| author | haftmann | 
| Fri, 04 Jul 2014 20:18:47 +0200 | |
| changeset 57512 | cc97b347b301 | 
| parent 56889 | 48a745e1bde7 | 
| child 57514 | bdc2c6b40bf2 | 
| permissions | -rw-r--r-- | 
| 
29197
 
6d4cb27ed19c
adapted HOL source structure to distribution layout
 
haftmann 
parents: 
28952 
diff
changeset
 | 
1  | 
(* Author: Amine Chaieb, TU Muenchen *)  | 
| 26123 | 2  | 
|
3  | 
header{*Fundamental Theorem of Algebra*}
 | 
|
4  | 
||
5  | 
theory Fundamental_Theorem_Algebra  | 
|
| 51537 | 6  | 
imports Polynomial Complex_Main  | 
| 26123 | 7  | 
begin  | 
8  | 
||
| 56778 | 9  | 
subsection {* More lemmas about module of complex numbers *}
 | 
| 26123 | 10  | 
|
11  | 
text{* The triangle inequality for cmod *}
 | 
|
12  | 
lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z"  | 
|
13  | 
using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto  | 
|
14  | 
||
| 56778 | 15  | 
subsection {* Basic lemmas about polynomials *}
 | 
| 26123 | 16  | 
|
17  | 
lemma poly_bound_exists:  | 
|
| 56778 | 18  | 
  fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
 | 
19  | 
shows "\<exists>m. m > 0 \<and> (\<forall>z. norm z \<le> r \<longrightarrow> norm (poly p z) \<le> m)"  | 
|
20  | 
proof (induct p)  | 
|
21  | 
case 0  | 
|
22  | 
then show ?case by (rule exI[where x=1]) simp  | 
|
| 26123 | 23  | 
next  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
24  | 
case (pCons c cs)  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
25  | 
from pCons.hyps obtain m where m: "\<forall>z. norm z \<le> r \<longrightarrow> norm (poly cs z) \<le> m"  | 
| 26123 | 26  | 
by blast  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
27  | 
let ?k = " 1 + norm c + \<bar>r * m\<bar>"  | 
| 56795 | 28  | 
have kp: "?k > 0"  | 
29  | 
using abs_ge_zero[of "r*m"] norm_ge_zero[of c] by arith  | 
|
| 56778 | 30  | 
  {
 | 
31  | 
fix z :: 'a  | 
|
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
32  | 
assume H: "norm z \<le> r"  | 
| 56778 | 33  | 
from m H have th: "norm (poly cs z) \<le> m"  | 
34  | 
by blast  | 
|
| 56795 | 35  | 
from H have rp: "r \<ge> 0"  | 
36  | 
using norm_ge_zero[of z] by arith  | 
|
37  | 
have "norm (poly (pCons c cs) z) \<le> norm c + norm (z * poly cs z)"  | 
|
| 27514 | 38  | 
using norm_triangle_ineq[of c "z* poly cs z"] by simp  | 
| 56778 | 39  | 
also have "\<dots> \<le> norm c + r * m"  | 
40  | 
using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]]  | 
|
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
41  | 
by (simp add: norm_mult)  | 
| 56778 | 42  | 
also have "\<dots> \<le> ?k"  | 
43  | 
by simp  | 
|
44  | 
finally have "norm (poly (pCons c cs) z) \<le> ?k" .  | 
|
45  | 
}  | 
|
| 26123 | 46  | 
with kp show ?case by blast  | 
47  | 
qed  | 
|
48  | 
||
49  | 
||
50  | 
text{* Offsetting the variable in a polynomial gives another of same degree *}
 | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
51  | 
|
| 52380 | 52  | 
definition offset_poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly"  | 
| 56778 | 53  | 
where "offset_poly p h = fold_coeffs (\<lambda>a q. smult h q + pCons a q) p 0"  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
54  | 
|
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
55  | 
lemma offset_poly_0: "offset_poly 0 h = 0"  | 
| 52380 | 56  | 
by (simp add: offset_poly_def)  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
57  | 
|
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
58  | 
lemma offset_poly_pCons:  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
59  | 
"offset_poly (pCons a p) h =  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
60  | 
smult h (offset_poly p h) + pCons a (offset_poly p h)"  | 
| 52380 | 61  | 
by (cases "p = 0 \<and> a = 0") (auto simp add: offset_poly_def)  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
62  | 
|
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
63  | 
lemma offset_poly_single: "offset_poly [:a:] h = [:a:]"  | 
| 56778 | 64  | 
by (simp add: offset_poly_pCons offset_poly_0)  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
65  | 
|
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
66  | 
lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)"  | 
| 56778 | 67  | 
apply (induct p)  | 
68  | 
apply (simp add: offset_poly_0)  | 
|
69  | 
apply (simp add: offset_poly_pCons algebra_simps)  | 
|
70  | 
done  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
71  | 
|
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
72  | 
lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0"  | 
| 56778 | 73  | 
by (induct p arbitrary: a) (simp, force)  | 
| 26123 | 74  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
75  | 
lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0"  | 
| 56778 | 76  | 
apply (safe intro!: offset_poly_0)  | 
| 56795 | 77  | 
apply (induct p)  | 
78  | 
apply simp  | 
|
| 56778 | 79  | 
apply (simp add: offset_poly_pCons)  | 
80  | 
apply (frule offset_poly_eq_0_lemma, simp)  | 
|
81  | 
done  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
82  | 
|
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
83  | 
lemma degree_offset_poly: "degree (offset_poly p h) = degree p"  | 
| 56778 | 84  | 
apply (induct p)  | 
85  | 
apply (simp add: offset_poly_0)  | 
|
86  | 
apply (case_tac "p = 0")  | 
|
87  | 
apply (simp add: offset_poly_0 offset_poly_pCons)  | 
|
88  | 
apply (simp add: offset_poly_pCons)  | 
|
89  | 
apply (subst degree_add_eq_right)  | 
|
90  | 
apply (rule le_less_trans [OF degree_smult_le])  | 
|
91  | 
apply (simp add: offset_poly_eq_0_iff)  | 
|
92  | 
apply (simp add: offset_poly_eq_0_iff)  | 
|
93  | 
done  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
94  | 
|
| 56778 | 95  | 
definition "psize p = (if p = 0 then 0 else Suc (degree p))"  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
96  | 
|
| 29538 | 97  | 
lemma psize_eq_0_iff [simp]: "psize p = 0 \<longleftrightarrow> p = 0"  | 
98  | 
unfolding psize_def by simp  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
99  | 
|
| 56778 | 100  | 
lemma poly_offset:  | 
101  | 
fixes p :: "'a::comm_ring_1 poly"  | 
|
102  | 
shows "\<exists>q. psize q = psize p \<and> (\<forall>x. poly q x = poly p (a + x))"  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
103  | 
proof (intro exI conjI)  | 
| 29538 | 104  | 
show "psize (offset_poly p a) = psize p"  | 
105  | 
unfolding psize_def  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
106  | 
by (simp add: offset_poly_eq_0_iff degree_offset_poly)  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
107  | 
show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)"  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
108  | 
by (simp add: poly_offset_poly)  | 
| 26123 | 109  | 
qed  | 
110  | 
||
111  | 
text{* An alternative useful formulation of completeness of the reals *}
 | 
|
| 56778 | 112  | 
lemma real_sup_exists:  | 
113  | 
assumes ex: "\<exists>x. P x"  | 
|
114  | 
and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z"  | 
|
115  | 
shows "\<exists>s::real. \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s"  | 
|
| 
54263
 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 
hoelzl 
parents: 
54230 
diff
changeset
 | 
116  | 
proof  | 
| 
 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 
hoelzl 
parents: 
54230 
diff
changeset
 | 
117  | 
from bz have "bdd_above (Collect P)"  | 
| 
 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 
hoelzl 
parents: 
54230 
diff
changeset
 | 
118  | 
by (force intro: less_imp_le)  | 
| 
 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 
hoelzl 
parents: 
54230 
diff
changeset
 | 
119  | 
then show "\<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < Sup (Collect P)"  | 
| 
 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 
hoelzl 
parents: 
54230 
diff
changeset
 | 
120  | 
using ex bz by (subst less_cSup_iff) auto  | 
| 26123 | 121  | 
qed  | 
122  | 
||
| 27445 | 123  | 
subsection {* Fundamental theorem of algebra *}
 | 
| 26123 | 124  | 
lemma unimodular_reduce_norm:  | 
125  | 
assumes md: "cmod z = 1"  | 
|
126  | 
shows "cmod (z + 1) < 1 \<or> cmod (z - 1) < 1 \<or> cmod (z + ii) < 1 \<or> cmod (z - ii) < 1"  | 
|
| 56778 | 127  | 
proof -  | 
128  | 
obtain x y where z: "z = Complex x y "  | 
|
129  | 
by (cases z) auto  | 
|
130  | 
from md z have xy: "x\<^sup>2 + y\<^sup>2 = 1"  | 
|
131  | 
by (simp add: cmod_def)  | 
|
132  | 
  {
 | 
|
133  | 
