src/HOL/Product_Type.thy
author wenzelm
Tue, 05 Jul 2016 22:47:48 +0200
changeset 63399 d1742d1b7f0f
parent 63237 3e908f762817
child 63400 249fa34faba2
permissions -rw-r--r--
more antiquotations;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
58469
66ddc5ad4f63 corrected white-space accident
haftmann
parents: 58468
diff changeset
     1
(*  Title:      HOL/Product_Type.thy
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     3
    Copyright   1992  University of Cambridge
11777
wenzelm
parents: 11602
diff changeset
     4
*)
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     5
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
     6
section \<open>Cartesian products\<close>
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     7
15131
c69542757a4d New theory header syntax.
nipkow
parents: 14952
diff changeset
     8
theory Product_Type
33959
2afc55e8ed27 bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
haftmann
parents: 33638
diff changeset
     9
imports Typedef Inductive Fun
46950
d0181abdbdac declare command keywords via theory header, including strict checking outside Pure;
wenzelm
parents: 46630
diff changeset
    10
keywords "inductive_set" "coinductive_set" :: thy_decl
15131
c69542757a4d New theory header syntax.
nipkow
parents: 14952
diff changeset
    11
begin
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    12
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    13
subsection \<open>@{typ bool} is a datatype\<close>
24699
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
    14
62594
75452e3eda14 generate theorems like 'bool.split_sel'
blanchet
parents: 62379
diff changeset
    15
free_constructors (discs_sels) case_bool for True | False
58189
9d714be4f028 added 'plugins' option to control which hooks are enabled
blanchet
parents: 57983
diff changeset
    16
  by auto
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    17
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
    18
text \<open>Avoid name clashes by prefixing the output of \<open>old_rep_datatype\<close> with \<open>old\<close>.\<close>
55442
blanchet
parents: 55417
diff changeset
    19
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    20
setup \<open>Sign.mandatory_path "old"\<close>
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    21
58306
117ba6cbe414 renamed 'rep_datatype' to 'old_rep_datatype' (HOL)
blanchet
parents: 58292
diff changeset
    22
old_rep_datatype True False by (auto intro: bool_induct)
24699
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
    23
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    24
setup \<open>Sign.parent_path\<close>
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    25
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
    26
text \<open>But erase the prefix for properties that are not generated by \<open>free_constructors\<close>.\<close>
55442
blanchet
parents: 55417
diff changeset
    27
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    28
setup \<open>Sign.mandatory_path "bool"\<close>
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    29
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    30
lemmas induct = old.bool.induct
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    31
lemmas inducts = old.bool.inducts
55642
63beb38e9258 adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
blanchet
parents: 55469
diff changeset
    32
lemmas rec = old.bool.rec
63beb38e9258 adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
blanchet
parents: 55469
diff changeset
    33
lemmas simps = bool.distinct bool.case bool.rec
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    34
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    35
setup \<open>Sign.parent_path\<close>
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    36
24699
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
    37
declare case_split [cases type: bool]
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
    38
  \<comment> "prefer plain propositional version"
24699
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
    39
28346
b8390cd56b8f discontinued special treatment of op = vs. eq_class.eq
haftmann
parents: 28262
diff changeset
    40
lemma
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38715
diff changeset
    41
  shows [code]: "HOL.equal False P \<longleftrightarrow> \<not> P"
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38715
diff changeset
    42
    and [code]: "HOL.equal True P \<longleftrightarrow> P" 
46630
3abc964cdc45 tuned whitespace
haftmann
parents: 46557
diff changeset
    43
    and [code]: "HOL.equal P False \<longleftrightarrow> \<not> P"
38857
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38715
diff changeset
    44
    and [code]: "HOL.equal P True \<longleftrightarrow> P"
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38715
diff changeset
    45
    and [code nbe]: "HOL.equal P P \<longleftrightarrow> True"
97775f3e8722 renamed class/constant eq to equal; tuned some instantiations
haftmann
parents: 38715
diff changeset
    46
  by (simp_all add: equal)
25534
d0b74fdd6067 simplified infrastructure for code generator operational equality
haftmann
parents: 25511
diff changeset
    47
43654
3f1a44c2d645 install case certificate for If after code_datatype declaration for bool
haftmann
parents: 43595
diff changeset
    48
lemma If_case_cert:
3f1a44c2d645 install case certificate for If after code_datatype declaration for bool
haftmann
parents: 43595
diff changeset
    49
  assumes "CASE \<equiv> (\<lambda>b. If b f g)"
3f1a44c2d645 install case certificate for If after code_datatype declaration for bool
haftmann
parents: 43595
diff changeset
    50
  shows "(CASE True \<equiv> f) &&& (CASE False \<equiv> g)"
3f1a44c2d645 install case certificate for If after code_datatype declaration for bool
haftmann
parents: 43595
diff changeset
    51
  using assms by simp_all
3f1a44c2d645 install case certificate for If after code_datatype declaration for bool
haftmann
parents: 43595
diff changeset
    52
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    53
setup \<open>Code.add_case @{thm If_case_cert}\<close>
43654
3f1a44c2d645 install case certificate for If after code_datatype declaration for bool
haftmann
parents: 43595
diff changeset
    54
52435
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
    55
code_printing
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
    56
  constant "HOL.equal :: bool \<Rightarrow> bool \<Rightarrow> bool" \<rightharpoonup> (Haskell) infix 4 "=="
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
    57
| class_instance "bool" :: "equal" \<rightharpoonup> (Haskell) -
24699
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
    58
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
    59
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
    60
subsection \<open>The \<open>unit\<close> type\<close>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    61
49834
b27bbb021df1 discontinued obsolete typedef (open) syntax;
wenzelm
parents: 49764
diff changeset
    62
typedef unit = "{True}"
45694
4a8743618257 prefer typedef without extra definition and alternative name;
wenzelm
parents: 45662
diff changeset
    63
  by auto
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    64
45694
4a8743618257 prefer typedef without extra definition and alternative name;
wenzelm
parents: 45662
diff changeset
    65
definition Unity :: unit  ("'(')")
4a8743618257 prefer typedef without extra definition and alternative name;
wenzelm
parents: 45662
diff changeset
    66
  where "() = Abs_unit True"
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    67
35828
46cfc4b8112e now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents: 35427
diff changeset
    68
lemma unit_eq [no_atp]: "u = ()"
40590
b994d855dbd2 typedef (open) unit
huffman
parents: 39302
diff changeset
    69
  by (induct u) (simp add: Unity_def)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    70
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    71
text \<open>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    72
  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    73
  this rule directly --- it loops!
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    74
\<close>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    75
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    76
simproc_setup unit_eq ("x::unit") = \<open>
43594
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 42411
diff changeset
    77
  fn _ => fn _ => fn ct =>
59582
0fbed69ff081 tuned signature -- prefer qualified names;
wenzelm
parents: 59498
diff changeset
    78
    if HOLogic.is_unit (Thm.term_of ct) then NONE
43594
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 42411
diff changeset
    79
    else SOME (mk_meta_eq @{thm unit_eq})
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    80
\<close>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    81
55469
b19dd108f0c2 aligned the syntax for 'free_constructors' on the 'datatype_new' and 'codatatype' syntax
blanchet
parents: 55468
diff changeset
    82
free_constructors case_unit for "()"
58189
9d714be4f028 added 'plugins' option to control which hooks are enabled
blanchet
parents: 57983
diff changeset
    83
  by auto
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    84
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
    85
text \<open>Avoid name clashes by prefixing the output of \<open>old_rep_datatype\<close> with \<open>old\<close>.\<close>
55442
blanchet
parents: 55417
diff changeset
    86
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    87
setup \<open>Sign.mandatory_path "old"\<close>
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    88
58306
117ba6cbe414 renamed 'rep_datatype' to 'old_rep_datatype' (HOL)
blanchet
parents: 58292
diff changeset
    89
old_rep_datatype "()" by simp
24699
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
    90
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    91
setup \<open>Sign.parent_path\<close>
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    92
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
    93
text \<open>But erase the prefix for properties that are not generated by \<open>free_constructors\<close>.\<close>
55442
blanchet
parents: 55417
diff changeset
    94
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    95
setup \<open>Sign.mandatory_path "unit"\<close>
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    96
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    97
lemmas induct = old.unit.induct
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
    98
lemmas inducts = old.unit.inducts
55642
63beb38e9258 adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
blanchet
parents: 55469
diff changeset
    99
lemmas rec = old.unit.rec
63beb38e9258 adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
blanchet
parents: 55469
diff changeset
   100
lemmas simps = unit.case unit.rec
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   101
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   102
setup \<open>Sign.parent_path\<close>
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   103
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   104
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   105
  by simp
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   106
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   107
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   108
  by (rule triv_forall_equality)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   109
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   110
text \<open>
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   111
  This rewrite counters the effect of simproc \<open>unit_eq\<close> on @{term
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   112
  [source] "%u::unit. f u"}, replacing it by @{term [source]
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   113
  f} rather than by @{term [source] "%u. f ()"}.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   114
\<close>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   115
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 52435
diff changeset
   116
lemma unit_abs_eta_conv [simp]: "(%u::unit. f ()) = f"
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   117
  by (rule ext) simp
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   118
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 52435
diff changeset
   119
lemma UNIV_unit:
43866
8a50dc70cbff moving UNIV = ... equations to their proper theories
haftmann
parents: 43654
diff changeset
   120
  "UNIV = {()}" by auto
8a50dc70cbff moving UNIV = ... equations to their proper theories
haftmann
parents: 43654
diff changeset
   121
30924
c1ed09f3fbfe default instantiation for unit type
haftmann
parents: 30604
diff changeset
   122
instantiation unit :: default
c1ed09f3fbfe default instantiation for unit type
haftmann
parents: 30604
diff changeset
   123
begin
c1ed09f3fbfe default instantiation for unit type
haftmann
parents: 30604
diff changeset
   124
c1ed09f3fbfe default instantiation for unit type
haftmann
parents: 30604
diff changeset
   125
definition "default = ()"
c1ed09f3fbfe default instantiation for unit type
haftmann
parents: 30604
diff changeset
   126
c1ed09f3fbfe default instantiation for unit type
haftmann
parents: 30604
diff changeset
   127
instance ..
