs = []) = (n = 0 \<or> xs = [])" | 
| 1626 | apply(induct xs arbitrary: n) | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1627 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1628 | apply(simp add:take_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1629 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1630 | |
| 24526 | 1631 | lemma drop_eq_Nil[simp]: "(drop n xs = []) = (length xs <= n)" | 
| 1632 | apply(induct xs arbitrary: n) | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1633 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1634 | apply(simp add:drop_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1635 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1636 | |
| 24526 | 1637 | lemma take_map: "take n (map f xs) = map f (take n xs)" | 
| 1638 | apply (induct n arbitrary: xs, auto) | |
| 14208 | 1639 | apply (case_tac xs, auto) | 
| 13145 | 1640 | done | 
| 13114 | 1641 | |
| 24526 | 1642 | lemma drop_map: "drop n (map f xs) = map f (drop n xs)" | 
| 1643 | apply (induct n arbitrary: xs, auto) | |
| 14208 | 1644 | apply (case_tac xs, auto) | 
| 13145 | 1645 | done | 
| 13114 | 1646 | |
| 24526 | 1647 | lemma rev_take: "rev (take i xs) = drop (length xs - i) (rev xs)" | 
| 1648 | apply (induct xs arbitrary: i, auto) | |
| 14208 | 1649 | apply (case_tac i, auto) | 
| 13145 | 1650 | done | 
| 13114 | 1651 | |
| 24526 | 1652 | lemma rev_drop: "rev (drop i xs) = take (length xs - i) (rev xs)" | 
| 1653 | apply (induct xs arbitrary: i, auto) | |
| 14208 | 1654 | apply (case_tac i, auto) | 
| 13145 | 1655 | done | 
| 13114 | 1656 | |
| 24526 | 1657 | lemma nth_take [simp]: "i < n ==> (take n xs)!i = xs!i" | 
| 1658 | apply (induct xs arbitrary: i n, auto) | |
| 14208 | 1659 | apply (case_tac n, blast) | 
| 1660 | apply (case_tac i, auto) | |
| 13145 | 1661 | done | 
| 13114 | 1662 | |
| 13142 | 1663 | lemma nth_drop [simp]: | 
| 24526 | 1664 | "n + i <= length xs ==> (drop n xs)!i = xs!(n + i)" | 
| 1665 | apply (induct n arbitrary: xs i, auto) | |
| 14208 | 1666 | apply (case_tac xs, auto) | 
| 13145 | 1667 | done | 
| 3507 | 1668 | |
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1669 | lemma butlast_take: | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1670 | "n <= length xs ==> butlast (take n xs) = take (n - 1) xs" | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1671 | by (simp add: butlast_conv_take min_max.inf_absorb1 min_max.inf_absorb2) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1672 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1673 | lemma butlast_drop: "butlast (drop n xs) = drop n (butlast xs)" | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1674 | by (simp add: butlast_conv_take drop_take add_ac) | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1675 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1676 | lemma take_butlast: "n < length xs ==> take n (butlast xs) = take n xs" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1677 | by (simp add: butlast_conv_take min_max.inf_absorb1) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1678 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1679 | lemma drop_butlast: "drop n (butlast xs) = butlast (drop n xs)" | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1680 | by (simp add: butlast_conv_take drop_take add_ac) | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1681 | |
| 18423 | 1682 | lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n" | 
| 1683 | by(simp add: hd_conv_nth) | |
| 1684 | ||
| 35248 | 1685 | lemma set_take_subset_set_take: | 
| 1686 | "m <= n \<Longrightarrow> set(take m xs) <= set(take n xs)" | |
| 1687 | by(induct xs arbitrary: m n)(auto simp:take_Cons split:nat.split) | |
| 1688 | ||
| 24526 | 1689 | lemma set_take_subset: "set(take n xs) \<subseteq> set xs" | 
| 1690 | by(induct xs arbitrary: n)(auto simp:take_Cons split:nat.split) | |
| 1691 | ||
| 1692 | lemma set_drop_subset: "set(drop n xs) \<subseteq> set xs" | |
| 1693 | by(induct xs arbitrary: n)(auto simp:drop_Cons split:nat.split) | |
| 14025 | 1694 | |
| 35248 | 1695 | lemma set_drop_subset_set_drop: | 
| 1696 | "m >= n \<Longrightarrow> set(drop m xs) <= set(drop n xs)" | |
| 1697 | apply(induct xs arbitrary: m n) | |
| 1698 | apply(auto simp:drop_Cons split:nat.split) | |
| 1699 | apply (metis set_drop_subset subset_iff) | |
| 1700 | done | |
| 1701 | ||
| 14187 | 1702 | lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs" | 
| 1703 | using set_take_subset by fast | |
| 1704 | ||
| 1705 | lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs" | |
| 1706 | using set_drop_subset by fast | |
| 1707 | ||
| 13114 | 1708 | lemma append_eq_conv_conj: | 
| 24526 | 1709 | "(xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)" | 
| 1710 | apply (induct xs arbitrary: zs, simp, clarsimp) | |
| 14208 | 1711 | apply (case_tac zs, auto) | 
| 13145 | 1712 | done | 
| 13142 | 1713 | |
| 24526 | 1714 | lemma take_add: | 
| 1715 | "i+j \<le> length(xs) \<Longrightarrow> take (i+j) xs = take i xs @ take j (drop i xs)" | |
| 1716 | apply (induct xs arbitrary: i, auto) | |
| 1717 | apply (case_tac i, simp_all) | |
| 14050 | 1718 | done | 
| 1719 | ||
| 14300 | 1720 | lemma append_eq_append_conv_if: | 
| 24526 | 1721 | "(xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) = | 
| 14300 | 1722 | (if size xs\<^isub>1 \<le> size ys\<^isub>1 | 
| 1723 | then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2 | |
| 1724 | else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)" | |
| 24526 | 1725 | apply(induct xs\<^isub>1 arbitrary: ys\<^isub>1) | 
| 14300 | 1726 | apply simp | 
| 1727 | apply(case_tac ys\<^isub>1) | |
| 1728 | apply simp_all | |
| 1729 | done | |
| 1730 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1731 | lemma take_hd_drop: | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30008diff
changeset | 1732 | "n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (Suc n) xs" | 
| 24526 | 1733 | apply(induct xs arbitrary: n) | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1734 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1735 | apply(simp add:drop_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1736 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1737 | |
| 17501 | 1738 | lemma id_take_nth_drop: | 
| 1739 | "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" | |
| 1740 | proof - | |
| 1741 | assume si: "i < length xs" | |
| 1742 | hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto | |
| 1743 | moreover | |
| 1744 | from si have "take (Suc i) xs = take i xs @ [xs!i]" | |
| 1745 | apply (rule_tac take_Suc_conv_app_nth) by arith | |
| 1746 | ultimately show ?thesis by auto | |
| 1747 | qed | |
| 1748 | ||
| 1749 | lemma upd_conv_take_nth_drop: | |
| 1750 | "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs" | |
| 1751 | proof - | |
| 1752 | assume i: "i < length xs" | |
| 1753 | have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]" | |
| 1754 | by(rule arg_cong[OF id_take_nth_drop[OF i]]) | |
| 1755 | also have "\<dots> = take i xs @ a # drop (Suc i) xs" | |
| 1756 | using i by (simp add: list_update_append) | |
| 1757 | finally show ?thesis . | |
| 1758 | qed | |
| 1759 | ||
| 24796 | 1760 | lemma nth_drop': | 
| 1761 | "i < length xs \<Longrightarrow> xs ! i # drop (Suc i) xs = drop i xs" | |
| 1762 | apply (induct i arbitrary: xs) | |
| 1763 | apply (simp add: neq_Nil_conv) | |
| 1764 | apply (erule exE)+ | |
| 1765 | apply simp | |
| 1766 | apply (case_tac xs) | |
| 1767 | apply simp_all | |
| 1768 | done | |
| 1769 | ||
| 13114 | 1770 | |
| 15392 | 1771 | subsubsection {* @{text takeWhile} and @{text dropWhile} *}
 | 
| 13114 | 1772 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1773 | lemma length_takeWhile_le: "length (takeWhile P xs) \<le> length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1774 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1775 | |
| 13142 | 1776 | lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs" | 
| 13145 | 1777 | by (induct xs) auto | 
| 13114 | 1778 | |
| 13142 | 1779 | lemma takeWhile_append1 [simp]: | 
| 13145 | 1780 | "[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs" | 
| 1781 | by (induct xs) auto | |
| 13114 | 1782 | |
| 13142 | 1783 | lemma takeWhile_append2 [simp]: | 
| 13145 | 1784 | "(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys" | 
| 1785 | by (induct xs) auto | |
| 13114 | 1786 | |
| 13142 | 1787 | lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs" | 
| 13145 | 1788 | by (induct xs) auto | 
| 13114 | 1789 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1790 | lemma takeWhile_nth: "j < length (takeWhile P xs) \<Longrightarrow> takeWhile P xs ! j = xs ! j" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1791 | apply (subst (3) takeWhile_dropWhile_id[symmetric]) unfolding nth_append by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1792 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1793 | lemma dropWhile_nth: "j < length (dropWhile P xs) \<Longrightarrow> dropWhile P xs ! j = xs ! (j + length (takeWhile P xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1794 | apply (subst (3) takeWhile_dropWhile_id[symmetric]) unfolding nth_append by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1795 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1796 | lemma length_dropWhile_le: "length (dropWhile P xs) \<le> length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1797 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1798 | |
| 13142 | 1799 | lemma dropWhile_append1 [simp]: | 
| 13145 | 1800 | "[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys" | 
| 1801 | by (induct xs) auto | |
| 13114 | 1802 | |
| 13142 | 1803 | lemma dropWhile_append2 [simp]: | 
| 13145 | 1804 | "(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys" | 
| 1805 | by (induct xs) auto | |
| 13114 | 1806 | |
| 23971 
e6d505d5b03d
renamed lemma "set_take_whileD" to "set_takeWhileD"
 krauss parents: 
23740diff
changeset | 1807 | lemma set_takeWhileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x" | 
| 13145 | 1808 | by (induct xs) (auto split: split_if_asm) | 
| 13114 | 1809 | |
| 13913 | 1810 | lemma takeWhile_eq_all_conv[simp]: | 
| 1811 | "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)" | |
| 1812 | by(induct xs, auto) | |
| 1813 | ||
| 1814 | lemma dropWhile_eq_Nil_conv[simp]: | |
| 1815 | "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)" | |
| 1816 | by(induct xs, auto) | |
| 1817 | ||
| 1818 | lemma dropWhile_eq_Cons_conv: | |
| 1819 | "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)" | |
| 1820 | by(induct xs, auto) | |
| 1821 | ||
| 31077 | 1822 | lemma distinct_takeWhile[simp]: "distinct xs ==> distinct (takeWhile P xs)" | 
| 1823 | by (induct xs) (auto dest: set_takeWhileD) | |
| 1824 | ||
| 1825 | lemma distinct_dropWhile[simp]: "distinct xs ==> distinct (dropWhile P xs)" | |
| 1826 | by (induct xs) auto | |
| 1827 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1828 | lemma takeWhile_map: "takeWhile P (map f xs) = map f (takeWhile (P \<circ> f) xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1829 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1830 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1831 | lemma dropWhile_map: "dropWhile P (map f xs) = map f (dropWhile (P \<circ> f) xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1832 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1833 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1834 | lemma takeWhile_eq_take: "takeWhile P xs = take (length (takeWhile P xs)) xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1835 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1836 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1837 | lemma dropWhile_eq_drop: "dropWhile P xs = drop (length (takeWhile P xs)) xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1838 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1839 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1840 | lemma hd_dropWhile: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1841 | "dropWhile P xs \<noteq> [] \<Longrightarrow> \<not> P (hd (dropWhile P xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1842 | using assms by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1843 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1844 | lemma takeWhile_eq_filter: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1845 | assumes "\<And> x. x \<in> set (dropWhile P xs) \<Longrightarrow> \<not> P x" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1846 | shows "takeWhile P xs = filter P xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1847 | proof - | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1848 | have A: "filter P xs = filter P (takeWhile P xs @ dropWhile P xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1849 | by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1850 | have B: "filter P (dropWhile P xs) = []" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1851 | unfolding filter_empty_conv using assms by blast | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1852 | have "filter P xs = takeWhile P xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1853 | unfolding A filter_append B | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1854 | by (auto simp add: filter_id_conv dest: set_takeWhileD) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1855 | thus ?thesis .. | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1856 | qed | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1857 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1858 | lemma takeWhile_eq_take_P_nth: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1859 | "\<lbrakk> \<And> i. \<lbrakk> i < n ; i < length xs \<rbrakk> \<Longrightarrow> P (xs ! i) ; n < length xs \<Longrightarrow> \<not> P (xs ! n) \<rbrakk> \<Longrightarrow> | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1860 | takeWhile P xs = take n xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1861 | proof (induct xs arbitrary: n) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1862 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1863 | thus ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1864 | proof (cases n) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1865 | case (Suc n') note this[simp] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1866 | have "P x" using Cons.prems(1)[of 0] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1867 | moreover have "takeWhile P xs = take n' xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1868 | proof (rule Cons.hyps) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1869 | case goal1 thus "P (xs ! i)" using Cons.prems(1)[of "Suc i"] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1870 | next case goal2 thus ?case using Cons by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1871 | qed | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1872 | ultimately show ?thesis by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1873 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1874 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1875 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1876 | lemma nth_length_takeWhile: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1877 | "length (takeWhile P xs) < length xs \<Longrightarrow> \<not> P (xs ! length (takeWhile P xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1878 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1879 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1880 | lemma length_takeWhile_less_P_nth: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1881 | assumes all: "\<And> i. i < j \<Longrightarrow> P (xs ! i)" and "j \<le> length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1882 | shows "j \<le> length (takeWhile P xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1883 | proof (rule classical) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1884 | assume "\<not> ?thesis" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1885 | hence "length (takeWhile P xs) < length xs" using assms by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1886 | thus ?thesis using all `\<not> ?thesis` nth_length_takeWhile[of P xs] by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1887 | qed | 
| 31077 | 1888 | |
| 17501 | 1889 | text{* The following two lemmmas could be generalized to an arbitrary
 | 
| 1890 | property. *} | |
| 1891 | ||
| 1892 | lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow> | |
| 1893 | takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))" | |
| 1894 | by(induct xs) (auto simp: takeWhile_tail[where l="[]"]) | |
| 1895 | ||
| 1896 | lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow> | |
| 1897 | dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)" | |
| 1898 | apply(induct xs) | |
| 1899 | apply simp | |
| 1900 | apply auto | |
| 1901 | apply(subst dropWhile_append2) | |
| 1902 | apply auto | |
| 1903 | done | |
| 1904 | ||
| 18423 | 1905 | lemma takeWhile_not_last: | 
| 1906 | "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs" | |
| 1907 | apply(induct xs) | |
| 1908 | apply simp | |
| 1909 | apply(case_tac xs) | |
| 1910 | apply(auto) | |
| 1911 | done | |
| 1912 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1913 | lemma takeWhile_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1914 | "[| l = k; !!x. x : set l ==> P x = Q x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1915 | ==> takeWhile P l = takeWhile Q k" | 
| 24349 | 1916 | by (induct k arbitrary: l) (simp_all) | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1917 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1918 | lemma dropWhile_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1919 | "[| l = k; !!x. x : set l ==> P x = Q x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1920 | ==> dropWhile P l = dropWhile Q k" | 
| 24349 | 1921 | by (induct k arbitrary: l, simp_all) | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1922 | |
| 13114 | 1923 | |
| 15392 | 1924 | subsubsection {* @{text zip} *}
 | 
| 13114 | 1925 | |
| 13142 | 1926 | lemma zip_Nil [simp]: "zip [] ys = []" | 
| 13145 | 1927 | by (induct ys) auto | 
| 13114 | 1928 | |
| 13142 | 1929 | lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys" | 
| 13145 | 1930 | by simp | 
| 13114 | 1931 | |
| 13142 | 1932 | declare zip_Cons [simp del] | 
| 13114 | 1933 | |
| 15281 | 1934 | lemma zip_Cons1: | 
| 1935 | "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)" | |
| 1936 | by(auto split:list.split) | |
| 1937 | ||
| 13142 | 1938 | lemma length_zip [simp]: | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 1939 | "length (zip xs ys) = min (length xs) (length ys)" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 1940 | by (induct xs ys rule:list_induct2') auto | 
| 13114 | 1941 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1942 | lemma zip_obtain_same_length: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1943 | assumes "\<And>zs ws n. length zs = length ws \<Longrightarrow> n = min (length xs) (length ys) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1944 | \<Longrightarrow> zs = take n xs \<Longrightarrow> ws = take n ys \<Longrightarrow> P (zip zs ws)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1945 | shows "P (zip xs ys)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1946 | proof - | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1947 | let ?n = "min (length xs) (length ys)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1948 | have "P (zip (take ?n xs) (take ?n ys))" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1949 | by (rule assms) simp_all | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1950 | moreover have "zip xs ys = zip (take ?n xs) (take ?n ys)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1951 | proof (induct xs arbitrary: ys) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1952 | case Nil then show ?case by simp | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1953 | next | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1954 | case (Cons x xs) then show ?case by (cases ys) simp_all | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1955 | qed | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1956 | ultimately show ?thesis by simp | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1957 | qed | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1958 | |
| 13114 | 1959 | lemma zip_append1: | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 1960 | "zip (xs @ ys) zs = | 
| 13145 | 1961 | zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)" | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 1962 | by (induct xs zs rule:list_induct2') auto | 
| 13114 | 1963 | |
| 1964 | lemma zip_append2: | |
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 1965 | "zip xs (ys @ zs) = | 
| 13145 | 1966 | zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs" | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 1967 | by (induct xs ys rule:list_induct2') auto | 
| 13114 | 1968 | |
| 13142 | 1969 | lemma zip_append [simp]: | 
| 1970 | "[| length xs = length us; length ys = length vs |] ==> | |
| 13145 | 1971 | zip (xs@ys) (us@vs) = zip xs us @ zip ys vs" | 
| 1972 | by (simp add: zip_append1) | |
| 13114 | 1973 | |
| 1974 | lemma zip_rev: | |
| 14247 | 1975 | "length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)" | 
| 1976 | by (induct rule:list_induct2, simp_all) | |
| 13114 | 1977 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1978 | lemma zip_map_map: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1979 | "zip (map f xs) (map g ys) = map (\<lambda> (x, y). (f x, g y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1980 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1981 | case (Cons x xs) note Cons_x_xs = Cons.hyps | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1982 | show ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1983 | proof (cases ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1984 | case (Cons y ys') | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1985 | show ?thesis unfolding Cons using Cons_x_xs by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1986 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1987 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1988 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1989 | lemma zip_map1: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1990 | "zip (map f xs) ys = map (\<lambda>(x, y). (f x, y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1991 | using zip_map_map[of f xs "\<lambda>x. x" ys] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1992 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1993 | lemma zip_map2: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1994 | "zip xs (map f ys) = map (\<lambda>(x, y). (x, f y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1995 | using zip_map_map[of "\<lambda>x. x" xs f ys] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1996 | |