assume C: "cmod (z + 1) \<ge> 1" "cmod (z - 1) \<ge> 1" "cmod (z + ii) \<ge> 1" "cmod (z - ii) \<ge> 1"  | 
|
134  | 
from C z xy have "2 * x \<le> 1" "2 * x \<ge> -1" "2 * y \<le> 1" "2 * y \<ge> -1"  | 
|
| 29667 | 135  | 
by (simp_all add: cmod_def power2_eq_square algebra_simps)  | 
| 56778 | 136  | 
then have "abs (2 * x) \<le> 1" "abs (2 * y) \<le> 1"  | 
137  | 
by simp_all  | 
|
138  | 
then have "(abs (2 * x))\<^sup>2 \<le> 1\<^sup>2" "(abs (2 * y))\<^sup>2 \<le> 1\<^sup>2"  | 
|
| 26123 | 139  | 
by - (rule power_mono, simp, simp)+  | 
| 56778 | 140  | 
then have th0: "4 * x\<^sup>2 \<le> 1" "4 * y\<^sup>2 \<le> 1"  | 
| 51541 | 141  | 
by (simp_all add: power_mult_distrib)  | 
| 56778 | 142  | 
from add_mono[OF th0] xy have False by simp  | 
143  | 
}  | 
|
144  | 
then show ?thesis  | 
|
145  | 
unfolding linorder_not_le[symmetric] by blast  | 
|
| 26123 | 146  | 
qed  | 
147  | 
||
| 26135 | 148  | 
text{* Hence we can always reduce modulus of @{text "1 + b z^n"} if nonzero *}
 | 
| 26123 | 149  | 
lemma reduce_poly_simple:  | 
| 56778 | 150  | 
assumes b: "b \<noteq> 0"  | 
151  | 
and n: "n \<noteq> 0"  | 
|
| 26123 | 152  | 
shows "\<exists>z. cmod (1 + b * z^n) < 1"  | 
| 56778 | 153  | 
using n  | 
154  | 
proof (induct n rule: nat_less_induct)  | 
|
| 26123 | 155  | 
fix n  | 
| 56778 | 156  | 
assume IH: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>z. cmod (1 + b * z ^ m) < 1)"  | 
157  | 
assume n: "n \<noteq> 0"  | 
|
| 26123 | 158  | 
let ?P = "\<lambda>z n. cmod (1 + b * z ^ n) < 1"  | 
| 56778 | 159  | 
  {
 | 
160  | 
assume e: "even n"  | 
|
161  | 
then have "\<exists>m. n = 2 * m"  | 
|
162  | 
by presburger  | 
|
163  | 
then obtain m where m: "n = 2 * m"  | 
|
164  | 
by blast  | 
|
165  | 
from n m have "m \<noteq> 0" "m < n"  | 
|
166  | 
by presburger+  | 
|
167  | 
with IH[rule_format, of m] obtain z where z: "?P z m"  | 
|
168  | 
by blast  | 
|
| 56795 | 169  | 
from z have "?P (csqrt z) n"  | 
| 
56889
 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 
hoelzl 
parents: 
56795 
diff
changeset
 | 
170  | 
by (simp add: m power_mult power2_csqrt)  | 
| 56778 | 171  | 
then have "\<exists>z. ?P z n" ..  | 
172  | 
}  | 
|
| 26123 | 173  | 
moreover  | 
| 56778 | 174  | 
  {
 | 
175  | 
assume o: "odd n"  | 
|
| 26123 | 176  | 
have th0: "cmod (complex_of_real (cmod b) / b) = 1"  | 
| 36975 | 177  | 
using b by (simp add: norm_divide)  | 
| 56778 | 178  | 
from o have "\<exists>m. n = Suc (2 * m)"  | 
179  | 
by presburger+  | 
|
| 56795 | 180  | 
then obtain m where m: "n = Suc (2 * m)"  | 
| 56778 | 181  | 
by blast  | 
| 26123 | 182  | 
from unimodular_reduce_norm[OF th0] o  | 
183  | 
have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1"  | 
|
| 56795 | 184  | 
apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1")  | 
185  | 
apply (rule_tac x="1" in exI)  | 
|
186  | 
apply simp  | 
|
187  | 
apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1")  | 
|
188  | 
apply (rule_tac x="-1" in exI)  | 
|
189  | 
apply simp  | 
|
| 26123 | 190  | 
apply (cases "cmod (complex_of_real (cmod b) / b + ii) < 1")  | 
| 56795 | 191  | 
apply (cases "even m")  | 
192  | 
apply (rule_tac x="ii" in exI)  | 
|
193  | 
apply (simp add: m power_mult)  | 
|
194  | 
apply (rule_tac x="- ii" in exI)  | 
|
195  | 
apply (simp add: m power_mult)  | 
|
196  | 
apply (cases "even m")  | 
|
197  | 
apply (rule_tac x="- ii" in exI)  | 
|
198  | 
apply (simp add: m power_mult)  | 
|
| 
54489
 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 
haftmann 
parents: 
54263 
diff
changeset
 | 
199  | 
apply (auto simp add: m power_mult)  | 
| 
 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 
haftmann 
parents: 
54263 
diff
changeset
 | 
200  | 
apply (rule_tac x="ii" in exI)  | 
| 
 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 
haftmann 
parents: 
54263 
diff
changeset
 | 
201  | 
apply (auto simp add: m power_mult)  | 
| 26123 | 202  | 
done  | 
| 56778 | 203  | 
then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1"  | 
204  | 
by blast  | 
|
| 26123 | 205  | 
let ?w = "v / complex_of_real (root n (cmod b))"  | 
206  | 
from odd_real_root_pow[OF o, of "cmod b"]  | 
|
| 30488 | 207  | 
have th1: "?w ^ n = v^n / complex_of_real (cmod b)"  | 
| 
56889
 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 
hoelzl 
parents: 
56795 
diff
changeset
 | 
208  | 
by (simp add: power_divide of_real_power[symmetric])  | 
| 56778 | 209  | 
have th2:"cmod (complex_of_real (cmod b) / b) = 1"  | 
210  | 
using b by (simp add: norm_divide)  | 
|
211  | 
then have th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0"  | 
|
212  | 
by simp  | 
|
| 26123 | 213  | 
have th4: "cmod (complex_of_real (cmod b) / b) *  | 
| 56778 | 214  | 
cmod (1 + b * (v ^ n / complex_of_real (cmod b))) <  | 
215  | 
cmod (complex_of_real (cmod b) / b) * 1"  | 
|
| 
49962
 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 
webertj 
parents: 
46240 
diff
changeset
 | 
216  | 
apply (simp only: norm_mult[symmetric] distrib_left)  | 
| 56778 | 217  | 
using b v  | 
218  | 
apply (simp add: th2)  | 
|
219  | 
done  | 
|
| 26123 | 220  | 
from mult_less_imp_less_left[OF th4 th3]  | 
| 30488 | 221  | 
have "?P ?w n" unfolding th1 .  | 
| 56778 | 222  | 
then have "\<exists>z. ?P z n" ..  | 
223  | 
}  | 
|
| 26123 | 224  | 
ultimately show "\<exists>z. ?P z n" by blast  | 
225  | 
qed  | 
|
226  | 
||
227  | 
text{* Bolzano-Weierstrass type property for closed disc in complex plane. *}
 | 
|
228  | 
||
| 56778 | 229  | 
lemma metric_bound_lemma: "cmod (x - y) \<le> \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>"  | 
| 56795 | 230  | 
using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y"]  | 
| 26123 | 231  | 
unfolding cmod_def by simp  | 
232  | 
||
233  | 
lemma bolzano_weierstrass_complex_disc:  | 
|
234  | 
assumes r: "\<forall>n. cmod (s n) \<le> r"  | 
|
235  | 
shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)"  | 
|
236  | 
proof-  | 
|
| 56778 | 237  | 
from seq_monosub[of "Re \<circ> s"]  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
238  | 
obtain f where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))"  | 
| 26123 | 239  | 
unfolding o_def by blast  | 
| 56778 | 240  | 
from seq_monosub[of "Im \<circ> s \<circ> f"]  | 
241  | 
obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s (f (g n))))"  | 
|
242  | 
unfolding o_def by blast  | 
|
243  | 
let ?h = "f \<circ> g"  | 
|
244  | 
from r[rule_format, of 0] have rp: "r \<ge> 0"  | 
|
245  | 
using norm_ge_zero[of "s 0"] by arith  | 
|
246  | 
have th: "\<forall>n. r + 1 \<ge> \<bar>Re (s n)\<bar>"  | 
|
| 26123 | 247  | 
proof  | 
248  | 
fix n  | 
|
| 56778 | 249  | 
from abs_Re_le_cmod[of "s n"] r[rule_format, of n]  | 
250  | 
show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith  | 
|
| 26123 | 251  | 
qed  | 
| 56778 | 252  | 
have conv1: "convergent (\<lambda>n. Re (s (f n)))"  | 
| 26123 | 253  | 
apply (rule Bseq_monoseq_convergent)  | 
254  | 
apply (simp add: Bseq_def)  | 
|
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
255  | 
apply (metis gt_ex le_less_linear less_trans order.trans th)  | 
| 56778 | 256  | 
apply (rule f(2))  | 
257  | 
done  | 
|
258  | 
have th: "\<forall>n. r + 1 \<ge> \<bar>Im (s n)\<bar>"  | 
|
| 26123 | 259  | 
proof  | 
260  | 
fix n  | 
|
| 56778 | 261  | 
from abs_Im_le_cmod[of "s n"] r[rule_format, of n]  | 
262  | 
show "\<bar>Im (s n)\<bar> \<le> r + 1"  | 
|
263  | 
by arith  | 
|
| 26123 | 264  | 
qed  | 
265  | 
||
266  | 
have conv2: "convergent (\<lambda>n. Im (s (f (g n))))"  | 
|
267  | 
apply (rule Bseq_monoseq_convergent)  | 
|
268  | 
apply (simp add: Bseq_def)  | 
|
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
269  | 
apply (metis gt_ex le_less_linear less_trans order.trans th)  | 
| 56778 | 270  | 
apply (rule g(2))  | 
271  | 
done  | 
|
| 26123 | 272  | 
|
| 30488 | 273  | 
from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x"  | 
274  | 
by blast  | 
|
| 56795 | 275  | 
then have x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Re (s (f n)) - x\<bar> < r"  | 
| 31337 | 276  | 
unfolding LIMSEQ_iff real_norm_def .  | 
| 26123 | 277  | 
|
| 30488 | 278  | 
from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y"  | 
279  | 
by blast  | 
|
| 56795 | 280  | 
then have y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Im (s (f (g n))) - y\<bar> < r"  | 
| 31337 | 281  | 
unfolding LIMSEQ_iff real_norm_def .  | 
| 26123 | 282  | 
let ?w = "Complex x y"  | 
| 56778 | 283  | 