c1ed09f3fbfe default instantiation for unit type
haftmann
parents: 30604
diff changeset
   128
c1ed09f3fbfe default instantiation for unit type
haftmann
parents: 30604
diff changeset
   129
end
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   130
57233
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   131
instantiation unit :: "{complete_boolean_algebra, complete_linorder, wellorder}"
57016
c44ce6f4067d added unit :: linorder
nipkow
parents: 56626
diff changeset
   132
begin
c44ce6f4067d added unit :: linorder
nipkow
parents: 56626
diff changeset
   133
57233
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   134
definition less_eq_unit :: "unit \<Rightarrow> unit \<Rightarrow> bool"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   135
where
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   136
  "(_::unit) \<le> _ \<longleftrightarrow> True"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   137
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   138
lemma less_eq_unit [iff]:
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   139
  "(u::unit) \<le> v"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   140
  by (simp add: less_eq_unit_def)
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   141
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   142
definition less_unit :: "unit \<Rightarrow> unit \<Rightarrow> bool"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   143
where
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   144
  "(_::unit) < _ \<longleftrightarrow> False"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   145
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   146
lemma less_unit [iff]:
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   147
  "\<not> (u::unit) < v"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   148
  by (simp_all add: less_eq_unit_def less_unit_def)
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   149
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   150
definition bot_unit :: unit
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   151
where
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   152
  [code_unfold]: "\<bottom> = ()"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   153
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   154
definition top_unit :: unit
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   155
where
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   156
  [code_unfold]: "\<top> = ()"
57016
c44ce6f4067d added unit :: linorder
nipkow
parents: 56626
diff changeset
   157
57233
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   158
definition inf_unit :: "unit \<Rightarrow> unit \<Rightarrow> unit"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   159
where
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   160
  [simp]: "_ \<sqinter> _ = ()"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   161
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   162
definition sup_unit :: "unit \<Rightarrow> unit \<Rightarrow> unit"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   163
where
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   164
  [simp]: "_ \<squnion> _ = ()"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   165
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   166
definition Inf_unit :: "unit set \<Rightarrow> unit"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   167
where
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   168
  [simp]: "\<Sqinter>_ = ()"
57016
c44ce6f4067d added unit :: linorder
nipkow
parents: 56626
diff changeset
   169
57233
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   170
definition Sup_unit :: "unit set \<Rightarrow> unit"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   171
where
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   172
  [simp]: "\<Squnion>_ = ()"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   173
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   174
definition uminus_unit :: "unit \<Rightarrow> unit"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   175
where
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   176
  [simp]: "- _ = ()"
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   177
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   178
declare less_eq_unit_def [abs_def, code_unfold]
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   179
  less_unit_def [abs_def, code_unfold]
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   180
  inf_unit_def [abs_def, code_unfold]
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   181
  sup_unit_def [abs_def, code_unfold]
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   182
  Inf_unit_def [abs_def, code_unfold]
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   183
  Sup_unit_def [abs_def, code_unfold]
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   184
  uminus_unit_def [abs_def, code_unfold]
57016
c44ce6f4067d added unit :: linorder
nipkow
parents: 56626
diff changeset
   185
c44ce6f4067d added unit :: linorder
nipkow
parents: 56626
diff changeset
   186
instance
57233
8fcbfce2a2a9 uniform treatment of trivial unit instances: simplify by default, unfold in code preprocessor
haftmann
parents: 57201
diff changeset
   187
  by intro_classes auto
57016
c44ce6f4067d added unit :: linorder
nipkow
parents: 56626
diff changeset
   188
c44ce6f4067d added unit :: linorder
nipkow
parents: 56626
diff changeset
   189
end
c44ce6f4067d added unit :: linorder
nipkow
parents: 56626
diff changeset
   190
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28537
diff changeset
   191
lemma [code]:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 61032
diff changeset
   192
  "HOL.equal (u::unit) v \<longleftrightarrow> True" unfolding equal unit_eq [of u] unit_eq [of v] by rule+
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   193
52435
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   194
code_printing
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   195
  type_constructor unit \<rightharpoonup>
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   196
    (SML) "unit"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   197
    and (OCaml) "unit"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   198
    and (Haskell) "()"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   199
    and (Scala) "Unit"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   200
| constant Unity \<rightharpoonup>
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   201
    (SML) "()"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   202
    and (OCaml) "()"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   203
    and (Haskell) "()"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   204
    and (Scala) "()"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   205
| class_instance unit :: equal \<rightharpoonup>
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   206
    (Haskell) -
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   207
| constant "HOL.equal :: unit \<Rightarrow> unit \<Rightarrow> bool" \<rightharpoonup>
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   208
    (Haskell) infix 4 "=="
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   209
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   210
code_reserved SML
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   211
  unit
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   212
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   213
code_reserved OCaml
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   214
  unit
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   215
34886
873c31d9f10d some syntax setup for Scala
haftmann
parents: 33959
diff changeset
   216
code_reserved Scala
873c31d9f10d some syntax setup for Scala
haftmann
parents: 33959
diff changeset
   217
  Unit
873c31d9f10d some syntax setup for Scala
haftmann
parents: 33959
diff changeset
   218
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   219
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   220
subsection \<open>The product type\<close>
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   221
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   222
subsubsection \<open>Type definition\<close>
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   223
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   224
definition Pair_Rep :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   225
  "Pair_Rep a b = (\<lambda>x y. x = a \<and> y = b)"
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   226
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 61032
diff changeset
   227
definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}"
45696
476ad865f125 prefer typedef without alternative name;
wenzelm
parents: 45694
diff changeset
   228
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61943
diff changeset
   229
typedef ('a, 'b) prod ("(_ \<times>/ _)" [21, 20] 20) = "prod :: ('a \<Rightarrow> 'b \<Rightarrow> bool) set"
45696
476ad865f125 prefer typedef without alternative name;
wenzelm
parents: 45694
diff changeset
   230
  unfolding prod_def by auto
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   231
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61943
diff changeset
   232
type_notation (ASCII)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61943
diff changeset
   233
  prod  (infixr "*" 20)
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   234
37389
09467cdfa198 qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents: 37387
diff changeset
   235
definition Pair :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'b" where
09467cdfa198 qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents: 37387
diff changeset
   236
  "Pair a b = Abs_prod (Pair_Rep a b)"
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   237
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   238
lemma prod_cases: "(\<And>a b. P (Pair a b)) \<Longrightarrow> P p"
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   239
  by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def)
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   240
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   241
free_constructors case_prod for Pair fst snd
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   242
proof -
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   243
  fix P :: bool and p :: "'a \<times> 'b"
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   244
  show "(\<And>x1 x2. p = Pair x1 x2 \<Longrightarrow> P) \<Longrightarrow> P"
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   245
    by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def)
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   246
next
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   247
  fix a c :: 'a and b d :: 'b
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   248
  have "Pair_Rep a b = Pair_Rep c d \<longleftrightarrow> a = c \<and> b = d"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39272
diff changeset
   249
    by (auto simp add: Pair_Rep_def fun_eq_iff)
37389
09467cdfa198 qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents: 37387
diff changeset
   250
  moreover have "Pair_Rep a b \<in> prod" and "Pair_Rep c d \<in> prod"
09467cdfa198 qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents: 37387
diff changeset
   251
    by (auto simp add: prod_def)
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   252
  ultimately show "Pair a b = Pair c d \<longleftrightarrow> a = c \<and> b = d"
37389
09467cdfa198 qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents: 37387
diff changeset
   253
    by (simp add: Pair_def Abs_prod_inject)
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   254
qed
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   255
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   256
text \<open>Avoid name clashes by prefixing the output of \<open>old_rep_datatype\<close> with \<open>old\<close>.\<close>
55442
blanchet
parents: 55417
diff changeset
   257
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   258
setup \<open>Sign.mandatory_path "old"\<close>
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   259
58306
117ba6cbe414 renamed 'rep_datatype' to 'old_rep_datatype' (HOL)
blanchet
parents: 58292
diff changeset
   260
old_rep_datatype Pair
55403
677569668824 avoid duplicate 'case' definitions by first looking up 'Ctr_Sugar'
blanchet
parents: 55393
diff changeset
   261
by (erule prod_cases) (rule prod.inject)
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   262
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   263
setup \<open>Sign.parent_path\<close>
37704
c6161bee8486 adapt Nitpick to "prod_case" and "*" -> "sum" renaming;
blanchet
parents: 37678
diff changeset
   264
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   265
text \<open>But erase the prefix for properties that are not generated by \<open>free_constructors\<close>.\<close>
55442
blanchet
parents: 55417
diff changeset
   266
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   267
setup \<open>Sign.mandatory_path "prod"\<close>
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   268
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   269
declare old.prod.inject [iff del]
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   270
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   271
lemmas induct = old.prod.induct
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   272
lemmas inducts = old.prod.inducts
55642
63beb38e9258 adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
blanchet
parents: 55469
diff changeset
   273
lemmas rec = old.prod.rec
63beb38e9258 adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
blanchet
parents: 55469
diff changeset
   274
lemmas simps = prod.inject prod.case prod.rec
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   275
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   276
setup \<open>Sign.parent_path\<close>
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   277
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   278
declare prod.case [nitpick_simp del]
57983
6edc3529bb4e reordered some (co)datatype property names for more consistency
blanchet
parents: 57233
diff changeset
   279
declare prod.case_cong_weak [cong del]
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   280
declare prod.case_eq_if [mono]
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   281
declare prod.split [no_atp]
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   282
declare prod.split_asm [no_atp]
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   283
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   284
text \<open>
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   285
  @{thm [source] prod.split} could be declared as \<open>[split]\<close>
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   286
  done after the Splitter has been speeded up significantly;
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   287
  precompute the constants involved and don't do anything unless the
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   288
  current goal contains one of those constants.
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   289
\<close>
37411
c88c44156083 removed simplifier congruence rule of "prod_case"
haftmann
parents: 37389
diff changeset
   290
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   291
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   292
subsubsection \<open>Tuple syntax\<close>
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   293
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   294
text \<open>
11777
wenzelm
parents: 11602
diff changeset
   295
  Patterns -- extends pre-defined type @{typ pttrn} used in
wenzelm
parents: 11602
diff changeset
   296
  abstractions.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   297
\<close>
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   298
41229
d797baa3d57c replaced command 'nonterminals' by slightly modernized version 'nonterminal';
wenzelm
parents: 40968
diff changeset
   299
nonterminal tuple_args and patterns
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   300
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   301
syntax
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   302
  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   303
  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   304
  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   305
  "_pattern"    :: "[pttrn, patterns] => pttrn"         ("'(_,/ _')")
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   306
  ""            :: "pttrn => patterns"                  ("_")
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   307
  "_patterns"   :: "[pttrn, patterns] => patterns"      ("_,/ _")
63237
3e908f762817 conventional syntax for unit abstractions
haftmann
parents: 63007
diff changeset
   308
  "_unit"       :: pttrn                                ("'(')")
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   309
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   310
translations
61124
haftmann
parents: 61123
diff changeset
   311
  "(x, y)" \<rightleftharpoons> "CONST Pair x y"
haftmann
parents: 61123
diff changeset
   312
  "_pattern x y" \<rightleftharpoons> "CONST Pair x y"
haftmann
parents: 61123
diff changeset
   313
  "_patterns x y" \<rightleftharpoons> "CONST Pair x y"
haftmann
parents: 61123
diff changeset
   314
  "_tuple x (_tuple_args y z)" \<rightleftharpoons> "_tuple x (_tuple_arg (_tuple y z))"
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   315