| 23096 | 1997 | lemma map_zip_map: | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1998 | "map f (zip (map g xs) ys) = map (%(x,y). f(g x, y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1999 | unfolding zip_map1 by auto | 
| 23096 | 2000 | |
| 2001 | lemma map_zip_map2: | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2002 | "map f (zip xs (map g ys)) = map (%(x,y). f(x, g y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2003 | unfolding zip_map2 by auto | 
| 23096 | 2004 | |
| 31080 | 2005 | text{* Courtesy of Andreas Lochbihler: *}
 | 
| 2006 | lemma zip_same_conv_map: "zip xs xs = map (\<lambda>x. (x, x)) xs" | |
| 2007 | by(induct xs) auto | |
| 2008 | ||
| 13142 | 2009 | lemma nth_zip [simp]: | 
| 24526 | 2010 | "[| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)" | 
| 2011 | apply (induct ys arbitrary: i xs, simp) | |
| 13145 | 2012 | apply (case_tac xs) | 
| 2013 | apply (simp_all add: nth.simps split: nat.split) | |
| 2014 | done | |
| 13114 | 2015 | |
| 2016 | lemma set_zip: | |
| 13145 | 2017 | "set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
 | 
| 31080 | 2018 | by(simp add: set_conv_nth cong: rev_conj_cong) | 
| 13114 | 2019 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2020 | lemma zip_same: "((a,b) \<in> set (zip xs xs)) = (a \<in> set xs \<and> a = b)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2021 | by(induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2022 | |
| 13114 | 2023 | lemma zip_update: | 
| 31080 | 2024 | "zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]" | 
| 2025 | by(rule sym, simp add: update_zip) | |
| 13114 | 2026 | |
| 13142 | 2027 | lemma zip_replicate [simp]: | 
| 24526 | 2028 | "zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)" | 
| 2029 | apply (induct i arbitrary: j, auto) | |
| 14208 | 2030 | apply (case_tac j, auto) | 
| 13145 | 2031 | done | 
| 13114 | 2032 | |
| 19487 | 2033 | lemma take_zip: | 
| 24526 | 2034 | "take n (zip xs ys) = zip (take n xs) (take n ys)" | 
| 2035 | apply (induct n arbitrary: xs ys) | |
| 19487 | 2036 | apply simp | 
| 2037 | apply (case_tac xs, simp) | |
| 2038 | apply (case_tac ys, simp_all) | |
| 2039 | done | |
| 2040 | ||
| 2041 | lemma drop_zip: | |
| 24526 | 2042 | "drop n (zip xs ys) = zip (drop n xs) (drop n ys)" | 
| 2043 | apply (induct n arbitrary: xs ys) | |
| 19487 | 2044 | apply simp | 
| 2045 | apply (case_tac xs, simp) | |
| 2046 | apply (case_tac ys, simp_all) | |
| 2047 | done | |
| 2048 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2049 | lemma zip_takeWhile_fst: "zip (takeWhile P xs) ys = takeWhile (P \<circ> fst) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2050 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2051 | case (Cons x xs) thus ?case by (cases ys) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2052 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2053 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2054 | lemma zip_takeWhile_snd: "zip xs (takeWhile P ys) = takeWhile (P \<circ> snd) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2055 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2056 | case (Cons x xs) thus ?case by (cases ys) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2057 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2058 | |
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2059 | lemma set_zip_leftD: | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2060 | "(x,y)\<in> set (zip xs ys) \<Longrightarrow> x \<in> set xs" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2061 | by (induct xs ys rule:list_induct2') auto | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2062 | |
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2063 | lemma set_zip_rightD: | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2064 | "(x,y)\<in> set (zip xs ys) \<Longrightarrow> y \<in> set ys" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2065 | by (induct xs ys rule:list_induct2') auto | 
| 13142 | 2066 | |
| 23983 | 2067 | lemma in_set_zipE: | 
| 2068 | "(x,y) : set(zip xs ys) \<Longrightarrow> (\<lbrakk> x : set xs; y : set ys \<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R" | |
| 2069 | by(blast dest: set_zip_leftD set_zip_rightD) | |
| 2070 | ||
| 29829 | 2071 | lemma zip_map_fst_snd: | 
| 2072 | "zip (map fst zs) (map snd zs) = zs" | |
| 2073 | by (induct zs) simp_all | |
| 2074 | ||
| 2075 | lemma zip_eq_conv: | |
| 2076 | "length xs = length ys \<Longrightarrow> zip xs ys = zs \<longleftrightarrow> map fst zs = xs \<and> map snd zs = ys" | |
| 2077 | by (auto simp add: zip_map_fst_snd) | |
| 2078 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2079 | lemma distinct_zipI1: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2080 | "distinct xs \<Longrightarrow> distinct (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2081 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2082 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2083 | show ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2084 | proof (cases ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2085 | case (Cons y ys') | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2086 | have "(x, y) \<notin> set (zip xs ys')" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2087 | using Cons.prems by (auto simp: set_zip) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2088 | thus ?thesis | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2089 | unfolding Cons zip_Cons_Cons distinct.simps | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2090 | using Cons.hyps Cons.prems by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2091 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2092 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2093 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2094 | lemma distinct_zipI2: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2095 | "distinct xs \<Longrightarrow> distinct (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2096 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2097 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2098 | show ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2099 | proof (cases ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2100 | case (Cons y ys') | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2101 | have "(x, y) \<notin> set (zip xs ys')" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2102 | using Cons.prems by (auto simp: set_zip) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2103 | thus ?thesis | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2104 | unfolding Cons zip_Cons_Cons distinct.simps | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2105 | using Cons.hyps Cons.prems by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2106 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2107 | qed simp | 
| 29829 | 2108 | |
| 35115 | 2109 | |
| 15392 | 2110 | subsubsection {* @{text list_all2} *}
 | 
| 13114 | 2111 | |
| 14316 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 2112 | lemma list_all2_lengthD [intro?]: | 
| 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 2113 | "list_all2 P xs ys ==> length xs = length ys" | 
| 24349 | 2114 | by (simp add: list_all2_def) | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2115 | |
| 19787 | 2116 | lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])" | 
| 24349 | 2117 | by (simp add: list_all2_def) | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2118 | |
| 19787 | 2119 | lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])" | 
| 24349 | 2120 | by (simp add: list_all2_def) | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2121 | |
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2122 | lemma list_all2_Cons [iff, code]: | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2123 | "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)" | 
| 24349 | 2124 | by (auto simp add: list_all2_def) | 
| 13114 | 2125 | |
| 2126 | lemma list_all2_Cons1: | |
| 13145 | 2127 | "list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)" | 
| 2128 | by (cases ys) auto | |
| 13114 | 2129 | |
| 2130 | lemma list_all2_Cons2: | |
| 13145 | 2131 | "list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)" | 
| 2132 | by (cases xs) auto | |
| 13114 | 2133 | |
| 13142 | 2134 | lemma list_all2_rev [iff]: | 
| 13145 | 2135 | "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys" | 
| 2136 | by (simp add: list_all2_def zip_rev cong: conj_cong) | |
| 13114 | 2137 | |
| 13863 | 2138 | lemma list_all2_rev1: | 
| 2139 | "list_all2 P (rev xs) ys = list_all2 P xs (rev ys)" | |
| 2140 | by (subst list_all2_rev [symmetric]) simp | |
| 2141 | ||
| 13114 | 2142 | lemma list_all2_append1: | 
| 13145 | 2143 | "list_all2 P (xs @ ys) zs = | 
| 2144 | (EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and> | |
| 2145 | list_all2 P xs us \<and> list_all2 P ys vs)" | |
| 2146 | apply (simp add: list_all2_def zip_append1) | |
| 2147 | apply (rule iffI) | |
| 2148 | apply (rule_tac x = "take (length xs) zs" in exI) | |
| 2149 | apply (rule_tac x = "drop (length xs) zs" in exI) | |
| 14208 | 2150 | apply (force split: nat_diff_split simp add: min_def, clarify) | 
| 13145 | 2151 | apply (simp add: ball_Un) | 
| 2152 | done | |
| 13114 | 2153 | |
| 2154 | lemma list_all2_append2: | |
| 13145 | 2155 | "list_all2 P xs (ys @ zs) = | 
| 2156 | (EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and> | |
| 2157 | list_all2 P us ys \<and> list_all2 P vs zs)" | |
| 2158 | apply (simp add: list_all2_def zip_append2) | |
| 2159 | apply (rule iffI) | |
| 2160 | apply (rule_tac x = "take (length ys) xs" in exI) | |
| 2161 | apply (rule_tac x = "drop (length ys) xs" in exI) | |
| 14208 | 2162 | apply (force split: nat_diff_split simp add: min_def, clarify) | 
| 13145 | 2163 | apply (simp add: ball_Un) | 
| 2164 | done | |
| 13114 | 2165 | |
| 13863 | 2166 | lemma list_all2_append: | 
| 14247 | 2167 | "length xs = length ys \<Longrightarrow> | 
| 2168 | list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)" | |
| 2169 | by (induct rule:list_induct2, simp_all) | |
| 13863 | 2170 | |
| 2171 | lemma list_all2_appendI [intro?, trans]: | |
| 2172 | "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)" | |
| 24349 | 2173 | by (simp add: list_all2_append list_all2_lengthD) | 
| 13863 | 2174 | |
| 13114 | 2175 | lemma list_all2_conv_all_nth: | 
| 13145 | 2176 | "list_all2 P xs ys = | 
| 2177 | (length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))" | |
| 2178 | by (force simp add: list_all2_def set_zip) | |
| 13114 | 2179 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2180 | lemma list_all2_trans: | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2181 | assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2182 | shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2183 | (is "!!bs cs. PROP ?Q as bs cs") | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2184 | proof (induct as) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2185 | fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2186 | show "!!cs. PROP ?Q (x # xs) bs cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2187 | proof (induct bs) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2188 | fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2189 | show "PROP ?Q (x # xs) (y # ys) cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2190 | by (induct cs) (auto intro: tr I1 I2) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2191 | qed simp | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2192 | qed simp | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2193 | |
| 13863 | 2194 | lemma list_all2_all_nthI [intro?]: | 
| 2195 | "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b" | |
| 24349 | 2196 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2197 | |
| 14395 | 2198 | lemma list_all2I: | 
| 2199 | "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b" | |
| 24349 | 2200 | by (simp add: list_all2_def) | 
| 14395 | 2201 | |
| 14328 | 2202 | lemma list_all2_nthD: | 
| 13863 | 2203 | "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)" | 
| 24349 | 2204 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2205 | |
| 14302 | 2206 | lemma list_all2_nthD2: | 
| 2207 | "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)" | |
| 24349 | 2208 | by (frule list_all2_lengthD) (auto intro: list_all2_nthD) | 
| 14302 | 2209 | |
| 13863 | 2210 | lemma list_all2_map1: | 
| 2211 | "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs" | |
| 24349 | 2212 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2213 | |
| 2214 | lemma list_all2_map2: | |
| 2215 | "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs" | |
| 24349 | 2216 | by (auto simp add: list_all2_conv_all_nth) | 
| 13863 | 2217 | |
| 14316 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 2218 | lemma list_all2_refl [intro?]: | 
| 13863 | 2219 | "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs" | 
| 24349 | 2220 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2221 | |
| 2222 | lemma list_all2_update_cong: | |
| 2223 | "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])" | |
| 24349 | 2224 | by (simp add: list_all2_conv_all_nth nth_list_update) | 
| 13863 | 2225 | |
| 2226 | lemma list_all2_update_cong2: | |
| 2227 | "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])" | |
| 24349 | 2228 | by (simp add: list_all2_lengthD list_all2_update_cong) | 
| 13863 | 2229 | |
| 14302 | 2230 | lemma list_all2_takeI [simp,intro?]: | 
| 24526 | 2231 | "list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)" | 
| 2232 | apply (induct xs arbitrary: n ys) | |
| 2233 | apply simp | |
| 2234 | apply (clarsimp simp add: list_all2_Cons1) | |
| 2235 | apply (case_tac n) | |
| 2236 | apply auto | |
| 2237 | done | |
| 14302 | 2238 | |
| 2239 | lemma list_all2_dropI [simp,intro?]: | |
| 24526 | 2240 | "list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)" | 
| 2241 | apply (induct as arbitrary: n bs, simp) | |
| 2242 | apply (clarsimp simp add: list_all2_Cons1) | |
| 2243 | apply (case_tac n, simp, simp) | |
| 2244 | done | |
| 13863 | 2245 | |
| 14327 | 2246 | lemma list_all2_mono [intro?]: | 
| 24526 | 2247 | "list_all2 P xs ys \<Longrightarrow> (\<And>xs ys. P xs ys \<Longrightarrow> Q xs ys) \<Longrightarrow> list_all2 Q xs ys" | 
| 2248 | apply (induct xs arbitrary: ys, simp) | |
| 2249 | apply (case_tac ys, auto) | |
| 2250 | done | |
| 13863 | 2251 | |
| 22551 | 2252 | lemma list_all2_eq: | 
| 2253 | "xs = ys \<longleftrightarrow> list_all2 (op =) xs ys" | |
| 24349 | 2254 | by (induct xs ys rule: list_induct2') auto | 
| 22551 | 2255 | |
| 13142 | 2256 | |
| 15392 | 2257 | subsubsection {* @{text foldl} and @{text foldr} *}
 | 
| 13142 | 2258 | |
| 2259 | lemma foldl_append [simp]: | |
| 24526 | 2260 | "foldl f a (xs @ ys) = foldl f (foldl f a xs) ys" | 
| 2261 | by (induct xs arbitrary: a) auto | |
| 13142 | 2262 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2263 | lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2264 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2265 | |
| 23096 | 2266 | lemma foldr_map: "foldr g (map f xs) a = foldr (g o f) xs a" | 
| 2267 | by(induct xs) simp_all | |
| 2268 | ||
| 24449 | 2269 | text{* For efficient code generation: avoid intermediate list. *}
 | 
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 2270 | lemma foldl_map[code_unfold]: | 
| 24449 | 2271 | "foldl g a (map f xs) = foldl (%a x. g a (f x)) a xs" | 
| 23096 | 2272 | by(induct xs arbitrary:a) simp_all | 
| 2273 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2274 | lemma foldl_apply: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2275 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> f x \<circ> h = h \<circ> g x" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2276 | shows "foldl (\<lambda>s x. f x s) (h s) xs = h (foldl (\<lambda>s x. g x s) s xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2277 | by (rule sym, insert assms, induct xs arbitrary: s) (simp_all add: expand_fun_eq) | 
| 31930 | 2278 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 2279 | lemma foldl_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2280 | "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2281 | ==> foldl f a l = foldl g b k" | 
| 24349 | 2282 | by (induct k arbitrary: a b l) simp_all | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2283 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 2284 | lemma foldr_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2285 | "[| a = b; l = k; !!a x. x : set l ==> f x a = g x a |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2286 | ==> foldr f l a = foldr g k b" | 
| 24349 | 2287 | by (induct k arbitrary: a b l) simp_all | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2288 | |
| 35195 | 2289 | lemma foldl_fun_comm: | 
| 2290 | assumes "\<And>x y s. f (f s x) y = f (f s y) x" | |
| 2291 | shows "f (foldl f s xs) x = foldl f (f s x) xs" | |
| 2292 | by (induct xs arbitrary: s) | |
| 2293 | (simp_all add: assms) | |
| 2294 | ||
| 24449 | 2295 | lemma (in semigroup_add) foldl_assoc: | 
| 25062 | 2296 | shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)" | 
| 24449 | 2297 | by (induct zs arbitrary: y) (simp_all add:add_assoc) | 
| 2298 | ||
| 2299 | lemma (in monoid_add) foldl_absorb0: | |
| 25062 | 2300 | shows "x + (foldl op+ 0 zs) = foldl op+ x zs" | 
| 24449 | 2301 | by (induct zs) (simp_all add:foldl_assoc) | 
| 2302 | ||
| 35195 | 2303 | lemma foldl_rev: | 
| 2304 | assumes "\<And>x y s. f (f s x) y = f (f s y) x" | |
| 2305 | shows "foldl f s (rev xs) = foldl f s xs" | |
| 2306 | proof (induct xs arbitrary: s) | |
| 2307 | case Nil then show ?case by simp | |
| 2308 | next | |
| 2309 | case (Cons x xs) with assms show ?case by (simp add: foldl_fun_comm) | |
| 2310 | qed | |
| 2311 | ||
| 24449 | 2312 | |
| 23096 | 2313 | text{* The ``First Duality Theorem'' in Bird \& Wadler: *}
 | 
| 2314 | ||
| 2315 | lemma foldl_foldr1_lemma: | |
| 2316 | "foldl op + a xs = a + foldr op + xs (0\<Colon>'a::monoid_add)" | |
| 2317 | by (induct xs arbitrary: a) (auto simp:add_assoc) | |
| 2318 | ||
| 2319 | corollary foldl_foldr1: | |
| 2320 | "foldl op + 0 xs = foldr op + xs (0\<Colon>'a::monoid_add)" | |
| 2321 | by (simp add:foldl_foldr1_lemma) | |
| 2322 | ||
| 2323 | ||
| 2324 | text{* The ``Third Duality Theorem'' in Bird \& Wadler: *}
 | |
| 2325 | ||
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2326 | lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2327 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2328 | |
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2329 | lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2330 | by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"]) | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2331 | |
| 25062 | 2332 | lemma (in ab_semigroup_add) foldr_conv_foldl: "foldr op + xs a = foldl op + a xs" | 
| 24471 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2333 | by (induct xs, auto simp add: foldl_assoc add_commute) | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2334 | |
| 13142 | 2335 | text {*
 | 
| 13145 | 2336 | Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
 | 
| 2337 | difficult to use because it requires an additional transitivity step. | |
| 13142 | 2338 | *} | 
| 2339 | ||
| 24526 | 2340 | lemma start_le_sum: "(m::nat) <= n ==> m <= foldl (op +) n ns" | 
| 2341 | by (induct ns arbitrary: n) auto | |
| 2342 | ||
| 2343 | lemma elem_le_sum: "(n::nat) : set ns ==> n <= foldl (op +) 0 ns" | |
| 13145 | 2344 | by (force intro: start_le_sum simp add: in_set_conv_decomp) | 
| 13142 | 2345 | |
| 2346 | lemma sum_eq_0_conv [iff]: | |
| 24526 | 2347 | "(foldl (op +) (m::nat) ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))" | 
| 2348 | by (induct ns arbitrary: m) auto | |
| 13114 | 2349 | |
| 24471 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2350 | lemma foldr_invariant: | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2351 | "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f x y) \<rbrakk> \<Longrightarrow> Q (foldr f xs x)" | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2352 | by (induct xs, simp_all) | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2353 | |
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2354 | lemma foldl_invariant: | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2355 | "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f y x) \<rbrakk> \<Longrightarrow> Q (foldl f x xs)" | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2356 | by (induct xs arbitrary: x, simp_all) | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2357 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2358 | lemma foldl_weak_invariant: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2359 | assumes "P s" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2360 | and "\<And>s x. x \<in> set xs \<Longrightarrow> P s \<Longrightarrow> P (f s x)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2361 | shows "P (foldl f s xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2362 | using assms by (induct xs arbitrary: s) simp_all | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2363 | |
| 31455 | 2364 | text {* @{const foldl} and @{const concat} *}
 | 
| 24449 | 2365 | |
| 2366 | lemma foldl_conv_concat: | |
| 29782 | 2367 | "foldl (op @) xs xss = xs @ concat xss" | 
| 2368 | proof (induct xss arbitrary: xs) | |
| 2369 | case Nil show ?case by simp | |
| 2370 | next | |
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35217diff
changeset | 2371 | interpret monoid_add "op @" "[]" proof qed simp_all | 
| 29782 | 2372 | case Cons then show ?case by (simp add: foldl_absorb0) | 
| 2373 | qed | |
| 2374 | ||
| 2375 | lemma concat_conv_foldl: "concat xss = foldl (op @) [] xss" | |
| 2376 | by (simp add: foldl_conv_concat) | |
| 2377 | ||
| 31455 | 2378 | text {* @{const Finite_Set.fold} and @{const foldl} *}
 | 
| 2379 | ||
| 35195 | 2380 | lemma (in fun_left_comm) fold_set_remdups: | 
| 2381 | "fold f y (set xs) = foldl (\<lambda>y x. f x y) y (remdups xs)" | |
| 2382 | by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm insert_absorb) | |
| 2383 | ||
| 31455 | 2384 | lemma (in fun_left_comm_idem) fold_set: | 
| 2385 | "fold f y (set xs) = foldl (\<lambda>y x. f x y) y xs" | |
| 2386 | by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm) | |
| 2387 | ||
| 32681 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2388 | lemma (in ab_semigroup_idem_mult) fold1_set: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2389 | assumes "xs \<noteq> []" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2390 | shows "fold1 times (set xs) = foldl times (hd xs) (tl xs)" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2391 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2392 | interpret fun_left_comm_idem times by (fact fun_left_comm_idem) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2393 | from assms obtain y ys where xs: "xs = y # ys" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2394 | by (cases xs) auto | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2395 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2396 |   proof (cases "set ys = {}")
 | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2397 | case True with xs show ?thesis by simp | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2398 | next | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2399 | case False | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2400 | then have "fold1 times (insert y (set ys)) = fold times y (set ys)" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2401 | by (simp only: finite_set fold1_eq_fold_idem) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2402 | with xs show ?thesis by (simp add: fold_set mult_commute) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2403 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2404 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2405 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2406 | lemma (in lattice) Inf_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2407 | "Inf_fin (set (x # xs)) = foldl inf x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2408 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2409 | interpret ab_semigroup_idem_mult "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2410 | by (fact ab_semigroup_idem_mult_inf) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2411 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2412 | by (simp add: Inf_fin_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2413 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2414 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2415 | lemma (in lattice) Sup_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2416 | "Sup_fin (set (x # xs)) = foldl sup x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2417 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2418 | interpret ab_semigroup_idem_mult "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2419 | by (fact ab_semigroup_idem_mult_sup) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2420 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2421 | by (simp add: Sup_fin_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2422 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2423 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2424 | lemma (in linorder) Min_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2425 | "Min (set (x # xs)) = foldl min x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2426 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2427 | interpret ab_semigroup_idem_mult "min :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2428 | by (fact ab_semigroup_idem_mult_min) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2429 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2430 | by (simp add: Min_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2431 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2432 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2433 | lemma (in linorder) Max_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2434 | "Max (set (x # xs)) = foldl max x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2435 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2436 | interpret ab_semigroup_idem_mult "max :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2437 | by (fact ab_semigroup_idem_mult_max) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2438 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2439 | by (simp add: Max_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2440 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2441 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2442 | lemma (in complete_lattice) Inf_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2443 | "Inf (set xs) = foldl inf top xs" | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2444 | proof - | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2445 | interpret fun_left_comm_idem "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2446 | by (fact fun_left_comm_idem_inf) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2447 | show ?thesis by (simp add: Inf_fold_inf fold_set inf_commute) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2448 | qed | 
| 32681 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2449 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2450 | lemma (in complete_lattice) Sup_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2451 | "Sup (set xs) = foldl sup bot xs" | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2452 | proof - | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2453 | interpret fun_left_comm_idem "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2454 | by (fact fun_left_comm_idem_sup) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2455 | show ?thesis by (simp add: Sup_fold_sup fold_set sup_commute) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2456 | qed | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2457 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2458 | lemma (in complete_lattice) INFI_set_fold: | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2459 | "INFI (set xs) f = foldl (\<lambda>y x. inf (f x) y) top xs" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2460 | unfolding INFI_def set_map [symmetric] Inf_set_fold foldl_map | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2461 | by (simp add: inf_commute) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2462 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2463 | lemma (in complete_lattice) SUPR_set_fold: | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2464 | "SUPR (set xs) f = foldl (\<lambda>y x. sup (f x) y) bot xs" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2465 | unfolding SUPR_def set_map [symmetric] Sup_set_fold foldl_map | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2466 | by (simp add: sup_commute) | 
| 31455 | 2467 | |
| 35115 | 2468 | |
| 23096 | 2469 | subsubsection {* List summation: @{const listsum} and @{text"\<Sum>"}*}
 | 
| 2470 | ||
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2471 | lemma listsum_append [simp]: "listsum (xs @ ys) = listsum xs + listsum ys" | 
| 24449 | 2472 | by (induct xs) (simp_all add:add_assoc) | 
| 2473 | ||
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2474 | lemma listsum_rev [simp]: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2475 | fixes xs :: "'a\<Colon>comm_monoid_add list" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2476 | shows "listsum (rev xs) = listsum xs" | 
| 24449 | 2477 | by (induct xs) (simp_all add:add_ac) | 
| 2478 | ||
| 31022 | 2479 | lemma listsum_map_remove1: | 
| 2480 | fixes f :: "'a \<Rightarrow> ('b::comm_monoid_add)"
 | |
| 2481 | shows "x : set xs \<Longrightarrow> listsum(map f xs) = f x + listsum(map f (remove1 x xs))" | |
| 2482 | by (induct xs)(auto simp add:add_ac) | |
| 2483 | ||
| 2484 | lemma list_size_conv_listsum: | |
| 2485 | "list_size f xs = listsum (map f xs) + size xs" | |
| 2486 | by(induct xs) auto | |
| 2487 | ||
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2488 | lemma listsum_foldr: "listsum xs = foldr (op +) xs 0" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2489 | by (induct xs) auto | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2490 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2491 | lemma length_concat: "length (concat xss) = listsum (map length xss)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2492 | by (induct xss) simp_all | 
| 23096 | 2493 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2494 | lemma listsum_map_filter: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2495 | fixes f :: "'a \<Rightarrow> 'b \<Colon> comm_monoid_add" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2496 | assumes "\<And> x. \<lbrakk> x \<in> set xs ; \<not> P x \<rbrakk> \<Longrightarrow> f x = 0" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2497 | shows "listsum (map f (filter P xs)) = listsum (map f xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2498 | using assms by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2499 | |
| 24449 | 2500 | text{* For efficient code generation ---
 | 
| 2501 |        @{const listsum} is not tail recursive but @{const foldl} is. *}
 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 2502 | lemma listsum[code_unfold]: "listsum xs = foldl (op +) 0 xs" | 
| 23096 | 2503 | by(simp add:listsum_foldr foldl_foldr1) | 
| 2504 | ||
| 31077 | 2505 | lemma distinct_listsum_conv_Setsum: | 
| 2506 | "distinct xs \<Longrightarrow> listsum xs = Setsum(set xs)" | |
| 2507 | by (induct xs) simp_all | |
| 2508 | ||
| 24449 | 2509 | |
| 23096 | 2510 | text{* Some syntactic sugar for summing a function over a list: *}
 | 
| 2511 | ||
| 2512 | syntax | |
| 2513 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
 | |
| 2514 | syntax (xsymbols) | |
| 2515 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | |
| 2516 | syntax (HTML output) | |
| 2517 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | |
| 2518 | ||
| 2519 | translations -- {* Beware of argument permutation! *}
 | |
| 34941 | 2520 | "SUM x<-xs. b" == "CONST listsum (CONST map (%x. b) xs)" | 
| 2521 | "\<Sum>x\<leftarrow>xs. b" == "CONST listsum (CONST map (%x. b) xs)" | |
| 23096 | 2522 | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2523 | lemma listsum_triv: "(\<Sum>x\<leftarrow>xs. r) = of_nat (length xs) * r" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2524 | by (induct xs) (simp_all add: left_distrib) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2525 | |
| 23096 | 2526 | lemma listsum_0 [simp]: "(\<Sum>x\<leftarrow>xs. 0) = 0" | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2527 | by (induct xs) (simp_all add: left_distrib) | 
| 23096 | 2528 | |
| 2529 | text{* For non-Abelian groups @{text xs} needs to be reversed on one side: *}
 | |
| 2530 | lemma uminus_listsum_map: | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2531 | fixes f :: "'a \<Rightarrow> 'b\<Colon>ab_group_add" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2532 | shows "- listsum (map f xs) = (listsum (map (uminus o f) xs))" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 2533 | by (induct xs) simp_all | 
| 23096 | 2534 | |
| 31258 | 2535 | lemma listsum_addf: | 
| 2536 | fixes f g :: "'a \<Rightarrow> 'b::comm_monoid_add" | |
| 2537 | shows "(\<Sum>x\<leftarrow>xs. f x + g x) = listsum (map f xs) + listsum (map g xs)" | |
| 2538 | by (induct xs) (simp_all add: algebra_simps) | |
| 2539 | ||
| 2540 | lemma listsum_subtractf: | |
| 2541 | fixes f g :: "'a \<Rightarrow> 'b::ab_group_add" | |
| 2542 | shows "(\<Sum>x\<leftarrow>xs. f x - g x) = listsum (map f xs) - listsum (map g xs)" | |
| 2543 | by (induct xs) simp_all | |
| 2544 | ||
| 2545 | lemma listsum_const_mult: | |
| 2546 | fixes f :: "'a \<Rightarrow> 'b::semiring_0" | |
| 2547 | shows "(\<Sum>x\<leftarrow>xs. c * f x) = c * (\<Sum>x\<leftarrow>xs. f x)" | |
| 2548 | by (induct xs, simp_all add: algebra_simps) | |
| 2549 | ||
| 2550 | lemma listsum_mult_const: | |
| 2551 | fixes f :: "'a \<Rightarrow> 'b::semiring_0" | |
| 2552 | shows "(\<Sum>x\<leftarrow>xs. f x * c) = (\<Sum>x\<leftarrow>xs. f x) * c" | |
| 2553 | by (induct xs, simp_all add: algebra_simps) | |
| 2554 | ||
| 2555 | lemma listsum_abs: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34978diff
changeset | 2556 | fixes xs :: "'a::ordered_ab_group_add_abs list" | 
| 31258 | 2557 | shows "\<bar>listsum xs\<bar> \<le> listsum (map abs xs)" | 
| 2558 | by (induct xs, simp, simp add: order_trans [OF abs_triangle_ineq]) | |
| 2559 | ||
| 2560 | lemma listsum_mono: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34978diff
changeset | 2561 |   fixes f g :: "'a \<Rightarrow> 'b::{comm_monoid_add, ordered_ab_semigroup_add}"
 | 
| 31258 | 2562 | shows "(\<And>x. x \<in> set xs \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sum>x\<leftarrow>xs. f x) \<le> (\<Sum>x\<leftarrow>xs. g x)" | 
| 2563 | by (induct xs, simp, simp add: add_mono) | |
| 2564 | ||
| 13114 | 2565 | |
| 24645 | 2566 | subsubsection {* @{text upt} *}
 | 
| 13114 | 2567 | |
| 17090 | 2568 | lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])" | 
| 2569 | -- {* simp does not terminate! *}
 | |
| 13145 | 2570 | by (induct j) auto | 
| 13142 | 2571 | |
| 32005 | 2572 | lemmas upt_rec_number_of[simp] = upt_rec[of "number_of m" "number_of n", standard] | 
| 2573 | ||
| 15425 | 2574 | lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []" | 
| 13145 | 2575 | by (subst upt_rec) simp | 
| 13114 | 2576 | |
| 15425 | 2577 | lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)" | 
| 15281 | 2578 | by(induct j)simp_all | 
| 2579 | ||
| 2580 | lemma upt_eq_Cons_conv: | |
| 24526 | 2581 | "([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)" | 
| 2582 | apply(induct j arbitrary: x xs) | |
| 15281 | 2583 | apply simp | 
| 2584 | apply(clarsimp simp add: append_eq_Cons_conv) | |
| 2585 | apply arith | |
| 2586 | done | |
| 2587 | ||
| 15425 | 2588 | lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]" | 
| 13145 | 2589 | -- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
 | 
| 2590 | by simp | |
| 13114 | 2591 | |
| 15425 | 2592 | lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]" | 
| 26734 | 2593 | by (simp add: upt_rec) | 
| 13114 | 2594 | |
| 15425 | 2595 | lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]" | 
| 13145 | 2596 | -- {* LOOPS as a simprule, since @{text "j <= j"}. *}
 | 
| 2597 | by (induct k) auto | |
| 13114 | 2598 | |
| 15425 | 2599 | lemma length_upt [simp]: "length [i..<j] = j - i" | 
| 13145 | 2600 | by (induct j) (auto simp add: Suc_diff_le) | 
| 13114 | 2601 | |
| 15425 | 2602 | lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k" | 
| 13145 | 2603 | apply (induct j) | 
| 2604 | apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split) | |
| 2605 | done | |
| 13114 | 2606 | |
| 17906 | 2607 | |
| 2608 | lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i" | |
| 2609 | by(simp add:upt_conv_Cons) | |
| 2610 | ||
| 2611 | lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1" | |
| 2612 | apply(cases j) | |
| 2613 | apply simp | |
| 2614 | by(simp add:upt_Suc_append) | |
| 2615 | ||
| 24526 | 2616 | lemma take_upt [simp]: "i+m <= n ==> take m [i..<n] = [i..<i+m]" | 
| 2617 | apply (induct m arbitrary: i, simp) | |
| 13145 | 2618 | apply (subst upt_rec) | 
| 2619 | apply (rule sym) | |
| 2620 | apply (subst upt_rec) | |
| 2621 | apply (simp del: upt.simps) | |
| 2622 | done | |
| 3507 | 2623 | |
| 17501 | 2624 | lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]" | 
| 2625 | apply(induct j) | |
| 2626 | apply auto | |
| 2627 | done | |
| 2628 | ||
| 24645 | 2629 | lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..<Suc n]" | 
| 13145 | 2630 | by (induct n) auto | 
| 13114 | 2631 | |
| 24526 | 2632 | lemma nth_map_upt: "i < n-m ==> (map f [m..<n]) ! i = f(m+i)" | 
| 2633 | apply (induct n m arbitrary: i rule: diff_induct) | |
| 13145 | 2634 | prefer 3 apply (subst map_Suc_upt[symmetric]) | 
| 2635 | apply (auto simp add: less_diff_conv nth_upt) | |
| 2636 | done | |
| 13114 | 2637 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2638 | lemma nth_take_lemma: | 
| 24526 | 2639 | "k <= length xs ==> k <= length ys ==> | 
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2640 | (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys" | 
| 24526 | 2641 | apply (atomize, induct k arbitrary: xs ys) | 
| 14208 | 2642 | apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify) | 
| 13145 | 2643 | txt {* Both lists must be non-empty *}
 | 
| 14208 | 2644 | apply (case_tac xs, simp) | 
| 2645 | apply (case_tac ys, clarify) | |
| 13145 | 2646 | apply (simp (no_asm_use)) | 
| 2647 | apply clarify | |
| 2648 | txt {* prenexing's needed, not miniscoping *}
 | |
| 2649 | apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps) | |
| 2650 | apply blast | |
| 2651 | done | |
| 13114 | 2652 | |
| 2653 | lemma nth_equalityI: | |
| 2654 | "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys" | |
| 13145 | 2655 | apply (frule nth_take_lemma [OF le_refl eq_imp_le]) | 
| 2656 | apply (simp_all add: take_all) | |
| 2657 | done | |
| 13142 | 2658 | |
| 24796 | 2659 | lemma map_nth: | 
| 2660 | "map (\<lambda>i. xs ! i) [0..<length xs] = xs" | |
| 2661 | by (rule nth_equalityI, auto) | |
| 2662 | ||
| 13863 | 2663 | (* needs nth_equalityI *) | 
| 2664 | lemma list_all2_antisym: | |
| 2665 | "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> | |
| 2666 | \<Longrightarrow> xs = ys" | |
| 2667 | apply (simp add: list_all2_conv_all_nth) | |
| 14208 | 2668 | apply (rule nth_equalityI, blast, simp) | 
| 13863 | 2669 | done | 
| 2670 | ||
| 13142 | 2671 | lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys" | 
| 13145 | 2672 | -- {* The famous take-lemma. *}
 | 
| 2673 | apply (drule_tac x = "max (length xs) (length ys)" in spec) | |
| 2674 | apply (simp add: le_max_iff_disj take_all) | |
| 2675 | done | |
| 13142 | 2676 | |
| 2677 | ||
| 15302 | 2678 | lemma take_Cons': | 
| 2679 | "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)" | |
| 2680 | by (cases n) simp_all | |
| 2681 | ||
| 2682 | lemma drop_Cons': | |
| 2683 | "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)" | |
| 2684 | by (cases n) simp_all | |
| 2685 | ||
| 2686 | lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))" | |
| 2687 | by (cases n) simp_all | |
| 2688 | ||
| 18622 | 2689 | lemmas take_Cons_number_of = take_Cons'[of "number_of v",standard] | 
| 2690 | lemmas drop_Cons_number_of = drop_Cons'[of "number_of v",standard] | |
| 2691 | lemmas nth_Cons_number_of = nth_Cons'[of _ _ "number_of v",standard] | |
| 2692 | ||
| 2693 | declare take_Cons_number_of [simp] | |
| 2694 | drop_Cons_number_of [simp] | |
| 2695 | nth_Cons_number_of [simp] | |
| 15302 | 2696 | |
| 2697 | ||
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2698 | subsubsection {* @{text upto}: interval-list on @{typ int} *}
 | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2699 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2700 | (* FIXME make upto tail recursive? *) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2701 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2702 | function upto :: "int \<Rightarrow> int \<Rightarrow> int list" ("(1[_../_])") where
 | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2703 | "upto i j = (if i \<le> j then i # [i+1..j] else [])" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2704 | by auto | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2705 | termination | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2706 | by(relation "measure(%(i::int,j). nat(j - i + 1))") auto | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2707 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2708 | declare upto.simps[code, simp del] | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2709 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2710 | lemmas upto_rec_number_of[simp] = | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2711 | upto.simps[of "number_of m" "number_of n", standard] | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2712 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2713 | lemma upto_empty[simp]: "j < i \<Longrightarrow> [i..j] = []" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2714 | by(simp add: upto.simps) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2715 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2716 | lemma set_upto[simp]: "set[i..j] = {i..j}"
 | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2717 | apply(induct i j rule:upto.induct) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2718 | apply(simp add: upto.simps simp_from_to) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2719 | done | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2720 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2721 | |
| 15392 | 2722 | subsubsection {* @{text "distinct"} and @{text remdups} *}
 | 
| 13142 | 2723 | |
| 2724 | lemma distinct_append [simp]: | |
| 13145 | 2725 | "distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
 | 
| 2726 | by (induct xs) auto | |
| 13142 | 2727 | |
| 15305 | 2728 | lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs" | 
| 2729 | by(induct xs) auto | |
| 2730 | ||
| 13142 | 2731 | lemma set_remdups [simp]: "set (remdups xs) = set xs" | 
| 13145 | 2732 | by (induct xs) (auto simp add: insert_absorb) | 
| 13142 | 2733 | |
| 2734 | lemma distinct_remdups [iff]: "distinct (remdups xs)" | |
| 13145 | 2735 | by (induct xs) auto | 
| 13142 | 2736 | |
| 25287 | 2737 | lemma distinct_remdups_id: "distinct xs ==> remdups xs = xs" | 
| 2738 | by (induct xs, auto) | |
| 2739 | ||
| 26734 | 2740 | lemma remdups_id_iff_distinct [simp]: "remdups xs = xs \<longleftrightarrow> distinct xs" | 
| 2741 | by (metis distinct_remdups distinct_remdups_id) | |
| 25287 | 2742 | |
| 24566 | 2743 | lemma finite_distinct_list: "finite A \<Longrightarrow> EX xs. set xs = A & distinct xs" | 
| 24632 | 2744 | by (metis distinct_remdups finite_list set_remdups) | 
| 24566 | 2745 | |
| 15072 | 2746 | lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])" | 
| 24349 | 2747 | by (induct x, auto) | 
| 15072 | 2748 | |
| 2749 | lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])" | |
| 24349 | 2750 | by (induct x, auto) | 
| 15072 | 2751 | |
| 15245 | 2752 | lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs" | 
| 2753 | by (induct xs) auto | |
| 2754 | ||
| 2755 | lemma length_remdups_eq[iff]: | |
| 2756 | "(length (remdups xs) = length xs) = (remdups xs = xs)" | |
| 2757 | apply(induct xs) | |
| 2758 | apply auto | |
| 2759 | apply(subgoal_tac "length (remdups xs) <= length xs") | |
| 2760 | apply arith | |
| 2761 | apply(rule length_remdups_leq) | |
| 2762 | done | |
| 2763 | ||
| 33945 | 2764 | lemma remdups_filter: "remdups(filter P xs) = filter P (remdups xs)" | 
| 2765 | apply(induct xs) | |
| 2766 | apply auto | |
| 2767 | done | |
| 18490 | 2768 | |
| 2769 | lemma distinct_map: | |
| 2770 | "distinct(map f xs) = (distinct xs & inj_on f (set xs))" | |
| 2771 | by (induct xs) auto | |
| 2772 | ||
| 2773 | ||
| 13142 | 2774 | lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)" | 
| 13145 | 2775 | by (induct xs) auto | 
| 13114 | 2776 | |
| 17501 | 2777 | lemma distinct_upt[simp]: "distinct[i..<j]" | 
| 2778 | by (induct j) auto | |
| 2779 | ||
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2780 | lemma distinct_upto[simp]: "distinct[i..j]" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2781 | apply(induct i j rule:upto.induct) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2782 | apply(subst upto.simps) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2783 | apply(simp) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2784 | done | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2785 | |
| 24526 | 2786 | lemma distinct_take[simp]: "distinct xs \<Longrightarrow> distinct (take i xs)" | 
| 2787 | apply(induct xs arbitrary: i) | |