from f(1) g(1) have hs: "subseq ?h"  | 
284  | 
unfolding subseq_def by auto  | 
|
285  | 
  {
 | 
|
286  | 
fix e :: real  | 
|
287  | 
assume ep: "e > 0"  | 
|
| 56795 | 288  | 
then have e2: "e/2 > 0"  | 
289  | 
by simp  | 
|
| 26123 | 290  | 
from x[rule_format, OF e2] y[rule_format, OF e2]  | 
| 56778 | 291  | 
obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2"  | 
| 56795 | 292  | 
and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2"  | 
293  | 
by blast  | 
|
| 56778 | 294  | 
    {
 | 
295  | 
fix n  | 
|
296  | 
assume nN12: "n \<ge> N1 + N2"  | 
|
297  | 
then have nN1: "g n \<ge> N1" and nN2: "n \<ge> N2"  | 
|
298  | 
using seq_suble[OF g(1), of n] by arith+  | 
|
| 26123 | 299  | 
from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]]  | 
| 30488 | 300  | 
have "cmod (s (?h n) - ?w) < e"  | 
| 56778 | 301  | 
using metric_bound_lemma[of "s (f (g n))" ?w] by simp  | 
302  | 
}  | 
|
| 56795 | 303  | 
then have "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e"  | 
304  | 
by blast  | 
|
| 56778 | 305  | 
}  | 
306  | 
with hs show ?thesis by blast  | 
|
| 26123 | 307  | 
qed  | 
308  | 
||
309  | 
text{* Polynomial is continuous. *}
 | 
|
310  | 
||
311  | 
lemma poly_cont:  | 
|
| 56778 | 312  | 
  fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
 | 
| 30488 | 313  | 
assumes ep: "e > 0"  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
314  | 
shows "\<exists>d >0. \<forall>w. 0 < norm (w - z) \<and> norm (w - z) < d \<longrightarrow> norm (poly p w - poly p z) < e"  | 
| 56778 | 315  | 
proof -  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
316  | 
obtain q where q: "degree q = degree p" "\<And>x. poly q x = poly p (z + x)"  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
317  | 
proof  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
318  | 
show "degree (offset_poly p z) = degree p"  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
319  | 
by (rule degree_offset_poly)  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
320  | 
show "\<And>x. poly (offset_poly p z) x = poly p (z + x)"  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
321  | 
by (rule poly_offset_poly)  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
322  | 
qed  | 
| 56778 | 323  | 
have th: "\<And>w. poly q (w - z) = poly p w"  | 
324  | 
using q(2)[of "w - z" for w] by simp  | 
|
| 26123 | 325  | 
show ?thesis unfolding th[symmetric]  | 
| 56778 | 326  | 
proof (induct q)  | 
327  | 
case 0  | 
|
328  | 
then show ?case  | 
|
329  | 
using ep by auto  | 
|
| 26123 | 330  | 
next  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
331  | 
case (pCons c cs)  | 
| 30488 | 332  | 
from poly_bound_exists[of 1 "cs"]  | 
| 56778 | 333  | 
obtain m where m: "m > 0" "\<And>z. norm z \<le> 1 \<Longrightarrow> norm (poly cs z) \<le> m"  | 
334  | 
by blast  | 
|
335  | 
from ep m(1) have em0: "e/m > 0"  | 
|
336  | 
by (simp add: field_simps)  | 
|
337  | 
have one0: "1 > (0::real)"  | 
|
338  | 
by arith  | 
|
| 30488 | 339  | 
from real_lbound_gt_zero[OF one0 em0]  | 
| 56778 | 340  | 
obtain d where d: "d > 0" "d < 1" "d < e / m"  | 
341  | 
by blast  | 
|
342  | 
from d(1,3) m(1) have dm: "d * m > 0" "d * m < e"  | 
|
| 56544 | 343  | 
by (simp_all add: field_simps)  | 
| 30488 | 344  | 
show ?case  | 
| 56778 | 345  | 
proof (rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult)  | 
346  | 
fix d w  | 
|
347  | 
assume H: "d > 0" "d < 1" "d < e/m" "w \<noteq> z" "norm (w - z) < d"  | 
|
348  | 
then have d1: "norm (w-z) \<le> 1" "d \<ge> 0"  | 
|
349  | 
by simp_all  | 
|
350  | 
from H(3) m(1) have dme: "d*m < e"  | 
|
351  | 
by (simp add: field_simps)  | 
|
352  | 
from H have th: "norm (w - z) \<le> d"  | 
|
353  | 
by simp  | 
|
354  | 
from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme  | 
|
355  | 
show "norm (w - z) * norm (poly cs (w - z)) < e"  | 
|
356  | 
by simp  | 
|
| 26123 | 357  | 
qed  | 
| 56778 | 358  | 
qed  | 
| 26123 | 359  | 
qed  | 
360  | 
||
| 30488 | 361  | 
text{* Hence a polynomial attains minimum on a closed disc
 | 
| 26123 | 362  | 
in the complex plane. *}  | 
| 56778 | 363  | 
lemma poly_minimum_modulus_disc: "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)"  | 
364  | 
proof -  | 
|
365  | 
  {
 | 
|
366  | 
assume "\<not> r \<ge> 0"  | 
|
367  | 
then have ?thesis  | 
|
368  | 
by (metis norm_ge_zero order.trans)  | 
|
369  | 
}  | 
|
| 26123 | 370  | 
moreover  | 
| 56778 | 371  | 
  {
 | 
372  | 
assume rp: "r \<ge> 0"  | 
|
373  | 
from rp have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))"  | 
|
374  | 
by simp  | 
|
375  | 
then have mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x"  | 
|
376  | 
by blast  | 
|
377  | 
    {
 | 
|
378  | 
fix x z  | 
|
379  | 
assume H: "cmod z \<le> r" "cmod (poly p z) = - x" "\<not> x < 1"  | 
|
380  | 
then have "- x < 0 "  | 
|
381  | 
by arith  | 
|
382  | 
with H(2) norm_ge_zero[of "poly p z"] have False  | 
|
383  | 
by simp  | 
|
384  | 
}  | 
|
385  | 
then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z"  | 
|
386  | 
by blast  | 
|
| 30488 | 387  | 
from real_sup_exists[OF mth1 mth2] obtain s where  | 
| 56778 | 388  | 
s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow> y < s" by blast  | 
389  | 
let ?m = "- s"  | 
|
390  | 
    {
 | 
|
391  | 
fix y  | 
|
392  | 
from s[rule_format, of "-y"]  | 
|
393  | 
have "(\<exists>z x. cmod z \<le> r \<and> - (- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y"  | 
|
394  | 
unfolding minus_less_iff[of y ] equation_minus_iff by blast  | 
|
395  | 
}  | 
|
| 26123 | 396  | 
note s1 = this[unfolded minus_minus]  | 
| 30488 | 397  | 
from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m"  | 
| 26123 | 398  | 
by auto  | 
| 56778 | 399  | 
    {
 | 
400  | 
fix n :: nat  | 
|
| 30488 | 401  | 
from s1[rule_format, of "?m + 1/real (Suc n)"]  | 
| 26123 | 402  | 
have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)"  | 
| 56778 | 403  | 
by simp  | 
404  | 
}  | 
|
405  | 
then have th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" ..  | 
|
| 30488 | 406  | 
from choice[OF th] obtain g where  | 
| 56778 | 407  | 
g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m + 1 /real(Suc n)"  | 
| 26123 | 408  | 
by blast  | 
| 30488 | 409  | 
from bolzano_weierstrass_complex_disc[OF g(1)]  | 
| 26123 | 410  | 
obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e"  | 
| 30488 | 411  | 
by blast  | 
| 56778 | 412  | 
    {
 | 
413  | 
fix w  | 
|
| 26123 | 414  | 
assume wr: "cmod w \<le> r"  | 
415  | 
let ?e = "\<bar>cmod (poly p z) - ?m\<bar>"  | 
|
| 56778 | 416  | 
      {
 | 
417  | 
assume e: "?e > 0"  | 
|
| 56795 | 418  | 
then have e2: "?e/2 > 0"  | 
419  | 
by simp  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
420  | 
from poly_cont[OF e2, of z p] obtain d where  | 
| 56778 | 421  | 
d: "d > 0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2"  | 
422  | 
by blast  | 
|
423  | 
        {
 | 
|
424  | 
fix w  | 
|
425  | 
assume w: "cmod (w - z) < d"  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
426  | 
have "cmod(poly p w - poly p z) < ?e / 2"  | 
| 56778 | 427  | 
using d(2)[rule_format, of w] w e by (cases "w = z") simp_all  | 
428  | 
}  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
429  | 
note th1 = this  | 
| 30488 | 430  | 
|
| 56778 | 431  | 
from fz(2) d(1) obtain N1 where N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d"  | 
432  | 
by blast  | 
|
433  | 
from reals_Archimedean2[of "2/?e"] obtain N2 :: nat where N2: "2/?e < real N2"  | 
|
434  | 
by blast  | 
|
435  | 
have th2: "cmod (poly p (g (f (N1 + N2))) - poly p z) < ?e/2"  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
436  | 
using N1[rule_format, of "N1 + N2"] th1 by simp  | 
| 56778 | 437  | 
        {
 | 
438  | 
fix a b e2 m :: real  | 
|
439  | 
have "a < e2 \<Longrightarrow> \<bar>b - m\<bar> < e2 \<Longrightarrow> 2 * e2 \<le> \<bar>b - m\<bar> + a \<Longrightarrow> False"  | 
|
440  | 
by arith  | 
|
441  | 
}  | 
|
442  | 
note th0 = this  | 
|
443  | 
have ath: "\<And>m x e::real. m \<le> x \<Longrightarrow> x < m + e \<Longrightarrow> \<bar>x - m\<bar> < e"  | 
|
444  | 
by arith  | 
|
445  | 
from s1m[OF g(1)[rule_format]] have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" .  | 
|
| 56795 | 446  | 
from seq_suble[OF fz(1), of "N1 + N2"]  | 
| 56778 | 447  | 
have th00: "real (Suc (N1 + N2)) \<le> real (Suc (f (N1 + N2)))"  | 
448  | 
by simp  | 
|