  "\<lambda>(x, y, zs). b" \<rightleftharpoons> "CONST case_prod (\<lambda>x (y, zs). b)"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   316
  "\<lambda>(x, y). b" \<rightleftharpoons> "CONST case_prod (\<lambda>x y. b)"
61124
haftmann
parents: 61123
diff changeset
   317
  "_abs (CONST Pair x y) t" \<rightharpoonup> "\<lambda>(x, y). t"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   318
  \<comment> \<open>This rule accommodates tuples in \<open>case C \<dots> (x, y) \<dots> \<Rightarrow> \<dots>\<close>:
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   319
     The \<open>(x, y)\<close> is parsed as \<open>Pair x y\<close> because it is \<open>logic\<close>,
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   320
     not \<open>pttrn\<close>.\<close>
63237
3e908f762817 conventional syntax for unit abstractions
haftmann
parents: 63007
diff changeset
   321
  "\<lambda>(). b" \<rightleftharpoons> "CONST case_unit b"
3e908f762817 conventional syntax for unit abstractions
haftmann
parents: 63007
diff changeset
   322
  "_abs (CONST Unity) t" \<rightharpoonup> "\<lambda>(). t"
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   323
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   324
text \<open>print @{term "case_prod f"} as @{term "\<lambda>(x, y). f x y"} and
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   325
  @{term "case_prod (\<lambda>x. f x)"} as @{term "\<lambda>(x, y). f x y"}\<close>
61226
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   326
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   327
typed_print_translation \<open>
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   328
  let
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   329
    fun case_prod_guess_names_tr' T [Abs (x, _, Abs _)] = raise Match
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   330
      | case_prod_guess_names_tr' T [Abs (x, xT, t)] =
61226
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   331
          (case (head_of t) of
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   332
            Const (@{const_syntax case_prod}, _) => raise Match
61226
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   333
          | _ =>
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   334
            let 
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   335
              val (_ :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   336
              val (y, t') = Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 1 t $ Bound 0);
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   337
              val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, xT, t');
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   338
            in
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   339
              Syntax.const @{syntax_const "_abs"} $
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   340
                (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   341
            end)
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   342
      | case_prod_guess_names_tr' T [t] =
61226
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   343
          (case head_of t of
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   344
            Const (@{const_syntax case_prod}, _) => raise Match
61226
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   345
          | _ =>
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   346
            let
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   347
              val (xT :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   348
              val (y, t') =
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   349
                Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 2 t $ Bound 1 $ Bound 0);
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   350
              val (x', t'') = Syntax_Trans.atomic_abs_tr' ("x", xT, t');
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   351
            in
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   352
              Syntax.const @{syntax_const "_abs"} $
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   353
                (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   354
            end)
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   355
      | case_prod_guess_names_tr' _ _ = raise Match;
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   356
  in [(@{const_syntax case_prod}, K case_prod_guess_names_tr')] end
61226
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   357
\<close>
af7bed1360f3 effective revert of e6b1236f9b3d: spontaneous eta-contraction happens on the print translation level and can only be suppressed on the print translation level
haftmann
parents: 61144
diff changeset
   358
61425
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   359
text \<open>reconstruct pattern from (nested) @{const case_prod}s,
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   360
  avoiding eta-contraction of body; required for enclosing "let",
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   361
  if "let" does not avoid eta-contraction, which has been observed to occur\<close>
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   362
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   363
print_translation \<open>
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   364
  let
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   365
    fun case_prod_tr' [Abs (x, T, t as (Abs abs))] =
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   366
          (* case_prod (\<lambda>x y. t) \<Rightarrow> \<lambda>(x, y) t *)
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   367
          let
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   368
            val (y, t') = Syntax_Trans.atomic_abs_tr' abs;
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   369
            val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   370
          in
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   371
            Syntax.const @{syntax_const "_abs"} $
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   372
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   373
          end
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   374
      | case_prod_tr' [Abs (x, T, (s as Const (@{const_syntax case_prod}, _) $ t))] =
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   375
          (* case_prod (\<lambda>x. (case_prod (\<lambda>y z. t))) \<Rightarrow> \<lambda>(x, y, z). t *)
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   376
          let
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   377
            val Const (@{syntax_const "_abs"}, _) $
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   378
              (Const (@{syntax_const "_pattern"}, _) $ y $ z) $ t' =
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   379
                case_prod_tr' [t];
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   380
            val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   381
          in
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   382
            Syntax.const @{syntax_const "_abs"} $
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   383
              (Syntax.const @{syntax_const "_pattern"} $ x' $
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   384
                (Syntax.const @{syntax_const "_patterns"} $ y $ z)) $ t''
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   385
          end
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   386
      | case_prod_tr' [Const (@{const_syntax case_prod}, _) $ t] =
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   387
          (* case_prod (case_prod (\<lambda>x y z. t)) \<Rightarrow> \<lambda>((x, y), z). t *)
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   388
          case_prod_tr' [(case_prod_tr' [t])]
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   389
            (* inner case_prod_tr' creates next pattern *)
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   390
      | case_prod_tr' [Const (@{syntax_const "_abs"}, _) $ x_y $ Abs abs] =
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   391
          (* case_prod (\<lambda>pttrn z. t) \<Rightarrow> \<lambda>(pttrn, z). t *)
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   392
          let val (z, t) = Syntax_Trans.atomic_abs_tr' abs in
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   393
            Syntax.const @{syntax_const "_abs"} $
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   394
              (Syntax.const @{syntax_const "_pattern"} $ x_y $ z) $ t
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   395
          end
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   396
      | case_prod_tr' _ = raise Match;
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   397
  in [(@{const_syntax case_prod}, K case_prod_tr')] end
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   398
\<close>
fb95d06fb21f restored print translation from a1141fb798ff, to prevent a printing misfit observable using "thm divmod_nat_if" in theory "Divides", with a meagure indication in the comment
haftmann
parents: 61424
diff changeset
   399
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   400
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   401
subsubsection \<open>Code generator setup\<close>
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   402
52435
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   403
code_printing
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   404
  type_constructor prod \<rightharpoonup>
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   405
    (SML) infix 2 "*"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   406
    and (OCaml) infix 2 "*"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   407
    and (Haskell) "!((_),/ (_))"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   408
    and (Scala) "((_),/ (_))"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   409
| constant Pair \<rightharpoonup>
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   410
    (SML) "!((_),/ (_))"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   411
    and (OCaml) "!((_),/ (_))"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   412
    and (Haskell) "!((_),/ (_))"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   413
    and (Scala) "!((_),/ (_))"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   414
| class_instance  prod :: equal \<rightharpoonup>
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   415
    (Haskell) -
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   416
| constant "HOL.equal :: 'a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool" \<rightharpoonup>
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   417
    (Haskell) infix 4 "=="
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   418
| constant fst \<rightharpoonup> (Haskell) "fst"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   419
| constant snd \<rightharpoonup> (Haskell) "snd"
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   420
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   421
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   422
subsubsection \<open>Fundamental operations and properties\<close>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   423
49897
cc69be3c8f87 moving Pair_inject from legacy and duplicate section to general section, as Pair_inject was considered a duplicate in e8400e31528a by mistake (cf. communication on dev mailing list)
bulwahn
parents: 49834
diff changeset
   424
lemma Pair_inject:
cc69be3c8f87 moving Pair_inject from legacy and duplicate section to general section, as Pair_inject was considered a duplicate in e8400e31528a by mistake (cf. communication on dev mailing list)
bulwahn
parents: 49834
diff changeset
   425
  assumes "(a, b) = (a', b')"
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   426
    and "a = a' \<Longrightarrow> b = b' \<Longrightarrow> R"
49897
cc69be3c8f87 moving Pair_inject from legacy and duplicate section to general section, as Pair_inject was considered a duplicate in e8400e31528a by mistake (cf. communication on dev mailing list)
bulwahn
parents: 49834
diff changeset
   427
  shows R
cc69be3c8f87 moving Pair_inject from legacy and duplicate section to general section, as Pair_inject was considered a duplicate in e8400e31528a by mistake (cf. communication on dev mailing list)
bulwahn
parents: 49834
diff changeset
   428
  using assms by simp
cc69be3c8f87 moving Pair_inject from legacy and duplicate section to general section, as Pair_inject was considered a duplicate in e8400e31528a by mistake (cf. communication on dev mailing list)
bulwahn
parents: 49834
diff changeset
   429
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   430
lemma surj_pair [simp]: "EX x y. p = (x, y)"
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   431
  by (cases p) simp
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   432
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   433
lemma fst_eqD: "fst (x, y) = a ==> x = a"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   434
  by simp
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   435
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   436
lemma snd_eqD: "snd (x, y) = a ==> y = a"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   437
  by simp
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   438
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   439
lemma case_prod_unfold [nitpick_unfold]: "case_prod = (\<lambda>c p. c (fst p) (snd p))"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   440
  by (simp add: fun_eq_iff split: prod.split)
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   441
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   442
lemma case_prod_conv [simp, code]: "(case (a, b) of (c, d) \<Rightarrow> f c d) = f a b"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   443
  by (fact prod.case)
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   444
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
   445
lemmas surjective_pairing = prod.collapse [symmetric]
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   446
44066
d74182c93f04 rename Pair_fst_snd_eq to prod_eq_iff (keeping old name too)
huffman
parents: 43866
diff changeset
   447
lemma prod_eq_iff: "s = t \<longleftrightarrow> fst s = fst t \<and> snd s = snd t"
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   448
  by (cases s, cases t) simp
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   449
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   450
lemma prod_eqI [intro?]: "fst p = fst q \<Longrightarrow> snd p = snd q \<Longrightarrow> p = q"
44066
d74182c93f04 rename Pair_fst_snd_eq to prod_eq_iff (keeping old name too)
huffman
parents: 43866
diff changeset
   451
  by (simp add: prod_eq_iff)
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   452
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   453
lemma case_prodI: "f a b \<Longrightarrow> case (a, b) of (c, d) \<Rightarrow> f c d"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   454
  by (rule prod.case [THEN iffD2])
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   455
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   456
lemma case_prodD: "(case (a, b) of (c, d) \<Rightarrow> f c d) \<Longrightarrow> f a b"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   457
  by (rule prod.case [THEN iffD1])
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   458
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   459
lemma case_prod_Pair [simp]: "case_prod Pair = id"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39272
diff changeset
   460
  by (simp add: fun_eq_iff split: prod.split)
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   461
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   462
lemma case_prod_eta: "(\<lambda>(x, y). f (x, y)) = f"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   463
  \<comment> \<open>Subsumes the old \<open>split_Pair\<close> when @{term f} is the identity function.\<close>
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39272
diff changeset
   464
  by (simp add: fun_eq_iff split: prod.split)
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   465
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   466
lemma case_prod_comp: "(case x of (a, b) \<Rightarrow> (f \<circ> g) a b) = f (g (fst x)) (snd x)"
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   467
  by (cases x) simp
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   468
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   469
lemma The_case_prod: "The (case_prod P) = (THE xy. P (fst xy) (snd xy))"
55414
eab03e9cee8a renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents: 55403
diff changeset
   470
  by (simp add: case_prod_unfold)
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   471
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   472
lemma cond_case_prod_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   473
  by (simp add: case_prod_eta)
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   474
47740
a8989fe9a3a5 added "no_atp"s for extremely prolific, useless facts for ATPs
blanchet
parents: 46950
diff changeset
   475
lemma split_paired_all [no_atp]: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
11820
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   476
proof
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   477
  fix a b
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   478
  assume "!!x. PROP P x"
19535
e4fdeb32eadf replaced syntax/translations by abbreviation;
wenzelm
parents: 19179
diff changeset
   479
  then show "PROP P (a, b)" .