| 17501 | 2788 | apply simp | 
| 2789 | apply (case_tac i) | |
| 2790 | apply simp_all | |
| 2791 | apply(blast dest:in_set_takeD) | |
| 2792 | done | |
| 2793 | ||
| 24526 | 2794 | lemma distinct_drop[simp]: "distinct xs \<Longrightarrow> distinct (drop i xs)" | 
| 2795 | apply(induct xs arbitrary: i) | |
| 17501 | 2796 | apply simp | 
| 2797 | apply (case_tac i) | |
| 2798 | apply simp_all | |
| 2799 | done | |
| 2800 | ||
| 2801 | lemma distinct_list_update: | |
| 2802 | assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
 | |
| 2803 | shows "distinct (xs[i:=a])" | |
| 2804 | proof (cases "i < length xs") | |
| 2805 | case True | |
| 2806 |   with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
 | |
| 2807 | apply (drule_tac id_take_nth_drop) by simp | |
| 2808 | with d True show ?thesis | |
| 2809 | apply (simp add: upd_conv_take_nth_drop) | |
| 2810 | apply (drule subst [OF id_take_nth_drop]) apply assumption | |
| 2811 | apply simp apply (cases "a = xs!i") apply simp by blast | |
| 2812 | next | |
| 2813 | case False with d show ?thesis by auto | |
| 2814 | qed | |
| 2815 | ||
| 31363 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2816 | lemma distinct_concat: | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2817 | assumes "distinct xs" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2818 | and "\<And> ys. ys \<in> set xs \<Longrightarrow> distinct ys" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2819 |   and "\<And> ys zs. \<lbrakk> ys \<in> set xs ; zs \<in> set xs ; ys \<noteq> zs \<rbrakk> \<Longrightarrow> set ys \<inter> set zs = {}"
 | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2820 | shows "distinct (concat xs)" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2821 | using assms by (induct xs) auto | 
| 17501 | 2822 | |
| 2823 | text {* It is best to avoid this indexed version of distinct, but
 | |
| 2824 | sometimes it is useful. *} | |
| 2825 | ||
| 13142 | 2826 | lemma distinct_conv_nth: | 
| 17501 | 2827 | "distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)" | 
| 15251 | 2828 | apply (induct xs, simp, simp) | 
| 14208 | 2829 | apply (rule iffI, clarsimp) | 
| 13145 | 2830 | apply (case_tac i) | 
| 14208 | 2831 | apply (case_tac j, simp) | 
| 13145 | 2832 | apply (simp add: set_conv_nth) | 
| 2833 | apply (case_tac j) | |
| 24648 | 2834 | apply (clarsimp simp add: set_conv_nth, simp) | 
| 13145 | 2835 | apply (rule conjI) | 
| 24648 | 2836 | (*TOO SLOW | 
| 24632 | 2837 | apply (metis Zero_neq_Suc gr0_conv_Suc in_set_conv_nth lessI less_trans_Suc nth_Cons' nth_Cons_Suc) | 
| 24648 | 2838 | *) | 
| 2839 | apply (clarsimp simp add: set_conv_nth) | |
| 2840 | apply (erule_tac x = 0 in allE, simp) | |
| 2841 | apply (erule_tac x = "Suc i" in allE, simp, clarsimp) | |
| 25130 | 2842 | (*TOO SLOW | 
| 24632 | 2843 | apply (metis Suc_Suc_eq lessI less_trans_Suc nth_Cons_Suc) | 
| 25130 | 2844 | *) | 
| 2845 | apply (erule_tac x = "Suc i" in allE, simp) | |
| 2846 | apply (erule_tac x = "Suc j" in allE, simp) | |
| 13145 | 2847 | done | 
| 13114 | 2848 | |
| 18490 | 2849 | lemma nth_eq_iff_index_eq: | 
| 2850 | "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)" | |
| 2851 | by(auto simp: distinct_conv_nth) | |
| 2852 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2853 | lemma distinct_card: "distinct xs ==> card (set xs) = size xs" | 
| 24349 | 2854 | by (induct xs) auto | 
| 14388 | 2855 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2856 | lemma card_distinct: "card (set xs) = size xs ==> distinct xs" | 
| 14388 | 2857 | proof (induct xs) | 
| 2858 | case Nil thus ?case by simp | |
| 2859 | next | |
| 2860 | case (Cons x xs) | |
| 2861 | show ?case | |
| 2862 | proof (cases "x \<in> set xs") | |
| 2863 | case False with Cons show ?thesis by simp | |
| 2864 | next | |
| 2865 | case True with Cons.prems | |
| 2866 | have "card (set xs) = Suc (length xs)" | |
| 2867 | by (simp add: card_insert_if split: split_if_asm) | |
| 2868 | moreover have "card (set xs) \<le> length xs" by (rule card_length) | |
| 2869 | ultimately have False by simp | |
| 2870 | thus ?thesis .. | |
| 2871 | qed | |
| 2872 | qed | |
| 2873 | ||
| 25287 | 2874 | lemma not_distinct_decomp: "~ distinct ws ==> EX xs ys zs y. ws = xs@[y]@ys@[y]@zs" | 
| 2875 | apply (induct n == "length ws" arbitrary:ws) apply simp | |
| 2876 | apply(case_tac ws) apply simp | |
| 2877 | apply (simp split:split_if_asm) | |
| 2878 | apply (metis Cons_eq_appendI eq_Nil_appendI split_list) | |
| 2879 | done | |
| 18490 | 2880 | |
| 2881 | lemma length_remdups_concat: | |
| 2882 | "length(remdups(concat xss)) = card(\<Union>xs \<in> set xss. set xs)" | |
| 24308 | 2883 | by(simp add: set_concat distinct_card[symmetric]) | 
| 17906 | 2884 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2885 | lemma length_remdups_card_conv: "length(remdups xs) = card(set xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2886 | proof - | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2887 | have xs: "concat[xs] = xs" by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2888 | from length_remdups_concat[of "[xs]"] show ?thesis unfolding xs by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2889 | qed | 
| 17906 | 2890 | |
| 35115 | 2891 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2892 | subsubsection {* @{const insert} *}
 | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2893 | |
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2894 | lemma in_set_insert [simp]: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2895 | "x \<in> set xs \<Longrightarrow> List.insert x xs = xs" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2896 | by (simp add: List.insert_def) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2897 | |
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2898 | lemma not_in_set_insert [simp]: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2899 | "x \<notin> set xs \<Longrightarrow> List.insert x xs = x # xs" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2900 | by (simp add: List.insert_def) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2901 | |
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2902 | lemma insert_Nil [simp]: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2903 | "List.insert x [] = [x]" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2904 | by simp | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2905 | |
| 35295 | 2906 | lemma set_insert [simp]: | 
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2907 | "set (List.insert x xs) = insert x (set xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2908 | by (auto simp add: List.insert_def) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2909 | |
| 35295 | 2910 | lemma distinct_insert [simp]: | 
| 2911 | "distinct xs \<Longrightarrow> distinct (List.insert x xs)" | |
| 2912 | by (simp add: List.insert_def) | |
| 2913 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2914 | |
| 15392 | 2915 | subsubsection {* @{text remove1} *}
 | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2916 | |
| 18049 | 2917 | lemma remove1_append: | 
| 2918 | "remove1 x (xs @ ys) = | |
| 2919 | (if x \<in> set xs then remove1 x xs @ ys else xs @ remove1 x ys)" | |
| 2920 | by (induct xs) auto | |
| 2921 | ||
| 23479 | 2922 | lemma in_set_remove1[simp]: | 
| 2923 | "a \<noteq> b \<Longrightarrow> a : set(remove1 b xs) = (a : set xs)" | |
| 2924 | apply (induct xs) | |
| 2925 | apply auto | |
| 2926 | done | |
| 2927 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2928 | lemma set_remove1_subset: "set(remove1 x xs) <= set xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2929 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2930 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2931 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2932 | apply blast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2933 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2934 | |
| 17724 | 2935 | lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
 | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2936 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2937 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2938 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2939 | apply blast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2940 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2941 | |
| 23479 | 2942 | lemma length_remove1: | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 2943 | "length(remove1 x xs) = (if x : set xs then length xs - 1 else length xs)" | 
| 23479 | 2944 | apply (induct xs) | 
| 2945 | apply (auto dest!:length_pos_if_in_set) | |
| 2946 | done | |
| 2947 | ||
| 18049 | 2948 | lemma remove1_filter_not[simp]: | 
| 2949 | "\<not> P x \<Longrightarrow> remove1 x (filter P xs) = filter P xs" | |
| 2950 | by(induct xs) auto | |
| 2951 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2952 | lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2953 | apply(insert set_remove1_subset) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2954 | apply fast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2955 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2956 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2957 | lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2958 | by (induct xs) simp_all | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2959 | |
| 13114 | 2960 | |
| 27693 | 2961 | subsubsection {* @{text removeAll} *}
 | 
| 2962 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2963 | lemma removeAll_filter_not_eq: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2964 | "removeAll x = filter (\<lambda>y. x \<noteq> y)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2965 | proof | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2966 | fix xs | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2967 | show "removeAll x xs = filter (\<lambda>y. x \<noteq> y) xs" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2968 | by (induct xs) auto | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2969 | qed | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2970 | |
| 27693 | 2971 | lemma removeAll_append[simp]: | 
| 2972 | "removeAll x (xs @ ys) = removeAll x xs @ removeAll x ys" | |
| 2973 | by (induct xs) auto | |
| 2974 | ||
| 2975 | lemma set_removeAll[simp]: "set(removeAll x xs) = set xs - {x}"
 | |
| 2976 | by (induct xs) auto | |
| 2977 | ||
| 2978 | lemma removeAll_id[simp]: "x \<notin> set xs \<Longrightarrow> removeAll x xs = xs" | |
| 2979 | by (induct xs) auto | |
| 2980 | ||
| 2981 | (* Needs count:: 'a \<Rightarrow> a' list \<Rightarrow> nat | |
| 2982 | lemma length_removeAll: | |
| 2983 | "length(removeAll x xs) = length xs - count x xs" | |
| 2984 | *) | |
| 2985 | ||
| 2986 | lemma removeAll_filter_not[simp]: | |
| 2987 | "\<not> P x \<Longrightarrow> removeAll x (filter P xs) = filter P xs" | |
| 2988 | by(induct xs) auto | |
| 2989 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2990 | lemma distinct_removeAll: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2991 | "distinct xs \<Longrightarrow> distinct (removeAll x xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2992 | by (simp add: removeAll_filter_not_eq) | 
| 27693 | 2993 | |
| 2994 | lemma distinct_remove1_removeAll: | |
| 2995 | "distinct xs ==> remove1 x xs = removeAll x xs" | |
| 2996 | by (induct xs) simp_all | |
| 2997 | ||
| 2998 | lemma map_removeAll_inj_on: "inj_on f (insert x (set xs)) \<Longrightarrow> | |
| 2999 | map f (removeAll x xs) = removeAll (f x) (map f xs)" | |
| 3000 | by (induct xs) (simp_all add:inj_on_def) | |
| 3001 | ||
| 3002 | lemma map_removeAll_inj: "inj f \<Longrightarrow> | |
| 3003 | map f (removeAll x xs) = removeAll (f x) (map f xs)" | |
| 3004 | by(metis map_removeAll_inj_on subset_inj_on subset_UNIV) | |
| 3005 | ||
| 3006 | ||
| 15392 | 3007 | subsubsection {* @{text replicate} *}
 | 
| 13114 | 3008 | |
| 13142 | 3009 | lemma length_replicate [simp]: "length (replicate n x) = n" | 
| 13145 | 3010 | by (induct n) auto | 
| 13124 | 3011 | |
| 13142 | 3012 | lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)" | 
| 13145 | 3013 | by (induct n) auto | 
| 13114 | 3014 | |
| 31363 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3015 | lemma map_replicate_const: | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3016 | "map (\<lambda> x. k) lst = replicate (length lst) k" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3017 | by (induct lst) auto | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3018 | |
| 13114 | 3019 | lemma replicate_app_Cons_same: | 
| 13145 | 3020 | "(replicate n x) @ (x # xs) = x # replicate n x @ xs" | 
| 3021 | by (induct n) auto | |
| 13114 | 3022 | |
| 13142 | 3023 | lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x" | 
| 14208 | 3024 | apply (induct n, simp) | 
| 13145 | 3025 | apply (simp add: replicate_app_Cons_same) | 
| 3026 | done | |
| 13114 | 3027 | |
| 13142 | 3028 | lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x" | 
| 13145 | 3029 | by (induct n) auto | 
| 13114 | 3030 | |
| 16397 | 3031 | text{* Courtesy of Matthias Daum: *}
 | 
| 3032 | lemma append_replicate_commute: | |
| 3033 | "replicate n x @ replicate k x = replicate k x @ replicate n x" | |
| 3034 | apply (simp add: replicate_add [THEN sym]) | |
| 3035 | apply (simp add: add_commute) | |
| 3036 | done | |
| 3037 | ||
| 31080 | 3038 | text{* Courtesy of Andreas Lochbihler: *}
 | 
| 3039 | lemma filter_replicate: | |
| 3040 | "filter P (replicate n x) = (if P x then replicate n x else [])" | |
| 3041 | by(induct n) auto | |
| 3042 | ||
| 13142 | 3043 | lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x" | 
| 13145 | 3044 | by (induct n) auto | 
| 13114 | 3045 | |
| 13142 | 3046 | lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x" | 
| 13145 | 3047 | by (induct n) auto | 
| 13114 | 3048 | |
| 13142 | 3049 | lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x" | 
| 13145 | 3050 | by (atomize (full), induct n) auto | 
| 13114 | 3051 | |
| 24526 | 3052 | lemma nth_replicate[simp]: "i < n ==> (replicate n x)!i = x" | 
| 3053 | apply (induct n arbitrary: i, simp) | |
| 13145 | 3054 | apply (simp add: nth_Cons split: nat.split) | 
| 3055 | done | |
| 13114 | 3056 | |
| 16397 | 3057 | text{* Courtesy of Matthias Daum (2 lemmas): *}
 | 
| 3058 | lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x" | |
| 3059 | apply (case_tac "k \<le> i") | |
| 3060 | apply (simp add: min_def) | |
| 3061 | apply (drule not_leE) | |
| 3062 | apply (simp add: min_def) | |
| 3063 | apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x") | |
| 3064 | apply simp | |
| 3065 | apply (simp add: replicate_add [symmetric]) | |
| 3066 | done | |
| 3067 | ||
| 24526 | 3068 | lemma drop_replicate[simp]: "drop i (replicate k x) = replicate (k-i) x" | 
| 3069 | apply (induct k arbitrary: i) | |
| 16397 | 3070 | apply simp | 
| 3071 | apply clarsimp | |
| 3072 | apply (case_tac i) | |
| 3073 | apply simp | |
| 3074 | apply clarsimp | |
| 3075 | done | |
| 3076 | ||
| 3077 | ||
| 13142 | 3078 | lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
 | 
| 13145 | 3079 | by (induct n) auto | 
| 13114 | 3080 | |
| 13142 | 3081 | lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
 | 
| 13145 | 3082 | by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc) | 
| 13114 | 3083 | |
| 13142 | 3084 | lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
 | 
| 13145 | 3085 | by auto | 
| 13114 | 3086 | |
| 13142 | 3087 | lemma in_set_replicateD: "x : set (replicate n y) ==> x = y" | 
| 13145 | 3088 | by (simp add: set_replicate_conv_if split: split_if_asm) | 
| 13114 | 3089 | |
| 24796 | 3090 | lemma replicate_append_same: | 
| 3091 | "replicate i x @ [x] = x # replicate i x" | |
| 3092 | by (induct i) simp_all | |
| 3093 | ||
| 3094 | lemma map_replicate_trivial: | |
| 3095 | "map (\<lambda>i. x) [0..<i] = replicate i x" | |
| 3096 | by (induct i) (simp_all add: replicate_append_same) | |
| 3097 | ||
| 31363 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3098 | lemma concat_replicate_trivial[simp]: | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3099 | "concat (replicate i []) = []" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3100 | by (induct i) (auto simp add: map_replicate_const) | 
| 13114 | 3101 | |
| 28642 | 3102 | lemma replicate_empty[simp]: "(replicate n x = []) \<longleftrightarrow> n=0" | 
| 3103 | by (induct n) auto | |
| 3104 | ||
| 3105 | lemma empty_replicate[simp]: "([] = replicate n x) \<longleftrightarrow> n=0" | |
| 3106 | by (induct n) auto | |
| 3107 | ||
| 3108 | lemma replicate_eq_replicate[simp]: | |
| 3109 | "(replicate m x = replicate n y) \<longleftrightarrow> (m=n & (m\<noteq>0 \<longrightarrow> x=y))" | |
| 3110 | apply(induct m arbitrary: n) | |
| 3111 | apply simp | |
| 3112 | apply(induct_tac n) | |
| 3113 | apply auto | |
| 3114 | done | |
| 3115 | ||
| 3116 | ||
| 15392 | 3117 | subsubsection{*@{text rotate1} and @{text rotate}*}
 | 
| 15302 | 3118 | |
| 3119 | lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]" | |
| 3120 | by(simp add:rotate1_def) | |
| 3121 | ||
| 3122 | lemma rotate0[simp]: "rotate 0 = id" | |
| 3123 | by(simp add:rotate_def) | |
| 3124 | ||
| 3125 | lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)" | |
| 3126 | by(simp add:rotate_def) | |
| 3127 | ||
| 3128 | lemma rotate_add: | |
| 3129 | "rotate (m+n) = rotate m o rotate n" | |
| 3130 | by(simp add:rotate_def funpow_add) | |
| 3131 | ||
| 3132 | lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs" | |
| 3133 | by(simp add:rotate_add) | |
| 3134 | ||
| 18049 | 3135 | lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)" | 
| 3136 | by(simp add:rotate_def funpow_swap1) | |
| 3137 | ||
| 15302 | 3138 | lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs" | 
| 3139 | by(cases xs) simp_all | |
| 3140 | ||
| 3141 | lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs" | |
| 3142 | apply(induct n) | |
| 3143 | apply simp | |
| 3144 | apply (simp add:rotate_def) | |
| 13145 | 3145 | done | 
| 13114 | 3146 | |
| 15302 | 3147 | lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]" | 
| 3148 | by(simp add:rotate1_def split:list.split) | |
| 3149 | ||
| 3150 | lemma rotate_drop_take: | |
| 3151 | "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs" | |
| 3152 | apply(induct n) | |
| 3153 | apply simp | |
| 3154 | apply(simp add:rotate_def) | |
| 3155 | apply(cases "xs = []") | |
| 3156 | apply (simp) | |
| 3157 | apply(case_tac "n mod length xs = 0") | |
| 3158 | apply(simp add:mod_Suc) | |
| 3159 | apply(simp add: rotate1_hd_tl drop_Suc take_Suc) | |
| 3160 | apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric] | |
| 3161 | take_hd_drop linorder_not_le) | |
| 13145 | 3162 | done | 
| 13114 | 3163 | |
| 15302 | 3164 | lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs" | 
| 3165 | by(simp add:rotate_drop_take) | |
| 3166 | ||
| 3167 | lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs" | |
| 3168 | by(simp add:rotate_drop_take) | |
| 3169 | ||
| 3170 | lemma length_rotate1[simp]: "length(rotate1 xs) = length xs" | |
| 3171 | by(simp add:rotate1_def split:list.split) | |
| 3172 | ||
| 24526 | 3173 | lemma length_rotate[simp]: "length(rotate n xs) = length xs" | 
| 3174 | by (induct n arbitrary: xs) (simp_all add:rotate_def) | |
| 15302 | 3175 | |
| 3176 | lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs" | |
| 3177 | by(simp add:rotate1_def split:list.split) blast | |
| 3178 | ||
| 3179 | lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs" | |
| 3180 | by (induct n) (simp_all add:rotate_def) | |
| 3181 | ||
| 3182 | lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)" | |
| 3183 | by(simp add:rotate_drop_take take_map drop_map) | |
| 3184 | ||
| 3185 | lemma set_rotate1[simp]: "set(rotate1 xs) = set xs" | |
| 3186 | by(simp add:rotate1_def split:list.split) | |
| 3187 | ||
| 3188 | lemma set_rotate[simp]: "set(rotate n xs) = set xs" | |
| 3189 | by (induct n) (simp_all add:rotate_def) | |
| 3190 | ||
| 3191 | lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])" | |
| 3192 | by(simp add:rotate1_def split:list.split) | |
| 3193 | ||
| 3194 | lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])" | |
| 3195 | by (induct n) (simp_all add:rotate_def) | |
| 13114 | 3196 | |
| 15439 | 3197 | lemma rotate_rev: | 
| 3198 | "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)" | |
| 3199 | apply(simp add:rotate_drop_take rev_drop rev_take) | |
| 3200 | apply(cases "length xs = 0") | |
| 3201 | apply simp | |
| 3202 | apply(cases "n mod length xs = 0") | |
| 3203 | apply simp | |
| 3204 | apply(simp add:rotate_drop_take rev_drop rev_take) | |
| 3205 | done | |
| 3206 | ||
| 18423 | 3207 | lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)" | 
| 3208 | apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth) | |
| 3209 | apply(subgoal_tac "length xs \<noteq> 0") | |
| 3210 | prefer 2 apply simp | |
| 3211 | using mod_less_divisor[of "length xs" n] by arith | |
| 3212 | ||
| 13114 | 3213 | |
| 15392 | 3214 | subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
 | 
| 13114 | 3215 | |
| 13142 | 3216 | lemma sublist_empty [simp]: "sublist xs {} = []"
 | 
| 13145 | 3217 | by (auto simp add: sublist_def) | 
| 13114 | 3218 | |
| 13142 | 3219 | lemma sublist_nil [simp]: "sublist [] A = []" | 
| 13145 | 3220 | by (auto simp add: sublist_def) | 
| 13114 | 3221 | |
| 15281 | 3222 | lemma length_sublist: | 
| 3223 |   "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
 | |
| 3224 | by(simp add: sublist_def length_filter_conv_card cong:conj_cong) | |
| 3225 | ||
| 3226 | lemma sublist_shift_lemma_Suc: | |
| 24526 | 3227 | "map fst (filter (%p. P(Suc(snd p))) (zip xs is)) = | 
| 3228 | map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))" | |
| 3229 | apply(induct xs arbitrary: "is") | |
| 15281 | 3230 | apply simp | 
| 3231 | apply (case_tac "is") | |
| 3232 | apply simp | |
| 3233 | apply simp | |
| 3234 | done | |
| 3235 | ||
| 13114 | 3236 | lemma sublist_shift_lemma: | 
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 3237 | "map fst [p<-zip xs [i..<i + length xs] . snd p : A] = | 
| 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 3238 | map fst [p<-zip xs [0..<length xs] . snd p + i : A]" | 
| 13145 | 3239 | by (induct xs rule: rev_induct) (simp_all add: add_commute) | 
| 13114 | 3240 | |
| 3241 | lemma sublist_append: | |
| 15168 | 3242 |      "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
 | 
| 13145 | 3243 | apply (unfold sublist_def) | 
| 14208 | 3244 | apply (induct l' rule: rev_induct, simp) | 
| 13145 | 3245 | apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma) | 
| 3246 | apply (simp add: add_commute) | |
| 3247 | done | |
| 13114 | 3248 | |
| 3249 | lemma sublist_Cons: | |
| 13145 | 3250 | "sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
 | 
| 3251 | apply (induct l rule: rev_induct) | |
| 3252 | apply (simp add: sublist_def) | |
| 3253 | apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append) | |
| 3254 | done | |
| 13114 | 3255 | |