449  | 
have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1 + N2)) > 0"  | 
|
450  | 
using N2 by auto  | 
|
451  | 
from frac_le[OF th000 th00]  | 
|
| 56795 | 452  | 
have th00: "?m + 1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))"  | 
| 56778 | 453  | 
by simp  | 
454  | 
from g(2)[rule_format, of "f (N1 + N2)"]  | 
|
455  | 
have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" .  | 
|
456  | 
from order_less_le_trans[OF th01 th00]  | 
|
| 56795 | 457  | 
have th32: "cmod (poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" .  | 
| 56778 | 458  | 
from N2 have "2/?e < real (Suc (N1 + N2))"  | 
459  | 
by arith  | 
|
460  | 
with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"]  | 
|
461  | 
have "?e/2 > 1/ real (Suc (N1 + N2))"  | 
|
462  | 
by (simp add: inverse_eq_divide)  | 
|
463  | 
with ath[OF th31 th32]  | 
|
| 56795 | 464  | 
have thc1: "\<bar>cmod (poly p (g (f (N1 + N2)))) - ?m\<bar> < ?e/2"  | 
| 56778 | 465  | 
by arith  | 
466  | 
have ath2: "\<And>a b c m::real. \<bar>a - b\<bar> \<le> c \<Longrightarrow> \<bar>b - m\<bar> \<le> \<bar>a - m\<bar> + c"  | 
|
467  | 
by arith  | 
|
468  | 
have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar> \<le>  | 
|
469  | 
cmod (poly p (g (f (N1 + N2))) - poly p z)"  | 
|
470  | 
by (simp add: norm_triangle_ineq3)  | 
|
471  | 
from ath2[OF th22, of ?m]  | 
|
472  | 
have thc2: "2 * (?e/2) \<le>  | 
|
473  | 
\<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)"  | 
|
474  | 
by simp  | 
|
475  | 
from th0[OF th2 thc1 thc2] have False .  | 
|
476  | 
}  | 
|
477  | 
then have "?e = 0"  | 
|
478  | 
by auto  | 
|
479  | 
then have "cmod (poly p z) = ?m"  | 
|
480  | 
by simp  | 
|
481  | 
with s1m[OF wr] have "cmod (poly p z) \<le> cmod (poly p w)"  | 
|
482  | 
by simp  | 
|
483  | 
}  | 
|
484  | 
then have ?thesis by blast  | 
|
485  | 
}  | 
|
| 26123 | 486  | 
ultimately show ?thesis by blast  | 
487  | 
qed  | 
|
488  | 
||
489  | 
text {* Nonzero polynomial in z goes to infinity as z does. *}
 | 
|
490  | 
||
491  | 
lemma poly_infinity:  | 
|
| 56778 | 492  | 
  fixes p:: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
 | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
493  | 
assumes ex: "p \<noteq> 0"  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
494  | 
shows "\<exists>r. \<forall>z. r \<le> norm z \<longrightarrow> d \<le> norm (poly (pCons a p) z)"  | 
| 56778 | 495  | 
using ex  | 
496  | 
proof (induct p arbitrary: a d)  | 
|
| 56795 | 497  | 
case 0  | 
498  | 
then show ?case by simp  | 
|
499  | 
next  | 
|
| 30488 | 500  | 
case (pCons c cs a d)  | 
| 56795 | 501  | 
show ?case  | 
502  | 
proof (cases "cs = 0")  | 
|
503  | 
case False  | 
|
| 56778 | 504  | 
with pCons.hyps obtain r where r: "\<forall>z. r \<le> norm z \<longrightarrow> d + norm a \<le> norm (poly (pCons c cs) z)"  | 
505  | 
by blast  | 
|
| 26123 | 506  | 
let ?r = "1 + \<bar>r\<bar>"  | 
| 56778 | 507  | 
    {
 | 
| 56795 | 508  | 
fix z :: 'a  | 
| 56778 | 509  | 
assume h: "1 + \<bar>r\<bar> \<le> norm z"  | 
| 56795 | 510  | 
have r0: "r \<le> norm z"  | 
511  | 
using h by arith  | 
|
| 56778 | 512  | 
from r[rule_format, OF r0] have th0: "d + norm a \<le> 1 * norm(poly (pCons c cs) z)"  | 
513  | 
by arith  | 
|
514  | 
from h have z1: "norm z \<ge> 1"  | 
|
515  | 
by arith  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
516  | 
from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]]  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
517  | 
have th1: "d \<le> norm(z * poly (pCons c cs) z) - norm a"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
518  | 
unfolding norm_mult by (simp add: algebra_simps)  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
519  | 
from norm_diff_ineq[of "z * poly (pCons c cs) z" a]  | 
| 56795 | 520  | 
have th2: "norm (z * poly (pCons c cs) z) - norm a \<le> norm (poly (pCons a (pCons c cs)) z)"  | 
| 51541 | 521  | 
by (simp add: algebra_simps)  | 
| 56795 | 522  | 
from th1 th2 have "d \<le> norm (poly (pCons a (pCons c cs)) z)"  | 
523  | 
by arith  | 
|
| 56778 | 524  | 
}  | 
| 56795 | 525  | 
then show ?thesis by blast  | 
526  | 
next  | 
|
527  | 
case True  | 
|
| 56778 | 528  | 
with pCons.prems have c0: "c \<noteq> 0"  | 
529  | 
by simp  | 
|
530  | 
    {
 | 
|
| 56795 | 531  | 
fix z :: 'a  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
532  | 
assume h: "(\<bar>d\<bar> + norm a) / norm c \<le> norm z"  | 
| 56778 | 533  | 
from c0 have "norm c > 0"  | 
534  | 
by simp  | 
|
| 56403 | 535  | 
from h c0 have th0: "\<bar>d\<bar> + norm a \<le> norm (z * c)"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
536  | 
by (simp add: field_simps norm_mult)  | 
| 56778 | 537  | 
have ath: "\<And>mzh mazh ma. mzh \<le> mazh + ma \<Longrightarrow> \<bar>d\<bar> + ma \<le> mzh \<Longrightarrow> d \<le> mazh"  | 
538  | 
by arith  | 
|
539  | 
from norm_diff_ineq[of "z * c" a] have th1: "norm (z * c) \<le> norm (a + z * c) + norm a"  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
540  | 
by (simp add: algebra_simps)  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
541  | 
from ath[OF th1 th0] have "d \<le> norm (poly (pCons a (pCons c cs)) z)"  | 
| 56795 | 542  | 
using True by simp  | 
| 56778 | 543  | 
}  | 
| 56795 | 544  | 
then show ?thesis by blast  | 
545  | 
qed  | 
|
546  | 
qed  | 
|
| 26123 | 547  | 
|
548  | 
text {* Hence polynomial's modulus attains its minimum somewhere. *}
 | 
|
| 56778 | 549  | 
lemma poly_minimum_modulus: "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)"  | 
550  | 
proof (induct p)  | 
|
551  | 
case 0  | 
|
552  | 
then show ?case by simp  | 
|
553  | 
next  | 
|
| 30488 | 554  | 
case (pCons c cs)  | 
| 56778 | 555  | 
show ?case  | 
556  | 
proof (cases "cs = 0")  | 
|
557  | 
case False  | 
|
558  | 
from poly_infinity[OF False, of "cmod (poly (pCons c cs) 0)" c]  | 
|
559  | 
obtain r where r: "\<And>z. r \<le> cmod z \<Longrightarrow> cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)"  | 
|
560  | 
by blast  | 
|
561  | 
have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>"  | 
|
562  | 
by arith  | 
|
| 30488 | 563  | 
from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"]  | 
| 56778 | 564  | 
obtain v where v: "\<And>w. cmod w \<le> \<bar>r\<bar> \<Longrightarrow> cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)"  | 
565  | 
by blast  | 
|
566  | 
    {
 | 
|
567  | 
fix z  | 
|
568  | 
assume z: "r \<le> cmod z"  | 
|
569  | 
from v[of 0] r[OF z] have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)"  | 
|
570  | 
by simp  | 
|
571  | 
}  | 
|
| 26123 | 572  | 
note v0 = this  | 
| 56778 | 573  | 
from v0 v ath[of r] show ?thesis  | 
574  | 
by blast  | 
|
575  | 
next  | 
|
576  | 
case True  | 
|
577  | 
with pCons.hyps show ?thesis by simp  | 
|
578  | 
qed  | 
|
579  | 
qed  | 
|
| 26123 | 580  | 
|
581  | 
text{* Constant function (non-syntactic characterization). *}
 | 
|
| 56795 | 582  | 
definition "constant f \<longleftrightarrow> (\<forall>x y. f x = f y)"  | 
| 26123 | 583  | 
|
| 56778 | 584  | 
lemma nonconstant_length: "\<not> constant (poly p) \<Longrightarrow> psize p \<ge> 2"  | 
585  | 
by (induct p) (auto simp: constant_def psize_def)  | 
|
| 30488 | 586  | 
|
| 56795 | 587  | 
lemma poly_replicate_append: "poly (monom 1 n * p) (x::'a::comm_ring_1) = x^n * poly p x"  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
588  | 
by (simp add: poly_monom)  | 
| 26123 | 589  | 
|
| 30488 | 590  | 
text {* Decomposition of polynomial, skipping zero coefficients
 | 
| 26123 | 591  | 
after the first. *}  | 
592  | 
||
593  | 
lemma poly_decompose_lemma:  | 
|
| 56778 | 594  | 
assumes nz: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly p z = (0::'a::idom))"  | 
| 56795 | 595  | 
shows "\<exists>k a q. a \<noteq> 0 \<and> Suc (psize q + k) = psize p \<and> (\<forall>z. poly p z = z^k * poly (pCons a q) z)"  | 
| 56778 | 596  | 
unfolding psize_def  | 
597  | 
using nz  | 
|
598  | 
proof (induct p)  | 
|
599  | 
case 0  | 
|
600  | 
then show ?case by simp  | 
|
| 26123 | 601  | 
next  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
602  | 
case (pCons c cs)  | 
| 56778 | 603  | 
show ?case  | 
604  | 
proof (cases "c = 0")  | 
|
605  | 
case True  | 
|
606  | 
from pCons.hyps pCons.prems True show ?thesis  | 
|
| 
32456
 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 
nipkow 
parents: 
31337 
diff
changeset
 | 
607  | 
apply (auto)  | 