11820
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   480
next
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   481
  fix x
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   482
  assume "!!a b. PROP P (a, b)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   483
  from \<open>PROP P (fst x, snd x)\<close> show "PROP P x" by simp
11820
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   484
qed
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   485
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   486
text \<open>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   487
  The rule @{thm [source] split_paired_all} does not work with the
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   488
  Simplifier because it also affects premises in congrence rules,
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   489
  where this can lead to premises of the form \<open>!!a b. ... =
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   490
  ?P(a, b)\<close> which cannot be solved by reflexivity.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   491
\<close>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   492
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   493
lemmas split_tupled_all = split_paired_all unit_all_eq2
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   494
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   495
ML \<open>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   496
  (* replace parameters of product type by individual component parameters *)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   497
  local (* filtering with exists_paired_all is an essential optimization *)
56245
84fc7dfa3cd4 more qualified names;
wenzelm
parents: 56218
diff changeset
   498
    fun exists_paired_all (Const (@{const_name Pure.all}, _) $ Abs (_, T, t)) =
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   499
          can HOLogic.dest_prodT T orelse exists_paired_all t
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   500
      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   501
      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   502
      | exists_paired_all _ = false;
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   503
    val ss =
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   504
      simpset_of
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   505
       (put_simpset HOL_basic_ss @{context}
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   506
        addsimps [@{thm split_paired_all}, @{thm unit_all_eq2}, @{thm unit_abs_eta_conv}]
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   507
        addsimprocs [@{simproc unit_eq}]);
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   508
  in
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   509
    fun split_all_tac ctxt = SUBGOAL (fn (t, i) =>
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   510
      if exists_paired_all t then safe_full_simp_tac (put_simpset ss ctxt) i else no_tac);
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   511
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   512
    fun unsafe_split_all_tac ctxt = SUBGOAL (fn (t, i) =>
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   513
      if exists_paired_all t then full_simp_tac (put_simpset ss ctxt) i else no_tac);
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   514
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   515
    fun split_all ctxt th =
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   516
      if exists_paired_all (Thm.prop_of th)
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   517
      then full_simplify (put_simpset ss ctxt) th else th;
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   518
  end;
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   519
\<close>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   520
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   521
setup \<open>map_theory_claset (fn ctxt => ctxt addSbefore ("split_all_tac", split_all_tac))\<close>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   522
47740
a8989fe9a3a5 added "no_atp"s for extremely prolific, useless facts for ATPs
blanchet
parents: 46950
diff changeset
   523
lemma split_paired_All [simp, no_atp]: "(ALL x. P x) = (ALL a b. P (a, b))"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   524
  \<comment> \<open>\<open>[iff]\<close> is not a good idea because it makes \<open>blast\<close> loop\<close>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   525
  by fast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   526
47740
a8989fe9a3a5 added "no_atp"s for extremely prolific, useless facts for ATPs
blanchet
parents: 46950
diff changeset
   527
lemma split_paired_Ex [simp, no_atp]: "(EX x. P x) = (EX a b. P (a, b))"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   528
  by fast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   529
47740
a8989fe9a3a5 added "no_atp"s for extremely prolific, useless facts for ATPs
blanchet
parents: 46950
diff changeset
   530
lemma split_paired_The [no_atp]: "(THE x. P x) = (THE (a, b). P (a, b))"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   531
  \<comment> \<open>Can't be added to simpset: loops!\<close>
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   532
  by (simp add: case_prod_eta)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   533
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   534
text \<open>
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   535
  Simplification procedure for @{thm [source] cond_case_prod_eta}.  Using
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   536
  @{thm [source] case_prod_eta} as a rewrite rule is not general enough,
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   537
  and using @{thm [source] cond_case_prod_eta} directly would render some
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   538
  existing proofs very inefficient; similarly for \<open>prod.case_eq_if\<close>.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   539
\<close>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   540
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   541
ML \<open>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   542
local
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   543
  val cond_case_prod_eta_ss =
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   544
    simpset_of (put_simpset HOL_basic_ss @{context} addsimps @{thms cond_case_prod_eta});
35364
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   545
  fun Pair_pat k 0 (Bound m) = (m = k)
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   546
    | Pair_pat k i (Const (@{const_name Pair},  _) $ Bound m $ t) =
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   547
        i > 0 andalso m = k + i andalso Pair_pat k (i - 1) t
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   548
    | Pair_pat _ _ _ = false;
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   549
  fun no_args k i (Abs (_, _, t)) = no_args (k + 1) i t
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   550
    | no_args k i (t $ u) = no_args k i t andalso no_args k i u
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   551
    | no_args k i (Bound m) = m < k orelse m > k + i
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   552
    | no_args _ _ _ = true;
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   553
  fun split_pat tp i (Abs  (_, _, t)) = if tp 0 i t then SOME (i, t) else NONE
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   554
    | split_pat tp i (Const (@{const_name case_prod}, _) $ Abs (_, _, t)) = split_pat tp (i + 1) t
35364
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   555
    | split_pat tp i _ = NONE;
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   556
  fun metaeq ctxt lhs rhs = mk_meta_eq (Goal.prove ctxt [] []
35364
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   557
        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)))
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   558
        (K (simp_tac (put_simpset cond_case_prod_eta_ss ctxt) 1)));
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   559
35364
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   560
  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k + 1) i t
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   561
    | beta_term_pat k i (t $ u) =
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   562
        Pair_pat k i (t $ u) orelse (beta_term_pat k i t andalso beta_term_pat k i u)
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   563
    | beta_term_pat k i t = no_args k i t;
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   564
  fun eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   565
    | eta_term_pat _ _ _ = false;
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   566
  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
35364
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   567
    | subst arg k i (t $ u) =
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   568
        if Pair_pat k i (t $ u) then incr_boundvars k arg
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   569
        else (subst arg k i t $ subst arg k i u)
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   570
    | subst arg k i t = t;
43595
7ae4a23b5be6 modernized some simproc setup;
wenzelm
parents: 43594
diff changeset
   571
in
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   572
  fun beta_proc ctxt (s as Const (@{const_name case_prod}, _) $ Abs (_, _, t) $ arg) =
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   573
        (case split_pat beta_term_pat 1 t of
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   574
          SOME (i, f) => SOME (metaeq ctxt s (subst arg 0 i f))
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15481
diff changeset
   575
        | NONE => NONE)
35364
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   576
    | beta_proc _ _ = NONE;
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   577
  fun eta_proc ctxt (s as Const (@{const_name case_prod}, _) $ Abs (_, _, t)) =
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   578
        (case split_pat eta_term_pat 1 t of
58468
haftmann
parents: 58389
diff changeset
   579
          SOME (_, ft) => SOME (metaeq ctxt s (let val f $ _ = ft in f end))
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15481
diff changeset
   580
        | NONE => NONE)
35364
b8c62d60195c more antiquotations;
wenzelm
parents: 35115
diff changeset
   581
    | eta_proc _ _ = NONE;
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   582
end;
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   583
\<close>
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   584
simproc_setup case_prod_beta ("case_prod f z") =
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   585
  \<open>fn _ => fn ctxt => fn ct => beta_proc ctxt (Thm.term_of ct)\<close>
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   586
simproc_setup case_prod_eta ("case_prod f") =
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   587
  \<open>fn _ => fn ctxt => fn ct => eta_proc ctxt (Thm.term_of ct)\<close>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   588
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   589
lemma case_prod_beta': "(\<lambda>(x,y). f x y) = (\<lambda>x. f (fst x) (snd x))"
50104
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49897
diff changeset
   590
  by (auto simp: fun_eq_iff)
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49897
diff changeset
   591
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   592
text \<open>
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   593
  \medskip @{const case_prod} used as a logical connective or set former.
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   594
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   595
  \medskip These rules are for use with \<open>blast\<close>; could instead
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   596
  call \<open>simp\<close> using @{thm [source] prod.split} as rewrite.\<close>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   597
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   598
lemma case_prodI2:
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   599
  "\<And>p. (\<And>a b. p = (a, b) \<Longrightarrow> c a b) \<Longrightarrow> case p of (a, b) \<Rightarrow> c a b"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   600
  by (simp add: split_tupled_all)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   601
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   602
lemma case_prodI2':
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   603
  "\<And>p. (\<And>a b. (a, b) = p \<Longrightarrow> c a b x) \<Longrightarrow> (case p of (a, b) \<Rightarrow> c a b) x"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   604
  by (simp add: split_tupled_all)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   605
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   606
lemma case_prodE [elim!]:
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   607
  "(case p of (a, b) \<Rightarrow> c a b) \<Longrightarrow> (\<And>x y. p = (x, y) \<Longrightarrow> c x y \<Longrightarrow> Q) \<Longrightarrow> Q"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   608
  by (induct p) simp
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   609
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   610
lemma case_prodE' [elim!]:
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   611
  "(case p of (a, b) \<Rightarrow> c a b) z \<Longrightarrow> (\<And>x y. p = (x, y) \<Longrightarrow> c x y z \<Longrightarrow> Q) \<Longrightarrow> Q"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   612
  by (induct p) simp
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   613
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   614
lemma case_prodE2:
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   615
  assumes q: "Q (case z of (a, b) \<Rightarrow> P a b)"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   616
    and r: "\<And>x y. z = (x, y) \<Longrightarrow> Q (P x y) \<Longrightarrow> R"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   617
  shows R
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   618
proof (rule r)
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   619
  show "z = (fst z, snd z)" by simp
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   620
  then show "Q (P (fst z) (snd z))"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   621
    using q by (simp add: case_prod_unfold)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   622
qed
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   623
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   624
lemma case_prodD':
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
   625
  "(case (a, b) of (c, d) \<Rightarrow> R c d) c \<Longrightarrow> R a b c"
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   626
  by simp
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   627
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   628
lemma mem_case_prodI:
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
   629
  "z \<in> c a b \<Longrightarrow> z \<in> (case (a, b) of (d, e) \<Rightarrow> c d e)"
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   630
  by simp
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   631
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   632
lemma mem_case_prodI2 [intro!]:
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
   633
  "\<And>p. (\<And>a b. p = (a, b) \<Longrightarrow> z \<in> c a b) \<Longrightarrow> z \<in> (case p of (a, b) \<Rightarrow> c a b)"
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
   634
  by (simp only: split_tupled_all) simp
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   635
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   636
declare mem_case_prodI [intro!] \<comment> \<open>postponed to maintain traditional declaration order!\<close>
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   637
declare case_prodI2' [intro!] \<comment> \<open>postponed to maintain traditional declaration order!\<close>
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   638
declare case_prodI2 [intro!] \<comment> \<open>postponed to maintain traditional declaration order!\<close>
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   639
declare case_prodI [intro!] \<comment> \<open>postponed to maintain traditional declaration order!\<close>
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   640
  
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   641
lemma mem_case_prodE [elim!]:
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   642
  assumes "z \<in> case_prod c p"
58468
haftmann
parents: 58389
diff changeset
   643
  obtains x y where "p = (x, y)" and "z \<in> c x y"
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   644
  using assms by (rule case_prodE2)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   645
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   646
ML \<open>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   647
local (* filtering with exists_p_split is an essential optimization *)
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   648
  fun exists_p_split (Const (@{const_name case_prod},_) $ _ $ (Const (@{const_name Pair},_)$_$_)) = true
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   649
    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   650
    | exists_p_split (Abs (_, _, t)) = exists_p_split t
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   651
    | exists_p_split _ = false;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   652
in
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   653
fun split_conv_tac ctxt = SUBGOAL (fn (t, i) =>
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   654
  if exists_p_split t