| 24526 | 3256 | lemma set_sublist: "set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
 | 
| 3257 | apply(induct xs arbitrary: I) | |
| 25162 | 3258 | apply(auto simp: sublist_Cons nth_Cons split:nat.split dest!: gr0_implies_Suc) | 
| 15281 | 3259 | done | 
| 3260 | ||
| 3261 | lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs" | |
| 3262 | by(auto simp add:set_sublist) | |
| 3263 | ||
| 3264 | lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)" | |
| 3265 | by(auto simp add:set_sublist) | |
| 3266 | ||
| 3267 | lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs" | |
| 3268 | by(auto simp add:set_sublist) | |
| 3269 | ||
| 13142 | 3270 | lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])" | 
| 13145 | 3271 | by (simp add: sublist_Cons) | 
| 13114 | 3272 | |
| 15281 | 3273 | |
| 24526 | 3274 | lemma distinct_sublistI[simp]: "distinct xs \<Longrightarrow> distinct(sublist xs I)" | 
| 3275 | apply(induct xs arbitrary: I) | |
| 15281 | 3276 | apply simp | 
| 3277 | apply(auto simp add:sublist_Cons) | |
| 3278 | done | |
| 3279 | ||
| 3280 | ||
| 15045 | 3281 | lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
 | 
| 14208 | 3282 | apply (induct l rule: rev_induct, simp) | 
| 13145 | 3283 | apply (simp split: nat_diff_split add: sublist_append) | 
| 3284 | done | |
| 13114 | 3285 | |
| 24526 | 3286 | lemma filter_in_sublist: | 
| 3287 | "distinct xs \<Longrightarrow> filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s" | |
| 3288 | proof (induct xs arbitrary: s) | |
| 17501 | 3289 | case Nil thus ?case by simp | 
| 3290 | next | |
| 3291 | case (Cons a xs) | |
| 3292 | moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto | |
| 3293 | ultimately show ?case by(simp add: sublist_Cons cong:filter_cong) | |
| 3294 | qed | |
| 3295 | ||
| 13114 | 3296 | |
| 19390 | 3297 | subsubsection {* @{const splice} *}
 | 
| 3298 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 3299 | lemma splice_Nil2 [simp, code]: | 
| 19390 | 3300 | "splice xs [] = xs" | 
| 3301 | by (cases xs) simp_all | |
| 3302 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 3303 | lemma splice_Cons_Cons [simp, code]: | 
| 19390 | 3304 | "splice (x#xs) (y#ys) = x # y # splice xs ys" | 
| 3305 | by simp | |
| 3306 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 3307 | declare splice.simps(2) [simp del, code del] | 
| 19390 | 3308 | |
| 24526 | 3309 | lemma length_splice[simp]: "length(splice xs ys) = length xs + length ys" | 
| 3310 | apply(induct xs arbitrary: ys) apply simp | |
| 22793 | 3311 | apply(case_tac ys) | 
| 3312 | apply auto | |
| 3313 | done | |
| 3314 | ||
| 35115 | 3315 | |
| 3316 | subsubsection {* Transpose *}
 | |
| 34933 | 3317 | |
| 3318 | function transpose where | |
| 3319 | "transpose [] = []" | | |
| 3320 | "transpose ([] # xss) = transpose xss" | | |
| 3321 | "transpose ((x#xs) # xss) = | |
| 3322 | (x # [h. (h#t) \<leftarrow> xss]) # transpose (xs # [t. (h#t) \<leftarrow> xss])" | |
| 3323 | by pat_completeness auto | |
| 3324 | ||
| 3325 | lemma transpose_aux_filter_head: | |
| 3326 | "concat (map (list_case [] (\<lambda>h t. [h])) xss) = | |
| 3327 | map (\<lambda>xs. hd xs) [ys\<leftarrow>xss . ys \<noteq> []]" | |
| 3328 | by (induct xss) (auto split: list.split) | |
| 3329 | ||
| 3330 | lemma transpose_aux_filter_tail: | |
| 3331 | "concat (map (list_case [] (\<lambda>h t. [t])) xss) = | |
| 3332 | map (\<lambda>xs. tl xs) [ys\<leftarrow>xss . ys \<noteq> []]" | |
| 3333 | by (induct xss) (auto split: list.split) | |
| 3334 | ||
| 3335 | lemma transpose_aux_max: | |
| 3336 | "max (Suc (length xs)) (foldr (\<lambda>xs. max (length xs)) xss 0) = | |
| 3337 | Suc (max (length xs) (foldr (\<lambda>x. max (length x - Suc 0)) [ys\<leftarrow>xss . ys\<noteq>[]] 0))" | |
| 3338 | (is "max _ ?foldB = Suc (max _ ?foldA)") | |
| 3339 | proof (cases "[ys\<leftarrow>xss . ys\<noteq>[]] = []") | |
| 3340 | case True | |
| 3341 | hence "foldr (\<lambda>xs. max (length xs)) xss 0 = 0" | |
| 3342 | proof (induct xss) | |
| 3343 | case (Cons x xs) | |
| 3344 | moreover hence "x = []" by (cases x) auto | |
| 3345 | ultimately show ?case by auto | |
| 3346 | qed simp | |
| 3347 | thus ?thesis using True by simp | |
| 3348 | next | |
| 3349 | case False | |
| 3350 | ||
| 3351 | have foldA: "?foldA = foldr (\<lambda>x. max (length x)) [ys\<leftarrow>xss . ys \<noteq> []] 0 - 1" | |
| 3352 | by (induct xss) auto | |
| 3353 | have foldB: "?foldB = foldr (\<lambda>x. max (length x)) [ys\<leftarrow>xss . ys \<noteq> []] 0" | |
| 3354 | by (induct xss) auto | |
| 3355 | ||
| 3356 | have "0 < ?foldB" | |
| 3357 | proof - | |
| 3358 | from False | |
| 3359 | obtain z zs where zs: "[ys\<leftarrow>xss . ys \<noteq> []] = z#zs" by (auto simp: neq_Nil_conv) | |
| 3360 | hence "z \<in> set ([ys\<leftarrow>xss . ys \<noteq> []])" by auto | |
| 3361 | hence "z \<noteq> []" by auto | |
| 3362 | thus ?thesis | |
| 3363 | unfolding foldB zs | |
| 3364 | by (auto simp: max_def intro: less_le_trans) | |
| 3365 | qed | |
| 3366 | thus ?thesis | |
| 3367 | unfolding foldA foldB max_Suc_Suc[symmetric] | |
| 3368 | by simp | |
| 3369 | qed | |
| 3370 | ||
| 3371 | termination transpose | |
| 3372 | by (relation "measure (\<lambda>xs. foldr (\<lambda>xs. max (length xs)) xs 0 + length xs)") | |
| 3373 | (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max less_Suc_eq_le) | |
| 3374 | ||
| 3375 | lemma transpose_empty: "(transpose xs = []) \<longleftrightarrow> (\<forall>x \<in> set xs. x = [])" | |
| 3376 | by (induct rule: transpose.induct) simp_all | |
| 3377 | ||
| 3378 | lemma length_transpose: | |
| 3379 | fixes xs :: "'a list list" | |
| 3380 | shows "length (transpose xs) = foldr (\<lambda>xs. max (length xs)) xs 0" | |
| 3381 | by (induct rule: transpose.induct) | |
| 3382 | (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max | |
| 3383 | max_Suc_Suc[symmetric] simp del: max_Suc_Suc) | |
| 3384 | ||
| 3385 | lemma nth_transpose: | |
| 3386 | fixes xs :: "'a list list" | |
| 3387 | assumes "i < length (transpose xs)" | |
| 3388 | shows "transpose xs ! i = map (\<lambda>xs. xs ! i) [ys \<leftarrow> xs. i < length ys]" | |
| 3389 | using assms proof (induct arbitrary: i rule: transpose.induct) | |
| 3390 | case (3 x xs xss) | |
| 3391 | def XS == "(x # xs) # xss" | |
| 3392 | hence [simp]: "XS \<noteq> []" by auto | |
| 3393 | thus ?case | |
| 3394 | proof (cases i) | |
| 3395 | case 0 | |
| 3396 | thus ?thesis by (simp add: transpose_aux_filter_head hd_conv_nth) | |
| 3397 | next | |
| 3398 | case (Suc j) | |
| 3399 | have *: "\<And>xss. xs # map tl xss = map tl ((x#xs)#xss)" by simp | |
| 3400 | have **: "\<And>xss. (x#xs) # filter (\<lambda>ys. ys \<noteq> []) xss = filter (\<lambda>ys. ys \<noteq> []) ((x#xs)#xss)" by simp | |
| 3401 |     { fix x have "Suc j < length x \<longleftrightarrow> x \<noteq> [] \<and> j < length x - Suc 0"
 | |
| 3402 | by (cases x) simp_all | |
| 3403 | } note *** = this | |
| 3404 | ||
| 3405 | have j_less: "j < length (transpose (xs # concat (map (list_case [] (\<lambda>h t. [t])) xss)))" | |
| 3406 | using "3.prems" by (simp add: transpose_aux_filter_tail length_transpose Suc) | |
| 3407 | ||
| 3408 | show ?thesis | |
| 3409 | unfolding transpose.simps `i = Suc j` nth_Cons_Suc "3.hyps"[OF j_less] | |
| 3410 | apply (auto simp: transpose_aux_filter_tail filter_map comp_def length_transpose * ** *** XS_def[symmetric]) | |
| 3411 | apply (rule_tac y=x in list.exhaust) | |
| 3412 | by auto | |
| 3413 | qed | |
| 3414 | qed simp_all | |
| 3415 | ||
| 3416 | lemma transpose_map_map: | |
| 3417 | "transpose (map (map f) xs) = map (map f) (transpose xs)" | |
| 3418 | proof (rule nth_equalityI, safe) | |
| 3419 | have [simp]: "length (transpose (map (map f) xs)) = length (transpose xs)" | |
| 3420 | by (simp add: length_transpose foldr_map comp_def) | |
| 3421 | show "length (transpose (map (map f) xs)) = length (map (map f) (transpose xs))" by simp | |
| 3422 | ||
| 3423 | fix i assume "i < length (transpose (map (map f) xs))" | |
| 3424 | thus "transpose (map (map f) xs) ! i = map (map f) (transpose xs) ! i" | |
| 3425 | by (simp add: nth_transpose filter_map comp_def) | |
| 3426 | qed | |
| 24616 | 3427 | |
| 35115 | 3428 | |
| 31557 | 3429 | subsubsection {* (In)finiteness *}
 | 
| 28642 | 3430 | |
| 3431 | lemma finite_maxlen: | |
| 3432 | "finite (M::'a list set) ==> EX n. ALL s:M. size s < n" | |
| 3433 | proof (induct rule: finite.induct) | |
| 3434 | case emptyI show ?case by simp | |
| 3435 | next | |
| 3436 | case (insertI M xs) | |
| 3437 | then obtain n where "\<forall>s\<in>M. length s < n" by blast | |
| 3438 | hence "ALL s:insert xs M. size s < max n (size xs) + 1" by auto | |
| 3439 | thus ?case .. | |
| 3440 | qed | |
| 3441 | ||
| 31557 | 3442 | lemma finite_lists_length_eq: | 
| 3443 | assumes "finite A" | |
| 3444 | shows "finite {xs. set xs \<subseteq> A \<and> length xs = n}" (is "finite (?S n)")
 | |
| 3445 | proof(induct n) | |
| 3446 | case 0 show ?case by simp | |
| 3447 | next | |
| 3448 | case (Suc n) | |
| 3449 | have "?S (Suc n) = (\<Union>x\<in>A. (\<lambda>xs. x#xs) ` ?S n)" | |
| 3450 | by (auto simp:length_Suc_conv) | |
| 3451 | then show ?case using `finite A` | |
| 3452 | by (auto intro: finite_imageI Suc) (* FIXME metis? *) | |
| 3453 | qed | |
| 3454 | ||
| 3455 | lemma finite_lists_length_le: | |
| 3456 |   assumes "finite A" shows "finite {xs. set xs \<subseteq> A \<and> length xs \<le> n}"
 | |
| 3457 | (is "finite ?S") | |
| 3458 | proof- | |
| 3459 |   have "?S = (\<Union>n\<in>{0..n}. {xs. set xs \<subseteq> A \<and> length xs = n})" by auto
 | |
| 3460 | thus ?thesis by (auto intro: finite_lists_length_eq[OF `finite A`]) | |
| 3461 | qed | |
| 3462 | ||
| 28642 | 3463 | lemma infinite_UNIV_listI: "~ finite(UNIV::'a list set)" | 
| 3464 | apply(rule notI) | |
| 3465 | apply(drule finite_maxlen) | |
| 3466 | apply (metis UNIV_I length_replicate less_not_refl) | |
| 3467 | done | |
| 3468 | ||
| 3469 | ||
| 35115 | 3470 | subsection {* Sorting *}
 | 
| 24616 | 3471 | |
| 24617 | 3472 | text{* Currently it is not shown that @{const sort} returns a
 | 
| 3473 | permutation of its input because the nicest proof is via multisets, | |
| 3474 | which are not yet available. Alternatively one could define a function | |
| 3475 | that counts the number of occurrences of an element in a list and use | |
| 3476 | that instead of multisets to state the correctness property. *} | |
| 3477 | ||
| 24616 | 3478 | context linorder | 
| 3479 | begin | |
| 3480 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3481 | lemma length_insert[simp] : "length (insort_key f x xs) = Suc (length xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3482 | by (induct xs, auto) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3483 | |
| 35195 | 3484 | lemma insort_left_comm: | 
| 3485 | "insort x (insort y xs) = insort y (insort x xs)" | |
| 3486 | by (induct xs) auto | |
| 3487 | ||
| 3488 | lemma fun_left_comm_insort: | |
| 3489 | "fun_left_comm insort" | |
| 3490 | proof | |
| 3491 | qed (fact insort_left_comm) | |
| 3492 | ||
| 3493 | lemma sort_key_simps [simp]: | |
| 3494 | "sort_key f [] = []" | |
| 3495 | "sort_key f (x#xs) = insort_key f x (sort_key f xs)" | |
| 3496 | by (simp_all add: sort_key_def) | |
| 3497 | ||
| 3498 | lemma sort_foldl_insort: | |
| 3499 | "sort xs = foldl (\<lambda>ys x. insort x ys) [] xs" | |
| 3500 | by (simp add: sort_key_def foldr_foldl foldl_rev insort_left_comm) | |
| 3501 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3502 | lemma length_sort[simp]: "length (sort_key f xs) = length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3503 | by (induct xs, auto) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3504 | |
| 25062 | 3505 | lemma sorted_Cons: "sorted (x#xs) = (sorted xs & (ALL y:set xs. x <= y))" | 
| 24616 | 3506 | apply(induct xs arbitrary: x) apply simp | 
| 3507 | by simp (blast intro: order_trans) | |
| 3508 | ||
| 3509 | lemma sorted_append: | |
| 25062 | 3510 | "sorted (xs@ys) = (sorted xs & sorted ys & (\<forall>x \<in> set xs. \<forall>y \<in> set ys. x\<le>y))" | 
| 24616 | 3511 | by (induct xs) (auto simp add:sorted_Cons) | 
| 3512 | ||
| 31201 | 3513 | lemma sorted_nth_mono: | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3514 | "sorted xs \<Longrightarrow> i \<le> j \<Longrightarrow> j < length xs \<Longrightarrow> xs!i \<le> xs!j" | 
| 31201 | 3515 | by (induct xs arbitrary: i j) (auto simp:nth_Cons' sorted_Cons) | 
| 3516 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3517 | lemma sorted_rev_nth_mono: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3518 | "sorted (rev xs) \<Longrightarrow> i \<le> j \<Longrightarrow> j < length xs \<Longrightarrow> xs!j \<le> xs!i" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3519 | using sorted_nth_mono[ of "rev xs" "length xs - j - 1" "length xs - i - 1"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3520 | rev_nth[of "length xs - i - 1" "xs"] rev_nth[of "length xs - j - 1" "xs"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3521 | by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3522 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3523 | lemma sorted_nth_monoI: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3524 | "(\<And> i j. \<lbrakk> i \<le> j ; j < length xs \<rbrakk> \<Longrightarrow> xs ! i \<le> xs ! j) \<Longrightarrow> sorted xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3525 | proof (induct xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3526 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3527 | have "sorted xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3528 | proof (rule Cons.hyps) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3529 | fix i j assume "i \<le> j" and "j < length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3530 | with Cons.prems[of "Suc i" "Suc j"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3531 | show "xs ! i \<le> xs ! j" by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3532 | qed | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3533 | moreover | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3534 |   {
 | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3535 | fix y assume "y \<in> set xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3536 | then obtain j where "j < length xs" and "xs ! j = y" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3537 | unfolding in_set_conv_nth by blast | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3538 | with Cons.prems[of 0 "Suc j"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3539 | have "x \<le> y" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3540 | by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3541 | } | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3542 | ultimately | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3543 | show ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3544 | unfolding sorted_Cons by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3545 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3546 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3547 | lemma sorted_equals_nth_mono: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3548 | "sorted xs = (\<forall>j < length xs. \<forall>i \<le> j. xs ! i \<le> xs ! j)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3549 | by (auto intro: sorted_nth_monoI sorted_nth_mono) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3550 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3551 | lemma set_insort: "set(insort_key f x xs) = insert x (set xs)" | 
| 24616 | 3552 | by (induct xs) auto | 
| 3553 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3554 | lemma set_sort[simp]: "set(sort_key f xs) = set xs" | 
| 24616 | 3555 | by (induct xs) (simp_all add:set_insort) | 
| 3556 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3557 | lemma distinct_insort: "distinct (insort_key f x xs) = (x \<notin> set xs \<and> distinct xs)" | 
| 24616 | 3558 | by(induct xs)(auto simp:set_insort) | 
| 3559 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3560 | lemma distinct_sort[simp]: "distinct (sort_key f xs) = distinct xs" | 
| 24616 | 3561 | by(induct xs)(simp_all add:distinct_insort set_sort) | 
| 3562 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3563 | lemma sorted_insort_key: "sorted (map f (insort_key f x xs)) = sorted (map f xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3564 | by(induct xs)(auto simp:sorted_Cons set_insort) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3565 | |
| 24616 | 3566 | lemma sorted_insort: "sorted (insort x xs) = sorted xs" | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3567 | using sorted_insort_key[where f="\<lambda>x. x"] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3568 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3569 | theorem sorted_sort_key[simp]: "sorted (map f (sort_key f xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3570 | by(induct xs)(auto simp:sorted_insort_key) | 
| 24616 | 3571 | |
| 3572 | theorem sorted_sort[simp]: "sorted (sort xs)" | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3573 | by(induct xs)(auto simp:sorted_insort) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3574 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3575 | lemma insort_is_Cons: "\<forall>x\<in>set xs. f a \<le> f x \<Longrightarrow> insort_key f a xs = a # xs" | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3576 | by (cases xs) auto | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3577 | |
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3578 | lemma sorted_remove1: "sorted xs \<Longrightarrow> sorted (remove1 a xs)" | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3579 | by(induct xs)(auto simp add: sorted_Cons) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3580 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3581 | lemma insort_key_remove1: "\<lbrakk> a \<in> set xs; sorted (map f xs) ; inj_on f (set xs) \<rbrakk> | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3582 | \<Longrightarrow> insort_key f a (remove1 a xs) = xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3583 | proof (induct xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3584 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3585 | thus ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3586 | proof (cases "x = a") | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3587 | case False | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3588 | hence "f x \<noteq> f a" using Cons.prems by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3589 | hence "f x < f a" using Cons.prems by (auto simp: sorted_Cons) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3590 | thus ?thesis using Cons by (auto simp: sorted_Cons insort_is_Cons) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3591 | qed (auto simp: sorted_Cons insort_is_Cons) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3592 | qed simp | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3593 | |
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3594 | lemma insort_remove1: "\<lbrakk> a \<in> set xs; sorted xs \<rbrakk> \<Longrightarrow> insort a (remove1 a xs) = xs" | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3595 | using insort_key_remove1[where f="\<lambda>x. x"] by simp | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3596 | |
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3597 | lemma sorted_remdups[simp]: | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3598 | "sorted l \<Longrightarrow> sorted (remdups l)" | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3599 | by (induct l) (auto simp: sorted_Cons) | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3600 | |
| 24645 | 3601 | lemma sorted_distinct_set_unique: | 
| 3602 | assumes "sorted xs" "distinct xs" "sorted ys" "distinct ys" "set xs = set ys" | |
| 3603 | shows "xs = ys" | |
| 3604 | proof - | |
| 26734 | 3605 | from assms have 1: "length xs = length ys" by (auto dest!: distinct_card) | 
| 24645 | 3606 | from assms show ?thesis | 
| 3607 | proof(induct rule:list_induct2[OF 1]) | |
| 3608 | case 1 show ?case by simp | |
| 3609 | next | |
| 3610 | case 2 thus ?case by (simp add:sorted_Cons) | |
| 3611 | (metis Diff_insert_absorb antisym insertE insert_iff) | |
| 3612 | qed | |
| 3613 | qed | |
| 3614 | ||
| 35603 | 3615 | lemma map_sorted_distinct_set_unique: | 
| 3616 | assumes "inj_on f (set xs \<union> set ys)" | |
| 3617 | assumes "sorted (map f xs)" "distinct (map f xs)" | |
| 3618 | "sorted (map f ys)" "distinct (map f ys)" | |
| 3619 | assumes "set xs = set ys" | |
| 3620 | shows "xs = ys" | |
| 3621 | proof - | |
| 3622 | from assms have "map f xs = map f ys" | |
| 3623 | by (simp add: sorted_distinct_set_unique) | |
| 3624 | moreover with `inj_on f (set xs \<union> set ys)` show "xs = ys" | |
| 3625 | by (blast intro: map_inj_on) | |
| 3626 | qed | |
| 3627 | ||
| 24645 | 3628 | lemma finite_sorted_distinct_unique: | 
| 3629 | shows "finite A \<Longrightarrow> EX! xs. set xs = A & sorted xs & distinct xs" | |
| 3630 | apply(drule finite_distinct_list) | |
| 3631 | apply clarify | |
| 3632 | apply(rule_tac a="sort xs" in ex1I) | |
| 3633 | apply (auto simp: sorted_distinct_set_unique) | |
| 3634 | done | |
| 3635 | ||
| 29626 | 3636 | lemma sorted_take: | 
| 3637 | "sorted xs \<Longrightarrow> sorted (take n xs)" | |
| 3638 | proof (induct xs arbitrary: n rule: sorted.induct) | |
| 3639 | case 1 show ?case by simp | |
| 3640 | next | |
| 3641 | case 2 show ?case by (cases n) simp_all | |
| 3642 | next | |
| 3643 | case (3 x y xs) | |
| 3644 | then have "x \<le> y" by simp | |
| 3645 | show ?case proof (cases n) | |
| 3646 | case 0 then show ?thesis by simp | |
| 3647 | next | |
| 3648 | case (Suc m) | |
| 3649 | with 3 have "sorted (take m (y # xs))" by simp | |
| 3650 | with Suc `x \<le> y` show ?thesis by (cases m) simp_all | |
| 3651 | qed | |
| 3652 | qed | |
| 3653 | ||
| 3654 | lemma sorted_drop: | |
| 3655 | "sorted xs \<Longrightarrow> sorted (drop n xs)" | |
| 3656 | proof (induct xs arbitrary: n rule: sorted.induct) | |
| 3657 | case 1 show ?case by simp | |
| 3658 | next | |
| 3659 | case 2 show ?case by (cases n) simp_all | |
| 3660 | next | |
| 3661 | case 3 then show ?case by (cases n) simp_all | |
| 3662 | qed | |
| 3663 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3664 | lemma sorted_dropWhile: "sorted xs \<Longrightarrow> sorted (dropWhile P xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3665 | unfolding dropWhile_eq_drop by (rule sorted_drop) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3666 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3667 | lemma sorted_takeWhile: "sorted xs \<Longrightarrow> sorted (takeWhile P xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3668 | apply (subst takeWhile_eq_take) by (rule sorted_take) | 
| 29626 | 3669 | |
| 34933 | 3670 | lemma sorted_filter: | 
| 3671 | "sorted (map f xs) \<Longrightarrow> sorted (map f (filter P xs))" | |
| 3672 | by (induct xs) (simp_all add: sorted_Cons) | |
| 3673 | ||