| 26123 | 608  | 
apply (rule_tac x="k+1" in exI)  | 
609  | 
apply (rule_tac x="a" in exI, clarsimp)  | 
|
610  | 
apply (rule_tac x="q" in exI)  | 
|
| 56778 | 611  | 
apply auto  | 
612  | 
done  | 
|
613  | 
next  | 
|
614  | 
case False  | 
|
615  | 
show ?thesis  | 
|
| 26123 | 616  | 
apply (rule exI[where x=0])  | 
| 56778 | 617  | 
apply (rule exI[where x=c], auto simp add: False)  | 
618  | 
done  | 
|
619  | 
qed  | 
|
| 26123 | 620  | 
qed  | 
621  | 
||
622  | 
lemma poly_decompose:  | 
|
| 56776 | 623  | 
assumes nc: "\<not> constant (poly p)"  | 
| 56778 | 624  | 
shows "\<exists>k a q. a \<noteq> (0::'a::idom) \<and> k \<noteq> 0 \<and>  | 
| 30488 | 625  | 
psize q + k + 1 = psize p \<and>  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
626  | 
(\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)"  | 
| 56776 | 627  | 
using nc  | 
628  | 
proof (induct p)  | 
|
629  | 
case 0  | 
|
630  | 
then show ?case  | 
|
631  | 
by (simp add: constant_def)  | 
|
| 26123 | 632  | 
next  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
633  | 
case (pCons c cs)  | 
| 56776 | 634  | 
  {
 | 
| 56795 | 635  | 
assume C: "\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0"  | 
| 56776 | 636  | 
    {
 | 
637  | 
fix x y  | 
|
638  | 
from C have "poly (pCons c cs) x = poly (pCons c cs) y"  | 
|
639  | 
by (cases "x = 0") auto  | 
|
640  | 
}  | 
|
| 56778 | 641  | 
with pCons.prems have False  | 
642  | 
by (auto simp add: constant_def)  | 
|
| 56776 | 643  | 
}  | 
644  | 
then have th: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0)" ..  | 
|
| 30488 | 645  | 
from poly_decompose_lemma[OF th]  | 
646  | 
show ?case  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
647  | 
apply clarsimp  | 
| 26123 | 648  | 
apply (rule_tac x="k+1" in exI)  | 
649  | 
apply (rule_tac x="a" in exI)  | 
|
650  | 
apply simp  | 
|
651  | 
apply (rule_tac x="q" in exI)  | 
|
| 29538 | 652  | 
apply (auto simp add: psize_def split: if_splits)  | 
| 26123 | 653  | 
done  | 
654  | 
qed  | 
|
655  | 
||
| 34915 | 656  | 
text{* Fundamental theorem of algebra *}
 | 
| 26123 | 657  | 
|
658  | 
lemma fundamental_theorem_of_algebra:  | 
|
| 56776 | 659  | 
assumes nc: "\<not> constant (poly p)"  | 
| 26123 | 660  | 
shows "\<exists>z::complex. poly p z = 0"  | 
| 56776 | 661  | 
using nc  | 
662  | 
proof (induct "psize p" arbitrary: p rule: less_induct)  | 
|
| 34915 | 663  | 
case less  | 
| 26123 | 664  | 
let ?p = "poly p"  | 
665  | 
let ?ths = "\<exists>z. ?p z = 0"  | 
|
666  | 
||
| 34915 | 667  | 
from nonconstant_length[OF less(2)] have n2: "psize p \<ge> 2" .  | 
| 56776 | 668  | 
from poly_minimum_modulus obtain c where c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)"  | 
669  | 
by blast  | 
|
| 56778 | 670  | 
|
671  | 
show ?ths  | 
|
672  | 
proof (cases "?p c = 0")  | 
|
673  | 
case True  | 
|
674  | 
then show ?thesis by blast  | 
|
675  | 
next  | 
|
676  | 
case False  | 
|
677  | 
note pc0 = this  | 
|
678  | 
from poly_offset[of p c] obtain q where q: "psize q = psize p" "\<forall>x. poly q x = ?p (c + x)"  | 
|
679  | 
by blast  | 
|
680  | 
    {
 | 
|
681  | 
assume h: "constant (poly q)"  | 
|
| 56795 | 682  | 
from q(2) have th: "\<forall>x. poly q (x - c) = ?p x"  | 
683  | 
by auto  | 
|
| 56778 | 684  | 
      {
 | 
685  | 
fix x y  | 
|
| 56795 | 686  | 
from th have "?p x = poly q (x - c)"  | 
687  | 
by auto  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
688  | 
also have "\<dots> = poly q (y - c)"  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
689  | 
using h unfolding constant_def by blast  | 
| 56795 | 690  | 
also have "\<dots> = ?p y"  | 
691  | 
using th by auto  | 
|
| 56778 | 692  | 
finally have "?p x = ?p y" .  | 
693  | 
}  | 
|
694  | 
with less(2) have False  | 
|
695  | 
unfolding constant_def by blast  | 
|
696  | 
}  | 
|
697  | 
then have qnc: "\<not> constant (poly q)"  | 
|
698  | 
by blast  | 
|
699  | 
from q(2) have pqc0: "?p c = poly q 0"  | 
|
700  | 
by simp  | 
|
701  | 
from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)"  | 
|
702  | 
by simp  | 
|
| 26123 | 703  | 
let ?a0 = "poly q 0"  | 
| 56778 | 704  | 
from pc0 pqc0 have a00: "?a0 \<noteq> 0"  | 
705  | 
by simp  | 
|
706  | 
from a00 have qr: "\<forall>z. poly q z = poly (smult (inverse ?a0) q) z * ?a0"  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
707  | 
by simp  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
708  | 
let ?r = "smult (inverse ?a0) q"  | 
| 29538 | 709  | 
have lgqr: "psize q = psize ?r"  | 
| 56778 | 710  | 
using a00  | 
711  | 
unfolding psize_def degree_def  | 
|
| 52380 | 712  | 
by (simp add: poly_eq_iff)  | 
| 56778 | 713  | 
    {
 | 
714  | 
assume h: "\<And>x y. poly ?r x = poly ?r y"  | 
|
715  | 
      {
 | 
|
716  | 
fix x y  | 
|
717  | 
from qr[rule_format, of x] have "poly q x = poly ?r x * ?a0"  | 
|
718  | 
by auto  | 
|
719  | 
also have "\<dots> = poly ?r y * ?a0"  | 
|
720  | 
using h by simp  | 
|
721  | 
also have "\<dots> = poly q y"  | 
|
722  | 
using qr[rule_format, of y] by simp  | 
|
723  | 
finally have "poly q x = poly q y" .  | 
|
724  | 
}  | 
|
| 56795 | 725  | 
with qnc have False  | 
726  | 
unfolding constant_def by blast  | 
|
| 56778 | 727  | 
}  | 
728  | 
then have rnc: "\<not> constant (poly ?r)"  | 
|
729  | 
unfolding constant_def by blast  | 
|
730  | 
from qr[rule_format, of 0] a00 have r01: "poly ?r 0 = 1"  | 
|
731  | 
by auto  | 
|
732  | 
    {
 | 
|
733  | 
fix w  | 
|
| 26123 | 734  | 
have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
735  | 
using qr[rule_format, of w] a00 by (simp add: divide_inverse mult_ac)  | 
| 26123 | 736  | 
also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
737  | 
using a00 unfolding norm_divide by (simp add: field_simps)  | 
| 56778 | 738  | 
finally have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" .  | 
739  | 
}  | 
|
| 26123 | 740  | 
note mrmq_eq = this  | 
| 30488 | 741  | 
from poly_decompose[OF rnc] obtain k a s where  | 
| 56778 | 742  | 
kas: "a \<noteq> 0" "k \<noteq> 0" "psize s + k + 1 = psize ?r"  | 
743  | 
"\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast  | 
|
744  | 
    {
 | 
|
745  | 
assume "psize p = k + 1"  | 
|
746  | 
with kas(3) lgqr[symmetric] q(1) have s0: "s = 0"  | 
|
747  | 
by auto  | 
|
748  | 
      {
 | 
|
749  | 
fix w  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
750  | 
have "cmod (poly ?r w) = cmod (1 + a * w ^ k)"  | 
| 56778 | 751  | 
using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps)  | 
752  | 
}  | 
|
| 26123 | 753  | 
note hth = this [symmetric]  | 
| 56778 | 754  | 
from reduce_poly_simple[OF kas(1,2)] have "\<exists>w. cmod (poly ?r w) < 1"  | 
755  | 
unfolding hth by blast  | 
|
756  | 
}  | 
|
| 26123 | 757  | 
moreover  | 
| 56778 | 758  | 
    {
 | 
759  | 
assume kn: "psize p \<noteq> k + 1"  | 
|
760  | 
from kn kas(3) q(1) lgqr have k1n: "k + 1 < psize p"  | 
|
761  | 
by simp  | 
|
| 30488 | 762  | 
have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
763  | 
unfolding constant_def poly_pCons poly_monom  | 
| 56795 | 764  | 
using kas(1)  | 
765  | 
apply simp  | 
|
| 56778 | 766  | 
apply (rule exI[where x=0])  | 
767  | 
apply (rule exI[where x=1])  | 
|
768  | 
apply simp  | 
|
769  | 
done  | 
|
770  | 
from kas(1) kas(2) have th02: "k + 1 = psize (pCons 1 (monom a (k - 1)))"  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
771  | 
by (simp add: psize_def degree_monom_eq)  | 
| 34915 | 772  | 
from less(1) [OF k1n [simplified th02] th01]  | 
| 26123 | 773  | 
obtain w where w: "1 + w^k * a = 0"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
774  | 
unfolding poly_pCons poly_monom  | 
| 56778 | 775  | 
using kas(2) by (cases k) (auto simp add: algebra_simps)  | 
| 30488 | 776  | 
from poly_bound_exists[of "cmod w" s] obtain m where  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
777  | 
m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast  | 
| 56795 | 778  | 
have w0: "w \<noteq> 0"  | 
779  | 
using kas(2) w by (auto simp add: power_0_left)  | 
|
| 56778 | 780  | 
from w have "(1 + w ^ k * a) - 1 = 0 - 1"  | 
781  | 
by simp  | 
|
782  | 
then have wm1: "w^k * a = - 1"  | 
|
783  | 
by simp  | 
|
| 30488 | 784  | 
have inv0: "0 < inverse (cmod w ^ (k + 1) * m)"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
785  | 
using norm_ge_zero[of w] w0 m(1)  | 
| 56778 | 786  | 
by (simp add: inverse_eq_divide zero_less_mult_iff)  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