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   655
  then safe_full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms case_prod_conv}) i
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   656
  else no_tac);
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   657
end;
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   658
\<close>
26340
a85fe32e7b2f more antiquotations;
wenzelm
parents: 26143
diff changeset
   659
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   660
(* This prevents applications of splitE for already splitted arguments leading
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   661
   to quite time-consuming computations (in particular for nested tuples) *)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   662
setup \<open>map_theory_claset (fn ctxt => ctxt addSbefore ("split_conv_tac", split_conv_tac))\<close>
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   663
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 52435
diff changeset
   664
lemma split_eta_SetCompr [simp, no_atp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 18334
diff changeset
   665
  by (rule ext) fast
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   666
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   667
lemma split_eta_SetCompr2 [simp, no_atp]: "(%u. EX x y. u = (x, y) & P x y) = case_prod P"
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 18334
diff changeset
   668
  by (rule ext) fast
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   669
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   670
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & case_prod Q ab)"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   671
  \<comment> \<open>Allows simplifications of nested splits in case of independent predicates.\<close>
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 18334
diff changeset
   672
  by (rule ext) blast
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   673
14337
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   674
(* Do NOT make this a simp rule as it
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   675
   a) only helps in special situations
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   676
   b) can lead to nontermination in the presence of split_def
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   677
*)
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   678
lemma split_comp_eq: 
20415
e3d2d7b01279 explicit type variables prevent empty sorts
paulson
parents: 20380
diff changeset
   679
  fixes f :: "'a => 'b => 'c" and g :: "'d => 'a"
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   680
  shows "(%u. f (g (fst u)) (snd u)) = (case_prod (%x. f (g x)))"
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 18334
diff changeset
   681
  by (rule ext) auto
14101
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   682
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   683
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   684
  apply (rule_tac x = "(a, b)" in image_eqI)
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   685
   apply auto
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   686
  done
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   687
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   688
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   689
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   690
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   691
(*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   692
the following  would be slightly more general,
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   693
but cannot be used as rewrite rule:
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   694
### Cannot add premise as rewrite rule because it contains (type) unknowns:
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   695
### ?y = .x
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   696
Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   697
by (rtac some_equality 1)
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   698
by ( Simp_tac 1)
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   699
by (split_all_tac 1)
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   700
by (Asm_full_simp_tac 1)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   701
qed "The_split_eq";
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   702
*)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   703
55414
eab03e9cee8a renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents: 55403
diff changeset
   704
lemma case_prod_beta:
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   705
  "case_prod f p = f (fst p) (snd p)"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   706
  by (fact prod.case_eq_if)
26143
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 25885
diff changeset
   707
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 55414
diff changeset
   708
lemma prod_cases3 [cases type]:
24699
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   709
  obtains (fields) a b c where "y = (a, b, c)"
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   710
  by (cases y, case_tac b) blast
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   711
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   712
lemma prod_induct3 [case_names fields, induct type]:
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   713
    "(!!a b c. P (a, b, c)) ==> P x"
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   714
  by (cases x) blast
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   715
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 55414
diff changeset
   716
lemma prod_cases4 [cases type]:
24699
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   717
  obtains (fields) a b c d where "y = (a, b, c, d)"
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   718
  by (cases y, case_tac c) blast
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   719
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   720
lemma prod_induct4 [case_names fields, induct type]:
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   721
    "(!!a b c d. P (a, b, c, d)) ==> P x"
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   722
  by (cases x) blast
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   723
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 55414
diff changeset
   724
lemma prod_cases5 [cases type]:
24699
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   725
  obtains (fields) a b c d e where "y = (a, b, c, d, e)"
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   726
  by (cases y, case_tac d) blast
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   727
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   728
lemma prod_induct5 [case_names fields, induct type]:
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   729
    "(!!a b c d e. P (a, b, c, d, e)) ==> P x"
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   730
  by (cases x) blast
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   731
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 55414
diff changeset
   732
lemma prod_cases6 [cases type]:
24699
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   733
  obtains (fields) a b c d e f where "y = (a, b, c, d, e, f)"
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   734
  by (cases y, case_tac e) blast
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   735
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   736
lemma prod_induct6 [case_names fields, induct type]:
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   737
    "(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x"
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   738
  by (cases x) blast
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   739
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 55414
diff changeset
   740
lemma prod_cases7 [cases type]:
24699
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   741
  obtains (fields) a b c d e f g where "y = (a, b, c, d, e, f, g)"
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   742
  by (cases y, case_tac f) blast
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   743
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   744
lemma prod_induct7 [case_names fields, induct type]:
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   745
    "(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x"
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   746
  by (cases x) blast
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   747
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   748
definition internal_case_prod :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   749
  "internal_case_prod == case_prod"
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   750
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   751
lemma internal_case_prod_conv: "internal_case_prod c (a, b) = c a b"
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   752
  by (simp only: internal_case_prod_def case_prod_conv)
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   753
48891
c0eafbd55de3 prefer ML_file over old uses;
wenzelm
parents: 47988
diff changeset
   754
ML_file "Tools/split_rule.ML"
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   755
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   756
hide_const internal_case_prod
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   757
24699
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
   758
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   759
subsubsection \<open>Derived operations\<close>
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   760
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   761
definition curry :: "('a \<times> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'c" where
37387
3581483cca6c qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
haftmann
parents: 37278
diff changeset
   762
  "curry = (\<lambda>c x y. c (x, y))"
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   763
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   764
lemma curry_conv [simp, code]: "curry f a b = f (a, b)"
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   765
  by (simp add: curry_def)
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   766
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   767
lemma curryI [intro!]: "f (a, b) \<Longrightarrow> curry f a b"
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   768
  by (simp add: curry_def)
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   769
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   770
lemma curryD [dest!]: "curry f a b \<Longrightarrow> f (a, b)"
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   771
  by (simp add: curry_def)
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   772
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   773
lemma curryE: "curry f a b \<Longrightarrow> (f (a, b) \<Longrightarrow> Q) \<Longrightarrow> Q"
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   774
  by (simp add: curry_def)
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   775
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   776
lemma curry_case_prod [simp]: "curry (case_prod f) = f"
61032
b57df8eecad6 standardized some occurences of ancient "split" alias
haftmann
parents: 60758
diff changeset
   777
  by (simp add: curry_def case_prod_unfold)
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   778
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   779
lemma case_prod_curry [simp]: "case_prod (curry f) = f"
61032
b57df8eecad6 standardized some occurences of ancient "split" alias
haftmann
parents: 60758
diff changeset
   780
  by (simp add: curry_def case_prod_unfold)
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   781
54630
9061af4d5ebc restrict admissibility to non-empty chains to allow more syntax-directed proof rules
Andreas Lochbihler
parents: 54147
diff changeset
   782
lemma curry_K: "curry (\<lambda>x. c) = (\<lambda>x y. c)"
9061af4d5ebc restrict admissibility to non-empty chains to allow more syntax-directed proof rules
Andreas Lochbihler
parents: 54147
diff changeset
   783
by(simp add: fun_eq_iff)
9061af4d5ebc restrict admissibility to non-empty chains to allow more syntax-directed proof rules
Andreas Lochbihler
parents: 54147
diff changeset
   784
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   785
text \<open>
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   786
  The composition-uncurry combinator.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   787
\<close>
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   788
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 37704
diff changeset
   789
notation fcomp (infixl "\<circ>>" 60)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   790
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 37704
diff changeset
   791
definition scomp :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd" (infixl "\<circ>\<rightarrow>" 60) where
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   792
  "f \<circ>\<rightarrow> g = (\<lambda>x. case_prod g (f x))"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   793
37678
0040bafffdef "prod" and "sum" replace "*" and "+" respectively
haftmann
parents: 37591
diff changeset
   794
lemma scomp_unfold: "scomp = (\<lambda>f g x. g (fst (f x)) (snd (f x)))"
55414
eab03e9cee8a renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents: 55403
diff changeset
   795
  by (simp add: fun_eq_iff scomp_def case_prod_unfold)
37678
0040bafffdef "prod" and "sum" replace "*" and "+" respectively
haftmann
parents: 37591
diff changeset
   796
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
   797
lemma scomp_apply [simp]: "(f \<circ>\<rightarrow> g) x = case_prod g (f x)"
55414
eab03e9cee8a renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents: 55403
diff changeset
   798
  by (simp add: scomp_unfold case_prod_unfold)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   799
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 37704
diff changeset
   800
lemma Pair_scomp: "Pair x \<circ>\<rightarrow> f = f x"
44921
58eef4843641 tuned proofs
huffman
parents: 44066
diff changeset
   801
  by (simp add: fun_eq_iff)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   802
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 37704
diff changeset
   803
lemma scomp_Pair: "x \<circ>\<rightarrow> Pair = x"
44921
58eef4843641 tuned proofs
huffman
parents: 44066
diff changeset
   804
  by (simp add: fun_eq_iff)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   805
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 37704
diff changeset
   806
lemma scomp_scomp: "(f \<circ>\<rightarrow> g) \<circ>\<rightarrow> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>\<rightarrow> h)"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39272
diff changeset
   807
  by (simp add: fun_eq_iff scomp_unfold)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   808
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 37704
diff changeset
   809
lemma scomp_fcomp: "(f \<circ>\<rightarrow> g) \<circ>> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>> h)"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39272
diff changeset
   810
  by (simp add: fun_eq_iff scomp_unfold fcomp_def)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   811
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 37704
diff changeset
   812
lemma fcomp_scomp: "(f \<circ>> g) \<circ>\<rightarrow> h = f \<circ>> (g \<circ>\<rightarrow> h)"
44921
58eef4843641 tuned proofs
huffman
parents: 44066
diff changeset
   813
  by (simp add: fun_eq_iff scomp_unfold)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   814
52435
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   815
code_printing
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52143
diff changeset
   816
  constant scomp \<rightharpoonup> (Eval) infixl 3 "#->"
31202
52d332f8f909 pretty printing of functional combinators for evaluation code
haftmann
parents: 30924
diff changeset
   817
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 37704
diff changeset
   818
no_notation fcomp (infixl "\<circ>>" 60)
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 37704
diff changeset
   819
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   820
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   821
text \<open>
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   822
  @{term map_prod} --- action of the product functor upon
36664
6302f9ad7047 repaired comments where SOMEthing went utterly wrong (cf. 2b04504fcb69)
krauss
parents: 36622
diff changeset
   823
  functions.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   824
\<close>
21195
0cca8d19557d two further lemmas on split
haftmann
parents: 21046
diff changeset
   825
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   826
definition map_prod :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'd" where
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   827
  "map_prod f g = (\<lambda>(x, y). (f x, g y))"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   828
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   829
lemma map_prod_simp [simp, code]:
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   830
  "map_prod f g (a, b) = (f a, g b)"
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   831
  by (simp add: map_prod_def)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   832
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   833
functor map_prod: map_prod
44921
58eef4843641 tuned proofs
huffman
parents: 44066
diff changeset
   834
  by (auto simp add: split_paired_all)
37278
307845cc7f51 added lemmas
nipkow
parents: 37166
diff changeset
   835
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   836
lemma fst_map_prod [simp]:
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   837
  "fst (map_prod f g x) = f (fst x)"