| 3674 | lemma foldr_max_sorted: | |
| 3675 | assumes "sorted (rev xs)" | |
| 3676 | shows "foldr max xs y = (if xs = [] then y else max (xs ! 0) y)" | |
| 3677 | using assms proof (induct xs) | |
| 3678 | case (Cons x xs) | |
| 3679 | moreover hence "sorted (rev xs)" using sorted_append by auto | |
| 3680 | ultimately show ?case | |
| 3681 | by (cases xs, auto simp add: sorted_append max_def) | |
| 3682 | qed simp | |
| 3683 | ||
| 3684 | lemma filter_equals_takeWhile_sorted_rev: | |
| 3685 | assumes sorted: "sorted (rev (map f xs))" | |
| 3686 | shows "[x \<leftarrow> xs. t < f x] = takeWhile (\<lambda> x. t < f x) xs" | |
| 3687 | (is "filter ?P xs = ?tW") | |
| 3688 | proof (rule takeWhile_eq_filter[symmetric]) | |
| 3689 | let "?dW" = "dropWhile ?P xs" | |
| 3690 | fix x assume "x \<in> set ?dW" | |
| 3691 | then obtain i where i: "i < length ?dW" and nth_i: "x = ?dW ! i" | |
| 3692 | unfolding in_set_conv_nth by auto | |
| 3693 | hence "length ?tW + i < length (?tW @ ?dW)" | |
| 3694 | unfolding length_append by simp | |
| 3695 | hence i': "length (map f ?tW) + i < length (map f xs)" by simp | |
| 3696 | have "(map f ?tW @ map f ?dW) ! (length (map f ?tW) + i) \<le> | |
| 3697 | (map f ?tW @ map f ?dW) ! (length (map f ?tW) + 0)" | |
| 3698 | using sorted_rev_nth_mono[OF sorted _ i', of "length ?tW"] | |
| 3699 | unfolding map_append[symmetric] by simp | |
| 3700 | hence "f x \<le> f (?dW ! 0)" | |
| 3701 | unfolding nth_append_length_plus nth_i | |
| 3702 | using i preorder_class.le_less_trans[OF le0 i] by simp | |
| 3703 | also have "... \<le> t" | |
| 3704 | using hd_dropWhile[of "?P" xs] le0[THEN preorder_class.le_less_trans, OF i] | |
| 3705 | using hd_conv_nth[of "?dW"] by simp | |
| 3706 | finally show "\<not> t < f x" by simp | |
| 3707 | qed | |
| 3708 | ||
| 35608 | 3709 | lemma set_insort_insert: | 
| 3710 | "set (insort_insert x xs) = insert x (set xs)" | |
| 3711 | by (auto simp add: insort_insert_def set_insort) | |
| 3712 | ||
| 3713 | lemma distinct_insort_insert: | |
| 3714 | assumes "distinct xs" | |
| 3715 | shows "distinct (insort_insert x xs)" | |
| 3716 | using assms by (induct xs) (auto simp add: insort_insert_def set_insort) | |
| 3717 | ||
| 3718 | lemma sorted_insort_insert: | |
| 3719 | assumes "sorted xs" | |
| 3720 | shows "sorted (insort_insert x xs)" | |
| 3721 | using assms by (simp add: insort_insert_def sorted_insort) | |
| 3722 | ||
| 24616 | 3723 | end | 
| 3724 | ||
| 25277 | 3725 | lemma sorted_upt[simp]: "sorted[i..<j]" | 
| 3726 | by (induct j) (simp_all add:sorted_append) | |
| 3727 | ||
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3728 | lemma sorted_upto[simp]: "sorted[i..j]" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3729 | apply(induct i j rule:upto.induct) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3730 | apply(subst upto.simps) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3731 | apply(simp add:sorted_Cons) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3732 | done | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3733 | |
| 35115 | 3734 | |
| 3735 | subsubsection {* @{const transpose} on sorted lists *}
 | |
| 34933 | 3736 | |
| 3737 | lemma sorted_transpose[simp]: | |
| 3738 | shows "sorted (rev (map length (transpose xs)))" | |
| 3739 | by (auto simp: sorted_equals_nth_mono rev_nth nth_transpose | |
| 3740 | length_filter_conv_card intro: card_mono) | |
| 3741 | ||
| 3742 | lemma transpose_max_length: | |
| 3743 | "foldr (\<lambda>xs. max (length xs)) (transpose xs) 0 = length [x \<leftarrow> xs. x \<noteq> []]" | |
| 3744 | (is "?L = ?R") | |
| 3745 | proof (cases "transpose xs = []") | |
| 3746 | case False | |
| 3747 | have "?L = foldr max (map length (transpose xs)) 0" | |
| 3748 | by (simp add: foldr_map comp_def) | |
| 3749 | also have "... = length (transpose xs ! 0)" | |
| 3750 | using False sorted_transpose by (simp add: foldr_max_sorted) | |
| 3751 | finally show ?thesis | |
| 3752 | using False by (simp add: nth_transpose) | |
| 3753 | next | |
| 3754 | case True | |
| 3755 | hence "[x \<leftarrow> xs. x \<noteq> []] = []" | |
| 3756 | by (auto intro!: filter_False simp: transpose_empty) | |
| 3757 | thus ?thesis by (simp add: transpose_empty True) | |
| 3758 | qed | |
| 3759 | ||
| 3760 | lemma length_transpose_sorted: | |
| 3761 | fixes xs :: "'a list list" | |
| 3762 | assumes sorted: "sorted (rev (map length xs))" | |
| 3763 | shows "length (transpose xs) = (if xs = [] then 0 else length (xs ! 0))" | |
| 3764 | proof (cases "xs = []") | |
| 3765 | case False | |
| 3766 | thus ?thesis | |
| 3767 | using foldr_max_sorted[OF sorted] False | |
| 3768 | unfolding length_transpose foldr_map comp_def | |
| 3769 | by simp | |
| 3770 | qed simp | |
| 3771 | ||
| 3772 | lemma nth_nth_transpose_sorted[simp]: | |
| 3773 | fixes xs :: "'a list list" | |
| 3774 | assumes sorted: "sorted (rev (map length xs))" | |
| 3775 | and i: "i < length (transpose xs)" | |
| 3776 | and j: "j < length [ys \<leftarrow> xs. i < length ys]" | |
| 3777 | shows "transpose xs ! i ! j = xs ! j ! i" | |
| 3778 | using j filter_equals_takeWhile_sorted_rev[OF sorted, of i] | |
| 3779 | nth_transpose[OF i] nth_map[OF j] | |
| 3780 | by (simp add: takeWhile_nth) | |
| 3781 | ||
| 3782 | lemma transpose_column_length: | |
| 3783 | fixes xs :: "'a list list" | |
| 3784 | assumes sorted: "sorted (rev (map length xs))" and "i < length xs" | |
| 3785 | shows "length (filter (\<lambda>ys. i < length ys) (transpose xs)) = length (xs ! i)" | |
| 3786 | proof - | |
| 3787 | have "xs \<noteq> []" using `i < length xs` by auto | |
| 3788 | note filter_equals_takeWhile_sorted_rev[OF sorted, simp] | |
| 3789 |   { fix j assume "j \<le> i"
 | |
| 3790 | note sorted_rev_nth_mono[OF sorted, of j i, simplified, OF this `i < length xs`] | |
| 3791 | } note sortedE = this[consumes 1] | |
| 3792 | ||
| 3793 |   have "{j. j < length (transpose xs) \<and> i < length (transpose xs ! j)}
 | |
| 3794 |     = {..< length (xs ! i)}"
 | |
| 3795 | proof safe | |
| 3796 | fix j | |
| 3797 | assume "j < length (transpose xs)" and "i < length (transpose xs ! j)" | |
| 3798 | with this(2) nth_transpose[OF this(1)] | |
| 3799 | have "i < length (takeWhile (\<lambda>ys. j < length ys) xs)" by simp | |
| 3800 | from nth_mem[OF this] takeWhile_nth[OF this] | |
| 3801 | show "j < length (xs ! i)" by (auto dest: set_takeWhileD) | |
| 3802 | next | |
| 3803 | fix j assume "j < length (xs ! i)" | |
| 3804 | thus "j < length (transpose xs)" | |
| 3805 | using foldr_max_sorted[OF sorted] `xs \<noteq> []` sortedE[OF le0] | |
| 3806 | by (auto simp: length_transpose comp_def foldr_map) | |
| 3807 | ||
| 3808 | have "Suc i \<le> length (takeWhile (\<lambda>ys. j < length ys) xs)" | |
| 3809 | using `i < length xs` `j < length (xs ! i)` less_Suc_eq_le | |
| 3810 | by (auto intro!: length_takeWhile_less_P_nth dest!: sortedE) | |
| 3811 | with nth_transpose[OF `j < length (transpose xs)`] | |
| 3812 | show "i < length (transpose xs ! j)" by simp | |
| 3813 | qed | |
| 3814 | thus ?thesis by (simp add: length_filter_conv_card) | |
| 3815 | qed | |
| 3816 | ||
| 3817 | lemma transpose_column: | |
| 3818 | fixes xs :: "'a list list" | |
| 3819 | assumes sorted: "sorted (rev (map length xs))" and "i < length xs" | |
| 3820 | shows "map (\<lambda>ys. ys ! i) (filter (\<lambda>ys. i < length ys) (transpose xs)) | |
| 3821 | = xs ! i" (is "?R = _") | |
| 3822 | proof (rule nth_equalityI, safe) | |
| 3823 | show length: "length ?R = length (xs ! i)" | |
| 3824 | using transpose_column_length[OF assms] by simp | |
| 3825 | ||
| 3826 | fix j assume j: "j < length ?R" | |
| 3827 | note * = less_le_trans[OF this, unfolded length_map, OF length_filter_le] | |
| 3828 | from j have j_less: "j < length (xs ! i)" using length by simp | |
| 3829 | have i_less_tW: "Suc i \<le> length (takeWhile (\<lambda>ys. Suc j \<le> length ys) xs)" | |
| 3830 | proof (rule length_takeWhile_less_P_nth) | |
| 3831 | show "Suc i \<le> length xs" using `i < length xs` by simp | |
| 3832 | fix k assume "k < Suc i" | |
| 3833 | hence "k \<le> i" by auto | |
| 3834 | with sorted_rev_nth_mono[OF sorted this] `i < length xs` | |
| 3835 | have "length (xs ! i) \<le> length (xs ! k)" by simp | |
| 3836 | thus "Suc j \<le> length (xs ! k)" using j_less by simp | |
| 3837 | qed | |
| 3838 | have i_less_filter: "i < length [ys\<leftarrow>xs . j < length ys]" | |
| 3839 | unfolding filter_equals_takeWhile_sorted_rev[OF sorted, of j] | |
| 3840 | using i_less_tW by (simp_all add: Suc_le_eq) | |
| 3841 | from j show "?R ! j = xs ! i ! j" | |
| 3842 | unfolding filter_equals_takeWhile_sorted_rev[OF sorted_transpose, of i] | |
| 3843 | by (simp add: takeWhile_nth nth_nth_transpose_sorted[OF sorted * i_less_filter]) | |
| 3844 | qed | |
| 3845 | ||
| 3846 | lemma transpose_transpose: | |
| 3847 | fixes xs :: "'a list list" | |
| 3848 | assumes sorted: "sorted (rev (map length xs))" | |
| 3849 | shows "transpose (transpose xs) = takeWhile (\<lambda>x. x \<noteq> []) xs" (is "?L = ?R") | |
| 3850 | proof - | |
| 3851 | have len: "length ?L = length ?R" | |
| 3852 | unfolding length_transpose transpose_max_length | |
| 3853 | using filter_equals_takeWhile_sorted_rev[OF sorted, of 0] | |
| 3854 | by simp | |
| 3855 | ||
| 3856 |   { fix i assume "i < length ?R"
 | |
| 3857 | with less_le_trans[OF _ length_takeWhile_le[of _ xs]] | |
| 3858 | have "i < length xs" by simp | |
| 3859 | } note * = this | |
| 3860 | show ?thesis | |
| 3861 | by (rule nth_equalityI) | |
| 3862 | (simp_all add: len nth_transpose transpose_column[OF sorted] * takeWhile_nth) | |
| 3863 | qed | |
| 24616 | 3864 | |
| 34934 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3865 | theorem transpose_rectangle: | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3866 | assumes "xs = [] \<Longrightarrow> n = 0" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3867 | assumes rect: "\<And> i. i < length xs \<Longrightarrow> length (xs ! i) = n" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3868 | shows "transpose xs = map (\<lambda> i. map (\<lambda> j. xs ! j ! i) [0..<length xs]) [0..<n]" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3869 | (is "?trans = ?map") | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3870 | proof (rule nth_equalityI) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3871 | have "sorted (rev (map length xs))" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3872 | by (auto simp: rev_nth rect intro!: sorted_nth_monoI) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3873 | from foldr_max_sorted[OF this] assms | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3874 | show len: "length ?trans = length ?map" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3875 | by (simp_all add: length_transpose foldr_map comp_def) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3876 | moreover | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3877 |   { fix i assume "i < n" hence "[ys\<leftarrow>xs . i < length ys] = xs"
 | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3878 | using rect by (auto simp: in_set_conv_nth intro!: filter_True) } | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3879 | ultimately show "\<forall>i < length ?trans. ?trans ! i = ?map ! i" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3880 | by (auto simp: nth_transpose intro: nth_equalityI) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 3881 | qed | 
| 24616 | 3882 | |
| 35115 | 3883 | |
| 25069 | 3884 | subsubsection {* @{text sorted_list_of_set} *}
 | 
| 3885 | ||
| 3886 | text{* This function maps (finite) linearly ordered sets to sorted
 | |
| 3887 | lists. Warning: in most cases it is not a good idea to convert from | |
| 3888 | sets to lists but one should convert in the other direction (via | |
| 3889 | @{const set}). *}
 | |
| 3890 | ||
| 3891 | context linorder | |
| 3892 | begin | |
| 3893 | ||
| 35195 | 3894 | definition sorted_list_of_set :: "'a set \<Rightarrow> 'a list" where | 
| 3895 | "sorted_list_of_set = Finite_Set.fold insort []" | |
| 3896 | ||
| 3897 | lemma sorted_list_of_set_empty [simp]: | |
| 3898 |   "sorted_list_of_set {} = []"
 | |
| 3899 | by (simp add: sorted_list_of_set_def) | |
| 3900 | ||
| 3901 | lemma sorted_list_of_set_insert [simp]: | |
| 3902 | assumes "finite A" | |
| 3903 |   shows "sorted_list_of_set (insert x A) = insort x (sorted_list_of_set (A - {x}))"
 | |
| 3904 | proof - | |
| 3905 | interpret fun_left_comm insort by (fact fun_left_comm_insort) | |
| 3906 | with assms show ?thesis by (simp add: sorted_list_of_set_def fold_insert_remove) | |
| 3907 | qed | |
| 3908 | ||
| 3909 | lemma sorted_list_of_set [simp]: | |
| 3910 | "finite A \<Longrightarrow> set (sorted_list_of_set A) = A \<and> sorted (sorted_list_of_set A) | |
| 3911 | \<and> distinct (sorted_list_of_set A)" | |
| 3912 | by (induct A rule: finite_induct) (simp_all add: set_insort sorted_insort distinct_insort) | |
| 3913 | ||
| 3914 | lemma sorted_list_of_set_sort_remdups: | |
| 3915 | "sorted_list_of_set (set xs) = sort (remdups xs)" | |
| 3916 | proof - | |
| 3917 | interpret fun_left_comm insort by (fact fun_left_comm_insort) | |
| 3918 | show ?thesis by (simp add: sort_foldl_insort sorted_list_of_set_def fold_set_remdups) | |
| 3919 | qed | |
| 25069 | 3920 | |
| 3921 | end | |
| 3922 | ||
| 35115 | 3923 | |
| 15392 | 3924 | subsubsection {* @{text lists}: the list-forming operator over sets *}
 | 
| 15302 | 3925 | |
| 23740 | 3926 | inductive_set | 
| 22262 | 3927 | lists :: "'a set => 'a list set" | 
| 23740 | 3928 | for A :: "'a set" | 
| 3929 | where | |
| 3930 | Nil [intro!]: "[]: lists A" | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 3931 | | Cons [intro!,no_atp]: "[| a: A; l: lists A|] ==> a#l : lists A" | 
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 3932 | |
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 3933 | inductive_cases listsE [elim!,no_atp]: "x#l : lists A" | 
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 3934 | inductive_cases listspE [elim!,no_atp]: "listsp A (x # l)" | 
| 23740 | 3935 | |
| 3936 | lemma listsp_mono [mono]: "A \<le> B ==> listsp A \<le> listsp B" | |
| 34064 
eee04bbbae7e
avoid dependency on implicit dest rule predicate1D in proofs
 haftmann parents: 
34007diff
changeset | 3937 | by (rule predicate1I, erule listsp.induct, (blast dest: predicate1D)+) | 
| 26795 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 3938 | |
| 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 3939 | lemmas lists_mono = listsp_mono [to_set pred_subset_eq] | 
| 22262 | 3940 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 3941 | lemma listsp_infI: | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 3942 | assumes l: "listsp A l" shows "listsp B l ==> listsp (inf A B) l" using l | 
| 24349 | 3943 | by induct blast+ | 
| 15302 | 3944 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 3945 | lemmas lists_IntI = listsp_infI [to_set] | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 3946 | |
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 3947 | lemma listsp_inf_eq [simp]: "listsp (inf A B) = inf (listsp A) (listsp B)" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 3948 | proof (rule mono_inf [where f=listsp, THEN order_antisym]) | 
| 22262 | 3949 | show "mono listsp" by (simp add: mono_def listsp_mono) | 
| 26795 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 3950 | show "inf (listsp A) (listsp B) \<le> listsp (inf A B)" by (blast intro!: listsp_infI predicate1I) | 
| 14388 | 3951 | qed | 
| 3952 | ||
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 3953 | lemmas listsp_conj_eq [simp] = listsp_inf_eq [simplified inf_fun_eq inf_bool_eq] | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 3954 | |
| 26795 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 3955 | lemmas lists_Int_eq [simp] = listsp_inf_eq [to_set pred_equals_eq] | 
| 22262 | 3956 | |
| 3957 | lemma append_in_listsp_conv [iff]: | |
| 3958 | "(listsp A (xs @ ys)) = (listsp A xs \<and> listsp A ys)" | |
| 15302 | 3959 | by (induct xs) auto | 
| 3960 | ||
| 22262 | 3961 | lemmas append_in_lists_conv [iff] = append_in_listsp_conv [to_set] | 
| 3962 | ||
| 3963 | lemma in_listsp_conv_set: "(listsp A xs) = (\<forall>x \<in> set xs. A x)" | |
| 3964 | -- {* eliminate @{text listsp} in favour of @{text set} *}
 | |
| 15302 | 3965 | by (induct xs) auto | 
| 3966 | ||
| 22262 | 3967 | lemmas in_lists_conv_set = in_listsp_conv_set [to_set] | 
| 3968 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 3969 | lemma in_listspD [dest!,no_atp]: "listsp A xs ==> \<forall>x\<in>set xs. A x" | 
| 22262 | 3970 | by (rule in_listsp_conv_set [THEN iffD1]) | 
| 3971 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 3972 | lemmas in_listsD [dest!,no_atp] = in_listspD [to_set] | 
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 3973 | |
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 3974 | lemma in_listspI [intro!,no_atp]: "\<forall>x\<in>set xs. A x ==> listsp A xs" | 
| 22262 | 3975 | by (rule in_listsp_conv_set [THEN iffD2]) | 
| 3976 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 3977 | lemmas in_listsI [intro!,no_atp] = in_listspI [to_set] | 
| 15302 | 3978 | |
| 3979 | lemma lists_UNIV [simp]: "lists UNIV = UNIV" | |
| 3980 | by auto | |
| 3981 | ||
| 17086 | 3982 | |
| 35115 | 3983 | subsubsection {* Inductive definition for membership *}
 | 
| 17086 | 3984 | |
| 23740 | 3985 | inductive ListMem :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 22262 | 3986 | where | 
| 3987 | elem: "ListMem x (x # xs)" | |
| 3988 | | insert: "ListMem x xs \<Longrightarrow> ListMem x (y # xs)" | |
| 3989 | ||
| 3990 | lemma ListMem_iff: "(ListMem x xs) = (x \<in> set xs)" | |
| 17086 | 3991 | apply (rule iffI) | 
| 3992 | apply (induct set: ListMem) | |
| 3993 | apply auto | |
| 3994 | apply (induct xs) | |
| 3995 | apply (auto intro: ListMem.intros) | |
| 3996 | done | |
| 3997 | ||
| 3998 | ||
| 35115 | 3999 | subsubsection {* Lists as Cartesian products *}
 | 
| 15302 | 4000 | |
| 4001 | text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
 | |
| 4002 | @{term A} and tail drawn from @{term Xs}.*}
 | |
| 4003 | ||
| 34941 | 4004 | definition | 
| 4005 | set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set" where | |
| 4006 |   [code del]: "set_Cons A XS = {z. \<exists>x xs. z = x # xs \<and> x \<in> A \<and> xs \<in> XS}"
 | |
| 15302 | 4007 | |
| 17724 | 4008 | lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A"
 | 
| 15302 | 4009 | by (auto simp add: set_Cons_def) | 
| 4010 | ||
| 4011 | text{*Yields the set of lists, all of the same length as the argument and
 | |
| 4012 | with elements drawn from the corresponding element of the argument.*} | |
| 4013 | ||
| 4014 | primrec | |
| 34941 | 4015 | listset :: "'a set list \<Rightarrow> 'a list set" where | 
| 4016 |      "listset [] = {[]}"
 | |
| 4017 | | "listset (A # As) = set_Cons A (listset As)" | |
| 15302 | 4018 | |
| 4019 | ||
| 35115 | 4020 | subsection {* Relations on Lists *}
 | 
| 15656 | 4021 | |
| 4022 | subsubsection {* Length Lexicographic Ordering *}
 | |
| 4023 | ||
| 4024 | text{*These orderings preserve well-foundedness: shorter lists 
 | |
| 4025 | precede longer lists. These ordering are not used in dictionaries.*} | |
| 34941 | 4026 | |
| 4027 | primrec -- {*The lexicographic ordering for lists of the specified length*}
 | |
| 4028 |   lexn :: "('a \<times> 'a) set \<Rightarrow> nat \<Rightarrow> ('a list \<times> 'a list) set" where
 | |
| 4029 |     "lexn r 0 = {}"
 | |
| 4030 | | "lexn r (Suc n) = (prod_fun (%(x, xs). x#xs) (%(x, xs). x#xs) ` (r <*lex*> lexn r n)) Int | |
| 4031 |       {(xs, ys). length xs = Suc n \<and> length ys = Suc n}"
 | |
| 4032 | ||
| 4033 | definition | |
| 4034 |   lex :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where
 | |
| 4035 |   [code del]: "lex r = (\<Union>n. lexn r n)" -- {*Holds only between lists of the same length*}
 | |
| 4036 | ||
| 4037 | definition | |
| 4038 |   lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set" where
 | |
| 4039 | [code del]: "lenlex r = inv_image (less_than <*lex*> lex r) (\<lambda>xs. (length xs, xs))" | |
| 4040 |         -- {*Compares lists by their length and then lexicographically*}
 | |
| 15302 | 4041 | |
| 4042 | lemma wf_lexn: "wf r ==> wf (lexn r n)" | |
| 4043 | apply (induct n, simp, simp) | |
| 4044 | apply(rule wf_subset) | |
| 4045 | prefer 2 apply (rule Int_lower1) | |
| 4046 | apply(rule wf_prod_fun_image) | |
| 4047 | prefer 2 apply (rule inj_onI, auto) | |
| 4048 | done | |
| 4049 | ||
| 4050 | lemma lexn_length: | |
| 24526 | 4051 | "(xs, ys) : lexn r n ==> length xs = n \<and> length ys = n" | 
| 4052 | by (induct n arbitrary: xs ys) auto | |
| 15302 | 4053 | |
| 4054 | lemma wf_lex [intro!]: "wf r ==> wf (lex r)" | |
| 4055 | apply (unfold lex_def) | |
| 4056 | apply (rule wf_UN) | |
| 4057 | apply (blast intro: wf_lexn, clarify) | |
| 4058 | apply (rename_tac m n) | |
| 4059 | apply (subgoal_tac "m \<noteq> n") | |
| 4060 | prefer 2 apply blast | |
| 4061 | apply (blast dest: lexn_length not_sym) | |
| 4062 | done | |
| 4063 | ||
| 4064 | lemma lexn_conv: | |
| 15656 | 4065 | "lexn r n = | 
| 4066 |     {(xs,ys). length xs = n \<and> length ys = n \<and>
 | |
| 4067 | (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}" | |
| 18423 | 4068 | apply (induct n, simp) | 
| 15302 | 4069 | apply (simp add: image_Collect lex_prod_def, safe, blast) | 
| 4070 | apply (rule_tac x = "ab # xys" in exI, simp) | |
| 4071 | apply (case_tac xys, simp_all, blast) | |
| 4072 | done | |
| 4073 | ||
| 4074 | lemma lex_conv: | |
| 15656 | 4075 | "lex r = | 
| 4076 |     {(xs,ys). length xs = length ys \<and>
 | |
| 4077 | (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}" | |
| 15302 | 4078 | by (force simp add: lex_def lexn_conv) | 
| 4079 | ||
| 15693 | 4080 | lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)" | 
| 4081 | by (unfold lenlex_def) blast | |
| 4082 | ||
| 4083 | lemma lenlex_conv: | |
| 4084 |     "lenlex r = {(xs,ys). length xs < length ys |
 | |
| 15656 | 4085 | length xs = length ys \<and> (xs, ys) : lex r}" | 
| 30198 | 4086 | by (simp add: lenlex_def Id_on_def lex_prod_def inv_image_def) | 
| 15302 | 4087 | |
| 4088 | lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r" | |
| 4089 | by (simp add: lex_conv) | |
| 4090 | ||
| 4091 | lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r" | |
| 4092 | by (simp add:lex_conv) | |
| 4093 | ||
| 18447 | 4094 | lemma Cons_in_lex [simp]: | 
| 15656 | 4095 | "((x # xs, y # ys) : lex r) = | 
| 4096 | ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)" | |
| 15302 | 4097 | apply (simp add: lex_conv) | 
| 4098 | apply (rule iffI) | |
| 4099 | prefer 2 apply (blast intro: Cons_eq_appendI, clarify) | |
| 4100 | apply (case_tac xys, simp, simp) | |
| 4101 | apply blast | |
| 4102 | done | |
| 4103 | ||
| 4104 | ||
| 15656 | 4105 | subsubsection {* Lexicographic Ordering *}
 | 
| 4106 | ||
| 4107 | text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
 | |
| 4108 |     This ordering does \emph{not} preserve well-foundedness.