787  | 
with real_lbound_gt_zero[OF zero_less_one] obtain t where  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
788  | 
t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast  | 
| 26123 | 789  | 
let ?ct = "complex_of_real t"  | 
790  | 
let ?w = "?ct * w"  | 
|
| 56778 | 791  | 
have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w"  | 
792  | 
using kas(1) by (simp add: algebra_simps power_mult_distrib)  | 
|
| 26123 | 793  | 
also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w"  | 
| 56778 | 794  | 
unfolding wm1 by simp  | 
795  | 
finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) =  | 
|
796  | 
cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)"  | 
|
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
797  | 
by metis  | 
| 30488 | 798  | 
with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"]  | 
| 56778 | 799  | 
have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)"  | 
800  | 
unfolding norm_of_real by simp  | 
|
801  | 
have ath: "\<And>x t::real. 0 \<le> x \<Longrightarrow> x < t \<Longrightarrow> t \<le> 1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1"  | 
|
802  | 
by arith  | 
|
803  | 
have "t * cmod w \<le> 1 * cmod w"  | 
|
804  | 
apply (rule mult_mono)  | 
|
805  | 
using t(1,2)  | 
|
806  | 
apply auto  | 
|
807  | 
done  | 
|
808  | 
then have tw: "cmod ?w \<le> cmod w"  | 
|
809  | 
using t(1) by (simp add: norm_mult)  | 
|
810  | 
from t inv0 have "t * (cmod w ^ (k + 1) * m) < 1"  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
811  | 
by (simp add: inverse_eq_divide field_simps)  | 
| 56778 | 812  | 
with zero_less_power[OF t(1), of k] have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1"  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
813  | 
by (metis comm_mult_strict_left_mono)  | 
| 56778 | 814  | 
have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k + 1) * cmod (poly s ?w)))"  | 
815  | 
using w0 t(1)  | 
|
| 51541 | 816  | 
by (simp add: algebra_simps power_mult_distrib norm_power norm_mult)  | 
| 26123 | 817  | 
then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
818  | 
using t(1,2) m(2)[rule_format, OF tw] w0  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
819  | 
by auto  | 
| 56778 | 820  | 
with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k"  | 
821  | 
by simp  | 
|
| 30488 | 822  | 
from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
823  | 
by auto  | 
| 27514 | 824  | 
from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121]  | 
| 30488 | 825  | 
have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" .  | 
| 56778 | 826  | 
from th11 th12 have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1"  | 
827  | 
by arith  | 
|
| 30488 | 828  | 
then have "cmod (poly ?r ?w) < 1"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
829  | 
unfolding kas(4)[rule_format, of ?w] r01 by simp  | 
| 56778 | 830  | 
then have "\<exists>w. cmod (poly ?r w) < 1"  | 
831  | 
by blast  | 
|
832  | 
}  | 
|
833  | 
ultimately have cr0_contr: "\<exists>w. cmod (poly ?r w) < 1"  | 
|
834  | 
by blast  | 
|
835  | 
from cr0_contr cq0 q(2) show ?thesis  | 
|
836  | 
unfolding mrmq_eq not_less[symmetric] by auto  | 
|
837  | 
qed  | 
|
| 26123 | 838  | 
qed  | 
839  | 
||
840  | 
text {* Alternative version with a syntactic notion of constant polynomial. *}
 | 
|
841  | 
||
842  | 
lemma fundamental_theorem_of_algebra_alt:  | 
|
| 56778 | 843  | 
assumes nc: "\<not> (\<exists>a l. a \<noteq> 0 \<and> l = 0 \<and> p = pCons a l)"  | 
| 26123 | 844  | 
shows "\<exists>z. poly p z = (0::complex)"  | 
| 56778 | 845  | 
using nc  | 
846  | 
proof (induct p)  | 
|
847  | 
case 0  | 
|
848  | 
then show ?case by simp  | 
|
849  | 
next  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
850  | 
case (pCons c cs)  | 
| 56778 | 851  | 
show ?case  | 
852  | 
proof (cases "c = 0")  | 
|
853  | 
case True  | 
|
854  | 
then show ?thesis by auto  | 
|
855  | 
next  | 
|
856  | 
case False  | 
|
857  | 
    {
 | 
|
858  | 
assume nc: "constant (poly (pCons c cs))"  | 
|
| 30488 | 859  | 
from nc[unfolded constant_def, rule_format, of 0]  | 
860  | 
have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto  | 
|
| 56778 | 861  | 
then have "cs = 0"  | 
862  | 
proof (induct cs)  | 
|
863  | 
case 0  | 
|
864  | 
then show ?case by simp  | 
|
865  | 
next  | 
|
866  | 
case (pCons d ds)  | 
|
867  | 
show ?case  | 
|
868  | 
proof (cases "d = 0")  | 
|
869  | 
case True  | 
|
870  | 
then show ?thesis using pCons.prems pCons.hyps by simp  | 
|
871  | 
next  | 
|
872  | 
case False  | 
|
873  | 
from poly_bound_exists[of 1 ds] obtain m where  | 
|
874  | 
m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast  | 
|
| 56795 | 875  | 
have dm: "cmod d / m > 0"  | 
876  | 
using False m(1) by (simp add: field_simps)  | 
|
| 56778 | 877  | 
from real_lbound_gt_zero[OF dm zero_less_one] obtain x where  | 
878  | 
x: "x > 0" "x < cmod d / m" "x < 1" by blast  | 
|
879  | 
let ?x = "complex_of_real x"  | 
|
| 56795 | 880  | 
from x have cx: "?x \<noteq> 0" "cmod ?x \<le> 1"  | 
881  | 
by simp_all  | 
|
| 56778 | 882  | 
from pCons.prems[rule_format, OF cx(1)]  | 
| 56795 | 883  | 
have cth: "cmod (?x*poly ds ?x) = cmod d"  | 
884  | 
by (simp add: eq_diff_eq[symmetric])  | 
|
| 56778 | 885  | 
from m(2)[rule_format, OF cx(2)] x(1)  | 
886  | 
have th0: "cmod (?x*poly ds ?x) \<le> x*m"  | 
|
887  | 
by (simp add: norm_mult)  | 
|
| 56795 | 888  | 
from x(2) m(1) have "x * m < cmod d"  | 
889  | 
by (simp add: field_simps)  | 
|
890  | 
with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d"  | 
|
891  | 
by auto  | 
|
892  | 
with cth show ?thesis  | 
|
893  | 
by blast  | 
|
| 56778 | 894  | 
qed  | 
895  | 
qed  | 
|
896  | 
}  | 
|
| 56795 | 897  | 
then have nc: "\<not> constant (poly (pCons c cs))"  | 
898  | 
using pCons.prems False by blast  | 
|
| 56778 | 899  | 
from fundamental_theorem_of_algebra[OF nc] show ?thesis .  | 
900  | 
qed  | 
|
901  | 
qed  | 
|
| 26123 | 902  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
903  | 
|
| 37093 | 904  | 
subsection{* Nullstellensatz, degrees and divisibility of polynomials *}
 | 
| 26123 | 905  | 
|
906  | 
lemma nullstellensatz_lemma:  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
907  | 
fixes p :: "complex poly"  | 
| 26123 | 908  | 
assumes "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"  | 
| 56776 | 909  | 
and "degree p = n"  | 
910  | 
and "n \<noteq> 0"  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
911  | 
shows "p dvd (q ^ n)"  | 
| 56776 | 912  | 
using assms  | 
913  | 
proof (induct n arbitrary: p q rule: nat_less_induct)  | 
|
914  | 
fix n :: nat  | 
|
915  | 
fix p q :: "complex poly"  | 
|
| 26123 | 916  | 
assume IH: "\<forall>m<n. \<forall>p q.  | 
917  | 
(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow>  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
918  | 
degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p dvd (q ^ m)"  | 
| 30488 | 919  | 
and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"  | 
| 56778 | 920  | 
and dpn: "degree p = n"  | 
921  | 
and n0: "n \<noteq> 0"  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
922  | 
from dpn n0 have pne: "p \<noteq> 0" by auto  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
923  | 
let ?ths = "p dvd (q ^ n)"  | 
| 56778 | 924  | 
  {
 | 
925  | 
fix a  | 
|
926  | 
assume a: "poly p a = 0"  | 
|
927  | 
    {
 | 
|
928  | 
assume oa: "order a p \<noteq> 0"  | 
|
| 26123 | 929  | 
let ?op = "order a p"  | 
| 56778 | 930  | 
from pne have ap: "([:- a, 1:] ^ ?op) dvd p" "\<not> [:- a, 1:] ^ (Suc ?op) dvd p"  | 
931  | 
using order by blast+  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
932  | 
note oop = order_degree[OF pne, unfolded dpn]  | 
| 56778 | 933  | 
      {
 | 
934  | 
assume q0: "q = 0"  | 
|
935  | 
then have ?ths using n0  | 
|
936  | 
by (simp add: power_0_left)  | 
|
937  | 
}  | 
|
| 26123 | 938  | 
moreover  | 
| 56778 | 939  | 
      {
 | 
940  | 
assume q0: "q \<noteq> 0"  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
941  | 
from pq0[rule_format, OF a, unfolded poly_eq_0_iff_dvd]  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
942  | 
obtain r where r: "q = [:- a, 1:] * r" by (rule dvdE)  | 
| 56778 | 943  | 
from ap(1) obtain s where s: "p = [:- a, 1:] ^ ?op * s"  | 
944  | 
by (rule dvdE)  | 
|
945  | 
have sne: "s \<noteq> 0" using s pne by auto  | 