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
   838
  by (cases x) simp_all
37278
307845cc7f51 added lemmas
nipkow
parents: 37166
diff changeset
   839
58916
229765cc3414 more complete fp_sugars for sum and prod;
traytel
parents: 58889
diff changeset
   840
lemma snd_map_prod [simp]:
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   841
  "snd (map_prod f g x) = g (snd x)"
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
   842
  by (cases x) simp_all
37278
307845cc7f51 added lemmas
nipkow
parents: 37166
diff changeset
   843
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   844
lemma fst_comp_map_prod [simp]:
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   845
  "fst \<circ> map_prod f g = f \<circ> fst"
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
   846
  by (rule ext) simp_all
37278
307845cc7f51 added lemmas
nipkow
parents: 37166
diff changeset
   847
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   848
lemma snd_comp_map_prod [simp]:
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   849
  "snd \<circ> map_prod f g = g \<circ> snd"
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
   850
  by (rule ext) simp_all
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   851
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   852
lemma map_prod_compose:
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   853
  "map_prod (f1 o f2) (g1 o g2) = (map_prod f1 g1 o map_prod f2 g2)"
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   854
  by (rule ext) (simp add: map_prod.compositionality comp_def)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   855
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   856
lemma map_prod_ident [simp]:
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   857
  "map_prod (%x. x) (%y. y) = (%z. z)"
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   858
  by (rule ext) (simp add: map_prod.identity)
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
   859
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   860
lemma map_prod_imageI [intro]:
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   861
  "(a, b) \<in> R \<Longrightarrow> (f a, g b) \<in> map_prod f g ` R"
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
   862
  by (rule image_eqI) simp_all
21195
0cca8d19557d two further lemmas on split
haftmann
parents: 21046
diff changeset
   863
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   864
lemma prod_fun_imageE [elim!]:
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   865
  assumes major: "c \<in> map_prod f g ` R"
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
   866
    and cases: "\<And>x y. c = (f x, g y) \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> P"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   867
  shows P
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   868
  apply (rule major [THEN imageE])
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   869
  apply (case_tac x)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   870
  apply (rule cases)
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
   871
  apply simp_all
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   872
  done
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   873
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   874
definition apfst :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'b" where
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   875
  "apfst f = map_prod f id"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   876
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
   877
definition apsnd :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'c" where
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
   878
  "apsnd f = map_prod id f"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   879
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   880
lemma apfst_conv [simp, code]:
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   881
  "apfst f (x, y) = (f x, y)" 
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   882
  by (simp add: apfst_def)
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   883
33638
548a34929e98 Renamed upd_snd_conv to apsnd_conv to be consistent with apfst_conv; Added apsnd_apfst_commute
hoelzl
parents: 33594
diff changeset
   884
lemma apsnd_conv [simp, code]:
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   885
  "apsnd f (x, y) = (x, f y)" 
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
   886
  by (simp add: apsnd_def)
21195
0cca8d19557d two further lemmas on split
haftmann
parents: 21046
diff changeset
   887
33594
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   888
lemma fst_apfst [simp]:
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   889
  "fst (apfst f x) = f (fst x)"
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   890
  by (cases x) simp
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   891
51173
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   892
lemma fst_comp_apfst [simp]:
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   893
  "fst \<circ> apfst f = f \<circ> fst"
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   894
  by (simp add: fun_eq_iff)
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   895
33594
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   896
lemma fst_apsnd [simp]:
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   897
  "fst (apsnd f x) = fst x"
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   898
  by (cases x) simp
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   899
51173
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   900
lemma fst_comp_apsnd [simp]:
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   901
  "fst \<circ> apsnd f = fst"
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   902
  by (simp add: fun_eq_iff)
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   903
33594
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   904
lemma snd_apfst [simp]:
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   905
  "snd (apfst f x) = snd x"
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   906
  by (cases x) simp
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   907
51173
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   908
lemma snd_comp_apfst [simp]:
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   909
  "snd \<circ> apfst f = snd"
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   910
  by (simp add: fun_eq_iff)
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   911
33594
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   912
lemma snd_apsnd [simp]:
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   913
  "snd (apsnd f x) = f (snd x)"
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   914
  by (cases x) simp
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   915
51173
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   916
lemma snd_comp_apsnd [simp]:
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   917
  "snd \<circ> apsnd f = f \<circ> snd"
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   918
  by (simp add: fun_eq_iff)
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50107
diff changeset
   919
33594
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   920
lemma apfst_compose:
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   921
  "apfst f (apfst g x) = apfst (f \<circ> g) x"
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   922
  by (cases x) simp
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   923
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   924
lemma apsnd_compose:
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   925
  "apsnd f (apsnd g x) = apsnd (f \<circ> g) x"
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   926
  by (cases x) simp
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   927
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   928
lemma apfst_apsnd [simp]:
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   929
  "apfst f (apsnd g x) = (f (fst x), g (snd x))"
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   930
  by (cases x) simp
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   931
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   932
lemma apsnd_apfst [simp]:
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   933
  "apsnd f (apfst g x) = (g (fst x), f (snd x))"
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   934
  by (cases x) simp
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   935
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   936
lemma apfst_id [simp] :
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   937
  "apfst id = id"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39272
diff changeset
   938
  by (simp add: fun_eq_iff)
33594
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   939
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   940
lemma apsnd_id [simp] :
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   941
  "apsnd id = id"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39272
diff changeset
   942
  by (simp add: fun_eq_iff)
33594
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   943
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   944
lemma apfst_eq_conv [simp]:
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   945
  "apfst f x = apfst g x \<longleftrightarrow> f (fst x) = g (fst x)"
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   946
  by (cases x) simp
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   947
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   948
lemma apsnd_eq_conv [simp]:
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   949
  "apsnd f x = apsnd g x \<longleftrightarrow> f (snd x) = g (snd x)"
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   950
  by (cases x) simp
357f74e0090c lemmas about apfst and apsnd
haftmann
parents: 33275
diff changeset
   951
33638
548a34929e98 Renamed upd_snd_conv to apsnd_conv to be consistent with apfst_conv; Added apsnd_apfst_commute
hoelzl
parents: 33594
diff changeset
   952
lemma apsnd_apfst_commute:
548a34929e98 Renamed upd_snd_conv to apsnd_conv to be consistent with apfst_conv; Added apsnd_apfst_commute
hoelzl
parents: 33594
diff changeset
   953
  "apsnd f (apfst g p) = apfst g (apsnd f p)"
548a34929e98 Renamed upd_snd_conv to apsnd_conv to be consistent with apfst_conv; Added apsnd_apfst_commute
hoelzl
parents: 33594
diff changeset
   954
  by simp
21195
0cca8d19557d two further lemmas on split
haftmann
parents: 21046
diff changeset
   955
56626
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   956
context
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   957
begin
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   958
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   959
local_setup \<open>Local_Theory.map_background_naming (Name_Space.mandatory_path "prod")\<close>
56626
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   960
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
   961
definition swap :: "'a \<times> 'b \<Rightarrow> 'b \<times> 'a"
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
   962
where
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
   963
  "swap p = (snd p, fst p)"
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
   964
56626
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   965
end
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   966
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
   967
lemma swap_simp [simp]:
56626
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   968
  "prod.swap (x, y) = (y, x)"
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   969
  by (simp add: prod.swap_def)
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
   970
58195
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   971
lemma swap_swap [simp]:
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   972
  "prod.swap (prod.swap p) = p"
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   973
  by (cases p) simp
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   974
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   975
lemma swap_comp_swap [simp]:
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   976
  "prod.swap \<circ> prod.swap = id"
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   977
  by (simp add: fun_eq_iff)
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   978
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
   979
lemma pair_in_swap_image [simp]:
56626
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   980
  "(y, x) \<in> prod.swap ` A \<longleftrightarrow> (x, y) \<in> A"
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
   981
  by (auto intro!: image_eqI)
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
   982
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
   983
lemma inj_swap [simp]:
56626
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   984
  "inj_on prod.swap A"
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   985
  by (rule inj_onI) auto
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   986
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   987
lemma swap_inj_on:
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   988
  "inj_on (\<lambda>(i, j). (j, i)) A"
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
   989
  by (rule inj_onI) auto
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
   990
58195
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   991
lemma surj_swap [simp]:
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   992
  "surj prod.swap"
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   993
  by (rule surjI [of _ prod.swap]) simp
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   994
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   995
lemma bij_swap [simp]:
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   996
  "bij prod.swap"
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   997
  by (simp add: bij_def)
1fee63e0377d added various facts
haftmann
parents: 58189
diff changeset
   998
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
   999
lemma case_swap [simp]:
56626
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
  1000
  "(case prod.swap p of (y, x) \<Rightarrow> f x y) = (case p of (x, y) \<Rightarrow> f x y)"
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
  1001
  by (cases p) simp
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
  1002
62139
519362f817c7 add BNF instance for Dlist
Andreas Lochbihler
parents: 62101
diff changeset
  1003
lemma fst_swap [simp]: "fst (prod.swap x) = snd x"
519362f817c7 add BNF instance for Dlist
Andreas Lochbihler
parents: 62101
diff changeset
  1004
by(cases x) simp
519362f817c7 add BNF instance for Dlist
Andreas Lochbihler
parents: 62101
diff changeset
  1005
519362f817c7 add BNF instance for Dlist
Andreas Lochbihler
parents: 62101
diff changeset
  1006
lemma snd_swap [simp]: "snd (prod.swap x) = fst x"
519362f817c7 add BNF instance for Dlist
Andreas Lochbihler
parents: 62101
diff changeset
  1007
by(cases x) simp
519362f817c7 add BNF instance for Dlist
Andreas Lochbihler
parents: 62101
diff changeset
  1008
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1009
text \<open>
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1010
  Disjoint union of a family of sets -- Sigma.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1011
\<close>
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1012
45986
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45696
diff changeset
  1013
definition Sigma :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<times> 'b) set" where
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1014
  Sigma_def: "Sigma A B == UN x:A. UN y:B x. {Pair x y}"
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1015
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1016
abbreviation
61943
7fba644ed827 discontinued ASCII replacement syntax <*>;
wenzelm
parents: 61799
diff changeset
  1017
  Times :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set"  (infixr "\<times>" 80) where
7fba644ed827 discontinued ASCII replacement syntax <*>;
wenzelm
parents: 61799
diff changeset
  1018
  "A \<times> B == Sigma A (%_. B)"
15394
a2c34e6ca4f8 New code generator for let and split.
berghofe
parents: 15140
diff changeset
  1019
45662
4f7c05990420 Hide Product_Type.Times - too precious an identifier
nipkow
parents: 45607
diff changeset
  1020
hide_const (open) Times
4f7c05990420 Hide Product_Type.Times - too precious an identifier
nipkow
parents: 45607
diff changeset
  1021
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1022
syntax
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34900
diff changeset
  1023
  "_Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"  ("(3SIGMA _:_./ _)" [0, 0, 10] 10)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1024
translations
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34900
diff changeset
  1025
  "SIGMA x:A. B" == "CONST Sigma A (%x. B)"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1026
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1027
lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1028
  by (unfold Sigma_def) blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1029
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1030
lemma SigmaE [elim!]:
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1031
    "[| c: Sigma A B;
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1032
        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1033
     |] ==> P"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
  1034
  \<comment> \<open>The general elimination rule.\<close>
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1035
  by (unfold Sigma_def) blast
20588
c847c56edf0c added operational equality
haftmann
parents: 20415
diff changeset
  1036
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1037
text \<open>