 | |
| 17090 | 4109 | Author: N. Voelker, March 2005. *} | 
| 15656 | 4110 | |
| 34941 | 4111 | definition | 
| 4112 |   lexord :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where
 | |
| 4113 |   [code del]: "lexord r = {(x,y ). \<exists> a v. y = x @ a # v \<or>
 | |
| 15656 | 4114 | (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}" | 
| 4115 | ||
| 4116 | lemma lexord_Nil_left[simp]: "([],y) \<in> lexord r = (\<exists> a x. y = a # x)" | |
| 24349 | 4117 | by (unfold lexord_def, induct_tac y, auto) | 
| 15656 | 4118 | |
| 4119 | lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r" | |
| 24349 | 4120 | by (unfold lexord_def, induct_tac x, auto) | 
| 15656 | 4121 | |
| 4122 | lemma lexord_cons_cons[simp]: | |
| 4123 | "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))" | |
| 4124 | apply (unfold lexord_def, safe, simp_all) | |
| 4125 | apply (case_tac u, simp, simp) | |
| 4126 | apply (case_tac u, simp, clarsimp, blast, blast, clarsimp) | |
| 4127 | apply (erule_tac x="b # u" in allE) | |
| 4128 | by force | |
| 4129 | ||
| 4130 | lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons | |
| 4131 | ||
| 4132 | lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r" | |
| 24349 | 4133 | by (induct_tac x, auto) | 
| 15656 | 4134 | |
| 4135 | lemma lexord_append_left_rightI: | |
| 4136 | "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r" | |
| 24349 | 4137 | by (induct_tac u, auto) | 
| 15656 | 4138 | |
| 4139 | lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r" | |
| 24349 | 4140 | by (induct x, auto) | 
| 15656 | 4141 | |
| 4142 | lemma lexord_append_leftD: | |
| 4143 | "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r" | |
| 24349 | 4144 | by (erule rev_mp, induct_tac x, auto) | 
| 15656 | 4145 | |
| 4146 | lemma lexord_take_index_conv: | |
| 4147 | "((x,y) : lexord r) = | |
| 4148 | ((length x < length y \<and> take (length x) y = x) \<or> | |
| 4149 | (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))" | |
| 4150 | apply (unfold lexord_def Let_def, clarsimp) | |
| 4151 | apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2) | |
| 4152 | apply auto | |
| 4153 | apply (rule_tac x="hd (drop (length x) y)" in exI) | |
| 4154 | apply (rule_tac x="tl (drop (length x) y)" in exI) | |
| 4155 | apply (erule subst, simp add: min_def) | |
| 4156 | apply (rule_tac x ="length u" in exI, simp) | |
| 4157 | apply (rule_tac x ="take i x" in exI) | |
| 4158 | apply (rule_tac x ="x ! i" in exI) | |
| 4159 | apply (rule_tac x ="y ! i" in exI, safe) | |
| 4160 | apply (rule_tac x="drop (Suc i) x" in exI) | |
| 4161 | apply (drule sym, simp add: drop_Suc_conv_tl) | |
| 4162 | apply (rule_tac x="drop (Suc i) y" in exI) | |
| 4163 | by (simp add: drop_Suc_conv_tl) | |
| 4164 | ||
| 4165 | -- {* lexord is extension of partial ordering List.lex *} 
 | |
| 4166 | lemma lexord_lex: " (x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)" | |
| 4167 | apply (rule_tac x = y in spec) | |
| 4168 | apply (induct_tac x, clarsimp) | |
| 4169 | by (clarify, case_tac x, simp, force) | |
| 4170 | ||
| 4171 | lemma lexord_irreflexive: "(! x. (x,x) \<notin> r) \<Longrightarrow> (y,y) \<notin> lexord r" | |
| 4172 | by (induct y, auto) | |
| 4173 | ||
| 4174 | lemma lexord_trans: | |
| 4175 | "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r" | |
| 4176 | apply (erule rev_mp)+ | |
| 4177 | apply (rule_tac x = x in spec) | |
| 4178 | apply (rule_tac x = z in spec) | |
| 4179 | apply ( induct_tac y, simp, clarify) | |
| 4180 | apply (case_tac xa, erule ssubst) | |
| 4181 |   apply (erule allE, erule allE) -- {* avoid simp recursion *} 
 | |
| 4182 | apply (case_tac x, simp, simp) | |
| 24632 | 4183 | apply (case_tac x, erule allE, erule allE, simp) | 
| 15656 | 4184 | apply (erule_tac x = listb in allE) | 
| 4185 | apply (erule_tac x = lista in allE, simp) | |
| 4186 | apply (unfold trans_def) | |
| 4187 | by blast | |
| 4188 | ||
| 4189 | lemma lexord_transI: "trans r \<Longrightarrow> trans (lexord r)" | |
| 24349 | 4190 | by (rule transI, drule lexord_trans, blast) | 
| 15656 | 4191 | |
| 4192 | lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r" | |
| 4193 | apply (rule_tac x = y in spec) | |
| 4194 | apply (induct_tac x, rule allI) | |
| 4195 | apply (case_tac x, simp, simp) | |
| 4196 | apply (rule allI, case_tac x, simp, simp) | |
| 4197 | by blast | |
| 4198 | ||
| 4199 | ||
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4200 | subsection {* Lexicographic combination of measure functions *}
 | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4201 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4202 | text {* These are useful for termination proofs *}
 | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4203 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4204 | definition | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4205 | "measures fs = inv_image (lex less_than) (%a. map (%f. f a) fs)" | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4206 | |
| 21106 
51599a81b308
Added "recdef_wf" and "simp" attribute to "wf_measures"
 krauss parents: 
21103diff
changeset | 4207 | lemma wf_measures[recdef_wf, simp]: "wf (measures fs)" | 
| 24349 | 4208 | unfolding measures_def | 
| 4209 | by blast | |
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4210 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4211 | lemma in_measures[simp]: | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4212 | "(x, y) \<in> measures [] = False" | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4213 | "(x, y) \<in> measures (f # fs) | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4214 | = (f x < f y \<or> (f x = f y \<and> (x, y) \<in> measures fs))" | 
| 24349 | 4215 | unfolding measures_def | 
| 4216 | by auto | |
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4217 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4218 | lemma measures_less: "f x < f y ==> (x, y) \<in> measures (f#fs)" | 
| 24349 | 4219 | by simp | 
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4220 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4221 | lemma measures_lesseq: "f x <= f y ==> (x, y) \<in> measures fs ==> (x, y) \<in> measures (f#fs)" | 
| 24349 | 4222 | by auto | 
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4223 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4224 | |
| 35115 | 4225 | subsubsection {* Lifting a Relation on List Elements to the Lists *}
 | 
| 15302 | 4226 | |
| 23740 | 4227 | inductive_set | 
| 4228 |   listrel :: "('a * 'a)set => ('a list * 'a list)set"
 | |
| 4229 |   for r :: "('a * 'a)set"
 | |
| 22262 | 4230 | where | 
| 23740 | 4231 | Nil: "([],[]) \<in> listrel r" | 
| 4232 | | Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r" | |
| 4233 | ||
| 4234 | inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r" | |
| 4235 | inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r" | |
| 4236 | inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r" | |
| 4237 | inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r" | |
| 15302 | 4238 | |
| 4239 | ||
| 4240 | lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s" | |
| 4241 | apply clarify | |
| 23740 | 4242 | apply (erule listrel.induct) | 
| 4243 | apply (blast intro: listrel.intros)+ | |
| 15302 | 4244 | done | 
| 4245 | ||
| 4246 | lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A" | |
| 4247 | apply clarify | |
| 23740 | 4248 | apply (erule listrel.induct, auto) | 
| 15302 | 4249 | done | 
| 4250 | ||
| 30198 | 4251 | lemma listrel_refl_on: "refl_on A r \<Longrightarrow> refl_on (lists A) (listrel r)" | 
| 4252 | apply (simp add: refl_on_def listrel_subset Ball_def) | |
| 15302 | 4253 | apply (rule allI) | 
| 4254 | apply (induct_tac x) | |
| 23740 | 4255 | apply (auto intro: listrel.intros) | 
| 15302 | 4256 | done | 
| 4257 | ||
| 4258 | lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" | |
| 4259 | apply (auto simp add: sym_def) | |
| 23740 | 4260 | apply (erule listrel.induct) | 
| 4261 | apply (blast intro: listrel.intros)+ | |
| 15302 | 4262 | done | 
| 4263 | ||
| 4264 | lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" | |
| 4265 | apply (simp add: trans_def) | |
| 4266 | apply (intro allI) | |
| 4267 | apply (rule impI) | |
| 23740 | 4268 | apply (erule listrel.induct) | 
| 4269 | apply (blast intro: listrel.intros)+ | |
| 15302 | 4270 | done | 
| 4271 | ||
| 4272 | theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)" | |
| 30198 | 4273 | by (simp add: equiv_def listrel_refl_on listrel_sym listrel_trans) | 
| 15302 | 4274 | |
| 4275 | lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
 | |
| 23740 | 4276 | by (blast intro: listrel.intros) | 
| 15302 | 4277 | |
| 4278 | lemma listrel_Cons: | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4279 |      "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4280 | by (auto simp add: set_Cons_def intro: listrel.intros) | 
| 15302 | 4281 | |
| 4282 | ||
| 26749 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4283 | subsection {* Size function *}
 | 
| 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4284 | |
| 26875 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4285 | lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (list_size f)" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4286 | by (rule is_measure_trivial) | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4287 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4288 | lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (option_size f)" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4289 | by (rule is_measure_trivial) | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4290 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4291 | lemma list_size_estimation[termination_simp]: | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4292 | "x \<in> set xs \<Longrightarrow> y < f x \<Longrightarrow> y < list_size f xs" | 
| 26749 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4293 | by (induct xs) auto | 
| 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4294 | |
| 26875 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4295 | lemma list_size_estimation'[termination_simp]: | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4296 | "x \<in> set xs \<Longrightarrow> y \<le> f x \<Longrightarrow> y \<le> list_size f xs" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4297 | by (induct xs) auto | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4298 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4299 | lemma list_size_map[simp]: "list_size f (map g xs) = list_size (f o g) xs" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4300 | by (induct xs) auto | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4301 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4302 | lemma list_size_pointwise[termination_simp]: | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4303 | "(\<And>x. x \<in> set xs \<Longrightarrow> f x < g x) \<Longrightarrow> list_size f xs \<le> list_size g xs" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4304 | by (induct xs) force+ | 
| 26749 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4305 | |
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4306 | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4307 | subsection {* Transfer *}
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4308 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4309 | definition | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4310 | embed_list :: "nat list \<Rightarrow> int list" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4311 | where | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4312 | "embed_list l = map int l" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4313 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4314 | definition | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4315 | nat_list :: "int list \<Rightarrow> bool" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4316 | where | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4317 | "nat_list l = nat_set (set l)" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4318 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4319 | definition | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4320 | return_list :: "int list \<Rightarrow> nat list" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4321 | where | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4322 | "return_list l = map nat l" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4323 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4324 | lemma transfer_nat_int_list_return_embed: "nat_list l \<longrightarrow> | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4325 | embed_list (return_list l) = l" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4326 | unfolding embed_list_def return_list_def nat_list_def nat_set_def | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4327 | apply (induct l) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4328 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4329 | done | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4330 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4331 | lemma transfer_nat_int_list_functions: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4332 | "l @ m = return_list (embed_list l @ embed_list m)" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4333 | "[] = return_list []" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4334 | unfolding return_list_def embed_list_def | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4335 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4336 | apply (induct l, auto) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4337 | apply (induct m, auto) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4338 | done | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4339 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4340 | (* | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4341 | lemma transfer_nat_int_fold1: "fold f l x = | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4342 | fold (%x. f (nat x)) (embed_list l) x"; | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4343 | *) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4344 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4345 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4346 | subsection {* Code generator *}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4347 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4348 | subsubsection {* Setup *}
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 4349 | |
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4350 | use "Tools/list_code.ML" | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4351 | |
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4352 | code_type list | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4353 | (SML "_ list") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4354 | (OCaml "_ list") | 
| 34886 | 4355 | (Haskell "![(_)]") | 
| 4356 | (Scala "List[(_)]") | |
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4357 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4358 | code_const Nil | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4359 | (SML "[]") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4360 | (OCaml "[]") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4361 | (Haskell "[]") | 
| 34886 | 4362 | (Scala "Nil") | 
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4363 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4364 | code_instance list :: eq | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4365 | (Haskell -) | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4366 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4367 | code_const "eq_class.eq \<Colon> 'a\<Colon>eq list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4368 | (Haskell infixl 4 "==") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4369 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4370 | code_reserved SML | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4371 | list | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4372 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4373 | code_reserved OCaml | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4374 | list | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4375 | |
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4376 | types_code | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4377 |   "list" ("_ list")
 | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4378 | attach (term_of) {*
 | 
| 21760 | 4379 | fun term_of_list f T = HOLogic.mk_list T o map f; | 
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4380 | *} | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4381 | attach (test) {*
 | 
| 25885 | 4382 | fun gen_list' aG aT i j = frequency | 
| 4383 | [(i, fn () => | |
| 4384 | let | |
| 4385 | val (x, t) = aG j; | |
| 4386 | val (xs, ts) = gen_list' aG aT (i-1) j | |
| 4387 | in (x :: xs, fn () => HOLogic.cons_const aT $ t () $ ts ()) end), | |
| 4388 | (1, fn () => ([], fn () => HOLogic.nil_const aT))] () | |
| 4389 | and gen_list aG aT i = gen_list' aG aT i i; | |
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4390 | *} | 
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4391 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4392 | consts_code Cons ("(_ ::/ _)")
 | 
| 20588 | 4393 | |
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 4394 | setup {*
 | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 4395 | let | 
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4396 | fun list_codegen thy defs dep thyname b t gr = | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4397 | let | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4398 | val ts = HOLogic.dest_list t; | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4399 | val (_, gr') = Codegen.invoke_tycodegen thy defs dep thyname false | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4400 | (fastype_of t) gr; | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4401 | val (ps, gr'') = fold_map | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4402 | (Codegen.invoke_codegen thy defs dep thyname false) ts gr' | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4403 | in SOME (Pretty.list "[" "]" ps, gr'') end handle TERM _ => NONE; | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4404 | in | 
| 34886 | 4405 | fold (List_Code.add_literal_list) ["SML", "OCaml", "Haskell", "Scala"] | 
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4406 | #> Codegen.add_codegen "list_codegen" list_codegen | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4407 | end | 
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 4408 | *} | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 4409 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4410 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4411 | subsubsection {* Generation of efficient code *}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4412 | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 4413 | primrec | 
| 25559 | 4414 | member :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" (infixl "mem" 55) | 
| 4415 | where | |
| 4416 | "x mem [] \<longleftrightarrow> False" | |
| 28515 | 4417 | | "x mem (y#ys) \<longleftrightarrow> x = y \<or> x mem ys" | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4418 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4419 | primrec | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4420 | null:: "'a list \<Rightarrow> bool" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4421 | where | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4422 | "null [] = True" | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4423 | | "null (x#xs) = False" | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4424 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4425 | primrec | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4426 | list_inter :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4427 | where | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4428 | "list_inter [] bs = []" | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4429 | | "list_inter (a#as) bs = | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4430 | (if a \<in> set bs then a # list_inter as bs else list_inter as bs)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4431 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4432 | primrec | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4433 |   list_all :: "('a \<Rightarrow> bool) \<Rightarrow> ('a list \<Rightarrow> bool)"
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4434 | where | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4435 | "list_all P [] = True" | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4436 | | "list_all P (x#xs) = (P x \<and> list_all P xs)" | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4437 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4438 | primrec | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4439 |   list_ex :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4440 | where | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4441 | "list_ex P [] = False" | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4442 | | "list_ex P (x#xs) = (P x \<or> list_ex P xs)" | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4443 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4444 | primrec | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4445 |   filtermap :: "('a \<Rightarrow> 'b option) \<Rightarrow> 'a list \<Rightarrow> 'b list"
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4446 | where | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4447 | "filtermap f [] = []" | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4448 | | "filtermap f (x#xs) = | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4449 | (case f x of None \<Rightarrow> filtermap f xs | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4450 | | Some y \<Rightarrow> y # filtermap f xs)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4451 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4452 | primrec | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4453 |   map_filter :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list"
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4454 | where | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4455 | "map_filter f P [] = []" | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 4456 | | "map_filter f P (x#xs) = | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4457 | (if P x then f x # map_filter f P xs else map_filter f P xs)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4458 | |
| 28789 
5a404273ea8f
added length_unique operation for code generation
 haftmann parents: 
28708diff
changeset | 4459 | primrec | 
| 
5a404273ea8f
added length_unique operation for code generation
 haftmann parents: 
28708diff
changeset | 4460 | length_unique :: "'a list \<Rightarrow> nat" | 
| 
5a404273ea8f
added length_unique operation for code generation
 haftmann parents: 
28708diff
changeset | 4461 | where | 
| 
5a404273ea8f
added length_unique operation for code generation
 haftmann parents: 
28708diff
changeset | 4462 | "length_unique [] = 0" | 
| 
5a404273ea8f
added length_unique operation for code generation
 haftmann parents: 
28708diff
changeset | 4463 | | "length_unique (x#xs) = | 
| 
5a404273ea8f
added length_unique operation for code generation
 haftmann parents: 
28708diff
changeset | 4464 | (if x \<in> set xs then length_unique xs else Suc (length_unique xs))" | 
| 
5a404273ea8f
added length_unique operation for code generation
 haftmann parents: 
28708diff
changeset | 4465 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4466 | primrec | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4467 |   concat_map :: "('a => 'b list) => 'a list => 'b list"
 | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4468 | where | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4469 | "concat_map f [] = []" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4470 | | "concat_map f (x#xs) = f x @ concat_map f xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4471 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4472 | text {*
 | 
| 21754 
6316163ae934
moved char/string syntax to Tools/string_syntax.ML;
 wenzelm parents: 
21548diff
changeset | 4473 |   Only use @{text mem} for generating executable code.  Otherwise use
 | 
| 
6316163ae934
moved char/string syntax to Tools/string_syntax.ML;
 wenzelm parents: 
21548diff
changeset | 4474 |   @{prop "x : set xs"} instead --- it is much easier to reason about.
 | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4475 |   The same is true for @{const list_all} and @{const list_ex}: write
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4476 |   @{text "\<forall>x\<in>set xs"} and @{text "\<exists>x\<in>set xs"} instead because the HOL
 | 
| 21754 
6316163ae934
moved char/string syntax to Tools/string_syntax.ML;
 wenzelm parents: 
21548diff
changeset | 4477 | quantifiers are aleady known to the automatic provers. In fact, the | 
| 
6316163ae934
moved char/string syntax to Tools/string_syntax.ML;
 wenzelm parents: 
21548diff
changeset | 4478 |   declarations in the code subsection make sure that @{text "\<in>"},
 | 
| 
6316163ae934
moved char/string syntax to Tools/string_syntax.ML;
 wenzelm parents: 
21548diff
changeset | 4479 |   @{text "\<forall>x\<in>set xs"} and @{text "\<exists>x\<in>set xs"} are implemented
 | 
| 
6316163ae934
moved char/string syntax to Tools/string_syntax.ML;
 wenzelm parents: 
21548diff
changeset | 4480 | efficiently. | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4481 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4482 |   Efficient emptyness check is implemented by @{const null}.
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4483 | |
| 23060 | 4484 |   The functions @{const filtermap} and @{const map_filter} are just
 | 
| 4485 | there to generate efficient code. Do not use | |
| 21754 
6316163ae934
moved char/string syntax to Tools/string_syntax.ML;
 wenzelm parents: 
21548diff
changeset | 4486 | them for modelling and proving. | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4487 | *} | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4488 | |
| 23060 | 4489 | lemma rev_foldl_cons [code]: | 
| 4490 | "rev xs = foldl (\<lambda>xs x. x # xs) [] xs" | |
| 4491 | proof (induct xs) | |
| 4492 | case Nil then show ?case by simp | |
| 4493 | next | |
| 4494 | case Cons | |
| 4495 |   {
 | |
| 4496 | fix x xs ys | |
| 4497 | have "foldl (\<lambda>xs x. x # xs) ys xs @ [x] | |
| 4498 | = foldl (\<lambda>xs x. x # xs) (ys @ [x]) xs" | |
| 4499 | by (induct xs arbitrary: ys) auto | |
| 4500 | } | |
| 4501 | note aux = this | |
| 4502 | show ?case by (induct xs) (auto simp add: Cons aux) | |
| 4503 | qed | |
| 4504 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4505 | lemma mem_iff [code_post]: | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4506 | "x mem xs \<longleftrightarrow> x \<in> set xs" | 
| 24349 | 4507 | by (induct xs) auto | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4508 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4509 | lemmas in_set_code [code_unfold] = mem_iff [symmetric] | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4510 | |
| 31154 | 4511 | lemma empty_null: | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4512 | "xs = [] \<longleftrightarrow> null xs" | 
| 24349 | 4513 | by (cases xs) simp_all | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4514 | |
| 32069 
6d28bbd33e2c
prefer code_inline over code_unfold; use code_unfold_post where appropriate
 haftmann parents: 
31998diff
changeset | 4515 | lemma [code_unfold]: | 
| 31154 | 4516 | "eq_class.eq xs [] \<longleftrightarrow> null xs" | 
| 4517 | by (simp add: eq empty_null) | |
| 4518 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4519 | lemmas null_empty [code_post] = | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4520 | empty_null [symmetric] | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4521 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4522 | lemma list_inter_conv: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4523 | "set (list_inter xs ys) = set xs \<inter> set ys" | 
| 24349 | 4524 | by (induct xs) auto | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4525 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4526 | lemma list_all_iff [code_post]: | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4527 | "list_all P xs \<longleftrightarrow> (\<forall>x \<in> set xs. P x)" | 
| 24349 | 4528 | by (induct xs) auto | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4529 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4530 | lemmas list_ball_code [code_unfold] = list_all_iff [symmetric] | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4531 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4532 | lemma list_all_append [simp]: | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4533 | "list_all P (xs @ ys) \<longleftrightarrow> (list_all P xs \<and> list_all P ys)" | 
| 24349 | 4534 | by (induct xs) auto | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4535 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4536 | lemma list_all_rev [simp]: | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4537 | "list_all P (rev xs) \<longleftrightarrow> list_all P xs" | 
| 24349 | 4538 | by (simp add: list_all_iff) | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4539 | |
| 22506 | 4540 | lemma list_all_length: | 
| 4541 | "list_all P xs \<longleftrightarrow> (\<forall>n < length xs. P (xs ! n))" | |
| 4542 | unfolding list_all_iff by (auto intro: all_nth_imp_all_set) | |
| 4543 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4544 | lemma list_ex_iff [code_post]: | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4545 | "list_ex P xs \<longleftrightarrow> (\<exists>x \<in> set xs. P x)" | 
| 24349 | 4546 | by (induct xs) simp_all | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4547 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4548 | lemmas list_bex_code [code_unfold] = | 
| 22799 
ed7d53db2170
moved code generation pretty integers and characters to separate theories
 haftmann parents: 
22793diff
changeset | 4549 | list_ex_iff [symmetric] | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4550 | |
| 22506 | 4551 | lemma list_ex_length: | 
| 4552 | "list_ex P xs \<longleftrightarrow> (\<exists>n < length xs. P (xs ! n))" | |
| 4553 | unfolding list_ex_iff set_conv_nth by auto | |
| 4554 | ||
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4555 | lemma filtermap_conv: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4556 | "filtermap f xs = map (\<lambda>x. the (f x)) (filter (\<lambda>x. f x \<noteq> None) xs)" | 
| 24349 | 4557 | by (induct xs) (simp_all split: option.split) | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4558 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4559 | lemma map_filter_conv [simp]: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4560 | "map_filter f P xs = map f (filter P xs)" | 
| 24349 | 4561 | by (induct xs) auto | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4562 | |
| 32069 
6d28bbd33e2c
prefer code_inline over code_unfold; use code_unfold_post where appropriate
 haftmann parents: 
31998diff
changeset | 4563 | lemma length_remdups_length_unique [code_unfold]: | 
| 28789 
5a404273ea8f
added length_unique operation for code generation
 haftmann parents: 
28708diff
changeset | 4564 | "length (remdups xs) = length_unique xs" | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4565 | by (induct xs) simp_all | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4566 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4567 | lemma concat_map_code[code_unfold]: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4568 | "concat(map f xs) = concat_map f xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4569 | by (induct xs) simp_all | 
| 28789 
5a404273ea8f
added length_unique operation for code generation
 haftmann parents: 
28708diff
changeset | 4570 | |
| 32681 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 4571 | declare INFI_def [code_unfold] | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 4572 | declare SUPR_def [code_unfold] | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 4573 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 4574 | declare set_map [symmetric, code_unfold] | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 4575 | |
| 28789 
5a404273ea8f
added length_unique operation for code generation
 haftmann parents: 
28708diff
changeset | 4576 | hide (open) const length_unique | 
| 
5a404273ea8f
added length_unique operation for code generation
 haftmann parents: 
28708diff
changeset | 4577 | |
| 24449 | 4578 | |
| 4579 | text {* Code for bounded quantification and summation over nats. *}
 | |
| 21891 
b4e4ea3db161
added code lemmas for quantification over bounded nats
 haftmann parents: 
21871diff
changeset | 4580 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4581 | lemma atMost_upto [code_unfold]: | 
| 28072 
a45e8c872dc1
It appears that the code generator (Stefan's) needs some laws that appear superfluous: {..n} = set ...
 nipkow parents: 
28068diff
changeset | 4582 |   "{..n} = set [0..<Suc n]"
 | 
| 
a45e8c872dc1
It appears that the code generator (Stefan's) needs some laws that appear superfluous: {..n} = set ...
 nipkow parents: 
28068diff
changeset | 4583 | by auto | 
| 
a45e8c872dc1
It appears that the code generator (Stefan's) needs some laws that appear superfluous: {..n} = set ...
 nipkow parents: 
28068diff
changeset | 4584 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4585 | lemma atLeast_upt [code_unfold]: | 
| 28072 
a45e8c872dc1
It appears that the code generator (Stefan's) needs some laws that appear superfluous: {..n} = set ...
 nipkow parents: 
28068diff
changeset | 4586 |   "{..<n} = set [0..<n]"
 | 
| 
a45e8c872dc1
It appears that the code generator (Stefan's) needs some laws that appear superfluous: {..n} = set ...
 nipkow parents: 
28068diff
changeset | 4587 | by auto | 
| 
a45e8c872dc1
It appears that the code generator (Stefan's) needs some laws that appear superfluous: {..n} = set ...
 nipkow parents: 
28068diff
changeset | 4588 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4589 | lemma greaterThanLessThan_upt [code_unfold]: | 
| 21891 
b4e4ea3db161
added code lemmas for quantification over bounded nats
 haftmann parents: 
21871diff
changeset | 4590 |   "{n<..<m} = set [Suc n..<m]"
 | 
| 24349 | 4591 | by auto | 
| 22799 
ed7d53db2170
moved code generation pretty integers and characters to separate theories
 haftmann parents: 
22793diff
changeset | 4592 | |
| 32417 | 4593 | lemmas atLeastLessThan_upt [code_unfold] = set_upt [symmetric] | 
| 22799 
ed7d53db2170
moved code generation pretty integers and characters to separate theories
 haftmann parents: 
22793diff
changeset | 4594 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4595 | lemma greaterThanAtMost_upt [code_unfold]: | 
| 24645 | 4596 |   "{n<..m} = set [Suc n..<Suc m]"
 | 
| 24349 | 4597 | by auto | 
| 22799 
ed7d53db2170
moved code generation pretty integers and characters to separate theories
 haftmann parents: 
22793diff
changeset | 4598 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4599 | lemma atLeastAtMost_upt [code_unfold]: | 
| 24645 | 4600 |   "{n..m} = set [n..<Suc m]"
 | 
| 24349 | 4601 | by auto | 
| 22799 
ed7d53db2170
moved code generation pretty integers and characters to separate theories
 haftmann parents: 
22793diff
changeset | 4602 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4603 | lemma all_nat_less_eq [code_unfold]: | 
| 21891 
b4e4ea3db161
added code lemmas for quantification over bounded nats
 haftmann parents: 
21871diff
changeset | 4604 |   "(\<forall>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..<n}. P m)"
 | 
| 24349 | 4605 | by auto | 
| 22799 
ed7d53db2170
moved code generation pretty integers and characters to separate theories
 haftmann parents: 
22793diff
changeset | 4606 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4607 | lemma ex_nat_less_eq [code_unfold]: | 
| 21891 
b4e4ea3db161
added code lemmas for quantification over bounded nats
 haftmann parents: 
21871diff
changeset | 4608 |   "(\<exists>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..<n}. P m)"
 | 
| 24349 | 4609 | by auto | 
| 22799 
ed7d53db2170
moved code generation pretty integers and characters to separate theories
 haftmann parents: 
22793diff
changeset | 4610 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4611 | lemma all_nat_less [code_unfold]: | 
| 21891 
b4e4ea3db161
added code lemmas for quantification over bounded nats
 haftmann parents: 
21871diff
changeset | 4612 |   "(\<forall>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..n}. P m)"
 | 
| 24349 | 4613 | by auto | 
| 22799 
ed7d53db2170
moved code generation pretty integers and characters to separate theories
 haftmann parents: 
22793diff
changeset | 4614 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4615 | lemma ex_nat_less [code_unfold]: | 
| 21891 
b4e4ea3db161
added code lemmas for quantification over bounded nats
 haftmann parents: 
21871diff
changeset | 4616 |   "(\<exists>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..n}. P m)"
 | 
| 24349 | 4617 | by auto | 
| 22799 
ed7d53db2170
moved code generation pretty integers and characters to separate theories
 haftmann parents: 
22793diff
changeset | 4618 | |
| 27715 | 4619 | lemma setsum_set_distinct_conv_listsum: | 
| 4620 | "distinct xs \<Longrightarrow> setsum f (set xs) = listsum (map f xs)" | |
| 4621 | by (induct xs) simp_all | |
| 4622 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4623 | lemma setsum_set_upt_conv_listsum [code_unfold]: | 
| 27715 | 4624 | "setsum f (set [m..<n]) = listsum (map f [m..<n])" | 
| 4625 | by (rule setsum_set_distinct_conv_listsum) simp | |
| 4626 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4627 | text {* General equivalence between @{const listsum} and @{const setsum} *}
 | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4628 | lemma listsum_setsum_nth: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4629 | "listsum xs = (\<Sum> i = 0 ..< length xs. xs ! i)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4630 | using setsum_set_upt_conv_listsum[of "op ! xs" 0 "length xs"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 4631 | by (simp add: map_nth) | 
| 27715 | 4632 | |
| 4633 | text {* Code for summation over ints. *}
 | |
| 4634 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4635 | lemma greaterThanLessThan_upto [code_unfold]: | 
| 27715 | 4636 |   "{i<..<j::int} = set [i+1..j - 1]"
 | 
| 4637 | by auto | |
| 4638 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4639 | lemma atLeastLessThan_upto [code_unfold]: | 
| 27715 | 4640 |   "{i..<j::int} = set [i..j - 1]"
 | 
| 4641 | by auto | |
| 4642 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4643 | lemma greaterThanAtMost_upto [code_unfold]: | 
| 27715 | 4644 |   "{i<..j::int} = set [i+1..j]"
 | 
| 4645 | by auto | |
| 4646 | ||
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 4647 | lemmas atLeastAtMost_upto [code_unfold] = set_upto[symmetric] | 
| 27715 | 4648 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 4649 | lemma setsum_set_upto_conv_listsum [code_unfold]: | 
| 27715 | 4650 | "setsum f (set [i..j::int]) = listsum (map f [i..j])" | 
| 4651 | by (rule setsum_set_distinct_conv_listsum) simp | |
| 24449 | 4652 | |
| 32422 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4653 | |
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4654 | text {* Optimized code for @{text"\<forall>i\<in>{a..b::int}"} and @{text"\<forall>n:{a..<b::nat}"}
 | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4655 | and similiarly for @{text"\<exists>"}. *}
 | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4656 | |
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4657 | function all_from_to_nat :: "(nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4658 | "all_from_to_nat P i j = | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4659 | (if i < j then if P i then all_from_to_nat P (i+1) j else False | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4660 | else True)" | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4661 | by auto | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4662 | termination | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4663 | by (relation "measure(%(P,i,j). j - i)") auto | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4664 | |
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4665 | declare all_from_to_nat.simps[simp del] | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4666 | |
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4667 | lemma all_from_to_nat_iff_ball: | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4668 |   "all_from_to_nat P i j = (ALL n : {i ..< j}. P n)"
 | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4669 | proof(induct P i j rule:all_from_to_nat.induct) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4670 | case (1 P i j) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4671 | let ?yes = "i < j & P i" | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4672 | show ?case | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4673 | proof (cases) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4674 | assume ?yes | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4675 | hence "all_from_to_nat P i j = (P i & all_from_to_nat P (i+1) j)" | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4676 | by(simp add: all_from_to_nat.simps) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4677 |     also have "... = (P i & (ALL n : {i+1 ..< j}. P n))" using `?yes` 1 by simp
 | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4678 |     also have "... = (ALL n : {i ..< j}. P n)" (is "?L = ?R")
 | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4679 | proof | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4680 | assume L: ?L | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4681 | show ?R | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4682 | proof clarify | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4683 |         fix n assume n: "n : {i..<j}"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4684 | show "P n" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4685 | proof cases | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4686 | assume "n = i" thus "P n" using L by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4687 | next | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4688 | assume "n ~= i" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4689 | hence "i+1 <= n" using n by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4690 | thus "P n" using L n by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4691 | qed | 
| 32422 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4692 | qed | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4693 | next | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4694 | assume R: ?R thus ?L using `?yes` 1 by auto | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4695 | qed | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4696 | finally show ?thesis . | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4697 | next | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4698 | assume "~?yes" thus ?thesis by(auto simp add: all_from_to_nat.simps) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4699 | qed | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4700 | qed | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4701 | |
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4702 | |
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4703 | lemma list_all_iff_all_from_to_nat[code_unfold]: | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4704 | "list_all P [i..<j] = all_from_to_nat P i j" | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4705 | by(simp add: all_from_to_nat_iff_ball list_all_iff) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4706 | |
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4707 | lemma list_ex_iff_not_all_from_to_not_nat[code_unfold]: | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4708 | "list_ex P [i..<j] = (~all_from_to_nat (%x. ~P x) i j)" | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4709 | by(simp add: all_from_to_nat_iff_ball list_ex_iff) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4710 | |
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4711 | |
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4712 | function all_from_to_int :: "(int \<Rightarrow> bool) \<Rightarrow> int \<Rightarrow> int \<Rightarrow> bool" where | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4713 | "all_from_to_int P i j = | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4714 | (if i <= j then if P i then all_from_to_int P (i+1) j else False | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4715 | else True)" | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4716 | by auto | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4717 | termination | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4718 | by (relation "measure(%(P,i,j). nat(j - i + 1))") auto | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4719 | |
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4720 | declare all_from_to_int.simps[simp del] | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4721 | |
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4722 | lemma all_from_to_int_iff_ball: | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4723 |   "all_from_to_int P i j = (ALL n : {i .. j}. P n)"
 | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4724 | proof(induct P i j rule:all_from_to_int.induct) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4725 | case (1 P i j) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4726 | let ?yes = "i <= j & P i" | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4727 | show ?case | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4728 | proof (cases) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4729 | assume ?yes | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4730 | hence "all_from_to_int P i j = (P i & all_from_to_int P (i+1) j)" | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4731 | by(simp add: all_from_to_int.simps) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4732 |     also have "... = (P i & (ALL n : {i+1 .. j}. P n))" using `?yes` 1 by simp
 | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4733 |     also have "... = (ALL n : {i .. j}. P n)" (is "?L = ?R")
 | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4734 | proof | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4735 | assume L: ?L | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4736 | show ?R | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4737 | proof clarify | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4738 |         fix n assume n: "n : {i..j}"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4739 | show "P n" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4740 | proof cases | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4741 | assume "n = i" thus "P n" using L by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4742 | next | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4743 | assume "n ~= i" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4744 | hence "i+1 <= n" using n by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4745 | thus "P n" using L n by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32681diff
changeset | 4746 | qed | 
| 32422 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4747 | qed | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4748 | next | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4749 | assume R: ?R thus ?L using `?yes` 1 by auto | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4750 | qed | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4751 | finally show ?thesis . | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4752 | next | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4753 | assume "~?yes" thus ?thesis by(auto simp add: all_from_to_int.simps) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4754 | qed | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4755 | qed | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4756 | |
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4757 | lemma list_all_iff_all_from_to_int[code_unfold]: | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4758 | "list_all P [i..j] = all_from_to_int P i j" | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4759 | by(simp add: all_from_to_int_iff_ball list_all_iff) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4760 | |
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4761 | lemma list_ex_iff_not_all_from_to_not_int[code_unfold]: | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4762 | "list_ex P [i..j] = (~ all_from_to_int (%x. ~P x) i j)" | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4763 | by(simp add: all_from_to_int_iff_ball list_ex_iff) | 
| 
46fc4d4ff4c0
code generator: quantifiers over {_.._::int} and {_..<_::nat}
 nipkow parents: 
32417diff
changeset | 4764 | |
| 23388 | 4765 | end |