|
946  | 
        {
 | 
|
947  | 
assume ds0: "degree s = 0"  | 
|
| 51541 | 948  | 
from ds0 obtain k where kpn: "s = [:k:]"  | 
949  | 
by (cases s) (auto split: if_splits)  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
950  | 
from sne kpn have k: "k \<noteq> 0" by simp  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
951  | 
let ?w = "([:1/k:] * ([:-a,1:] ^ (n - ?op))) * (r ^ n)"  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
952  | 
have "q ^ n = p * ?w"  | 
| 56795 | 953  | 
apply (subst r)  | 
954  | 
apply (subst s)  | 
|
955  | 
apply (subst kpn)  | 
|
| 56778 | 956  | 
using k oop [of a]  | 
| 56795 | 957  | 
apply (subst power_mult_distrib)  | 
958  | 
apply simp  | 
|
959  | 
apply (subst power_add [symmetric])  | 
|
960  | 
apply simp  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
961  | 
done  | 
| 56795 | 962  | 
then have ?ths  | 
963  | 
unfolding dvd_def by blast  | 
|
| 56778 | 964  | 
}  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
965  | 
moreover  | 
| 56778 | 966  | 
        {
 | 
967  | 
assume ds0: "degree s \<noteq> 0"  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
968  | 
from ds0 sne dpn s oa  | 
| 56778 | 969  | 
have dsn: "degree s < n"  | 
970  | 
apply auto  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
971  | 
apply (erule ssubst)  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
972  | 
apply (simp add: degree_mult_eq degree_linear_power)  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
973  | 
done  | 
| 56778 | 974  | 
            {
 | 
975  | 
fix x assume h: "poly s x = 0"  | 
|
976  | 
              {
 | 
|
977  | 
assume xa: "x = a"  | 
|
978  | 
from h[unfolded xa poly_eq_0_iff_dvd] obtain u where u: "s = [:- a, 1:] * u"  | 
|
979  | 
by (rule dvdE)  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
980  | 
have "p = [:- a, 1:] ^ (Suc ?op) * u"  | 
| 56795 | 981  | 
apply (subst s)  | 
982  | 
apply (subst u)  | 
|
983  | 
apply (simp only: power_Suc mult_ac)  | 
|
984  | 
done  | 
|
985  | 
with ap(2)[unfolded dvd_def] have False  | 
|
986  | 
by blast  | 
|
| 56778 | 987  | 
}  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
988  | 
note xa = this  | 
| 56795 | 989  | 
from h have "poly p x = 0"  | 
990  | 
by (subst s) simp  | 
|
991  | 
with pq0 have "poly q x = 0"  | 
|
992  | 
by blast  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
993  | 
with r xa have "poly r x = 0"  | 
| 56778 | 994  | 
by auto  | 
995  | 
}  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
996  | 
note impth = this  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
997  | 
from IH[rule_format, OF dsn, of s r] impth ds0  | 
| 56795 | 998  | 
have "s dvd (r ^ (degree s))"  | 
999  | 
by blast  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
1000  | 
then obtain u where u: "r ^ (degree s) = s * u" ..  | 
| 56778 | 1001  | 
then have u': "\<And>x. poly s x * poly u x = poly r x ^ degree s"  | 
| 
29470
 
1851088a1f87
convert Deriv.thy to use new Polynomial library (incomplete)
 
huffman 
parents: 
29464 
diff
changeset
 | 
1002  | 
by (simp only: poly_mult[symmetric] poly_power[symmetric])  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
1003  | 
let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))"  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
1004  | 
from oop[of a] dsn have "q ^ n = p * ?w"  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1005  | 
apply -  | 
| 56795 | 1006  | 
apply (subst s)  | 
1007  | 
apply (subst r)  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1008  | 
apply (simp only: power_mult_distrib)  | 
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
56889 
diff
changeset
 | 
1009  | 
apply (subst mult.assoc [where b=s])  | 
| 
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
56889 
diff
changeset
 | 
1010  | 
apply (subst mult.assoc [where a=u])  | 
| 
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
56889 
diff
changeset
 | 
1011  | 
apply (subst mult.assoc [where b=u, symmetric])  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1012  | 
apply (subst u [symmetric])  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1013  | 
apply (simp add: mult_ac power_add [symmetric])  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1014  | 
done  | 
| 56795 | 1015  | 
then have ?ths  | 
1016  | 
unfolding dvd_def by blast  | 
|
| 56778 | 1017  | 
}  | 
1018  | 
ultimately have ?ths by blast  | 
|
1019  | 
}  | 
|
1020  | 
ultimately have ?ths by blast  | 
|
1021  | 
}  | 
|
1022  | 
then have ?ths using a order_root pne by blast  | 
|
1023  | 
}  | 
|
| 26123 | 1024  | 
moreover  | 
| 56778 | 1025  | 
  {
 | 
1026  | 
assume exa: "\<not> (\<exists>a. poly p a = 0)"  | 
|
1027  | 
from fundamental_theorem_of_algebra_alt[of p] exa  | 
|
1028  | 
obtain c where ccs: "c \<noteq> 0" "p = pCons c 0"  | 
|
1029  | 
by blast  | 
|
1030  | 
then have pp: "\<And>x. poly p x = c"  | 
|
1031  | 
by simp  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1032  | 
let ?w = "[:1/c:] * (q ^ n)"  | 
| 56778 | 1033  | 
from ccs have "(q ^ n) = (p * ?w)"  | 
1034  | 
by simp  | 
|
1035  | 
then have ?ths  | 
|
1036  | 
unfolding dvd_def by blast  | 
|
1037  | 
}  | 
|
| 26123 | 1038  | 
ultimately show ?ths by blast  | 
1039  | 
qed  | 
|
1040  | 
||
1041  | 
lemma nullstellensatz_univariate:  | 
|
| 30488 | 1042  | 
"(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow>  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1043  | 
p dvd (q ^ (degree p)) \<or> (p = 0 \<and> q = 0)"  | 
| 56776 | 1044  | 
proof -  | 
| 56778 | 1045  | 
  {
 | 
1046  | 
assume pe: "p = 0"  | 
|
1047  | 
then have eq: "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> q = 0"  | 
|
| 52380 | 1048  | 
by (auto simp add: poly_all_0_iff_0)  | 
| 56778 | 1049  | 
    {
 | 
1050  | 
assume "p dvd (q ^ (degree p))"  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1051  | 
then obtain r where r: "q ^ (degree p) = p * r" ..  | 
| 56778 | 1052  | 
from r pe have False by simp  | 
1053  | 
}  | 
|
1054  | 
with eq pe have ?thesis by blast  | 
|
1055  | 
}  | 
|
| 26123 | 1056  | 
moreover  | 
| 56778 | 1057  | 
  {
 | 
1058  | 
assume pe: "p \<noteq> 0"  | 
|
1059  | 
    {
 | 
|
1060  | 
assume dp: "degree p = 0"  | 
|
1061  | 
then obtain k where k: "p = [:k:]" "k \<noteq> 0" using pe  | 
|
| 51541 | 1062  | 
by (cases p) (simp split: if_splits)  | 
| 56778 | 1063  | 
then have th1: "\<forall>x. poly p x \<noteq> 0"  | 
1064  | 
by simp  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1065  | 
from k dp have "q ^ (degree p) = p * [:1/k:]"  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1066  | 
by (simp add: one_poly_def)  | 
| 56778 | 1067  | 
then have th2: "p dvd (q ^ (degree p))" ..  | 
| 56795 | 1068  | 
from th1 th2 pe have ?thesis  | 
1069  | 
by blast  | 
|
| 56778 | 1070  | 
}  | 
| 26123 | 1071  | 
moreover  | 
| 56778 | 1072  | 
    {
 | 
1073  | 
assume dp: "degree p \<noteq> 0"  | 
|
1074  | 
then obtain n where n: "degree p = Suc n "  | 
|
1075  | 
by (cases "degree p") auto  | 
|
1076  | 
      {
 | 
|
1077  | 
assume "p dvd (q ^ (Suc n))"  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
1078  | 
then obtain u where u: "q ^ (Suc n) = p * u" ..  | 
| 56778 | 1079  | 
        {
 | 
1080  | 
fix x  | 
|
1081  | 
assume h: "poly p x = 0" "poly q x \<noteq> 0"  | 
|
1082  | 
then have "poly (q ^ (Suc n)) x \<noteq> 0"  | 
|
1083  | 
by simp  | 
|
1084  | 
then have False using u h(1)  | 
|
1085  | 
by (simp only: poly_mult) simp  | 
|
1086  | 
}  | 
|
1087  | 
}  | 
|
1088  | 
with n nullstellensatz_lemma[of p q "degree p"] dp  | 
|
1089  | 
have ?thesis by auto  | 
|
1090  | 
}  | 
|
1091  | 
ultimately have ?thesis by blast  | 
|
1092  | 
}  | 
|
| 26123 | 1093  | 
ultimately show ?thesis by blast  | 
1094  | 
qed  | 
|
1095  | 
||
| 56795 | 1096  | 
text {* Useful lemma *}
 | 
| 26123 | 1097  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1098  | 
lemma constant_degree:  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1099  | 
  fixes p :: "'a::{idom,ring_char_0} poly"
 | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1100  | 
shows "constant (poly p) \<longleftrightarrow> degree p = 0" (is "?lhs = ?rhs")  | 
| 26123 | 1101  | 
proof  | 
1102  | 
assume l: ?lhs  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1103  | 
from l[unfolded constant_def, rule_format, of _ "0"]  | 
| 56776 | 1104  | 
have th: "poly p = poly [:poly p 0:]"  | 
1105  | 