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1038
  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1039
  eigenvariables.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1040
\<close>
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1041
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1042
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1043
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1044
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1045
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1046
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1047
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1048
lemma SigmaE2:
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1049
    "[| (a, b) : Sigma A B;
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1050
        [| a:A;  b:B(a) |] ==> P
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1051
     |] ==> P"
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1052
  by blast
20588
c847c56edf0c added operational equality
haftmann
parents: 20415
diff changeset
  1053
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1054
lemma Sigma_cong:
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1055
     "\<lbrakk>A = B; !!x. x \<in> B \<Longrightarrow> C x = D x\<rbrakk>
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1056
      \<Longrightarrow> (SIGMA x: A. C x) = (SIGMA x: B. D x)"
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1057
  by auto
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1058
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1059
lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1060
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1061
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1062
lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1063
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1064
61943
7fba644ed827 discontinued ASCII replacement syntax <*>;
wenzelm
parents: 61799
diff changeset
  1065
lemma Sigma_empty2 [simp]: "A \<times> {} = {}"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1066
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1067
61943
7fba644ed827 discontinued ASCII replacement syntax <*>;
wenzelm
parents: 61799
diff changeset
  1068
lemma UNIV_Times_UNIV [simp]: "UNIV \<times> UNIV = UNIV"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1069
  by auto
21908
d02ba728cd56 moved code generator product setup here
haftmann
parents: 21454
diff changeset
  1070
61943
7fba644ed827 discontinued ASCII replacement syntax <*>;
wenzelm
parents: 61799
diff changeset
  1071
lemma Compl_Times_UNIV1 [simp]: "- (UNIV \<times> A) = UNIV \<times> (-A)"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1072
  by auto
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1073
61943
7fba644ed827 discontinued ASCII replacement syntax <*>;
wenzelm
parents: 61799
diff changeset
  1074
lemma Compl_Times_UNIV2 [simp]: "- (A \<times> UNIV) = (-A) \<times> UNIV"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1075
  by auto
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1076
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1077
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1078
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1079
62101
26c0a70f78a3 add uniform spaces
hoelzl
parents: 61955
diff changeset
  1080
lemma mem_Times_iff: "x \<in> A \<times> B \<longleftrightarrow> fst x \<in> A \<and> snd x \<in> B"
26c0a70f78a3 add uniform spaces
hoelzl
parents: 61955
diff changeset
  1081
  by (induct x) simp
26c0a70f78a3 add uniform spaces
hoelzl
parents: 61955
diff changeset
  1082
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58916
diff changeset
  1083
lemma Sigma_empty_iff: "(SIGMA i:I. X i) = {} \<longleftrightarrow> (\<forall>i\<in>I. X i = {})"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58916
diff changeset
  1084
  by auto
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58916
diff changeset
  1085
61943
7fba644ed827 discontinued ASCII replacement syntax <*>;
wenzelm
parents: 61799
diff changeset
  1086
lemma Times_subset_cancel2: "x:C ==> (A \<times> C <= B \<times> C) = (A <= B)"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1087
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1088
61943
7fba644ed827 discontinued ASCII replacement syntax <*>;
wenzelm
parents: 61799
diff changeset
  1089
lemma Times_eq_cancel2: "x:C ==> (A \<times> C = B \<times> C) = (A = B)"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1090
  by (blast elim: equalityE)
20588
c847c56edf0c added operational equality
haftmann
parents: 20415
diff changeset
  1091
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1092
lemma Collect_case_prod_Sigma:
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1093
  "{(x, y). P x \<and> Q x y} = (SIGMA x:Collect P. Collect (Q x))"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1094
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1095
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1096
lemma Collect_case_prod [simp]:
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1097
  "{(a, b). P a \<and> Q b} = Collect P \<times> Collect Q "
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1098
  by (fact Collect_case_prod_Sigma)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1099
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1100
lemma Collect_case_prodD:
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1101
  "x \<in> Collect (case_prod A) \<Longrightarrow> A (fst x) (snd x)"
61422
0dfcd0fb4172 moved lemmas
haftmann
parents: 61378
diff changeset
  1102
  by auto
0dfcd0fb4172 moved lemmas
haftmann
parents: 61378
diff changeset
  1103
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1104
lemma Collect_case_prod_mono:
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1105
  "A \<le> B \<Longrightarrow> Collect (case_prod A) \<subseteq> Collect (case_prod B)"
61422
0dfcd0fb4172 moved lemmas
haftmann
parents: 61378
diff changeset
  1106
  by auto (auto elim!: le_funE)
0dfcd0fb4172 moved lemmas
haftmann
parents: 61378
diff changeset
  1107
0dfcd0fb4172 moved lemmas
haftmann
parents: 61378
diff changeset
  1108
lemma Collect_split_mono_strong: 
0dfcd0fb4172 moved lemmas
haftmann
parents: 61378
diff changeset
  1109
  "X = fst ` A \<Longrightarrow> Y = snd ` A \<Longrightarrow> \<forall>a\<in>X. \<forall>b \<in> Y. P a b \<longrightarrow> Q a b
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1110
    \<Longrightarrow> A \<subseteq> Collect (case_prod P) \<Longrightarrow> A \<subseteq> Collect (case_prod Q)"
61422
0dfcd0fb4172 moved lemmas
haftmann
parents: 61378
diff changeset
  1111
  by fastforce
0dfcd0fb4172 moved lemmas
haftmann
parents: 61378
diff changeset
  1112
  
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1113
lemma UN_Times_distrib:
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1114
  "(\<Union>(a, b)\<in>A \<times> B. E a \<times> F b) = UNION A E \<times> UNION B F"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
  1115
  \<comment> \<open>Suggested by Pierre Chartier\<close>
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1116
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1117
47740
a8989fe9a3a5 added "no_atp"s for extremely prolific, useless facts for ATPs
blanchet
parents: 46950
diff changeset
  1118
lemma split_paired_Ball_Sigma [simp, no_atp]:
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1119
  "(\<forall>z\<in>Sigma A B. P z) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>B x. P (x, y))"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1120
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1121
47740
a8989fe9a3a5 added "no_atp"s for extremely prolific, useless facts for ATPs
blanchet
parents: 46950
diff changeset
  1122
lemma split_paired_Bex_Sigma [simp, no_atp]:
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1123
  "(\<exists>z\<in>Sigma A B. P z) \<longleftrightarrow> (\<exists>x\<in>A. \<exists>y\<in>B x. P (x, y))"
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1124
  by blast
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1125
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1126
lemma Sigma_Un_distrib1:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1127
  "Sigma (I \<union> J) C = Sigma I C \<union> Sigma J C"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1128
  by blast
21908
d02ba728cd56 moved code generator product setup here
haftmann
parents: 21454
diff changeset
  1129
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1130
lemma Sigma_Un_distrib2:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1131
  "(SIGMA i:I. A i \<union> B i) = Sigma I A \<union> Sigma I B"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1132
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1133
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1134
lemma Sigma_Int_distrib1:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1135
  "Sigma (I \<inter> J) C = Sigma I C \<inter> Sigma J C"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1136
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1137
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1138
lemma Sigma_Int_distrib2:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1139
  "(SIGMA i:I. A i \<inter> B i) = Sigma I A \<inter> Sigma I B"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1140
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1141
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1142
lemma Sigma_Diff_distrib1:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1143
  "Sigma (I - J) C = Sigma I C - Sigma J C"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1144
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1145
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1146
lemma Sigma_Diff_distrib2:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1147
  "(SIGMA i:I. A i - B i) = Sigma I A - Sigma I B"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1148
  by blast
21908
d02ba728cd56 moved code generator product setup here
haftmann
parents: 21454
diff changeset
  1149
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1150
lemma Sigma_Union:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1151
  "Sigma (\<Union>X) B = (\<Union>A\<in>X. Sigma A B)"
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1152
  by blast
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1153
61630
608520e0e8e2 add various lemmas
Andreas Lochbihler
parents: 61425
diff changeset
  1154
lemma Pair_vimage_Sigma: "Pair x -` Sigma A f = (if x \<in> A then f x else {})"
608520e0e8e2 add various lemmas
Andreas Lochbihler
parents: 61425
diff changeset
  1155
  by auto
608520e0e8e2 add various lemmas
Andreas Lochbihler
parents: 61425
diff changeset
  1156
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1157
text \<open>
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1158
  Non-dependent versions are needed to avoid the need for higher-order
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1159
  matching, especially when the rules are re-oriented.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1160
\<close>
21908
d02ba728cd56 moved code generator product setup here
haftmann
parents: 21454
diff changeset
  1161
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1162
lemma Times_Un_distrib1:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1163
  "(A \<union> B) \<times> C = A \<times> C \<union> B \<times> C "
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
  1164
  by (fact Sigma_Un_distrib1)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1165
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1166
lemma Times_Int_distrib1:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1167
  "(A \<inter> B) \<times> C = A \<times> C \<inter> B \<times> C "
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
  1168
  by (fact Sigma_Int_distrib1)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1169
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1170
lemma Times_Diff_distrib1:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1171
  "(A - B) \<times> C = A \<times> C - B \<times> C "
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
  1172
  by (fact Sigma_Diff_distrib1)
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1173
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1174
lemma Times_empty [simp]:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1175
  "A \<times> B = {} \<longleftrightarrow> A = {} \<or> B = {}"
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36176
diff changeset
  1176
  by auto
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36176
diff changeset
  1177
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1178
lemma times_eq_iff:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1179
  "A \<times> B = C \<times> D \<longleftrightarrow> A = C \<and> B = D \<or> (A = {} \<or> B = {}) \<and> (C = {} \<or> D = {})"
50104
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49897
diff changeset
  1180
  by auto
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49897
diff changeset
  1181
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1182
lemma fst_image_times [simp]:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1183
  "fst ` (A \<times> B) = (if B = {} then {} else A)"
44921
58eef4843641 tuned proofs
huffman
parents: 44066
diff changeset
  1184
  by force
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36176
diff changeset
  1185
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1186
lemma snd_image_times [simp]:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1187
  "snd ` (A \<times> B) = (if A = {} then {} else B)"
44921
58eef4843641 tuned proofs
huffman
parents: 44066
diff changeset
  1188
  by force
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36176
diff changeset
  1189
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62139
diff changeset
  1190
lemma fst_image_Sigma:
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62139
diff changeset
  1191
  "fst ` (Sigma A B) = {x \<in> A. B(x) \<noteq> {}}"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62139
diff changeset
  1192
  by force
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62139
diff changeset
  1193
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62139
diff changeset
  1194
lemma snd_image_Sigma:
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62139
diff changeset
  1195
  "snd ` (Sigma A B) = (\<Union> x \<in> A. B x)"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62139
diff changeset
  1196
  by force
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62139
diff changeset
  1197
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
  1198
lemma vimage_fst:
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
  1199
  "fst -` A = A \<times> UNIV"
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
  1200
  by auto
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
  1201
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
  1202
lemma vimage_snd:
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
  1203
  "snd -` A = UNIV \<times> A"
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
  1204
  by auto
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56512
diff changeset
  1205
28719
01e04e41cc7b added lemma
nipkow
parents: 28562
diff changeset
  1206
lemma insert_times_insert[simp]:
01e04e41cc7b added lemma
nipkow
parents: 28562
diff changeset
  1207
  "insert a A \<times> insert b B =
01e04e41cc7b added lemma
nipkow
parents: 28562
diff changeset
  1208
   insert (a,b) (A \<times> insert b B \<union> insert a A \<times> B)"
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1209
  by blast
26358
d6a508c16908 Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents: 26340
diff changeset
  1210
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1211
lemma vimage_Times:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1212
  "f -` (A \<times> B) = (fst \<circ> f) -` A \<inter> (snd \<circ> f) -` B"
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1213
proof (rule set_eqI)
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1214
  fix x
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1215
  show "x \<in> f -` (A \<times> B) \<longleftrightarrow> x \<in> (fst \<circ> f) -` A \<inter> (snd \<circ> f) -` B"
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1216
    by (cases "f x") (auto split: prod.split)
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1217
qed
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents: 33089
diff changeset
  1218
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1219
lemma times_Int_times:
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1220
  "A \<times> B \<inter> C \<times> D = (A \<inter> C) \<times> (B \<inter> D)"
50104
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49897
diff changeset
  1221
  by auto
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49897
diff changeset
  1222
56626
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
  1223
lemma product_swap:
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
  1224
  "prod.swap ` (A \<times> B) = B \<times> A"
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
  1225
  by (auto simp add: set_eq_iff)
35822
67e4de90d2c2 lemma swap_inj_on, swap_product
haftmann
parents: 35427
diff changeset
  1226
67e4de90d2c2 lemma swap_inj_on, swap_product
haftmann
parents: 35427
diff changeset
  1227
lemma swap_product:
56626
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
  1228
  "(\<lambda>(i, j). (j, i)) ` (A \<times> B) = B \<times> A"
6532efd66a70 swap with qualifier;
haftmann
parents: 56545
diff changeset
  1229
  by (auto simp add: set_eq_iff)
35822
67e4de90d2c2 lemma swap_inj_on, swap_product
haftmann
parents: 35427
diff changeset
  1230
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36176
diff changeset
  1231
lemma image_split_eq_Sigma:
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36176
diff changeset
  1232
  "(\<lambda>x. (f x, g x)) ` A = Sigma (f ` A) (\<lambda>x. g ` (f -` {x} \<inter> A))"
46128
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46028
diff changeset
  1233
proof (safe intro!: imageI)
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36176
diff changeset
  1234
  fix a b assume *: "a \<in> A" "b \<in> A" and eq: "f a = f b"
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36176
diff changeset
  1235
  show "(f b, g a) \<in> (\<lambda>x. (f x, g x)) ` A"
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36176
diff changeset
  1236
    using * eq[symmetric] by auto
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36176
diff changeset
  1237
qed simp_all
35822
67e4de90d2c2 lemma swap_inj_on, swap_product
haftmann
parents: 35427
diff changeset
  1238
63007
aa894a49f77d new theorems about convex hulls, etc.; also, renamed some theorems
paulson <lp15@cam.ac.uk>
parents: 62913
diff changeset
  1239
lemma subset_fst_snd: "A \<subseteq> (fst ` A \<times> snd ` A)"
aa894a49f77d new theorems about convex hulls, etc.; also, renamed some theorems
paulson <lp15@cam.ac.uk>
parents: 62913
diff changeset
  1240
  by force
aa894a49f77d new theorems about convex hulls, etc.; also, renamed some theorems
paulson <lp15@cam.ac.uk>
parents: 62913
diff changeset
  1241
60057
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59880
diff changeset
  1242
lemma inj_on_apfst [simp]: "inj_on (apfst f) (A \<times> UNIV) \<longleftrightarrow> inj_on f A"
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59880
diff changeset
  1243
by(auto simp add: inj_on_def)
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59880
diff changeset
  1244
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59880
diff changeset
  1245
lemma inj_apfst [simp]: "inj (apfst f) \<longleftrightarrow> inj f"
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59880
diff changeset
  1246
using inj_on_apfst[of f UNIV] by simp
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59880
diff changeset
  1247
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59880
diff changeset
  1248
lemma inj_on_apsnd [simp]: "inj_on (apsnd f) (UNIV \<times> A) \<longleftrightarrow> inj_on f A"
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59880
diff changeset
  1249
by(auto simp add: inj_on_def)
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59880
diff changeset
  1250
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59880
diff changeset
  1251
lemma inj_apsnd [simp]: "inj (apsnd f) \<longleftrightarrow> inj f"
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59880
diff changeset
  1252
using inj_on_apsnd[of f UNIV] by simp
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59880
diff changeset
  1253
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1254
context
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1255
begin
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1256
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1257
qualified definition product :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" where
46128
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46028
diff changeset
  1258
  [code_abbrev]: "product A B = A \<times> B"
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46028
diff changeset
  1259
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46028
diff changeset
  1260
lemma member_product:
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46028
diff changeset
  1261
  "x \<in> Product_Type.product A B \<longleftrightarrow> x \<in> A \<times> B"
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1262
  by (simp add: Product_Type.product_def)
46128
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46028
diff changeset
  1263
61127
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1264
end
76cd7f1ec257 tuned notation, proofs, namespace
haftmann
parents: 61126
diff changeset
  1265
  
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1266
text \<open>The following @{const map_prod} lemmas are due to Joachim Breitner:\<close>
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1267
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1268
lemma map_prod_inj_on:
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1269
  assumes "inj_on f A" and "inj_on g B"
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1270
  shows "inj_on (map_prod f g) (A \<times> B)"
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1271
proof (rule inj_onI)
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1272
  fix x :: "'a \<times> 'c" and y :: "'a \<times> 'c"
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1273
  assume "x \<in> A \<times> B" hence "fst x \<in> A" and "snd x \<in> B" by auto
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1274
  assume "y \<in> A \<times> B" hence "fst y \<in> A" and "snd y \<in> B" by auto
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1275
  assume "map_prod f g x = map_prod f g y"
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1276
  hence "fst (map_prod f g x) = fst (map_prod f g y)" by (auto)
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1277
  hence "f (fst x) = f (fst y)" by (cases x,cases y,auto)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1278
  with \<open>inj_on f A\<close> and \<open>fst x \<in> A\<close> and \<open>fst y \<in> A\<close>
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1279
  have "fst x = fst y" by (auto dest:dest:inj_onD)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1280
  moreover from \<open>map_prod f g x = map_prod f g y\<close>
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1281
  have "snd (map_prod f g x) = snd (map_prod f g y)" by (auto)
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1282
  hence "g (snd x) = g (snd y)" by (cases x,cases y,auto)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1283
  with \<open>inj_on g B\<close> and \<open>snd x \<in> B\<close> and \<open>snd y \<in> B\<close>
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1284
  have "snd x = snd y" by (auto dest:dest:inj_onD)
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1285
  ultimately show "x = y" by(rule prod_eqI)
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1286
qed
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1287
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1288
lemma map_prod_surj:
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40607
diff changeset
  1289
  fixes f :: "'a \<Rightarrow> 'b" and g :: "'c \<Rightarrow> 'd"
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1290
  assumes "surj f" and "surj g"
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1291
  shows "surj (map_prod f g)"
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1292
unfolding surj_def
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1293
proof
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1294
  fix y :: "'b \<times> 'd"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1295
  from \<open>surj f\<close> obtain a where "fst y = f a" by (auto elim:surjE)
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1296
  moreover
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1297
  from \<open>surj g\<close> obtain b where "snd y = g b" by (auto elim:surjE)
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1298
  ultimately have "(fst y, snd y) = map_prod f g (a,b)" by auto
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1299
  thus "\<exists>x. y = map_prod f g x" by auto
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1300
qed
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1301
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1302
lemma map_prod_surj_on:
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1303
  assumes "f ` A = A'" and "g ` B = B'"
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1304
  shows "map_prod f g ` (A \<times> B) = A' \<times> B'"
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1305
unfolding image_def
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1306
proof(rule set_eqI,rule iffI)
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1307
  fix x :: "'a \<times> 'c"
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 61032
diff changeset
  1308
  assume "x \<in> {y::'a \<times> 'c. \<exists>x::'b \<times> 'd\<in>A \<times> B. y = map_prod f g x}"
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1309
  then obtain y where "y \<in> A \<times> B" and "x = map_prod f g y" by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1310
  from \<open>image f A = A'\<close> and \<open>y \<in> A \<times> B\<close> have "f (fst y) \<in> A'" by auto
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1311
  moreover from \<open>image g B = B'\<close> and \<open>y \<in> A \<times> B\<close> have "g (snd y) \<in> B'" by auto
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1312
  ultimately have "(f (fst y), g (snd y)) \<in> (A' \<times> B')" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1313
  with \<open>x = map_prod f g y\<close> show "x \<in> A' \<times> B'" by (cases y, auto)
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1314
next
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1315
  fix x :: "'a \<times> 'c"
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1316
  assume "x \<in> A' \<times> B'" hence "fst x \<in> A'" and "snd x \<in> B'" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1317
  from \<open>image f A = A'\<close> and \<open>fst x \<in> A'\<close> have "fst x \<in> image f A" by auto
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1318
  then obtain a where "a \<in> A" and "fst x = f a" by (rule imageE)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1319
  moreover from \<open>image g B = B'\<close> and \<open>snd x \<in> B'\<close>
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1320
  obtain b where "b \<in> B" and "snd x = g b" by auto
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1321
  ultimately have "(fst x, snd x) = map_prod f g (a,b)" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1322
  moreover from \<open>a \<in> A\<close> and  \<open>b \<in> B\<close> have "(a , b) \<in> A \<times> B" by auto
55932
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1323
  ultimately have "\<exists>y \<in> A \<times> B. x = map_prod f g y" by auto
68c5104d2204 renamed 'map_pair' to 'map_prod'
blanchet
parents: 55642
diff changeset
  1324
  thus "x \<in> {x. \<exists>y \<in> A \<times> B. x = map_prod f g y}" by auto
40607
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1325
qed
30d512bf47a7 map_pair replaces prod_fun
haftmann
parents: 40590
diff changeset
  1326
21908
d02ba728cd56 moved code generator product setup here
haftmann
parents: 21454
diff changeset
  1327
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1328
subsection \<open>Simproc for rewriting a set comprehension into a pointfree expression\<close>
49764
9979d64b8016 moving simproc from Finite_Set to more appropriate Product_Type theory
bulwahn
parents: 48891
diff changeset
  1329
9979d64b8016 moving simproc from Finite_Set to more appropriate Product_Type theory
bulwahn
parents: 48891
diff changeset
  1330
ML_file "Tools/set_comprehension_pointfree.ML"
9979d64b8016 moving simproc from Finite_Set to more appropriate Product_Type theory
bulwahn
parents: 48891
diff changeset
  1331
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1332
setup \<open>
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
  1333
  Code_Preproc.map_pre (fn ctxt => ctxt addsimprocs
61144
5e94dfead1c2 simplified simproc programming interfaces;
wenzelm
parents: 61127
diff changeset
  1334
    [Simplifier.make_simproc @{context} "set comprehension"
5e94dfead1c2 simplified simproc programming interfaces;
wenzelm
parents: 61127
diff changeset
  1335
      {lhss = [@{term "Collect P"}],
62913
13252110a6fe eliminated unused simproc identifier;
wenzelm
parents: 62594
diff changeset
  1336
       proc = K Set_Comprehension_Pointfree.code_simproc}])
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1337
\<close>
49764
9979d64b8016 moving simproc from Finite_Set to more appropriate Product_Type theory
bulwahn
parents: 48891
diff changeset
  1338
9979d64b8016 moving simproc from Finite_Set to more appropriate Product_Type theory
bulwahn
parents: 48891
diff changeset
  1339
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1340
subsection \<open>Inductively defined sets\<close>
15394
a2c34e6ca4f8 New code generator for let and split.
berghofe
parents: 15140
diff changeset
  1341
56512
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1342
(* simplify {(x1, ..., xn). (x1, ..., xn) : S} to S *)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1343
simproc_setup Collect_mem ("Collect t") = \<open>
56512
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1344
  fn _ => fn ctxt => fn ct =>
59582
0fbed69ff081 tuned signature -- prefer qualified names;
wenzelm
parents: 59498
diff changeset
  1345
    (case Thm.term_of ct of
56512
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1346
      S as Const (@{const_name Collect}, Type (@{type_name fun}, [_, T])) $ t =>
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1347
        let val (u, _, ps) = HOLogic.strip_ptupleabs t in
56512
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1348
          (case u of
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1349
            (c as Const (@{const_name Set.member}, _)) $ q $ S' =>
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1350
              (case try (HOLogic.strip_ptuple ps) q of
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1351
                NONE => NONE
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1352
              | SOME ts =>
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1353
                  if not (Term.is_open S') andalso
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1354
                    ts = map Bound (length ps downto 0)
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1355
                  then
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1356
                    let val simp =
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1357
                      full_simp_tac (put_simpset HOL_basic_ss ctxt
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1358
                        addsimps [@{thm split_paired_all}, @{thm case_prod_conv}]) 1
56512
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1359
                    in
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1360
                      SOME (Goal.prove ctxt [] []
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1361
                        (Const (@{const_name Pure.eq}, T --> T --> propT) $ S $ S')
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1362
                        (K (EVERY
59498
50b60f501b05 proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents: 59000
diff changeset
  1363
                          [resolve_tac ctxt [eq_reflection] 1,
50b60f501b05 proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents: 59000
diff changeset
  1364
                           resolve_tac ctxt @{thms subset_antisym} 1,
63399
d1742d1b7f0f more antiquotations;
wenzelm
parents: 63237
diff changeset
  1365
                           resolve_tac ctxt @{thms subsetI} 1,
d1742d1b7f0f more antiquotations;
wenzelm
parents: 63237
diff changeset
  1366
                           dresolve_tac ctxt @{thms CollectD} 1, simp,
d1742d1b7f0f more antiquotations;
wenzelm
parents: 63237
diff changeset
  1367
                           resolve_tac ctxt @{thms subsetI} 1,
d1742d1b7f0f more antiquotations;
wenzelm
parents: 63237
diff changeset
  1368
                           resolve_tac ctxt @{thms CollectI} 1, simp])))
56512
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1369
                    end
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1370
                  else NONE)
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1371
          | _ => NONE)
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1372
        end
9276da80f7c3 modernized simproc_setup;
wenzelm
parents: 56245
diff changeset
  1373
    | _ => NONE)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1374
\<close>
58389
ee1f45ca0d73 made new 'primrec' bootstrapping-capable
blanchet
parents: 58306
diff changeset
  1375
48891
c0eafbd55de3 prefer ML_file over old uses;
wenzelm
parents: 47988
diff changeset
  1376
ML_file "Tools/inductive_set.ML"
24699
c6674504103f datatype interpretators for size and datatype_realizer
haftmann
parents: 24286
diff changeset
  1377
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
  1378
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1379
subsection \<open>Legacy theorem bindings and duplicates\<close>
37166
e8400e31528a more coherent theory structure; tuned headings
haftmann
parents: 37136
diff changeset
  1380
55393
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
  1381
lemmas fst_conv = prod.sel(1)
ce5cebfaedda se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
blanchet
parents: 54630
diff changeset
  1382
lemmas snd_conv = prod.sel(2)
61032
b57df8eecad6 standardized some occurences of ancient "split" alias
haftmann
parents: 60758
diff changeset
  1383
lemmas split_def = case_prod_unfold
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1384
lemmas split_beta' = case_prod_beta'
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1385
lemmas split_beta = prod.case_eq_if
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1386
lemmas split_conv = case_prod_conv
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61422
diff changeset
  1387
lemmas split = case_prod_conv
44066
d74182c93f04 rename Pair_fst_snd_eq to prod_eq_iff (keeping old name too)
huffman
parents: 43866
diff changeset
  1388
45204
5e4a1270c000 hide typedef-generated constants Product_Type.prod and Sum_Type.sum
huffman
parents: 44921
diff changeset
  1389
hide_const (open) prod
5e4a1270c000 hide typedef-generated constants Product_Type.prod and Sum_Type.sum
huffman
parents: 44921
diff changeset
  1390
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
  1391
end