by auto  | 
|
1106  | 
then have "p = [:poly p 0:]"  | 
|
1107  | 
by (simp add: poly_eq_poly_eq_iff)  | 
|
1108  | 
then have "degree p = degree [:poly p 0:]"  | 
|
1109  | 
by simp  | 
|
1110  | 
then show ?rhs  | 
|
1111  | 
by simp  | 
|
| 26123 | 1112  | 
next  | 
1113  | 
assume r: ?rhs  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1114  | 
then obtain k where "p = [:k:]"  | 
| 51541 | 1115  | 
by (cases p) (simp split: if_splits)  | 
| 56776 | 1116  | 
then show ?lhs  | 
1117  | 
unfolding constant_def by auto  | 
|
| 26123 | 1118  | 
qed  | 
1119  | 
||
| 56776 | 1120  | 
lemma divides_degree:  | 
1121  | 
assumes pq: "p dvd (q:: complex poly)"  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1122  | 
shows "degree p \<le> degree q \<or> q = 0"  | 
| 56776 | 1123  | 
by (metis dvd_imp_degree_le pq)  | 
| 26123 | 1124  | 
|
| 56795 | 1125  | 
text {* Arithmetic operations on multivariate polynomials. *}
 | 
| 26123 | 1126  | 
|
| 30488 | 1127  | 
lemma mpoly_base_conv:  | 
| 56778 | 1128  | 
fixes x :: "'a::comm_ring_1"  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
1129  | 
shows "0 = poly 0 x" "c = poly [:c:] x" "x = poly [:0,1:] x"  | 
| 
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
1130  | 
by simp_all  | 
| 26123 | 1131  | 
|
| 30488 | 1132  | 
lemma mpoly_norm_conv:  | 
| 56778 | 1133  | 
fixes x :: "'a::comm_ring_1"  | 
| 56776 | 1134  | 
shows "poly [:0:] x = poly 0 x" "poly [:poly 0 y:] x = poly 0 x"  | 
1135  | 
by simp_all  | 
|
| 26123 | 1136  | 
|
| 30488 | 1137  | 
lemma mpoly_sub_conv:  | 
| 56778 | 1138  | 
fixes x :: "'a::comm_ring_1"  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
1139  | 
shows "poly p x - poly q x = poly p x + -1 * poly q x"  | 
| 
54230
 
b1d955791529
more simplification rules on unary and binary minus
 
haftmann 
parents: 
53077 
diff
changeset
 | 
1140  | 
by simp  | 
| 26123 | 1141  | 
|
| 56778 | 1142  | 
lemma poly_pad_rule: "poly p x = 0 \<Longrightarrow> poly (pCons 0 p) x = 0"  | 
1143  | 
by simp  | 
|
| 26123 | 1144  | 
|
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
1145  | 
lemma poly_cancel_eq_conv:  | 
| 56778 | 1146  | 
fixes x :: "'a::field"  | 
| 56795 | 1147  | 
shows "x = 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> y = 0 \<longleftrightarrow> a * y - b * x = 0"  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
1148  | 
by auto  | 
| 26123 | 1149  | 
|
| 30488 | 1150  | 
lemma poly_divides_pad_rule:  | 
| 56778 | 1151  | 
  fixes p:: "('a::comm_ring_1) poly"
 | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1152  | 
assumes pq: "p dvd q"  | 
| 56778 | 1153  | 
shows "p dvd (pCons 0 q)"  | 
1154  | 
proof -  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1155  | 
have "pCons 0 q = q * [:0,1:]" by simp  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1156  | 
then have "q dvd (pCons 0 q)" ..  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1157  | 
with pq show ?thesis by (rule dvd_trans)  | 
| 26123 | 1158  | 
qed  | 
1159  | 
||
| 30488 | 1160  | 
lemma poly_divides_conv0:  | 
| 56778 | 1161  | 
fixes p:: "'a::field poly"  | 
| 56776 | 1162  | 
assumes lgpq: "degree q < degree p"  | 
1163  | 
and lq: "p \<noteq> 0"  | 
|
1164  | 
shows "p dvd q \<longleftrightarrow> q = 0" (is "?lhs \<longleftrightarrow> ?rhs")  | 
|
1165  | 
proof  | 
|
1166  | 
assume r: ?rhs  | 
|
1167  | 
then have "q = p * 0" by simp  | 
|
1168  | 
then show ?lhs ..  | 
|
1169  | 
next  | 
|
1170  | 
assume l: ?lhs  | 
|
| 56778 | 1171  | 
show ?rhs  | 
1172  | 
proof (cases "q = 0")  | 
|
1173  | 
case True  | 
|
1174  | 
then show ?thesis by simp  | 
|
1175  | 
next  | 
|
| 56776 | 1176  | 
assume q0: "q \<noteq> 0"  | 
1177  | 
from l q0 have "degree p \<le> degree q"  | 
|
1178  | 
by (rule dvd_imp_degree_le)  | 
|
| 56778 | 1179  | 
with lgpq show ?thesis by simp  | 
1180  | 
qed  | 
|
| 26123 | 1181  | 
qed  | 
1182  | 
||
| 30488 | 1183  | 
lemma poly_divides_conv1:  | 
| 56778 | 1184  | 
fixes p :: "'a::field poly"  | 
| 56776 | 1185  | 
assumes a0: "a \<noteq> 0"  | 
1186  | 
and pp': "p dvd p'"  | 
|
1187  | 
and qrp': "smult a q - p' = r"  | 
|
1188  | 
shows "p dvd q \<longleftrightarrow> p dvd r" (is "?lhs \<longleftrightarrow> ?rhs")  | 
|
1189  | 
proof  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1190  | 
from pp' obtain t where t: "p' = p * t" ..  | 
| 56776 | 1191  | 
  {
 | 
1192  | 
assume l: ?lhs  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1193  | 
then obtain u where u: "q = p * u" ..  | 
| 56776 | 1194  | 
have "r = p * (smult a u - t)"  | 
1195  | 
using u qrp' [symmetric] t by (simp add: algebra_simps)  | 
|
1196  | 
then show ?rhs ..  | 
|
1197  | 
next  | 
|
1198  | 
assume r: ?rhs  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1199  | 
then obtain u where u: "r = p * u" ..  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1200  | 
from u [symmetric] t qrp' [symmetric] a0  | 
| 51541 | 1201  | 
have "q = p * smult (1/a) (u + t)" by (simp add: algebra_simps)  | 
| 56776 | 1202  | 
then show ?lhs ..  | 
1203  | 
}  | 
|
| 26123 | 1204  | 
qed  | 
1205  | 
||
1206  | 
lemma basic_cqe_conv1:  | 
|
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1207  | 
"(\<exists>x. poly p x = 0 \<and> poly 0 x \<noteq> 0) \<longleftrightarrow> False"  | 
| 
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1208  | 
"(\<exists>x. poly 0 x \<noteq> 0) \<longleftrightarrow> False"  | 
| 56776 | 1209  | 
"(\<exists>x. poly [:c:] x \<noteq> 0) \<longleftrightarrow> c \<noteq> 0"  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1210  | 
"(\<exists>x. poly 0 x = 0) \<longleftrightarrow> True"  | 
| 56776 | 1211  | 
"(\<exists>x. poly [:c:] x = 0) \<longleftrightarrow> c = 0"  | 
1212  | 
by simp_all  | 
|
| 26123 | 1213  | 
|
| 30488 | 1214  | 
lemma basic_cqe_conv2:  | 
| 56795 | 1215  | 
assumes l: "p \<noteq> 0"  | 
1216  | 
shows "\<exists>x. poly (pCons a (pCons b p)) x = (0::complex)"  | 
|
| 56776 | 1217  | 
proof -  | 
1218  | 
  {
 | 
|
1219  | 
fix h t  | 
|
1220  | 
assume h: "h \<noteq> 0" "t = 0" and "pCons a (pCons b p) = pCons h t"  | 
|
1221  | 
with l have False by simp  | 
|
1222  | 
}  | 
|
1223  | 
then have th: "\<not> (\<exists> h t. h \<noteq> 0 \<and> t = 0 \<and> pCons a (pCons b p) = pCons h t)"  | 
|
| 26123 | 1224  | 
by blast  | 
| 56776 | 1225  | 
from fundamental_theorem_of_algebra_alt[OF th] show ?thesis  | 
1226  | 
by auto  | 
|
| 26123 | 1227  | 
qed  | 
1228  | 
||
| 56776 | 1229  | 
lemma basic_cqe_conv_2b: "(\<exists>x. poly p x \<noteq> (0::complex)) \<longleftrightarrow> p \<noteq> 0"  | 
1230  | 
by (metis poly_all_0_iff_0)  | 
|
| 26123 | 1231  | 
|
1232  | 
lemma basic_cqe_conv3:  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1233  | 
fixes p q :: "complex poly"  | 
| 30488 | 1234  | 
assumes l: "p \<noteq> 0"  | 
| 56795 | 1235  | 
shows "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<longleftrightarrow> \<not> (pCons a p) dvd (q ^ psize p)"  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1236  | 
proof -  | 
| 56776 | 1237  | 
from l have dp: "degree (pCons a p) = psize p"  | 
1238  | 
by (simp add: psize_def)  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1239  | 
from nullstellensatz_univariate[of "pCons a p" q] l  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1240  | 
show ?thesis  | 
| 
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1241  | 
by (metis dp pCons_eq_0_iff)  | 
| 26123 | 1242  | 
qed  | 
1243  | 
||
1244  | 
lemma basic_cqe_conv4:  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1245  | 
fixes p q :: "complex poly"  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1246  | 
assumes h: "\<And>x. poly (q ^ n) x = poly r x"  | 
| 
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1247  | 
shows "p dvd (q ^ n) \<longleftrightarrow> p dvd r"  | 
| 56776 | 1248  | 
proof -  | 
1249  | 
from h have "poly (q ^ n) = poly r"  | 
|
1250  | 
by auto  | 
|
1251  | 
then have "(q ^ n) = r"  | 
|
1252  | 
by (simp add: poly_eq_poly_eq_iff)  | 
|
1253  | 
then show "p dvd (q ^ n) \<longleftrightarrow> p dvd r"  | 
|
1254  | 
by simp  | 
|
| 26123 | 1255  | 
qed  | 
1256  | 
||
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
1257  | 
lemma poly_const_conv:  | 
| 56778 | 1258  | 
fixes x :: "'a::comm_ring_1"  | 
| 56776 | 1259  | 
shows "poly [:c:] x = y \<longleftrightarrow> c = y"  | 
1260  | 
by simp  | 
|
| 26123 | 1261  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1262  | 
end  |